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ABSTRACT 

Genetic variation modulating risk of sporadic Parkinson’s disease (PD) has been primarily 

explored through genome wide association studies (GWAS). However, like many other common 

genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-

seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and 

early postnatal timepoints. These data facilitated unbiased identification of DA neuron 

subpopulations through their unique transcriptional profiles, including a postnatal neuroblast 

population and substantia nigra (SN) DA neurons. We use these population-specific data to 

develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in 

PD risk, including genes with known PD associations and many with extensive supporting 

literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in 

Cplx1 null mice. Ultimately, this systematic approach establishes biologically pertinent 

candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research. 
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The most commonly used genetic tool today for studying complex disease is the genome wide 

association study (GWAS). As a strategy, GWAS was initially hailed for the insight it might 

provide into the genetic architecture of common human disease risk. Indeed, the collective data 

from GWAS since 2005 has revealed a trove of variants and genomic intervals associated with 

an array of phenotypes1. The majority of variants identified in GWAS are located in non-coding 

DNA2 and are enriched for characteristics denoting regulatory DNA2,3. This regulatory variation 

is expected to impact expression of a nearby gene, leading to disease susceptibility.  

 

Traditionally, the gene closest to the lead single nucleotide polymorphism (SNP) has been 

prioritized as the gene most likely to be affected by the disease variation. However, recent 

studies show that disease-associated variants can act on more distally located genes, invalidating 

genes that were previously extensively studied4,5. The inability to systematically connect 

common variation with the genes impacted limits our capacity to elucidate potential therapeutic 

targets and can waste valuable research efforts. 

 

Although GWAS is inherently agnostic to the context in which disease-risk variation acts, the 

biological impact of common functional variation has been shown to be cell context 

dependent2,6. Extending these observations, Pritchard and colleagues recently demonstrated that 

although genes need only to be expressed in disease-relevant cell types to contribute to risk, 

those expressed preferentially or exclusively therein contribute more per SNP7. Thus, accounting 

for the cellular and gene regulatory network (GRN) contexts within which variation act may 

better inform the identification of impacted genes. These principles have not yet been applied 

systematically to many of the traits for which GWAS data exists. We have chosen Parkinson’s 
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disease (PD) as a model complex disorder for which a significant body of GWAS data remains to 

be explored biologically in a context dependent manner.  

 

PD is the most common progressive neurodegenerative movement disorder. Incidence of PD 

increases with age, affecting an estimated 1% worldwide beyond 70 years of age8,9. The genetic 

underpinnings of non-familial or sporadic PD have been studied through the use of GWAS with 

recent meta-analyses highlighting 49 loci associated with sporadic PD susceptibility10,11. While a 

small fraction of PD GWAS loci contain genes known to be mutated in familial PD (SNCA and 

LRRK2)12,13, most indicted intervals do not contain a known mutated gene or genes. Although 

PD ultimately affects multiple neuronal centers, preferential degeneration of DA neurons in the 

SN leads to functional collapse of the nigrostriatal pathway and loss of fine motor control. The 

preferential degeneration of SN DA neurons in relation to other mesencephalic DA neurons has 

driven research interest in the genetic basis of selective SN vulnerability in PD. Consequently, 

one can reasonably assert that a significant fraction of PD-associated variation likely mediates its 

influence specifically within the SN. 

 

In an effort to illuminate a biological context in which PD GWAS results could be better 

interpreted, we undertook single-cell RNA-seq (scRNA-seq) analyses of multiple DA neuronal 

populations in the brain, including ventral midbrain DA neurons. This analysis defined the 

heterogeneity of DA populations over developmental time in the brain, revealing gene 

expression profiles specific to discrete DA neuron subtypes. These data further facilitated the 

definition of GRNs active in DA neuron populations including the SN. With these data, we 
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establish a framework to systematically prioritize candidate genes in all 49 PD GWAS loci and 

begin exploring their pathological significance.  

 

MATERIALS AND METHODS 

 

Animals. 

The Th:EGFP BAC transgenic mice (Tg(Th-EGFP)DJ76Gsat/Mmnc) used in this study were 

generated by the GENSAT Project and were purchased through the Mutant Mouse Resource & 

Research Centers (MMRRC) Repository. Mice were maintained on a Swiss Webster (SW) 

background with female SW mice obtained from Charles River Laboratories. The Tg(Th-

EGFP)DJ76Gsat/Mmnc line was primarily maintained through matings between Th:EGFP 

positive, hemizygous male mice and wild-type SW females (dams). Timed matings for cell 

isolation were similarly established between hemizygous male mice and wild-type SW females. 

The observation of a vaginal plug was defined as embryonic day 0.5 (E0.5). All work involving 

mice (husbandry, colony maintenance and euthanasia) were reviewed and pre-approved by the 

institutional care and use committee. 

 

Cplx1 knockout mice and wild type littermates used for immunocytochemistry were taken from a 

colony established in Cambridge using founders from mutant mouse lines that were obtained 

from the Max-Planck-Institute for Experimental Medicine (Gottingen, Germany). Cplx1 mice in 

this colony have been backcrossed onto a C57BL/6J inbred background for at least 10 

generations. All experimental procedures were licensed and undertaken in accordance with the 

regulations of the UK Animals (Scientific Procedures) Act 1986.  Housing, rearing and 
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genotyping of mice has been described in detail previously14,15. Mice were housed in hard-

bottomed polypropylene experimental cages in groups of 5-10 mice in a housing facility was 

maintained at 21 – 23oC with relative humidity of 55 ± 10%. Mice had ad libitum access to water 

and standard dry chow. Because homozygous knockout Cplx1 mice have ataxia, they have 

difficulty in reaching the hard pellets in the food hopper and drinking from the water bottles. 

Lowered waterspouts were provided and access to normal laboratory chow was improved by 

providing mash (made by soaking 100 g of chow pellets in 230 ml water for 60 min until the 

pellets were soft and fully expanded) on the floor of the cage twice daily. Cplx1 genotyping to 

identify mice with a homozygous (Cplx1-/-) or heterozygous (Cplx1+/-) deletion of Cplx1 was 

conducted as previously described14, using DNA prepared from tail biopsies. 

Dissection of embryonic 15.5 (E15.5) brains. 

At 15.5 days after the timed mating, pregnant dams were euthanized and the entire litter of E15.5 

embryos were dissected out of the mother and immediately placed in chilled Eagle’s Minimum 

Essential Media (EMEM). Individual embryos were then decapitated and heads were placed in 

fresh EMEM on ice. Embryonic brains were then removed and placed in Hank’s Balanced Salt 

Solution (HBSS) without Mg2+ and Ca2+ and manipulated while on ice. The brains were 

immediately observed under a fluorescent stereomicroscope and EGFP+ brains were selected. 

EGFP+ regions of interest in the forebrain (hypothalamus) and the midbrain were then dissected 

and placed in HBSS on ice. This process was repeated for each EGFP+ brain. Brain regions from 

four EGFP+ mouse pups were pooled together for dissociation. 

 

Dissection of postnatal day 7 (P7) brains. 
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After timed matings, pregnant females were sorted into their own cages and checked daily for 

newly born pups. The morning the pups were born was considered postnatal day 0 (P0). Once the 

mice were aged to P7, all the mice from the litter were euthanized and the brains were then 

quickly dissected and placed in HBSS without Mg2+ and Ca2+ on ice. As before, the brains were 

observed under a fluorescent microscope, EGFP+ status for P7 mice was determined, and EGFP+ 

brains were retained.  For each EGFP+ brain, the entire olfactory bulb was first resected and 

placed in HBSS on ice. Immediately thereafter, the EGFP+ forebrain and midbrain regions for 

each brain were resected and also placed in distinct containers of HBSS on ice. Brain regions 

from five EGFP+ P7 mice were pooled together for dissociation. 

 

Generation of single cell suspensions from brain tissue. 

Resected brain tissues were dissociated using papain (Papain Dissociation System, Worthington 

Biochemical Corporation; Cat#: LK003150) following the trehalose-enhanced protocol reported 

by Saxena, et al., 201216 with the following modifications: The dissociation was carried out at 

37oC in a sterile tissue culture cabinet. During dissociation, all tissues at all timepoints were 

triturated every 10 minutes using a sterile Pasteur pipette. For E15.5 tissues, this was continued 

for no more than 40 minutes. For P7, this was continued for up to 1.5 hours or until the tissue 

appeared to be completely dissociated.  

 

Additionally, for P7 tissues, after dissociation but before cell sorting, the cell pellets were passed 

through a discontinuous density gradient in order to remove cell debris that could impede cell 

sorting. This gradient was adapted from the Worthington Papain Dissociation System kit. 

Briefly, after completion of dissociation according to the Saxena protocol16, the final cell pellet 
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was resuspended in DNase dilute albumin-inhibitor solution, layered on top of 5 mL of albumin-

inhibitor solution, and centrifuged at 70g for 6 minutes. The supernatant was then removed. 

 

Fluorescence-activated cell sorting (FACS) and single-cell collection. 

For each timepoint-region condition, pellets were resuspended in 200 μL of media without serum 

comprised of DMEM/F12 without phenol red, 5% trehalose (w/v), 25 μM AP-V, 100 μM 

kynurenic acid, and 10 μL of 40 U/μl RNase inhibitor (RNasin® Plus RNase Inhibitor, Promega) 

at room temperature. The resuspended cells were then passed through a 40 uM filter and 

introduced into a FACS machine (Beckman Coulter MoFlo Cell Sorter or Becton Dickinson 

FACSJazz). Viable cells were identified via propidium iodide staining, and individual neurons 

were sorted based on their fluorescence directly into lysis buffer in individual wells of 96-well 

plates for single-cell sequencing (2 μL Smart-Seq2 lysis buffer + RNAase inhibitor, 1 μL oligo-

dT primer, and 1 μL dNTPs) according to Picelli et al., 201417. Blank wells were used as 

negative controls for each plate collected. Upon completion of a sort, the plates were briefly spun 

in a tabletop microcentrifuge and snap-frozen on dry ice. Single cell lysates were subsequently 

kept at -80°C until cDNA conversion. 

