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Abstract

We compute expectation values of Wilson loopsyideformed 2d Yang—Mills on a Riemann surface and show that they give invariants of
knots in 3-manifolds which are circle bundles over the Riemann surface. The areas of the loops play an essential role in encoding topologice
information about the extra dimension, and they are quantized to integer or half-integer values.
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PACS:11.25.-w; 11.15.-q

1. Introduction The question we will answer in this Letter is whether this
is still true for Wilson loops ing-2dYM, that is, whether Wil-

Recently, there has been a lot of interesyideformed 2d ~ SON loops still produce topological invariants of Seifert spaces,
Yang—Mills iheory[l—?]. This theory realizes the idea of Gross and whether the invariant is the Reshetikhin—Turaev invariant

and Taylor[8—10] in a very concrete way. It describes closed ©f Knots in 3-space. At a first glance, one would think that

topological A-model strings with bound states of D4-, D2-, andthis is impossiblg. 2d_ Yang—MiI!s theories_ are ir_1variant_un-
DO-branes in Calabi-Yau spaces which are two complex linder area preserving diffeomorphisms, and in particular Wilson

bundles over a Riemann surface. This Riemann surface is tH8OPS have an exponential decay as a function of the area of the

Riemann surface wherg-2d Yang—Mills theory lives, and the loop. So naively one would think that such information is not
4-2d Yang—Mills action is the dimensionally reduced action onPresent in Chern—Simons theory at all. The resolution is that the

the D4-brane worldvolume. It also has an interesting Douglasgreas are quantized and actually encode topological information

Kazakov type phase transitidf—7]. On the open string side, concerning upper/under passes of the knot. We will see that

we have Chern—Simons theory as the effective target space fie¥!|SOn 100ps indeed give knot invariantsfovidedthe areas
theory description. are quantized to half-integer values. There isfariY') ambi-

Soitis not unreasonable to expect that, as a result of geome@Hity in reconstructing invariants df from the Wilson loop in
ric transition,q-2dYM observables somehow produce topolog-q'ZdYM' Full deta!ls will appear in a separate papk'ﬁs].
ical invariants of 3-manifolds and invariants of knots embedded L_et us emphasize that all our resu_lts are a_t fIlkIT&ndN:
in these three-manifolds. This idea goes bacKith12] It is We list here some of the questions which we witt address in

known([1,2,13]that the partition function af-2dYM on a Rie- this Letter. First of all, we will limit ourselves to cases where
mann surfaceX reproduces the partition function of Chern— the Wilson loops do not have crossings. Nevertheless, they give

Simons on a Seifert space, that is a 3-manifticthat is the invariants of knots with crossings. This is possible because of a

total space of a circle bundle over this Riemann surface. ThIBNo-dlmensmnaI version of the_Reldemﬁlsterfmovecs: which ﬁl'
partition function of Chern—Simons in Seifert spaces was re!OWS US to remove certain crossings on the suriace. Cases where

cently analyzed ifi14] using non-Abelian localization. these crossings cannot be removed will be consider¢tiSin
Also, let us notice thag-deformed 2dYM was originally de-
fined in[16] using quantum groups. One actually expects the
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deed, this is needed in order for the plaquette gluing propertie® check that
to be consistent with quantum (rather than classical) dimenSAp

sions! Finally, we only consider the case gfbeing a root of 5 - dimg 2. (6)
unity here, but it should be possible to generalize our results t0”” N . .
other values of. Now rewriting (1) in terms ofS and T using the above and

As part of our motivation, we should also mention the factthe definition of 7" in Appendix A it is clear that(1) is the
that 2d Yang—Mills theories have interesting phenomenologicaPPeratorS7T? S evaluated on the trivial representation,

applicationg18,19] For small Wilson loops they describe the 1
confining phase of QCD to a good degree of accuracy. Zazdyml Zg; pl= S—lz)p(STpS)pp’ @)
2. g-deformed 2d Yang-Mills without Wilson lines hence it equals the partition function of Chern—Simons the-

ory in M. The normalization is conventional and due to our
The partition function of-deformed 2dYM on a closed Rie- choice(4). The casep = 1 is of course just the three-sphere;

mann surface of genysis given by[1] applying the defining relatios) STS = CT~15~17~1, we
3 fam, o0 862 s gt

