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Abstract
Rationale Accumulating evidence shows that cocaine, and also heroin, influence several tyrosine kinases, expressed in neurons and
in non-neuronal populations such as microglia, astrocytes and mast-cells. Drug-induced activation of mast cells both triggers
inflammatory processes in the brain mediated by the glial cells they activate, and facilitates histamine release which may directly
influence the dopamine system. Thus, by triggering the activation and degranulation of mast cells dependent on the tyrosine kinase
c-kit and Fyn, the latter being also involved inNMDA-dependent synaptic plasticity, cocaine and heroinmay indirectly influence the
neural mechanisms that mediate their reinforcing properties. Masitinib, a novel tyrosine kinase inhibitor with high selectivity for c-
Kit, Fyn and Lyn, may alter the aberrant consequences of the activation of these tyrosine kinases by cocaine and heroin.
Objective We investigated in rats the effect of a chronic oral treatment with masitinib (20 mg/kg) on the reinforcing and
motivational properties of self-administered cocaine (250 μg/infusion) and heroin (40 μg/infusion).
Methods Three different cohorts of rats were trained instrumentally to respond for cocaine, heroin or food under continuous
reinforcement. In each group, we assessed the influence of chronic daily treatment with masitinib on the maintenance of
instrumental responding and intake and the motivation for the reinforcer. Thus, masitinib and vehicle-treated rats were challenged
to adapt to high behavioural demand, to respond under a progressive ratio schedule of reinforcement and to reinstate instrumental
responding after extinction and/or abstinence.
Results Masitinib selectively decreased cocaine intake, the motivation for cocaine and the subsequent propensity to respond for
cocaine under extinction, while having no effect on instrumental responding for heroin or food.
Conclusion The present findings suggest masitinib, a drug with proven efficacy in CNS disorders, could represent a novel
treatment for cocaine addiction provided its influence on the reinforcing and incentive properties of the drug is confirmed.
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Introduction

Accumulating evidence shows that exposure to cocaine or
heroin influences the function of several tyrosine kinases
(Lee and Messing 2008; Nestler 1994) which are involved
in the regulation of transduction mechanisms both in neurons
and non-neuronal populations, thereby contributing to the reg-
ulation of synaptic homeostasis and plasticity, as well as
inflammation.

In neurons, the src kinases, such as Fyn and Lyn, control
synaptic mechanisms, including plasticity, downstream of the
NMDA receptor (Hayashi et al. 1999). Fyn is involved in the
cocaine-induced alteration of NMDA-mediated glutamatergic
transmission in the ventral tegmental area or the dorsal hippo-
campus that underlies the sensitisation to the psychomotor
properties of cocaine (Schumann et al. 2009) or context-
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induced reinstatement of an extinguished instrumental re-
sponse for cocaine (Xie et al. 2013), respectively. Similarly,
src kinases have been suggested functionally to converge with
PKC in the regulation of NMDA receptors by μ-opiate recep-
tors (Garzon et al. 2008), the phosphorylation of which by Fyn
is also involved in heroin withdrawal (Zhang et al. 2017).

In non-neuronal populations, cocaine and heroin trigger the
src kinase-dependent activation of microglia and astrocytes in
the brain and the activation of mast cells (Galli et al. 1993), the
latter being involved in the propagation of drug-induced pe-
ripheral inflammation (de Timary et al. 2017; Liang et al.
2016; Nevidimova et al. 2015) to the brain (Kousik et al.
2012; Lacagnina et al. 2017).

Exposure to alcohol, cocaine and heroin triggers activation
of astrocytes and microglia (Miguel-Hidalgo 2009), especially
in the striatum where astrocytes, through their regulation of
glutamate homeostasis, have been shown in rats to play a
pivotal role in the propensity to reinstate extinguished instru-
mental responding for cocaine and heroin (Knackstedt and
Kalivas 2009; Scofield and Kalivas 2014) and compulsive
relapse after escalated intake of cocaine (Ducret et al. 2016).
The involvement of astrocytes in mediating the reinforcing
effect of cocaine has been recently shown to be under the
control of inflammatory processes (Northcutt et al. 2015; but
see Skolnick et al. 2014 for further discussion), the systemic
activation of which has also been suggested to increase striatal
dopamine release in response to stimulant drugs (Petrulli et al.
2017).

