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ABSTRACT 

Objetive: Systemic vasculitides represent a heterogeneous group of rare complex 

diseases of the blood vessels with a poorly understood aetiology. To investigate the 

shared genetic component underlying their predisposition, we performed the first cross-

phenotype meta-analysis of genetic data from different clinically distinct patterns of 

vasculitis.  

Methods: Immunochip genotyping data from 2,465 patients diagnosed with giant cell 

arteritis (GCA), Takayasu’s arteritis (TAK), ANCA-associated vasculitis (AAV), or IgA 

vasculitis (IgAV), as well as 4,632 unaffected controls were analysed to identify 

common susceptibility loci for vasculitis development. The possible functional 

consequences of the associated variants were interrogated using publicly available 

annotation data. 

Results: The strongest association signal corresponded with an intergenic 

polymorphism located between HLA-DQB1 and HLA-DQA2 (rs6932517, P=4.16E-14, 

OR=0.74). This SNP is in moderate linkage disequilibrium with the disease-specific 

HLA class II associations of each type of vasculitis and could mark them. Outside the 

HLA region, we identified the KDM4C gene as a common risk locus for vasculitides 

(highest peak rs16925200, P=6.23E-07, OR=1.75). This gene encodes a histone 

demethylase involved in the epigenetic control of gene expression. 

Conclusions: Through a combined analysis of Immunochip data, we have identified 

KDM4C as a new risk gene shared between systemic vasculitides, consistent with the 

increasing evidences of the crucial role that the epigenetic mechanisms have in the 

development of complex immune-mediated conditions. 
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INTRODUCTION 

The vasculitides constitute a heterogeneous group of diseases of complex aetiology 

characterised by a chronic inflammation of the blood vessels. They show a wide 

spectrum of clinical manifestations that depend on the affected vessels in the arterial or 

venous system. As a consequence, overlapping of pathophysiological mechanisms is 

frequent amongst them [1]. To better define the different clinical forms of vasculitis, the 

Chapel Hill Consensus Conference proposed a nomenclature system in which the most 

common vasculitides were subdivided into three main categories, i.e. large vessel 

vasculitis (LVV), medium vessel vasculitis, and small vessel vasculitis (SVV), based on 

the distribution of vessel involvement [2]. In this regard, two diseases account for most 

cases of LVV, i.e. giant cell arteritis (GCA) and Takayasu’s arteritis (TAK), which 

mainly involve arteries of large calibre such as the aorta and its major branches. On the 

other hand, IgA vasculitis (IgAV) and antineutrophil cytoplasmic antibody (ANCA)-

associated vasculitis (AAV) are classified as SVV, as inflammation predominantly 

affects arterioles, small arteries, capillaries, and venules [2, 3].  

Although the aetiology of vasculitides remains unclear, cumulating data suggest that 

they are triggered in genetically predisposed individuals by the concurrence of certain 

environmental factors [4]. The importance of the genetic component has been 

consistently supported by evidence of familial aggregation, differential prevalence 

depending on the ethnicity, and multiple genetic associations with disease susceptibility 

and progression reported during the last years [5]. In this regard, the strongest 

association signals in most vasculitides correspond with genetic variants within the 

human leukocyte antigen (HLA) region, which suggests an important role of the 

immune system in their pathophysiology. However, each form of vasculitis has distinct 

HLA association markers that define them, most likely due to disease-specific 

differences in antigenic drivers [5]. 



Despite the considerable increase in our understanding of the genetic basis of 

systemic vasculitis during the last decade, the number of identified risk loci for most 

types of vasculitis remains significantly lower than other immune-mediated diseases [5, 

6]. Taking into account the low prevalence of these pathologies in the general 

population [1], one of the main limitations is the lack of statistical power to identify 

susceptibility signals with modest effects, given the large sample size required for that. 

Therefore, additional strategies are necessary to unravel the genetic background 

underlying these disorders. In this sense, the combination of the genetic data from 

different clinical syndromes with vasculitis as a single underpinning phenotype has 

been successfully applied for identifying shared genetic components [7-10]. One of the 

most successful genetic platforms to study immune-mediated diseases is the 

Immunochip, which is a custom high-density array that allows the analysis of genetic 

variants across multiple known susceptibility loci for autoimmune and autoinflammatory 

disorders [11]. This platform has been successful in identifying specific and common 

risk variants for many autoimmune and autoinflammatory diseases [12], including GCA 

and TAK [9, 13, 14]. 

