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Rich meta‐epidemiological data sets have been collected to explore associations

between intervention effect estimates and study‐level characteristics. Welton et al

proposed models for the analysis of meta‐epidemiological data, but these models

are restrictive because they force heterogeneity among studies with a particular

characteristic to be at least as large as that among studies without the characteris-

tic. In this paper we present alternative models that are invariant to the labels

defining the 2 categories of studies. To exemplify the methods, we use a collection

of meta‐analyses in which the Cochrane Risk of Bias tool has been implemented.

We first investigate the influence of small trial sample sizes (less than 100 partici-

pants), before investigating the influence of multiple methodological flaws (inade-

quate or unclear sequence generation, allocation concealment, and blinding). We

fit both the Welton et al model and our proposed label‐invariant model and com-

pare the results. Estimates of mean bias associated with the trial characteristics and

of between‐trial variances are not very sensitive to the choice of model. Results

from fitting a univariable model show that heterogeneity variance is, on average,

88% greater among trials with less than 100 participants. On the basis of a multi-

variable model, heterogeneity variance is, on average, 25% greater among trials

with inadequate/unclear sequence generation, 51% greater among trials with inad-

equate/unclear blinding, and 23% lower among trials with inadequate/unclear

allocation concealment, although the 95% intervals for these ratios are very wide.

Our proposed label‐invariant models for meta‐epidemiological data analysis facili-

tate investigations of between‐study heterogeneity attributable to certain study

characteristics.
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1 | INTRODUCTION

Meta‐analysis is used to combine the results of multiple studies in order to synthesise evidence in a specific research area.
Variation in effect sizes among studies, known as heterogeneity, is widespread and reflects differences in design and
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conduct of the studies, as well as differences in the characteristics of participants, interventions, and outcomes studied.
Possible explanations of heterogeneity among studies in a meta‐analysis should be determined where possible. Meta‐
analysts may explore heterogeneity by separating studies into subgroups, using meta‐regression, or restricting analyses
to studies with particular characteristics. However, results from such analyses are imprecise if the number of studies
is small. On the other hand, combining all available studies, while ignoring differences in their design and conduct,
may produce results that are difficult to interpret or, at worst, meaningless.

Meta‐epidemiology is an emerging field of research that seeks to understand causes of heterogeneity across studies by
reanalysing large numbers of meta‐analyses. A notable example of a meta‐epidemiological study is the BRANDO study,1

which combined data from several existing meta‐epidemiological studies into a single database. Each of the 1973
included trials was categorised according to whether specific design characteristics were judged to be adequate, inade-
quate, or unclear. Comparisons of trials in different categories were made within each of the meta‐analyses, and these
comparisons were combined across the 234 included meta‐analyses. The results showed that, on average, effects were
exaggerated in favour of the experimental treatment in trials judged not to have adequate sequence generation, alloca-
tion concealment, and blinding.

The analysis of BRANDO followed methods proposed by Welton et al,2 which model the biases that may arise due to
particular design characteristics within a Bayesian framework. Specifically, a bias parameter is introduced for effect sizes
in studies with a particular design characteristic such as inadequate allocation concealment, and a hierarchical model
structure is assumed for these, with variability in bias assumed across the studies with the characteristic within each
meta‐analysis and across meta‐analyses. While intuitively appealing, a limitation of these models is that they impose
an additive relationship between the amount of heterogeneity in the groups of studies, such that the studies with the
characteristic are constrained to be at least as heterogeneous as the studies without the characteristic.3 The inherent
assumption that studies without the characteristic will be no more heterogeneous than studies with the characteristic
will not necessarily be true. Furthermore, when meta‐epidemiological methods are used to examine study characteristics
that are not clearly associated with methodological quality (such as single centre versus multicentre studies), the model
is problematic because it forces a somewhat arbitrary assumption that the heterogeneity in one category is at least as
large as that in the other category. In short, the model is not invariant to the labels defining the 2 categories of studies.

