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Abstract

We compute expectation values of Wilson loops inq-deformed 2d Yang–Mills on a Riemann surface and show that they give invarian
knots in 3-manifolds which are circle bundles over the Riemann surface. The areas of the loops play an essential role in encoding t
information about the extra dimension, and they are quantized to integer or half-integer values.
 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, there has been a lot of interest inq-deformed 2d
Yang–Mills theory[1–7]. This theory realizes the idea of Gro
and Taylor[8–10] in a very concrete way. It describes clos
topological A-model strings with bound states of D4-, D2-, a
D0-branes in Calabi–Yau spaces which are two complex
bundles over a Riemann surface. This Riemann surface i
Riemann surface whereq-2d Yang–Mills theory lives, and th
q-2d Yang–Mills action is the dimensionally reduced action
the D4-brane worldvolume. It also has an interesting Doug
Kazakov type phase transition[5–7]. On the open string side
we have Chern–Simons theory as the effective target space
theory description.

So it is not unreasonable to expect that, as a result of geo
ric transition,q-2dYM observables somehow produce topolo
ical invariants of 3-manifolds and invariants of knots embed
in these three-manifolds. This idea goes back to[11,12]. It is
known[1,2,13]that the partition function ofq-2dYM on a Rie-
mann surfaceΣ reproduces the partition function of Cher
Simons on a Seifert space, that is a 3-manifoldM that is the
total space of a circle bundle over this Riemann surface.
partition function of Chern–Simons in Seifert spaces was
cently analyzed in[14] using non-Abelian localization.
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The question we will answer in this Letter is whether t
is still true for Wilson loops inq-2dYM, that is, whether Wil-
son loops still produce topological invariants of Seifert spa
and whether the invariant is the Reshetikhin–Turaev invar
of knots in 3-space. At a first glance, one would think t
this is impossible. 2d Yang–Mills theories are invariant u
der area preserving diffeomorphisms, and in particular Wil
loops have an exponential decay as a function of the area o
loop. So naively one would think that such information is
present in Chern–Simons theory at all. The resolution is tha
areas are quantized and actually encode topological inform
concerning upper/under passes of the knot. We will see
Wilson loops indeed give knot invariants,provided the areas
are quantized to half-integer values. There is anH1(Σ) ambi-
guity in reconstructing invariants ofM from the Wilson loop in
q-2dYM. Full details will appear in a separate paper[15].

Let us emphasize that all our results are at finitek andN .
We list here some of the questions which we willnotaddress in
this Letter. First of all, we will limit ourselves to cases whe
the Wilson loops do not have crossings. Nevertheless, they
invariants of knots with crossings. This is possible because
two-dimensional version of the Reidemeister moves which
lows us to remove certain crossings on the surface. Cases w
these crossings cannot be removed will be considered in[15].
Also, let us notice thatq-deformed 2dYM was originally de
fined in [16] using quantum groups. One actually expects
quantum characters to play a role in the prescription of[1]. In-
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deed, this is needed in order for the plaquette gluing prope
to be consistent with quantum (rather than classical) dim
sions.1 Finally, we only consider the case ofq being a root of
unity here, but it should be possible to generalize our resul
other values ofq.

As part of our motivation, we should also mention the f
that 2d Yang–Mills theories have interesting phenomenolog
applications[18,19]. For small Wilson loops they describe th
confining phase of QCD to a good degree of accuracy.

2. q-deformed 2d Yang–Mills without Wilson lines

The partition function ofq-deformed 2dYM on a closed Rie
mann surface of genusg is given by[1]

(1)Zq2dYM(Σg) =
∑
λ

(
dimq(λ)

)2−2g
q

p
2 C2(λ).

Since we are working atq root of unity,q = e
2πi
k+N wherek is the

Chern–Simons coupling, the sum runs over the integrable re
sentations of the gauge groupG only, P+. ForG = SU(2), this
means that the spin is bounded byj � k. If q is not a root of
unity, the sum is over all irreducible representations. The qu
tum dimensions are given by

(2)dimq(λ) =
∏
α>0

[(λ + ρ,α)]
[(ρ,α)] =

∏
α>0

sin π(λ+ρ,α)
k+g

sin π(ρ,α)
k+g

,

whereρ is the Weyl vector which labels the trivial represe
tation,g is the dual Coxeter number, and the inner produc
taken with respect to the Cartan metric (for our group the
conventions, seeAppendix A). ForG = SU(N), this is simply

(3)dimq(λ) =
∏

1�j<i�N

sin
π(�i−�j +j−i)

k+N

sin π(j−i)
k+N

,

where�i is the number of boxes in theith row of the Young
tableau. Theq-numbers are defined as usual,

(4)[x] = qx/2 − q−x/2

q1/2 − q−1/2
.