The primary mechanism bridging peripheral and central
inflammation relies on the c-kit tyrosine kinase-dependent ac-
tivation of peripheral mast cells (Dubreuil et al. 2009) and
their subsequent degranulation in the brain (Dong et al.
2017; Skaper et al. 2014; Zhang et al. 2016). Even though
there are resident mast cells in the brain (Zhuang et al.
1996), which provide up to 50 % of the brain’s histamine
(Goldschmidt et al. 1985), the activation of glial cells
(Skaper et al. 2014) and associated neuroinflammation de-
pends on mast cells from the periphery (Dong et al. 2014;
Theoharides 1990). Following activation, mast cells from
the periphery have the ability to cross the blood brain barrier
(Nautiyal et al. 2008), the permeability of which they control
(Zhuang et al. 1996), and rapidly invade the brain where, upon
degranulation, they release mediators such as dopamine, sero-
tonin and CRF alongside cytokines and histamine (Dong et al.
2014). Thus, by triggering c-kit and Fyn-dependent activation
and degranulation of mast cells, cocaine and heroin influence
the permeability of the BBR and facilitate the release of his-
tamine (Brown et al. 2001; Di Bello et al. 1998; Mannaioni
et al. 1996). This degranulation-induced histamine release
may activate astrocytes by recruiting cAMP-dependent signal-
ling (Agullo et al. 1990) and independently influence hista-
minergic control of the function of the mesolimbic dopamine
system, thereby directly interacting with the reinforcing or

incentive properties of addictive drugs (Banks et al. 2009;
Brabant et al. 2006, 2009; Ellenbroek 2013; Masukawa et al.
1993).

Thus, the tyrosine kinases c-kit and Fyn, alongside other
members of the src kinase family, play a major role in the
within- and between-systems adaptations to chronic exposure
to cocaine or heroin that may influence the development of
addiction. However, the lack of well-tolerated selective inhib-
itors with limited side effects has hitherto prevented the inves-
tigation of the influence of their chronic inhibition on the
reinforcing and incentive properties of cocaine and heroin.

Masitinib is an oral active tyrosine kinase inhibitor that
potently targets a limited number of kinases including c-Kit,
Fyn and Lyn, as well as platelet-derived growth factor recep-
tors, thereby controlling the central effects of Fyn and Lyn, the
permeability of the BBR and the activation and degranulation
of mast cells (Dubreuil et al. 2009). Studies involving kinase
inhibitor selectivity have shown that masitinib is one of the
most selective kinase inhibitors under development
(Anastassiadis et al. 2011), thereby limiting the potential for
off-target effects. Accordingly, masitinib has been shown to be
effective and safe to use in humans for the treatment of mast
cell-related diseases such as severe mastocytosis (Lortholary
et al. 2017), severe refractory asthma (Humbert et al. 2009)
and rheumatoid arthritis (Tebib et al. 2009), as well as in
stroke (Gagalo et al. 2015), Alzheimer’s disease (Piette et al.
2011), multiple sclerosis (Vermersch et al. 2012) and depres-
sion (Moura et al. 2011, 2012).

We therefore investigated the influence of chronic daily per
os administration of masitinib on the reinforcing and motiva-
tional properties of cocaine (250 μg/infusion) and heroin
(40 μg/infusion) as compared to food. Three different cohorts
of rats were trained to self-administer either cocaine, heroin or
food and challenged under specific behavioural conditions to
assess the influence of chronic masitinib administration on
their sensitivity to the reinforcing properties of, and their mo-
tivation for, the drugs, as well as their propensity to relapse.

Materials and methods

Subjects

Male Sprague Dawley rats (n = 44, Charles River
Laboratoires, Arbresle, France) weighting approximately
290 g at the start of the experiment were housed two per cage
under a reversed 12 h light/dark cycle (lights on 7:00 P.M.) at
controlled room temperature (22 °C). One week before the
start of the experiments, rats were placed on a restricted diet
of 20 g/day/rat lab chow, sufficient to maintained body weight
and growth throughout the experiment. Water was available
ad libitum and food was delivered every day 1 h after daily
experimental session. All experiments were conducted
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between 8:00 am and 6:00 pm. All housing and testing were in
accordance with the European Community Directives
(2010/63/EU) and were approved by local animal care and
use committee.

