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Abstract

We generalize several results on Chern-Simons models on Σ × S
1 in the so-called “torus gauge”

which were obtained in [33] (= arXiv:math-ph/0507040) to the case of general (simply-connected
simple compact) structure groups and general link colorings. In particular, we give a non-perturbative
evaluation of the Wilson loop observables corresponding to a special class of simple but non-trivial
links and show that their values are given by Turaev’s shadow invariant. As a byproduct we obtain
a heuristic path integral derivation of the quantum Racah formula.

1 Introduction

In 1988 E. Witten succeeded in defining, on a physical level of rigor, a large class of new 3-manifold
and link invariants with the help of the heuristic Chern-Simons path integral, cf. [58]. Later a rigorous
definition of these invariants was given, cf. [45, 44] and part I of [52]. The approach in [45, 44] is based
on the representation theory of quantum groups1 and uses surgery techniques on the base manifold. A
related approach is the so-called “shadow world” approach (cf. [41, 54, 53] and part II of [52]), which
also works with quantum groups but replaces the use of surgery operations by certain combinatorial
arguments leading to finite “state sums”.

It is an open problem (cf., e.g., p. 2 in [25] and Problem (P1) in [33]) how the rigorous approaches
using quantum groups are related to Witten’s path integral approach. This problem is interesting by
itself. Moreover, one can expect that the solution of this problem will lead to some progress towards
the solution of one of the central open problems in the field, namely the question if/how one can make
rigorous sense of the path integral expressions used in the heuristic treatment in [58] (cf. Sec. 7 below
for additional comments).

The results in [33], which were obtained by extending the work in [12, 13, 14, 31] in a suitable way,
suggest that the key for establishing a direct relationship between the CS path integral and the two
quantum group approaches mentioned above is the so-called “torus gauge fixing” procedure, introduced
in [12] for the study of CS models on base manifolds M of the form M = Σ×S1. Indeed, already in [12] it
was demonstrated that in the torus gauge setting the evaluation of the Wilson loop observables (WLOs)
of special links consisting exclusively of “vertical loops” naturally leads to the S-matrix expressions on
the right-hand side of the so-called Verlinde formula, cf. expression (11) below and Remark 4 in Sec.
6. In [33] it was then shown how to treat the case of general links within (a suitably modified version
of) the torus gauge setting. Moreover, it was shown that in the special case G = SU(2) the evaluation
of the Wilson loop observables of loops without double points naturally leads to the gleam factors and
the summation over (admissible) “area colorings” present in Turaev’s formula for the shadow invariant
(cf. Eq. (23) below). In the present paper we will generalize the results in [33] to general (simply-
connected simple compact) groups G and to links with arbitrary “colors”, i.e. equipped with arbitrary
representations (and not only the fundamental representation as in [33]). As a result we will be able to
demonstrate that within the torus gauge setting also the fusion coefficients (i.e. the numbers N i

jl in Eq.
(19)) in Turaev’s formula for the shadow invariant appear naturally when links without double points
are studied.

We mention here that Turaev’s shadow invariant also appears in the evaluation of a purely two-
dimensional quantum field theory, namely q-deformed Yang-Mills theory on a Riemannian surface Σ [20].
The connection of the latter with Chern-Simons on S1-bundles over Σ, of which S1 ×Σ is a special case,
was developed in [19, 20, 1, 21, 22, 15]. The algebraic lattice formulation of q-deformed two-dimensional

1in fact, the approach in [45, 44, 52] is more general, cf. Remark 2 below
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Yang-Mills has been worked out for real q and not for q being a root of unity [18]. Although we will not
further develop the connection to this two-dimensional theory in this paper, we note that the intermediate
expressions we obtain in our evaluation of the Chern-Simons path integral are those of q-deformed two-
dimensional Yang-Mills. In turn, the path integral formulation of the simpler two-dimensional quantum
field theory may be helpful in defining the Chern-Simons path integral on non-trivial bundles over Σ
[15, 11].

The paper is organized as follows. In Subsec. 2.1 we first recall some important concepts and
construction from Lie theory. In Subsec. 2.2 we then introduce some concepts from Conformal Field
Theory and the theory of affine Lie algebras which played a role in [58]. In Sec. 3 we reformulate
Turaev’s shadow invariant for manifolds of the form Σ × S1 using the notation from Sec. 2. In Secs.
4.1–4.3 we recall some of the results obtained in [12, 13, 14, 31, 32, 33] on Chern-Simons models on Σ×S1

in the “torus gauge” and in Subsec. 4.4 we then generalize the calculations in [33] for the WLOs for links
without double points to the case of general (simple simply-connected compact) groups G and arbitrary
link colorings. In Sec. 5 we show that the finite state sums appearing in Sec. 4 are equivalent to the state
sums in the shadow invariant. In other words, the values of the WLOs obtained in Sec. 4 agree exactly
with the values obtained by applying the shadow invariant to the corresponding links, cf. Eq. (82). In
Sec. 6 we then show that by reversing the order of arguments used in Secs. 4 and 5 one can obtain a
path integral derivation of the so-called quantum Racah formula (cf. Eq. (15) below). We conclude the
paper with a brief outlook in Sec. 7.

2 Algebraic preliminaries

2.1 Concepts from classical Lie theory

Let G be a simply-connected and simple compact Lie group and g its Lie algebra. Moreover, let T be a
maximal torus of G and t the Lie algebra of T . (We will keep G and T fixed for the rest of this paper).

• (·, ·) denotes the Killing metric on g normalized such that – after making the identification t and t∗

with the help of (·, ·) – we have (α, α) = 2 if α is a long real root.

• We set r := dim(t) = rank(g). πt : g → t will denote the (·, ·)-orthogonal projection and t⊥ the
(·, ·)-orthogonal complement of t in g.

• R ⊂ t∗ will denote the set of real roots associated to (g, t) and Ř the set of real coroots, i.e. Ř
is given by Ř := {α̌ | α ∈ R} ⊂ t where α̌ := 2α

(α,α) . Let Λ ⊂ t∗ denote the real weight lattice

associated to (g, t), i.e. Λ is given by

Λ := {λ ∈ t∗ | λ(α̌) ∈ Z for all α ∈ R} (1)

ΛŘ ⊂ t will denote the lattice generated by the real coroots.

• A Weyl chamber is a connected component of t\
⋃

α∈R Hα where Hα := α−1(0). A Weyl alcove
(or “affine Weyl chamber”) is a connected component of the set2 treg := t\

⋃

α∈R,k∈Z
Hα,k where

Hα,k := α−1(k).

• Let W denote the Weyl group (associated to g and t), i.e. the group of isometries of t ∼= t∗ generated
by the orthogonal reflections on the hyperplanes Hα, α ∈ R, defined above. Waff will denote the
affine Weyl group, i.e. the group of isometries of t ∼= t∗ generated by the orthogonal reflections on
the hyperplanes Hα,k, α ∈ R, k ∈ Z, defined above3. For τ ∈ Waff we will denote the sign of τ by
sgn(τ).

In the sequel let us fix a Weyl chamber C. Let P denote the unique Weyl alcove which is contained in C
and has 0 ∈ t on its boundary.

• Let R+ denote the set of positive roots, i.e. R+ := {α ∈ R | (α, x) ≥ 0 for all x ∈ C}, and let Λ+

denote the set of “dominant weights”, i.e. Λ+ := Λ ∩ C.

2note that in [31] we used the notation t′reg instead of treg.
3Equivalently, one can define Waff as the group of isometries of t ∼= t∗ generated by W and the translations associated

to the coroot lattice Λ
Ř
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• For λ ∈ Λ+ let ρλ denote the (up to equivalence) unique irreducible complex representation of G
with highest weight λ and χλ the character corresponding to ρλ. The multiplicity of the global
weight associated to µ in χλ will be denoted by mλ(µ), i.e. we have

χλ(exp(b)) =
∑

µ∈Λ

mλ(µ)e
2πi(µ,b) for all b ∈ t (2)

• ρ will denote the half-sum of the positive roots and θ the unique long root in the Weyl chamber C.
The dual Coxeter number cg of g is given by4

cg = 1 + (θ, ρ) (3)

• For each λ ∈ Λ+ we set
C2(λ) := (λ, λ + 2ρ) (4)

i.e., C2(λ) is the second Casimir element (w.r.t. to the inner product (·, ·)) corresponding to the
irreducible representation of g with highest weight λ.

• For λ ∈ Λ+ let λ ∈ Λ+ denote the weight conjugated to λ and λ∗ ∈ Λ+ the weight conjugated to λ
“after applying a shift by ρ”. More precisely, λ∗ is given by λ∗ + ρ = λ+ ρ.

Remark 1 Let I ⊂ t denote the “integral lattice”, i.e. I := ker(exp|t). From the assumption that G
is simply-connected it follows that I coincides with the lattice ΛŘ generated by the real coroots so the
weight lattice Λ associated to (g, t) coincides with the weight lattice I∗ of (G, T ) given by I∗ := {α ∈ t∗ |
α(x) ∈ Z for all x ∈ I}.

2.2 Some concepts from CFT, the theory of affine Lie algebras, and the

theory of quantum groups

Let us fix k ∈ N (the “level”).

• We set
Λk
+ := {λ ∈ Λ+ | (λ, θ) ≤ k} (5)

• Let Isom(t) denote the group of isometries of the Euclidean vector space (t, (·, ·)) and let i :
Isom(t) → Isom(t) denote the automorphism of Isom(t) given by

i(τ)(b) = (k + cg) · τ((b + ρ)/(k + cg))− ρ (6)

for all b ∈ t and τ ∈ Isom(t). We set5

Wk := i(Waff) ⊂ Isom(t) (7)

(the “(ρ-shifted) quantum Weyl group corresponding to the level k”) and

sgn(τ) := sgn(i−1(τ)) for τ ∈ Wk

• Let C, S, and T be the Λk
+ × Λk

+ matrices with complex entries given by

Cλµ := δλµ∗ , (8a)

Tλµ := δλµ e
πiC2(λ)

k+cg · e−
πic
12 , (8b)

Sλµ :=
i|R+|

(k + cg)r/2
|Λ/ΛŘ|−

1
2

∑

w∈W

sgn(w)e
2πi

k+cg
(λ+ρ,w·(µ+ρ))

(8c)

4 note that cg = 1+ (θ, ρ) = 1
2
(θ, θ+2ρ) = 1

2
C2(θ). If we had normalized the Killing form (·, ·) such that the long roots

have length 1 we would have cg = C2(θ), i.e. cg would then be the Casimir element associated to the adjoint representation.
5Wk coincides with the subgroup of Isom(t) which is generated by the orthogonal reflections on the ρ-shifted hyperplanes

Hα − ρ, α ∈ R+, and the hyperplane {y ∈ t | (y, θ) = k + cg} − ρ = {x ∈ t | (x, θ) = k + 1}, thus Wk is the same as the
group W0 in [47].
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for all λ, µ ∈ Λk
+, cf. Eqs. (14.216), (14.217), and (14.229) in [23] and compare also Sec. II.3.9 in

[52] where a slightly different convention is used6.

We remark that the factor e−
πic
12 with c := dim(g) · k

(k+cg)
appearing in Eq. (8b) is not really

essential for the present paper. In particular, the definition of |XL| in Eq. (16) below and Theorem
5.1 below (and also the computations in Sec. 6 below) are not affected7 if we omit this factor. The

advantage of including the factor e−
πic
12 in Eq. (8b) is that Eq. (9b) below holds in the “strict sense”

and not only in the “projective sense”. This point simplifies the computations in our examples in
Sec. 3.2.

One can prove (cf. Eqs. (10.206), (10.216), (14.228) and Exercise 14.14 in [23] and8 Sec. II.3.9 in
[52]) that

S2 = C, (9a)

(ST )3 = C (9b)

In particular, S is invertible.

• For λ ∈ Λk
+ we set

dimλ :=
Sλ0

S00

(∗)
=

∏

α∈R+

sin π(λ+ρ,α)
k+cg

sin π(ρ,α)
k+cg

(10)

Here (∗) follows from Sλ0

S00
= A(ρ)(λ+ρ)

A(ρ)(ρ) and the relation9 δ(b) = A(ρ)(b) where

A(b′)(b) :=
∑

w∈W

sgn(w)e2πi(b
′,w·b)

δ(b) :=
∏

β∈R+

(eπiβ(b) − e−πiβ(b)) =
∏

β∈R+

2i sin(π(β, b)).

for all b, b′ ∈ t.

