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SUMMARY

Inertial waves are oscillations in a rotating fluid, such as the Earth’s outer core, which

result from the restoring action of the Coriolis force. In an earlier work, it was argued

by Davidson that inertial waves launched near the equatorial regions could be impor-

tant for the α2 dynamo mechanism, as they can maintain a helicity distribution which is

negative (positive) in the north (south). Here we identify such internally-driven inertial

waves, triggered by buoyant anomalies in the equatorial regions in a strongly-forced geo-

dynamo simulation. Using the time-derivative of vertical velocity, ∂uz/∂t, as a diagnostic

for travelling wave-fronts, we find that the horizontal movement in the buoyancy field

near the equator is well-correlated with a corresponding movement of the fluid far from

the equator. Moreover, the azimuthally-averaged spectrum of ∂uz/∂t lies in the inertial

wave frequency range. We also test the dispersion properties of the waves by computing

the spectral energy as a function of frequency, ϖ, and the dispersion angle, θ. Our results

suggest that the columnar flow in the rotation-dominated core, which is an important in-

gredient for the maintenance of a dipolar magnetic field, is maintained despite the chaotic

evolution of the buoyancy field on a fast-time scale by internally-driven inertial waves.

Key words: Inertial waves, Buoyancy-driven flows, Columnar flow
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2 Ranjan et al.

1 INTRODUCTION

Columnar vortices aligned with the rotation axis and spanning much of the Earth’s core are thought

to be a major element of the motion in the fluid core (Gubbins & Bloxham 1987; Holme 2015). They

are a robust feature of many dynamo simulations with rapid rotation (Christensen & Wicht 2015)

and they play an essential role for the generation of a dipolar magnetic field (Busse 1975; Kageyama

& Sato 1997; Olson, Christensen & Glatzmaier 1999). These are sometimes interpreted as colum-

nar eigenmodes of non-magnetic convection in a rapidly rotating sphere. The solution of this linear

boundary-value problem (Busse 1970) is influenced by the sloping spherical boundary (Greenspan

1968) and assumes a weak time-dependence of the velocity field in the azimuthal direction. How-

ever, this assumption is rarely met in strongly forced dynamo simulations with vigorous and highly

unsteady thermal convection, and it is hardly justified for the Earth’s core. For example, in recent

strong-field geodynamo simulations (Yadav et al. 2016; Schaeffer et al. 2017) with significant thermal

forcing, i.e. Ra >> Racrit, the flow is observed to be dominated by thin columnar vortices, yet the

motion is distinctly unsteady. Here Ra is the Rayleigh number which measures the strength of con-

vection and Racrit is the value of Ra at which non-magnetic convection is first realised. So, how is

the coherence of the columnar structures in the core maintained when the flow, or the distribution of

buoyancy forces, changes rapidly with time? The buoyancy forces that drive flow outside the inner-

core tangent cylinder, an imaginary cylinder parallel to the rotation axis and touching the inner-core at

the equator, tend to be concentrated near the equatorial plane (Olson, Christensen & Glatzmaier 1999;

Sakuraba & Roberts 2009). We suggest here that the mechanism by which the columns can follow

nearly instantaneously the redistribution of the buoyancy forces is through the spontaneous emission

of low-frequency inertial wave packets that travel preferentially away from the equatorial plane in the

direction parallel to the rotation axis.

Inertial waves arise as a consequence of the restoring action of the Coriolis force in a rapidly

rotating system. They have a frequency given by ϖ = ±2Ω cos θ, where θ is the orientation of the

wave vector κ with respect to the rotation vector Ω (Greenspan 1968). An important property of these

waves is that the group velocity,

Cg = ±2κ× (Ω× κ)

κ3
= ±2Ω

κ
(êΩ − cos θêκ) , (1)

which represents the direction in which wave packets and energy travel, is at right angle to κ (Fig.

1), where êΩ, êκ are unit vectors along Ω and κ respectively. Moreover, since êΩ · êκ = cos θ, the

component of group velocity parallel to the rotation axis is CgΩ = ±2Ω sin2 θ/κ and the magnitude

of group velocity is Cg = 2Ω| sin θ|/κ. Particularly important are the low-frequency inertial wave

packets, with ϖ ≈ 0, that travel nearly parallel to Ω with the group speed Cg ≈ 2Ω/κ. It is useful to
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Internally-driven inertial waves 3

Figure 1. Dispersion properties of an inertial wave. The particle motion is helical.

note that the magnitude of the group velocity is largest for the low-frequency waves (often referred to

in the literature as the ‘slow waves’) and drops to zero for inertial waves with frequency ϖ ≈ 2Ω (or

the ‘fast waves’).

The low-frequency inertial waves are known to create a Taylor column above a slowly moving

object in a rotating tank (Taylor 1921). Interestingly, a localized vortex (Tilgner 2000; Davidson et al.

2006) or a buoyant blob (Loper 2001; Davidson 2014) can also radiate low-frequency inertial wave

packets leading to the formation of columnar flow structures (Ranjan & Davidson 2014; Davidson

& Ranjan 2015). Moreover, those waves which travel parallel to the rotation vector have negative

helicity, u · (∇×u) < 0, and those that travel anti-parallel have positive helicity (Moffatt 1970). This

property of a monochromatic wave extends to inertial wave packets as well (Ranjan 2017). Although

governed by the same set of equations, the formation of a Taylor column is different to the generation

of a columnar structure by an eddy or blob (Fig. 2a,b) in the sense that the former is boundary-driven

with a prescribed time scale, where as the latter is internally-driven with no prescribed time scale

(Davidson et al. 2006; Davidson 2013, 2014).