Considering the above, and with the aim to improve the knowledge of the genetic 

component of vasculitides, we performed a cross-phenotype meta-analysis by 

combining Immunochip data of individuals diagnosed with four different forms of 

vasculitis. 

  



MATERIAL AND METHODS 

Study population 

The study population comprised 2,465 cases from four vasculitides (GCA, TAK, 

AAV, and IgAV) and 4,632 unaffected controls. A detailed description of the study 

population can be found in the supplementary material.  

Genotyping and quality controls 

The GCA and TAK raw datasets were obtained from previously published 

Immunochip studies [13, 14]. For AAV and IgAV, new genotyping data were generated. 

In this case, genomic DNA was extracted from peripheral blood samples with standard 

methods. Genotyping was performed using the Illumina Immunochip custom 

genotyping array (Infinium® ImmunoArray-24 v1.0 and v2.0 BeadChip, respectively) 

according to the manufacturer’s instructions. To ensure consistency amongst datasets, 

we obtained the raw data of each of them and applied the same quality control 

procedures in parallel (including both the previously published studies and the newly 

genotyped data) using PLINK v1.07 [15]. In this regard, low quality SNPs were filtered 

out if they had call rates <98%, minor allele frequencies (MAF) <0.01, and deviated 

from Hardy- Weinberg equilibrium (HWE; P < 0.001). Samples were also removed if 

they showed a genotyping calling < 95%, had a pair of first-degree relatives (identity by 

descent > 0.4), or were considered outliers by plotting at > 4 standard deviations from 

the cluster centroids of each population using the first ten principal components (PC; 

estimated using the ancestry markers included in the Immunochip). Sex chromosomes 

were not analysed.  

Imputation 

SNP genotype imputation of whole-genome data after QC was performed separately 

for each dataset as implemented in IMPUTE v.2 [16]. The 1000 Genome Project Phase 



3 data were used as reference panel [17]. Briefly, we updated the SNP IDs and 

positions to rs# and build 37 (HG19), respectively, with PLINK. Chunks of 50,000 Mbp 

were then generated and imputed considering the most likely call for merging 

genotypes (> 0.9 probability threshold). Imputed data were also subjected to stringent 

quality filters as follows: call rate < 0.98, MAF < 0.01, HWE P < 0.001. 

Imputation of the HLA region 

We performed a more comprehensive imputation of this genomic region to generate 

imputed data of classical HLA alleles (with two and four digits), polymorphic amino acid 

positions, and additional SNPs. In this case, we extracted the non-imputed genotyping 

data from 20,000,000 to 40,000,000 base-pairs at chromosome six (which comprises 

the extended HLA region) and used the SNP2HLA v1.0.3 package [18] with a 

reference panel of 5,225 individuals of European ancestry with available genotyping 

data for 8,961 genetic variants (common SNPs and INDEL polymorphisms) as well as 

types for HLA class I and II molecules at four-digit resolution, as described [13, 19]. 

Data analysis 

PLINK and the R-base software under GNU Public license v2 were used to analyse 

the imputed data. First, we used logistic regression on the best-guess genotypes (> 0.9 

probability), assuming an additive model and using the ten first PCs and gender as 

covariates, to analyse each dataset separately. The results were then meta-analysed 

by means of the inverse variance method under a fixed effects model, except for the 

HLA region in which a random effects model was considered. Heterogeneity of the 

odds ratios (OR) across the different datasets was estimated using both Cochran's Q 

test and I2. The study-wide threshold for both statistical significance and trends of 

association were set at 1.28E-06 and 2.55E-05, respectively, according to the 

estimation by the Genetic Type I Error Calculator (CEG) software [20], which 

implements a Bonferroni-based validated method to control the genome-wide type I 



error rate at 0.05. R was used to generate the overall Manhattan plots, and the 

LocusZoom V.1.1 tool (http://csg.sph.umich.edu/locuszoom/) [21] was used to obtain 

the regional association plots. Finally, the possible functional implication of the 

association signals was estimated using the publicly available browser resources 

RegulomeDB [22], HaploReg v4.1 [23], and Blood NESDA NTR Conditional eQTL 

Catalog [24]. 