In this paper, we present general models for the analysis of meta‐epidemiological studies that are label‐invariant. We
allow variation among the studies with the characteristic of interest to be higher or lower than the variation among the
studies without the characteristic. We achieve this by modelling a multiplicative rather than an additive relationship
between the variance components in the 2 categories of studies. After introducing this model for a univariable model
for combining studies with and without a single reported characteristic, we generalise our approach to a multivariable
model for combining studies that differ according to multiple characteristics. We then apply models with additive and
label‐invariant variance structures to a newmeta‐epidemiological dataset (the ROBES study), to investigate how estimates
of average intervention effect and heterogeneity may depend on the choice of model. We assess the robustness of results
from the proposed label‐invariant model to the choice of prior distribution for the multiplicative parameter in Section 6.
2 | UNIVARIABLE MODELS TO EXAMINE THE INFLUENCE OF A SINGLE
CHARACTERISTIC

We first describe models for meta‐epidemiological studies involving a single characteristic, to investigate differences due
to one particular attribute of the studies, such as an aspect of design or quality. In a given meta‐analysis m, suppose that
studies are categorised according to the presence or absence of the characteristic of interest. We assume that each study i
without the characteristic (denoted by “−”) provides an estimate of the underlying intervention effect θ−im. We assume a
normal random‐effects distribution for the θ−im with mean dm and variance τ2m, specific to meta‐analysis m:

θ−imeN dm; τ2m
� �

:

A study with the characteristic (denoted by “+”) is assumed to estimate an underlying intervention effect θþim. In the
additive model proposed by Welton et al, we define this to be a potentially biased version of what would have been esti-
mated in the absence of the characteristic:
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θþim ¼ θ−im þ βim:

A hierarchical structure is placed on the bias terms, βim:

βimeN bm; κ2m
� �

;

where bm and κ2m represent the mean and variance in bias, within meta‐analysism, associated with presence of the char-
acteristic. We use model 3 of Welton et al, assuming throughout that the variance in the biases is the same within each
meta‐analysis, such that κ2m ¼ κ2 for all m. The assumption is not necessary, but there is seldom sufficient evidence to

estimate multiple variance parameters. Thus, the θþim are assumed to be normally distributed as

θþimeN dm þ bm; τ2m þ κ2
� �

:

Note that the consequence of the hierarchical model structure for the within‐study biases is that the variance of
the θþim is constrained to be at least as high as the variance of the θ−im. We will refer to this as an additive variance
structure. This could be particularly problematic because the estimated variance components in Bayesian hierarchical
models have been shown to be biased upwards.4 For this reason, it may appear that the variance component κ is
strictly positive, even though it is not.

We propose an alternative, label‐invariant, model, in which we allow the variance of the θþim to be higher or lower
than the variance of the θ−im, by using a positive scale parameter, λ:

θþimeN dm þ bm; λτ2m
� �

:

In the new model, λ represents the ratio of the between‐study heterogeneity among “+” studies with the character-
istic of interest, compared with “−” studies without the characteristic. Thus, when λ exceeds 1 the “+” studies show
greater between‐study variability than the “−” studies.

For both the Welton model and our proposed label‐invariant model, the mean bias bm associated with the character-
istic of interest in meta‐analysis m is assumed to be exchangeable across meta‐analyses, with overall mean b0 and
between‐meta‐analysis variance in mean bias φ2:

bmeN b0;φ2
� �

:

Note that because our model is invariant to whether the characteristic is present or absent, the bm and b0 terms can be
thought of simply as differences rather than as biases. Parameters b0, φ, and κ or λ are estimated through fitting these
models to a meta‐epidemiological dataset.
3 | MULTIVARIABLE MODELS TO EXAMINE THE INFLUENCE OF
MULTIPLE CHARACTERISTICS

Suppose now that studies in each pair‐wise meta‐analysis m have been categorised according to the presence of p
reported characteristics, again representing differences in design or quality. We set the indicator Xijm to be 1 for studies
with the j‐th reported characteristic ( j = 1,2,…,p), and 0 for studies without that characteristic.

Multivariable models are based on extensions of the hierarchical models described in Section 2. In the additive mul-
tivariable model, the studies with characteristic j (studies with Xijm = 1) are assumed to estimate the same underlying
intervention effect as the studies without this characteristic (studies with Xijm = 0) plus some study‐specific, character-
istic‐specific bias βijm. In multivariable analyses presented for the BRANDO study,1 a generalised version of the Welton
et al model was fitted, assuming each study i to estimate an underlying intervention effect θim:
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θim∣X1im;…;Xpim; β1im;…βpim eN dm þ ∑
p

j¼1
Xijmβijm; τ

2
m

 !
:

That is,

θim∣X1im;…;XpimeN dm þ ∑
p

j¼1
Xijmbjm; τ2m þ ∑

p

j¼1
κ2j

 !