Three experiments were performed in three separate groups
of adult male Sprague Dawley rats trained instrumentally to
respond for cocaine (n = 14), heroin (n = 14) or food (n = 12).
Two rats died (1 cocaine, 1 heroin) as a result of surgical
complications and two did not complete self-administration
training because of catheter failure (1 cocaine vehicle-treated
rat and 1 heroin masitinib-treated rat). The general timeline of
the procedure is illustrated in Fig. 1.

Treatment

Masitinib (AB1010; AB Science) was dissolved in DMSO
which was also used as control vehicle. Masitinib (20 mg/kg)
and vehicle were administered per os in 0.5 ml with a curved 80-

mm cannula after a week of daily habituation to per os adminis-
tration. Masitinib oral administration in the range of 15–
25 mg/kg has been shown to yield plasma concentrations
that are well above c-KIT IC50 of 150 nM, yet safe to use
and effective at inhibiting mast cell activation and degran-
ulation (Dubreuil et al. 2009). In a human phase 1 trial, the
maximal tolerated dose of masitinib has not been reached in
cancer patients who were orally administered up to
1000 mg/day, but Soria et al. (2009) concluded that
12 mg/kg/day can be considered as the maximal recom-
mended dose for long-term treatment with masitinib. Since
the doses in the range of 3 to 5 mg/kg are very well tolerated
in humans and the rat equivalent doses of 18–30mg/kg were
shown to be equally effective and tolerated in rats (Barbeito
2017), the dose of 20 mg/kg was used in this study.

Because we were interested in testing the influence of the
masitinib on well-established drug self-administration under
conditions long well-characterised, treatment began only after
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Fig. 1 Timeline of the procedure for the cocaine (a), heroin (b) and food
(c) self-administration groups. All Sprague Dawley male rats were habit-
uated to the animal facility for a week during which they were handled
and weighed daily. Subsequently, they were trained instrumentally to
respond for cocaine, heroin or food pellets for 10 days under a fixed-
ratio 1 schedule of reinforcement (FR1). Once stable performances were
established (after 10 days), in each group, half of the population received
daily oral treatment of masitinib (20 mg/kg) while the other half received
vehicle (DMSO). Over the course of the training under masitinib

treatment, animals were challenged to assess the reinforcing properties
of the reinforcers by increasing the behavioural demand from FR1 to
FR3: fixed-ratio 3 and FR5: fixed-ratio 5. Motivation for the drugs or
food was measured under a highly challenging progressive ratio schedule
of reinforcement (PR). The sensitivity to the incentive properties of the
drug and the propensity to relapse were tested under extinction
(Reinstatement) at different time points over the course of training/
treatment and after 10 days of abstinence for the cocaine and heroin
groups
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10 days of daily access to either cocaine, heroin or food, the
unit doses of cocaine and heroin, namely 250 and 40 μg/infu-
sion, respectively, being within the range of those with which
a majority of self-administration studies are conducted in rats,
including those using extended access and those having
established compulsive drug intake or drug-seeking habits,
reinstatement and inter-individual differences.

Drug self-administration

Drugs

Heroin and cocaine (Cooperation Pharmaceutique, France)
were dissolved in 0.9% sterile saline. Infusion doses were
based on the hydrochloride salt form of each drug.

General procedures for cocaine and heroin self-administration
are described in Fig. 1a, b.

Surgery

A single catheter (Camcath, UK, internal diameter = 0.28mm;
external diameter = 0.61 mm; dead volume = 12 μl) was im-
planted in the right jugular vein under ketamine hydrochloride
(100 mg/kg, i.p.; Hippocampe, France)/xylazine (9 mg/kg,
i.p.; Hippocampe, France) anaesthesia, according to a
standardised procedure previously described (Vanhille et al.
2015). Briefly, the proximal end of the silastic catheter was
inserted in the right atrium, and the distal end was sutured
subcutaneously between the scapulae. To prevent infection,
rats were treated with 10 mg/kg Baytril (s.c., Hyppocampe,
France) the day before the surgery and during the first 6 days
of the recovery. After surgery, catheters were flushed daily
with a saline-heparin solution (100 IU/ml).