  



RESULTS 

A total of 2,425 vasculitis cases (1,008 GCA cases, 437 TAK cases, 303 IgAV 

cases, and 677 AAV cases) and 4,526 controls, as well as 191,948 genetic markers 

remained after QC filtering and were included in the analyses.  

Cross-phenotype meta-analysis 

The combined analysis of the Immunochip data from all four pathologies showed 

evidence for common genetic associations in two loci, i.e. HLA and lysine demethylase 

4C (KDM4C), both surpassing the study-wide level of significance (Figure 1). 

As the strongest association signals were located within the HLA region, we decided 

to carry out a more robust analysis of this genomic region in order to fine-map and 

localise the putative causal variants. Therefore, we conducted another meta-analysis of 

imputed data of SNPs, classical alleles, and polymorphic amino acid positions. Due to 

the complex linkage disequilibrium (LD) structure and disease-specific associations of 

this region, we used a random effect model. As shown in Figure S1 and Table S1, 

several variants in high LD were significantly associated to vasculitis predisposition, 

with an intergenic polymorphism located between HLA-DQB1 and HLA-DQA2 

representing the peak signal (rs6932517, P=4.16E-14, OR=0.74). This marker showed 

both evidence of nominal association with each disease separately and consistent ORs 

across studies (GCASpain, P=1,26E-04, OR=0,73; GCAUK, P=1,52E-03, OR=0,78; 

TAKTurkey, P=3,91E-02, OR=0,78; TAKUSA=4,03E-03, OR=0,60; IgAV, P=1,51E-04, 

OR=0,67; AAV, P=3,80E-04, OR=0,77). The remaining association peaks of the HLA 

lost their statistical significance after conditioning on rs6932517, thus suggesting that 

this SNP was sufficient to explain most of the observed HLA signals. 

In order to evaluate whether rs6932517 represented a true novel susceptibility 

marker for the analysed vasculitides or just a marker of the established risk variants for 



each type of vasculitis, we decided to calculate the LD between them [13, 14, 25, 26]. 

As shown in Table S2, evidence of moderate LD was observed in all cases (D’ > 0.8). 

Outside the HLA region, the most strongly associated polymorphism corresponded 

with the KDM4C SNP rs16925200 (P=6.23E-07, OR=1.75; Table 1). No heterogeneity 

amongst the ORs and consistent OR directions were observed across studies (Table 

S3). This genomic region also harboured additional polymorphisms with significant P-

values, all of them in high LD with rs16925200, which suggests that they represent 

genetic markers of the same signal (Figure S2). In addition, the association of this 

locus remained significant when the association test was performed under a random 

effects model (Table S3). Interestingly, one of these polymorphisms (rs12003023) 

showed a nominal association with Behçet’s disease (BD), a variable vessel vasculitis, 

in a previously published Immunochip study of this form of vasculitis (P=1.11E-02, 

OR=1.78, 95% CI=1.14-2.79) [27]. Consistent with this, the statistical significance of 

the overall meta-analysis for the KDM4C rs12003023 variant increased after including 

the BD data (rs10203023, P=4.08E-08, OR=1.69, P(Q)=7.70E-01, I2=0). 

Trend of associations (P < 2.55E-5) were also observed for additional SNPs located 

in different genomic regions (Table 1), including RGS21/RGS1 (rs6704162, P=4.48E-

06, OR=1.25), protein kinase C theta (PRKCQ; rs7895774, P=1.40E-05, OR=0.83), 

LOC10012963/TNFSF15 (rs4574921; P=1.47E-05; OR=0.83), Nedd4 family interacting 

protein 1 (NDFIP1; rs116760964, P=1.72E-05, OR=1.71), TMEM174/FOXD1 region 

(rs12517414, P=2.96E-05, OR=1.27), KIAA1841 (rs74995325, P=3.29E-05, OR=1.64), 

AC008703.1 (rs6869688, P=3.54E-05, OR=0.85), zinc finger, MIZ-type containing 1 

(ZMIZ1; rs1250544, P=3.90E-05, OR=0.85), and SERPINE1 mRNA binding protein 1 

(SERBP1, rs1890928, P=4.91E-05, OR=0.80). 

