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Abstract I examine the relationship between (d + 1)-dimensional Poincaré metrics
and d-dimensional conformal manifolds, from both mathematical and physical per-
spectives. The results have a bearing on several conceptual issues relating to asymptotic
symmetries in general relativity and in gauge–gravity duality, as follows: (1: Ambient
Construction) I draw from the remarkablework byFefferman andGraham (ElieCartan
et les Mathématiques d’aujourd’hui, Astérisque, 1985; The Ambient Metric. Annals
of Mathematics Studies, Princeton University Press, Princeton, 2012) on conformal
geometry, in order to prove two propositions and a theorem that characterise which
classes of diffeomorphisms qualify as gravity-invisible. I define natural notions of
gravity-invisibility (strong, weak, and simpliciter) that apply to the diffeomorphisms
of Poincaré metrics in any dimension. (2: Dualities) I apply the notions of invisi-
bility, developed in (1), to gauge–gravity dualities: which, roughly, relate Poincaré
metrics in d + 1 dimensions to QFTs in d dimensions. I contrast QFT-visible versus
QFT-invisible diffeomorphisms: those gravity diffeomorphisms that can, respectively
cannot, be seen from the QFT. The QFT-invisible diffeomorphisms are the ones which
are relevant to the hole argument in Einstein spaces. The results on dualities are sur-
prising, because the class of QFT-visible diffeomorphisms is larger than expected, and
the class of QFT-invisible ones is smaller than expected, or usually believed, i.e. larger
than the PBH diffeomorphisms in Imbimbo et al. (Class QuantumGravity 17(5):1129,
2000, Eq. 2.6). I also give a general derivation of the asymptotic conformal Killing
equation, which has not appeared in the literature before.
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1 Introduction

The asymptotic symmetries of gravity have been a central foundational topic in gen-
eral relativity since at least the work Arnowitt et al. [3,4], Sachs [34,35], Bondi et al.
[7], Penrose [32,33], Newman et al. [31], Geroch [20], Ashtekar et al. [5], and others.
A central question is whether there are asymptotic diffeomorphisms that act on the
physical degrees of freedom of the gravity theory, and how these diffeomorphisms
are to be characterised. Only very recently has it for example been realized that, for
Schwarzschild spacetimes, there are—in addition to the usual ADM mass, momen-
tum, and angular momentum—an infinite number of conserved supertranslation and
superrotation charges, which act non-trivially on the physical phase space [23].

In this paper, I analyse the case of a negative cosmological constant. (For a discus-
sion of the other cases: see the physical motivation, below.) I will use gauge–gravity
duality to argue that there is a significant, non-empty, class of diffeomorphisms—
which Iwill, broadly speaking, call ‘visible’, in a sense that Iwillmake precise—which
act on the dual gauge theory, and which act on the physical degrees of freedom of the
gravity theory. And there is a class of ‘invisible’ diffeomorphisms which do not act on
the asymptotic quantities. The latter class invites a comparison with Einstein’s hole
argument.

Iwill develop techniques to characterise these twoclasses, and Iwill prove a theorem
and two propositions about them.

Diffeomorphisms and Gauge–Gravity Duality Gauge–gravity dualities are surpris-
ing relationships between gravity theories, typically defined in d + 1 dimensions, and
quantum field theories (QFTs) in d dimensions. The duality is usually construed as
an ‘isomorphism’ between all the physical quantities on either side. One important
question for dualities is what part of the content of the theory is ‘physical’, and thus
mapped by the duality: and what part of content is ‘unphysical’, specific to one of
the two sides, hence not mapped by the duality—it will be invisible to duality. Gauge
symmetries in QFT are of this kind: if the QFT has a gauge symmetry, its physi-
cal quantities are gauge invariant and are treated as such by the duality—the gauge
symmetry is not seen on the dual side.

One naturally expects that the diffeomorphism invariance of the gravity theory is
also of this kind: what is physical in a gravity theory should be independent of the
coordinates chosen, and so one would naively not expect the duality to ‘see’ the action
of diffeomorphisms in the gravity theory. The QFT does not possess diffeomorphism
invariance, and so the diffeomorphisms should be invisible to it. But there is one well-
known class of diffeomorphisms that is visible through the duality map and which
thereby can acquire a physical meaning [12, Sect. 1.3.2]. Namely, the QFT is invariant
under the coordinate transformations that leave its background geometry fixed. In the
cases where the QFT has an UV fixed point (at which it is a conformal field theory,
or CFT), the conformal group is known to arise, through the duality map, from a
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restricted class of diffeomorphisms of the gravity theory, which go under the name of
PBH transformations (Brown and Henneaux [8, Sects. III–IV]) [13,26].

The difference between the two kinds of diffeomorphisms—those that are visible
versus those that are invisible through the duality—is thus a crucial property of the
duality map, and determines what is ‘physical’, on both sides of the duality. The
diffeomorphisms differ both in their physical properties and in the ways in which they
can be regarded to be novel properties of the gravity theory. While I will leave the
question of emergence of diffeomorphisms for the future1: in this paper I will focus on
themathematical and physical contrast between visible and invisible diffeomorphisms.

Physical Motivation and Generality of the Results Let me describe in more detail
the two main physical motivations for this work: namely, from general relativity, and
from quantum gravity.

As for classical general relativity: there is, of course, a large and venerable litera-
ture on boundary conditions, and diffeomorphisms which preserve them, in general
relativity: especially in the asymptotically flat case. Arnowitt et al. [3,4] developed
the definition of energy using the ADM formalism, in which spacetime is foliated
into a family of spacelike surfaces, and they parametrised the four-dimensional metric
in terms of a three-dimensional metric on the surface and four functions, the lapse
function and the shift vector. Sachs [34,35] and Bondi et al. [7] studied in detail the
question of asymptotic symmetries at null infinity in asymptotically flat spacetimes,
a problem that is highly relevant to e.g. gravitational waves. The asymptotic symme-
try group discovered now goes under the name of the BMS group. This led to other
important results, such as Penrose’s [32,33] treatment of conformal infinity, which
also holds in the presence of a non-zero cosmological constant. The asymptotically
flat case was further developed in works such as Newman et al. [31], Geroch [20],
Ashtekar et al. [5], and others.

The case of a negative cosmological constant has been treated, with a variety of
motivations, in the works cited in the preamble of this Introduction. Other important
work is e.g. Ishibashi et al. [27], which focuses on AdS’s lack of global hyperbolicity.

The case of a positive cosmological constant is the poorest understood. Relevant
works are e.g. Anninos et al. [2] and Ashtekar et al. [6], and references therein.

While the cosmological constant in our universe is of course not negative2 (nor is it
zero!), there are several motivations, from classical general relativity, for taking up the
case of a negative cosmological constant once again: in addition to the ones already
mentioned earlier.

First of all, as in Ishibashi et al. [27], the case of negative cosmological constant is
non-globally hyperbolic (since pureAdS is “like a box”), and so understanding in detail
how todefineboundary conditions, andhowboundary conditions anddiffeomorphisms
mesh, is quite relevat for the treatment of solutions more generally in open regions of
the universe, where observers within any finite region have no access to infinity within

1 For a discussion of emergence of spacetime in gauge–gravity dualities, see De Haro [11, Sect. 3].
2 I thank an anonymous referee for bringing up the question of the relevance of this work for actual
cosmology.
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a finite time. And so, it is of conceptual and practical importance to understand general
relativity for open systems (the Schwarzschild black hole being a related example).

Second, the techniques which I develop in this paper can be generalised, by an
analytic continuation �AdS �→ i �dS, to the cosmologically relevant case of a positive
cosmological constant: as I discuss towards the end of Sect. 4 (for details on how this
map acts, see De Haro et al. [15, Sect. 8]). The analytic continuation maps the timelike
boundary to a spacelike boundary. In fact, one expects not only the mathematical
techniques, but also some of the conceptual lessons, to carry over to that case: such
as the bulk/hole argument of De Haro et al. [14, Sect. 6], and the notion of gravity-
invisible diffeomorphisms.

But there is of course also, in addition to these classical considerations, a quantum
gravity motivation: understanding the classical structure of gauge–gravity duality is
an important step towards understanding the duality at the quantum level. For asymp-
totic symmetry structures are of course important for the quantisation of gravity. Since
candidate quantum gravity theories do not abound, developing AdS/CFT is a worth-
while exercise. And as stressed in De Haro [12]: the content that is invariant across
the duality (the ‘common core’) is what should be regarded as physically significant
for this particular theory of quantum gravity. This gives us an additional argument to
the effect that the diffeomorphisms which are visible to the QFT also act on general
relativity’s asymptotic degrees of freedom.

The question, ofwhich class of diffeomorphisms are physical andwhich are unphys-
ical, is an important question for dualities in general—as it is for gauge theories. It
also bears on the definition of observables, background-independence, and emergence.
Thus AdS/CFT is a good case study which has already provided insights into possi-
bilities for defining a gauge–gravity duality for spaces with a positive cosmological
constant (see e.g. Maldacena [29], Strominger [38], De Haro et al. [15, Sect. 8]).

1.1 Conformal Geometry and Summary of the Results

I will draw on the so-called ambient construction in conformal geometry—a remark-
able piece of mathematics by Fefferman and Graham [18,19]—in order to prove two
propositions and a theorem which apply to general relativity and gauge–gravity duali-
ties. The mathematical results concern the conditions under which a diffeomorphism,
in a gravity theory with a gauge dual, is ‘invisible’ to the gauge theory.3 I will provide
four notions of invisibility, three concerning the gravity theory and one concerning the
gauge theory. The notions of gravity-invisibility amount to a diffeomorphism being
invisible if it fixes certain mathematical structures in the gravity theory:

(i) the form of the metric: i.e. a class of Poincaré metrics,
(ii) the conformal manifold at the boundary: in terms of its points, or
(iii) the representative of the conformal class of metrics with which the boundary

manifold is equipped.

3 The notion of ‘invisibility’ for dualities in general was introduced in De Haro et al. [14, Sect. 5.1]. It is
concretely inspired by the work of Horowitz and Polchinski [25]. See the last paragraph of this section, and
especially De Haro et al. [14, Sects. 2,5.1–5.2], for a discussion.
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Aswewill see in Sect. 2, fixing (ii) does not imply fixing (iii): for the class of diffeo-
morphisms fixing (ii) include non-trivial conformal transformations at the boundary,
which transform the representative of the conformal class non-trivially, hence do not
fix (iii).

I will define notions of invisibility that apply to the two theories involved in a
gauge–gravity duality in a moment.

Let a T -invisible diffeomorphism be a diffeomorphism that is invisible to theory T ,
in the sense of its preserving appropriate structures of theory T . Let us now proceed
to specify these structures in more detail.

For the gravity theory, there are three related notions of gravity-invisibility, depend-
ing on which of the structures (i)–(iii) above are preserved, as follows:

(a) strongly gravity-invisible diffeomorphisms: which fix all of (i)–(iii);
(b) weakly gravity-invisible diffeomorphisms: which fix (i) & (ii) or (i) & (iii) but not

necessarily all three;
(c) (simpliciter) gravity-invisible diffeomorphisms: which fix (ii) & (iii) but not nec-

essarily (i).