 

Single-cell reverse transcription, library prep, and sequencing.  

Library preparation and amplification of single-cell samples were performed using a modified 

version of the Smart-Seq2 protocol17. Briefly, 96-well plates of single cell lysates were thawed to 

4°C, heated to 72°C for 3 minutes, then immediately placed on ice. Template switching first-

strand cDNA synthesis was performed as described above using a 5’-biotinylated TSO oligo. 

cDNAs were amplified using 20 cycles of KAPA HiFi PCR and 5’-biotinylated ISPCR primer. 
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Amplified cDNA was cleaned with a 1:1 ratio of Ampure XP beads and approximately 200 pg 

was used for a one-quarter standard sized Nextera XT tagmentation reaction. Tagmented 

fragments were amplified for 14 cycles and dual indexes were added to each well to uniquely 

label each library. Concentrations were assessed with Quant-iT PicoGreen dsDNA Reagent 

(Invitrogen) and samples were diluted to ~2 nM and pooled. Pooled libraries were sequenced on 

the Illumina HiSeq 2500 platform to a target mean depth of ~8.0 x 105 50bp paired-end 

fragments per cell at the Hopkins Genetics Research Core Facility. 

 

RNA sequencing and alignment. 

For all libraries, paired-end reads were aligned to the mouse reference genome (mm10) 

supplemented with the Th-EGFP+ transgene contig, using HISAT218 with default parameters 

except: -p 8. Aligned reads from individual samples were quantified against a reference 

transcriptome (GENCODE vM8)19 supplemented with the addition of the EGFP transcript. 

Quantification was performed using cuffquant20 with default parameters and the following 

additional arguments: --no-update-check –p 8. Normalized expression estimates across all 

samples were obtained using cuffnorm20 with default parameters. 

 

Single-cell RNA data analysis. 

Expression estimates. 

Gene-level and isoform-level FPKM (Fragments Per Kilobase of transcript per Million) values 

produced by cuffquant20 and the normalized FPKM matrix from cuffnorm was used as input for 

the Monocle 2 single cell RNA-seq framework21 in R/Bioconductor22. Genes were annotated 

using the Gencode vM8 release19. A CellDataSet (cds) was then created using Monocle 2 
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(v2.2.0)21 containing the gene FPKM table, gene annotations, and all available metadata for the 

sorted cells. All cells labeled as negative controls and empty wells were removed from the data. 

Relative FPKM values for each cell were converted to estimates of absolute mRNA counts per 

cell (RPC) using the Monocle 2 Census algorithm23 using the Monocle function “relative2abs.” 

After RPCs were inferred, a new cds was created using the estimated RNA copy numbers with 

the expression Family set to “negbinomial.size()” and a lower detection limit of 0.1 RPC.  

 

QC Filtering. 

After expression estimates were inferred, the cds containing a total of 473 cells was run through 

Monocle’s “detectGenes” function with the minimum expression level set at 0.1 transcripts. The 

following filtering criteria were then imposed on the entire data set: 

 

i. Number of expressed genes - The number of expressed genes detected in each cell in the 

dataset was plotted and the high and low expressed gene thresholds were set based on 

observations of each distribution. Only those cells that expressed between 2,000 and 10,000 

genes were retained. 

 

ii. Cell Mass - Cells were then filtered based on the total mass of RNA in the cells calculated by 

Monocle 2. Again, the total mass of the cell was plotted and mass thresholds were set based on 

observations from each distribution. Only those cells with a total cell mass between 100,000 and 

1,300,000 fragments mapped were retained. 
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iii. Total RNA copies per cell - Cells were then filtered based on the total number of RNA 

transcripts estimated for each cell. Again, the total RNA copies per cell was plotted and RNA 

transcript thresholds were set based on observations from each distribution. Only those cells with 

a total mRNA count between 1,000 and 40,000 RPCs were retained. 

 

A total of 410 individual cells passed these initial filters. Outliers found in subsequent, reiterative 

analyses described below were analyzed and removed resulting a final cell number of 396. 

 

Log distribution QC. 

Analysis using Monocle 2 relies on the assumption that the expression data being analyzed 

follows a log-normal distribution. Comparison to this distribution was performed after initial 

filtering prior to continuing with analysis and was observed to be well fit. 

 

Reiterative single-cell RNA data analysis. 

After initial filtering described above, the entire cds as well as subsets of the cds based on “age” 

and “region” of cells were created for recursive analysis. Regardless of how the data was 

subdivided, all data followed a similar downstream analysis workflow. 

 

Determining number of cells expressing each gene. 

The genes to be analyzed for each iteration were filtered based on the number of cells that 

expressed each gene. Genes were retained if they were expressed in > 5% of the cells in the 

dataset being analyzed. These were designated “expressed_genes.” For example, when analyzing 

all cells collected together (n = 410), a gene had to be expressed in 20.5 cells (410 x 0.05 = 20.5) 
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to be included in the analysis. Whereas when analyzing P7 MB cells (n = 80), a gene had to be 

expressed in just 4 cells (80 x 0.05 = 4). This was done to include genes that may define rare 

populations of cells that could be present in any given population. 

 

Monocle model preparation. 

The data was prepared for Monocle analysis by retaining only the expressed genes that passed 

the filtering described above. Size factors were estimated using the Monocle 2 

“estimateSizeFactors()” function. Dispersions were estimated using the “estimateDispersions()” 

function.  

 

High variance gene selection. 

Genes that have a high biological coefficient of variation (BCV) were identified by first 

calculating the BCV by dividing the standard deviation of expression for each expressed gene by 

the mean expression of each expressed gene. A dispersion table was then extracted using the 

“dispersionTable()” function from Monocle. Genes with a mean expression > 0.5 transcripts and 

a “dispersion_empirical”  > 1.5*dispersion_fit or 2.0*dispersion_fit were identified as “high 

variance genes.” 

 

Principal component analysis (PCA). 

PCA was run using the R “prcomp” function on the centered and scaled log2 expression values 

of the “high variance genes.” PC1 and PC2 were visualized to scan the data for outliers as well 

as bias in the PCs for age, region, or plates on which the cells were sequenced. If any visual 

outliers in the data was observed, those cells were removed from the original subsetted cds and 
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all filtering steps above were repeated. Once there were no visual outliers in PC1 or PC2, a 

screeplot was used to determine the number of PCs that contributed most significantly to the 

variation in the data. This was manually determined by inspecting the screeplot and including 

only those PCs that occur before the leveling-off of the plot.  

 

t-Distributed Stochastic Neighbor Embedding (t-SNE) and clustering. 

Once the number of significant PCs was determined, t-SNE24 was used to embed chosen PC 

dimensions in a 2-D space for visualization. This was done using the “tsne” package available 

through R with “whiten = FALSE.” The parameters “perplexity” and “max_iter” were tested 

with various values and set according what was deemed to give the cleanest clustering of the 

data.  

 

After dimensionality reduction via t-SNE, the number of clusters was determined in an unbiased 

manner by fitting multiple Gaussian distributions over the 2D t-SNE projection coordinates using 

the R package ADPclust25.t-SNE plots were visualized using a custom R script. The number of 

genes expressed and the total mRNAs for each cluster were then compared. 

 

Differential expression analyses. 

In order to find differentially expressed genes between brain DA populations at each age, the 

E15.5 and P7 datasets were annotated with regional cluster identity (“subset cluster”). 

Differential expression analysis was performed using the “differentialGeneTest()” function from 

Monocle 2 that uses a likelihood ratio test to compare a vector generalized additive model 
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(VGAM) using a negative binomial family function to a reduced model in which one parameter 

of interest has been removed. In practice, the following models were fit:  

 

“~subset.cluster” for E15.5 or P7 dataset 

 

Genes were called as significantly differentially expressed if they had a q-value (Benjamini-

Hochberg corrected p-value) < 0.05.  

 

Cluster specific marker genes. 

In order to identify differentially expressed genes that were “specifically” expressed in a 

particular subset cluster, R code calculating the Jensen-Shannon based specificity score from the 

R package cummeRbund26 was used similarly to what was described in Burns et al27. 

 

Briefly, the mean RPC within each cluster for each expressed gene as well as the percentage of 

cells within each cluster that express each gene at a level > 1 transcript were calculated. The 

“.specificity” function from the cummRbund package was then used to calculate and identify the 

cluster with maximum specificity of each gene’s expression. Details of this specificity metric can 

be found in Molyneaux, et al28. 

 

To identify subset cluster specific genes, the distribution of specificity scores for each subset 

cluster was plotted and a specificity cutoff was chosen so that only the “long right tail” of each 

distribution was included (i.e. genes with a specificity score above the cutoff chosen). Within 

each iterative analysis, the same cutoff was used for each cluster or region (specificity > 0.3 or 
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0.4 depending on timepoint analyzed). Once the specificity cutoff was chosen, genes were 

further filtered by only retaining genes that were expressed in > 40% of cells within the subset 

cluster that the gene was determined to be specific for. 

 

Gene Set Enrichment Analyses. 

Gene set enrichment analyses were performed in two separate ways depending upon the 

situation. A Gene Set Enrichment Analysis (GSEA) PreRanked analysis was performed when a 

ranked list (e.g. genes ranked by PC1 loadings) using GSEA software available from the Broad 

Institute (v2.2.4)29,30. Ranked gene lists were uploaded to the GSEA software and a 

“GSEAPreRanked” analysis was performed with the following settings: ‘Number of 

Permutations’ = 1000, ‘Collapse dataset to gene symbols’ = true, ‘Chip platform(s)’ = 

GENE_SYMBOL.chip, and ‘Enrichment statistic’ = weighted. Analysis was performed against 

Gene Ontology (GO) collections from MSigDB, including c2.all.v5.2.symbols and 

c5.all.v5.2.symbols. Top ten gene sets were reported for each analysis (Table S1 for outliers and 

Figure 1C for timepoints). Figures and tables displaying the results were produced using custom 

R scripts.  