In the label‐invariant model, the studies are assumed to have underlying intervention effect:

θim∣X1im;…;XpimeN dm þ ∑
p

j¼1
Xijmbjm; τ2m ∏

p

j¼1
1‐Xijm
� �þ Xijmλj
� � !

:

For example, the intervention effect θim in a study i with characteristics 1 and 2 but not 3 would have a normal dis-
tribution with mean dm+ b1m+ b2m and variance τ2mλ1λ2.

Under this model, we estimate the parameters representing the differences bm in between‐study means and the ratios
λj of between‐study variances, for each of the p characteristics.

For both models, the implied average bias (on the log odds ratio scale) in studies with any combination of study char-
acteristics is estimated by the sum of the relevant fitted b0 terms∑

j
b0j. In practice we might expect study characteristics

to be correlated. It would be possible to extend the multivariable models to include interactions between different study
characteristics,1 but we do not explore interactions in this paper.
4 | ADDITIONAL MODELLING OF HETEROGENEITY VARIANCE

It is of interest to compare variance estimates from fitting the existing additive model and the proposed label‐invariant
model. This is difficult because estimates of κ from the additive model and λ from the label‐invariant model have differ-
ent interpretations and are not directly comparable. For this reason, we focus on estimates of heterogeneity variances τ2m
(among studies without the characteristic of interest), which have the same interpretation under the 2 different models.
These estimates are influenced by κ in the additive model and λ in the label‐invariant model, and hence, comparison of
the distributions obtained under the 2 different models gives some indication of agreement between estimates of vari-
ance components.

Between‐study heterogeneity τ2m varies across meta‐analyses m and is estimated in the additive and label‐invariant
models above. However, to compare estimates of total (within meta‐analysis) heterogeneity, we need to obtain some
“typical” value of τ. For this reason, we extend the models slightly to include a hierarchical structure for log(τ2m). We fol-
low the approach of Turner et al5 and model the underlying values of between‐study variance τ2m in intervention effect
among studies without the characteristic of interest, assuming these to follow a log‐normal(μ, σ2) distribution. A predic-
tive distribution for the heterogeneity variance τ2new (among studies without the characteristic of interest) is obtained
under the full Bayesian model:

τ2newe log‐normal μ; σ2
� �

:

To summarise this distribution, we report a log‐normal distribution fitted to the predictive distribution, using the pos-
terior mean and SD for log(τ2new).
5 | APPLICATIONS

We make use of a newly constructed database from the ROBES study.6 This database comprises 244 meta‐analyses with
completed Risk of Bias tables, extracted from the April 2011 issue of the Cochrane Database of Systematic Reviews. For
each trial in every meta‐analysis, information is available on all items addressed by the Cochrane Risk of Bias tool.7
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Meta‐analyses where numerical data were unavailable or where pooling was considered inappropriate were excluded.
The ROBES database also excluded meta‐analyses comprising fewer than 5 trials. One binary outcome meta‐analysis
from each eligible Cochrane review was included in the database, corresponding to a primary outcome where possible.

Empirical evidence suggests that intervention effect estimates are exaggerated in smaller studies8 and studies with
flaws in their design and conduct.1,6 As an example application of the univariable models, we investigate the influence
of small study sample sizes (less than 100 participants), before using multivariable models to investigate the influence of
multiple methodological flaws (inadequate or unclear sequence generation, allocation concealment, and blinding).

In all analyses, intervention effects were modelled as log odds ratios, and outcomes were coded so that a log odds
ratio less than 0 corresponded to a beneficial intervention effect. We assumed the observed number of events in each
arm of each trial to have a binomial distribution. A vague normal(0,1000) prior was assigned to all location parameters.
Estimated mean differences b0 in intervention effect between trials with and without the characteristic of interest were
exponentiated and are therefore reported as relative odds ratios (ROR). Meta‐analyses may be informative for some, but
not all, reported characteristics. We refer to meta‐analyses as informative for a characteristic if they contained at least
one trial with the characteristic and one without the characteristic and could inform estimation of average differences
in intervention effect bm associated with the characteristic.