The notion ofQFT-invisible diffeomorphisms, on the other hand, concerns theQFT:
they are those gravity diffeomorphismswhich cannot be seen (in a sense yet to bemade
precise) through the duality, hence are invisible to the QFT.

Thus, my definition of ‘invisibility of diffeomorphisms’ is relative to a theory (the
gravity theory or the QFT): more precisely, relative to certain structures preserved
within that theory. Thus the gravity-invisible diffeomorphisms are a priori independent
of the duality, and express only a property of the gravity theory. The QFT-invisible
diffeomorphisms will be the ones that should be seen as a property of the duality,
viz. they are diffeomorphisms of the gravity theory which are invisible to the QFT
(and they will be defined in terms of gravity-invisible diffeomorphisms).

The main mathematical results of this paper can then be summarised in the fol-
lowing three statements regarding infinitesimal diffeomorphisms (keeping the same
numbering (a)–(c), since each result refers to its corresponding class above):

(a: Theorem 3, Sect. 2.2.1) There exist nonon-trivial strongly gravity-invisible
diffeomorphisms, i.e. imposing that the diffeomor-
phism is strongly gravity-invisible also implies
that it is equal to the identity.

(b: Propositions 1, 2, Sect. 2.2.1) The weakly gravity-invisible diffeomorphisms
reduce to conformal transformations at the bound-
ary of the manifold.

(c: Sect. 2.4) There exist non-trivialgravity-invisible diffeomor-
phisms.

These mathematical results have a number of surprising physical and philosophical
consequences:

(1) There is a version of Einstein’s hole argument for (generalised) anti-de Sitter
(AdS) space: what we may call the ‘bulk argument’, introduced in De Haro et
al. [14, Sect. 6]. The result (c) in the current paper implies that there is indeed
a non-empty class of diffeomorphisms for which the bulk argument holds. And
result (c) also characterises this class: as being smaller than one might expect.
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(2) The weakly gravity-invisible diffeomorphisms (b) give rise to the conformal sym-
metry of the gauge theory, with the implication that not all diffeomorphic structure
in the gravity theory is invisible to the quantum field theory (QFT). This substan-
tiates the claim in De Haro et al. [14, Sect. 5.1] that not all ‘gauge’ structure (in the
philosopher’s sense) is invisible to the duality. Although the connection between
the diffeomorphisms in the gravity theory and conformal invariance is familiar
from the gauge–gravity literature, the class of diffeomorphisms which give rise to
conformal transformations is in this paper found to be larger than the standard one
in Imbimbo et al. [26] and Skenderis [36]: see the discussion following Eqs. (17)
and (20).

(3) The distinction between visible and invisible diffeomorphisms, worked out in
mathematical detail here, underlies the discussion of background-independence
in De Haro [11, Sects. 2.3.2–2.3.4]: and, in particular, it characterises two classes
of diffeomorphisms to which a different analysis of background-independence
applied, in De Haro [11, Sect. 2.3.3]. In that paper, these two cases were distin-
guished from each other and from yet another class, of ‘large’ diffeomorphisms:
which do not preserve any of the pairwise structures defined here, and which
I will not consider in this paper. The distinction of QFT-visibility versus QFT-
invisibility also provides the basis of the discussion, in De Haro [11, Sect. 2.3.3],
of the purported covariance of states and quantities. The violation of covariance
for even boundary dimensions is given in Eq. (36).

(4) Having a precise characterisation of the notions of visibility and invisibility of
diffeomorphisms, it now becomes possible to meaningfully discuss whether, and
how, diffeomorphisms emerge on the gravity side. One point that readily follows
from (a)–(c) is that, despite the claims in the literature, there is no ‘emergence of
diffeomorphisms’ tout court: for the visible and the invisible diffeomorphisms do
not arise in anything like the same sense. I shall leave this question for the future.

My results provide a completely general derivation of the condition for a gravity
diffeomorphism to give rise to a conformal transformation on the boundary, which,
though perhaps known to the experts in the geometry of gauge–gravity dualities,4

has not appeared in print except in very special cases. So, the results here fill a gap
in the literature: indeed, to my knowledge, the derivation of the condition for the
diffeomorphisms to be conformal transformations, i.e. the gravity derivation of the
QFT’s conformal Killing equation from the requirement of weak invisibility (Eq. (17)
for the linear case, Eq. (23) for the non-linear case) has not appeared in the literature
except for pure AdS [22, Eq. 18] and low-dimensional cases [8, Sects. III, IV].

1.2 Plan of the Paper

In Sect. 2, I introduce and develop the methods from conformal geometry that are
needed to be able to define visibility and invisibility with the precision required for
our purposes. I then prove the results (a)–(c), which provide the mathematical basis
for: (1) and (2), which were discussed in De Haro et al. [14]; as well as (3), which

4 This was confirmed in: Skenderis, private communication.
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was discussed in De Haro [11]. Three Appendices contain technical and illustrative
examples of the relevant physics, and of howQFT-invisibility shows in these examples.

The notion of invisibility is motivated by a discussion by Horowitz and Polchinski
[25, p. 12]: ‘the gauge theory variables... are trivially invariant under the bulk diffeo-
morphisms, which are entirely invisible in the gauge theory’ (my emphasis). It follows
from the analysis in the current paper that not all gravity diffeomorphisms are in fact
invisible to the gauge theory. As we saw in (c) above, there is a large class (larger than
normally realised5) of diffeomorphisms of the gravity theory which are not invisible
to the gauge theory: those that do not restrict to the identity map on the boundary,
under which the gauge theory is not invariant but covariant at best (in the case of odd
d), and non-invariant (because of an anomaly when d is even) at worst. Section 3 will
specify the class of QFT-invisible diffeomorphisms: the specification of the class turns
out to be subtle, and the class turns out to be smaller than often expected. In Sect. 4, I
discuss and summarise the results.

Though I take the discussion by Horowitz and Polchinski as my motivation for
considering invisibility, my definition of the notion differs from theirs, in that, as
mentioned in the preamble of this section, it is relative to a specific theory: and so, I
allow for diffeomorphisms that are invisible not only to the gauge theory, but also for
diffeomorphisms that are invisible to the gravity theory (in the sense that they preserve
the structures (i), (ii) or (iii)).

2 Visible Versus Invisible Diffeomorphisms

In this section, I prove the main mathematical results of the paper, (a)–(c) in Sect. 1,
concerning three kinds of gravity-invisible diffeomorphisms. In Sect. 2.1, I will collect
the definitions and theorem, from [18,19], that will be used in the rest of the section. In
Sect. 2.2, I will define the relevant notions of invisibility and derive two propositions
and our main theorem about them: (a) that the class of non-trivial strongly-invisible
diffeomorphisms is empty, as well as (b) weakly gravity-invisible diffeomorphisms
reduce to boundary conformal transformations. In Sect. 2.4, I will prove that (c) the
class of non-trivial gravity-invisible diffeomorphisms is non-empty and I will give
bounds on the asymptotic behaviour that ensure that suchdiffeomorphisms in fact exist.
I will use these results in Sect. 3 to define the notion ofQFT-invisible diffeomorphisms,
and I will explain how it relates to the gravity-invisible diffeomorphisms.

Throughout, wewill be considering solutions of Einstein’s equation in d +1 dimen-
sions in vacuum6 with a negative cosmological constant � = − d(d−1)

2�2
, where � is

called the curvature radius:

Ric[ĝ] + d

�2
ĝ = 0, (1)

5 ‘Normal’ here refers to the standard references, in the context of gauge–gravity duality, on the so-called
PBH transformations: Imbimbo et al. [26], De Haro et al. [13], Skenderis [36]. See the discussion following
Eqs. (17) and (20).
6 Appendix C discusses how to couple gravity to matter fields.
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and ĝ is the (d + 1)-dimensional metric (as opposed to g, which will denote a d-
dimensional metric: to be defined below) of any signature.

2.1 Poincaré Metrics and Normal Forms

Our aim in this subsection is to introduce the geometrical notions that will allow us
to articulate, in Sect. 2.2, three related notions of invisibility of a diffeomorphism. To
this end, I will first, in Sect. 2.1.1, introduce conformal manifolds. Then I will define
the notion of conformal compactness: manifolds whose metric, roughly speaking,
has a double pole at the boundary, but is otherwise smooth and nondegenerate at the
boundary, which is itself a conformal manifold. Then I will require the metric on this
conformally compact manifold to be of Poincaré type, and introduce some results
about the normal form of this metric. In Sect. 2.1.2, I will discuss diffeomorphisms,
both active and passive: which will allow us to discuss their invisibility in Sect. 2.2.

2.1.1 Conformal Manifolds and Poincaré Metrics

Definitions.7 A conformal structure on a differentiablemanifold M is an equivalence
class of (pseudo)-Riemannian metrics, in which two metrics are equivalent if one is a
positive smooth multiple of the other. We will denote a conformal class, i.e. such a
conformal structure, by [g]. Thus, [g] consists of all metrics on M of the form �2 g,
where � is any smooth, real-valued function on M . g is a smooth metric, called a
representative of the conformal class [g].

Throughout this paper, M will be a smooth manifold of dimension d ≥ 2, equipped
with a conformal structure [g]. The representative g of the class will be a smooth
pseudo-Riemannian metric of signature (p, q) on M , with p + q = d. A conformal
manifold, then, is a pair (M, [g]) of a smooth manifold of dimension d ≥ 2, equipped
with a conformal structure, which is a choice of a conformal class of metrics of
signature (p, q).

Let M̂ be a manifold with boundary M , ∂ M̂ = M . Pick a defining function for
this boundary: a function r ∈ C∞(M̂) which satisfies: (i) r > 0 in the interior
M̂int = M̂ − M , (ii) r = 0 on M , and: (iii) dr �= 0 on M .

We will be concerned with the behaviour near the boundary M of M̂ . Locally
near r = 0, M̂ has the form of a product manifold. Thus we will consider an open
neighbourhood of M ×{0} ⊂ M ×R≥0, where the defining function r ∈ R≥0 denotes
the second factor.

Definition A smooth metric ĝ on the interior of M̂ , M̂int, of signature (p + 1, q) is
conformally compact, if: (i) r2ĝ extends smoothly to M̂ , and: (ii) r2ĝ|M is nonde-
generate (i.e. of signature (p + 1, q) also on M). A conformally compact metric ĝ is
said to have conformal infinity (M, [g]) if r2 ĝ|T M ∈ [g].

7 The definitions and conventions in this subsection mostly follow Fefferman and Graham [19].
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Definition (Fefferman and Graham [19, Sect. 4.1]. A Poincaré metric for (M, [g])
is a conformally compact metric ĝ of signature (p + 1, q) on M̂int, where Mint is an
open neighbourhood of M × {0} ⊂ M × R≥0, such that:

(1) ĝ has conformal infinity (M, [g]).
(2) If d is odd or d = 2, then Ric[ĝ] + d

�2
ĝ vanishes to infinite order along M .

If d ≥ 4 is even, then Ric[ĝ] + d
�2

ĝ = O(rd−2), i.e. Ric[ĝ] + d
�

ĝ ‘vanishes up to

terms of order’ rd−2.
The same results apply if one considers metrics ǧ on M̂int of signature (p, q + 1)

such that Ric[ǧ] − d
�2

ǧ vanishes to the stated order.