Variants from known susceptibility loci for each individual form of vasculitis were 

checked in our cross-phenotype meta-analysis. Although no associations at the 



genome-wide level of significance were observed within those genes, three out of the 

five genes examined harboured at least one SNP with suggestive P-values (P<0.05; 

Table S4) 

Functional annotation of KDM4C associated polymorphisms 

Given that the associated KDM4C polymorphisms were located in non-coding 

regions, we decided to further evaluate their possible functional implications using 

bioinformatics approaches. First, we identified all the SNP taggers (r2 > 0.8) of the lead 

variant (rs16925200) in the European populations of the 1000 genomes project. 

Fourteen SNPs met this criterion, with eight of them not being included in our merged 

dataset. Some of these KDM4C variants showed functional annotations of interest, 

such as overlapping with histone marks and DNAse hypersensitivity peaks enriched at 

enhancers as well as possible influence to protein binding and regulatory motifs (Table 

2). In addition, seven variants have been described as cis-eQTLs regulating KDM4C 

expression in whole blood. Specifically, rs10975993 had a score 2b in RegulomeDB 

indicating that this SNP likely affects transcription factor binding, in particular that of 

small MAF proteins like MAF bZIP transcription factor K (MAFK). These proteins are 

induced by the TGF-β pathway and seem to influence the metabolism of antioxidant 

and xenobiotic metabolism, being implicated in the susceptibility to various type of 

cancer [28]. However, none of these marks were reported in cell types or tissues 

related to vasculitis pathology. 

  



DISCUSSION 

The results of this study suggest the existence of a common genetic component that 

may influence the susceptibility to develop different forms of vasculitis. Particularly, 

besides the widely known association with the HLA region, we have identified KDM4C, 

also known as JHDM3C or JMJD2C, as a new shared locus between GCA, TAK, AAV, 

and IgAV, which could be also shared with BD. To our knowledge, this is the first time 

that this gene has been implicated in the genetic predisposition to any immune-

mediated disease. 

 KDM4C is a member of the Jumonji domain 2 (JMJD2) family. It is located on 

chromosome 9p24.1 and encodes a trimethylation-specific demethylase that controls 

the methylation state of histone residues, affecting gene expression and chromatin 

structure [29]. The main function of KDM4C is the activation of genes by removing 

methyl groups from the repressive histone mark trimethylated lysine 9 of the N-terminal 

tail of H3 (H3K9me3). Consistent with this, KDM4C has been related to cell growth in 

different types of cancer, and it has been reported to influence concentrations of both 

circulating growth factors, such as stem cell growth factor beta (SCGF-β), and 

cytokines like cutaneous T-cell attracting chemokine (CCL27) [30, 31]. Moreover, a 

recent GWAS performed in an Ameridian ancestry population evidenced a suggestive 

association of a KDM4C variant with systemic lupus erythematosus [32]. 

Interestingly, it has been described that the H3K9me3 mark was significantly 

enriched in the promoters of both systemic lupus erythematosus (SLE)- and 

rheumatoid arthritis (RA)-associated genes from GWAS in the Gm12878 EBV-

transformed B lymphoblastoid cell line, suggesting that epigenetics may have a 

relevant role in autoimmunity [33]. Indeed, H3K9me3 and other histone marks 

(including H3K4Me3, H3K4Me2, and H3R17Me2) seem to be introduced in a 

transcription-coupled manner during the IFN-γ-induced activation of HLA class II 



genes, and it has been proposed that they may be implicated in the transcription 

elongation and the establishment of transcriptional memory of the HLA-DRA gene [34]. 

On the other hand, it has been described that intronic polymorphisms located near 

the 3’ end of KDM4C affect the expression of this gene and, consequently, the 

expression levels of its target genes. Hence, genetic variation within KDM4C may have 

an impact on the epigenetic regulation of other genes, which evidences the close link 

that exists between genetic and epigenetic mechanisms [30]. 