In the additive models, variance parameters κ2 and φ2 were given modified inverse‐gamma(0.001,0.001) prior distri-
butions with a probability atom at zero variance, following Savovic et al.1 That is, we let the variance parameters κ2 and
φ2 be equal to zero with some probability p0 and equal to the variance from an inverse‐gamma prior with probability
(1 − p0). The mixing probability p0 was given an uninformative Beta(1,1) prior. For the additional modelling of hetero-
geneity variances, we placed a vague prior on the mean, μ, and assumed a uniform(0,2) prior for the SD parameter σ,
representing variation in heterogeneity across meta‐analyses, as suggested by Spiegelhalter et al.9 Posterior summaries
from all models were obtained by using Markov chain Monte Carlo methods within WinBUGS version 1.4.3.10 To pro-
duce very low MC error rates, we based results on 500 000 iterations, following a burn‐in period of 25 000 iterations,
which was sufficient to achieve convergence. Convergence was assessed according to the Brooks‐Gelman‐Rubin diagnos-
tic tool,11 with 3 chains starting from widely dispersed initial values.

In the label‐invariant models, we placed a log‐normal(0,1) prior distribution on the multiplicative parameters λ,
which has median 1 on the untransformed scale. We assess sensitivity to this choice of prior distribution in Section 6.
Because it was not possible to compute both τm and κ or λ in a meta‐analysis with fewer than 2 trials with and without
a characteristic of interest, such meta‐analyses were not allowed to contribute to the estimation of κ in the additive
models or to the estimation of λ in the label‐invariant models through use of the “cut” function in WinBUGS.

In multivariable analyses we used WinBUGS to calculate a 95% credible interval for the implied average bias in trials
with any combination of study characteristics, ∑

j
b0j, that accounted for correlations between the coefficients b0j.

Model fit comparison was based on the deviance information criterion (DIC).12,13 The posterior mean of the total
residual deviance Dres was used to assess the goodness‐of‐fit of the hierarchical models. The DIC provides a measure
of model fit that penalises Dres by the effective number of parameters pD. Because of the nonlinearity between the like-
lihood and the model parameters, we calculated pD at the posterior mean of the fitted values rather than at the posterior
mean of the parameters.14

The WinBUGS code for the label‐invariant models presented in the paper is available in Supporting Information.
5.1 | Example 1: univariable analyses examining the influence of sample size less than 100

Sample size can vary substantially among studies, even within a single meta‐analysis addressing the same research ques-
tion.15 Dechartres et al8 investigated the influence of trial sample size on treatment effect estimates in a large collection
of meta‐analyses of various medical conditions and interventions. Effect estimates differed within meta‐analyses accord-
ing to trial sample size; on average, stronger estimates were observed in small to moderately sized studies than in the
largest studies. Here we apply univariable models to examine the influence of trial sample sizes of less than 100 partic-
ipants on intervention effect and between‐trial heterogeneity. This fixed threshold for sample size has been chosen
because it is approximately the median sample size of trials included in the ROBES database; our intention is to exem-
plify the methods rather than to provide empirical evidence.

We analysed data from 2091 trials included in 179 binary outcome meta‐analyses that were informative to detect dif-
ferences in intervention effect between trials with sample size less than 100 participants and those with larger sample
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sizes. The number of trials per meta‐analysis ranges from 5 to 75 with median 9 and interquartile range (IQR) 6 to 13. The
number of trials per meta‐analysis with less than 100 participants ranges from 1 to 29 with median 4 and IQR 2 to 7.

Posterior summaries derived from the additive model are reported in Table 1. Intervention effects were exaggerated
by an average of 15% in trials with sample sizes of less than 100 (ROR 0.85, 95% CI: 0.76‐0.93). The posterior median of
the between‐trial within‐meta‐analysis SD κ is 0.22 (95% CI: 0.02‐0.40), and the between‐meta‐analysis SD in mean bias φ
has posterior median 0.22 (95% CI: 0.03‐0.36). We derived a predictive log‐normal(−2.94, 1.692) distribution for between‐
trial variance τ2new expected among trials with a sample size of at least 100 participants. This predictive distribution has
median 0.05 and 95% range 0.002 to 1.42.

Table 1 also provides the posterior summaries obtained from the label‐invariant model. Estimated mean bias is fairly
robust to the choice of variance structure, as is the estimated between‐meta‐analysis SD in mean bias φ. In the label‐
invariant model, λ has posterior median 1.88 (95% CI: 1.08‐3.10), indicating that variation among trials with sample sizes
less than 100 is on average 88% greater than that among trials with at least 100 participants. The predictive distribution
obtained for the between‐trial heterogeneity variance τ2new expected among trials with at least 100 participants is fairly
similar to that obtained under the additive model, but gives less support to higher levels of heterogeneity.