Definition (based on Fefferman and Graham [19, Sect. 4.2]. A Poincaré metric ĝ for
(M, [g]) is said to be in normal form relative to g if:

ĝ = �2

r2

(
dr2 + gr

)
, (2)

where gr is a 1-parameter family ofmetrics on M of signature (p, q), such that g0 = g.
There is an alternative form of a Poincaré metric in normal form, with formal

asymptotics that is entirely equivalent. It is suggested by Fefferman and Graham’s
[18] ambient space construction that originally motivated their work. There is a dif-
feomorphism χ� : M × R≥0 → M × R≥0, χ�(x, r) = (

x,
√

�ρ
)
bringing the above

metric to the following form:

ĝ = �2

4ρ2 dρ2 + �

ρ
g(x, ρ), (3)

where g(x, ρ) = g√
�ρ(x) is a 1-parameter family ofmetrics on M satisfying g(x, 0) =

g(x) = gi j (x) dxi dx j ∈ [g], for a coordinate system (x1, . . . , xd) on M .

Theorem [19, Sect. 4.5]. Let M and g be given as above. Then there exists an even
(i.e. it is an even function of r) Poincaré metric ĝ for (M, [g]) which is in normal form
relative to g.

2.1.2 Diffeomorphisms

Let p be a point in a neighbourhood U1 of M̂ . Let ϕ be a coordinate function on U1,
i.e. there is a chart (U1, ϕ), such that ϕ : U1 → R

d+1, viz. it assigns p �→ ϕ(p).
Call the point that ϕ maps to, X := ϕ(p) ∈ R

d+1. Let U2 be another neighbourhood
of M̂ with coordinate chart (U2, ψ), such that ψ : U2 → R

d+1, viz. an assignment
q �→ ψ(q). Call the point that ψ maps to, X̃ := ψ(q) ∈ R

d+1.
A diffeomorphism φ : U1 → U2 is a homeomorphism that assigns to p another

point q = φ(p), φ : p �→ φ(p), such that the map� := ψ ◦φ◦ϕ−1 : R
d+1 → R

d+1

between the respective coordinates, i.e. (� ◦ ϕ)(p) = (ψ ◦ φ)(p), is invertible, and
both � and �−1 = ϕ ◦ φ−1 ◦ ψ−1 are C∞. We can also write this condition in terms
of invertibility and differentiability of the function X̃ = �(X) onRd+1 and its inverse
X = �−1(X̃).

123



Found Phys (2017) 47:1464–1497 1473

When U1 = U2, so that φ : U → U , we can take ψ = ϕ and � = ψ ◦ φ ◦ ψ−1.
Then X and X̃ correspond to different points in U , in the same coordinate chart. Such
a diffeomorphism is called active. In this paper we will construe all diffeomorphisms
as active.

One can also considerpassive diffeomorphisms, which aremere reparametrizations
of the coordinates: one considers a single point p and twooverlapping coordinate charts
(U1, ϕ), (U2, ψ) such that p ∈ U1 ∩ U2. The map � : Rd+1 → R

d+1, ϕ(p) �→
�(ϕ(p)) = ψ(p), in other words �(X) = X̃ , is then taken to be differentiable. The
formula is the same, but themeaning of the diffeomorphism is different: since X and X̃
now correspond to the same point p ∈ U1 ∩ U2, but expressed in different coordinate
charts.

Proposition (Diffeo) [19, Sect. 4.3] Let ĝ be a Poincaré metric on M̂int for (M, [g]).
Then there exists an open neighbourhood U of M × {0} ⊂ M × R≥0 on which there
is a unique diffeomorphism φ : U → M̂ such that φ|M is the identity map, and φ∗ĝ
is in normal form relative to g on U .

So, when we work with Poincaré metrics, we only need to consider those that are
in normal form.

2.2 Strongly Gravity-Invisible Diffeomorphisms are the Identity

In this subsection, I will introduce three related notions of gravity-invisibility, and
prove my main results about them, viz. (a)–(c) in Sect. 1:

(a) non-trivial strongly gravity-invisible diffeomorphisms do not exist;
(b) weakly gravity-invisible diffeomorphisms reduce to boundary conformal trans-

formations;

(c: in Sect. 2.4) there exist non-trivial gravity-invisible diffeomorphisms.

Consider a Poincaré metric ĝ for (M, [g]). By (Diffeo), we can, without loss of
generality, take this metric to be in normal form relative to g in an open neighbourhood
U of M × {0} ⊂ M × R≥0

8.
Now consider a diffeomorphism φ of the manifold, and the pullback φ∗ĝ of the

metric that it gives rise to. Let φ : U → U be a diffeomorphism, defined as in Sect.
2.1.2. We will be interested in the class of diffeomorphisms that preserve the normal
form of the metric. We will also impose various conditions on the asymptotic form of
the diffeomorphism. This will be encapsulated in the idea of a diffeomorphism being
invisible (in one or another of three related senses); and our first aim, roughly speaking,
will be to prove that only the identity diffeomorphism is invisible. As mentioned,
we will consider active diffeomorphisms, though similar considerations apply to the
passive ones. Thus we set ψ = ϕ in the definition of an active diffeomorphism, in
Sect. 2.1.2. Let us start with some definitions.

8 There is of course no claim here that � in (Diffeo) is invisible. Grumiller et al.[[21] Eq. (3.6)] report a
three-dimensional metric that is claimed to be physically inequivalent to the correspondingmetric in normal
form.
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Definition Let ĝ be a Poincaré metric for (M, [g]) in normal form. A diffeomorphism
φ : U → U , where U is an open neighbourhood of M × {0} ⊂ M × R≥0, is said
to be invisible relative to (ĝ, M, g) (or strongly gravity-invisible) if it satisfies the
following three conditions:

(i) (Invisible relative to ĝ) : φ∗ĝ is in normal form relative to g.

(ii) (Invisible relative to M) : φ|M×{0} = idM×{0}. This means that�(x, 0) = (x, 0).
(iii) (Invisible relative to g) : (φ∗g)(p) = g(p), i.e. φ is an isometry of M .

In (iii), p ∈ M and (φ∗g)(p) is induced from (φ∗gr )(p) = gr̃ (φ(p)) at r = 0 (g = g0
in (2)), where r̃ := �d+1(x, r), the last component of�(x, r) ∈ R

d+1, which in what
follows we shall denote �r (x, r). Also, notice that (iii) is not trivially implied by
(ii): for (ii) allows a non-trivial transformation of r , which we will parametrise as
ξ(x), and which is non-zero at the boundary and does transform g; whereas (iii) is the
requirement that g does not transform.

If, under the above stated conditions, φ is invisible relative to (M, g), in the sense
that (ii) and (iii) hold but not necessarily (i), then φ is said to be gravity-invisible.

We will also consider diffeomorphisms that are invisible relative to (ĝ, g) (i.e. (i)
and (iii) hold but not (ii) necessarily) or invisible relative to (ĝ, M) (i.e. (i) and (ii) hold
but not (iii) necessarily): such φ’s shall be collectively calledweakly gravity-invisible
(and it will not be important for us to distinguish between the latter two conditions).

Strongly gravity-invisible versus gravity-invisible will be the crucial contrast for
our discussion in Sects. 3.1–3.2. Also, in this section we will prove that a strongly
gravity-invisible diffeomorphismmust be the identity. The proof does not use (Diffeo)
but it will be based on two propositions that (a) are interesting for their own sake, and
(b) will give us insight into the the notion of invisibility.

Definition A diffeomorphism ϕM on a manifold M is called a conformal transfor-
mation if its effect on the metric is to rescale it by some smooth, strictly positive
function ω : M → R>0, such that (ϕ∗

M g)(p) = ω−2(p) g(p).

Definition Let ĝ be a Poincaré metric for (M, [g]) in normal form. A diffeomorphism
φ : U → U , where U is an open neighbourhood of M ×{0}, is said to be a boundary-
conformal diffeomorphism (or simply, to be boundary-conformal) if φ induces a
conformal transformation on g, i.e. there is a smooth, strictly positive function � :
M̂ → R>0 such that:

φ∗ĝ(p)|p∈M = �−2(p) ĝ(p) . (4)

Definition We will say that a diffeomorphism φ on M̂ reduces to a boundary dif-
feomorphism ϕM on M if φ|M×{0} = ϕM × id{0}.

Written in a coordinate patch, a diffeomorphism that reduces to a boundary dif-
feomorphism is one that satisfies: �(x, 0) = (x̃, 0), where x̃ = ψ(ϕM (p)) for
p ∈ M ⊂ M × {0}, and x = ψ(p). This can be written as x̃ = �(x) where
� := ψM ◦ ϕM ◦ ψ−1

M : R
d → R

d and ψM := ψ |M : M → R
d ⊂ R

d × {0}.
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Notice that a diffeomorphism that reduces to the identity on M is invisible relative
to M , i.e. it trivially satisfies condition (ii) above.

Let us also make a choice of coordinates on Rd+1 in terms of which we will write
the metric in the normal form (2). Define (x, r) := X = ψ(p) and (x̃, r̃) := X̃ =
ψ(φ(p)). � is an invertible map. The diffeomorphism X = �−1(X̃) is then written:

xi =
(
�−1

)i
(x̃, r̃)

r =
(
�−1

)r
(x̃, r̃), (5)

where the superscript r denotes the (d + 1)-th component.
In the rest of this section we will be considering diffeomorphisms that are either

invisible relative to M , or reduce to a boundary diffeomorphism ϕM . In both cases,
the diffeomorphism acts as the identity on the second factor of M × {0}. This means
that, in both cases, r = 0 and r̃ = 0 each still parametrise the boundary. We will say
that such a diffeomorphism fixes the location of the boundary.

Comment on the Identity Map Our condition (ii) of invisibility relative to M is
φM×{0} = idM×{0}, implying that x̃ = x and r̃ = 0. Thus these diffeomorphismsfix the
points of M at r = 0. This is aweaker condition than requiring that the diffeomorphism
should go to the identity in a neighbourhood U := M ×[0, ε), for ε > 0, of M ×{0},
i.e. φ|U = idU . The latter condition is stronger than (ii), and the former allows for
diffeomorphisms which act nontrivially along the r -direction, r̃ = λ(x) r , while fixing
r = 0. Such diffeomorphisms generate conformal transformations at the boundary, as
we will see in Propositions 1 and 2, thus they do not fix g(p): and hence they do not
imply (iii).

2.2.1 Infinitesimal Case

In this section we will consider infinitesimal diffeomorphisms, as follows:
(Infinitesimal) We only consider maps close to the identity map in U : φ = idU +

δφ + · · · Written out for �, this means that � = idRd+1 + ψ ◦ δφ ◦ ψ−1 + · · · =:
idRd+1 + δ� + · · · in ϕ(U). In the coordinates (5), we will write:

xi =
(
�−1

)i
(x̃, r̃) = x̃ i + ξ i (x̃, r̃)

r =
(
�−1

)r
(x̃, r̃) = r̃ − r̃ ξ(x̃, r̃), (6)

where ξ i and ξ will be taken to be infinitesimal, and we will linearise all expressions
in terms of them.