Zapdym(Zg) = ) (dim,(1))" g 2%, (1) B
A ZquYM[S27 p = l] = TppZS,Op (8)

Since we are working at root of unity,g — ¢ =¥ wherek isthe ~ Which is indeed the partition function o§® [21] (in non-
Chern—Simons coupling, the sum runs over the integrable repréanonical framing).

sentations of the gauge groaponly, P.. For G = SU(2), this . . )

means that the spin is bounded p k. If ¢ is not a root of 3. Wilson loopsin ¢-2d Yang-Mills

unity, the sum is over all irreducible representations. The quan- o _ _
tum dimensions are given by g-deformed 2d Yang-Mills is most naturally defined in

terms of quantum groudd6].2 In this Letter, we will work at

) [(A+p,0)] sin”(ﬁ’;’“) the level of theg-2d Yang—Mills amplitudes, leaving off-shell
dimg (1) = l_[ [(p, )] - l_[ sinTee (2) questions for the future. Let us just mention that the proce-
>0 >0 kg dure to compute Wilson loops ig-2dYM is similar to the

where p is the Weyl vector which labels the trivial represen- undeformed casg3]. We obtain it by Migdal's cut-and-paste

tation, g is the dual Coxeter number, and the inner product igorocedure, but now this is much more subtle since the variables
taken with respect to the Cartan metric (for our group theonare quantum group elements, more precisely they live in the
conventions, seAppendix A). ForG = SU(N), this is simply ~ quantum enveloping algebra of the gauge group. Nevertheless
character integration formulas are known for the quantum case,

. sin W and they are expressed in terms of quantyre®d 6/-symbols
1<y SINTE [24]—the q—deformed analogs of the quantities familiar from
guantum mechanics.
where¢; is the number of boxes in thih row of the Young In this section we mostly consider the case of no intersec-
tableau. The-numbers are defined as usual, tions between the loops on the Riemann surface. This means
g2 — g2 that we Wi_II _only r_1eed ;}-symbo!s. These are precisely the fg-
[x]= i (4) sion coefficients in conformal field theory. So the expectation
q 4 value ofn Wilson loops in representations, ..., A, with ar-

It is easy to see thdfl) is the partition function of Chern— easa;, ..., a, (see inFig. 1) is given by
Simons in a Seifert space which is a circle fibration o¥gr
with Chern classp [13,20] In the rest of the Letter we will Zg2dym(Zg, di, Ai)

denote this spack. It can be obtained by surgery o/ x 2, n+1 o I
with a gluing operatior/ = ST”S. In the caseX, = 52, this = Z l_[(dimq (u)) g2 WD TN WL (9)
just gives the lens spac@?’/Zp. Remember thaf and T are Mo fhnt i=1 j=1

thePSL(2, Z) generators, where N® are the fusion coefficients in the WZW model at

s?=c, level k. The sum is over the integrable representations; of
(ST =C (5) From now on we will glways assume that we work at level

’ and drop the superscrigh).
where C is the charge conjugation matrix, and they are rep- In the following we will consider the case(u;) =1 fori =
resented on affine charactg¢fd], so matrix indices label inte- 1,...,n, x(u,+1) =2 — 2g — n. A further (minor) restriction
grable representations 6f, S,,, andT;,,. T is actually diagonal in writing (9) is that we specialized to non-concentric Wilson
(see(A.6) in Appendix A) so we will denote it byT;. Itis easy  loops, but the formula in this case is almost identicg[Xp

1 This remark is further developed ji7]. 2 See alsg22].
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A )L2 7\'11

Lt Hn+l

Fig. 1. n Wilson loops in representations, ..., An with areasaq, ..., ay. The outer face has areg 1 and Euler number 2 2g —n. uq, ..., Hn1 are the
representations of the faces.