Values of Dres and pD for the additive model are close to those for the label‐invariant model (Table 1). The label‐
invariant model has a lower DIC, but the difference in DIC between the additive and label‐invariant models is less than
5 and hence not considered to be meaningful.12 We therefore have little reason to choose one model over the other.

To confirm the label‐invariant property of our proposed model, we inverted the sample size labels of the trials and
applied the univariable models to examine the influence of trial sample sizes greater than 100 participants on interven-
tion effect and between‐trial heterogeneity. Parameter estimates are shown in Table 2. As expected, estimated mean bias
b0 is the negative of the estimate obtained before relabelling the trials. Under the additive model, between‐trial hetero-
geneity (quantified by κ) is constrained to be higher for trials with greater than 100 participants; the posterior median of κ
is 0.03 (95% CI: 0.01 to 0.09), which is lower than the posterior median 0.22 in Table 1. Under the label‐invariant model,
the posterior median of λ is 0.53 (95% CI: 0.32 to 0.85), which is approximately the reciprocal of the posterior median 1.88
obtained before relabelling the trials. After relabelling the trials, we find that the label‐invariant model gives a better fit
(lower Dres and DIC) and is preferred over the additive model.

Although the same label‐invariant model is used in each analysis reported in Tables 1 and 2, we make different
assumptions about the distributional form of heterogeneity variances by relabelling the trials. For example, in the first
analysis comparing smaller vs larger studies (Table 1), heterogeneity variance for larger trials with greater than 100 par-
ticipants is τ2, which is assumed to have a log‐normal distribution. After relabelling the trials, heterogeneity variance
among larger trials is λτ2 + φ2, which is not log‐normal. As a consequence, model fit may differ between the 2 analyses;
here, we find that the label‐invariant model gives a better fit (lower Dres and DIC) after relabelling the trials.
TABLE 1 Posterior summaries from univariable models with additive and label‐invariant variance structures, examining the influence of

sample size less than 100 participants

Additive Model Label‐invariant Model

Parameters in Model Median SD 95% CI Median SD 95% CI

b0 −0.16 0.05 −0.25 to −0.07 −0.17 0.04 −0.25 to −0.09

ROR 0.85 0.04 0.76 to 0.93 0.84 0.04 0.78 to 0.92

λ N/A 1.88 0.52 1.08 to 3.10

κ 0.22 0.11 0.02 to 0.40 N/A

φ 0.22 0.09 0.03 to 0.36 0.19 0.09 0.03 to 0.36

Predictive distributions for heterogeneity among trials with sample size ≥100 in a new meta‐analysis

τ2new (heterogeneity among
trials with Xim = 0)

Log‐normal(−2.94, 1.692)
Median = 0.05,
95% range 0.002‐1.42

Log‐normal(−2.96, 1.592)
Median = 0.05,
95% range 0.002‐1.13

Model fit Dres = 4183, pD = 2838, DIC = 7021 Dres = 4186, pD = 2832, DIC = 7018

Abbreviations: κ, average increase in between‐trial heterogeneity for smaller trials within meta‐analyses; λ, average change in heterogeneity variance for smaller

trials; φ, between‐meta‐analysis variance in the average difference in intervention effect associated with smaller sample sizes; b0, average difference in interven-
tion log odds ratio associated with smaller sample sizes; CI, credible interval; DIC, deviance information criterion; Dres, posterior mean of the total residual devi-
ance; pD, effective number of parameters; ROR, average change in estimated intervention effects for smaller trials (ratio of odds ratios).



TABLE 2 Posterior summaries from the univariable model with label‐invariant variance structure, examining the influence of sample size

greater than 100 participants.

Additive Model Label‐invariant Model

Parameters in Model Median SD 95% CI Median SD 95% CI

b0 0.16 0.04 0.08 to 0.23 0.17 0.04 0.09 to 0.25

ROR 1.17 0.04 1.08 to 1.25 1.18 0.05 1.09 to 1.28

λ N/A 0.53 0.13 0.32 to 0.85

κ 0.03 0.02 0.01 to 0.09 N/A

φ 0.24 0.07 0.03 to 0.34 0.20 0.09 0.02 to 0.35

Model fit Dres = 4208, pD = 2813, DIC = 7021 Dres = 4177, pD = 2572, DIC = 6749

Abbreviations: κ, average increase in between‐trial heterogeneity for larger trials within meta‐analyses; λ, average change in heterogeneity variance for larger
trials; φ, between‐meta‐analysis variance in the average difference in intervention effect associated with larger sample sizes; b0, average difference in intervention

log odds ratio associated with larger sample sizes; CI, credible interval; DIC, deviance information criterion; Dres, posterior mean of the total residual deviance;
pD, effective number of parameters; ROR, average change in estimated intervention effects for larger trials (ratio of odds ratios).
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5.2 | Example 2: multivariable analyses examining the influence of inadequate or unclear
sequence generation, allocation concealment, and blinding.