 

Unranked GSEA analyses for lists of genes was performed using hypergeometric tests from the 

R package clusterProfiler implemented through the functions ‘enrichGO’, ‘enrichKEGG’, and 

‘enrichPathway’ with ‘pvalueCutoff’ set at 0.01, 0.1, 0.1, respectively with default settings31. 

These functions were implemented through the ‘compareCluster’ function. 

 

Weighted Gene Co-Expression Network Analysis (WGCNA). 
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WGCNA was performed in R using the WGCNA package (v1.51)32,33 following established 

pipelines laid out by the package authors. Briefly, log2(Transcript +1) expression counts for all 

genes expressed in >20 cells (n = 12628) in all P7 neurons were used and outliers were removed. 

The soft threshold (power) for WGCNA was determined by calculating the scale free topology 

model fit for a range of powers (1:10, 12, 14, 16, 18, 20) using the WGCNA function 

“pickSoftThreshold()” setting the networkType = “signed”. A power of 10 was chosen. Network 

adjacency was then calculated using the WGCNA function “adjacency()” with the following 

settings: power = 10 and type = “signed.” Adjacency calculations were used to then calculate 

topological overlap using the WGCNA function “TOMsimilarity()” with the following settings: 

TOMtype = “signed.” Distance was then calculated by subtracting the topological overlap from 

1. Hierarchical clustering was then performed on the distance matrix and modules were 

identified using the “cuttreeDynamic” function from the dynamicTreeCut package34 with the 

following settings: deepSplit = T; pamRespectsDendro = FALSE, and minClusterSize = 20. This 

analysis initially identified 18 modules. Eigengenes for each module were then calculated using 

the “moduleEigengenes()” function and each module was assigned a color. Two modules (“grey” 

and “turquoise”) were removed at this point. Turquoise was removed because it contained 11567 

genes or all the genes that could not be grouped with another module. Grey was removed 

because it only contained 4 genes, falling below the minimum set module size of 20. 

Significance of correlations between module eigengenes and subset cluster identity was 

calculated using the Student asymptotic p-value for correlations employed by the WGCNA 

“corPvalueStudent()” function. Gene set enrichments for modules were determined by using the 

clusterProfiler R package31. The correlations between the t-SNE position of a cell and the 

module eigengenes were calculated using custom R scripts. 
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Prioritizing Genes in PD GWAS loci. 

Topologically Associated Domain (TAD) and Megabase (Mb) Gene Data. 

The data for human TAD boundaries were obtained from human embryonic stem cell (hESC) 

Hi-C data35 and converted from human genome hg18 to hg38 using the liftOver tool from UCSC 

Genome Browser. PD GWAS SNP locations in hg38 were intersected with the TAD information 

to identify TADs containing a PD GWAS SNP. The data for +/- 1 Mb regions surrounding PD 

GWAS SNPs was obtained by taking PD GWAS SNP locations in hg38 and adding or 

subtracting 1e+06 from each location.  All hg38 Ensembl (version 87) genes that fell within the 

TADs or megabase regions were then identified by using the biomaRt R package36,37. All genes 

were then annotated with PD locus and SNP information. Mouse homologs for all genes were 

identified using human to mouse homology data from Mouse Genome Informatics (MGI). Gene 

homologs were manually annotated using the MGI database if a homolog was found to exist. The 

TAD and megabase tables were then combined to create a final PD GWAS locus-gene table. 

 

PD GWAS Loci Gene Scoring. 

Genes within PD GWAS loci were initially scored using two gene lists: Genes with an average 

expression ≥0.5 transcripts in the SN cluster in our data (points = 1; number of genes = 6126) 

and genes with an average expression >0.5 transcripts in the SN population in La Manno, et al38 

(points = 1; number of genes = 5406). La Manno, et al. data 

(GSE76381_MouseAdultDAMoleculeCounts.cef.txt.gz) was accessed via the Gene Expression 

Omnibus (GEO: GSE76381). Further prioritization was accomplished by using three gene lists: 

genes that were differentially expressed between P7 subset clusters (points = 1); Genes found to 
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be “specifically” expressed in the P7 MB SN cluster (points = 1); Genes found in the WGCNA 

modules that are enriched for PD gene sets (points = 1). Expression in the SN cluster was 

considered the most important feature and was weighted as such through the use of two 

complementary datasets with genes found to be expressed in both receiving priority. 

Furthermore, a piece of external data, the probability of being loss-of-function (LoF) intolerant 

(pLI) scores for each gene from the ExAC database39, was added to the scores in order to rank 

loci that were left with >2 genes in the loci after the initial scoring. pLI scores were downloaded 

March 30, 2017 (fordist_cleaned_exac_r03_march16_z_pli_rec_null_data.txt). 

 

In situ hybridization data. 

In situ hybridization data was downloaded from the Allen Institute through the Allen Brain Atlas 

(Web Resources). The image used in Figure 4A was obtained from the Reference Atlas at the 

Allen Brain Atlas. URLs for all Allen Brain Atlas in situ data analyzed and downloaded for SN 

marker genes (Figure 4B) are available in Table S5. Data for SN expression in situ data for PD 

GWAS genes (Figure 5B) were obtained from the following experiments: 1056 (Th), 79908848 

(Snca), 297 (Crhr1), 74047915 (Atp6v1d), 72129244 (Mmp16), and 414 (Cntn1). Data accessed 

on 03/02/17. 

 

Single molecule in situ hybridization (smFISH). 

For in situ hybridization experiments, untimed pregnant Swiss Webster mice were ordered from 

Charles River Laboratories (Crl:CFW(SW)). Mice were maintained as previously described. 

Pups were considered P0 on the day of birth. At P7, the pups were decapitated, the brain was 

quickly removed, and the brain was then washed in 1x PBS. The intact brain was then transferred 



 

 19 

to a vial containing freshly prepared 4% PFA in 1x PBS and incubated at 4oC for 24 hours. After 

24 hours, brains were removed from PFA and washed three times in 1x PBS. The brains were 

then placed in a vial with 10% sucrose at 4oC until the brains sunk to the bottom of the vial 

(usually ~1 hour). After sinking, brains were immediately placed in a vial containing 30% 

sucrose at 4oC until once again sinking to the bottom of the vial (usually overnight). After 

cryoprotection, the brains were quickly frozen in optimal cutting temperature (O.C.T.) 

compound (Tissue-Tek) on dry ice and stored at -80oC until use. Brains were sectioned at a 

thickness of 14 micrometers and mounted on Superfrost Plus microscope slides (Fisherbrand, 

Cat. # 12-550-15) with two sections per slide. Sections were then dried at room temperature for 

at least 30 minutes and then stored at -80oC until use.  

 

RNAscope in situ hybridization (Advanced Cell Diagnostics, Inc.) was used to detect single 

RNA transcripts. RNAscope probes were used to detect Th (C1; Cat No. 317621, Lot: 17073A), 

Slc6a3 (C2; Cat No. 315441-C2, Lot: 17044A), Lhx9 (C3; Cat No. 495431-C3, Lot: 17044A), 

and Ldb2 (C3; Cat No. 466061-C3, Lot: 17044A). The RNAscope Fluorescent Multiplex 

Detection kit (Cat No. 320851) and the associated protocol provided by the manufacturer were 

used, with slight modifications. Briefly, frozen tissues were removed from -80oC and 

equilibrated at room temperature for 5 minutes. Slides were then washed at room temperature in 

1x PBS for 3 minutes with agitation. Slides were then immediately washed in 100% ethanol by 

moving the slides up and down 5-10 times. The slides were then allowed to dry at room 

temperature and hydrophobic barriers were drawn using a hydrophobic pen (ImmEdge 

Hydrophobic Barrier PAP Pen, Vector Laboratories, Cat. # H-4000) around the tissue sections. 

The hydrophobic barrier was allowed to dry overnight. After drying, the tissue sections were 
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treated with RNAscope Protease IV at room temperature for 30 minutes and then slides were 

washed in 1x PBS. Approximately 100 uL of multiplex probe mixtures (C1 - Th, C2 - Slc6a3, 

and C3 - one of Lhx9 or Ldb2) containing either approximately 96 uL C1: 2 uL C2: 2 uL C3 

(Th:Slc6a3:Lhx9) or 96 uL C1: 0.6 uL C2: 2 uL C3 (Th:Slc6a3:Ldb2) were applied to appropriate 

sections. Both mixtures provided adequate in situ signals. Sections were then incubated at 40oC 

for 2 hours in the ACD HybEZ oven. Sections were then sequentially treated with the RNAscope 

Multiplex Fluorescent Detection Reagents kit solutions AMP 1-FL, AMP 2-FL, AMP 3-FL, and 

AMP 4 Alt B-FL, with washing in between each incubation, according to manufacturer’s 

recommendations. Sections were then treated with DAPI provided with the RNAscope Multiplex 

Fluorescent Detection Reagents kit. One drop of Prolong Gold Antifade Mountant (Invitrogen, 

Cat # P36930) was then applied to each section and a coverslip was then placed on the slide. The 

slides were then stored in the dark at 4oC overnight before imaging. Slides were further stored at 

4oC throughout imaging. Manufacturer provided positive and negative controls were performed 

alongside experimental probe mixtures according to manufacturer’s protocols. Four sections that 

encompassed relevant populations in the P7 ventral MB (SN, ventral tegmental area (VTA), etc.) 

were chosen for each combination of RNAscope smFISH probes and subsequent analyses. 