To understand columnar structure formation from a buoyant blob, let us consider the relevant

governing equations. In a rotating reference frame, a flow with low viscosity and strong rotation (i.e.

the advection of momentum negligible compared to the Coriolis force) is governed by

∂u

∂t
= −1

ρ
∇p̃− 2Ω× u− αTg, (2)

under the Boussinesq approximation, where T is the temperature perturbation, α the coefficient of ex-

pansion and p̃ the dynamic pressure which includes the centrifugal force. The corresponding evolution

equation for vorticity, ω = ∇× u, is

∂ω

∂t
= 2(Ω · ∇)u− α∇T × g. (3)

By applying the curl (∇×) once again, then taking ∂/∂t, and using ∇ · u = 0 we get,
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4 Ranjan et al.

Figure 2. (a) Preferential radiation of low-frequency inertial wave packets from an eddy along Ω leads to the

formation of columnar structures (Davidson et al. 2006). (b) Alternate cyclone/anti-cyclone pair above and

below the buoyant blob (a localized buoyant anomaly that can be of arbitrary shape) shown in black (Davidson

& Ranjan 2015); the image on left shows uz , while the image on right shows helicity. A cyclone has the same

sense of rotation as the background, anti-cyclone has the opposite. (c) Radial velocity at the outer boundary and

(d) azimuthally-averaged helicity in the present simulation. Red is positive, blue negative.

∂2

∂t2
(∇2u) + 4(Ω · ∇)2u = 2α(Ω · ∇)(∇T × g) + α∇×

(
∇∂T

∂t
× g

)
. (4)

If T evolves slowly on the fast time-scale of inertial waves, then we have the wave equation

∂2

∂t2
(∇2u) + 4(Ω · ∇)2u = 2α(Ω · ∇)(∇T × g). (5)

Moreover, the evolution of the z-component of vorticity, which is particularly relevant for this study,

is

∂ωz

∂t
= 2Ω

∂uz
∂z

− αgo
ro

∂T

∂ϕ
, (6)

in cylindrical (s, ϕ, z) coordinates, where we have assumed a gravity that increases linearly with ra-

dius, g = −gor/ro, go is the gravity at the outer boundary and Ω = Ωêz . Here it is important to note

that the terms on the right-hand-side of (5) and (6), containing ∂T/∂ϕ, act as a localized source of

inertial wave packets which propagate away from any buoyant blob to create columnar flow structures

(Fig. 2b).

The flow generated by a single buoyant blob resembles the columnar vortices aligned with the

rotation axis observed in dynamo simulations (Fig. 2c), taking the form of cyclone/anti-cyclone pairs

above and below the blob, with negative helicity above and positive below. Naturally, this leads one

to ask if the mechanism of column formation by low-frequency inertial waves could be important in

the core (Davidson 2014), where a preferential concentration of buoyancy near the equatorial plane is
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Internally-driven inertial waves 5

expected (Olson, Christensen & Glatzmaier 1999; Sakuraba & Roberts 2009). In this study, we inves-

tigate this question by conducting a statistical analysis of the output obtained from a strongly-forced

geodynamo simulation. The question is an important one, as efficient planetary dynamos require the

azimuthally-averaged helicity to be of one sign in the north and another in the south (Fig. 2c). The ori-

gin of this spatial segregation in helicity is still unknown, but it is argued in Davidson & Ranjan (2015)

that inertial waves launched in and around the equator represent a good candidate for maintaining such

a helicity distribution.

2 GEOYNAMO SIMULATION AT MODERATELY HIGH RAYLEIGH NUMBER

The geodynamo simulation is carried out using the open source MagIC code (Wicht 2002), available

at https://github.com/magic-sph/magic, which solves the governing equations for an electrically con-

ducting Boussinesq fluid in a rotating spherical shell with an aspect ratio representative of the outer

core, ri/ro = 0.35. The dimensionless equations are

∂u

∂t
+ (u · ∇)u = −∇p̃− 2êz × u

E
+

Ra

Pr

Tr

ro
+

(∇×B)×B

EPm
+∇2u, (7)

∂B

∂t
= ∇× (u×B) +

1

Pm
∇2B, (8)

∂T

∂t
+ (u · ∇)T =

1

Pr
∇2T, (9)

∇ · u = ∇ ·B = 0, (10)

where Ra = αgod
3∆T/νκ, E = ν/Ωd2 (Ekman number), Pr = ν/κ (Prandtl number), Pm = ν/λ

(magnetic Prandtl number) are the control parameters. In the dynamo model, time is non-dimensionalized

by d2/ν, length by the shell thickness d = ro − ri, temperature perturbation by the difference

∆T = (To − Ti), and magnetic field by
√
µλρΩ. Here α is the thermal expansion coefficient, ν is

the kinematic viscosity, ρ is the background reference density, µ is the magnetic permeability, and κ,

λ are the thermal and magnetic diffusivities. The velocity and magnetic field vectors are decomposed

into toroidal and poloidal potentials which guarantees their zero-divergence. The governing equations

are written in terms of these potentials, converted into spectral space using Chebyshev polynomials in

the radial (r) direction and spherical harmonic decomposition in the azimuthal (ϕ) and latitudinal (θ)

directions, and then numerically integrated. The time-advancement is done using an explicit second-

order Adams–Bashforth scheme for the nonlinear terms and the implicit Crank–Nicolson algorithm

for the linear terms (more details are in Christensen & Wicht (2015)).