• For λ, µ, ν ∈ Λk
+ we define the “fusion coefficients” Nλµν and Nλ

µν by

Nλµν :=
∑

σ∈Λk
+

SλσSµσSνσ

S0σ
(11)

and
Nλ

µν := Nλ∗µν (12)

Observe that Eq. (9a) implies Nν
µ0 = δνµ.

Let us motivate the use of the term “fusion coefficients” above. Let ĝ denote the (non-twisted) affine
Lie algebra corresponding to gC := g⊗R C (cf. Eq. (14.13) in [23]) and let N̂ν

λµ be the fusion coefficients

of the modular tensor category based on the integrable representations of ĝ at level k. Similarly, let Ňν
λµ

be the fusion coefficients in the modular tensor category constructed in [5, 6] using the representation
theory of the quantum group Uq(gC) with

10

q := e
2πi

k+cg

6the matrix C is called J in [52]. Moreover, the matrix S in [52] differs from the matrix S in Eq. (8c) by a multiplicative
constant “D”, cf. the “Notes” at the end of Chap. II in [52]

7cf. step (∗∗) in the proof of part iii) of Lemma 1 below
8in Sec. II.3.9 in [52] the expression D−1△ appears. The computations in [52] imply Eq. (9b) provided that D−1△ =

e−
πic
4 = (e−

πic
12 )3. In view of the results in [24] this is exactly what one expects

9cf. part iii) of Theorem 1.7 in Chap. VI of [17]
10cf., e.g., [47, 49]. Sometimes in the literature a different convention is used for the definition of Uq(gC), which leads to

the formula q := e
πi

D(k+cg) where D is the quotient of the square lengths of the long and the short roots of g (cf., e.g., the
second page of the introduction in [48])
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According to the famous “Verlinde(-Moore-Seiberg) formula” we have

N̂λ
µν = Nλ

µν (13a)

cf., e.g., [27]. Similarly, according to the quantum group analogue of the Verlinde formula (cf., e.g.,
Theorem 4.5.2 in Chap. II in [52]) we have11

Ňλ
µν = Nλ

µν (13b)

Moreover, in [6, 48] it was proven that

Ňβ
γα =

∑

τ∈Wk

sgn(τ)mγ(α− τ(β)) (14)

The last formula can be considered to be a “quantum analogue” of the classical Racah formula. Following
[48] we will call this formula the “(abstract) quantum Racah formula” and the formula

Nβ
γα =

∑

τ∈Wk

sgn(τ)mγ(α− τ(β)), (15)

which follows from Eq. (14) and (13b) will be called12 the “elementary quantum Racah formula”.

3 The shadow invariant for links in Σ× S1

3.1 Definition

Let Σ be an oriented surface, let L = (l1, l2, . . . , ln), n ∈ N, be a sufficiently regular link in Σ× S1, and
let ljS1 resp. ljΣ denote the projection of the loop lj onto the S1-component resp. Σ-component of the
product Σ × S1. L can be turned into a framed link by picking for each loop lj the standard framing
described in Sec. 4 c) in [53] (this framing was called “vertical framing” in [33]). We also assume that
each loop lj is colored with an element γj of Λk

+.
We set D(L) := (DP (L), E(L)) where DP (L) denotes the set of double points of L, i.e. the set of

points p ∈ Σ where the loops ljΣ, j ≤ n, cross themselves or each other, and E(L) the set of curves in
Σ into which the loops l1Σ, l

2
Σ, . . . , l

n
Σ are decomposed when being “cut” in the points of DP (L). Clearly,

D(L) can be considered to be a finite (multi-)graph. We set Σ\D(L) := Σ\(
⋃

j arc(l
j
Σ)). We assume that

the set of connected components of Σ\D(L) has only finitely many elements Y0, Y1, Y2, . . . , Yµ, µ ∈ N,
which we will call the “faces” of Σ\D(L).
As explained in [53] one can associate in a natural way a number gl(Yt) ∈ Z, called “gleam” of Yt, to
each face Yt (for an explicit formula for the gleams in the special cases that will be relevant for us later
see Eq. (21) below). We call XL := (D(L), (gl(Yt)t)0≤t≤µ) the “shadow” of L.

Let g ∈ E(L) be a fixed edge of the graph D(L). Note that, as each loop lj is oriented, g is an oriented
curve in Σ. On the other hand, as Σ was assumed to be oriented, each face Y ∈ {Y0, Y1, Y2, . . . , Yµ} is
an oriented surface and therefore also induces an orientation on its boundary ∂Y .

There is a unique face Y , denoted by Y +
g (resp. Y −

g ) in the sequel, such that arc(g) ⊂ ∂Y and,
additionally, the orientation on arc(g) described above coincides with (resp. is opposite to) the orientation
which is obtained by restricting the orientation on ∂Y to g. In other words: Y +

g and Y −
g are the two13

faces that “touch” the edge g, and Y +
g (resp. Y −

g ) is the face lying “to the left” (resp. “to the right”) of
g, cf. Fig. 1.

A mapping ϕ : {Y0, Y1, Y2, . . . , Yµ} → Λk
+ will be called an area coloring of XL (with colors in Λk

+)
and the set of all such area colorings will be denoted by col(XL). We can now define the shadow invariant
| · | by14

|XL| :=
∑

ϕ∈col(XL)

|XL|
ϕ
1 |XL|

ϕ
2 |XL|

ϕ
3 |XL|

ϕ
4 (16)

11of course Eqs. (13a) and (13b) imply N̂λ
µν = Ňλ

µν . This is not surprising since the two modular tensor categories
mentioned above can be shown to be equivalent, cf. [24]

12Since for the derivation of (15) we used both the Verlinde formula (13b) and the (abstract) quantum-Racah formula
this name might be a little bit misleading. We could equally well call (15) the “elementary Verlinde formula”

13 note that if Assumption 2 below is not fulfilled then possibly Y +
g = Y −

g , so in this case there is actually only one such
face

14this coincides with the definition in [52] up to an overall normalization factor which will be irrelevant for our purposes
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Yg
−

Y +
g

g

Figure 1:

where

|XL|
ϕ
1 =

∏

Y

(dim(ϕ(Y )))χ(Y ) (17)

|XL|
ϕ
2 =

∏

Y

(vϕ(Y ))
gl(Y ) (18)

|XL|
ϕ
3 =

∏

g∈E(L)

N
ϕ(Y −

g )

co(g)ϕ(Y +
g )

. (19)

where N i
jl and dim(·) are as in Subsec. 2.2, where co(g) denotes the color associated to the edge g (i.e.

co(g) = γi where i ≤ n is given by arc(liΣ) ⊃ g) and where we have set vλ := Tλλ (here T is, of course,
the T -matrix from Subsec. 2.2).

|XL|
ϕ
4 is defined in terms of quantum 6j-symbols associated to Uq(gC), cf. Chap. X, Sec. 1.2 and

Chap. XI, Sec. 6.3 in [52]. In view of Assumption 1 below and the consequences that this assumption
has, cf. Eq. (22) below, the precise definition of |XL|

ϕ
4 in the general case will not be relevant in the

present paper.

For the rest of this paper, we will restrict ourselves to the special situation where L also fulfills the
following two assumptions.

Assumption 1 The colored link L has no double points, i.e. the projected loops l1Σ, l
2
Σ, . . . , l

n
Σ are non-

intersecting Jordan loops in Σ.

Assumption 2 Each ljΣ is 0-homologous.

Assumptions 1 and 2 have the following consequences:

• For each j ≤ n the set Σ\ arc(ljΣ) has exactly two connected components. In the sequel R+
j (resp.

R−
j ) will denote the connected component “to the left” (resp. “to the right”) of ljΣ, i.e. R+

j (resp.

R−
j ) is the unique connected component containing Y +

j (resp. Y −
j ) where we have set

Y ±
j := Y ±

ljΣ
(20)

(i.e. Y ±
j = Y ±

g where g = ljΣ).

• µ = n, i.e. Σ\(
⋃

j arc(l
j
Σ)) has n+ 1 connected components Y0, Y1, . . . , Yn

• For each Y ∈ {Y0, Y1, Y2, . . . , Yn} we have

gl(Y ) =
∑

j with arc(ljΣ)⊂∂Y

wind(ljS1) · sgn(Y ; ljΣ) (21)

where wind(ljS1) is the winding number of the loop ljS1 and where sgn(Y ; ljΣ) is given by

sgn(Y ; ljΣ) :=

{

1 if Y ⊂ R+
j

−1 if Y ⊂ R−
j

6



• According to the general definition of the shadow invariant in Chap. X, Sec. 1.2 in [52]. Assumption
1 implies |XL|

ϕ
4 = 1 so Eq. (16) reduces to

|XL| =
∑

ϕ∈col(XL)

|XL|
ϕ
1 |XL|

ϕ
2 |XL|

ϕ
3 (22)

• “Vertical” framing for a loop lj in Σ × S1 (cf. the first paragraph of the present subsection) is
equivalent to what was called “horizontal” framing in Subsec. 5.2 in [33]

Remark 2 1. The “shadow invariant” defined in [52] is more general than what we have defined here
above. Our definition is the special case of Turaev’s shadow invariant where the underlying modular
tensor category is the one coming from the representation theory of the quantum groups Uq(gC),
cf. Sec. 2.2 above.

2. In the special case G = SU(2) one has N i
jk ∈ {0, 1} for all i, j, k ∈ Λk

+ so |XL|
ϕ
3 ∈ {0, 1} for each

ϕ ∈ col(XL). Let us call ϕ ∈ col(XL) “admissible” iff |XL|
ϕ
3 = 1 and set coladm(XL) := {ϕ ∈

col(XL) | ϕ admissible }. Then we can rewrite Eq. (16) in the form

|XL| :=
∑

ϕ∈coladm(XL)

|XL|
ϕ
1 |XL|

ϕ
2 |XL|

ϕ
4 (23)

If one compares this formula with Eqs. (5.7) and (5.8) in [53] (and the two equations before
Theorem 6.1 in [53]) it is easy to see that the “shadow invariant” that was defined in [53] (and used
in [33]) is the special case of the shadow invariant in the present paper which one obtains by taking
G = SU(2).

3.2 Some examples

Example 1 Let Σ = S2 and let L = ((l1, l2, l3), (λ, µ, ν)) be a colored link in Σ×S1 such that wind(liS1) =
1 for all i = 1, 2, 3 and such that the projection of L onto the surface Σ looks like in the following figure.
Let, for i ∈ {1, 2, 3}, Yi denote the face “enclosed” by liΣ and let Y0 denote the remaining face. Clearly,
we have χ(Yi) = 1 for i ∈ {1, 2, 3} and χ(Y0) = 2 − 2g − 3 = −1 and gl(Yi) = 1 for i ∈ {1, 2, 3} and
gl(Y0) = −3. So we obtain

λ µ ν

Y Y Y
1 32

Y0

Figure 2:

|XL| =
∑

σ1σ2σ3σ0∈Λk
+

dim(σ1)dim(σ2)dim(σ3)(dim(σ0))
−1 Nσ0

σ1λ
Nσ0

σ2µN
σ0
σ3ν Tσ1σ1Tσ2σ2Tσ3σ3T

−3
σ0σ0

=
TλλTµµTνν

T 3
00S

2
00

Nλµν . (24)

In deriving the last line, we used the following equation three times

∑

λ∈Λk
+

dim(λ)Tλλ N
ν
µλ =

1

T00S00
(TST )µν (25)

(Eq. (25) follows from (9) and (11)).
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λ

µνY

Y

Y

Y

0

1

2

3

Figure 3:

Example 2 Let again Σ = S2 and let L = ((l1, l2, l3), (λ, µ, ν)) be a colored link in Σ × S1 such that
wind(liS1) = 1 for all i = 1, 2, 3 and such that the projection of L onto the surface Σ looks like in Fig. 3.
Then we have χ(Y1) = χ(Y3) = 1, χ(Y0) = χ(Y2) = 0 and gl(Y1) = gl(Y3) = 1, gl(Y0) = −2, gl(Y2) = 0
where the faces Y0, Y1, Y2, Y3 are given as in Fig. 3. One obtains

|XL| =
∑

σ1σ2σ3σ0∈Λk
+

dim(σ1) dim(σ3)N
σ2
νσ1

Nσ0

λσ2
Nσ0

µσ3
Tσ1σ1Tσ3σ3T

−2
σ0σ0

. (26)

The sums over σ1 and σ3 can be performed right away using twice Eq. (25). We get

|XL| =
TµµTνν

T 2
00S

2
00

∑

σ2σ0

Tσ2σ2T
−1
σ0σ0

Sνσ2Sµσ0N
σ0

λσ2
. (27)

Now observe that

∑

σ2σ0

Tσ2σ2T
−1
σ0σ0

Sνσ2Sµσ0N
σ0

λσ2

(∗)
=

1

Tνν

∑

σ0σ

T−1
σ0σ0

T−1
σσ Sµσ0S

−1
σ0σSσλSνσ

1

Sσ0

(∗∗)
=

Tµµ

Tνν
Nλµν (28)

Here step (∗) follows from Eq. (11) and STS = T−1ST−1 (which in turn follows from Eq. (9)) and step
(∗∗) follows from Eq. (11) and ST−1S−1 = TST . From Eqs. (27) and (28) we finally get

|XL| =
T 2
µµ

T 2
00S

2
00

Nλµν . (29)

The next example generalizes the first two examples above.