Genetic-epigenetic relationships like the one described above could explain many 

genetic associations of non-coding variants with complex diseases for which no 

functional implication has been established yet. In this sense, the role of epigenetics in 

the pathogenesis of immune-mediated diseases seems now undeniable [35]. 

Regarding vasculitides, insights into the high relevance of the epigenetic mechanisms 

for disease susceptibility have been published during the last years [36]. A recent 

study, in which chromatin signature patterns within genetic susceptibility regions in four 

types of systemic vasculitis (including TAK, AAV, Behçet's disease, and Kawasaki 

disease) were analysed, identified potential specific immune cells involved in vasculitis 

pathogenesis through epigenetic alterations caused by genetic risk variants. 

Interestingly, the epigenetic changes mediating disease risk included different 

methylation states in different immune cells of the histone H3 such as H3K27me3 and 

H3K4me1 (associated with AAV and TAK, respectively) [37]. Additionally, it has been 

described that AAV patients show an increased expression of the JMJD3 protein (a 

histone demethylase similar to KDM4C), which lead to a decreased histone methylation 

within the AAV-associated genes myeloperoxidase (MPO) and proteinase 3 (PR3), 

thus resulting in a transcriptionally permissive chromatin structure at these loci [38]. 

Furthermore, a decreased expression of histone demethylases in peripheral blood 

mononuclear cells, including KDM3A, was observed in IgAV patients [39]. However, 

depletion of this gene in heterozygous mouse models does not seem to cause 



phenotypes that may resemble the clinical features of the vasculitides included in our 

study (MGI:1924054). Further studies aimed at improving the understanding of the 

association of KDM4C with the predisposition to vasculitis development may definitively 

shed light into our understanding of the molecular basis underlying these complex 

pathologies. 

On the other hand, our analyses confirm the pivotal role of the HLA region in the 

genetic susceptibility to systemic vasculitis [5]. However, the fact that an HLA 

polymorphism represented the strongest association signal in our meta-analysis is 

intriguing, as specific HLA associations use to define each disease entity [5]. Our 

results suggest the existence of a shared genetic marker for vasculitides within the 

HLA in an intergenic region between HLA-DQB1 and HLA-DQA2. The most significant 

SNP within this region, rs6932517, is in moderate LD (D’ > 0.8) with the different peak 

variants of the individual archetypal HLA class II vasculitides analysed here (GCA, 

AAV, and IgAV; Table S2) [13, 25, 26]. Although TAK is mainly linked to HLA class I 

genes, previous studies suggest that some less relevant class II SNPs between HLA-

DQB1 and HLA-DRB1, like rs113452171, may be also involved in its predisposition [9, 

14]. This SNP has also a considerable LD relationship with rs6932517 (D’=1). 

Therefore, it is likely that the apparently shared association signal that we observed 

within the HLA region corresponded to a tag SNP that marks the different disease-

specific associations. Despite this, rs6932517 could have a potential value as a 

possible diagnostic marker of vasculitides. In any case, due to the broad LD structure 

throughout the HLA region, more comprehensive studies interrogating this question will 

be necessary to establish the attribution of common susceptibility locus for vasculitides 

to a specific causal variant within the HLA system. 

Finally, other interesting genes that have been previously related with immune-

mediated diseases were suggested as shared risk factors for vasculitides in our study 

(Table 1). Amongst them, it is worth mentioning the genes zinc finger, MIZ-type 



containing 1 (ZIMZ1), which has been described as a shared risk gene for Crohn’ 

disease and psoriasis [40], and protein kinase C theta (PRKCQ), a relevant locus for 

RA susceptibility [41]. The latter, which encodes a calcium-independent and 

phospholipid-dependent protein kinase important for T-cell activation, has been 

described as a suggestive genetic marker for GCA development in a previous study 

[13, 42]. Future replication studies will be necessary to validate these suggested 

associations with vasculitides. 

In summary, we have identified KDM4C as a common risk locus for vasculitides, 

highlighting the relevance of the epigenetic mechanisms in the development of these 

complex diseases. In addition, our data suggest that genetic variation between HLA-

DQB1 and HLA-DQA2 could have a high value in the understanding of the aetiological 

mechanisms underlying systemic vasculitides, and support the notion that the HLA 

class II region is also relevant in TAK.   
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TABLE LEGENDS 

Table 1. List of association and suggestive non-HLA shared signals (P<2.55E-5) 

between GCA, TAK, IgAV, and AAV. 