The control parameters in our simulation are Ra = 1.2×108 (Ra/Racrit = 42.4), E = 3×10−5,

Pr = 1, Pm = 2.5. This parameter set was chosen so that the flow is sufficiently unsteady for waves

to exist. Also, its magnetic field morphology on the outer boundary is rather Earth-like according
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6 Ranjan et al.

to the criteria of Christensen et al. (2010). The thermal boundary conditions are in terms of fixed

temperatures at the inner and outer boundaries. Both boundaries have no-slip boundary condition and

are assumed to be electrically insulated. The simulation is first run for 0.1 magnetic diffusion times

(∼ 100 advection time scales) in which the dynamo reaches a statistical equilibrium state. The Courant

condition is maintained with a very small time-step so as to resolve inertial waves. At the end of the

run, the values of the diagnostic parameters are Rm = 902, Λ = 27, Ro = 0.01 where Rm,Λ, Ro,

are the magnetic Reynolds number, the Elsasser number and the Rossby number, defined as

Rm =
ud

λ
, Λ =

B2

µλρΩ
, Ro =

u

Ωd
.

With the same time-step, the simulation is re-started (at Ωt = 0) and we record all variables with high

time resolution for a short interval of 0.0016 diffusion times, which corresponds to Ωt = 133.4 or ≈

21 Earth days using Ω = 7.29× 10−5rad/s. (Note that, hereafter, we use Ωt as the non-dimensional

unit of time).

The radial magnetic field is dipolar with opposite polarity flux spots at low latitudes (Supplemen-

tary Information Fig. S1). For Ωt = 0, Figs. 3a-d show the equatorial cross-sections of uz , ωz , T

and ∂T/∂ϕ, where T is the temperature perturbation or anomaly above the conducting reference. The

small-scale flow structure of ωz (Fig. 3b) closely resembles that of ∂T/∂ϕ (Fig. 3d), which is to be

expected from equation (6).

We move to cylindrical co-ordinates (s, ϕ, z) in order to study the dynamics parallel to Ω (Ap-

pendix A). The ϕ− z slices of uz , ωz , T and ∂T/∂ϕ at a cylindrical radius of s = 0.62d are shown in

Figs. 3e-h. (For reference, the inner boundary is at si = 0.53d and the outer boundary at so = 1.53d.

We have deliberately kept these quantities dimensional in order to avoid confusion with the group ve-

locity calculations later on.) The flow is evidently columnar. Moreover, the thermal source of inertial

waves outside the tangent cylinder is concentrated near the equator, as is evident from Fig. 3i which

shows the r.m.s. of ∂T/∂ϕ, i.e. (⟨(∂T/∂ϕ)2⟩ϕ)1/2, where ⟨ ⟩ϕ denotes azimuthal-average.

As a measure of the columnarity, the quantity

C(s, ϕ) =

[
(⟨ωz⟩z)2

⟨ω2
z⟩z

]1/2
(11)

is shown in Fig. 4a, where ⟨·⟩z denotes vertical average. (A similar definition of columnarity was

considered by Soderlund et al. (2012) in which only the non-axisymmetric part of the velocity field

was used to calculate vorticity.) The average columnarity outside the tangent cylinder is C ≈ 0.38,

but some regions are clearly more columnar than the others, the maximum value of C being 0.99.

(The value of columnarity as defined in Soderlund et al. (2012) is also 0.38 in our simulation.) The

ϕ-average of C increases with s as we move further from the tangent cylinder, after which it be-

comes roughly constant in the bulk, as evident from Fig. 4b. Interestingly, the spatial distribution of
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Internally-driven inertial waves 7

Table 1. Comparison of observed slopes for the light green lines in Fig. 5a-d with the estimated slope calculated

from the group speed of low-frequency inertial waves, Cg ≈ 2Ω/(π/δh) = z/t. δh is measured directly from

the plot of ωz .

(s/d, ϕ) Slope in the z/d− Ωt plot of u̇z δh/d Estimated slope, 2δh/πd

(0.62, 0.376) 0.03 0.05± 0.005 0.032± 0.003

(0.62, 5.89) 0.06 0.086± 0.006 0.055± 0.004

(0.99, 2.50) 0.047 0.07± 0.005 0.044± 0.003

(0.99, 6.14) 0.04 0.06± 0.005 0.038± 0.003

C(s, ϕ) closely matches that of ∂T/∂ϕ, the source of inertial waves, shown in (Fig. 3d), suggesting

that the low-frequency inertial waves triggered near the equator could be important for maintaining

the columnarity. Indeed, a spatial cross-correlation of |∂T/∂ϕ| at z = 0 with C, calculated as

RC(rs, rϕ) =

∫ 2π
0

∫ so
si

|Tϕ(s, ϕ)|C(s+ rs, ϕ+ rϕ)dsdϕ

[
∫ 2π
0

∫ so
si

|Tϕ(s, ϕ)|2dsdϕ
∫ 2π
0

∫ so
si

C(s, ϕ)2dsdϕ]1/2
, (12)

where Tϕ = ∂T/∂ϕ, and (rs, rϕ) are the lags along (s, ϕ), respectively. Figure 4c shows a peak value

of RC ≈ 0.57 occurring at (rs, rϕ) = (0, 0). The cross-correlation is stronger for negative rs due to

the fact that regions near the inner boundary are not as columnar as those in the bulk. As a result, a

negative lag or shift along s in the distribution of C leads to a stronger correlation with |∂T/∂ϕ|.