When conducting a systematic review, it is important to consider the risk of bias in the results of included studies.
Including biased studies with methodological flaws in a meta‐analysis will cause the results of the meta‐analysis to be
biased. Differences in risks of bias can help explain variation in the results of the studies. We conducted multivariable
analyses to examine the influences of inadequate or unclear sequence generation, allocation concealment, and blinding,
compared with adequate, on combined intervention effect and between‐trial heterogeneity. Table 3 presents results from
these analyses, based on 117 informative meta‐analyses (1473 trials) in which all 3 design characteristics were assessed.
The number of trials per meta‐analysis ranges from 5 to 75 with median 10 and IQR 6 to 14. In 396 (27%) trials, all 3
design characteristics were judged as inadequate or unclear. All 3 design characteristics were assessed as adequate in
361 (24%) trials.

Posterior summaries from the multivariable additive model are shown in Table 3. After adjusting for allocation con-
cealment and blinding, intervention effects were exaggerated by 5% on average in trials with inadequate or unclear
sequence generation (ROR 0.95, 95% CI: 0.87‐1.04). There is evidence that between‐trial heterogeneity (quantified by
κ1) is increased for trials with inadequate or unclear sequence generation; the posterior median of the additional
between‐trial within‐meta‐analysis SD κ1 is 0.12 (95% CI: 0.02‐0.26). For inadequate or unclear allocation concealment,
the ROR has posterior median 0.96 with SD 0.04, while κ2 has posterior median 0.06 (95% CI: 0.01‐0.20) after adjustment
for sequence generation and blinding. Inadequate or unclear blinding was associated with an average 8% exaggeration of
intervention effect estimates (ROR 0.92, 95% CI: 0.85‐0.99) and with increased heterogeneity (κ3 0.08, 95% CI: 0.01‐0.27)
after adjustment for sequence generation and allocation concealment. The posterior estimates for mean bias imply an
average bias of 0.84 (95% range: 0.76‐0.92), on the ROR scale, for a trial judged as inadequate or unclear for all 3 bias
domains.

Table 3 also gives the posterior summaries obtained under the proposed label‐invariant model. Estimates for mean
bias b0j are not very sensitive to the choice of variance structure. We find that estimates of between‐meta‐analysis SD
φj in mean bias are comparable to those obtained using the additive model.

In the label‐invariant model, the posterior median for λ1 indicates that variation among trials with inadequate or
unclear sequence generation is on average 25% greater than that among trials with adequate sequence generation. Het-
erogeneity among trials judged as inadequate or unclear for allocation concealment is on average 77% of that among tri-
als assessed as low risk of bias due to allocation concealment. The central estimate for λ3 suggests that variation among
trials with inadequate or unclear blinding is on average 51% greater than that among trials with adequate blinding. How-
ever, we note that each λj is imprecisely estimated in the multivariable label‐invariant model; the 95% credible intervals
for λj are wide and contain the null value 1 representing no difference.

The predictive distributions obtained for the between‐trial variance τ2new expected to remain after “removing” bias
because of inadequate or unclear sequence generation, allocation concealment and blinding are similar under the 2
models.



TABLE 3 Posterior summaries from the multivariable models with additive and label‐invariant variance structures, examining the influ-

ence of inadequate or unclear sequence generation, allocation concealment and blinding.