If an infinitesimal diffeomorphism is to fix the boundary, then we immediately find
that ξ(x̃, 0) must be regular near r̃ = 0 on ψ(U), i.e. ξ(x̃, r̃) = r̃α ξ(x̃) + O(r̃α+1)

for some α ≥ 0. The notationO(r̃α+1) means ‘up to terms of order r̃α+1 and higher’.
We will take the lowest value of α possible, viz. α = 0, so that to account for higher
values of α one simply sets ξ(x̃) = 0. Thus r can be written as:
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r = r̃ ω(x̃) + O(r̃2) = r̃ (1 − ξ(x̃)) + O(r̃2), (7)

for ω(x̃) and ξ(x̃) both smooth functions.
Let us now consider diffeomorphisms that are invisible relative to ĝ, i.e. φ∗ĝ is in

normal form relative to a metric g on the boundary manifold M . So, from (2), for a
point q = φ(p) ∈ U , the following must hold:

(
φ∗ĝ

)
i j (p) = �2

r̃2
g̃i j (q) (8)

(
φ∗ĝ

)
ir (p) = 0 (9)

(
φ∗ĝ

)
rr (p) = �2

r̃2
. (10)

We will work out these three equations linearising in the diffeomorphisms δ�, as in
(Infinitesimal).

Equation (10) reduces to:
(

∂r
∂r̃

)2 1
r2

= 1
r̃2
. This can be integrated over the entire

ψ(U)

r = r̃ ω(x̃) + O(ξ2i ) . (11)

So the lowest-order expression that we obtained in (7) by assuming that ξ(x̃, r̃) was
regular at r = 0, is actually valid on the entire domain ϕ(U).

Next we write out (9). For this purpose, we use the just-obtained (11). We get the
following result:

∂r̃ξ
i (x̃, r̃) = r̃ gi j (x̃, r̃) ∂ jξ(x̃) + O(ξ2, ξ2i ) . (12)

The reason for the dependence of gi j on (x̃, r̃) rather than (x, r) is that the expression
is already linear in ξ, ξ i , so (x, r) can be replaced with (x̃, r̃) in the entire equation.

Finally we work out (8), again for infinitesimal diffeomorphisms:

g̃i j (x̃, r̃) = (1 + ξ(x̃) (2 − r̃ ∂r̃ )) gi j (x̃, r̃) + ∇i (g) ξ j (x̃, r̃)

+∇ j (g) ξi (x̃, r̃) + O(ξ2, ξ2i ) . (13)

It will be useful for later use to write this as:

δφ−1 gi j (x, r) := (φ∗g)i j (x, r) − gi j (x, r)

= ξ(x) (2 − r ∂r ) gi j (x, r)+∇i ξ j (x, r)+∇ j ξi (x, r)+O(ξ2, ξ2i ),

(14)

where the tildes were dropped from the point (x, r). The expression is the same to
linear order in the diffeomorphism because the difference of metrics is already of
linear order.
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Proposition 1 (Infinitesimal version) Let ĝ be a Poincaré metric for (M, [g]) in nor-
mal form. If φ : U → U is invisible relative to (ĝ, g) and reduces to ϕM , then ϕM is
a conformal transformation.

To prove this, we take the expression (14) which was obtained from requirement
that φ be invisible relative to ĝ in (8)–(10). Requiring that φ be invisible relative to
g as well, instructs us to set (φ∗g)(p) = g(p), which is setting δφ−1 gi j (x, 0) = 0.
Thus, setting r = 0 in (14), this reduces to:

δφ−1 gi j (x) = 2ξ(x) gi j (x) + ∇i ξ j (x) + ∇ j ξi (x) + O
(
ξ2, ξ2i

)

= 2ξ(x) gi j (x) + (Lξ g)i j (x) + O
(
ξ2, ξ2i

)
= 0, (15)

where ξi (x) := ξi (x, 0) and Lξ g is the Lie derivative with respect to the vector field ξ

on M (not to be confused with the scalar function ξ(x)). Taking the trace of the above
equation, and substituting the result back into the same equation, we get:

ξ(x) = − 1

d
∇ i ξi (x) + O

(
ξ2, ξ2i

)
(16)

δφ−1gi j (x) = Lξ gi j (x) − 2

d
gi j (x)∇k ξk + O

(
ξ2, ξ2i

)
= 0 . (17)

This is precisely the conformal Killing equation, i.e. the infinitesimal version of the
condition for ϕ−1

M (and hence ϕM ) to be a conformal transformation. ��
As discussed in Sect. 1, the Killing equation (17) on M has, hitherto, been derived

only in very special cases such as pureAdS space (cf. [22, Eq. (18)])). The reason is that
the more general treatments, like Imbimbo et al. [26, Sect. Eq. (2.6)] and Skenderis
[36, Sect. Eq. (8)], assume that ξi (x) = 0, and hence they cannot get the Killing
equation.

Equation (17) can be rearranged as follows:

δ
ϕ−1

M
g(x) = Lξ g(x) = − 2

d
∇kξk(x) g(x), (18)

which is indeed the infinitesimal version of the following exponential form:

(ϕ−1
M )∗ g(x) = e−2ξ(x) g(x) . (19)

We will give a proof of this formula for finite diffeomorphisms at the end of this
subsection.

Proposition 2 (Infinitesimal version) Let ĝ be a Poincaré metric for (M, [g]) in nor-
mal form. If φ : U → U is invisible relative to (ĝ, M), then φ reduces to a Weyl
transformation.

To prove this, notice that the requirement of invisibility relative to M means that we
have to set ξ i (x, 0) = 0. But then we automatically get, from the requirement (14) that
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φ be invisible relative to ĝ, that δφ−1 gi j (x, r)|r=0 = 2ξ(x) gi j (x) = (φ∗g)i j (x) −
gi j (x). This is indeed an infinitesimal Weyl transformation. ��

The finite version of the above is:

φ∗g = e−2ξ(x) g . (20)

This is the kind ofWeyl transformation obtained in the standard accounts, see e.g. [36,
Eq. 10]: it is generated by the scalar ξ(x), assuming that ξ i (x, 0) = 0.

Theorem 3 Let ĝ be a Poincaré metric for (M, [g]) in normal form. If φ : U → U
is invisible relative to (ĝ, M, g), then φ is the identity.

If φ is invisible relative to M then ξi (x) = 0, as we saw in Proposition 2. But since
it is also invisible relative to g then also ξ(x) = 0, from (16). Since (11) was valid
over the entire ψ(U), then r = r̃ over the entire ψ(U).

In order to show that φ is the identity, since we already know that ξ i (x, 0) = 0, it
is enough to show that the first derivative of ξ i (x, r) vanishes everywhere on U . This
now readily follows from (12) because the right-hand side now identically vanishes.

��

2.2.2 Finite Diffeomorphisms

Let ĝ be a Poincaré metric for (M, [g]) in normal form. Let φ : U → U be a finite
diffeomorphism, invisible relative to ĝ. We use the same notation as before:

r = r̃ ω(x̃, r̃)

xi = x̃ i + ξ i (x̃, r̃) . (21)

The generalisations of (8)–(10) in terms of these variables are as follows:

∂xk

∂ x̃ i

∂xl

∂ x̃ j
gkl (x(x̃, r̃), r(x̃, r̃)) + r̃2 ∂iω(x̃, r̃)∂ jω(x̃, r̃) = ω2(x̃, r̃) g̃i j (x̃, r̃)

∂r̃ξ
k ∂xl

∂ x̃ i
gkl (x(x̃, r̃), r(x̃, r̃)) + 1

2
r̃ ∂̃i

(
ω2(x̃, r̃)

)
= 0

∂r̃ ξ i∂r̃ξ
j gi j (x(x̃, r̃), r(x̃, r̃)) + r̃2 (∂r̃ω)2 + r̃ ∂r̃ (ω

2(x̃, r̃)) = 0, (22)

(Setting r̃ = 0, the last equation implies that, if the metric is Riemannian rather than
pseudo-Riemannian, then ∂r̃ξ

i |r̃ = 0. The same requirement is obtained for pseudo-
Riemannian metrics from the requirement that the induced metric does not change:
see Sect. 2.4. But we will not need this.)

Let us now assume that ĝ is invisible relative to g as well. Invisibility relative to g
gives:

∂xk

∂ x̃ i

∂xl

∂ x̃ j
gkl(x(x̃)) = ω2(x̃) gi j (x(x̃)), (23)
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where ω(x̃) := ω(x̃, 0). This is the analog of Proposition 2: the diffeomorphisms
reduce to a boundary Weyl transformation.

Finally, if, in addition, ĝ is invisible relative to M , so xi |r̃=0 = x̃ i , then it follows
that ω(x) = +1 (the plus sign chosen so as to preserve the orientation). That is, if
the diffeomorphism along M is the identity, then also the diffeomorphisms along the
normal direction are the identity. This is the generalisation of Proposition 1.

2.3 Two Classes of Weakly-Gravity Invisible Diffeomorphisms

In this section, I will compare the weakly-gravity invisible diffeomorphisms, obtained
in Sect. 2.2, to the physics literature.9

The weakly gravity-invisible diffeomorphisms comprised two distinct classes: on
the one hand, the diffeomorphisms invisible relative to (ĝ, g), i.e. satisfying (i) and
(iii); on the other, the ones invisible relative to (ĝ, M), i.e. satisfying (i) and (ii).
The former class gave rise to conformal transformations of the boundary manifold,
i.e. coordinate transformations at the boundary, satisfying the Killing equation (18).
The latter class gave rise to Weyl transformations, i.e. local rescalings of the metric of
the boundary manifold.

These two classes are of course different, as diffeomorphisms of the metric ĝ:
even if their effects, on the metric g induced on the boundary, are similar—they both
give rise to a local rescaling of the metric. The two classes are conceptually distinct:
the former class is a coordinate transformation of the boundary manifold, whereas the
latter class is a choice of a different representative of the conformal class of the metric.
I now compare these two classes to the physics literature.

Diffeomorphisms of the former class, i.e. invisible relative to (ĝ, g), are, to lowest
order, of the type (cf. Proposition 1 in Sect. 2.2.1):

xi = x̃ i + ξ i (x)

r = r̃ (1 − ξ(x)) , (24)

where ξ(x) = − 1
d ∇ iξi (x), and ξ i (x) satisfies the Killing equation Lξ gi j (x) =

2
d gi j (x)∇ iξk . Thus they correspond to conformal transformations at the boundary,
i.e. coordinate transformations of the boundary manifold which give rise to Weyl
transformations of the metric. The Killing equation is the necessary and sufficient
condition that they be Weyl transformations.

When restricted to pure AdS, this class is identical with the diffeomorphisms inves-
tigated in Gubser et al. [22, Sect. 2.1]. These authors use the notation z for my r , ζμ

for my ξ i (x̃, r̃), and ξμ for my ξ i (x̃). Their ξ z corresponds to my ξ(x). One easily
verifies that their Eq. (16) corresponds to my Eqs. (12) and (16).