2.1 Temporal evolution

The temporal evolution of the buoyancy field shows that it is closely linked to changes in the columnar

features of the velocity field (see movies ms1-5 in Supplementary Information), necessitating inspec-

tion at closer time-intervals. We therefore consider time-series of the velocity and buoyancy fields

for the duration Ωt = [0, 133.4] with a high temporal resolution, Ω∆t = 0.133. (The results are the

same at smaller values of Ω∆t). Since the presence of a wave-front is closely related to ∂u/∂t in the

momentum equation (2), we focus on

u̇z = −∆uz
Ω∆t

(13)

as a diagnostic, where ∆uz denotes a change in uz over the time ∆t. Note that u̇z is indicative of

the rate at which information (or energy) is propagated vertically by wave fronts in low-frequency

inertial waves, ϖ << 2Ω, as well as the internal motion in higher frequency waves, ϖ ∼ Ω. In

the analysis presented hereafter, since Ω∆t is fixed, u̇z is the same as −∆uz without the division by

0.133. Moreover, we choose the northern hemisphere for illustration.
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8 Ranjan et al.

Figure 3. (a-d) Equatorial-slices of uz , ωz , T and ∂T/∂ϕ respectively, and (e-h) their ϕ− z slices at s = 0.62d.

(i) (⟨(∂T/∂ϕ)2⟩ϕ)1/2. All images are at Ωt = 0. In (c), the numbers near the outer boundary represent ϕ/π. In

(c) and (i), the symbols + and × denote the points chosen for time-series analysis in §2.1.1, 2.1.2.

2.1.1 Time-distance plots

Here the word ‘distance’ means ‘vertical distance’. To study the vertical-propagation of inertial waves,

we choose four locations on the equatorial plane (s/d, ϕ) = (i) (0.62, 0.376), (ii) (0.62, 5.89), (iii)

(0.99, 2.5), and (iv) (0.99, 6.14), which are marked in Fig. 3c. (Note for reference that 0.62d = 0.40ro

and 0.99d = 0.64ro). These locations are based on the criteria that there are no significant sources of

buoyancy near the outer boundary vertically-above the location, i.e. at the same (s, ϕ), at any time.

This is because such sources might initiate downward-propagating waves near the mantle and hence

influence the signature of waves triggered by buoyant regions near the equator. Also, the chosen loca-
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Internally-driven inertial waves 9

Figure 4. At Ωt = 0, (a) columnarity C(s, ϕ), defined in (11), (b) ⟨C⟩ϕ and (c) the cross-correlation of the

|∂T/∂ϕ| (Fig. 3d) with C.

tions are outside any boundary layers. The time-distance plots for u̇z at these four locations, computed

on a line that extends from the equatorial plane to the outer boundary, are shown in Figs. 5a-d. In these

plots, it is interesting to see positive slopes that are linked to the rate at which energy is propagat-

ing vertically upwards by low-frequency inertial wave-fronts. Negative slopes are less common, but

present, and may represent reflections from the outer boundary. The corresponding time-distance plots

of uz and ∂T/∂ϕ are shown in Supplementary Information Figs. S2, S3. While most of the slopes rep-

resent inertial wave propagation aligned or nearly-aligned to the rotation axis, certain features in Fig. 5

appear to be nearly vertical. These are most likely vertically-extended convective features moving past

the chosen longitude. Since the waves and their thermal source co-exist in most locations, particularly

near the equator, it is difficult to apply any external filter to the data to eliminate such features.

For quantitative analysis, we first compute the slopes at four representative fronts indicated by

light green lines in Fig. 5a-d and compare with those expected from the group speed of low-frequency

inertial waves given by Cg ≈ 2Ωδh/π (using κ ≈ π/δh) (Davidson 2004, p. 373). Here δh is the

local azimuthal length scale at the location where these waves arise, scaled by the shell thickness d

and measured directly from the z-vorticity field at the appropriate (s, ϕ, z, t) location. For example,

from the plots of ωz shown in Figs. 3b and 3f, δh ≈ 0.05d for (s/d, ϕ) = (0.62, 0.376). (δh is

approximately the same at a higher z/d ≈ 0.8 as the structure is columnar.) Therefore, the estimated

slope is (z/d)/(Ωt) ≈ 0.032, very close to the observed slope of the corresponding green line, 0.03.

Table 1 shows that there is an excellent agreement between the estimated and observed slopes for all

four points in Fig. 5a-d.

At this point, it is natural to ask if there are inertial waves of higher frequency present in the

simulation. To answer this, we compute the fast Fourier transform (FFT) of u̇z(z, t) corresponding

to the same four locations used in Fig. 5. In Fig. 6 we show the corresponding FFTs, F(u̇z), as a
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10 Ranjan et al.