Apparatus

Self-administration experiments were conducted in 12 stan-
dard operant conditioning chambers (31.8 × 25.4 × 34.3 cm;
Med Associates, St. Albans, VT) equipped with two 4-cm
wide retractable levers, configured as previously described
(Murray et al. 2013). The levers were 12 cm apart and 8 cm
from the grid floor, and above each of them was a cue light
(2.5 W, 24 V). Awhite house light (2.5 W, 24 V) was located
on the top of the opposite wall. The floor of the chamber was
covered with a metal grid with bars separated by 1 cm. The
testing chamber was housed in a sound- and light-attenuating
cubicle with a ventilation fan. In each chamber, a silastic tub-
ing shielded with a metal spring extended from each animal’s
intravenous catheter to a liquid swivel (Med Associates)
mounted on an arm fixed outside the operant conditioning
chambers. Tygon tubing extended from the swivel to a Razel
infusion pump (Semat Technical, Herts, UK) located adjacent
to the external chamber.

Acquisition of drug self-administration

Rats were trained to acquire cocaine (n = 14) or heroin (n =
14) self-administration in 2-h daily sessions under a fixed-
ratio 1 (FR1) schedule of reinforcement during 10 days.
Every active lever press resulted in a 20-s light presentation
(conditioned stimulus, CS), an infusion of cocaine (250 μg/
100 μl/5.7 s/infusion) or heroin (40 μg/100 μl/5.7 s/infusion)
(McNamara et al. 2010), the extinction of the house light and
retraction of both levers. Pressing on the inactive lever had no
programmed consequence but was recorded to provide an
index of general activity. During acquisition, the number of
available infusions was limited to 60. Active and inactive
lever assignment was counterbalanced and there was no
lever-pressing training prior to drug SA, nor priming
infusions.

Instrumental conditioning with food

Apparatus

Food-reinforced instrumental conditioning took place in 12
operant conditioning chambers (31.8 × 25.4 × 34.3 cm,
MedAssociates) equipped similarly to those used for drug
self-administration. However, in this configuration, a food
tray connected to a pellet dispenser was installed at the centre
of the front wall. On each side of the food tray, two retractable
levers were placed as described for self-administration.

General procedures for food reinforcement are presented
Fig. 1c.

Magazine training and FR1 schedule of reinforcement
for food

The day before the first session, rats (n = 12) were habituated
to food pellets (45 mg dustless precision, Bioserv, Billaney) in
their home cage to avoid any food neophobia. Then, rats were
exposed to a 1 h magazine training session during which an
average of 60 food pellets were delivered in a random interval
schedule of reinforcement (RI 60 s).

Instrumental conditioning reinforced by food was initiated
the day after themagazine training session. Each session started
with the illumination of the houselight and insertion of the
levers. Rats learned to lever press for pellets under an FR1
schedule of reinforcement. Each active lever press resulted in
cue-light illumination above the lever (CS), a pellet distribu-
tion, extinction of the houselight and the retraction of the two
levers. FR1 sessions lasted 30 min or until the rats earned 50
pellets, whichever occurred first. Presses on the inactive lever
were recorded, but had no programmed consequence.
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Challenge procedures

Fixed-ratio challenge: FR3 and FR5 schedule of reinforcement

Reinforcing effects of the drugs or food were tested by in-
creasing the behavioural demand for the same amount of re-
ward (Spealman and Goldberg 1978).

Progressive ratio schedule

Motivation for the drug was measured by a highly challenging
progressive ratio schedule of reinforcement (Belin and
Deroche-Gamonet 2012; Ducret et al. 2016). The ratio of re-
sponses per infusion was increased after each infusion accord-
ing to the following progression: 10, 20, 30, 45, 65, 85, 115,
145, 185, 225, 275, 325, 385, 445, 515, 585, 665, 745, 835,
925, 1025, 1125, 1235, 1345, 1465 and 1585. The maximal
number of responses that a rat performed to obtain an infusion
(the last ratio completed) is referred to as the breaking point
(BP). The session ceased after either 5 h or when a period of
1 h elapsed since the previously earned infusion.