Table 2. Functional annotations of the KDM4C polymorphism rs16925200 and its 

proxies in the European populations of the 1000 genomes project using ENCODE data.  

 

FIGURE LEGENDS 

Figure 1. Manhattan plot representation of the results of the cross-disease meta-

analysis of four types of vasculitis. The -log10 of the inverse variance-weighted meta-

analysis p-values are plotted against their physical chromosomal position. The red line 

represents the study-wide level of significance (P < 1.28E-05). 

 

SUPPLEMENTARY MATERIAL 

Table S1. List of shared association signals within the HLA region between GCA, TAK, 

IgAV, and AAV. 

Table S2. Linkage disequilibrium (LD) in the CEU population of the 1000 genomes 

project between rs6932517 and the previously reported lead SNPs of the HLA 

associations with  GCA, TAK, IgAV, and AAV. 

Table S3. List of non HLA suggestive common signals (P<2.55E-5) between GCA, 

TAK, IgAV, and AAV. Results of the individual analyses are also shown. 

Table S4. Cross-phenotype association analysis results showing genetic variants 

outside of the HLA region that have been significantly associated (P< 5E-08) with each 

vasculitis inpendently. 

Figure S1. Manhattan plot representation of the overall cross-disease meta-analysis of 

the imputed HLA region. The -log10 of the inverse variance-weighted meta-analysis p-



values are plotted against their physical chromosomal position. The diamond size 

depends on the linkage disequilibrium (r2) with the lead signal (rs6457617). 

 

Figure S2. Regional association plot of the KDM4C region. The lead variant 

(rs16925200) is highlighted in violet.  



Table 1. List of association and suggestive non-HLA shared signals (P<2.55E-5) between GCA, TAK, IgAV and AAV. 

 

rs ID 
Position 
(GRCh37) 

  

Change 

Combined analysis 
  Cases=2425 Controls=4526 
Location Locus P-value OR  CI 95% Q I2 

rs16925200 9:7045058 intronic KDM4C C<T 6,23E-07 1,75 1.41-2.18 1,88E-01 33,06 
rs35821841 9:7050249 intronic KDM4C G<T 7,01E-07 1,74 1.39-2.15 2,06E-01 30,59 
rs12003023 9:7058714 intronic KDM4C     G<A 1,10E-06 1,67 1.35-2.04 6,64E-01 0,00 
rs10975993 9:7028287 intronic KDM4C G<C 2,43E-06 1,68 1.35-2.07 1,89E-01 32,89 
rs12343988 9:7026828 intronic KDM4C C<T 2,44E-06 1,65 1.37-2.07 1,89E-01 32,88 
rs77198751 9:7057185 intronic KDM4C G<C 3,23E-06 1,68 1.35-2.08 9,31E-02 46,98 
rs74449007 9:7031859 intronic KDM4C G<A 3,85E-06 1,66 1.37-2.10 2,41E-01 25,72 
rs6704162 1:192414422 intergenic RGS21 | RGS1 G<A 4,48E-06 1,25 1.14-1.37 9,26E-01 0,00 
rs12336927 9:7025932 intronic KDM4C T<C 6,34E-06 1,66 1.35-2.10 2,63E-01 22,74 
rs12725829 1:192414282 intergenic RGS21 | RGS1 C<T 8,34E-06 1,24 1.13-1.36 9,32E-01 0,00 
rs7895774 10:6510534 intronic PRKCQ A<G 1,40E-05 0,83 0.77-0.91 8,52E-01 0,00 
rs4574921 9:117538334 intergenic TNFSF15 C<T 1,47E-05 0,83 0.76-0.90 9,21E-01 0,00 
rs116760964 5:141510106 intronic NDFIP1 C<A 1,72E-05 1,71 1.33-2.17 8,71E-01 0,00 
rs12342947 9:7026860 intronic KDM4C G<A 2,07E-05 1,54 1.31-1.95 1,50E-01 38,32 
rs12517414 5:72558077 intergenic TMEM174 | FOXD1 A<C 2,96E-05 1,27 1.10-1.37 2,16E-01 29,26 
rs74995325 2:61351878 intronic KIAA1841 A<G 3,29E-05 1,64 1.32-2.10 1,81E-01 33,98 
rs6869688 5:158883027 intronic AC008703.1 A<G 3,54E-05 0,85 0.79-0.92 6,72E-01 0,00 
rs1250544 10:81032885 intronic ZMIZ1 A<G 3,90E-05 0,85 0.79-0.92 2,70E-01 21,72 
rs115069423 2:61349451 3'UTR KIAA1841 C<G 4,09E-05 1,63 1.31-2.10 1,51E-01 38,26 
rs79030953 2:61349916 3'UTR KIAA1841 C<T 4,54E-05 1,61 1.30-2.06 1,92E-01 32,45 
rs2802365 10:81038883 intronic ZMIZ1 A<G 4,90E-05 0,85 0.79-0.93 2,02E-01 31,10 
rs1890928 1:67929719 5’UTR SERBP1 G<A 4,91E-05 0,80 2.28-2.82 5,35E-01 0,00 
rs9665287 10:81039124 intronic ZMIZ1 C<G 4,97E-05 0,85 0.79-0.93 1,93E-01 32,44 
 