It is easy to see that(1) is the partition function of Chern
Simons in a Seifert space which is a circle fibration overΣg

with Chern classp [13,20]. In the rest of the Letter we wil
denote this spaceM . It can be obtained by surgery onS1 × Σg

with a gluing operationU = ST pS. In the caseΣg = S2, this
just gives the lens spaceS3/Zp. Remember thatS andT are
thePSL(2,Z) generators,

S2 = C,

(5)(ST )3 = C,

whereC is the charge conjugation matrix, and they are r
resented on affine characters[21], so matrix indices label inte
grable representations ofG, Sλµ andTλµ. T is actually diagona
(see(A.6) in Appendix A) so we will denote it byTλ. It is easy

1 This remark is further developed in[17].
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to check that

(6)
Sλρ

Sρρ

= dimq λ.

Now rewriting(1) in terms ofS andT using the above an
the definition ofT in Appendix A, it is clear that(1) is the
operatorST pS evaluated on the trivial representation,

(7)Zq2dYM[Σg;p] = 1

S2
ρρ

(
ST pS

)
ρρ

,

hence it equals the partition function of Chern–Simons
ory in M . The normalization is conventional and due to o
choice(4). The casep = 1 is of course just the three-sphe
applying the defining relation(5) ST S = CT −1S−1T −1, we
just get

(8)Zq2dYM
[
S2,p = 1

] = T −2
ρρ Sρρ

which is indeed the partition function onS3 [21] (in non-
canonical framing).

3. Wilson loops in q-2d Yang–Mills

q-deformed 2d Yang–Mills is most naturally defined
terms of quantum groups[16].2 In this Letter, we will work at
the level of theq-2d Yang–Mills amplitudes, leaving off-she
questions for the future. Let us just mention that the pro
dure to compute Wilson loops inq-2dYM is similar to the
undeformed case[23]. We obtain it by Migdal’s cut-and-past
procedure, but now this is much more subtle since the varia
are quantum group elements, more precisely they live in
quantum enveloping algebra of the gauge group. Neverthe
character integration formulas are known for the quantum c
and they are expressed in terms of quantum 3j - and 6j -symbols
[24]—the q-deformed analogs of the quantities familiar fro
quantum mechanics.

In this section we mostly consider the case of no inters
tions between the loops on the Riemann surface. This m
that we will only need 3j -symbols. These are precisely the f
sion coefficients in conformal field theory. So the expecta
value ofn Wilson loops in representationsλ1, . . . , λn with ar-
easa1, . . . , an (see inFig. 1) is given by

Zq2dYM(Σg, ai, λi)

(9)=
∑

µ1...µn+1

n+1∏
i=1

(
dimq(µi)

)χ(µi)q− ai
2 C2(µi)

n∏
j=1

N
(k)λj
µj µn+1,

whereN(k) are the fusion coefficients in the WZW model
level k. The sum is over the integrable representations ofG.
From now on we will always assume that we work at levek

and drop the superscript(k).
In the following we will consider the caseχ(µi) = 1 for i =

1, . . . , n, χ(µn+1) = 2 − 2g − n. A further (minor) restriction
in writing (9) is that we specialized to non-concentric Wils
loops, but the formula in this case is almost identical to(9).

2 See also[22].
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Fig. 1. n Wilson loops in representationsλ1, . . . , λn with areasa1, . . . , an. The outer face has areaan+1 and Euler number 2− 2g − n. µ1, . . . ,µn+1 are the
representations of the faces.
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The case of intersecting Wilson loops will be discussed
[15] in full generality.

In what follows we work out the formula(9) and show how
it reproduces various interesting knot invariants in the Se
fibered space. The invariants crucially depend on the value
the areas,a1, . . . , an, which indeed contain most of the top
logical information about the three-dimensional Chern–Sim
theory.

In order to do this, it will be useful to use the Verlinde fo
mula for the fusion coefficients:

(10)Nν
λµ =

∑
σ

Sλσ Sµσ S∗
νσ

Sσρ

,

where as usualρ denotes the trivial representation. This fo
mula allows us to perform most of the sums in the partit
function(9). From it we can prove the following formulas (s
Appendix A):∑
λ

dimq(λ)Nλ
µν = dimq(µ)dimq(ν),

(11)
∑
λ

dimq(λ)Nν
µλTλ = T −1

ρρ

Sρρ

(T ST )µν.