Example 3 Let Σ = S2 and let L = (l1, l2, . . . , lm+n+1) be a colored link in Σ×S1 consisting of m+n+1
loops with colors ν1, ν2, · · · , νm, λ, and µ1, µ2, · · · , µn such that wind(liS1) = 1 for all i = 1, 2, . . . ,m+n+1
and such that the projection of L onto the surface Σ looks like in the following figure.

Figure 4:

Let X1, X2, · · · , Xm be the faces encircled by the first m loops with colors ν1, ν2, · · · , νm. Loop lm+1

has color λ and encircles the first m loops. The face “inside” this loop (subtracting the (closure of the)
faces of the m loops from it) is X0. “Outside” this group of loops are n more loops with colorings
µ1, µ2, · · · , µn encircling the faces Y1, Y2, · · · , Yn, respectively.
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The Euler characters are as follows:

χ(Y1) = χ(Y2) = · · · = χ(Yn) = χ(X1) = χ(X2) = χ(Xm) = 1 (30a)

χ(Y0) = 1− n (30b)

χ(X0) = 1−m (30c)

and the gleams:

gl(X1) = gl(X2) = · · · = gl(Xm) = gl(Y1) = gl(Y2) = · · · = gl(Yn) = 1, (31a)

gl(Y0) = −n− 1 (31b)

gl(X0) = −m+ 1. (31c)

The value of |XL| is obtained by summing over all possible colorings of the faces. Using the summation
variables σ0, σ1, · · · , σn, τ0, τ1, . . . , τm ∈ Λk

+ we obtain

|XL| =
∑

σ0···σn,τ0···τm

dimσ1dimσ2 · · ·σndimτ1 · · · dimτm(dimσ0)
1−n(dimστ )

1−m×

×Nσ0
σ1µ1

Nσ0
σ2µ2

· · ·Nσ0
σnµn

Nσ0
σ1µ1

N τ0
τ1ν1 · · ·N

τ0
τmνmNσ0

τ0λ

× Tσ1σ1Tσ2σ2 · · ·Tσnσn
T−n−1
σ0σ0

Tτ1τ1Tτ2τ2 · · ·TτmτmT 1−m
τ0τ0 (32)

We use (25) to remove all of the fusion coefficients except one:

∑

λ∈Λk
+

dimλTλλN
ν
µλ =

1

T00S00
(TST )µν (33)

therefore:

|XL| =
∑

σ0τ0

(dimσ0)
1−n(dim)1−mNσ0

τλT
−n−1
σ0σ0

T 1−m
τ0τ0

1

(T00S00)n+m
×

× (TST )µ1σ0(TST )µ2σ0 · · · (TST )µnσ0(TST )ν1τ0(TST )ν2τ0 · · · (TST )νmτ0 (34)

Collecting the common factors of T this equals:

|XL| =
Tµ1µ1 · · ·Tµnµn

Tν1ν1 · · ·Tνmνm

(T00S00)n+m
×

∑

σ0τ0

(dimσ0)
1−n(dimτ0)

1−m×

×Nσ0

τ0λ
T−1
σ0σ0

Tτ0τ0Sµ1σ0 · · ·Sµnσ0Sν1τ0 · · ·Sνmτ0 (35)

By filling in the definition of the fusion coefficients and the “quantum dimensions” dim(λ) we can rewrite
this as

|XL| =
Tµ1µ1 · · ·Tµnµn

Tν1ν1 · · ·Tνmνm

T n+m
00 S2

00

∑

σ0τ0σ

(S0σ0 )
1−n(S0τ0)

1−mS−1
σ0σSτ0σSλσ

Sσ0
×

× T−1
σ0σ0

Tτ0τ0Sµ1σ0 · · ·Sµnσ0Sν1τ0 · · ·Sνmτ0 (36)

For example, in the special case m = 2, n = 1 we have

|XL| =
Tµ1µ1Tν1ν1Tν2ν2

T 3
00S

2
00

∑

σ0τ0σ

S−1
σ0σSτ0σSλσT

−1
σ0σ0

Tτ0τ0Sµ1σ0Sν1τ0Sν2τ0

Sτ00Sσ0
. (37)

which – using ST−1S−1 = TST – can be reduced to:

|XL| =
T 2
µ1µ1

Tν1ν1Tν2ν2

T 3
00S

2
00

∑

τ0σ

1

Sτ00Sσ0
Sτ0σSλσSµ1σSν1τ0Sν2τ0TσσTτ0τ0 . (38)

Example 4 Note that XL is also defined if L is the “empty” link ∅. In this case one has

|X∅| =
∑

λ∈Λk
+

(dimλ)2−2g . (39)

where g is the genus of the surface Σ.
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4 State sums from the Chern-Simons path integral in the torus

gauge

4.1 Chern-Simons models

Let M be an oriented compact 3-manifold and A the space of smooth g-valued 1-forms on M . Without
loss of generality we can assume that the group G fixed in Subsec. 2.1 above is a Lie subgroup of U(N),
N ∈ N. The Lie algebra g of G can then be identified with the obvious Lie subalgebra of the Lie algebra
u(N) of U(N).

The Chern-Simons action function SCS associated to M , G, k (with k as in Subsec. 2.2) is given by

SCS(A) =
k
4π

∫

M

Tr(A ∧ dA+ 2
3A ∧ A ∧ A), A ∈ A

with Tr := c · TrMat(N,C) where the normalization constant c is chosen15 such that16

(A,B) = − 1
4π2Tr(A ·B) ∀A,B ∈ g (40)

holds, cf. e.g. [46, 50] where the same normalization is used.

Example 5 If G = SU(N) then c = 1 so in this case Tr coincides with TrMat(N,C).

From the definition of SCS it is obvious that SCS is invariant under (orientation-preserving) diffeo-
morphisms. Thus, at a heuristic level, we can expect that the heuristic integral (the “partition function”)
Z(M) :=

∫

exp(iSCS(A))DA is a topological invariant of the 3-manifold M . Here DA denotes the
informal “Lebesgue measure” on the space A.

Similarly, we can expect that the mapping which maps every sufficiently “regular” colored link L =
((l1, l2, . . . , ln), (γ1, γ2, . . . , γn)) in M to the heuristic integral (the “Wilson loop observable” associated
to L)

WLO(L) :=
1

Z(M)

∫

∏

i

Trρi

(

P exp
(

∫

li

A
))

exp(iSCS(A))DA (41)

is a link invariant (or, rather, an invariant of colored links). Here we have set ρi := ργi
i ≤ n, (cf. Subsec.

2.1), Trρi
is the trace in the representation ρi, and P exp

(∫

li
A
)

denotes the holonomy of A around the
loop li.

Let us now consider the special case M = Σ × S1 where Σ is a closed oriented surface. Due to the
well-known “equivalence” of Witten’s invariants and the Reshetikhin/Tureav invariants (cf., e.g., [57])
and the equivalence of the Reshetikhin/Tureav invariants with the shadow invariant (cf. Theorem 3.3
in Chap. X in [52]) one can conclude that in this situation WLO(L) should coincide with |XL| up to
a multiplicative constant (independent of the link). The value of this constant can be determined by
looking at the special case L = ∅, i.e. where L is the “empty” link. As WLO(∅) = 1 one can conclude
that WLO(L) = 1

|X∅|
· |XL| should hold. One of the goals of this paper is to show this formula directly

(for the special situation where the link L fulfills Assumptions 1 and 2 above) by applying a suitable
gauge fixing procedure to the Chern-Simons path integral. This generalizes17 the treatment in [33].

4.2 Torus gauge fixing applied to Chern-Simons models

In the present section and in Sec. 4.3 below we will give a short summary of those results from [33] which
will be relevant later. Our presentation will not be totally self-contained, so the reader will probably find
it helpful to have a look at [33] for more details.

During the rest of this paper we will set M := Σ×S1 where Σ is a closed oriented surface. Moreover,
we will fix an arbitrary point σ0 ∈ Σ and an arbitrary18 point t0 ∈ S1.

15such a normalization is always possible because by assumption g is simple so all Ad-invariant scalar products on g are
proportional to the Killing metric

16 Here “·” is, of course, the standard multiplication in Mat(N,C) and the wedge product ∧ appearing in Eq. (40) is the
one for Mat(N,C)-valued forms.

17in [33] only for the case where G = SU(2) and where each γj was the highest weight of the fundamental representation
the full path integral was evaluated explicitly

18in order to simplify the notation somewhat we will later restrict ourselves to the special case where t0 = iS1(0) = 1
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By AΣ (resp. AΣ,t) we will denote the space of smooth g-valued (resp. t-valued) 1-forms on Σ. ∂
∂t

will denote the vector field on S1 which is induced by the curve iS1 : [0, 1] ∋ t 7→ e2πit ∈ S1 ⊂ C and dt
the 1-form on S1 which is dual to ∂

∂t . We can lift ∂
∂t and dt in the obvious way to a vector field resp. a

1-form on M , which will also be denoted by ∂
∂t resp. dt. Every A ∈ A can be written uniquely in the

form A = A⊥ +A0dt with A⊥ ∈ A⊥ and A0 ∈ C∞(M, g) where A⊥ is defined by

A⊥ := {A ∈ A | A( ∂
∂t ) = 0} (42)

We say that A ∈ A is in the “T -torus gauge” if A ∈ A⊥ ⊕ {Bdt | B ∈ C∞(Σ, t)}.
By computing the relevant Faddeev-Popov determinant19 one obtains20 for every gauge-invariant

function χ : A → C

∫

A

χ(A)DA = const.

∫

C∞(Σ,t)

[
∫

A⊥

χ(A⊥ +Bdt)DA⊥

]

det
(

1t⊥ − exp(ad(B))|t⊥
)

DB (43)

where DA⊥ denotes the (informal) “Lebesgue measure” on A⊥ and DB the (informal) “Lebesgue mea-
sure” on C∞(Σ, t).

In the special case where χ(A) =
∏

iTrρi

(

P exp
(∫

li
A
))

exp(iSCS(A)) we then get

WLO(L) ∼

∫

C∞(Σ,t)

[
∫

A⊥

∏

i

Trρi

(

P exp
(

∫

li

A⊥ +Bdt
))

exp(iSCS(A
⊥ +Bdt))DA⊥

]

× det
(

1t⊥ − exp(ad(B))|t⊥
)

DB (44)

Here and in the sequel ∼ denotes equality up to a multiplicative constant independent of L. Now

SCS(A
⊥ +Bdt) = k

4π

∫

M

[

Tr(A⊥ ∧ dA⊥) + 2Tr(A⊥ ∧Bdt ∧ A⊥) + 2Tr(A⊥ ∧ dB ∧ dt)
]

so SCS(A
⊥ +Bdt) is quadratic in A⊥ for fixed B, which means that the informal (complex) measure

exp(iSCS(A
⊥ +Bdt))DA⊥ appearing above is of “Gaussian type”. This increases the chances of making

rigorous sense of the right-hand side of Eq. (44) considerably.