Persistence of responding under extinction/reinstatement

After about 2 weeks and a month of treatment, the effect of
masitinib on persistence of responding in the absence of the
drug was measured to assess as an additional proxy for the
sensitivity to the incentive properties of the reinforcer the rats
were trained to respond for (Belin et al. 2009). Thus, rats were
challenged twice in 90-min extinction sessions in the absence
of withdrawal. A similar test was performed after 10 days of
forced abstinence from cocaine and heroin, in order to mea-
sure long-lasting propensity to resume responding for these
drugs, so-called relapse. During these sessions, inactive lever
presses had no consequences and rats rapidly extinguished
their responding (in the first 10 to 20 min). Therefore, even
if the entire session is presented, we only carried out statistical
analyses (see below) on the first 15 min of each test (Rotge
et al. 2017).

Data and statistical analyses

Data are expressed as means ± SEM and were analysed using
the StatSoft Statistica 10 package. Assumptions about normal
distribution, homogeneity of variance and sphericity of the
datasets were assessed using the Kolmogorov-Smirnov,
Levene’s and Mauchly’s sphericity test, respectively. Data
were then subjected to mixed model repeated measures anal-
ysis of variance (ANOVA). For the cocaine or heroin groups,
between-subject differences were analysed on the acquisition
and maintenance of self-administration by repeated measures
ANOVAs with daily infusions as the dependent variables and
the treatment group (masitinib vs vehicle) as between-subject

factor. To assess the effect of masitinib treatment on motiva-
tion or reinstatement (as measured during the first 15 min of a
90 min long extinction session as previously described (Rotge
et al. 2017), one-way repeatedmeasure ANOVAswere carried
out with active lever presses as dependent variable and treat-
ment group (masitinib vs vehicle) as between-subject factor.

Upon confirmation of significant main effects, between-
group differences were analysed using a Newman-Keuls or
Dunnett post hoc tests, where appropriate. Non-parametric
Kruskal-Wallis’s or Friedman’s test were conducted where
appropriate for the food experimental group for which as-
sumptions about normal distribution of the datasets were
violated.

For all analyses, significance was set at α = 0.05.
Partial eta-squared values (pη2) are reported as the mea-
sure of effect size to support the p values (Murray et al.
2015).

Results

Acquisition of instrumental learning in treated
and control groups

All rats acquired cocaine (Fig. 2a) or heroin (Fig. 2b)
self-administration within 10 days [main effect of ses-
sion: F9,108 = 6.94, p < .0001, pη2 = .36 and F9,108 =
11.88, p < .0001, pη2 = .48 for cocaine and heroin, re-
spectively]. Rats assigned to the masitinib group did
not differ from those assigned to the control group as
revealed by the lack of group × time interaction during
the 10 days of acquisition [cocaine: main effect of
group: F1,12 < 1, group × session interaction: F9,108 =
1.44, p = .18; heroin: main effect of group F1,12 < 1,
group × session interaction: F9,108 < 1].

Similarly, rats trained to lever press for food earned
their maximal amount of reinforcers as early as the second
day of training (Fig. 2c). No differences were observed
between rats assigned to the masitinib group and those
assigned to the control group as revealed by the absence
of difference between the mean rank of number of re-
wards earned for the 2 groups [ the Kruskall-Wallis test:
all H1, 12 < 1].

Masitinib selectively decreases cocaine intake

After 10 days of training, daily masitinib treatment was initi-
ated in half the population of rats responding for cocaine,
heroin or food. On the first day of differential treatment, the
cocaine groups (Veh vs masitinib) did not differ in their level
of cocaine infusion (F1,12 < 1) (Fig. 3a). However, over the
course of the 26 subsequent daily sessions, masitinib treat-
ment resulted in a rapid and sustained decrease in cocaine
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intake as compared to vehicle treatment [main effect of treat-
ment: F1,12 = 9.66, p < .01, pη2 = .44, treatment × session in-
teraction F25,300 = 1.97, p < .01, pη2 = .14] (Fig. 3a).

In marked contrast, as compared to vehicle, masitinib had
no effect on the number of heroin infusions received [main
effect of treatment: F1,12 < 1, treatment × session interaction:
F21,252 < 1] (Fig. 3b) or food pellets earned [ the Kruskall-
Wallis test: all H1, 12 < 1] (Fig. 3c).