We now work out some examples of(9) and show how
different choices of the areasa1, . . . , an+1 give different knot
invariants inM . Our choice of areas is motivated by Turae
shadow invariant[25] and will be explained in[15]. The total
area of the surface equals the Chern class of the fibration,

(12)
n+1∑
i=1

ai = p,

in agreement with[1].

3.1. Chern–Simons onS1 × Σ

In this subsection we consider Chern–Simons on the tr
fibrationS1 × Σ , that is we takep = 0.

3.1.1. Zero winding
The casep = 0 andn unknots lying onS2 with zero winding

around theS1 corresponds ton disjoint Wilson loops on theq-
2dYM side, in the limit of vanishing areas (seeFig. 1), soai = 0
t
of

s

l

for i = 1, . . . , n + 1. We get

W
(0,0,n)
λ1...λn

=
∑

µ1...µn+1

dimq(µ1) · · ·dimq(µn)
(
dimq(µn+1)

)2−n

(13)× Nλ1
µ1µn+1

Nλ2
µ2µn+1

· · ·Nλn
µnµn+1

,

where the triple(p,g,n) labels the Chern class of the bund
the genus ofΣ and the number of loops, respectively. Clea
the summations can be performed using the first of(11). We get

(14)W
(0,0,n)
λ1...λn

= Sλ1ρ · · ·Sλnρ

Sn
ρρ

.

This is precisely the Chern–Simons result, where the produ
then unlinked loops factorizes in this case.

This is now easy to generalize to a surface of genusg. The
only change is that the Euler number of the last face is
2− 2g − n, therefore we are left with

(15)W
(0,g,n)
λ1...λn

= Sλ1ρ · · ·Sλnρ

Sn
ρρ

∑
λ

(
dimq(λ)

)2−2g
.

Obviously, settingn = 0 we just get the partition function o
Chern–Simons onS1 × Σ :

(16)ZCS
(
S1 × Σ

) =
∑
λ

(
dimq(λ)

)2−2g
.

This is the well-known Verlinde formula for the dimension
the space of conformal blocks on a surface of genusg. It is
obtained from the partition function of theq-deformed 2dYM
onΣ .

3.1.2. Non-zero winding
Let us now consider some less trivial examples involv

winding around theS1. We want to work out the expectatio
values ofn unknotted, unlinked circles winding theS1 with
winding number 1.

Let us work out a single loop first, that isn = 1 and take
Σ = S2. This now corresponds to the sameFig. 1 with n = 1,
a1 = 1 anda2 = −1. Thus, we get

(17)Wλ =
∑
µν

dimq(µ)dimq(ν)Nλ
µνTµT −1

ν .
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Using the second of(11), we get precisely

(18)W
(0,0,1;1)
λ = 1

S2
ρρ

δλρ,

where we included an additional label(p,g,n;w) for the wind-
ing. This agrees with the fact that the Hilbert space onS1 × S2

with one marked point on theS2 has dimension 1 ifλ is trivial,
and zero otherwise[21].

We can now do the case ofn loops with winding numbe
1 around theS1. In this case we haveFig. 1 with ai = 1 for
i = 1, . . . , n, andan+1 = −n for the outer face. We get

(19)W
(0,0,n;1)
λ1...λn

= Tλ1 · · ·Tλn

T n
ρρS2

ρρ

∑
µ

S2−n
µρ Sλ1µ · · ·Sλnµ.

In particular, in the casesn = 2 andn = 3 we get

W
(0,0,2;1)
λµ = TλTµ

T 2
ρρS2

ρρ

δλµ∗ ,

(20)W
(0,0,3;1)
λµν = TλTµTν

T 3
ρρS2

ρρ

Nλµν,

in agreement with[21] for the dimensions of the Hilbert spac
of conformal blocks on the sphere with two and three mar
points, respectively. Notice however that on theq-2d Yang–
Mills side the loops are completely regular rather than be
marked points. This is due to the way the projection is do
The framing comes out differently above due to the wind
around theS1. To reach canonical framing we need to untw
every loop by a factor ofT −1

λ Tρρ . We will ignore framing am-
biguities in the rest of the Letter. The additional factors ofSρρ

are due to our choice of normalization of the quantum dim
sions(4).

We can easily generalize this to the case of a Riemann
faceΣ . The areas are the same as before, the only differ
being the Euler number:

(21)

W
(0,g,n;1)
λ1...λn

= Tλ1 · · ·Tλn

T n
ρρ

∑
λ

(
dimq(λ)

)2−2g−n
Sλ1ρ · · ·Sλnρ.

This is the Verlinde formula for the dimension of the spa
of conformal blocks on a Riemann surface of genusg with n

punctures, labeled by representationsλ1, . . . , λn [26]. Indeed,
in canonical quantization of Chern–Simons the above co
sponds ton Wilson lines that pierce the Riemann surface[21].
In q-2dYM we see that they are computed byn regular Wilson
loops lying on the Riemann surface as inFig. 1, but now with
non-zero area.