So far we have ignored the following two “subtleties”

1. When one tries to find a rigorous meaning for the informal measure resp. the corresponding integral
functional in Eq. (44) above one encounters certain problems which can be solved by introducing
a suitable decomposition21 A⊥ = Â⊥ ⊕A⊥

c , which we will describe now :

Let us make the identification A⊥ ∼= C∞(S1,AΣ) where C∞(S1,AΣ) denotes the space of all
“smooth” functions α : S1 → AΣ, i.e. all functions α : S1 → AΣ with the property that every
smooth vector field X on Σ the function Σ× S1 ∋ (σ, t) 7→ α(t)(Xσ) is smooth.

The decomposition A⊥ = Â⊥ ⊕A⊥
c is defined by22

Â⊥ := {A⊥ ∈ C∞(S1,AΣ) | πAΣ,t
(A⊥(t0)) = 0}, (45)

A⊥
c := {A⊥ ∈ C∞(S1,AΣ) | A

⊥ is constant and AΣ,t-valued} (46)

where πAΣ,t
: AΣ → AΣ,t is the projection onto the first component in the decomposition AΣ =

AΣ,t ⊕ AΣ,t⊥ . It turns out that SCS behaves nicely under this decomposition. More precisely, we
have

SCS(Â
⊥ +A⊥

c +Bdt) = SCS(Â
⊥ +Bdt) +

k

2π

∫

Σ

Tr(dA⊥
c · B) (47)

19cf. Sec. 2.3, Sec. 2.4, and Appendix C in the latest version of [33], i.e. [arXiv:math-ph/0507040v7]. We remark that
the print version of [33] contains an error in Sec. 2.3 (cf. footnote 10 in the latest version of [33]). Moreover, Appendix C
is missing in the print version of [33]

20 cf. Eq. (2.23) in Sec. 2.4 of [33] for a variant of this equation where C∞(Σ, P ) instead of C∞(Σ, t) appears. Observe
that Eq. (2.23) in [33] assumes Σ to be non-compact. The compact case is covered by Eq. (2.28) in [33]

21for a detailed motivation of this decomposition, see Sec. 8 in [31]
22note that the space Â⊥ depends on the choice of the point t0, and so will some expressions appearing later, see e.g.

Eq. (54) below
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Using this and setting dµ̂⊥
B(Â

⊥) := 1
Ẑ(B)

exp(iSCS(Â
⊥+Bdt))DÂ⊥ where Ẑ(B) :=

∫

exp(iSCS(Â
⊥+

Bdt))DÂ⊥ we obtain

WLO(L) ∼

∫

C∞(Σ,t)

∫

A⊥
c

[
∫

Â⊥

∏

i

Trρi

(

P exp
(

∫

li

(Â⊥ +A⊥
c +Bdt)

))

dµ̂⊥
B(Â

⊥)

]

× exp(i k
2π

∫

Σ

Tr(dA⊥
c ·B))DA⊥

c det
(

1t⊥ − exp(ad(B)|t⊥)
)

Ẑ(B)
}

DB (48)

A more careful analysis shows that in the formula above one can replace t by treg or, alternatively,
by the Weyl alcove P . This amounts to including the extra factor 1C∞(Σ,treg) or 1C∞(Σ,P ) in the
integral expression above. In the sequel we will use the factor 1C∞(Σ,P ).

2. If one studies the torus gauge fixing procedure more closely for compact Σ one finds that – due to
certain topological obstructions (cf. [14, 32, 33]) – in general a 1-form A can be gauge-transformed
into a 1-form of the type A⊥ +Bdt only if one uses a gauge transformation Ω which has a certain
(mild) singularity and if one allows A⊥ to have a similar singularity. Concretely, in [32, 33] we
worked with gauge transformations Ω of the type Ω = Ωsmooth · Ωsing(h) ∈ C∞((Σ\{σ0})× S1, G)
with Ωsmooth ∈ C∞(Σ × S1, G) and Ωsing(h) ∈ C∞(Σ\{σ0}, G) ⊂ C∞((Σ\{σ0}) × S1, G) where
σ0 ∈ Σ is the point fixed above and where the parameter h is an element of [Σ, G/T ], i.e. a
homotopy class of mappings from Σ to G/T . Ωsing(h) is obtained from h by fixing a representative
ḡ(h) ∈ C∞(Σ, G/T ) of h and then lifting the restriction ḡ(h)|Σ\{σ0} : Σ\{σ0} → G/T to a mapping
Σ\{σ0} → G. In other words: Ωsing(h) ∈ C∞(Σ\{σ0}, G) is a fixed mapping with the property
that πG/T ◦ Ωsing(h) = ḡ(h)|Σ\{σ0} where πG/T : G → G/T is the canonical projection.

The use of the singular gauge transformations Ωsing(h) gives rise to an extra summation
∑

h∈[Σ,G/T ]

and to extra terms A⊥
sing(h) := πt(Ωsing(h)

−1 · dΩsing(h)), i.e. in Eq. (48) above we have to include

a summation
∑

h∈[Σ,G/T ] and we have to replace A⊥
c by A⊥

c + A⊥
sing(h) (for a detailed description

and justification of all this, see [32, 33]).

Taking into account these two subtleties we obtain

WLO(L) ∼
∑

h∈[Σ,G/T ]

∫

A⊥
c ×C∞(Σ,t)

1C∞(Σ,P )(B)

[
∫

Â⊥

∏

i

Trρi

(

P exp
(

∫

li

(Â⊥ +A⊥
c +A⊥

sing(h) +Bdt)
))

dµ̂⊥
B(Â

⊥)

]

×
{

exp(i k
2π

∫

Σ

Tr(dA⊥
sing(h) · B)) det

(

1t⊥ − exp(ad(B)|t⊥)
)

Ẑ(B)
}

× exp(i k
2π

∫

Σ

Tr(dA⊥
c · B))(DA⊥

c ⊗DB) (49)

where
∫

Σ

Tr(dA⊥
sing(h) ·B) := lim

ǫ→0

∫

Σ\Bǫ(σ0)

Tr(dA⊥
sing(h) · B)

Here Bǫ(σ0) is the closed ǫ-ball around σ0 with respect to an arbitrary but fixed Riemannian metric on
Σ.

Remark 3 The mapping n : [Σ, G/T ] → t given by n(h) = limǫ→0

∫

Σ\Bǫ(σ0)
dA⊥

sing(h) is independent of

the special choice of ḡ(h) and Ωsing(h), cf. [32, 33]. Moreover, and this will be important in Subsec. 4.4
below one can show that n is a bijection from [Σ, G/T ] onto I = ker(exp|t) (cf. also [14] for a similar
result).

4.3 Some comments regarding a rigorous realization of the r.h.s. of Eq. (49)

In [33, 34] it is explained how one can make rigorous sense of the path integral expression appearing on
the right-hand side of Eq. (49) using results/constructions from White Noise Analysis (cf., e.g., [38]),
certain regularization techniques like “loop smearing” and “framing”, and a suitable regularization of the
expression det

(

1t⊥ − exp(ad(B)|t⊥)
)

Ẑ(B) appearing above. We do not want to repeat the discussion in
[33, 34] in the present paper. Let us just remark the following:
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1. In view of the results [12] it is clear how to make sense of the factor det
(

1t⊥ − exp(ad(B)|t⊥)
)

Ẑ(B)
appearing Eq. (49) in the special case where B is a constant function (this was the only case
which was relevant in [12]). More precisely, using the same ζ-function regularization as the one
described in Sec. 6 in [12] one comes to the conclusion that in this special case of constant B ≡ b
the expression det

(

1t⊥ − exp(ad(B)|t⊥)
)

Ẑ(B) should be replaced by23

exp(i
cg
2π

∫

Σ

Tr(dA⊥
c · B))× detreg

(

1t⊥ − exp(ad(B)|t⊥ )
)

(50)

where
detreg

(

1t⊥ − exp(ad(B)|t⊥)
)

:= det
(

1t⊥ − exp(ad(b))|t⊥
)χ(Σ)/2

In [33] it was suggested that in the more general situation where B is a step function of the form
B =

∑µ
t=0 bt1Yt

one should again replace det
(

1t⊥ − exp(ad(B)|t⊥)
)

Ẑ(B) by expression (50) where
now

detreg
(

1t⊥ − exp(ad(B)|t⊥)
)

:=

µ
∏

t=0

det
(

1t⊥ − exp(ad(bt))|t⊥
)χ(Yt)/2

(51)

Moreover, it was suggested that one should include a exp(i
cg
2π

∫

ΣTr(dA⊥
sing(h) · B))-factor in the

expression (50) above. Incorporating these changes into (49) one obtains

WLO(L) ∼
∑

h∈[Σ,G/T ]

∫

A⊥
c ×C∞(Σ,t)

1C∞(Σ,P )(B)

[
∫

Â⊥

∏

i

Trρi

(

P exp
(

∫

li

(Â⊥+A⊥
c +A⊥

sing(h)+Bdt)
))

dµ̂⊥
B(Â

⊥)

]

×
{

exp(i
k+cg
2π

∫

Σ

Tr(dA⊥
sing(h) ·B)) detreg

(

1t⊥ − exp(ad(B)|t⊥)
)}

dν((A⊥
c , B)) (52)

where we have introduced the heuristic complex measure dν given by

dν((A⊥
c , B)) := exp(i

k+cg
2π

∫

Σ

Tr(dA⊥
c · B))(DA⊥

c ⊗DB)

2. The “Gauss type” integral functionals
∫

Â⊥ · · · dµ̂⊥
B(Â

⊥) resp.
∫

A⊥
c ×C∞(Σ,t)

· · · dν((A⊥
c , B)) appear-

ing above can be realized rigorously as Hida distributions Φ⊥
B resp. Ψ on suitable extensions of

the spaces Â⊥ and A⊥
c ×C∞(Σ, t). Moreover, also the space C∞(Σ, P ) appearing in the indicator

function 1C∞(Σ,P ) must be replaced by a larger space. (The fact that one has to extend the original
spaces of smooth functions by larger spaces consisting of less regular functions is a usual phenomenon
in Constructive Quantum Field Theory.) The details regarding the extensions of the spaces Â⊥ and
A⊥

c × C∞(Σ, t) have been or will be discussed elsewhere24 and they are not relevant if one is only
interested in a heuristic evaluation of the r.h.s of Eq. (49) resp. (52). By contrast, the question of
how to extend the space C∞(Σ, P ) appearing in the indicator function 1C∞(Σ,P ) is more subtle even
if one is only interested in a heuristic treatment. One might think that if one replaces C∞(Σ, P )
by the space PΣ of all P -valued functions on Σ this should be enough. In fact that was the ansatz
used in [33] and in the special case where all the link colors γi are (minimal) fundamental weights
this ansatz works. However, it turns out that in the case of general link colors γi the space PΣ is
too small. In order to find the “correct” space note that 1C∞(Σ,P )(B) = 1C∞(Σ,treg)(B)1P (B(σ0)).

This suggests that one might try to replace C∞(Σ, treg) by (treg)
Σ. As the computations in the

next subsections show the second ansatz is the ”correct” one. Of course, it would be desirable to
find a thorough justification for using the second ansatz which is independent of the results in the
rest of this paper.

23 the first factor in Eq. (50) gives rise to the so-called “charge shift” k → k + cG. Let us mention that the claim that
such a charge shift appears is contested by some authors, cf. Remark B.2 in [36]. If one does not believe that such a charge
shift will appear one will have to omit the first factor in Eq. (50) and the analogous terms in the equations below

24 the extension of Â⊥ is described in Sec. 8 in [31], see also Sec. 4 in [33]; the extension of A⊥
c ×C∞(Σ, t) was described

in [34]
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3. For the implementation of the “framing procedure” in [33, 34] a suitable family (φs)s>0 of diffeo-
morphisms of Σ×S1 fulfilling certain condition (see list below) was fixed. For each diffeomorphism
φs a “deformation” Φ⊥

B,φs
resp. Ψφ̄s

of Φ⊥
B resp. Ψ was then introduced and used to replace Φ⊥

B and
Ψ in the original formula. Later the free parameter s > 0 in the resulting formulas was eliminated
by taking the limit s → 0.