Masitinib decreases the incentive properties
of cocaine

We then investigated whether masitinib treatment also influ-
enced the propensity of rats readily to adapt to increased be-
havioural demand (Salamone et al. 2007) to obtain their rein-
forcer. For this, masitinib- and vehicle-treated rats were chal-
lenged over the course of self-administration history with
three sessions during which the behavioural demand was in-
creased from FR1 to FR3 or FR5. As expected, these manip-
ulations resulted in increase in instrumental responding, i.e.,
specific increase in active lever presses that parallels the in-
creased behavioural demand in all groups [main lever × day
interaction for cocaine: F2,24 = 9.1, p < .001, pη2 = .43, heroin:
F2,24 = 11.93, p < .001, pη2 = .43 and food: Friedman’s test:
χ2

12,2 = 18.61, p < .001] (Fig. 4 top panel).

However, this ratio-dependent increase in instrumen-
tal responses was much higher in vehicle- than in
masitinib-treated rats self-administering cocaine [main
effect of treatment: F1,12 = 7.66, p < .02, pη2 = .39, lever:
F1,12 = 81.857, p < .001 and treatment × lever interaction:
F1,12 = 7.45, p < .02, pη2 = .38] (Fig. 4a). No effect of
masitinib was observed in the rats self-administering
heroin [main effect treatment: F1,12 = 1.21, p = .29, lever:
F1,12 = 68.28, p < .001 and treatment × lever interaction:
F1,12 < 1] (Fig. 4c) or food [ the Kruskall-Wallis test:
all H1, 12 < 1] (Fig. 4e).

Additionally, masitinib-treated rats displayed a
blunted motivation for cocaine as compared to vehicle-
treated controls as revealed by lower break points dur-
ing progressive ratio challenges performed 10 or 25 days
after the initiation of treatment [main effect of treat-
ment: F1,12 = 5.04, p < .05] (Fig. 4b). The effect of
masitinib on motivation for cocaine was as effective
after 10 days of treatment as it was after prolonged
duration, i.e., 25 days, as revealed by a lack of effect
of day or day × treatment interaction [Fs1,12 < 1].

In marked contrast, masitinib did not influence the motivation
for heroin [main effect of treatment F1,12 < 1 and treatment ×
session interaction F1,12 < 1] (Fig. 4d) or food at any stage of
treatment or self-administration history [the Kruskall-
Wallis test for: PR1 and PR2: H1,12 < 1] (Fig. 4e).
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Fig. 3 Masitinib selectively decreases the self-administration of cocaine
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masitinib treatment resulted in a marked and sustained reduction in co-
caine intake (a). In marked contrast, masitinib treatment had no effect on
the maintenance of heroin intake or the number of food pellets earned as
compared to vehicle-treated rats (b–c)
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Masitinib decreases the persistence of responding
for cocaine, but not heroin, under extinction tested
both at early and late stages of training

We further tested the influence of masitinib on the incentive
properties of the reinforcers by measuring its effect on instru-
mental responding under extinction at various time points.
Masitinib treatment greatly reduced the persistence of lever
pressing for cocaine during both early and late extinction ses-
sions carried out a day following a baseline SA session, e.g.,
with no preceding abstinence (Belin et al. 2009) on sessions 25
and 42. Thus, after either 2 weeks or a month of differential
treatment, masitinib resulted in a decrease in active lever presses
for cocaine [main effect of treatment: F1,12 = 6.58, p < .05,
pη2 = .36, lever: F1,12 = 15.586, p < .01, treatment × lever inter-
action: F1,12 = 5.82, p < .05, pη

2 = .32 but no effect of day or
treatment × day interaction: F1,12 = 2.9, p = .12] (Fig. 5a). In
contrast, masitinib did not influence responding under extinc-
tion for heroin [main effect of treatment, treatment × lever and
treatment × day interaction: Fs1,12 < 1] (Fig. 5b) or food [ the
Kruskall-Wallis test: all H1,12 < 1] (Fig. 5c).