As a last example on the trivial bundle, we compute the
variant of a single loop with windingw around theS1. The
areas area1 = −a2 = w. We get

(22)W
(0,0,1;w)
λ =

∑
µν

dimq(µ)dimq(ν)Nλ
µνT

w
µ T −w

ν .

Filling in the fusion coefficients, we get

(23)W
(0,0,1;w)
λ = 1

S2
ρρ

∑
µ

U(−1,w)
ρµ U(−1,−w)

µρ Sλµ

1

Sµρ

,

d

.

-

r-
e

-

-

whereU(−1,w) = ST wS (in the notation of[13]) is theSL(2,Z)

operator that glues two solid tori into a lens space, as discu
in Section2.

3.2. Chern–Simons in Seifert fibered spaces

Having doneS1 × Σ , non-trivial bundles can be easily d
scribed inq-2dYM: we simply increase the area of the ou
face by an amountp equal to the Chern class of the bundle!

Before doing this, let us recall how to get the Cher
Simons expressions[21,27–29]. Consider performing surger
on S1 × Σ with an operatorU ∈ SL(2,Z) to obtain a Seifer
fibered manifoldM . We get a linkL(C1, . . . ,Cn) in M if we
start with a link inS1 ×Σ . For example, taken unknots around
theS1 and apply the modular transformationU :

ZCS
[
M,L(C1,C2, . . . ,Cn;λ1, . . . , λn)

]
(24)=

∑
λ

Uλ
λn

ZCS
[
S1 × Σ;C1, . . . ,Cn;λ1, . . . , λn−1, λ

]
,

whereλ1, . . . , λn are the representations of the component
the link L(C1, . . . ,Cn) (we are raising and lowering indice
with the charge conjugation matrix). Thus, from the formu
in the previous section, we have

ZCS
[
M,L(C1,C2, . . . ,Cn;λ1, . . . , λn)

]
(25)=

∑
λµ

Uλ
λn

S2−2g−n
µρ Sλ1µ · · ·Sλn−1µSλµ.

As a simple example, takeU = S so thatM = S3. Using the
defining relations(5), we trivially get

ZCS
[
S3;L(λ,µ)

] = Sλµ,

(26)ZCS
[
S3;L(λ,µ, ν)

] =
∑
σ

Sνσ Nλµσ .

The first equation is the result for the Hopf link; the second
corresponds to two parallel, unlinked circles with a third cir
linked with them with link number one for each unknot. In[21],
this gave a new proof of the Verlinde formula.

ForM a circle fibered Seifert manifold overΣ , U = (ST pS)

and we get for instance

ZCS
[
S3/Zp

] = (
ST pS

)
ρρ

,

ZCS
[
S3/Zp;L(λ,µ)

] = (
ST pS

)
λµ

,

(27)

ZCS
[
M;L(λ1, . . . , λn)

]
=

∑
λµ

(
ST pS

)µ

λn
S

2−2g−n
λρ Sλ1λ · · ·Sλn−1λSµλ

=
∑
λ

T
p
λ S

2−2g−n
λρ Sλ1λ · · ·Sλnλ.

As an example, we will now reproduce these formulas fr
q-2d Yang–Mills. We first work out the case of zero windin
We now takeai = 0, i = 1, . . . , n, andan = p in Fig. 1. We get

(28)W
(p,g,n;0)
λ1...λn

= Sλ1ρ · · ·Sλnρ

∑
λ

(
dimq(λ)

)2−2g
T

p
λ .
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In the casep = n = 1,g = 0, after using the defining propertie
of S andT we get

(29)W
(1,0,1;0)
λ = T −1

ρρ

S3
ρρ

Sλρ

reproducing the unknot inS3 (26)—the vertical and the hori
zontal loop give homological circles inS3. For several unlinked
unknots, we get

(30)W
(1,0,n;0)
λ1...λn

= T −1
ρρ

S3
ρρ

Sλ1ρ · · ·Sλnρ,

indeed the disjoint product ofn unknots.
In the case ofn unknots with windingw = 1 around theS1,

we haveai = 1 for i = 1, . . . , n andan+1 = p − n. We get

(31)

W
(p,g,n;1)
λ1...λn

= Tλ1 · · ·Tλn

T n
ρρ

∑
λ

(
dimq(λ)

)2−2g−n
T

p
λ Sλ1λ · · ·Sλnλ.