Among others (φs)s>0 was assumed to fulfill the following conditions

• φs → idM as s → 0 uniformly w.r.t. to an arbitrary Riemannian metric on M .

• (φs)
∗A⊥ = A⊥ for all s > 0. This condition implies that each φs, s > 0, is of the form

φs(σ, t) = (φ̄s(σ), vs(σ, t)) ∀(σ, t) ∈ Σ× S1

for a uniquely determined diffeomorphism φ̄s : Σ → Σ and vs ∈ C∞(Σ× S1, S1).

• (φs)s>0 is “horizontal” in the sense that25 it can be obtained by integrating a smooth vector
field X on Σ× S1, which for all i ≤ n, u ∈ [0, 1] is orthogonal to the tangent vector l′i(u) (i.e.
X(li(u)) ⊥ l′i(u)) and, at the same time, horizontal in li(u) (i.e. dt(X(li(u))) = 0).

4.4 Explicit heuristic evaluation of the WLOs

As mentioned above we will not go into details concerning a rigorous realization of the r.h.s. of (52) but
give a short heuristic treatment instead. As the starting point for this heuristic treatment we use the
following modification26 of Eq. (52) above.

WLO(L) ∼
∑

h∈[Σ,G/T ]

∫

1(treg)Σ(B)1P (B(σ0))

[
∫

A⊥
c

∫

Â⊥

∏

i

Trρi

(

P exp
(

∫

li

(Â⊥ +A⊥
c +A⊥

sing(h) + Bdt)
))

dµ̂⊥
B(Â

⊥)

×
{

exp(i
k+cg
2π

∫

Σ

Tr(dA⊥
sing(h) · B)) detreg

(

1t⊥ − exp(ad(B)|t⊥)
)}

× exp(i
k+cg
2π

∫

Σ

Tr(dA⊥
c ·B))DA⊥

c

]

DB (53)

Let, for fixed j ≤ n, u1, u2, . . . unj be the “solutions” of the equation ljS1(u) = t0, i.e. those curve

parameters in which ljS1 “hits” t0. For m ≤ nj we set σj
m := ljΣ(um), and ǫjm := 1 resp. ǫjm := −1 resp.

ǫjm := 0 if ljS1 crosses t0 in um “from below” resp. “from above” resp. only touches t0 in um.
In [33] it is shown how one can evaluate (the rigorous realization of) the heuristic expression

∫

Â⊥

∏

i

Trρi

(

P exp
(

∫

li

(Â⊥ +A⊥
c +A⊥

sing(h) +Bdt)
))

dµ̂⊥
B(Â

⊥)

explicitly (for links fulfilling Assumption 1 and 2) and that by doing so one obtains the expression

n
∏

j=1

Trρj

[

exp(

∫

ljΣ

A⊥
c ) exp(

∫

ljΣ

A⊥
sing(h)) exp(

∑nj

m=1
ǫjmB(σj

m))

]

By plugging the last expression into Eq. (53) we obtain

WLO(L) ∼

∑

h

∫

1(treg)Σ(B)1P (B(σ0))

[
∫

A⊥
c

n
∏

j=1

Trρj

[

exp(

∫

ljΣ

A⊥
c ) exp(

∫

ljΣ

A⊥
sing(h)) exp(

∑nj

m=1
ǫjmB(σj

m))

]

×
{

exp(i
k+cg
2π

∫

Σ

Tr(dA⊥
sing(h) · B)) detreg

(

1t⊥ − exp(ad(B)|t⊥)
)}

× exp(i
k+cg
2π

∫

Σ

Tr(dA⊥
c ·B))DA⊥

c

]

DB (54)

25in fact the definition of the term “horizontal” in [33] was somewhat broader but also more complicated
26clearly, the modification consists in replacing the integration

∫

· · · dν by the two separate integrations
∫

· · ·DB and
∫

A⊥
c
· · ·DA⊥

c and in the use of 1(treg)Σ (B) 1P (B(σ0)) instead of 1C∞(Σ,P )(B) = 1C∞(Σ,treg)(B)1P (B(σ0))
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Let us now fix an auxiliary Riemannian metric g on Σ for the rest of this paper. Let µg denote
the corresponding volume measure on Σ and ⋆ the Hodge star operator induced by g. Moreover, let
L2
t (Σ, dµg) denote obvious27 L2-space. Then we have (cf. Eq. (40))

∫

Σ

Tr(dA⊥
c ·B) =

∫

Tr(⋆dA⊥
c ·B)dµg = −4π2 ≪ ⋆dA⊥

c , B ≫L2
t
(Σ,dµg)

From Stokes’ Theorem we obtain
∫

ljΣ

A⊥
c =

∫

R+
j

dA⊥
c =

∫

R+
j

⋆dA⊥
c dµg =

∫

⋆dA⊥
c · 1R+

j
dµg

which implies

(α,

∫

ljΣ

A⊥
c ) =≪ ⋆dA⊥

c , α · 1R+
j
≫L2

t(Σ,dµg) (55)

for every α ∈ t. Here 1R+
j
denotes the indicator function of the region R+

j defined in Subsec. 3.1 above.

Note that Eq. (55) also holds if we replace 1R+
j
by

1shift
R+

j

:= 1R+
j
− 1R+

j
(σ0) (56)

We will use this modified version of Eq. (55) in the sequel. Finally, we take into account that

Trρj
(exp(b)) = χρj

(exp(b)) =
∑

α∈Λ

mγj
(α)e2πi(α,b) ∀b ∈ t (57)

for suitable28 mγj
(α) ∈ N0, cf. Eq. (2) above. Setting

ᾱ := 2πα, (58)

for each α ∈ Λ we obtain from Eq. (57) and the modified version of Eq. (55)

Trρj

[

exp(

∫

ljΣ

A⊥
c ) exp(

∫

ljΣ

A⊥
sing(h)) exp(

∑

m
ǫjmB(σj

m))

]

=
∑

α∈Λ

mγj
(α) exp(i(ᾱ,

∑

m
ǫjmB(σj

m)))) · exp(i

∫

ljΣ

(ᾱ, A⊥
sing(h))) · exp(i ≪ ⋆dA⊥

c , ᾱ · 1shift
R+

j

≫L2
t
(Σ,dµg))

(Here (ᾱ, A⊥
sing(h)) denotes the obvious real-valued 1-form). Plugging this into Eq. (54) above we get

WLO(L)

∼
∑

h

∫

1(treg)Σ(B)1P (B(σ0))

∫

A⊥
c

n
∏

j=1

[

∑

αj∈Λ

mγj
(αj) exp(i

∫

ljΣ

(ᾱj , A
⊥
sing(h))) exp(i≪⋆dA⊥

c , ᾱj1
shift
R+

j

≫L2
t(Σ,dµg))

× exp(i(ᾱj ,
∑

m
ǫjmB(σj

m)))

]

detreg
(

1t⊥ − exp(ad(B)|t⊥)
)

exp(i
k+cg
2π

∫

Σ

Tr(dA⊥
sing(h) · B))

× exp(−2πi(k + cg) ≪ ⋆dA⊥
c , B ≫L2

t(Σ,dµg))DA⊥
c DB

=
∑

h

∑

α1,...,αn∈Λ

(

n
∏

j=1

mγj
(αj)

)

∫

1(treg)Σ(B)1P (B(σ0))
n
∏

j=1

exp(i

∫

ljΣ

(ᾱj , A
⊥
sing(h))) exp(i(ᾱj ,

∑

m
ǫjmB(σj

m)))

× detreg
(

1t⊥ − exp(ad(B)|t⊥)
)

exp(i
k+cg
2π

∫

Σ

Tr(dA⊥
sing(h) ·B))

×

[
∫

A⊥
c

exp(i ≪ ⋆dA⊥
c ,

n
∑

j=1

ᾱj · 1
shift
R+

j

− 2π(k + cg)B ≫L2
t(Σ,dµg))DA⊥

c

]

DB

27 the inner product ≪ ·, · ≫L2
t
(Σ,dµg) is given by ≪ B1, B2 ≫L2

t
(Σ,dµg)=

∫

Σ
(B1(σ), B2(σ))dµg(σ) where (·, ·) is the

inner product on g ⊃ t fixed above.
28mγj (α) is just the multiplicity of the weight α in the character χρj
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(∗)
=

∑

h

∑

α1,α2,...,αn∈Λ

(

n
∏

j=1

mγj
(αj)

)

∫

1(treg)Σ(B)1P (B(σ0)) exp(i
k+cg
2π

∫

Σ

Tr(dA⊥
sing(h) · B))

× detreg
(

1t⊥ − exp(ad(B)|t⊥)
)

n
∏

j=1

(

exp(i

∫

ljΣ

(ᾱj , A
⊥
sing(h))) exp(i(ᾱj ,

∑

m
ǫjmB(σj

m))))

)

×

[

δ
(

d
(

n
∑

j=1

ᾱj · 1
shift
R+

j

− 2π(k + cg)B
))

]

DB (59)

Here, in step (∗) we have used the informal equation

∫

A⊥
c

exp(i ≪ ⋆dA⊥
c ,

n
∑

j=1

ᾱj · 1
shift
R+

j

− 2π(k + cg)B ≫L2
t
(Σ,dµg))DA⊥

c

∼ δ
(

d
(

n
∑

j=1

ᾱj · 1
shift
R+

j

− 2π(k + cg)B
))

(60)

which is a kind of infinite dimensional analogue of the well-known informal equation
∫

R
exp(i〈x, y〉)dx ∼

δ(y). In fact, as
(
∑n

j=1 ᾱj ·1shiftR+
j

−2π(k+ cg)B
)

is in general not smooth (not even continuous) we should

be a little bit more careful. Instead of using the delta-function δ
(

d
(
∑n

j=1 ᾱj · 1shiftR+
j

− 2π(k + cg)B
))

in

Eqs. (59) and (60) above we should rather use the “superposition”29

∫

t

· · · δ
(

B −
(

b+ 1
2π(k+cg)

n
∑

j=1

ᾱj · 1
shift
R+

j

)))

db

of delta-functions. Then we obtain

WLO(L)

∼
∑

h∈[Σ,G/T ]

∑

α1,α2,...,αn∈Λ

(

n
∏

j=1

mγj
(αj)

)

∫

t

db

[

exp(i
k+cg
2π

∫

Σ

Tr(dA⊥
sing(h) · b))

×

(

1(treg)Σ(B)1P (B(σ0)) detreg
(

1t⊥ − exp(ad(B)|t⊥)
)

n
∏

j=1

exp(i(ᾱj ,
∑

m

ǫjmB(σj
m)))

)

|B=b+
1

2π(k+cg)

n∑

j=1

ᾱj1shift
R

+
j

×

{

exp(i
∑

j

∫

ljΣ

(ᾱj , A
⊥
sing(h))) exp(i

k+cg
2π

∫

Σ

Tr
(

dA⊥
sing(h) ·

1
2π(k+cg)

n
∑

j=1

ᾱj1
shift
R+

j

)

}]

(∗∗)
=

∑

α1,...,αn∈Λ

(

n
∏

j=1

mγj
(αj)

)

∑

h∈[Σ,G/T ]

∫

t

db

[

exp(i2π(k + cg)(n(h), b))

×

(

1(treg)Σ(B)1P (B(σ0)) detreg
(

1t⊥ − exp(ad(B)|t⊥)
)

n
∏

j=1

exp(i(ᾱj ,
∑

m

ǫjmB(σj
m)))

)

|B=b+
1

2π(k+cg)

n∑

j=1

ᾱj1shift
R

+
j

×

{

1

}]

(∗∗∗)
=

∑

α1,α2,...,αn∈Λ

(

n
∏

j=1

mγj
(αj)

)

∑

b∈ 1
k+cg

Λ

(

1(treg)Σ(B)1P (B(σ0))

× detreg
(

1t⊥ − exp(ad(B)|t⊥)
)

n
∏

j=1

exp(2πi(αj ,
∑

m
ǫjmB(σj

m)))

)

|B=b+
1

k+cg

∑
n
j=1 αj ·1shift

R
+
j

29one can equally well use the superposition
∫

t
· · · δ

(

B− 1
2π(k+cg)

(

−b+
∑n

j=1 ᾱj · 1shift
R

+
j

)
))

db or
∫

t
· · · δ

(

B− 1
2π(k+cg)

(

b+

∑n
j=1 ᾱj · 1shift

R
+
j

)
))

db the final result will be the same, which is not surprising since, heuristically, δ
(

d
(
∑n

j=1 ᾱj · 1shift
R

+
j

−

2π(k + cg)B
))

∼ δ
(

d
(

2π(k + cg)B −
∑n

j=1 ᾱj · 1shift
R

+
j

))

∼ δ
(

d
(

B − 1
2π(k+cg)

∑n
j=1 ᾱj · 1shift

R
+
j

))
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In step (∗∗) we have used the definition of n(h) and Eq. (40). Moreover, we have used

exp
(

i
k+cg
2π

∫

Σ

Tr
(

dA⊥
sing(h) ·

1
2π(k+cg)

n
∑

j=1

ᾱj · 1
shift
R+

j

))

= exp
(

−i
∑

j

∫

ljΣ

(ᾱj , A
⊥
sing(h))

)

Step (∗ ∗ ∗) follows, informally by interchanging
∑

h · · · and
∫

t
db · · · and then using

∑

x∈I

exp(2πi(k + cg)(x, b)) =
∑

b′∈ 1
k+cg

I∗

δ(b− b′)

which is an informal version of the Poisson summation formula (moreover, one has to take into account
Remark 3 and the relation I∗ = Λ, cf. Remark 1).