 

smFISH Confocal Microscopy. 

RNAscope fluorescent in situ experiments were analyzed using the Nikon A1 confocal system 

equipped with a Nikon Eclipse Ti inverted microscope running Nikon NIS-Elements AR 4.10.01 

64-bit software. Images were captured using a Nikon Plan Apo  60x/1.40 oil immersion lens 

with a common pinhole size of 19.2 M, a pixel dwell of 28.8 s, and a pixel resolution of 1024 

x 1024. DAPI, FITC, Cy3, and Cy5 channels were used to acquire RNAscope fluorescence. 
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Positive and negative control slides using probe sets provided by the manufacturer were used in 

order to calibrate laser power, offset, and detector sensitivity, for all channels in all experiments 

performed. 

 

smFISH image analysis and processing. 

Confocal images were saved as .nd2 files. Images were then processed in ImageJ as follows. 

First, the .nd2 files were imported into ImageJ and images were rotated in order to reflect a 

ventral midbrain orientation with the ventral side of the tissue at the bottom edge. Next the LUT 

ranges were adjusted for the FITC (range: 0-2500), Cy3 (range: 0-2500), and Cy5 (range: 0-

1500) channels. All analyzed images were set to the same LUT ranges. Next, the channels were 

split and merged back together to produce a “composite” image. Scale bars were then added. 

Cells of interest were then demarcated, duplicated, and the channels were split. 

 

Immunohistochemistry and quantification of Th striatum staining in Cplx1-/- mice.  

Mice (N=8 Cplx1-/- ; N=3 WT littermates; ages between 4-7.5 weeks) were euthanized and their 

brains fresh-frozen on powdered dry ice. Brains were sectioned at 35 mm and sections and 

mounted onto Superfrost-plus glass slides (VWR International, Poole, UK). Sections were 

peroxidase inactivated, and one in every 10 sections was processed immunohistochemically for 

tyrosine hydroxylase. Sections were incubated in primary anti-tyrosine hydroxylase antibody 

(AB152, Millipore) used at 1/2000 dilution in 1% normal goat serum in phosphate-buffered 

saline and 0.2% Triton X-100 overnight at 4oC. Antigens were visualized using a horseradish 

peroxidase-conjugated anti-rabbit second antibody (Vector, PI-1000, 1/2000 dilution) and by 
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using diaminobenzidine (DAB; Sigma). The slides were stored in the dark (in black slide boxes) 

at room temperature (21oC). 

Images of stained striatum were taken using a Nikon AZ100 microscope equipped with a 2x lens 

(Nikon AZ Plan Fluor, NA 0.2, WD45), a Nikon DS-Fi2 camera, and NIS-Elements AR 4.5 

software. Appropriate zoom and light exposure were determined before imaging and kept 

constant for all slides and sections. Density of TH+ DAB staining was measured using ImageJ 

software. Briefly, images were imported into ImageJ and the background was subtracted (default 

50 pixels with “light background” selected). Next, images were converted to 8-bit and the image 

was inverted. Five measurements of density were taken for each side of a striatum in a section 

along with a density measurement from adjacent, unstained cortex. Striosomes were avoided 

during measuring when possible. Striatal measurements had background (defined as staining in 

the adjacent cortex in a section) subtracted. The mean section measurements (intensity/pixels 

squared) for each brain were calculated and represented independent measurements of the same 

brain. Variances were compared between the WT and KO populations. A two sample t-test was 

then used to compare WT vs. Cplx1-/- section densities with the following parameters in R using 

the “t.test” function: alternative = “two-sided”, var.equal = “T”. 

 

RESULTS 

scRNA-seq characterization defines DA neuronal subpopulation heterogeneity  

In order to characterize DA neuron molecular phenotypes, we undertook scRNA-seq on cells 

isolated from distinct anatomical locations of the mouse brain over developmental time. We used 

FACS to retrieve single DA neurons from the Tg(Th-EGFP)DJ76Gsat BAC transgenic mouse 

line, which expresses EGFP under the control of the tyrosine hydroxylase (Th) locus40. We 
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microdissected both midbrain (MB) and forebrain (FB) from E15.5 mice, extending our analyses 

to MB, FB, and olfactory bulb (OB) in P7 mice (Figure 1A). Brains from four and five mice 

were pooled for E15.5 and P7, respectively. E15.5 and P7 time points were chosen based on their 

representation of stable MB DA populations, either after neuron birth (E15.5) or between periods 

of programmed cell death (P7) (Figure 1A)41.  

 

Quality control and outlier analysis identified 396 high quality cell transcriptomes to be used in 

our analyses. We initially sequenced RNA from 473 single cells to an average depth of ~8 x 105 

50 bp paired-end fragments per cell. Using Monocle 2, we converted normalized expression 

estimates into estimates of RNA copies per cell23. Cells were filtered based on the distributions 

of total mass, total number of mRNAs, and total number of expressed genes per cell (Figure 

S1A, S1B, S1C; detailed in Methods). After QC, 410 out of 473 cells were retained. Using 

principal component analysis (PCA) as part of the iterative analysis described below, we 

identified and removed 14 outliers determined to be astrocytes, microglia, or oligodendrocytes 

(Figure S1E; Table S1), leaving 396 cells (~79 cells/timepoint-region; Figure S1D). 

 

To confirm that our methods can discriminate between different populations of neurons, we first 

explored differences between timepoints. In order to do this, we identified genes with highly 

variable transcriptional profiles and performed PCA. As anticipated, we observed that the 

greatest source of variation was between developmental ages (Figure 1B). Genes associated with 

negative PC1 loadings (E15.5 cells) were enriched for gene sets consistent with mitotically 

active neuronal, undifferentiated precursors (Figure 1C). In contrast, genes associated with 

positive PC1 loadings (P7 cells) were enriched for ontology terms associated with mature, post-
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mitotic neurons (Figure 1C). This initial analysis establishes our capacity to discriminate among 

biological classes present in our data using PCA as a foundation. 

 

Recursive analysis of scRNA-seq data reveals 13 DA neuron subtypes 

We set out to identify clusters of single cells within timepoints and anatomical regions. 

Following a workflow similar to the recently described “dpFeature” procedure42, we identified 

highly variable genes and performed PCA using those gene transcriptional profiles. We selected 

the PCs that described the most variance in the data and used t-SNE24 to further elucidate the 

relationships between our cells. We then identified clusters of cells in an unsupervised manner 

using local Gaussian densities25. The steps taken in this analysis were performed in a recursive 

manner for both timepoints across all regions to further explore heterogeneity (See Methods). 

 

Analysis of all cells revealed E15.5 cells from both MB and FB cluster together (Figure 1D), 

supporting the notion that they are less differentiated. By contrast, cells isolated at P7 mostly 

cluster by anatomical region, suggesting progressive functional divergence with time (Figure 

1D). The recursive analysis performed across all timepoints and regions revealed a total of 13 

clusters (E15.5 FB.1-2, MB.1-2; P7 OB.1-3, FB.1-2, MB.1-4; Figure 1E), demonstrating the 

diversity of DA neuron subtypes and providing a framework upon which to evaluate the 

biological context of genetic association signals across closely-related cell types. Using known 

markers, we confirmed that all clusters expressed high levels of pan-neuronal markers (Snap25, 

Eno2, and Syt1) (Figure S2A). By contrast, we observed scant evidence of astrocyte (Aldh1l1, 

Slc1a3, Aqp4, and Gfap; Figure S2A) or oligodendrocyte markers (Mag, Mog, and Mbp; Figure 

S2A), thus confirming we successfully isolated our intended substrate, Th+ neurons. 
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scRNA-seq reveals biologically and temporally discriminating transcriptional signatures 

With subpopulations of DA neurons defined by our data, we set out to assign a biological 

identity to each cluster. To do this, we identified differentially expressed genes between clusters 

within each timepoint, then identified marker genes for each cluster within each timepoint (see 

Methods; Table S2). Since the age of the mice constituted the greatest source of variation in the 

data (Figure 1B), we undertook differential expression analyses and downstream analyses 

separately for each timepoint. 

 

Among the four clusters identified at E15.5, two were represented in t-SNE space as a single 

large group that included cells from both MB and FB (E15.MB.1, E15.FB.1), leaving two 

smaller clusters that were comprised solely of MB or FB cells (Figure S3A). Both E15.MB.1 and 

E15.FB.1 show markers consistent with neuroblast populations (Table 1, Table S3). The isolated 

MB cluster (E15.MB.2; Figure S3A, S3C) specifically expressed Foxa1, Lmx1a, Pitx3, and 

Nr4a2 and thus likely represents a post-mitotic DA neuron population43 (Table1, Table S2, Table 

S3). Similarly, the discrete E15.FB.2 cluster expressed markers of post-mitotic FB/hypothalamic 

neurons (Figure S3A, S3B), including Six3, Six3os1, Sst, and Npy (Table 1, Table S2, Table S3). 

These embryonic data did not discriminate between cells populating known domains of DA 

neurons, such as the SN or ventral tegmental area (VTA). 

 

By contrast, P7 cells mostly cluster by anatomical region and each region has defined subsets 

(Figure 1D, 1E, 2A). Analysis of P7 FB revealed two distinct cell clusters (Figure 2B). 

Expression of the neuropeptides Gal and Ghrh and the Gsx1 transcription factor place P7.FB.1 
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cells in the arcuate nucleus (Table 1, Table S2, Table S3)44–46. The identity of P7.FB.2, however, 

was less clear, although subsets of cells therein did express other arcuate nucleus markers for 

Th+/Ghrh- neuronal populations e.g. Onecut2, Arx, Prlr, Slc6a3, and Sst (Figure S3D; Table 

S3)46. All three identified OB clusters (Figure 2C) express marker genes of OB DA neuronal 

development or survival (Table S2, Table S3; Figure S3E)47. It has previously been reported that 

Dcx expression diminishes with neuronal maturation48 and Snap25 marks mature neurons49. We 

observe that these OB clusters seem to reflect this continuum of maturation wherein expression 

of Dcx diminishes and Snap25 increases with progression from P7.OB1 to OB3 (Figure S3E). 