Figure 5. Time-distance plots of u̇z for (a)(s/d, ϕ) = (0.62, 0.376), (b) (0.62, 5.89), (c) (0.99, 2.50) and (d)

(0.99, 6.14). The light green lines (located by ellipses) are used to calculated slopes in Table 1.

function of (kz, ϖT ), from which it is evident that the spectrum is broadband, although the peaks are

at low frequency. (Note that (kz, ϖT ) refer to the wave number and frequency in the Fourier analysis

while (κ,ϖ) denote the wave number and frequency of an inertial wave.) Moreover, i these plots, the

second and fourth quadrants denote the waves propagating away from the equator and the first and

third quadrants denote the waves propagating towards the equator.

Of course, there is some subjectivity in the choice of the four locations used in Figs. 5, 6 and

Table 1. For an objective statistical analysis, we compute the FFTs of all u̇z plots (such as those in

Fig. 5a-d) along ϕ at a fixed s, and average the FFTs to obtain ⟨|F(u̇z)|⟩ϕ. This yields an asymmetric

butterfly-shaped spectrum for both the s locations, as indicated in Fig. 7a,b. Remarkably, the frequency

range in Figs. 6 and 7a,b is exactly what we would expect for inertial waves, 0 ≤ |ϖ|/Ω ≤ 2,
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Internally-driven inertial waves 11

Figure 6. |F(u̇z)| for the plots corresponding to the four locations (a)(s/d, ϕ) = (0.62, 0.376), (b) (0.62, 5.89),

(c) (0.99, 2.50) and (d) (0.99, 6.14), shown in Fig. 5. The dotted lines show the inertial wave frequency range,

0 ≤ |ϖ|/Ω ≤ 2.

and captures nearly all the energy in the spectral plot. The peaks in the spectra are observed to be

concentrated at low frequencies, also evident by zooming in on the central regions shown in Fig. 7c,d.

However, it is difficult to conclude that all energy near low frequencies is from inertial waves as some

contribution may also come from advection. The asymmetry between the ‘butterfly-wings’ shows that

waves propagating away from the equator are statistically more prevalent than those travelling towards

the equator (triggered by buoyant anomalies far from the equator or arising due to reflections at the

boundary).
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12 Ranjan et al.

Figure 7. The ϕ-averaged spectrum of u̇z i.e. ⟨|F(u̇z)|⟩ϕ for (a) s = 0.62d, (b) s = 0.99d. The dotted lines

show the inertial wave frequency range, 0 ≤ |ϖ|/Ω ≤ 2. (c-d) Same as (a-b) but zoomed in the central region.

2.1.2 Longitude-time plots

Let us now move to the longitude-time plots of ∂T/∂ϕ and u̇z . For this purpose, we choose a point in

(s, z) and obtain a plot of the appropriate variable with ϕ on the horizontal axis and time on the vertical.

Such a plot is essentially a time-series on a circle with fixed cylindrical radius. Figures 8a,b show the

ϕ-t plots of ∂T/∂ϕ for two radial locations at the equator (marked in Fig. 3i), (z/d, s/d) = (0, 0.62)

and (0, 0.99), respectively. Black lines with positive (negative) slopes represent eastward (westward)

movements in the buoyancy field at the equator. The longitude-time plots of u̇z much above the equator

(at z/d = 0.64) for s/d = 0.62 and s/d = 0.99 are shown in Fig. 8e,f. Careful visual inspection of
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Internally-driven inertial waves 13

the slopes in Figs. 8a-d suggests that the eastward/westward ϕ movements in the longitude-time plots

of ∂T/∂ϕ correspond to similar movements in u̇z , but a statistical cross-correlation is required.

The ϕ-t cross-correlation between ∂T/∂ϕ and u̇z is calculated using

Rϕ−t(rϕ, rt) =
Ct

∫ 2π
0

∫ tm−rt
0 |T ′

ϕ(ϕ, t)||u̇z(ϕ+ rϕ, t+ rt)|dtdϕ
[
∫ 2π
0

∫ tm
0 |T ′

ϕ(ϕ, t)|2dtdϕ
∫ 2π
0

∫ tm
0 |u̇z(ϕ, t)|2dtdϕ]1/2

, (14)

where Tϕ = ∂T/∂ϕ, Ct = tm/(tm − rt), (rϕ, rt) are the lags in correlation along (ϕ, t) and Ωtm =

133.4 is the final time. (∂T/∂ϕ)
′
is obtained from ∂T/∂ϕ by subtracting its time-average, i.e. (∂T/∂ϕ)

′
=

∂T/∂ϕ− ⟨∂T/∂ϕ⟩t. Note that in (14) the cross-correlation is multiplied by the pre-factor Ct in order

to remove the bias near zero time-lags, which, for instance, is a standard practice in time-distance

helioseismology (Gizon & Birch 2005). Also, we have used the absolute values of (∂T/∂ϕ)
′

and u̇z

as we are interested in their slopes rather than their signs. The cross-correlation between (∂T/∂ϕ)
′

at

z = 0 and u̇z at z/d = 0.64 is shown in Figs. 8e for s/d = 0.62 and 8f for s/d = 0.99, respectively.

Remarkably, the correlation peak lies at zero lag in ϕ for both the s-locations, confirming that a move-

ment near the equator in ϕ is well-correlated with a movement above at the same horizontal location.

With respect to the time-lag, the cross-correlation is similar over a broad range of times, perhaps due to

the columnar nature of the flow. However, as a signature of information propagation by inertial waves,

we expect to see a peak at a finite (non-zero) time-lag, corresponding to the time of flight calculated

from the group speed.