The “framing” procedure mentioned above which has to be used for a rigorous treatment can also be
“implemented” in the heuristic setting we work with in the present paper. This amounts to replacing (by
hand) the expressions B(σj

m) appearing above by30 1
2

[

B(φ̄s(σ
j
m)) + B(φ̄−1

s (σj
m))

]

. Accordingly, one can
expect that in the rigorous treatment where WLO(L) is defined and computed rigorously one has

WLO(L) = C1 · StCS(L) (61)

where C1 is a suitable constant independent of L (see Eq. (63) below) and where StCS(L) is the rigorous
finite state sum (called the “Chern-Simons state sum of L in horizontal framing” in the sequel) given by

StCS(L) :=
∑

α1,α2,...,αn∈Λ

∑

b∈ 1
k+cg

Λ

(

n
∏

j=1

mγj
(αj)

)

(

1(treg)Σ(B)1P (B(σ0)) detreg
(

1t⊥ − exp(ad(B)|t⊥)
)

×
n
∏

j=1

exp(2πi(αj ,
∑

m
ǫjm

1
2

[

B(φ̄s(σ
j
m)) +B(φ̄−1

s (σj
m))

]

))

)

|B=b+
1

k+cg

∑
n
j=1 αj ·1shift

R
+
j

(62)

where s > 0 is chosen small enough31.
In the special case n = 0, i.e. the case where the link L is “empty”, it follows from the heuristic

definition of WLO(L) that we must have WLO(L) = 1. From this and Eqs. (61), (62), and (51) we can
therefore conclude

C1 =

(

∑

b∈P∩ 1
k+cg

Λ
det

(

1t⊥ − exp(ad(b))|t⊥
)1−g

)−1

(63)

where g is the genus of Σ. In Sec. 5 below we will give a somewhat more explicit expression for C1.

5 Equivalence of the Chern-Simons state sums and those in the

shadow invariant

Theorem 5.1 Let L be the colored link in Σ× S1 which we have fixed above. Then

StCS(L) = K2−2g · |XL| (64)

where g is the genus of Σ and

K :=
∏

β∈R+

(

2 sin
(π(β,ρ)

k+cg

))

(65)

30in a rigorous treatment where the Hida distributions Ψφ̄s
, s > 0, are used instead of the heuristic integral functional

∫

· · · exp(i
k+cg
2π

∫

Σ Tr(dA⊥
c · B))(DA⊥

c ⊗ DB) a suitably regularized version of this linear combination 1
2

[

B(φ̄s(σ
j
m)) +

B(φ̄−1
s (σj

m))
]

appears naturally as a result of the application of the polarization identity for quadratic forms.
31From Lemma 1 iii) below it follows that the right-hand side of Eq. (62) as a function of s is stationary as s → 0, so

it is clear what “small enough” means. Moreover, Lemma 1 iii) below shows that StCS(L) does not depend on the special
choice of the horizontal framing (φs)s>0.
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Before we prove Theorem 5.1 we will first introduce some notation and then state and prove two
lemmas. The proof of Theorem 5.1 will be given after the proof of Lemma 2 below.

For each sequence (αi)0≤i≤n of elements of Λ we set

B(αi)i :=
1

k+cg

(

α0 +

n
∑

j=1

αj · 1
shift
R+

j

)

.

Then we can rewrite Eq. (62) as

StCS(L) =
∑

(αi)i∈Λn+1

(

n
∏

j=1

mγj
(αj)

)

1P (B(αi)i(σ0))1(treg)Σ(B(αi)i) detreg
(

1t⊥ − exp(ad(B(αi)i)|t⊥)
)

×
n
∏

j=1

exp(2πi(αj ,
∑

m
ǫjm

1
2

[

B(αi)i(φ̄s(σ
j
m)) +B(αi)i(φ̄

−1
s (σj

m))
]

)〉 (66)

Each B(αi)i gives rise to an “area coloring” ϕ(αi)i : {Y0, Y1, . . . , Yn} → Λ given by

ϕ(αi)i(Yt) := (k + cg)B(αi)i(σYt
)− ρ = α0 +

n
∑

j=1

αj · 1
shift
R+

j

(σYt
)− ρ (67)

where σYt
is an arbitrary point of Yt. Note that ρ ∈ Λ so ϕ(αi)i is well-defined.

Lemma 1 For each (αi)0≤i≤n ∈ Λn+1 we have

i) αj = ϕ(αi)i(Y
+
j )− ϕ(αi)i(Y

−
j ) for 1 ≤ j ≤ n

ii) detreg
(

1t⊥ − exp(ad(B(αi)i)|t⊥)
)

= K2−2g
∏

Y (dim(ϕ(αi)i(Y )))χ(Y )

iii)
∏n

j=1 exp(2πi(αj ,
∑

m ǫjm
1
2

[

B(αi)i(φ̄s(σ
j
m)) +B(αi)i(φ̄

−1
s (σj

m))
]

)) =
∏

Y

(

vϕ(αi)i
(Y )

)gl(Y )

Proof of i): By Assumption 1 the loops l1Σ, l
2
Σ, . . . , l

n
Σ do not intersect. This means that for each j′ ≤ n

with j′ 6= j the two faces Y +
j and Y −

j are either both “inside” lj
′

Σ or both “outside” lj
′

Σ . More precisely, we

have either Y +
j , Y −

j ⊂ R+
j′ or Y

+
j , Y −

j ⊂ R−
j′ . From Eq. (67) we therefore obtain ϕ(αi)i(Y

+
j )−ϕ(αi)i(Y

−
j ) =

αj · 1shiftR+
j

(σY +
j
)− αj · 1shiftR+

j

(σY −

j
) = αj · 1R+

j
(σY +

j
)− αj · 1R+

j
(σY −

j
) = αj · (1− 0) = αj .

Proof of ii): For every b ∈ t we have

det(1t⊥ − exp(ad(b))|t⊥) =
∏

β∈R+

(1− e2πiβ(b))(1 − e−2πiβ(b)) =
∏

β∈R+

[

−(e2πiβ(b)/2 − e−2πiβ(b)/2)2
]

=
∏

β∈R+

[

−(eπi(β,b) − e−πi(β,b))2
]

=
∏

β∈R+

[

−(2i sin(π(β, b)))2
]

=
∏

β∈R+

4 sin(π(β, b))2 (68)

Taking into account Eqs. (51), (67), and the relation
∑

Y χ(Y ) = χ(Σ) = 2− 2g we obtain

detreg
(

1t⊥ − exp(ad(B(αi)i)|t⊥)
)

=

n
∏

t=0

∏

β∈R+

((

2 sin(π(β,B(αi)i(σYt
)))

)2)χ(Yt)/2

=

n
∏

t=0

∏

β∈R+

(

2 sin(π(β, 1
k+cg

(

ϕ(αi)i(Yt) + ρ
)

))
)χ(Yt)

=
∏

Y

∏

β∈R+

(

2 sin( π
k+cg

(β, ϕ(αi)i(Y ) + ρ)
)χ(Y )

= Kχ(Σ)
∏

Y

∏

β∈R+

( sin(
π(β,ϕ(αi)i

(Y )+ρ)

k+cg
)

sin(π(β,ρ)k+cg
)

)χ(Y )

= K2−2g
∏

Y

(dim(ϕ(αi)i(Y )))χ(Y ) (69)

Proof of iii): Recall that the framing (φs)s>0 was assumed to be horizontal. Thus, for fixed j and m,
exactly one of the two points φ̄s(σ

j
m) and φ̄−1

s (σj
m) will lie in Y +

j and the other one in Y −
j and we have

for sufficiently small s > 0

B(αi)i(φ̄s(σ
j
m)) +B(αi)i(φ̄

−1
s (σj

m)) = 1
k+cg

(ϕ(αi)i(Y
+
j ) + ϕ(αi)i(Y

−
j ) + 2ρ) (70)
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Let us set
ǫj :=

∑

m≤nj

ǫjm = wind(ljS1) (71)

Then, taking into account part i) of the Lemma we get (for small s > 0)

∏

j

exp(2πi(αj ,
∑

m
ǫjm

1
2

[

B(αi)i(φ̄s(σ
j
m)) +B(αi)i(φ̄

−1
s (σj

m))
]

))

=
∏

j

exp(2πi
(

∑

m
ǫjm

)

1
2

1
k+cg

(

ϕ(αi)i(Y
+
j )− ϕ(αi)i(Y

−
j ), ϕ(αi)i(Y

+
j ) + ϕ(αi)i(Y

−
j ) + 2ρ

)

=
∏

j

exp

(

πi
k+cg

ǫj

[

(ϕ(αi)i(Y
+
j ), ϕ(αi)i(Y

+
j ) + 2ρ)− (ϕ(αi)i(Y

−
j ), ϕ(αi)i(Y

−
j ) + 2ρ)

])

=
∏

j

exp
(

πi
k+cg

ǫj
[

sgn(Y +
j ; ljΣ)C2(ϕ(αi)i(Y

+
j )) + sgn(Y −

j ; ljΣ)C2(ϕ(αi)i(Y
−
j ))

])

=
∏

Y

exp

(

πi
k+cg

(

∑

j with arc(ljΣ)⊂∂Y
ǫj sgn(Y ; ljΣ)

)

C2(ϕ(αi)i(Y )
)

)

(∗)
=

∏

Y

exp

(

πi
k+cg

gl(Y ) · C2(ϕ(αi)i(Y )
)

)

=

(

∏

Y

(

vϕ(αi)i
(Y )

)gl(Y )
)

·
(

∏

Y

e
πic
12 gl(Y )

)

(∗∗)
=

(

∏

Y

(

vϕ(αi)i
(Y )

)gl(Y )
)

Here step (∗) follows from Eq. (21) and Eq. (71). Moreover, also step (∗∗) follows from Eq. (21) which
clearly implies

∑

Y gl(Y ) = 0.

Recall that col(XL) denotes the set of mappings {Y0, Y1, . . . , Yn} → Λk
+. In the sequel let col′(XL)

denote the set of mappings {Y0, Y1, . . . , Yn} → Λ ∩ ((k + cg)treg − ρ) and let (Wk)
{Y0,Y2,...,Yn}, or simply,

(Wk)
n+1 denote the space of functions from {Y0, Y1, . . . , Yn} with values in Wk.

Lemma 2 The mappings

Φ : {(αi)0≤i≤n ∈ Λn+1 | 1PΣ(B(αi)i) 6= 0} ∋ (αi)0≤i≤n 7→ ϕ(αi)i ∈ col(XL)

Φ′ : {(αi)0≤i≤n ∈ Λn+1 | 1(treg)Σ(B(αi)i) 6= 0} ∋ (αi)0≤i≤n 7→ ϕ(αi)i ∈ col′(XL)

are well-defined bijections and we have

col′(XL) = {τ · ϕ | ϕ ∈ col(XL), τ ∈ (Wk)
n+1} (72)

where τ · ϕ ∈ (Wk)
n+1 is given by (τ · ϕ)(Y ) = τ(Y ) · ϕ(Y ) for all Y ∈ {Y0, Y1, . . . , Yn}.