The case of intersecting Wilson loops will be discussed irfori =1,...,n+ 1. We get
[15] in full generality.

. . . 2—
In what follows we work out the formulé@) and show how Wx((l)f.(.)i’,? = Z dimy (1) - - - dimy () (dimy (n42)) "
it reproduces various interesting knot invariants in the Seifert Mol
fibered space. The invariants crucially depend on the values of « N*1 A2 ... N (13)
M1Mn+1" " M2Kn+1 Mnn1?

the areasqs, ..., a,, which indeed contain most of the topo- _

logical information about the three-dimensional Chern—Simonvhere the triple(p, g, n) labels the Chern class of the bundle,

theory. the genus o and the number of loops, respectively. Clearly,
In order to do this, it will be useful to use the Verlinde for- the summations can be performed using the fir¢Laj. We get

mula for the fusion coefficients: g g
Ss5 S1uo S 0.0.m) _ 2r1p " Ohnp
M= =5 o) TS,
op

(14)

o

o ) ) This is precisely the Chern—Simons result, where the product of
where as usugb denotes the trivial representation. This for- yhe , ynlinked loops factorizes in this case.

mula allows us to perform most of the sums in the partition  This is now easy to generalize to a surface of genuBhe
function (9). From it we can prove the following formulas (see only change is that the Euler number of the last face is now

Appendix A): 2— 2g — n, therefore we are left with
> dimy, W)N};, = dim, () dim, (v), S e S
(0.8.n) A An : 2-2
: Wipsh, ==t > (dim, (). (15)
T_l PP A
Zdimq(/\)N,j,\Tk = Sp—p(TST)W- (11) Obviously, setting: = 0 we just get the partition function of
A e Chern-Simons o! x X:

We now work out some examples @) and show how
different choices of the areas, ..., a,.1 give different knot  Zcs($* x ¥) = Z(dimq ()
invariants inM. Our choice of areas is motivated by Turaev’s A
shadow invarianf25] and will be explained if15]. The total  Thjs js the well-known Verlinde formula for the dimension of
area of the surface equals the Chern class of the fibration, e space of conformal blocks on a surface of gegutt is

272 (16)

n+1 obtained from the partition function of thedeformed 2dYM
Zai =p, (12) onx.
i=1
in agreement witfi1]. 3.1.2. Non-zero winding

Let us now consider some less trivial examples involving
3.1. Chern—Simons oftt x ¥ winding around thes®. We want to work out the expectation

values ofn unknotted, unlinked circles winding thg* with
In this subsection we consider Chern—-Simons on the triviawinding number 1.

fibration S x ¥, that is we takep = 0. Let us work out a single loop first, that is= 1 and take
¥ = §2. This now corresponds to the saffig. 1with n =1,
3.1.1. Zero winding a1 =1 anday = —1. Thus, we get
The casg = 0 andn unknots lying ons? with zero winding
around thes! corresponds ta disjoint Wilson loops on thg- ~ Wi = Z dim, () dimy (VN7 T, T, 17)

2dYM side, in the limit of vanishing areas (ség. 1), soa; =0 wy
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Using the second dfL1), we get precisely

A S%sxp, (18)
op

where we included an additional lakigl, ¢, n; w) for the wind-
ing. This agrees with the fact that the Hilbert spacesérx $2
with one marked point on thé? has dimension 1 if. is trivial,
and zero otherwisg1].

We can now do the case afloops with winding number
1 around thes™. In this case we havEig. 1 with ¢; = 1 for
i=1,...,n,anda,+1 = —n for the outer face. We get

©ony _ DD, 2-
WM-..M T Tns2 Z Sﬂpnsklﬂ o Shpe (19)
P PP
In particular, in the cases= 2 andn = 3 we get
0021 _ LTy
W = 5}\ *
A 2 ¢2 MK
Tppspp
0031 LTuT,
v = 73 g N (20)
TppSpp

in agreement witl21] for the dimensions of the Hilbert space
of conformal blocks on the sphere with two and three marke

points, respectively. Notice however that on #he&d Yang—

whereU ©1%) = §T¥ § (in the notation 0f13]) is theSL(2, Z)
operator that glues two solid tori into a lens space, as discussed
in Section2.