To explore this further, we cross-correlate several pairs of |(∂T/∂ϕ)′ | in the range 0 ≤ z/d ≤ 0.28

and |u̇z| in 0.64 ≤ z/d ≤ 0.92 at a fixed vertical separation, ∆z = 0.64d, for both radial locations.

The z-averaged cross-correlation, ⟨Rϕ−t⟩z , shown in Figs. 9a,b for the two radial locations, resembles

those in Figs. 8e-f. At zero lag in ϕ, the variation of ⟨Rϕ−t⟩z , with time-lags on the horizontal axis, is

shown in Figs. 9c,d. For s/d = 0.62, we observe a peak at a positive time-lag of Ωt = 26 (Fig. 9c)

whereas for s/d = 0.99, the peak occurs at zero time-lag (Fig. 9d). For low-frequency inertial waves,

the group speed can be written as (Greenspan 1968)

Cg ≈ 2Ω

κ
=

∆z

tf
, (15)

where tf is the time of flight and κ the wavenumber. The equation (15) strictly holds for a single

κ, but can also be used for a slowly-modulated wave packet with a narrow range of wavenumbers.

Using the ϕ-spectrum of the z-vorticity field at s/d = 0.62 (Fig. 10), we find a dominant wavenumber

of κϕ = 19π/d. Using (15) with ∆z = 0.64d, we predict that the time-lag should be Ωtf ≈ 19.

The peak in Fig. 9c at a lag of Ωt = 26 is close to our estimate based on Cg. This suggests that

information is indeed propagated away from the equator by low-frequency inertial wave packets and

that the low-frequency inertial waves, travelling parallel to the rotation axis, reinforce the columns

and play a major role in maintaining their coherence. However, for the radial location s/d = 0.99,
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14 Ranjan et al.

Figure 8. (a-b) Longitude-time plots of ∂T/∂ϕ at the equator, z = 0, for two radial locations s = 0.62d

(left) and s = 0.99d (right). The black lines with a negative (positive) slope indicate westward (eastward)

movement in T . (c-d) Time series of u̇z far from the equator at z = 0.64d for the same radial locations. (e-f)

Cross-correlation, Rϕ−t (14) between (∂T/∂ϕ)
′
= ∂T/∂ϕ− ⟨∂T/∂ϕ⟩t at z = 0 and u̇z at z = 0.64d.

Page 14 of 30Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Internally-driven inertial waves 15

the corresponding group speed estimate for the lag is Ωtf ≈ 25 and while we do observe a secondary

peak at this location, the curve in Fig. 9d shows a peak at zero time-lag. This may indicate a pre-

existing correlation, or a correlation due to low-frequency inertial waves launched earlier in time from

the same (s, ϕ) location on the equatorial plane. Also recall that the flow at large s is observed to be

more columnar than that near the tangent cylinder (Fig. 4a,b), perhaps due to reflections at the outer

boundary.

Note that we have chosen the z-vorticity field to estimate the wavenumber for two reasons. Firstly,

a large part of the Coriolis force in the momentum equation (2) is balanced by the pressure-gradient.

Hence, the vorticity equation (3), which represents a non-geostrophic force balance, is more important

dynamically (Christensen & Aubert 2006). Secondly, recall that the structure of ∂T/∂ϕ, the source

of inertial waves, closely resembles that of ωz (compare Figs. 3b,d). Note also that there is an asym-

metry between positive and negative time-lags in Fig. 9c,d for both radial locations, with a larger

cross-correlation magnitude for positive time-lags indicating that more waves propagate upwards than

downwards.

2.2 Test of dispersion properties using 4D-FFT

So far we have analyzed two-dimensional (z or ϕ, t) time-series which is good for investigating low-

frequency inertial waves travelling nearly parallel to the rotation axis. However, recall from the butter-

fly diagram (Fig. 7) that there could be some off-axis inertial waves present in our numerical dynamo

solution. Since, the propagation pattern of these waves is three-dimensional (§1), we now investigate

the time-series of u̇z(s, ϕ, z, t) for the duration Ωt = [0, 133.4], with resolution Ω∆t = 0.133. For

this purpose, we choose a cylindrical annular domain above the equator, and away from the bound-

aries, in the region 0.62 ≤ s/d ≤ 1.21, 0 ≤ ϕ/π ≤ 2 and 0.33 ≤ z/d ≤ 0.92 (the size of this

domain is constrained by the spherical geometry). The resulting 4D-computation matrix is of size

(48 × 384 × 48 × 1000), with only a modest resolution in space but good resolution in time. We

divide this domain into eight boxes of size 483 so that the matrix size is the same in all spatial di-

rections, a prerequisite for this analysis. For each box we compute the 4D-FFT of the dataset to get

F4D(u̇z(ks, kϕ, kz, ϖT )). The spectral energy is computed as: E(ks, kϕ, kz, ϖT ) = |F4D(u̇z)|2. Fi-

nally, by adding all contributions to E for the same angle θ, where tan θ = ks/kz , we obtain E(θ,ϖT ).

A similar procedure was used to test the dispersion properties of inertial waves by Yarom & Sharon

(2014), and recently by Le Reun et al. (2017), in the context of rapidly rotating turbulence.

In Fig. 11a, we show the E(θ,ϖT ) for the box corresponding to 0 ≤ ϕ/π ≤ 0.25, and in Fig. 11b

E(θ,ϖT ) averaged over all eight boxes. Also shown in the same figures are the dispersion curves for

inertial waves, ϖ/Ω = ±2 cos θ, where the plus and minus signs correspond to upward and downward

Page 15 of 30 Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16 Ranjan et al.