Diffeomorphisms of the latter class, i.e. invisible relative to (ĝ, M), are, to lowest
order, of the type (cf. Proposition 2 in Sect. 2.2.1):

9 I thank an anonymous referee for suggesting to make this comparison.
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xi = x̃ i

r = r̃ (1 − ξ(x)) , (25)

where now ξ(x) is an arbitrary smooth function, and there are no diffeomorphisms
tangent to the boundary.10

This class of diffeomorphisms corresponds to the one in Imbimbo et al. (1999: Sect.
2). These authors use the coordinate ρ in Eq. (3), rather than the coordinate r I have
used in Eq. (2) and in Sect. 2.2.11 The change of coordinates is given by ρ = r2/�.
One then easily checks that their Eq. (2.2), with their choice of boundary condition
ai (x, ρ = 0) = 0, is exactly Eq. (25).And it is in fact this choice of boundary condition
that prevents them to finding the diffeomorphisms corresponding to Eq. (24) and the
Killing equation.

The difference between the two cases is the structures they preserve. The first class
preserves ĝ and g, i.e. in particular, δφ−1gi j (x) = 0. For pure AdS, this amounts to
considering bulk diffeomorphisms that leave the flat boundary metric (Euclidean or
Minkowski) fixed. This means that the Weyl rescalings of the boundary metric and
the coordinate transformations along the boundary directions must cancel each other
out. This is the case for Eq. (25), under the conditions stated. The condition for the
second class is that it preserves ĝ and M , and the latter condition sets the components
of the diffeomorphisms parallel to the boundary to zero, i.e. ξ i (x, 0) = 0. However,
Weyl transformations are still allowed.

It is not surprising that the two classes of diffeomorphisms, Eqs. (24) and (25),
are only connected at the identity: since they are defined by the different structures
that they preserve. By ‘connected at the identity’, I here mean that one cannot simply
set ξ i (x) = 0 in Eq. (24) to get Eq. (25), because then also ξ(x) = 0, and then the
diffeomorphism is the identity. This is of course the content of Theorem 3.

2.4 Gravity-Invisible Diffeomorphisms Exist

In Theorem 3 of Sect. 2.2, we proved that there are no strongly gravity-invisible dif-
feomorphisms close to the identity (i.e. infinitesimal).12 The strongly gravity-invisible
diffeomorphisms form a natural class to consider because, though they preserve the
normal form of the metric, they are not isometries of the (d + 1)-dimensional metric:
they are only isometries of the boundary conformal structure. Notice that the normal
form of the metric corresponds to what physicists call a ‘radial gauge’, i.e. a choice of
coordinates such that ĝir = 0. Thus, the strongly gravity-invisible diffeomorphisms
preserve this gauge condition in addition to the two other invisibility conditions. We
have shown that this class is trivial.

10 There are no r -independent diffeomorphisms, in other words, ξ i (x) = 0; but there are corrections at
order r2, if ξ(x) is non-zero, i.e. ξ i (x, r) �= 0: cf. [36, Eq. 10].
11 Also, their metric induced at the boundary, gi j (x, ρ), is rescaled by a factor of � with respect to mine,
so that their metric on M has dimensions of length.
12 The arguments of Sect. 2.2 suggest that Propositions 1 and 2 (on φ reducing to a conformal, respectively
Weyl, transformation under various conditions) generalize to the finite case. A completely general proof of
Theorem 3 in the finite case is likely to be possible, but it requires more work.
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In this subsection we study the non-trivial class of gravity-invisible diffeomor-
phisms: those that are invisible relative to (M, g). In the next section I will comment
on the holographic interpretation of these gravity-invisible diffeomorphisms, as giving
rise to QFT-invisible diffeomorphisms.

Our starting point is to rewrite the diffeomorphism in a form similar to (6):

r = r̃ − ξ(x̃, r̃)

xi = x̃ i + ξ i (x̃, r̃) . (26)

In order for φ|M×{0} = 1, wemust preserve the boundary r = 0, i.e. wemust take13

ξ(x̃, r̃) = r̃α ξ(x̃)+O(r̃α+1), ξ i (x̃, r̃) = r̃β ξ i (x̃)+O(r̃β+1), with α ≥ 1 and β ≥ 0.
I work to linear order in ξ, ξ i throughout. The metric ĝ in (2) is modified as follows:

(φ∗ĝ)i j = �2

r̃2

((
1 + ξ(x̃, r̃)

(
2

r̃
− ∂r̃

))
gi j (x̃, r̃) + ∇iξ j + ∇ jξi

)

(φ∗ĝ)ir = �2

r̃2

(
−∂iξ(x̃, r̃) + gik(x̃, r̃) ∂r̃ ξ

k(x̃, r̃)
)

(φ∗ĝ)rr = �2

r̃2

(
1 − 2 ∂r̃ξ(x̃, r̃) + 2

r̃
ξ(x̃, r̃)

)
(27)

where ξi := gi j (x̃, r̃) ξ j (x̃, r̃), and the covariant derivatives are with respect to the
metric g(x̃, r̃). Of course, if α = 1 and β = 0, the first formula agrees with the earlier
result (8) and (13) when ξ , ξ i are expanded in r̃ .

The gravity-invisible diffeomorphisms are only invisible relative to (M, g) not the
metric ĝ on M̂ . So, we only need to demand that φ is an isometry of the induced
metric, obtained from the first of (27) multiplying by a factor of r2/�2. We obtain the
condition, at r = 0:

gi j (x, r)|r=0=(1 − ξ(x̃, r̃) ∂r̃ ) gi j (x̃, r̃)|r=0 + ∇i ξ j (x̃, r̃)|r=0+∇ j ξi (x̃, r̃)|r=0 .

(28)

Let us now set ξ(x̃, r̃) = r̃α ξ(x̃), ξ i (x̃, r̃) = r̃β ξ i (x̃), set r = 0, and use the fact that
the first derivative of the metric is zero at lowest order in r .

For β = 0, we find that the diffeomorphism is invisible unless

∇i ξ j (x̃) + ∇ j ξi (x̃) = 0, (29)

i.e. unless ξi (x̃) is an isometry of the representative of the boundary conformal structure
g. For β ≥ 1, we find that the diffeomorphism is always invisible.

Let us consider a slightly stronger invisibility condition, namely that (φ∗ĝ)ir , up
to its conformal factor, should remain zero at r = 0. This corresponds to the normal

13 Because ξ(x̃, r̃) in (26), unlike (6), is not multiplied by r̃ , we have shifted the value of α up by one,
i.e. in Sect. 2.2.1 we quoted the condition α ≥ 0 for a diffeomorphism fixing the boundary: and this same
condition is now stated as α ≥ 1.
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Table 1 Table showing when an invisible diffeomorphism exists

δhi j
∣∣
r̃=0 Diffeomorphism is: Invisible

diffeomorphism
exists iff:

Invisible
diffeomorphism
generated by:

β = 0 ∇i ξ j + ∇ j ξi Visible Lξ g = 0 ξ, ξi

β = 1 0 Visible ξi = 0 ξ

β ≥ 2 0 Invisible Always ξ, ξi

form of the metric (i) being preserved asymptotically. This requirement gives us the
additional condition that ξi (x̃) = 0 when β = 1 in order to have an invisible diffeo-
morphism. The results are summarised in the table in Table 1. However this will not
encumber the exposition in what follows. Since the additional condition is minimal,
for it does not affect the other values of β, when I discuss the physics of gauge–gravity
dualities, I will still use g instead of γ for the induced metric, and will refer to the
gravity-invisible diffeomorphisms as those that are invisible relative to (M, g).

In the gravity literature, the induced metric on any d-dimensional timelike hyper-
surface inside a (d +1)-dimensional volume is defined as: γμν := gμν −nμnν , where
nμ is a normal covector to the hypersurface (see e.g. Wald [40], p. 255) for the space-
like case). Of course, this metric and ĝ both give rise to the same inducedmetric r = 0,
and they give exactly the same invisibility conditions that we just obtained. This is
shown in Appendix A.

In summary, there is an invisible diffeomorphism φ (relative to M and g) for β =
0, 1 if Lξ g = 0, resp. ξi = 0. This diffeomorphism is then generated by ξ(x̃). For
β ≥ 2, there is an invisible diffeomorphism (relative to M and g) for any smooth ξ ,
ξ i . See the table in Table 1.

3 Invisibility in Gauge–Gravity Dualities

In the previous section, I derived two propositions and a theorem amounting to points
(a)–(c) in Sect. 1. These results led to the definition, in Sect. 2.4, of gravity-invisible
diffeomorphisms as those diffeomorphisms which are invisible relative to (M, g). In
this section, I turn to the physical relevance of gravity-visible and gravity-invisible
diffeomorphisms for gauge–gravity dualities.14 For an introduction to gauge–gravity
dualities, see Ammon and Erdmenger [1]. A conceptual introduction is in De Haro et
al. [15].

The important question for gravity-visible and gravity-invisible diffeomorphisms,
discussed in the previous section, in connection with dualities, is whether they are
also visible or invisible to the QFTs which are dual to the relevant gravity theories.
To answer this question, we first need to discuss what the relevant gravity theory is.

14 The discussion in this section and the next is adapted to the physics of interest. Therefore, the level of
mathematical rigour will differ from that in the previous section, though the results proven in Sect. 2 will
be crucial in what follows.
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The definitions of invisibility in Sect. 2.2, from which the propositions about gravity-
invisibility andweak gravity-invisibilitywere derived, involve Poincarémetrics,which
satisfy Einstein’s equations in vacuum with a negative cosmological constant, Eq. (1),
up to a specified order of approximation. The 1-parameter family of metrics gr on M
in (2) has an expansion of the form [19, Theorem 4.8]:

gr =
∞∑

N=0

g(N )
r

(
rd log r

)N
, (30)

where each of the g(N )
r is a smooth family of metrics on M even in r . Of particular

interest is the term N = 0, with its even expansion in r :

g(0)
r = g(0) + r2 g(2) + r4 g(4) + · · · , (31)

and it follows from (30) that g(0) = g0 = g.

For odd d, all g(N )
r with N ≥ 1 vanish, and only the N = 0 term contributes:

the above is then an even power series around r = 0, and the solution is determined
uniquely to infinite order given g(0) and g(d). Namely:

• All g(n) are determined algebraically from Einstein’s equations (except for g(0)
and g(d)): they are given by covariant expressions involving g(0) and g(d) and their
derivatives.

• The coefficients g(0) and g(d) are not determined by Einstein’s equations (only the
trace and divergence of g(d) are determined): they are initial data.

• One recovers pure AdSwhen g(0) is chosen to be flat (i.e. a flatMinkowski metric).
In that case, all higher coefficients in the series (31) vanish.

For evend, the logarithmic terms are nonzero, but again the entire gr is determined to
infinite order given the same two data. In this expansion, Einstein’s equations become
algebraic equations relating the coefficients in the expansion (31) for g(N )

r to g(0), g(d)

and their derivatives.
Thus, the discussion in Sect. 2 is relevant for the asymptotic solutions of Einstein’s

equations near the boundary of an Einstein space,15 where the metric induced on the
boundary is arbitrary. Furthermore, the formal series (30) converges if the boundary
conditions g(0) and g(d) are real-analytic functions of the boundary coordinates x [19,
pp. 4, 49].