Additive Model Label‐invariant Model

Parameters in Model Median SD 95% CI Median SD 95% CI

Inadequate or unclear sequence generation

b01 −0.05 0.05 −0.14 to 0.04 −0.04 0.04 −0.13 to 0.05

ROR 0.95 0.04 0.87 to 1.04 0.96 0.04 0.88 to 1.05

λ1 N/A 1.25 0.55 0.56 to 2.71

κ1 0.12 0.07 0.02 to 0.26 N/A

φ1 0.14 0.07 0.02 to 0.29 0.15 0.07 0.02 to 0.29

Inadequate or unclear allocation concealment

b02 −0.04 0.04 −0.12 to 0.04 −0.04 0.04 −0.12 to 0.04

ROR 0.96 0.04 0.88 to 1.05 0.96 0.04 0.89 to 1.04

λ2 N/A 0.77 0.42 0.33 to 1.93

κ2 0.06 0.05 0.01 to 0.20 N/A

φ2 0.06 0.05 0.01 to 0.19 0.06 0.05 0.01 to 0.21

Inadequate or unclear blinding

b03 −0.09 0.04 −0.17 to −0.01 −0.09 0.04 −0.17 to −0.01

ROR 0.92 0.04 0.85 to 0.99 0.92 0.04 0.85 to 0.99

λ3 N/A 1.51 0.63 0.71 to 3.14

κ3 0.08 0.07 0.01 to 0.27 N/A

φ3 0.09 0.06 0.01 to 0.23 0.11 0.07 0.01 to 0.25

Implied average bias in studies judged as inadequate/unclear for all 3 design characteristics

b0 −0.18 0.05 −0.28 to −0.08 −0.17 0.05 −0.27 to −0.07

ROR 0.84 0.04 0.76 to 0.92 0.85 0.04 0.76 to 0.94

Predictive distributions for heterogeneity remaining after “removing” bias in a new meta‐analysis

τ2new(heterogeneity among
trials with Xim = 0)

Log‐normal(−3.89, 1.842)
Median = 0.02,
95% range < 0.001 to 0.72

Log‐normal(−3.89, 1.792)
Median = 0.02,
95% range < 0.001 to 0.65

Model fit Dres = 2962, pD = 1922, DIC = 4884 Dres = 2978, pD = 1913, DIC = 4891

Abbreviations: κ, average increase in between‐trial heterogeneity for trials with the characteristic within meta‐analyses; λ, average change in heterogeneity var-
iance for trials with the characteristic of interest; φ, between‐meta‐analysis variance in the average difference in intervention effect associated with the charac-

teristic; b0, average difference in intervention log odds ratio associated with the characteristic; CI, credible interval; DIC, deviance information criterion; Dres,
posterior mean of the total residual deviance; pD, effective number of parameters; ROR, average change in estimated intervention effects for trials with the char-
acteristic (ratio of odds ratios).
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In this example, we find that the additive model gives a better fit (lower Dres and DIC) and is preferred over the label‐
invariant model.
6 | ASSESSING THE SENSITIVITY OF RESULTS TO THE CHOICE OF PRIOR
FOR THE MULTIPLICATIVE PARAMETER λ

Here we assess the sensitivity of posterior inferences from the label‐invariant meta‐epidemiological analyses to the
choice of prior distribution for λj. We reanalysed data from the 117 meta‐analyses, which were informative for bias
due to inadequate/unclear sequence generation, allocation concealment, and blinding. We examined 5 realistic candi-
date vague priors for parameters λj (Figure 1). Priors 1 to 4 are centred about the null value 1 representing no difference
in heterogeneity among trials judged as adequate for all 3 bias domains and trials judged as inadequate or unclear for
design characteristic j. Prior 5 (truncated log‐normal) gives support to values of λj strictly greater than 1, therefore



FIGURE 1 Posterior medians and 95% credible intervals for mean bias due to inadequate/unclear blinding b03, between‐meta‐analysis SD

in mean bias φ3, and the multiplicative parameter λ3
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mimicking the existing additive model for meta‐epidemiological data analysis. This prior has median 1.96 and 95% range
1.03 to 9.40. Although each prior distribution is considered to be vague, each represents different beliefs about the likely
ratio by which between‐trial heterogeneity changes for trials with inadequate/unclear design characteristics. For exam-
ple, a uniform prior distribution for log(λj) assigns equal weight to all values in the chosen range, giving no preference to
certain values. In contrast, a normal prior distribution for log(λj) gives greater support to values of log(λj) closer to the
centre of the distribution, therefore giving less weight to the lower and higher values in its range.