This pattern is mirrored by a concomitant increase in OB DA neuron fate specification genes 

(Figure S3E)47,50. In addition, we identified four P7 MB DA subset clusters (Figure 2D). Marker 

gene analysis confirmed that three of the clusters correspond to DA neurons from the VTA (Otx2 

and Neurod6; P7.MB.1)51,52, the periaqueductal grey area (PAG; Vip and Pnoc; P7.MB.3)53,54, 

and the SN (Sox6, Aldh1a7, Ndnf, Serpine2, Rbp4, and Fgf20; P7.MB.4)38,51,55,56 (Table 1, Table 

S2, Table S3). These data are consistent with recent scRNA-seq studies of similar 

populations38,57. Through this marker gene analysis, we successfully assigned a biological 

identity to 12/13 clusters (Table 1). 

 

Multiplex, smFISH confirms the existence of a putative postnatal neuroblast population 

The only cluster without a readily assigned identity was P7.MB.2. This population of P7 MB DA 

neurons, P7.MB.2 (Figure 2D), is likely a neuroblast-like population based on marker gene 

analysis (Table 1, Table S3). Like the overlapping E15.MB.1 and E15.FB.1 clusters (Figure 

S3A), this cluster preferentially expresses markers of neuronal 

precursors/differentiation/maturation (Table S3). In addition to sharing markers with the 
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neuroblast-like E15.MB.1 cluster, P7.MB.2 exhibits gene expression consistent with embryonic 

mouse neuroblast populations38 as well as cell division and neuron development58–62 (Table S2; 

Table S3). Consistent with the hypothesis, this population displayed lower levels of both Th and 

Slc6a3, markers of mature DA neurons, than the terminally differentiated and phenotypically 

discrete P7 MB DA neuron populations of the VTA, SN and PAG (Figure 3A). 

 

With this hypothesis in mind, we sought to ascertain the spatial distribution of P7.MB.2 DA 

neurons through multiplex, smFISH for Th (pan-P7 MB DA neurons), Slc6a3 (P7.MB.1, 

P7.MB.3, P7.MB.4), and one of the neuroblast marker genes identified through our analysis, 

either Lhx9 or Ldb2 (P7.MB.2) (Figure 3A). In each experiment, we scanned the ventral 

midbrain for cells that were Th+/Slc6a3- and positive for the third gene. Th+/Slc6a3-/Lhx9+ cells 

were found scattered in the dorsal SN pars compacta (SNpc) along with cells expressing Lhx9 

alone (Figure 3B, 3D). Expression of Ldb2 was found to have a similar pattern to Lhx9, with 

Th+/Slc6a3-/Ldb2+ cells found in the dorsal SNpc (Figure 3C, 3D). Expression of Lhx9 and Ldb2 

was low or non-existent in Th+/Slc6a3+ cells in the SNpc (Figure 3B, 3C). Importantly, cells 

expressing these markers express Th at lower levels than Th+/Slc6a3+ neurons (Figure 3B, 3C), 

consistent with our scRNA-seq data (Figure 3A). Thus, with the resolution of the spatial 

distribution of this neuroblast-like P7 MB DA population, we assign biological identity to each 

defined brain DA subpopulation (Table 1). 

 

SN-specific transcriptional profiles and GRNs highlight its association with PD 

Overall our analyses above allowed us to successfully separate and identify 13 brain DA 

neuronal populations present at E15.5 and P7, including SN DA neurons (Table 1). Motivated by 
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the clinical relevance of SN DA neurons to PD, we set out to understand what makes them 

transcriptionally distinct from the other MB DA neuron populations.  

 

In order to look broadly at neuronal subtypes, we evaluated expression of canonical markers of 

other neuronal subtypes in our Th+ neuron subpopulations. We noted that Th and EGFP were 

inconsistently detected in some E15.5 clusters (Figure S4A). This likely reflects lower Th 

transcript abundance at this developmental state, but sufficient expression of the EGFP reporter 

to permit FACS collection (Figure S4B). The expression of other DA markers, Ddc and Slc18a2, 

mirror Th expression, while Slc6a3 expression is more spatially and temporally restricted (Figure 

S4A). The SN cluster displays robust expression of all explored canonical DA markers (Figure 

S4A). Multiple studies have demonstrated that Th+ neurons may also express markers 

characteristic of other major neuronal subtypes63–65. We found that all but the SN and PAG 

showed expression of either GABAergic (Gad1/Gad2/Slc32a1) or glutamatergic (Slc17a6) 

markers (Figure S4A). This neurotransmitter specificity may represent a valuable avenue for 

exploring the preferential vulnerability of the SN in PD. 

 

Next, we postulated that genes whose expression defined the P7 SN DA neuron cluster might 

illuminate their preferential vulnerability in PD. We identified 110 SN-specific genes, by first 

finding all differentially expressed genes between P7 subset clusters and then using the Jensen-

Shannon distance to identify cluster specific genes (See Methods; Table S2). Prior reports 

confirm the expression of 49 of the 110 SN-specific genes (~45%) in postnatal SN (Table S4). 

We then sought evidence to confirm or exclude SN expression for the remaining 61 genes (55%). 

Of these, 25/61 (~41%) were detected in the adult SN by in situ hybridization (ISH) of coronal 



 

 29 

sections in adult (P56) mice (Allen Brain Atlas, ABA), including Col25a1, Fam184a, Ankrd34b, 

Nwd2, and Cadps2 (Figure 4A, 4B; Table S5). Only 4/61 genes, for which ISH data existed in 

the ABA, lacked clear evidence of expression in the adult SN (Table S5). The ABA lacked 

coronal ISH data on 32/61 genes, thus we were unable to confirm their presence in the SN. 

Collectively, we identified 110 postnatal SN DA marker genes and confirmed the expression of 

those genes in the adult rodent SN for 74 (67%) of them, including 25 previously 

uncharacterized markers of this clinically relevant cell population. 

 

We next asked whether we could identify significant relationships between cells defined as being 

P7 SN DA neurons and distinctive transcriptional signatures in our data. In order to do this, we 

performed weighted gene co-expression network analysis (WGCNA)32,33. WGCNA learns 

modules of genes with similar expression patterns across individual cells. By using expression 

data for all expressed genes in our P7 DA neuron dataset, we identify 16 co-expressed gene 

modules (Figure S5; Table S6). By calculating pairwise correlations between modules and P7 

subset cluster identity, we reveal that 7/16 modules are significantly and positively correlated 

(Bonferroni corrected p < 3.5e-04) with at least one subset cluster (Figure 4C). We graphically 

represented the eigenvalues for each module in each cell in P7 t-SNE space, confirming that a 

majority of these significant modules (6/7), except for “lightcyan”, displayed robust spatial, 

isotype enrichment (Figure 4D).  

 

In order identify the biological relevance of these modules, each module was tested for 

enrichment for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Gene Ontology 

(GO) gene sets, and Reactome gene sets. Two modules, the “brown” and “green” modules, were 
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significantly associated with the Parkinson’s Disease KEGG pathway gene set (Figure 4C; Table 

S7). Interestingly, the “brown” module was also significantly correlated with the P7 VTA 

population (P7.MB.1) and enriched for addiction gene sets (Table S7) highlighting the link 

between VTA DA neurons and addiction66. Strikingly, only the P7 SN cluster was significantly 

correlated with both PD-enriched modules (Figure 4C). This specific correlation suggests these 

gene modules may play a role in the preferential susceptibility of the SN in PD. 

 

Integrating SN DA neuron specific data enables prioritization of genes within PD-associated 

intervals 

With these context-specific data in hand, we posited that SN DA neuron-specific genes and the 

broader gene co-expression networks that correlate with SN DA neurons might be used to 

prioritize genes that may be affected by disease-associated variation within PD GWAS loci. Such 

a strategy would be agnostic to prior biological evidence and independent of genic position 

relative to the lead SNP, the traditional method used to prioritize causative genes. 

  

To investigate pertinent genes within PD GWAS loci, we identified all human genes within 

topologically associated domains (TADs) and two megabase (Mb) intervals encompassing each 

PD-associated lead SNP. TADs were chosen because regulatory DNA impacted by GWAS 

variation is more likely to act on genes within their own TAD67. While topological data does not 

exist for SN DA neurons, we used TAD boundaries from hESCs as a proxy, as TADs are 

generally conserved across cell types35. To improve our analyses, we also selected +/- 1 Mb 

intervals around each lead SNP thus including the upper bounds of reported enhancer-promoter 

interactions68,69. All PD GWAS SNPs interrogated were identified by the most recent meta-
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analyses (49 SNPs in total)10,11, implicating a total of 1751 unique genes (both protein coding 

and non-coding; Table S8). We then identified corresponding one-to-one mouse to human 

homologs (1009/1751; ~58%), primarily through the Mouse Genome Informatics (MGI) 

homology database. 

 

To prioritize these genes in GWAS loci, we developed a gene-centric score that integrates our 

data as well as data in the public domain. We began by intersecting the PD loci genes with our 

scRNA-seq data as well as previously published SN DA expression data38, identifying 430 genes 

(430/1009; ~43%) with direct evidence of expression in SN DA neurons in at least one dataset. 