Masitinib treatment initiated in rats actively
self-administering cocaine decreases subsequent
relapse to cocaine seeking

Finally, we investigated whether masitinib influenced the
propensity to relapse to seek cocaine or heroin after forced
abstinence. As compared to vehicle controls, masitinib-
treated rats displayed reduced relapse to instrumental
responding for cocaine following 10 days of abstinence.
Thus, masitinib-treated rats displayed a lower level of lever
presses during the first 15 min of the reinstatement session
as compared to vehicle-treated controls [main effect of treat-
ment: F1,11 = 9.58, p < .02, pη2 = .46, lever: F1,11 = 7.97,
p < .02 and treatment × lever interaction: F1,11 < 1]
(Fig. 6a). Post hoc analyses revealed that masitinib-treated
rats responded less on the active lever than the control group
during the first 10 min of the extinction session (ps < .05). In
marked contrast, masitinib had no effect on relapse to heroin
seeking after 10 days of abstinence [main effect of treat-
ment: F1,12 < 1, lever: F1,12 = 24.43, p < .001 and treatment ×
lever interaction: F1,12 = 1.6, p = .23] (Fig. 6b).
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progressive ratio schedule of reinforcement was markedly decreased as
compared to the one displayed by vehicle-treated rats [b, * indicates
p < .05]. In marked contrast, masitinib did not influence the increase in
instrumental responding in the face of increased behavioural demand (c
and e) or the motivation (d and f) for heroin or food. Masitinib had no
effect on inactive lever presses across reinforcers (a, c and e)
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Discussion

The results of the present study demonstrate that daily
treatment with the tyrosine kinase inhibitor masitinib re-
sults in a robust decrease in the reinforcing and motiva-
tional properties of cocaine in male rats with a relatively
long history of self-administration of a unit dose of
250 μg/infusion. Thus, masitinib decreased cocaine intake
under continuous reinforcement, prevented an increase in
responding in the face of increasing behavioural demand
for cocaine (Salamone et al. 2003) and decreased the
break point under a progressive ratio schedule of rein-
forcement. This decrease in the motivation for cocaine
in masitinib-treated rats was further supported by a
marked decrease in the persistence of responding under
extinction and the propensity to relapse after forced
abstinence.

The effect of masitinib on instrumental responding was
highly specific to cocaine at the dose tested as the same treat-
ment had no effect on the reinforcing and motivational effects
of food and heroin at the dose of 40 μg/infusion. The absence
of effect on the motivation for food is in agreement with the
overall lack of effect of masitinib in humans on feeding or
general motivation. Thus, masitinib was recently shown to
have potential therapeutic effects in depression in patients
with mastocytosis (Moura et al. 2011, 2012), as well as in
Alzheimer’s disease (Piette et al. 2011) and multiple sclerosis
in humans (Vermersch et al. 2012), thereby demonstrating that
this drug is safe to use.

Much to our surprise, masitinib had no effect on the rein-
forcing and motivational properties of heroin, suggesting that
selective inhibition of c-kit, Fyn and Lyn exerted in the
nanomolar range by masitinib only impinged on brain mech-
anisms of reinforcement engaged by cocaine in male rats.
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In the light of the available research, it is difficult to put
forward a definitive mechanism of the effect of masitinib.
However, the specific behavioural effects and putative thera-
peutic potential of masitinib reported here warrant further re-
search on the cellular mechanisms by which it exerts these
effects.

Even though masitinib has high affinity for the microglial
factor CSFR1, involved in microglia survival and activation,
the differential influence of masitinib on the reinforcing and
incentive properties of cocaine and heroin is very unlikely to
be accounted for by a direct influence on central inflammatory
mechanisms. Indeed, N-acetylcysteine (NAC) (Murray et al.
2012a), which acts centrally to prevent drug-induced neuroin-
flammation (Schneider et al. 2017) and directly targets astro-
cytes (Olive et al. 2012), does not show cocaine-specific ef-
fects as it decreases both cocaine and heroin-seeking behav-
iour (Hodebourg et al. 2018; Murray et al. 2012b). The spec-
ificity of the effects of masitinib is therefore more likely relat-
ed to its effects on c-Kit, Fyn and Lyn.

Since neuronal Fyn and Lyn are involved in the regulation
of NMDA-dependent synaptic mechanisms influenced by ad-
dictive drugs, including cocaine, alcohol and heroin (Ge et al.
2017; Schumann et al. 2009; Wang et al. 2010; Yaka et al.
2002), a direct influence of masitinib on Fyn may be a prom-
ising candidate mechanism. However, intracerebral inhibition
of Fyn by the src kinase antagonist PP2 has been shown to
inhibit heroin seeking as measured in a context-induced rein-
statement procedure (Ge et al. 2017). Therefore, even if a
direct influence on neuronal mechanisms cannot be ruled
out, it seems unlikely to account for the differential effect of
masitinib on the reinforcing and motivational properties of
cocaine and heroin observed here.