3.2. Chern-Simons in Seifert fibered spaces

Having doneS! x X, non-trivial bundles can be easily de-
scribed ing-2dYM: we simply increase the area of the outer
face by an amounp equal to the Chern class of the bundle!

Before doing this, let us recall how to get the Chern—
Simons expression®1,27-29] Consider performing surgery
on $1 x ¥ with an operatoi/ € SL(2,Z) to obtain a Seifert
fibered manifoldM. We get a linkL(Cy,...,Cy,) in M if we
start with a link inS? x X. For example, take unknots around
the S and apply the modular transformatiéh

Zcg[M, L(C1,Ca,...,Cpi A1,y An)]

:ZU)):”ZCS[S:L xX;C1,...,Cpi A1, ...
s

whereis, ..., A, are the representations of the components of
the link L(Cy,...,C;) (we are raising and lowering indices

) )\'}’l—lv )"]7 (24)

(¥vith the charge conjugation matrix). Thus, from the formulas
n

the previous section, we have

Mills side the loops are completely regular rather than beingzcg[ M, L(C1, Ca, ..., Cpi A1, ..., An)]

marked points. This is due to the way the projection is done.
The framing comes out differently above due to the winding
around theS®. To reach canonical framing we need to untwist

every loop by a factor oTA‘lTpp. We will ignore framing am-
biguities in the rest of the Letter. The additional factorsSgf

= Z U))LLn Sligzg_n S)”ll’L T S)LnflILS)LM' (25)

A

As a simple example, také = S so thatM = $°. Using the
defining relationgb), we trivially get

are due to our choice of normalization of the quantum dimen-

sions(4).

We can easily generalize this to the case of a Riemann sur;
face X'. The areas are the same as before, the only differencée

being the Euler number:

(0,8,n;1) Ty -1, . 2—-2g—n
Wi =" pn 2 (dimy (1)) Sa1p* Shap-

PP ) (21)

Zcs[S% L0, )] = S,

ZCS[Sg; L, u, V)] = Z SUGN)LMO‘~ (26)

[
The first equation is the result for the Hopf link; the second one
corresponds to two parallel, unlinked circles with a third circle
linked with them with link number one for each unknot[21],
this gave a new proof of the Verlinde formula.

This is the Verlinde formula for the dimension of the space 0.1/ a circle fibered Seifert manifold over. U — (STPS)

of conformal blocks on a Riemann surface of gegusith n
punctures, labeled by representatians.. ., A, [26]. Indeed,

in canonical quantization of Chern—Simons the above correzcs[s3/zp] = (STps)

sponds to: Wilson lines that pierce the Riemann surfg2].

In g-2dYM we see that they are computed/byegular Wilson
loops lying on the Riemann surface asHig. 1, but now with
non-zero area.

)7
As a last example on the trivial bundle, we compute the in- = Z(STPS)AH Siw

variant of a single loop with windingv around thes'. The
areas are; = —ap = w. We get

w0 = 3 dimg () dimg (V)N TR T, (22)
ny
Filling in the fusion coefficients, we get
©0Lw _ 1 (—Lw)(-L-wyg 1
Wi T 52 Z Upp U™ ™" SMS—M,’ (23)

PP

and we get for instance

pp’
Zcs[S3/Zy; LG, )] = (ST?S)
Zeg[M; L(Ag, ..., A)]

2—2g—n

ru’

Saan - Sh_aaSun
A
P o2—2g—n
=) T78, " S S 27)
2
As an example, we will now reproduce these formulas from

g-2d Yang—Mills. We first work out the case of zero winding.
We now takey; =0,i =1,...,n, anda, = p in Fig. L We get

- : 2-2
Wx(ff.%::’m = Shap " Shap Z(d'mq )Tl (28)
x
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Inthe casep =n =1, g =0, after using the defining properties invariant[25]. We will develop this more general point of view

of S andT we get in a future publication. A path integral derivation of the shadow
71 invariant for the casé* x X is given in[30].