Proof.

1. Φ′ is well-defined and surjective: Clearly, we have {ϕ(αi)i | (αi)0≤i≤n ∈ Λn+1} = Λ{Y0,Y1,...,Yn}.
On the other hand, for fixed (αi)0≤i≤n ∈ Λn+1 the relation 1(treg)Σ(B(αi)i) 6= 0 is equivalent

to Image(B(αi)i) = Image( 1
k+cg

(ϕ(αi)i + ρ)) ⊂ treg which is equivalent to Image(ϕ(αi)i) ⊂ (k +

cg)treg − ρ. The assertion now follows.

2. Φ is well-defined and surjective: For fixed (αi)0≤i≤n ∈ Λn+1 the relation 1PΣ(B(αi)i) 6= 0 is equiv-

alent to Image(B(αi)i) = Image( 1
k+cg

(ϕ(αi)i + ρ)) ⊂ P which is equivalent to Image(ϕ(αi)i) ⊂

(k + cg)P − ρ. Thus the assertion follows if we can show that

Λ ∩ ((k + cg)P − ρ) = Λk
+ (73)
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In order to prove this equation note that P = C ∩ {λ ∈ t | (λ, θ) < 1} so we have

Λ ∩ ((k + cg)P − ρ)

= Λ ∩
(

C ∩ {λ ∈ t | (λ, θ) < k + cg} − ρ
)

= Λ ∩ (C − ρ) ∩ {λ ∈ t | (λ+ ρ, θ) < k + cg}

(∗)
= Λ ∩ C ∩ {λ ∈ t | (λ + ρ, θ) < k + cg}

= Λ+ ∩ {λ ∈ t | (λ, θ) < k + cg − (ρ, θ)}

(∗∗)
= {λ ∈ Λ+ | (λ, θ) < k + 1}

(∗∗∗)
= {λ ∈ Λ+ | (λ, θ) ≤ k} = Λk

+

Here step (∗) follows because for each α ∈ Λ, α + ρ is in the open Weyl chamber C iff α is in the
closure C, i.e. we have Λ∩ (C − ρ) = Λ∩C = Λ+ (cf. the last remark in Sec. V.4 in [17]). Step (∗∗)
follows from cg = 1 + (θ, ρ) and step (∗ ∗ ∗) from (λ, θ) ∈ Z for each λ ∈ Λ.

3. Formula (72) holds: This follows from the fact that both the mapping Waff×P ∋ (τ, b) 7→ τ ·b ∈ treg

and the mapping i : Waff → Wk in Subsec. 2.2 are bijections.

4. Φ and Φ′ are injective: Let (α′′
i )i, (α

′
i)i ∈ {(αi)0≤i≤n ∈ Λn+1 | 1(treg)Σ(B(αi)i) 6= 0} such that

ϕ(α′′
i )i

= ϕ(α′
i)i
. From Lemma 1 i) it then follows immediately that α′′

i = α′
i for i ∈ {1, 2, . . . , n}.

Moreover, from Eq. (67) and Eq. (56) we get α′′
0 = ϕ(α′′

i )i
(Yσ0 ) + ρ = ϕ(α′

i)i
(Yσ0) + ρ = α′

0 where
Yσ0 denotes the face which contains the point σ0.

�

Proof of Theorem 5.1: Applying Lemma 1 to Eq. (66) we obtain

StCS(L) = K2−2g
∑

(αi)i∈Λn+1

1P (B(αi)i(σ0))1(treg)Σ(B(αi)i)
(

n
∏

j=1

mγj
(ϕ(αi)i(Y

+
j )− ϕ(αi)i(Y

−
j ))

)

×
∏

Y

(dim(ϕ(αi)i(Y )))χ(Y )

(

∏

Y

(vϕ(αi)i
(Y ))gl(Y )

)

(74)

Without loss of generality we can assume that σ0 ∈ Y0. Then we obtain from Lemma 2

StCS(L) = K2−2g
∑

ϕ∈col′(XL)

1P ((k + cg) · (ϕ(Y0) + ρ))
(

n
∏

j=1

mγj
(ϕ(Y +

j )− ϕ(Y −
j ))

)

×
∏

Y

(dim(ϕ(Y )))χ(Y )

(

∏

Y

(vϕ(Y ))
gl(Y )

)

(75)

Now observe that for all τ ∈ Wk, b ∈ Λ ∩ ((k + cg)treg − ρ) we have

vτ ·b = vb (76)

dim(τ · b) = sgn(τ) dim(b) (77)

Moreover, 1P ((k+ cg)(τ ·ϕ(Y0)+ ρ)) = 1τ=1 for ϕ ∈ col(XL), τ ∈ Wk. Thus we obtain from Eq. (75)
and Eq. (72) in Lemma 2

StCS(L) = K2−2g
∑

ϕ∈col(XL)

∑

τ∈(Wk)n+1

1τ0=1

(

n
∏

j=1

mγj
(τ (Y +

j ) · ϕ(Y +
j )− τ (Y −

j ) · ϕ(Y −
j )

)

×
∏

Y

(

sgn(τ (Y ))
)χ(Y ) ∏

Y

(dim(ϕ(Y )))χ(Y )

(

∏

Y

(vϕ(Y ))
gl(Y )

)

= K2−2g
∑

ϕ∈col(XL)

∑

τ0,τ1,...τn∈Wk

1τ0=1

n
∏

t=0

(

sgn(τt)
)χ(Yt)(

n
∏

j=1

mγj
(τt(j,+) · ϕ(Y

+
j )− τt(j,−) · ϕ(Y

−
j )

)

×
∏

Y

(dim(ϕ(Y )))χ(Y )

(

∏

Y

(vϕ(Y ))
gl(Y )

)

(78)
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where t(j,+) resp. t(j,−) is the unique index t ∈ {0, 1, 2, . . . , n} such that Yt = Y +
j resp. Yt = Y −

j

holds. Each mγj
is invariant under the (classical) Weyl group W . From (7) and (6) and the fact that

each τ ∈ Waff can be written as the product of a translation and an element of W it easily follows that

mγj
(τt(j,+) · ϕ(Y

+
j )− τt(j,−) · ϕ(Y

−
j )

)

= mγj
(ϕ(Y +

j )− τ−1
t(j,+) · τt(j,−) · ϕ(Y

−
j )

)

(79)

Accordingly, let us set τ̃j := τ−1
t(j,+) · τt(j,−). Clearly, we have

n
∏

t=0

(

sgn(τt)
)χ(Yt) (∗)

=

n
∏

t=0

(

sgn(τt)
)#{j≤n|arc(ljΣ)⊂∂Yt}

=

n
∏

j=1

sgn(τt(j,+)) sgn(τt(j,−)) =

n
∏

j=1

sgn(τ̃j) (80)

(here step (∗) follows from χ(Yt) = 2 −#{j ≤ n | arc(ljΣ) ⊂ ∂Yt}). On the other hand the expressions
∑

τ̃j
sgn(τ̃j)

(
∏n

j=1 mγj
(ϕ(Y +

j ) − τ̃j · ϕ(Y
−
j ))

)

, j ≤ n, are exactly of the form of the expression on the

right-hand side of formula (15) so we have

∑

τ̃1,τ̃2,...τ̃n∈Wk

n
∏

j=1

sgn(τ̃j)
(

n
∏

j=1

mγj
(ϕ(Y +

j )− τ̃j · ϕ(Y
−
j )

)

=

n
∏

j=1

N
ϕ(Y −

j )

γjϕ(Y +
j )

Combining this with Eqs. (78)–(80) we obtain

StCS(L) = K2−2g
∑

ϕ∈col(XL)

(

n
∏

j=1

N
ϕ(Y −

j )

γjϕ(Y +
j )

)

∏

Y

(dim(ϕ(Y )))χ(Y )

(

∏

Y

(vϕ(Y ))
gl(Y )

)

= K2−2g
∑

ϕ∈col(XL)

|XL|
ϕ
1 |XL|

ϕ
2 |XL|

ϕ
3

= K2−2g|XL| q.e.d.

From Theorem 5.1 and Eq. (61) above we can conclude that WLO(L) coincides with |XL| up to a mul-
tiplicative constant (independent of L). We can easily determine this multiplicative constant explicitly.
According to Eqs. (63), (68), and Eq. (10) we have (cf. Eq. (73) and Example 4 above)

C1 =
1

∑

λ∈Λk
+
(K dim(λ))2−2g

=
1

K2−2g

1

|X∅|
(81)

so from Eq. (61) and Theorem 5.1 we finally obtain

WLO(L) =
|XL|

|X∅|
(82)

This agrees exactly with the formula appearing at the end of Subsec. 4.1 above.

6 A path integral derivation of the quantum Racah formula

In [12] WLO(L) was evaluated in the torus gauge approach in the special case where the link L consists
exclusively of 3 vertical loops with colors λ, µ, ν ∈ Λk

+ (cf. Remark 4 below). The result of this evaluation
is the expression on the right-hand side of Eq. (11) above. As we showed in Secs. 4–5 when evaluating
the WLOs of loops without double points in the torus gauge approach the expressions on the right-
hand side of Eq. (15) arise naturally. In other words: both the left-hand side and the right-hand
side of Eq. (15) appear naturally in the torus gauge approach when computing the WLOs of suitable
links. One can therefore hope to obtain a path integral derivation of Eq. (15) by considering links
that contain both vertical loops and loops without double points. Accordingly, let us now generalize
some of the results obtained in Secs. 4 and 5 to this more general situation where the (colored) link
L = ((l1, l2, . . . , lN), (γ1, γ2, . . . , γN)) is allowed to contain vertical loops. More precisely, we assume that
the sub link (l1, l2, . . . , ln), n ≤ N , is admissible and each loop lk for k ∈ {n+ 1, . . . , N} is a “vertical”
loop “above” the point σk ∈ Σ, i.e. lkΣ is a constant mapping taking only the value σk. For each of
the vertical loops lk, k ∈ {n+ 1, . . . , N}, we will use a “canonical” framing, i.e. a framing which fulfills
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the following condition: if the framing is represented32 in terms of a vector field X on arc(lk), then the
projection of each vector Xlk(s), s ∈ [0, 1], onto Tσk

Σ coincides with some fixed vector v ∈ Tσk
Σ.

Finally, we will assume for simplicity that wind(lkS1) = 1 for each k ∈ {n+ 1, . . . , N}.
Then, using similar arguments as in Subsec. 4.4 we can again derive Eq. (61) where StCS(L) is now

given by

StCS(L) :=
∑

α1,α2,...,αn∈Λ

∑

b∈ 1
k+cg

Λ

(

n
∏

j=1

mγj
(αj)

)

(

1(treg)Σ(B)1P (B(σ0)) detreg
(

1t⊥ − exp(ad(B)|t⊥)
)

×
(

N
∏

k=n+1

χγk
(exp(B(σk)))

)

×
n
∏

j=1

exp(2πi(αj ,
∑

k
ǫjk

1
2

[

B(φ̄s(σ
j
k)) +B(φ̄−1

s (σj
k))

]

))

)

|B=b+
1

k+cg

∑
n
j=1 αj ·1shift

R
+
j

(83)

for sufficiently small s > 0. Recall that χγk
is the character associated to the dominant weight γk.