As is well-known in the gauge–gravity literature (see e.g. [13, Sect. 1], general
relativity is a good approximation to the full string- or M-theory near r = 0. As r
increases, new terms may be needed in the action (see the discussion in Sect. 3.1). In
particular, all the asymptotic expansions used in the previous section (Eqs. (6), (7), as
well as the formulas evaluated at r = 0) are good approximations as long as the size
of the neighbourhood U is much smaller than the scale set by the radius of curvature.
This means that the techniques developed here indeed give good approximations to the

15 Notice that, for even d, the logarithmic terms only set in at order rd .
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quantities of interest in gauge–gravity dualities, such as the holographic stress-energy
tensor.

In other words, the visible and invisible diffeomorphisms discussed in Sect. 2 are
indeed relevant to the gravity side of gauge–gravity dualities. In Sect. 3.1, I will argue
that gravity-invisible diffeomorphisms are invisible to the dual QFT, so they are also
‘QFT-invisible’, and ‘duality-invisible’. In two Appendices B and C, I give explicit
physics examples of the kinds of QFT quantities which are invisible, and discuss
generalisations of these concepts to the case including bulk matter. In Sect. 3.2, I
discuss how the weakly gravity-invisible diffeomorphisms are seen by the QFT, hence
are QFT-visible.

3.1 Gravity-Invisible Diffeomorphisms are QFT-Invisible

In this subsection, I will discuss the sense in which gravity-invisible diffeomorphisms
leave the gauge theory invariant, hence are ‘QFT-invisible’. On the conception of dual-
ity expounded in De Haro et al. [14, Sect. 3.3], in order for invisible diffeomorphisms
to be ‘gauge’ in the philosophers’ sense, they should leave all the quantities of the
theory, evaluated on the states, invariant. As discussed, our theory is a theory of pure
gravity: so our task now is to define the quantities that need to be evaluated.

The gauge–gravity duality isomorphism is often called a ‘dictionary’, because it
‘translates’ gravity to QFT quantities, and viceversa. This dictionary identifies the
renormalized classical action with the generating functional of the QFT (in a suitably
taken ’t Hooft limit, see [1, pp. 180–182]. For a theory of pure gravity without matter,
the renormalized action is a functional (as usual, indicated by square brackets) of
the representative g of the boundary conformal structure, and nothing else (for more
details, see Sect. 3.2):

Sren[g] ≡ WQFT[g] . (32)

In such a gravity theory with a boundary at spatial infinity, the basic classical phys-
ical quantity is the renormalised quasi-local stress-energy tensor � [9,13], which is
evaluated by taking the derivative of (32) with respect to the representative g of the
boundary conformal structure. But by the dictionary, (the one-point function of) this
stress-energy tensor is precisely the 1-point function of the renormalized stress-energy
tensor of the dual QFT at the fixed point, evaluated from the generating functional
WQFT[g]! (for more details, see Sect. 6.1.2 of De Haro et al. [15]). That is:

〈�i j 〉g ≡ 〈Ti j [g](x)〉QFT = 2√
g

δWQFT[g]
δgi j

= d �d−1

16πGN

g(d)i j (x) + (local terms), (33)

and the subscript g indicates the fact that we are evaluating this expression on a state
determined by the conformal class [g] at the boundary. The first termon right-hand side
of the above equation is the term appearing at order rd in the asymptotic expansion of
the metric g(x, r) (31) in powers of r . The local terms are given in De Haro et al. ([13,
Eq. (1.3)] and subsequent discussion).
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A calculation like (33) can be done for CFTs whose only gauge invariant, local,
renormalizable operators are built from their stress-energy tensor T [g]only, for various
representatives g of conformal classes. By the state-operator correspondence which
holds at the fixed point (cf. e.g. [15, Sect. 3]), further states are obtained bymultiplying
the reference state corresponding to [g]with further powers (even exponentials) of the
stress-energy tensor.16

Will the gravity-invisible diffeomorphisms preserve the 1-point function (33)?
Since WQFT[g] is a functional of g, it must, in fact, be invariant under them. Of course,
the stress-energy tensor is known to be anomalous, for even values of d, under con-
formal transformations of g, so that there is a dependence of the representative of the
class chosen.17 This will be our concern in Sect. 3.2. But, for the gravity-invisible
diffeomorphisms that we are considering here (cf. Sect. 1, “fix (ii)” and “fix (iii)”), g
is simply invariant, and therefore so is the generating functional.

There is an important question here, which relates to the passage from Horowitz
and Polchinski [25, Sect. 1.3.2] quoted at the end of the Introduction: ‘the gauge
theory variables... are trivially invariant under the bulk diffeomorphisms, which are
entirely invisible in the gauge theory.’ Does my argument amount to saying that the
generating functional WQFT[g] is trivially invariant under the gravity diffeomorphisms?
I submit that it does not amount to that. One important aspect of the non-triviality
will appear when we discuss the higher-point functions in the paragraphs below—the
dependence on the gravity metric is highly non-trivial: for the invisibility argument
requires ensuring that g(d) is a functional of [g] and [g] only, i.e. it requires having
a global solution, of which not many are known (some examples will be given in
Appendix B). But leaving this issue aside for the moment, and more importantly
for the identification of the (simpliciter) gravity-invisible diffeomorphisms as QFT-
invisible diffeomorphisms, we must ask: to what extent does the above ‘invisibility
argument’ about WQFT[g] require both conditions (ii) and (iii) in Sect. 2.2 to obtain?
Could we enlarge the class of QFT-invisible diffeomorphisms to contain the whole of
(ii) or the whole of (iii) (or even their union!), rather than their intersection? Naively,
onemight be inclined to think that this is possible because both conditions should leave
g invariant: (ii) is the condition φ|M×{0} = 0, which in particular implies ξ i (x̃, 0) = 0
(where ξ i (x̃, r̃) is defined in Eq. (6)), and this means that there are no coordinate
transformations on the boundary being induced. As for (iii), this is the condition
φ∗g = g, which implies that δφ−1gi j = 2ξ gi j + ∇i ξ j + ∇ j ξi = 0, and so the total
effect on g cancels out.

But notice that the correct condition of QFT-invisibility is not that g should not
transform but rather that the diffeomorphism itself should be invisible to the QFT: it
should not act on the QFT variables at all. In the case of (ii), setting ξ i (x̃, 0) = 0 still
allows for φ inducing aWeyl transformation on g, so that a diffeomorphism satisfying
just (ii) is certainly QFT-visible. As for (iii), we still have non-trivial transformations
ξ, ξi which now jointly act on the boundary QFT variables. ξi acts as a boundary

16 There is no claim here that this exhausts the quantities in the CFT. Non-local quantities such as Wilson
loops may also be required.
17 The anomaly was shown to be a consequence of the distinct behaviour between even and odd d in the
Poincaré metric considered in Sect. 2.1.
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coordinate transformation and ξ acts as a Weyl transformation (rather than a con-
formal transformation) but just so that their combined effects cancel each other out.
So, these diffeomorphisms are visible to the QFT, since they act on it as different
transformations, even if, as a result of their combined effects, g is left invariant under
them. An additional reason not to classify diffeomorphisms fixing (iii) but not (ii) as
QFT-invisible is that, if the generating functional WQFT[g] depends on other (matter)
couplings, the combined transformation of thematter couplingswill not cancel out like
they do for the metric, unless further transformations for the couplings are assumed—
thus rendering the transformation, again, visible. In other words, (ii) and (iii) are both
jointly needed if the diffeomorphisms are truly to qualify as QFT-invisible, rather than
g being ‘trivially invariant’ under them. Thus, the (simpliciter) gravity-invisible diffeo-
morphisms are—in so far as the 1-point function is concerned—the correct candidates
for QFT-invisible diffeomorphisms.

The argument extends to higher-point correlation functions of the stress-energy
tensor:

〈Ti j (x1) · · · Tkl(xn)〉 = 2n

√
g(x1) · · · g(xn)

δ(n)W [g]
δgi j (x1) · · · δgkl(xn)

. (34)

Now,when considering higher-point functions, the leading classical gravity approx-
imation is valid when the underlying theory is string- or M-theory. Higher-order terms
in the action will contribute corrections to the action, in the form of higher powers of
the Riemann tensor and its derivatives, generically called ‘higher derivative terms’:
see e.g. [14, Sect. 4.1.2] for a discussion. Nevertheless, though the techniques of
Sect. 2 which rely on the definition of a Poincaré metric do not apply to the general
case including the higher derivative terms, the concepts of visibility and invisibility
do apply, for the higher-derivative terms in the action are covariant: and, in so far as
WQFT[g] is a functional of g only, the invisible diffeomorphisms will preserve the entire
set of correlation functions (34).

The functional WQFT[g] is of course only known for very specific QFTs, typically
defined on a space which is close to flat or under specific assumptions about the
topology of the conformal structure.18 In Appendix B, I calculate this functional
exactly, in the important case of four-dimensional self-dual gravity metrics. From the
bulk point of view, the renormalized stress-energy tensor has to be calculated solution
by solution, through the near-boundary expansion, as mentioned.

The higher-point functions are harder to calculate: for we would need to know the
variation of g(d) (in (33)) with respect to an arbitrarymetric g, and, in the general case,
this is beyond the reach of current techniques. However, we can compute it in specific
cases, as I will illustrate in two examples, in Appendix B: of fluctuations around pure
AdS, and of self-dual and massive gravity solutions.

In other words, checking that the correlation functions of the stress-energy tensor
are indeed invisible to gravity-invisible diffeomorphisms requires the existence of a
global solution: so that g(d) is indeed a functional of g. And, after all is said and done,

18 There are further constraints on WQFT[g] coming from the conservation law that applies to (33). For a
discussion, see e.g. [39, Sect. 1.3].
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the gravity-invisible diffeomorphisms defined in Sect. 2.2 do indeed come out as the
correct QFT-invisible diffeomorphisms.

In the presence ofmatter in the bulk, theQFT at the fixed point has further operators,
for instance 〈Ti j (x1) O(x2)〉, where O(x2) is a local operator which can be constructed
out of new fields, and accordingly we get more states. I will comment on this case
in Appendix C. For a review of dualities for gravity coupled to matter, see Skenderis
[37].

3.2 Weakly Gravity-Visible Diffeomorphisms are QFT-Visible

In the previous subsection, and in Appendix B, we studied simply invisible diffeomor-
phisms in some detail, and concluded that they indeed preserve the physical quantities
of the QFT. Now I will discuss how the weakly gravity-invisible diffeomorphisms
found in Sect. 2 are seen by the QFT, hence are ‘QFT-visible’. By Propositions 1
and 2, weakly gravity-invisible diffeomorphisms give rise to a conformal, respec-
tively Weyl, transformation of the representative of the boundary conformal structure
g, as in (20). There are two ways in which these diffeomorphisms are indeed visible
to the QFT.