W£1,0,1;0> =25, (29) In some of our formulas we needed to take the areas to
Sgp negative values for comparison with relatively simple Chern—

Simons observables; it would be interesting to see whether from
the brane point of viey1] these configurations are pathologi-
cal or not. In any case, the case where all areas are positive also
provides knot invariants in the Seifert manifold, be it not the
simplest ones. Notice that the total area always eqguals

It would be interesting to study open—closed string duality
and geometric transitions with non-trivial brane configurations
in the topological string from the point of view developed in this
Letter. In fact, that was our original motivation. This will corre-
spond to the A-model amplitudes with branes inserted. In this

reproducing the unknot 83 (26)—the vertical and the hori-
zontal loop give homological circles i§7. For several unlinked
unknots, we get

@00 _ Top

Medn T s8, Siap S (30)

indeed the disjoint product af unknots.
In the case ofi unknots with windingw = 1 around thes?,
we haveq; =1fori =1,...,n anda,+1 = p — n. We get

(p.gmy DTy, dim. GOV P g S case one needs to generalize the formulas in this Letter to non-
Modn T Z( im, (1)) A DA T Ohnde root-of-unity values of;. This would then be similar in spirit
* (31) to[31,32] where certain Chern—Simons invariants are obtained

This is the general formula for the link(i1,...,4,) in the  from the crystal prescription. We hope to come back to these
Seifert manifoldM considered in27), and the most general jsgyes in the future.

example we consider in this Letter.
Of course, we get the partition function of Chern—Simons inAcknowIedgements
the S bundle overY if we taken = 0:
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3.3. Acomment on crossings points Stefan Theisen, Miguel Tierz, and Vladimir Turaev for dis-
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We already mentioned that in order to properly deal withmer Workshop and the Simons Workshop in Mathematics and
crossings ing-2d Yang—Mills, we need to include quantunt-6  pPhysics 2005, where part of this work was done.
symbols. Nevertheless, most of the examples above did contain
crossings, so what happened? Appendix A. Modular matricesand Lie algebra
It turns out that there are Reidemeister moves in two dimenggnventions
sions that allow us to remove some of these crossings. These

moves depend on the area’s. Presumably the examples above, ihis appendix we summarize some of the Lie group con-

are all cases where such moves are applicable. We checked tig,ions we used in the main text, provide the explicit expres-
in the case of the Hopf link. We will come back to this issue iNgion for the modular matrices. and prove form(la).

the future. We first work out some formulas fo/ (V). The relation

between the number of boxes in the Young tableaux and the

weight of a representation in the usual fundamental weight ba-
We have shown thaj-deformed 2d Yang—Mills theory on SIS1S

a Riemann surfac&’ gives topological invariants in one di- 4, — ;. 4. 1 +... 4y, (A1)

mension higher, namely in a Seifert fibered manifold. More

precisely, expectation values of Wilson loops on the Riemanr he Weyl vector labeling the trivial representation is

surface give knot invariants of the Seifert manifold. The areas

of the Wilson loops of the surface play an essential role in en- N+1 |

coding topological information about the extra dimension; the)/o o Z( >

are quantized in integer or half-integer values (in this Letterwe '~

considered integer values only). In fagt2d Yang—Mills gives  wheree; is a unit vector irRY . Its norm is

a very effective way to compute knot invariants. In many cases,

the invariants can be computed without taking into accoynt 6 |p|? = —N(N2 — 1)_ (A.3)

symbols at the crossings. This is due to an underlying analog 12

of the Redemeister moves in two dimensions. The infinite numThe second Casimir becomes especially simple in following ba-

ber of choices of (integer or half-integer) areas of Wilson loopssis:

generate an infinite amount of knot invariants in three dimen-

sions. Our choice of areas was motivated by Turaskisdow /i =4 + pi. (A.4)

4. Conclusions and futuredirections

e, (A.2)
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