This is the general formula for the linkL(λ1, . . . , λn) in the
Seifert manifoldM considered in(27), and the most genera
example we consider in this Letter.

Of course, we get the partition function of Chern–Simon
theS1 bundle overΣ if we taken = 0:

(32)W(p,g,0) =
∑
λ

(
dim(λ)

)2−2g
T

p
λ = S2g−2

ρρ ZCS(M).

3.3. A comment on crossings points

We already mentioned that in order to properly deal w
crossings inq-2d Yang–Mills, we need to include quantum 6j -
symbols. Nevertheless, most of the examples above did co
crossings, so what happened?

It turns out that there are Reidemeister moves in two dim
sions that allow us to remove some of these crossings. T
moves depend on the area’s. Presumably the examples a
are all cases where such moves are applicable. We checke
in the case of the Hopf link. We will come back to this issue
the future.

4. Conclusions and future directions

We have shown thatq-deformed 2d Yang–Mills theory o
a Riemann surfaceΣ gives topological invariants in one d
mension higher, namely in a Seifert fibered manifold. M
precisely, expectation values of Wilson loops on the Riem
surface give knot invariants of the Seifert manifold. The ar
of the Wilson loops of the surface play an essential role in
coding topological information about the extra dimension; t
are quantized in integer or half-integer values (in this Letter
considered integer values only). In fact,q-2d Yang–Mills gives
a very effective way to compute knot invariants. In many ca
the invariants can be computed without taking into accountj -
symbols at the crossings. This is due to an underlying an
of the Redemeister moves in two dimensions. The infinite n
ber of choices of (integer or half-integer) areas of Wilson lo
generate an infinite amount of knot invariants in three dim
sions. Our choice of areas was motivated by Turaev’sshadow
in

-
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invariant [25]. We will develop this more general point of vie
in a future publication. A path integral derivation of the shad
invariant for the caseS1 × Σ is given in[30].

In some of our formulas we needed to take the area
negative values for comparison with relatively simple Che
Simons observables; it would be interesting to see whether
the brane point of view[1] these configurations are patholog
cal or not. In any case, the case where all areas are positive
provides knot invariants in the Seifert manifold, be it not
simplest ones. Notice that the total area always equalsp.

It would be interesting to study open–closed string dua
and geometric transitions with non-trivial brane configurati
in the topological string from the point of view developed in t
Letter. In fact, that was our original motivation. This will corr
spond to the A-model amplitudes with branes inserted. In
case one needs to generalize the formulas in this Letter to
root-of-unity values ofq. This would then be similar in spiri
to [31,32], where certain Chern–Simons invariants are obtai
from the crystal prescription. We hope to come back to th
issues in the future.
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Appendix A. Modular matrices and Lie algebra
conventions

In this appendix we summarize some of the Lie group c
ventions we used in the main text, provide the explicit exp
sion for the modular matrices, and prove formula(11).

We first work out some formulas forU(N). The relation
between the number of boxes in the Young tableaux and
weight of a representation in the usual fundamental weight
sis is

(A.1)�i = λi + λi+1 + · · · + λN.

The Weyl vector labeling the trivial representation is

(A.2)ρ =
N∑

i=1

(
N + 1

2
− i

)
ei,

whereei is a unit vector inRN . Its norm is

(A.3)|ρ|2 = 1

12
N

(
N2 − 1

)
.

The second Casimir becomes especially simple in following
sis:

(A.4)hi = �i + ρi.
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C2(λ) = (λ,λ + 2ρ)

= |� + ρ|2 − |ρ|2 = |h|2 − |ρ|2

(A.5)=
N∑

i=1

h2
i − 1

12
N

(
N2 − 1

)
.

The SL(2,Z) generatorsS andT used in the main text ar
given by

Tλµ = δλµe
2πiC(λ)
2(k+g)

− 2πic
24 ,

(A.6)Sλµ = i|�+|

(k + g)r/2

∣∣P/Q∨∣∣−1/2 ∑
w∈W

ε(w)e
− 2πi

k+g
(λ,w·µ)

,

where the central charge isc = k dimg/(k + g). For explicit
determinantal formulas in the case ofU(N), SO(N) andSp(N),
see[2]. In the main text we dropped the overall normalizat
of T .

The proof of

(A.7)
∑
λ

dimq(λ)N
µ
λν = SµρSνρ

S2
ρρ

is straightforward. We fill in the Verlinde formula forNµ
λν and

useS2 = C. The proof of

(A.8)
∑
λ

dimq(λ)N
µ
λνTλ = T −1

ρρ

Sρρ

(T ST )µν

is similar. We fill in the Verlinde formula forNµ
λν and use

(ST )3 = C twice. The result follows.
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