These 49 PD loci are significantly enriched for genes expressed in SN DA neurons when 

compared to randomly selected GWAS loci (Figure S6A). Each PD-associated interval contained 

≥1 of those SN-expressed genes (Table S8); this is more than what is expected from 49 random 

GWAS loci (Figure S6B). Emphasizing the need for a novel, systematic strategy, in 20/49 GWA 

intervals (~41%), the most proximal gene to the lead SNP was not detectably expressed in mouse 

SN DA neuron populations (Table S8, Table S9). Three  loci contained only one SN DA-

expressed gene: Mmp16 (rs60298754 locus, Figure 5A), Tsnax (rs10797576 locus), and Satb1 

(rs4073221 locus). The number of PD loci with only one gene expressed is slightly less than 

expected from 49 random GWAS loci (Figure S6C). The relevance of these candidate genes to 

neuronal function/dysfunction is well supported70–73. This establishes gene expression in a 

relevant tissue as a powerful tool in the identification of genes impacted by disease variation. 

 

In order to prioritize likely diseases-associated genes in the remaining 46 loci, we scored genes 

on three criteria: whether genes were identified as specific markers for the P7.MB.4 (SN) cluster 
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(Table S2), whether the genes were differentially expressed between all P7 DA neuron 

populations, and whether the genes were included in PD gene set enriched and SN correlated 

gene modules uncovered in WGCNA (Table S6). This strategy facilitated further prioritization of 

a single gene in 21 additional loci including the rs356182 (SNCA), rs76904798 (PDZRN4), and 

rs11158026 (GCH1) loci (Figure 5A; Table 2; Table S9). Importantly, using this approach we 

indict the gene implicated in familial PD alpha-synuclein (SNCA), as responsible for the 

observed PD association with rs356182 (Figure 5A, Table 2, Table S9). Thus, by using context-

specific data alone, we were able to prioritize a single candidate gene in roughly half (24/49, 

~49%) of PD-GWAS associated loci. 

 

Furthermore, at loci in which a single gene did not emerge, we identified dosage sensitive genes 

by considering the probability of being loss-of-function (LoF) intolerant (pLI) metric from the 

ExAC database39,74. Since most GWAS variation is predicted to impact regulatory DNA and in 

turn impact gene expression, it follows that genes in GWAS loci that are more sensitive to 

dosage levels may be more likely to be candidate genes. With that in mind, the pLI for each gene 

was used to further “rank” the genes within loci where a single gene was not prioritized. For 

those loci, including rs17649553 and rs8118008 loci (Figure 5A), we report a group of top 

scoring candidate genes (Table 2, Table S9).  Expression of prioritized genes in the adult SN 

adds to the validity of the genes identified as possible candidates (Figure 5B). 

 

Two particularly interesting examples that emerge from this scoring are found at the rs17649553 

and rs34311866 loci. The rs17649553 locus contains MAPT, which has previously been 

implicated in multiple neurodegenerative phenotypes, including PD (OMIM: 168600). We 



 

 33 

instead prioritize CRHR1 and NSF before it (Table 2). We detect Mapt and Nsf expression 

consistently across all assayed DA neurons (Figure 5C). By contrast, expression of Crhr1, 

encoding the corticotropin releasing hormone receptor 1, is restricted to P7 DA neurons in the 

SN and the more mature OB neuronal populations (Figure 5C). Similarly, at the rs34311866 

locus, our data shows that although all three proximal genes are expressed in the SN (TMEM175, 

GAK, DGKQ), the adjacent CPLX1 was one of the prioritized genes (Table 2, Table S9).  

 

There are multiple lines of evidence that strengthen CPLX1 as a candidate. Expression of CPLX1 

is elevated in the brains of individuals with PD and Cplx1 is elevated in the brains of mice 

overexpressing SNCA with a familial PD mutation, c.157G>A (p.Ala53Thr) (GenBank: 

NM_000345.3)75,76. Additionally, mice deficient in Cplx1 display an early-onset, cerebellar 

ataxia along with prolonged motor and behavioral phenotypes14,15. However, the impact of Cplx1 

deficiency on the integrity of the nigrostriatal pathway, to date, has not been explored. In order to 

confirm CPLX1 as a candidate, we performed immunohistochemistry (IHC) for Th in the Cplx1 

knockout mouse model (Table S10, Table S11)14,15,77. We measured the density of Th+ 

innervation in the striatum of Cplx1-/- mice and controls (Figure 5D, Table S10) and found that 

Cplx1-/- mice had significantly lower Th+ staining in the striatum (p-value = 3.385e-08; Figure 

5E). This indicates that Cplx1 KO mice have less Th+ fiber innervation and a compromised 

nigrostriatal pathway, supporting its biological significance in MB DA populations and to PD.  

 

DISCUSSION 

Midbrain DA neurons in the SN have been the subject of intense research since being 

definitively linked to PD nearly 100 years ago78. While degeneration of SN DA neurons in PD is 
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well established, they represent only a subset of brain DA populations. It remains unknown why 

nigral DA neurons are particularly vulnerable. We set out to explore this question using scRNA-

seq. Recently, others have used scRNA-seq to characterize the mouse MB, including DA 

neurons38. Here, we extend these data significantly, extensively characterizing the transcriptomes 

of multiple brain DA populations longitudinally and discovering GRNs associated with specific 

populations. 

 

A postnatal MB Th+ cell type is a putative progenitor-like MB DA neuron 

Our analysis of embryonic and postnatal MB Th+ neurons revealed a population of neurons, 

present at both embryonic and postnatal timepoints (E15.MB.1 and P7.MB.2), that share 

expressed genes indicative of MB DA neuron progenitors. While progenitor cell populations in 

the ventral MB have been previously characterized at embryonic timepoints38, the existence of a 

postnatal MB progenitor neuron population has not been noted in previous single cell studies38,57. 

Notably, previous studies characterized postnatal neurons marked by transgenes under Slc6a3 

regulatory control. Given that we demonstrate this marker to be absent from P7.MB.2 cluster, it 

follows that this population would likely have been overlooked. By contrast, our use of Th left 

this population available for discovery. We show through smFISH that specific markers for this 

population place it in the dorsal portion of the SN at P7.  

 

One may speculate regarding the function of a postnatal MB progenitor population. While 

beyond the scope of this paper, some clues may be found in the literature about Th+ neuron 

development. Studies of SN DA neuron development in mice have shown that there are two 

periods of programmed cell death with peak apoptosis occurring at P2 and P14 (Figure 1A)79. 
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Paradoxically, even though there are high levels of cell death at these points, the actual number 

of Th+ neurons in the mouse SN does not decrease79,80. It has been shown that this can be 

explained by increasing levels of Th in cells over time, leading to “new” neurons appearing that 

are able to be immunostained79. These results have led to the suggestion that there is a 

“phenotypic maturation” of MB DA neurons during the early postnatal time period79. This 

phenomenon may explain the presence of our “progenitor-like” MB DA neurons at P7, which 

display much lower levels of Th than other populations. 

 

Prioritization of genes within PD GWAS loci identifies genes that may contribute to common PD 

susceptibility 

Our data facilitate the iterative and biologically informed prioritization of gene candidates for all 

PD-associated genomic intervals. In practice, the gene closest to the lead SNP identified within a 

GWAS locus is frequently treated as the prime candidate gene, often without considering tissue-

dependent context. Our study overcomes this by integrating genomic data derived from specific 

cell contexts with analyses that are agnostic to one another.  We posit that genes pertinent to PD 

are likely expressed within SN DA neurons. This hypothesis is consistent with the recent 

description of the “omnigenic” nature of common disease, wherein variation impacting genes 

expressed in a disease tissue explain the vast majority of risk7.  

 

First, we identify intervals that reveal one primary candidate, i.e. those that harbor only one SN-

expressed gene. Next, we examine those intervals with many candidates, and prioritize based on 

a cumulative body of biological evidence. In total, we prioritize 5 or fewer candidates in 47/49 ( 

~96%) PD GWAS loci studied, identifying a single gene in twenty-four loci (24/49; ~49%) and 
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three or fewer genes in ~84% of loci (41/49). Ultimately this prioritization reduces the candidate 

gene list for PD GWAS loci dramatically from 1751 genes to 112 genes. 

 

The top genes we identify in three PD loci (rs356182 - SNCA, rs591323 - FGF20, rs11158026 -

GCH1) have been directly associated with PD, MB DA development, and MB DA function56 

(OMIM: 163890, 128230). Furthermore, our prioritization of CPLX1 in the rs34311866 locus is 

supported by multiple lines of evidence. Additionally, we demonstrate that the integrity of the 

nigrostriatal pathway is disrupted in Cplx1 knockout mice. Dysregulation of CPLX1 RNA is also 

a biomarker in individuals with pre-PD prodromal phenotypes harboring the PARK4 mutation 

(SNCA gene duplication)81. These results validate our approach and strengthen the argument for 

the use of context specific data in pinpointing candidate genes in GWAS loci. 

 

In light of the recently described “omnigenic” hypothesis of complex traits, we anticipate risk 

variants may impact common cellular pathways within this primary impacted cell population. 

Consistent with this, many of the genes prioritized (Table 2) have been shown to impact 

mitochondrial biology82–86,  the dysfunction of which has been extensively implicated in PD87. 

The prioritized genes may represent “core” genes that in turn can affect the larger mitochondrial-

associated regulatory networks active in the disease relevant cell-type (SN DA neurons). One 

such gene we identify is PARL (Presenilin Associated Rhomboid Like). PARL encodes a 

protease that cleaves PINK1, which has been implicated in PD pathology88–90. Further, recently a 

variant in PARL has been associated, but not definitively linked, with early-onset PD (OMIM: 

607858).  
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While our method successfully prioritized one gene with a known role in familial PD (SNCA), 

we do not prioritize LRRK2, another familial PD-associated gene harbored within a PD GWAS 

locus (rs76904798 locus). LRRK2 is not prioritized simply because it is not detectably expressed 

in our SN DA neuronal population. This is expected as numerous studies have reported little to 

no LRRK2 expression in Th+ MB DA neurons both in mice and humans91,92. Instead, our method 

prioritizes PDZRN4. This result does not necessarily argue against the potential relevance of 

LRRK2 but instead provides an additional candidate that may contribute to PD susceptibility. 