The first way in which weakly-gravity invisible diffeomorphisms are visible to the
QFT is their giving rise to conformal or Weyl transformations of the boundary QFT.
More precisely, the boundary theory is a QFT at a conformally invariant fixed point,
or a CFT. If the representative of the boundary conformal metric transforms under a
weakly gravity-invisible diffeomorphism as ϕ−1

M : g(x) �→ e−2ξ(x) g(x) (see (19)),
then transforming the other fields �i (x) in the CFT (where i runs over the different
species of fields) with specific weights wi ∈ R, �i (x) �→ ewi ξ(x) �i (x), renders the
theory (classically) invariant. But clearly, such a diffeomorphism is visible to the QFT:
it is a conformal transformation of the fields.

There is a second way in which weakly-gravity invisible diffeomorphisms are visi-
ble to the QFT. Conformal transformations constitute a classical symmetry of the QFT
at the fixed point but they are not always a symmetry of the quantum theory. There is
a conformal anomaly for even values of the boundary dimension d Henningson and
Skenderis [24].19 The gravity action is IR divergent due to the infinite volume of M̂ , as
can be seen from the divergence of the Poincarémetric (2) at r = 0, and so is renormal-
ized in Eq. (32). Thus the action needs to be regularised, introducing a cutoff r = ε,
and renormalized [13, Sect. 3]. For even d, the renormalization procedure breaks the
covariance of the action: one of the counterterms that are needed introduces a depen-
dence of the classical action on the chosen representative of the boundary conformal
structure. So, the classical action is anomalous under such transformations:

Sren[e−2ξ(x) g] = Sren[g] + A [g, ξ ], (35)

whereA is the anomaly, which, for infinitesimal ξ , was computed in Henningson and
Skenderis [24, Sect. 3]). Applying (33) and using the identification (32), it now follows

19 The following discussion follows the exposition in Skenderis ([36, Sect 3]).
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that the stress-energy tensor transforms, under such diffeomorphisms, as:

〈Ti j [e−2ξ(x) g](x)〉 = e(d−2) ξ(x)

(
〈Ti j [g](x)〉 + 1√

g

δA[g]
δgi j (x)

)
. (36)

This transformation law can be found in De Haro et al. [13, Appendix C], for infinites-
imal ξ . Of course, if we take the trace of (36), we reproduce the conformal anomaly,
which was well-known in the conformal field theories in d = 2, d = 4, but had never
been computed before in the d = 6 theory that is dual to 7-dimensional Einstein grav-
ity (see Deser and Schwimmer [16], Henningson and Skenderis [24, Sect. 3]: also De
Haro et al. [14, Sect. 4.2.1]).

This shows that already the 1-point function of the stress-energy tensor exhibits
anomalous behaviour under these diffeomorphisms, for even d: and, in this sense, the
diffeomorphisms are visible and the theory is not conformally invariant. Notice that,
in the QFT at the fixed point, this anomaly is a quantum effect, which is mirrored by
the divergence of the classical gravity action.

4 Discussion and Conclusions

In this paper I have presented a number of results which: (i) make rigorous a num-
ber of physical intuitions about asymptotic symmetries in general relativity with a
negative cosmological constant, and in gauge–gravity dualities; (ii) provide the math-
ematical and physical basis for the philosophical comparison of duality and gauge
symmetry presented in De Haro et al. [14, Sects. 5, 6]); (iii) underpin the discus-
sion of background-independence for gauge–gravity dualities in De Haro [11, Sects.
2.3.2–2.3.4].

These results are of physical interest in their own right. While the general gist of
some of them may be known to experts in the conformal geometry of gauge–gravity
duality, the mathematical and conceptual details are novel: and they bear on physical
and philosophical discussions of general relativity and of duality.

As I have argued, the notion of weakly gravity-invisibility naturally makes pre-
cise the idea of asymptotic symmetries studied in the literature on general relativity
and on gauge–gravity duality. These asymptotic symmetries are expected to induce
the conformal transformations of the CFT. In this paper, weakly gravity-invisibility
is defined as the preservation of appropriate structure, viz. the normal form of the
metric and in addition either the boundary manifold M , in terms of its points (i.e. the
diffeomorphism goes to the identity at infinity), or the representative of the conformal
class g.

The first result was that weakly gravity-invisible diffeomorphisms give QFT-visible
diffeomorphisms, namely, they indeed induce the conformal transformations of the
CFT. Furthermore, the class of weakly gravity-invisible diffeomorphisms was shown
to be larger than normally expected.

Secondly, the class of non-trivial strongly gravity-invisible diffeomorphisms was
found to be empty: the only strongly gravity-invisible diffeomorphism is the iden-
tity. This is a surprising new result, because these diffeomorphisms were defined as

123



Found Phys (2017) 47:1464–1497 1489

preserving a very general, normal, form of the metric (a class of Poincaré metrics),
while in addition preserving the conformal manifold M and the representative of the
conformal class g.

Finally, the class of gravity-invisible diffeomorphisms turns out, as a consequence
of the second point, smaller than expected. Nevertheless, non-trivial gravity-invisible
diffeomorphisms do exist and are given by the diffeomorphisms satisfying both (ii) and
(iii) in Sect. 2.2. There is of course no claimhere that gravity-invisible diffeomorphisms
exhaust the QFT-invisible diffeomorphisms: for there could be other diffeomorphisms
that fit the bill.20 The argument, in Sect. 3.1, that the gravity-invisible diffeomorphisms
provide genuine QFT-invisible diffeomorphisms, in the sense that they do not act on
the QFT, leaving all of its physical quantities unchanged, is rather non-trivial.

In the literature, the characterisation of the asymptotic symmetries is not always very
precise. For instance, the class of non-trivial asymptotic symmetries—corresponding
to my QFT-visible diffeomorphisms—is sometimes limited to only those diffeomor-
phisms which fix the radial direction r [28, Sect. 1.2]. But this is too restrictive: for,
as we saw in Propositions 1 and 2 (see also the comment at the end of Sect. 2.2), the
two classes of QFT-visible diffeomorphisms (those fixing (i) and (ii), and those fixing
(i) and (iii)) have non-zero ξ(x) (non-zero λ(x), in the notation of the comment in
Sect. 2.2), which parametrises the change of the radial coordinate: they act nontrivially
along the r -direction while fixing r = 0.

Also, it is sometimes claimed that the QFT-invisible diffeomorphisms are those that
‘go to unity at the boundary’ (this being the class by which the allowed diffeomor-
phisms have to be quotented in order to obtain the asymptotic symmetry group). But
also this is imprecise: for a diffeomorphism can go to unity at the boundary (i.e. fixing
(ii)) while still modifying the representative of the boundary conformal class through
its r -dependence resulting in a rescaling of the metric ξ(x), as shown in the proof of
Proposition 2.

The correct QFT-invisibility condition to require is that the diffeomorphisms must
fix both (ii) and (iii). Also, Theorem 3 ensures that the QFT-invisible diffeomorphisms
form a class that is disjoint from the class of QFT-visible diffeomorphisms, i.e. the
triviality of the class of diffeomorphisms fixing all of (i), (ii), (iii) means that the
intersection between the QFT-visible and the QFT-invisible is empty. Thus in my
construction there is no need to quotient the QFT-visible diffeomorphisms, as defined
in Sect. 3.2, by that putative intersection.

The construction of a clear notion of QFT-invisible diffeomorphisms for general
relativity and for gauge–gravity dualities carried out here, underlies the philosophical
comparison in De Haro et al. [14, Sects. 2, 5, 6] between duality and gauge symmetry.
More precisely, in that paper (Sect. 2) a distinction was made between: (i) gauge sym-
metries which are (Redundant), i.e. roughly: the formulation of the theory uses more
variables than the number of degrees of freedom of the system being described; and
(ii) gauge symmetries which are (Local), i.e. spacetime-dependent transformations.

20 However, the larger class that results from dropping (ii) was argued not to be a good candidate for QFT-
invisibility because such diffeomorphisms do act on the CFT states: even if, in certain cases, the combined
effects cancel each other out.
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While the diffeomorphisms considered in this paper are all (Local) in this sense, not
all of them are (Redundant).21

Let us now discuss which diffeomorphisms are (Redundant). The QFT-invisible
diffeomorphisms are (Redundant): because the physical quantities do not depend on
them.

On the other hand, the QFT-visible diffeomorphisms are potentially physical, in
which case they cannot be (Redundant). In De Haro et al. [14, Sect. 6], the analogous
case of Galileo’s ship thought experiment was used to illustrate how these diffeo-
morphisms, which are non-trivial at the boundary, can generate a relational physical
difference between a proper subsystem and its environment when the action of the
symmetry is restricted to the subsystem. Because of this characterization as a ‘sub-
system’, these diffeomorphisms can indeed become physical. The condition for them
to be physical can be cashed out in terms of what in De Haro [12, Sect. 1]22 is called
an ‘external interpretation’. Such an external interpretation indeed treats the world
described by the theory as a subsystem. On an external interpretation, then, QFT-
visible diffeomorphisms are (Local) but not (Redundant).

But if an ‘internal interpretation’ is available: then, at least in the case of odd d—
in which the conformal anomaly vanishes—the conformal symmetry might well be
taken to be a redundancy of the theory’s formulation. Thus in this case the QFT-
visible diffeomorphisms would become (Redundant). The conditions for an internal
interpretation to obtain are spelled out in De Haro [12, Sect. 1].

Having specified the class of QFT-invisible diffeomorphisms, this can now be used
to formulate a hole argument, labelled a ‘bulk’ argument, for Einstein spaces with a
negative cosmological constant.

Most of the technical results presented in this paper rely only on the properties of
the asymptotic behaviour of the Poincaré metric. Verifying that a diffeomorphism, for
a given metric, is gravity-invisible involves just its asymptotic expansion. However,
showing that the gravity-invisible diffeomorphisms are alsoQFT-invisible does involve
assumptions about the global behaviour of the solutions, as we saw in Sect. 3.1 and,
especially, in Appendix B: where QFT correlation functions were computed using
global solutions.

Because the Fefferman–Graham expansion (30) turns the problem of solving a
differential equation asymptotically into that of solving a set of coupled algebraic
relations, the results that only depend on the asymptotic solutions can be analytically
continued: from the case of a negative cosmological constant or AdS, to the case of
a positive cosmological constant, or de Sitter space, �AdS �→ i�dS.23 Indeed, the bulk
hole argument of De Haro et al. [14, Sect. 6] only strictly requires an infinitesimal

21 In the physics literature, what is here called (Redundant) is sometimes called a ‘gauge symmetry’, while
a transformation which is (Local) but not (Redundant) is sometimes called a ‘global’ symmetry. This use of
‘global’ and ‘gauge’ seems confusing because, as just mentioned, symmetries which are not (Redundant)
can be (Local), hence they should not be called ‘global’. Therefore I adopt the characterisation of gauge
symmetries given in De Haro et al. [14, Sect. 2].
22 That paper builds on Dieks et al. [17, Sect. 3.3.2], and promotes the latter’s ‘internal viewpoint’ to an
‘internal interpretation’.
23 For an analysis directly in de Sitter space, see Anninos et al. [2].
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neighbourhood of the boundary. Hence the gravity-invisible diffeomorphisms defined
here can be used to make a bulk/hole argument for (generalised) de Sitter space,
where the anti-de Sitter boundary is mapped to timelike future infinity in de Sitter
space.