Figure 9. The z-averaged cross-correlation (14), ⟨Rϕ−t⟩z , for the two radial locations (a) s = 0.62d and (b)

s = 0.99d. For zero lag in ϕ, the ⟨Rϕ−t⟩z as a function of time-lags, for (c) s = 0.62d and (d) s = 0.99d.

propagating inertial waves, respectively (§1). The spectral energy sits close to the dispersion curves

for the off-axis inertial waves indicating that they are also present in the solution albeit much weaker

than the axially-propagating waves. The energy away from the dispersion curves may be due to mean

flow or other wave types. Moreover, once again, there is more energy in waves moving away from

the equator, than those moving towards the equator. Of course, this reminds us of the asymmetry in

the butterfly-diagram (Fig. 7) and in the cross-correlation (Fig. 9) discussed earlier. This asymmetry,

along with the strong cross-correlation of the columnarity with the source, ∂T/∂ϕ, at the equator

(Fig. 4c), strongly suggests that most columns are internally-driven rather than boundary-driven. It

also suggests that a significant part of the fast dynamics in the dynamo simulation can be described

in terms of low-frequency inertial waves that propagate away from the equatorial plane. Note that the

concentration of energy near θ = π/2 in Figs. 11a,b could be due to spectral leakage of the energy
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Internally-driven inertial waves 17

Figure 10. 1-dimensional FFT of z-vorticity, ωz , averaged over 0 < z/d < 0.28 near the equator, and over

five time co-ordinates in Ωt = 0 − 66.7, for s = 0.62d (left), s = 0.99d (right). The numbers represent the

dimensionless azimuthal wave-numbers with large spectral density, and thus the most common length scales at

the corresponding radius.

to higher frequencies. Spurious peaks at higher frequencies for θ = π/2 were also seen by Yarom &

Sharon (2014) and attributed to harmonics of the rotation rate.

3 DISCUSSION

In this study, we report the presence of inertial waves triggered by buoyant regions near the equator

in a strongly time-dependant dynamo simulation. The low-frequency waves that are preferentially ex-

cited near the equator communicate the effects of the movement of buoyant anomalies to the vertical

locations far from the equator. In principle, this is similar to the mechanism behind the ‘trailing Taylor

columns’ observed in Hide’s rotating tank experiments (Hide et al. 1968; Lighthill 1970) in that the

columnar vortices ‘follow’ the buoyant anomalies as they drift. It may be noted that, for a nonmag-

netic simulation at large Rayleigh number in a spherical shell, Glatzmaier & Olson (1993) suggested

that equatorially-biased thermal plumes drive the columnar vortices that extend in the vertical direc-

tion, similar to Taylor columns produced by a moving sphere in a rotating fluid. Our results, (Figs.

4, 8, 9) provide statistical evidence in support of this suggestion, but for a dynamo simulation. These

internally-driven, low-frequency inertial waves can help maintain the coherence of the columns. In

particular, the columnarity associated with a rapidly evolving buoyancy field can be maintained if the

buoyant anomalies continually emit low-frequency wave packets. These columns are, in turn, impor-

tant for maintaining a dipolar magnetic field.
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18 Ranjan et al.

Figure 11. (a) E(θ,ϖT ) for the box (0 ≤ ϕ/π ≤ 0.25) (b) E(θ,ϖT ) averaged over 0 ≤ ϕ/π ≤ 2. The white

regions near θ = π/2 are due to a relatively low resolution in θ there. In (a), the peak at θ = π/2 occurs at

ϖT /Ω = ±0.24, and it is not visible due to lower plot threshold used to highlight off-axis waves.

We speculate that the results of this study will apply to the core since its Rayleigh number is

expected to be very strongly supercritical (Gubbins 2001). On the other hand, internally-driven inertial

waves are unlikely to be present at small values of Ra/Racrit, as evident from the application of

our statistical techniques to a (non-magnetic) simulation at the onset of convection (Appendix B).

The effect of decreasing the Ekman number, E, on the typical group speed of low-frequency inertial

waves, Cg ≈ 2Ωδ, is slightly harder to understand. In the dynamo simulations, which are mostly too

viscous, a reduction in E usually leads to a reduction in δ, as is also expected from the viscous scaling,
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Internally-driven inertial waves 19

δ = E1/3d (King & Buffett 2013). Therefore, decreasing E will lead to lowering of the typical Cg

values in simulations, which means larger travel-times of low-frequency inertial waves. However, in

the core, the viscous scaling is not expected to hold and it is not known what sets the local length scale

there. If the typical values of δ are in the range 1-10 km, the expected travel-times will be in the range

∼ 18-180 days.

Recent geomagnetic field models based on high resolution satellite data have revealed variation

of Earth’s core magnetic field on monthly time scales (Olsen & Mandea 2008). It may be tempting to

speculate that these fast variations arise due to the arrival of inertial wave packets at the core-mantle

boundary. However, geomagnetic data only allow to resolve dynamic features with the length scale of

few hundred kilometers at best, and so a direct identification of inertial waves is unlikely. The results

of their continuous action in maintaining geostrophy, however, may be identifiable. A geostrophic

flow structure would imply an equatorially-symmetric flow at the core-mantle boundary, which seems

compatible to a large degree with geomagnetic secular variation (Pais & Jault 2008; Gillet et al. 2011;

Canet et al. 2014; Maffei & Jackson 2017). However, in this regard, it is important to note that the

internally-driven inertial waves that are spontaneously triggered from buoyant anomalies (in Fig. 2b,

for instance) should not be confused with boundary-driven quasi-geostrophic inertial modes (Zhang

et al. 2001; Jault & Finlay 2015).