Further, we acknowledge that our focus on SN neurons risks overlooking variants whose 

immediate functional context lies in other cells, yielding non-cell-autonomous influence on the 

SN (see discussion below). This same logic should be noted for two other PD-associated loci 

(rs35749011 and rs17649553), wherein our scoring prioritizes different genes (KCNN3 and 

CRHR1/NSF, respectively) than one previously implicated in PD (GBA and MAPT) (OMIM: 

168600). Notably, KCNN3, CRHR1, and NSF, all have previous biological evidence making 

them plausible candidates93–95.  

 

Comparison of PD gene prioritization schemes 

Studying disease-relevant tissue has proven to be essential for elucidating the genetic 

architecture underlying GWA signals2; our scoring method relies upon data from the most 

overtly relevant cell-type to PD, SN DA neurons. While this study was under consideration for 

publication, Chang and colleagues11 endeavored to prioritize PD GWAS loci using publically 

available data. Although their pipeline strives to be “neuro-centric,” it is not predicated on the 

biological relevance of candidates to SN DA neurons. 
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Through comparison of the two scoring paradigms, the methods agree on at least one gene in 

17/44 (~39%) jointly scored loci, including SNCA (Table S12), bolstering the evidence for those 

candidate genes. However, we see ~44% (31/71) of the genes prioritized by Chang, et al., are not 

expressed in either of the SN DA expression data sets used in our scoring scheme (Table S12), 

including LRRK2 (addressed above). One prime example of this discrepancy is the rs12637471 

locus. Chang, et al., identify MCCC1 to be the prime candidate in the locus. However, we find 

that MCCC1 is not expressed in SN DA neurons (Table S8). Instead, we prioritize PARL, which 

has an established role in a PD pathogenesis pathway88,89. 

 

Our focus on disease relevant cell-type data also leads us to identify genes previously implicated 

in neurodegeneration, which make obvious candidates. As described, in the rs34311866 locus, 

we identify CPLX1 and functionally confirm its relevance. We also identify ATRN (attractin) in 

the rs8118008 locus. Loss of Atrn has been shown to cause age-related neurodegeneration of SN 

DA neurons in rats96,97, making it an ideal candidate. Neither gene is identified using other 

metrics11 (Table S12). 

 

Despite this success, we acknowledge several notable caveats. First, not all genes in PD-

associated human loci have identified mouse homologs via the MGI homology database used. 

The majority of genes without identified mouse homologs are classified as non-coding genes 

which include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and pseudogenes 

(Figure S7). Thus, it remains possible that we may have overlooked the contribution of some 

human non-coding genes whose biology cannot be comprehensively queried in this study. 
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Secondly, we assume that identified genetic variation acts in a manner that is at least preferential, 

if not exclusive, to SN DA neurons. It is possible that genetic variation contributing to risk of PD 

may be acting in other cell types. While SN DA neurons are primarily affected in PD, other cell 

types, especially microglia and astrocytes, have been shown to play a role in PD98,99. In addition, 

both of these cell types have been implicated in PD through the process of 

neuroinflammation98,99. Intriguingly, PD-causing mutations in LRRK2 have been shown to affect 

microglia and play a role in neuroinflammation100. The expression and function of LRRK2 in 

microglia instead of SN DA neurons could be another explanation as to why LRRK2 is not 

prioritized in our scoring system. While out of the scope of this paper, future work will be 

needed to assess if glial transcriptional landscapes or genes modulated by neuroinflammation 

could explain some genetic signals underlying sporadic PD. 

 

These caveats notwithstanding, our strategy sets the stage for a new generation of independent 

and combinatorial functional evaluation of gene candidates for PD-associated genomic intervals. 

Emerging studies, including ours, highlight the need for strategies that can systematically 

identify biologically pertinent gene candidates. Such strategies are necessary for the community 

to take full advantage of the immense body of GWAS data now in the public domain. We 

demonstrate the potential power of integrating scRNA-seq data from disease-relevant 

populations to illuminate corresponding GWAS and facilitate systematic prioritization and 

testing of gene candidates within risk loci. 
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Single cell RNA sequencing data is available at the Gene Expression Omnibus (GEO) under the 

accession number: GSE108020. 
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ACKNOWLEDGEMENTS 

The authors wish to thank Stephen M. Brown for implementation and optimization of smFISH. 

Dr. Zhiguang Zheng and Mrs. Wendy Leavens for excellent technical support with the Cplx1 

knockout mice and immunohistochemistry and Drs Kerstin Reim and Niels Brose for the gift of 

the founder mice for the Cambridge Cplx1 knockout mice colony. This research was supported 

in part by US National Institutes of Health grants R01 NS62972 and MH106522 to ASM and a 

grant from CHDI Inc. to AJM. 

 

FINANCIAL INTERESTS STATEMENT 

The authors declare no competing financial interests. 

 

WEB RESOURCES 

GitHub repository containing code and documentation - https://github.com/pwh124/sc-da-
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Charles River Laboratories - http://www.criver.com/ 

WGCNA R package - 

https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/ 



 

 41 

UCSC Genome Browser - http://genome.ucsc.edu/ 

MGI database - http://www.informatics.jax.org/ 

ExAC - http://exac.broadinstitute.org/ 

Allen Brain Atlas - http://www.brain-map.org/ 

Mouse Reference Atlas at the Allen Brain Atlas - http://mouse.brain-map.org/static/atlas 

RNAscope in situ hybridization from Advanced Cell Diagnostics, Inc. - https://acdbio.com/ 

Monocle 2 - http://cole-trapnell-lab.github.io/monocle-release/ 

HISAT2 - https://ccb.jhu.edu/software/hisat2/index.shtml 

Cuffquant - http://cole-trapnell-lab.github.io/cufflinks/ 

Cuffnorm - http://cole-trapnell-lab.github.io/cufflinks/ 

ADPclust R package - https://cran.r-

project.org/web/packages/ADPclust/vignettes/ADPclust.html 

cummeRbund - http://compbio.mit.edu/cummeRbund/ 

MGI Human-to-Mouse homolog data - 

http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt; Date 

accessed: 07/07/2017 

GENCODE - https://www.gencodegenes.org/ 

GSEA - http://software.broadinstitute.org/gsea/index.jsp 

R - https://www.r-project.org/ 

Tsne R package - https://github.com/jdonaldson/rtsne  

clusterProfiler R package - https://guangchuangyu.github.io/clusterProfiler/ 

Hi-C data - http://chromosome.sdsc.edu/mouse/hi-c/download.html 

biomaRt R package - https://bioconductor.org/packages/release/bioc/html/biomaRt.html 
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OMIM - https://omim.org/ 

ImageJ - https://imagej.nih.gov/ij/ 

 

NHGRI-EBI GWAS Catalog - http://www.ebi.ac.uk/gwas/  

https://imagej.nih.gov/ij/
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Figure Titles and Legends 

Figure 1. scRNA-seq analysis of isolated cells allows their separation by developmental time. 

Figure 1. scRNA-seq analysis of isolated cells allows their separation by developmental time. A) Diagram 

of scRNA-seq experimental procedures for isolating and sequencing EGFP+ cells. Timeline adapted from 

Barallobre, et al., 2014a41. B) Principal component analysis (PCA) on all cells collected using genes with 

highly variant transcriptional profiles. The cells that were included are those that passed quality control 

measures. The greatest source of variation (PC1) is explained by the time point at which the cells were 

collected, not the region from which the cells were collected. C) The top ten Gene Ontology (GO) gene 

sets enriched in genes with positive (red) and negative (green) PC1 loadings from the PCA plot in Figure 

1B. Gene sets are arranged by normalized enrichment scores (NES) and all gene sets displayed had a false 

discovery rate (FDR) q-value < 0.05. D) A t-distributed Stochastic Neighbor Embedding (t-SNE) plot of 

all collected cells that passed quality control measures colored by regional identity. E15.5 cells cluster 

together while P7 cells cluster primarily by regional identity. E) A t-SNE plot of all collected cells 

colored by subset cluster identity. Through iterative analysis, timepoint-regions collected can be separated 

into multiple subpopulations (13 in total). Midbrain, Mb; Forebrain, FB; Olfactory bulb; OB; 

Fluorescence activated cell sorting; FACS. 

 

Figure 2. Subclusters of P7 Th+ neurons are identified based on marker gene analyses. 

Figure 2.  Subclusters of P7 Th+ neurons are identified based on marker gene analyses. A) A t-SNE plot of 

all P7 neurons collected colored by subset cluster identity. The neurons mostly cluster by regional 

identity. B) t-SNE plot of P7 FB neurons. P7 FB neurons cluster into two distinct populations. C) t-SNE 

plot of P7 OB neurons. P7 OB neurons cluster into three populations. These populations represent a 

trajectory of Th+ OB maturation (Table S3) as indicated by the red arrow. D) A t-SNE plot of P7 MB 

neurons. P7 MB neurons cluster into four clusters: the substantia nigra (SN), the ventral tegmental area 

(VTA), the periaqueductal grey area (PAG), and a neuroblast-like population.  
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Figure 3. Multiplex, smFISH confirms the existence of a putative postnatal neuroblast population 

Figure 3. Multiplex, smFISH confirms the existence of a putative postnatal neuroblast population. 

A) Boxplots displaying the expression of four genes (Th, Slc6a3, Lhx9, and Ldb2) across all subclusters 

identified. E15.MB.1 and  P7.MB.2 labels are bold due to similar expression profile of displayed genes 

(Table S2, Table S3). +/- 1.5x interquartile range is represented by the whiskers on the boxplots. Data 

points beyond 1.5x interquartile range are considered as outliers and plotted as black points. B) 

Representative image of multiplex single molecule fluorescent in situ hybridization (smFISH) for Th, 

Slc6a3, and Lhx9, in the mouse ventral midbrain.  Zoomed-in panels represent cell populations observed. 