However, Fyn and Lyn, alongside c-kit, primarily control
the activation, migration and degranulation of mast cells, and
therefore the mast cell glia axis (Zhang et al. 2016). Indeed, at
the dose tested, masitinib is particularly efficient at inhibiting
mast cells, thereby preventing drug-induced recruitment of
neuroinflammatory mechanisms from the periphery (Di
Bello et al. 1998; Dong et al. 2014; Petrulli et al. 2017;
Silverman et al. 2000) and protecting against cocaine-
induced alteration of the blood brain barrier (Kumar 2011;
Sharma et al. 2009), the permeability of which is also con-
trolled bymast cells (Esposito et al. 2002; Zhuang et al. 1996).
However, the nature of the behavioural response to masitinib
suggests it does not influence the brain availabilty of cocaine
or heroin as such a difference would result in a upward vertical
shift in responding under continuous reinforcement.

One potential alternative mechanism is related to the
prevention by masitinib of drug-induced degranulation
of activated mast cells having entered the brain. Thus,
upon activation, these multifunctional cells enter the brain
where alongside resident mast cells primarily, but not ex-
clusively located in the thalamus (Dimitriadou et al. 1990;

Goldschmidt et al. 1985; Zhuang et al. 1996), they release
cytokines and neuromediators in their microenvironment.
The neuromediators released by activated mast cells in the
brain, include dopamine (in particular in the mesolimbic
system; (Dropp 1976), corticotropin releasing factor, se-
rotonin and histamine (Goldschmidt et al. 1985; Ronnberg
et al. 2012a, b), which have all been shown to influence
cocaine reinforcement (Silverman et al. 2000).

Histamine is of particular interest for the selectivity of the
effects of masitinib on the motivational properties of cocaine
as histaminergic mechanisms that influence the mesostriatal
dopamine system (Banks et al. 2009; Ellenbroek 2013; Tanda
et al. 2008). Although the nature of the interaction between the
histamine and the dopamine system and consequent modula-
tion of the reinforcing effects of cocaine remain to be eluci-
dated (Banks et al. 2009; Brabant et al. 2009; Holtz et al.
2013; Ito et al. 1997; Oleson et al. 2012), histamine has been
shown to act on different neuronal systems either to inhibit or
activate midbrain dopamine activity (Fleckenstein et al. 1993;
Molina-Hernandez et al. 2000; Schlicker et al. 1993).

Dopaminergic transmission in the mesolimbic system is
a key mechanism underlying the reinforcing effects of co-
caine, but less so heroin (Ettenberg et al. 1982; Pettit et al.
1984). Thus, heroin self-administration is unaffected by
dopamine depletion from the nucleus accumbens, which
in marked contrast reduces cocaine self-administration and
progressive ratio break points for the drug (for review see
Badiani et al. 2011). Since histamine brain levels are much
more influenced by mast cells than the widespread projec-
tions from tuberomamillary nucleus of the hypothalamus,
by inhibiting the degranulation of mast cells, masitinib
may alter histaminergic control of dopaminergic mecha-
nisms that underlie the reinforcing and motivational ef-
fects of cocaine, but not heroin. This clearly indicates
the need for further investigation of the cellular mecha-
nisms that mediate the effects of masitinib-induced de-
granulation of mast cells on the motivational effects of
cocaine.

Additionally, in order fully to characterise the influence of
masitinib on the reinforcing and motivational properties of
cocaine, further investigations are required to test whether
the effects observed here for the unit dose of 250 μg/infusion
are generalised across a range of doses. Similarly, whether the
decreased propensity instrumentally to respond under extinc-
tion after 10 days of forced abstinence results from a long-
lasting influence of masitinib on previous cocaine self-
administration or a direct effect on the latter should be further
investigated.

Nevertheless, the present results suggest that a novel
highly selective tyrosine kinase inhibitor that primarily
targets mast cells activation and safe to use in humans
decreases the reinforcing and motivational properties of
250 μg/infusion cocaine.
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