 
GRCh37, Genome Reference Consortium Human genome build 37;OR; odds ratio for the minor allele,SNP, single-nucleotide polymorphis



Table 2. Functional annotations of the KDM4C polymorphism rs16925200 and its proxies in the European populations of the 1000 genomes 

project using ENCODE data and Blood NESDA NTR Conditional eQTL Catalog.  

SNP 
Location 

(GRCh37) Change 
LD 
(r2) 

RDM 
score

Regulatory chromatin marks Protein binding and regulatory motifs 

Cis eQTL 

Promoter 
histone 
marks 

Enhancers 
histone 
marks 

DNAse 
hypersensitivity 

Proteins 
bound 
(ChiP-seq) Regulatory motifs altered (PWM) 

rs12343988 9:7026828 T<C 0,80 5 NO NO YES PPAR NO 

rs12342947 9:7026860 A<G 0,80 5 NO NO YES NRSF NO 

rs10975993 9:7028287 C<G 0,90 2b NO NO YES MAFK Foxo,Nr2f2,Nrf-2 NO 

rs77383525* 9:7034271 C<T 0,89 ND NO YES YES YES 

rs1575452* 9:7035554 A<G 0,95 6 NO NO NO 
Homez, Nanog_known1, Pouf3f2, 
STAT_known8, STAT_known9 NO 

rs74827126* 9:7037180 G<A 0,94 ND NO YES NO Nanog NO 

rs78113013* 9:7037222 G<A 0,94 6 NO YES NO RREB-1 NO 

rs12686038* 9:7037739 A<G 0,94 6 NO YES NO 
Foxc1_1, foxd3, HDAC2_disc6, NF-
AT, PU.1_known2 NO 

rs35124449* 9:7044009 GT<G 1,00 6 NO NO YES 
Barhl1, Hmx_2, Msx2, Nkx2_10, 
Prrx2_1, Spz1_2 NO 

rs16925200 9:7045058 T<C - ND NO YES NO Pax-4 YES 

rs16925215* 9:7047439 T<A 1,00 ND NO NO NO YES 

rs16925222* 9:7048332 G<C 0,90 ND NO NO NO DMRT5 YES 

rs35821841 9:7050249 G<T 0,84 5 NO YES YES AP-1,ATF3 YES 

rs77198751 9:7057185 C<G 0,84 ND NO YES NO NO 

rs12003023 9:7058714 A<G 0,84 5 NO YES YES Myf,RP58 NO 

The most strongly associated SNP in the meta-analysis is marked in bold. eQTL, expression quantitative trait locus; GRCh37, Genome Reference Consortium Human genome 
build 37; LD, linkage disequilibrium; RDM score, Regulome Data Base Score; SNP, single-nucleotide polymorphism. *Asterisks indicate polymorphisms not included in the 
combined datase 