For bias due to inadequate or unclear blinding, differences between posterior estimates from fitting models with the 5
different priors are illustrated in Figure 1. Comparable results were obtained for bias because of inadequate or unclear
sequence generation and allocation concealment (results not shown). The posterior distributions for mean bias b0 and
between‐meta‐analysis variance in mean bias φ are fairly robust to the choice of prior for the multiplicative param-
eter λj in the model. Posterior estimates for the multiplicative parameter λj are somewhat consistent among the dif-
ferent priors, with overlapping credible intervals, but the more precise priors 1, 3, and 5 unsurprisingly lead to lower
posterior SDs for λ3.
7 | DISCUSSION

We have proposed univariable and multivariable label‐invariant models for conducting meta‐epidemiological analyses to
investigate the influence of a single study characteristic or multiple study characteristics on intervention effect and het-
erogeneity in a meta‐analysis. The label‐invariant models are modified versions of a model proposed by Welton et al.2

When considering heterogeneity among effect sizes, our methods allow us to distinguish between variation due to
known study characteristics and other sources of between‐study variation, as recommended by Higgins et al.16 Our
label‐invariant models are more flexible than the models of Welton et al, in allowing us to quantify the ratio by which
between‐study heterogeneity changes for studies with certain characteristics.

We applied the existing additive and proposed label‐invariant univariable and multivariable models to the ROBES6

database. As an example application of the univariable models, we investigated the influence of trial sample sizes of less
than 100 participants. As an example application of the multivariable models, we investigated the influence of inade-
quate or unclear sequence generation, allocation concealment, and blinding. The findings in these examples give little
to choose between the additive and label‐invariant models; differences between the 2 models in DIC were small and
not very meaningful. Reassuringly for the meta‐epidemiological studies that use the additive model of Welton et al,2 esti-
mates of mean and variance parameters in the model were not very sensitive to the way that the meta‐epidemiological
data were modelled. However, the additive model gave inconsistent results; results for the influence of trial sample size
less than 100 participants showed increased heterogeneity among smaller studies, but after relabelling the trials to inves-
tigate the influence of trial sample size at least 100 participants, results showed increased heterogeneity among larger
studies (95% credible intervals did not contain the null value 0). We would therefore propose using the label‐invariant
model in future meta‐epidemiological studies, on the grounds that the additive model is less general, and that it would
be reasonable to allow heterogeneity among studies with a certain characteristic to be higher or lower than that among
studies without the characteristic.

Empirical studies have investigated the impact of small studies on meta‐analysis results.8,17,18 There is empirical evi-
dence to suggest that estimates of intervention effect are exaggerated in smaller studies, but little attention has been paid
to small study effects on heterogeneity. Through meta‐epidemiological analyses of the ROBES dataset, we have obtained



RHODES ET AL. 69
empirical evidence that trials with less than 100 participants are more heterogeneous. On the basis of results from fitting
our proposed label‐invariant model, variation among trials with sample size less than 100 is, on average, 88% greater
than that among trials with at least 100 participants. Exploring estimated heterogeneity among small studies should form
the subject of future work. In particular, we have focussed on a dataset comprising meta‐analyses of binary outcome
data, and our results cannot necessarily be generalised to meta‐analyses of continuous or other outcomes. Results of
meta‐epidemiological studies using different types of outcome data would be of interest.

In future work we plan to conduct an empirical study of the extent of heterogeneity in a meta‐analysis that is due to
within‐study biases. Our planned empirical study will contribute to our understanding of associations between study‐
level characteristics and the extent of heterogeneity in a meta‐analysis. It might occur that a trial characteristic is asso-
ciated with bias in intervention effect, but that the bias does not explain between‐trial heterogeneity in the meta‐analysis.
In this situation, using the formulae of Welton et al to correct for bias in a new meta‐analysis may inappropriately lead to
greater down‐weighting of the trials with the characteristic, whereas our label‐invariant models may give the trials with
the characteristic relatively more weight.

In the example applications, we found that the credible intervals obtained for the multiplicative parameter λ in our
label‐invariant model were typically very wide. This is of concern because the estimates of λ are of substantial interest,
quantifying the ratio by which between‐study heterogeneity increases for studies with the characteristic of interest. We
advise caution in interpreting estimates of λ, in particular those close to 1 and those for which the lower or upper bound
of the credible interval is close to 1. We suggest the use of noninformative priors that exclude implausibly high values in
analyses of meta‐epidemiological data. In any meta‐epidemiological analysis, we recommend assessing the sensitivity of
results to the choice of prior distributions for unknown parameters, particularly when data comprise meta‐analyses of
only a small number of studies (eg, fewer than 10).

In summary, we have proposed label‐invariant models for meta‐epidemiological analyses investigating the influence
of a single study characteristic or multiple study characteristics on intervention effect and heterogeneity. Unlike existing
methods, our approach does not constrain between‐study heterogeneity to be higher for studies with specific character-
istics than for studies without the characteristics and thus facilitates empirical investigations of heterogeneity.
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