Also the computations in the proof of Theorem 5.1 can be generalized in a straightforward way. One
obtains

StCS(L) = K2−2g
∑

ϕ∈col(XL)

(

n
∏

j=1

M
ϕ(Y −

j )

γjϕ(Y +
j )

)(

N
∏

k=n+1

χγk
(exp( 1

k+cg
(ϕ(Yσk

) + ρ)))
)

×
∏

Y

(dim(ϕ(Y )))χ(Y )

(

∏

Y

(vϕ(Y ))
gl(Y )

)

(84)

where Yσk
, k ∈ {n+ 1, . . . , N}, denotes the face in which σk lies and where we have set

Mβ
γα :=

∑

τ∈Wk

sgn(τ)mγ(α− τ(β)) (85)

(According to Eq. (15) we have Mβ
γα = Nβ

γα so we could replace Mβ
γα by Nβ

γα above. But as we want to
give a path integral derivation of Eq. (15) which is based on Eq. (84) we avoid this replacement here.)
Now observe that

χµ(exp(
1

k+cg
(λ+ ρ))) =

Sµλ

S0λ
(86)

Eq. (86) follows from the definition of the S-matrix in Subsec. 2.2 if one takes into account Weyl’s
character formula. Combining Eqs. (61), (81) (84), and (86) we finally obtain

WLO(L)

=
1

|X∅|

∑

ϕ∈col(XL)

(

n
∏

j=1

M
ϕ(Y −

j )

γjϕ(Y +
j )

)(

N
∏

k=n+1

Sγkϕ(Yσk
)

S0ϕ(Yσk
)

)

∏

Y

(dim(ϕ(Y )))χ(Y )

(

∏

Y

(vϕ(Y ))
gl(Y )

)

(87)

In the special case n = 0, i.e. in the case where there are only vertical loops, there is only one face
Y0 = Σ and we have gl(Y0) = 0, χ(Y0) = χ(Σ) = 2− 2g so Eq. (87) then reduces to

WLO(L) =
1

|X∅|

∑

λ∈Λk
+

(

N
∏

k=1

Sγkλ

S0λ

)

dim(λ)2−2g (88)

Remark 4 In the special case G = SU(2) the last equation is equivalent to formula (7.27) in [12]. We
remark that for vertical loops the inner integral in Eq. (49) is trivial, so for the derivation of Eq. (88)
one does not need the general formula (49) but can work with the simpler formulas appearing in [12], cf.

32alternatively, if we represent the framing in terms of another loop l′
k
which is “sufficiently close” to lk (cf. e.g. Sec. 2.1

and Fig. 3b and Fig. 3c in [58]) then a canonical framing is one where (not only lk but also) l′
k
is vertical loop
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equations (7.1) and (7.24) in [12]. In the special case where N = 3 and Σ = S2, i.e. g = 0 we get from
Eq. (88) (setting λ := γ1, µ := γ2, ν := γ3)

WLO(L) =
1

|X∅|

∑

λ0

Sλλ0

S0λ0

Sµλ0

S0λ0

Sνλ0

S0λ0

dim(λ0)
2 =

Nλµν
∑

α S2
0α

= Nλµν (89)

(here we have used
∑

α S2
0α = (S · ST )00 = (S2)00 = C00 = 1). By combining Eq. (89) with Eq. (4.36)

in [58] one obtains33 the Verlinde formula (13a), cf. Sec. 7.6 in [12]. (Observe that the expression Nijk

in Eq. (4.36) in [58] does not correspond to Nijk = N i∗

jk in our notation but to N̂ i∗

jk, cf. Sec. 2.2).

In order to obtain a path integral derivation of Eq. (15) let us now restrict ourselves to the special
case Σ = S2 and consider a link L in M = Σ × S1 = S2 × S1 which consists of 2 vertical loops l2, l3
over the point σ2 resp. σ3 with colors µ and ν and one non-vertical loop l1 with color λ. We assume
that wind(liS1) = 1 for all i = 1, 2, 3 and that l1Σ is a Jordan loop (i.e. a simple loop without crossings).
Moreover, we assume that σ2, σ3 are on different sides of l1Σ, i.e. that the loop projections l1Σ, l

2
Σ, l

3
Σ look

as in Fig. 5

λ

µν

Y

Y

1

0

Figure 5:

We will now evaluate WLO(L) in two different ways. By comparing these two different evaluations
of WLO(L) with each other we will then obtain a system of linear equations for the “unknowns” Mβ

γα,

α, β, γ ∈ Λk
+. Later we will show that the unique solution of this system of linear equations is Mβ

γα = Nβ
γα,

α, β, γ ∈ Λk
+, which is nothing but formula (15).

1. Evaluation: Let us apply Eq. (87) to the link L. Observe that we have to take n = 1, N = 3 and
(γ1, γ2, γ3) = (λ, µ, ν). We obtain

WLO(L) =
1

|X∅|

∑

ϕ∈col(XL)

M
ϕ(Y −

1 )

λϕ(Y +
1 )

(

3
∏

k=2

Sγkϕ(Yσk
)

S0ϕ(Yσk
)

)

1
∏

t=0

(dim(ϕ(Yt)))
χ(Yt)

( 1
∏

t=0

(vϕ(Yt))
gl(Yt)

)

(90)

Note that in this situation there are only two faces namely Y0 := Y +
1 and Y1 := Y −

1 and we have σ2 ∈ Y0

and σ3 ∈ Y1 (cf. Fig. 5, note that the point σ2 is labelled by the letter ν and σ3 by the letter µ).
Moreover, gl(Y0) = 1, gl(Y1) = −1, χ(Y1) = 1, χ(Y0) = 2 − 2g − 1 = 1 (as Σ = S2, so g = 0). Using the
variables λ0 := ϕ(Y0) and λ1 := ϕ(Y1) we now obtain

WLO(L) =
1

|X∅|

∑

λ0,λ1

Mλ1

λλ0

Sνλ0

S0λ0

Sµλ1

S0λ1

dim(λ0) dim(λ1)Tλ0λ0T
−1
λ1λ1

=
1

|X∅|

1

S2
00

∑

λ0,λ1

Mλ1

λλ0
Sνλ0Sµλ1Tλ0λ0T

−1
λ1λ1

(91)

2. Evaluation: Another explicit evaluation of WLO(L) can be obtained by considering, as an auxiliary

object, the colored link L̂ = ((l̂1, l̂2, l̂3), (λ, µ, ν)) in M = S2 ×S1 where each l̂j , j ∈ {1, 2, 3}, is a vertical

loop over the point σj with wind(l̂jS1) = 1, cf. Fig. 6 below. From Eq. (88) (or Eq. (89)) we obtain

WLO(L̂) = 1
|X∅|

1
S2
00
Nλµν .

33Note that, strictly speaking, this is not quite a “path integral derivation” of the Verlinde formula since the derivation
of the Eq. (4.36) in [58] is not based solely on the CS path integral. In fact, since the numbers N̂ i

jk
are defined abstractly,

a genuine path integral derivation of the Verlinde formula (13a) can not be expected.
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λν µ

Figure 6:

Let us now deform L̂ using an orientation preserving diffeomorphism φ : S2 × S1 → S2 × S1 of the
form φ(σ, t) =

(

θt(σ), t
)

for σ ∈ S2, t ∈ S1 where θ : S1 ∼= SO(2) → Diff(S2) is the group homomorphism
corresponding to the rotation of S2 in R3 around a suitably chosen rotation axis â ∈ R3 (and where we
have set θt := θ(t) for t ∈ S1). Let Ľ be the link obtained from L̂ by the deformation φ. For a suitable

Figure 7:

choice of the rotation axis â the projection of Ľ onto Σ = S2 will look like in Fig. 7. From the invariance
properties of the Chern-Simons path integral we conclude at a heuristic level that

WLO(Ľ) = WLO(L̂) =
1

|X∅|

1

S2
00

Nλµν (92)

On the other hand, after performing a suitable change of framing34 for each of the two loops l2 and l3 (i.e.
the two vertical loops with colors “µ” and “ν” in Fig. 5) the link L becomes isotopic to Ľ. According to
Eq. (2.33) in [58] (and the paragraph after Eq. (4.40) in Sec. 4.5 in [58] where the conformal weight h
appearing in (2.33) in [58] is related to the matrix T ) each of these two changes of framing35 alters the

value of the WLO by a factor
Tµµ

T00
and Tνν

T00

−1
, i.e. we have

WLO(L) =
Tµµ

Tνν
WLO(Ľ) =

1

|X∅|

1

S2
00

Tµµ

Tνν
Nλµν (93)

Conclusion: By combining the two equations (91) and (93) we obtain

Tµµ

Tνν
Nλµν =

∑

λ0,λ1

Mλ1

λλ0
Sνλ0Sµλ1Tλ0λ0T

−1
λ1λ1

(94)

On the other hand according to Eq. (28) in Example 2 above we have

Tµµ

Tνν
Nλµν =

∑

λ0,λ1

Nλ1

λλ0
Sνλ0Sµλ1Tλ0λ0T

−1
λ1λ1

(95)

Eq. (94) and Eq. (95) imply
∑

λ0,λ1
Mλ1

λλ0
Sνλ0Sµλ1Tλ0λ0T

−1
λ1λ1

=
∑

λ0,λ1
Nλ1

λλ0
Sνλ0Sµλ1Tλ0λ0T

−1
λ1λ1

. This

holds for arbitrary λ, µ, ν ∈ Λk
+ so using the fact that S-matrix and the T-matrix are invertible (cf. Eqs.

(9) above) we indeed obtain Mλ
µν = Nλ

µν (for all λ, µ, ν ∈ Λk
+).

34alternatively, we can replace the two changes of framing by two simple surgery operations. The first surgery operation
involves a suitable tubular neighborhood of the vertical loop l2 in Fig. 5 (cf. Sec. 4.2 in [58]); the second surgery operations
involves a similar tubular neighborhood of the vertical loop l3

35similarly, according to Sec. 4.5 in [58] the two surgery operations mentioned in the previous footnote will alter the value
of the WLO by the factor TµµT

−1
νν , so also by using the surgery argument we arrive at Eq. (93)
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Remark 5 Witten’s argument from Sec 4.5 in [58] which we used in the paragraph preceding Eq. (93)
is based on ideas from conformal field theory. So if we want to give a (complete) path integral derivation
of Eq. (15) we will have to derive the first equality in Eq. (93) using only path integral methods, cf.
[37] for partial results in this direction. On the other hand, if one is happy with “mixing” arguments
from conformal field theory and arguments based on the CS path integral then the derivation of the
(elementary) quantum Racah formula Eq. (15) which we have just given is fine and by combining
Eq. (15) with the Verlinde formula derived in Remark 4 (using Eq. (4.36) in [58]) one finally obtains
N̂β

γα =
∑

τ∈Wk
sgn(τ)mγ(α − τ(β)), which is the affine Lie algebra version of the “abstract” quantum

Racah formula appearing at the end of Subsec. 2.2.

7 Outlook

In the introduction we mentioned one of the most important open questions in the theory of 3-manifold
quantum invariants, the question whether and how one can make rigorous sense of Witten’s heuristic
path integral expressions for the Wilson loop observables of Chern-Simons theory, cf. the r.h.s. of Eq.
(41). A related and probably less difficult question is whether and how one can make rigorous sense of
those path integral expressions that arise from the r.h.s. of Eq. (41) after choosing a suitable gauge
fixing. Until recently Lorentz gauge fixing was the only36 gauge fixing procedure for which the relevant
path integral expressions have been evaluated completely for general groups, links and manifolds, cf.
[29, 9, 10, 7, 16, 8, 4]. The final result of this evaluation is a complicated infinite series whose terms
involve integrals over (high-dimensional) “configuration spaces”, cf. [16, 4]. The heuristic path integral
expressions which appear during the intermediate computations are even more complicated and it should
be hard to find a rigorous realization of these path integrals37.

It is therefore desirable to find other gauges for which the WLOs can also be evaluated explicitly. A
gauge which leads to the expressions appearing in Turaev’s shadow world approach to the 3-manifold
quantum invariants would be particularly desirable. This is because the expressions appearing in the
shadow world approach involve only finite sums, which are defined in a purely combinatorial way. These
finite combinatorial sums are considerably less complicated than the infinite series of configuration space
integrals mentioned above. Accordingly, it is reasonable to believe that for such a gauge fixing also the
corresponding path integral expressions and the heuristic arguments used for their evaluation will be less
complicated than those for Lorentz gauge fixing.

The results in [33] and the present paper suggest that for manifolds M of the form M = Σ×S1 torus
gauge fixing is a gauge fixing with the desired properties. Moreover, it is reasonable to expect that the
path integral expressions for the WLOs in the torus gauge, i.e. the r.h.s. of Eq. (49) above, admit a
rigorous treatment, either in a “continuum setting” (cf. Secs. 8–9 in [31], Sec. 4–6 in [33], and [34] for
partial results) or in a suitable “simplicial setting” (cf. [35, 36] for ongoing work in this direction).
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