But the methods developed here, of constructing diffeomorphisms that preserve
the relevant asymptotic structures, should readily generalize to cases in which there
is no Fefferman–Graham structure like Eqs. (2) and (30) but instead some other kind
of asymptotic expansion. For one such class of examples, in which the QFT is a
non-relativistic quantum field theory, i.e. the spacetime has a globally defined time
coordinate and a preferred foliation, see Janiszewski and Karch [28, Sect. 1.2]. In
such a case, the QFT-visible diffeomorphisms should be the ones that preserve the
corresponding structure, and which at the boundary induce the symmetries of the
non-relativistic QFT.

The distinction between QFT-visible versus invisible diffeomorphisms establishes
the two relevant kinds of diffeomorphisms which were discussed in detail in De Haro
[11, Sect. 2.3.3], and to which two kinds of analyses of background-independence
applied. These two kinds of diffeomorphisms taken together formed what in that
paper were called diffeomorphisms that ‘preserve the asymptotic form of the metric’
(labelled (a1)). In this paper I have thus specified that the metric structure preserved
can be either: (b: QFT-visible) the normal form of the metric and in addition M
or g; (c: QFT-invisible) M and g. The mathematical details of the discussion [11,
Sect. 2.3.3] of the (lack of) covariance of the physical quantities for the QFT-visible
diffeomorphisms, for even values of d, have now been fleshed out in Sect. 3.2, and in
particular the anomalous transformation is in Eq. (36). In De Haro [11, Sect. 2.3.3],
the two kinds of diffeomorphisms (a1) discussed here were distinguished from yet
another class, labelled (a2), of ‘large’ diffeomorphisms: which do not preserve any of
the pairwise structures (a)–(c) considered in the Introduction. These diffeomorphisms
are expected to map solutions to inequivalent solutions. It would be interesting to
investigate this class of diffeomorphisms.

These results also make it possible to now discuss the important philosophical
question of the possible emergence of diffeomorphism invariance.
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Appendix A: A Condition for Gravity-Invisibility

At the end of Sect. 2.4, I discussed an alternative definition the induced metric γμν ,
which is common in general relativity. In this appendix I compute the induced metric
and show that it gives the same conditions for invisibility.

The normal covector to the boundary r = 0, n = �
r dr , transforms as:

φ∗n = �

r̃

((
1 − ∂r̃ξ(x̃, r̃) + 1

r̃
ξ(x̃, r̃)

)
dr − ∂iξ(x̃, r̃) dxi

)
. (37)

The induced metric on the boundary is: γμν := gμν − nμnν , so that it transforms as:

(φ∗γ )i j = �2

r̃2

((
1 + ξ(x̃, r̃)

(
2

r̃
− ∂r̃

))
gi j (x̃, r̃) + ∇iξ j + ∇ jξi

)

(φ∗γ )ir = �2

r̃2
gi j (x̃, r̃) ∂r̃ξ

j (x̃, r̃)

(φ∗γ )rr = 0 (38)

Let us define the transformed metric ĥ := φ∗γ =: �2

r2
h, then the conformal metric is

h = r2

�2
φ∗γ . Its components are:

hi j = (1 − ξ(x̃, r̃) ∂r̃ ) gi j (x̃, r̃) + ∇i ξ j (x̃, r̃) + ∇ j ξi (x̃, r̃)

hir = gi j (x̃, r̃) ∂r̃ξ
j (x̃, r̃) . (39)

Since γ is the metric normal to the vector nμ, whose components are tangential to
the boundary, the criterion for QFT-invisibility is that φ leaves this metric unmodified.
We will now calculate whether, for specific values of α and β above, there are any
obstructions for the existenceof invisible diffeomorphisms.Asbefore,we set ξ(x̃, r̃) =
r̃α ξ(x̃), ξ i (x̃, r̃) = r̃β ξ i (x̃).

For β ≥ 2, we get hi j |r̃=0 = gi j and hir |r̃=0 = 0 and such a diffeomorphism is
invisible.

For β = 1, the components along the boundary are still unaffected, but hir |r̃=0 = ξi

and the diffeomorphism is visible, like before.
For β = 0, we get hir |r̃=0 = 0 identically. But the diffeomorphism has a visible

effect: it generates non-zero hi j |r̃=0 = ∇iξ j + ∇ jξi , as before.

Appendix B: QFT Correlation Functions: Three Examples

In this Appendix, I will calculate the correlation functions (34) in three examples
of bulk solutions, which will exhibit explicitly the dependence between g(d) and g,
discussed in §3.1. The aim is to show the independence of the QFT quantities (34)
from the gravity-invisible diffeomorphisms, thus illustrating the general point made in
§3.1. These examples thus show that the mathematical theory developed in Sect. 2 is
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relevant in the important physical sense of being instantiated in non-trivial examples
of gauge–gravity dualities.

I will consider solutions with Euclidean signature and d = 3, i.e. solutions of a
four-dimensional, Euclidean theory in the bulk.

Appendix B.1: Perturbations of a Flat Boundary

Consider a representative of the boundary conformal structure that is almost flat,

gi j (x, r) = δi j + hi j (r, x), (40)

where hi j is the linealised fluctuation around the Euclidean solution. It is not hard to
show that Einstein’s equations have a unique regular, linearized solution, which can
be written entirely in terms of the transverse, traceless part of hi j (r, x). (The solution
is in Sect. 2 of De Haro [10]). This solution then has itself an expansion in r , the
coefficients of which satisfy:

h̄(3) = 1

3
|�|3/2 h̄(0), (41)

where h̄ denotes the transverse, traceless part of h, obtained by projecting: h̄i j =
�i jkl hkl . Substituting this into (33) thus gives the 1-point function of the stress-energy
tensor, and the two-point function is obtained by a further variation (in momentum
space):

〈Ti j Tkl〉 = �2

8πGN

|p|3 �i jkl . (42)

This two-point function is indeed invariant under gravity-invisible transformations. In
this particular case, all the higher-point functions vanish.

Appendix B.2: Self-dual Solutions

Another case of interest is that of bulk solutions for which theWeyl tensor is self-dual:

Cμναβ = 1

2
εμνλσ Cαβ

λσ , (43)

and in the anti-self-dual case there is a relative minus sign. These solutions have a g(3),
i.e. a boundary condition which equals the Cotton tensor Ci j (De Haro [10]), and so
the stress-energy tensor is:

〈Ti j 〉 = �2

8πGN

Ci j [g], (44)
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where the two-index Cotton tensor is a traceless and conserved 2-tensor,24 given by:

Ci j := 1

2
εi

kl ∇k

(
R jl − 1

4
g jl R

)
. (45)

I emphasize that the stress-energy tensor (44) is exact: there is no linearization involved.
The bulk solutions satisfying (43) are usually called gravitational instantons. Because
the result (44) is exact, we can (very exceptionally!) calculate the exact generating
functional, up to a constant. It is given by the gravitational Chern-Simons action:

WQFT = − �2

32πGN

∫
Tr

(
� ∧ d� + 2

3
� ∧ � ∧ �

)
, (46)

and an anti-self-dual solution has a plus sign. Furthermore, we can calculate from (44)
all the higher-point functions (34) in the QFT, which correspond to self-dual solutions
(43).

For instance, take a squashed 3-sphere, with metric:

g = �2

4

(
σ 2
1 + σ 2

2 + α σ 2
3

)

σ1 + iσ2 = e−iψ (dθ + i sin θ dϕ)

σ3 = dψ + cos θ dϕ, (47)

where α is the squashing parameter. The round three-sphere is obtained when α = 1,
and the scalar curvature is R = 8

�2

(
1 − α

4

)
. As a function of the metric, the Cotton

tensor is then given by the following identity: Ric − 1
3 R g + �

3
√

α
C = 0. Explicitly,

it takes the following form:

C = 1

�
(α − 1)

√
α

(
σ 2
1 + σ 2

2 − 2α σ 2
3

)
. (48)

Of course, for a round three-sphere, i.e. α = 1, the Cotton tensor vanishes.
The mathematical interest in these solutions goes back to Pedersen and LeBrun...,

but was revived by the Fefferman–Graham results in Anderson... For some examples
of gravitational instantons, see e.g. Martelli et al. [30].

Appendix B.3: Topologically Massive Gravity

The previous kind of solution can be generalised to so-called topologically massive
gravity theories in three dimensions. The starting point of the generalization is to

24 The significance of the Cotton tensor is that it plays, in three dimensions, the role which the Weyl tensor
(which vanishes identically in three dimensions) plays in dimensions higher than three: it is the tensor
whose vanishing is a sufficient and necessary condition for conformal flatness.
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include, in the boundary condition, in addition to the Cotton tensor, a Ricci term:

3�2

32πGN

g(3) = μRic[g] − C[g], (49)

where μ is the mass introduced, on dimensional grounds, by the boundary condition.
Again, for such solutions the all-order (34) can be computed. At the linearized level,
the 2-point function is:

〈Ti j Tkl〉 = �2

8πGN

|p|3 �i jkl + i p2

μ
εimp pn � jmkl . (50)

To conclude this Appendix: As claimed, these examples illustrate how: (i) the
higher-point functions, which are the quantities of interest in the theory, can be calcu-
lated, and (ii) that they are invariant under invisible diffeomorphisms as defined in §2.4.
Thus, themathematical theory here developed is physically, as well as mathematically,
non-empty.

Appendix C: Coupling Gravity to Matter

Showing that the methods of Fefferman and Graham generalise to theories with matter
was the topic of Sect. 5 in De Haro et al. [13]. In the same way that Poincaré metrics
can be constructed with given boundary conformal data, matter fields (such as scalar
fields satisfying theKlein-Gordon equation, or gauge fields satisfying their equation of
motion) can be solved for by using similar methods, i.e. solving an asymptotic series
given boundary conditions on M . A similar structure arises,with the expectation values
of an operator 〈O�(x)〉 of scaling dimension � being given by the 1-point functions
of the canonical momenta associated to bulk matter. Of course, now one has to solve
the coupled gravity-matter equations: but this can be done asymptotically: and for
fields within the unitarity bounds of the dual QFTs, the Fefferman–Graham expansion
works. For illustration, the one-point function dual to a scalar field of mass m is given
by:

〈O�+(x)〉 = (2�+ − d) φ(2�+−d) + (local terms), (51)

where �+ the dimension of the operator and φ2(�+−d) is the coefficient in the
Fefferman–Graham expansion at order �+:

φ(x, r) = r�− (
φ(0)(x) + r φ(1)(x) + · · · + r�+−�− φ(2�+−d)

)
, (52)

where �± := d
2 ±

√
d2

4 + m2�2. �+ is the scaling dimension of the operator O(x) in
the QFT.

Now if the dimensions of operators that we add to the QFT are within the unitar-
ity bounds, the back-reaction of the fields on the metric does not affect its leading
behaviour [13, Sect. 5.2]. So, although the technical details in the derivation of the
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invisible diffeomorphisms in Sect. 2 will differ, the conclusion (c), in Sect. 1, that
there is a non-empty class of such diffeomorphisms will be unaffected, and therefore
the invisibility analysis in Sect. 3 is not affected by the addition of matter.
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