Scale bar, 50 uM. C) Representative image of multiplex smFISH for Th, Slc6a3, and Ldb2, in the mouse 

ventral midbrain. Zoomed-in panels represent cell populations observed. D) Diagram of ventral midbrain 

summarizing the results of smFISH. Th+/Slc6a3-/Lhx9+ and Th+/Slc6a3-/Ldb2+ cells are both found in the 

dorsal SN. Scale bar, 50 uM. NB, neuroblast; SN, substantia nigra; VTA, ventral tegmental area; IPN, 

interpeduncular nucleus. 

 

Figure 4. Genetic markers and gene modules reveal context specific SN DA biology. 

Figure 4. Genetic markers and gene modules reveal context specific SN DA biology. A) Reference Atlas 

diagram from the Allen Brain Atlas (ABA) of the P56 mouse ventral midbrain. Important abbreviations 

include: VTA, ventral tegmental area; SNc, substantia nigra pars compacta; SNr, substantia nigra pars 

reticulata. B) Confirmation of SN DA neuron marker genes through the use of ABA in situ hybridization 

data. Coronal, P56 mouse in situ data was explored in order to confirm the expression of 25 previously 

uncharacterized SN markers. Th expression in P56 mice was used as an anatomical reference during 

analysis. C) Correlation heatmap of the Pearson correlation between module eigengenes and P7 

Th+ subset cluster identity. Modules are represented by their assigned colors at the bottom of the matrix. 

Modules that had a positive correlation with a subset cluster and had a correlation P-value less than the 

Bonferroni corrected significance level (P-value < 3.5e-04) contain an asterisk. SN cluster (P7.MB.4) 

identity is denoted by a black rectangle. Modules (“green” and “brown”) that were enriched for the 
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“Parkinson’s Disease” KEGG gene set are labeled with "PD." D) The eigengene value for each P7 neuron 

in the seven WGCNA modules shown to be significantly positively associated with a subset cluster 

overlaid on the t-SNE plot of all P7 neurons (Figure 2A). Plotting of eigengenes confirms strict spatial 

restriction of module association. Only the “lightcyan” module does not seem to show robust spatial 

restriction. 

 

Figure 5. Context specific SN DA data allows for the prioritization of genes in PD GWAS loci. 

Figure 5.  Context specific SN DA data allows for the prioritization of genes in PD GWAS loci. A) A 

locus plot displaying four megabase regions in the human genome (hg38) centered on PD GWAS SNPs 

in six loci. Genes are displayed as boxes on their appropriate strand. Genes are shaded by their 

prioritization score and gene names are displayed for genes with a score of 3 or higher in each locus. B) 

In situ hybridization from the Allen Brain Atlas (ABA) of five prioritized genes along with Th for an 

anatomical reference. Coronal, P56 mouse in situ data was used. C) Boxplots displaying expression of 

prioritized genes from the MAPT locus (Figure 5A; Table 2).  +/- 1.5x interquartile range is represented 

by the whiskers on the boxplots. Data points beyond 1.5x interquartile range are considered as outliers 

and plotted as black points. D) Representative light microscopy images of Th+ innervation density in the 

striatum of WT and Cplx1 knockout (KO) mice. Scale bar, 1 mm.  E) Boxplots comparing the level of Th+ 

striatum innervation between WT and Cplx1 KO mice. DAB staining density was measured in 35 uM, 

horizontal sections in WT mice (mice = 3, sections = 16) and Cplx1 KO mice (mice = 8, sections = 40). 

Each point in the boxplot represents the average signal from a stained, 35 uM section. Statistical analyses 

were performed between conditions with section averages in order to preserve observed variability (WT n 

= 16, Cplx1 KO n = 40). A two sample t-test revealed that Th+ innervation density was significantly lower 

in Cplx1 KO mice (t = 6.4395, df = 54, p = 3.386e-08). Data points outside of 1.5x interquartile range, 

represented by the whiskers on the boxplots, are considered as outliers and plotted as black points. 
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Tables 

 

Table 1. Summary of cell population identities 

 

Table 1. Summary of cell population identities 

Summary of the identities of cell populations identified through recursive scRNA-seq analysis of E15.5 

and P7 DA neurons. Thirteen cell populations are described, each with their age, cell cluster name, and 

biological identity. Additional information can be found in Table S3.  

Age Cluster Identity 

E15.5 

FB.1 Forebrain neuroblast 

FB.2 Post-mitotic forebrain Th+ neurons 

MB.1 Midbrain neuroblast 

MB.2 Post-mitotic midbrain DA neuron 

P7 

FB.1 Acrucate nucleus neuroendocrine Th+ neurons 

FB.2 Mixture of acruate nucleus Th+ subtypes 

MB.1 Ventral tegemental area (VTA) 

MB.2 Postnatal neuroblast 

MB.3 Periaqueductal grey area (PAG) 

MB.4 Substantia nigra (SN) 

OB.1 Least mature Th+ neurons 

OB.2 Progressively maturing Th+ neurons 

OB.3 Most mature Th+ neurons 
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Table 2. Summary of the systematic scoring of genes in 49 GWAS loci associated with PD 

Lead SNP Top Candidate Genes Prioritized by 

rs6430538 UBXN4;CCNT2;R3HDM1;RAB3GAP1 SN expression; pLI 

rs14235 MAPK3;VKORC1; BOLA2B SN expression; Differential expression; pLI 

rs11724635 CPEB2 SN expression; Differential expression 

rs11060180 ARL6IP4 SN expression; Differential expression 

rs8118008 ATRN; NOP56; MRPS26; 

C20orf27;IDH3B 

SN expression; Differential expression; pLI 

rs3793947 DLG2;CCDC90B SN expression; Differential expression; pLI 

rs6812193 G3BP2;CCNI;CDKL2 SN expression; Differential expression; pLI 

rs591323 FGF20; ZDHHC2; TUSC3; MICU3; 
MTMR7 

SN expression; Differential expression; SN specific; pLI 

rs35749011 KCNN3 SN expression; Differential expression; SN specific; WGCNA 

module 

rs11158026 GCH1 SN expression; Differential expression; SN specific; WGCNA 
module 

rs199347 RAPGEF5 SN expression; Differential expression 

rs9275326 ATP6V1G2 SN expression; Differential expression; WGCNA module 

rs117896735 PRDX3;NANOS1;INPP5F;SFXN4 SN expression; Differential expression; pLI 

rs7077361 FAM171A1 SN expression; Differential expression 

rs115185635 CHMP2B SN expression; Differential expression 

rs76904798 PDZRN4 SN expression; Differential expression; WGCNA module 

rs17649553 CRHR1; NSF; MAPT SN expression; Differential expression; pLI 

rs12637471 DCUN1D1; ABCC5; PARL SN expression; pLI 

rs329648 OPCML SN expression; Differential expression 

rs60298754 MMP16 SN expression 

rs34016896 B3GALNT1 SN expression; Differential expression 

rs823118 LRRN2; KLHDC8A; SRGAP2 SN expression; Differential expression; pLI 

rs12456492 RIT2;SYT4 SN expression; Differential expression; pLI 

rs10797576 TSNAX SN expression 

rs356182 SNCA SN expression; Differential expression; WGCNA module 

rs62120679 UQCR11 SN expression; Differential expression; WGCNA module 

rs11868035 COPS3; NT5M SN expression; Differential expression; pLI 

rs1474055 STK39;B3GALT1 SN expression; Differential expression; pLI 

rs34311866 MAEA; CPLX1; ATP5I; TMEM175 SN expression; Differential expression; WGCNA module; pLI 

rs1555399 VTI1B; ATP6V1D SN expression; Differential expression; pLI 

rs2823357 HSPA13 SN expression 

rs2414739 TLN2; RORA SN expression; pLI 

rs143918452 NISCH; PCBP4; SPCS1; SMIM4 SN expression; Differential expression; pLI 

rs78738012 ANK2; CAMK2D SN expression; Differential expression; pLI 

rs601999 DNAJC7; ATP6V0A1; ACLY; PSME3; 

CNP; RPL27; VAT1; COA3; HAP1 

SN expression; Differential expression; pLI 
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rs11343 SYT17 SN expression; Differential expression; WGCNA module 

rs2740594 FAM167A SN expression; Differential expression; SN specific; WGCNA 
module 

rs2694528 NDUFAF2 SN expression 

rs10906923 FAM171A1 SN expression; Differential expression 

rs8005172 ZC3H14 SN expression 

rs34043159 RPL31; CREG2 SN expression; Differential expression; pLI 

rs4653767 SRP9; PSEN2; PARP1 SN expression; pLI 

rs12497850 SMARCC1; PRKAR2A; RHOA; NICN1; 
UQCRC1; APEH; TCTA; TMA7; GPX1; 

IMPDH2; QARS; SHISA5; WDR6 

SN expression; Differential expression; pLI 

rs4073221 SATB1 SN expression 

rs353116 SCN3A; CSRNP3 SN expression; Differential expression; pLI 

rs13294100 BNC2 SN expression; Differential expression; SN specific; WGCNA 
module 

rs2280104 CHMP7; DMTN SN expression; Differential expression; pLI 

rs4784227 TOX3; AKTIP SN expression; Differential expression; WGCNA module; pLI 

rs9468199 ZSCAN26 SN expression 

 

Scoring was carried out at described in the Results and Methods. Candidate genes are presented for each 

of 49 PD GWAS loci analyzed. Information for each PD GWAS locus is presented including the lead 

SNP for each locus, the prioritized genes in each locus, and which data prioritized the top genes. Detailed 

scoring for each gene can be found in Table S9. 
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