Perhaps it is important to note at this point that independent evidence (Bin Baqui et al. 2016;

Sreenivasan & Davidson 2008; Davidson 2016) suggests that inertial waves cease to propagate when

the small-scale Rossby number, Roδ = u/Ωδh, exceeds a value of 0.2−0.6 (depending on the precise

definition). Consequently, our conclusion that the columnar structures are maintained by inertial waves

implies that such structures will not be maintained when Roδ exceeds this threshold. It is interesting

to note in this regard that for a suite of dynamo simulations (King et al. 2010), a loss of dipolarity

is observed when the Roδ exceeds 0.1 (Roberts & King 2013; Oruba & Dormy 2014; Garcia et al.

2017). (Some researchers believe the geodynamo lies close to the dipolar-multipolar transition defined

by Roδ = 0.1 (Olson & Christensen 2006)). The corresponding Roδ in our simulation is 0.08, based

on the definition in Christensen & Aubert (2006).

There is recent interest among the dynamo community regarding the dynamical role of waves in

the core (Finlay et al. 2010; Jault & Finlay 2015). The fact that there could be a zoo of waves present in

the core, possibly with overlapping frequencies, and that they co-exist with their source(s) makes their

identification difficult. Nevertheless, our study suggests that the time-series of u̇z is a good diagnostic

to detect wave-fronts and that perhaps the methods used in this study can be extended to study other

types of waves, such as the MAC waves (Buffett et al. 2016; Jaupart & Buffett 2017) wherein the

role of the magnetic field and stratification are also important, torsional waves (Wicht & Christensen
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20 Ranjan et al.

2010) or perhaps magnetic Rossby waves (Hori et al. 2017). An efficient planetary dynamo requires

the azimuthally-averaged helicity to be of one sign in the north and another in the south. Inertial waves

triggered near the equator are prime candidates for sustaining such an asymmetric helicity distribution

(Davidson 2014). In this regard, the dynamical role of inertial waves in geodynamo simulations is

being investigated and will be discussed in a subsequent study (Davidson & Ranjan 2017). Whether

there are other vertically-propagating waves, such as the intermediate magnetic-Coriolis (MC) waves

(Bardsley & Davidson 2016, 2017), which contribute to the creation of columnar structures in the

simulations is still unclear. It is encouraging, however, that the frequency range displayed in Fig. 7

is close to that of inertial waves, and according to Bardsley & Davidson (2017) the properties of

intermediate MC waves with such frequencies are similar to those of inertial waves.
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APPENDIX A: CO-ORDINATE TRANSFORM FROM SPHERICAL TO CYLINDRICAL

POLAR

In MagIC, the velocity and magnetic field vectors are decomposed into toroidal and poloidal potentials

(Christensen & Wicht 2015)

u(r, θ, ϕ) = ∇×∇× [êrW (r, θ, ϕ)] +∇× [êrZ(r, θ, ϕ)] (A.1)

B(r, θ, ϕ) = ∇×∇× [êrg(r, θ, ϕ)] +∇× [êrh(r, θ, ϕ)],

where Wm
l (r), Zm

l (r) are the poloidal and toroidal velocity potentials. The output from MagIC, which

is in (l,m) (wavenumbers in meridional and azimuthal directions) space, is inverse-transformed to a

cylindrical grid to get u,B,T as a function of (s, ϕ, z) with (Ns, Nϕ, Nz) = (81, 384, 246). The

velocity components in spherical co-ordinates are (Glatzmaier 2013)

ur =
1

r2

∑
l,m

l(l + 1)Wm
l Y m

l (A.2)

uθ =
1

r sin θ

∑
l,m

[
∂Wm

l

∂r
sin θ

∂Y m
l

∂θ
+ Zm

l

∂Y m
l

∂ϕ

]
(A.3)
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uϕ =
1

r sin θ

∑
l,m

[
∂Wm

l

∂r

∂Y m
l

∂ϕ
− Zm

l sin θ
∂Y m

l

∂θ

]
(A.4)

where Y m
l (θ, ϕ) = Pm

l (cos θ)eimϕ, Pm
l (cos θ) is Legendre Polynomial and

∑
l,m =

∑lmax
l=0

∑l
m=−l.

Using the spherical to cylindrical transformation matrix,
us

uz

uϕ

 =


sin θ cos θ 0

cos θ − sin θ 0

0 0 1




ur

uθ

uϕ,


the s and z components of velocity may be obtained. The temperature perturbation

T (r, θ, ϕ) =
∑
l,m

Tm
l (r)Y m

l (θ, ϕ) (A.5)

is transformed in the same way as ur.

APPENDIX B: AZIMUTHALLY-DRIFTING MODES AT ONSET

A natural question that arises regarding the statistical techniques used in our study is: are there any

internally-driven inertial waves present at the onset of convection, and can they be detected using

the statistical techniques used in this study? To address this, we perform a (non-magnetic) simulation

of rotating convection in a spherical shell, using the MagIC code. The chosen parameters are Ra =

2.93 × 106 (Ra/Racrit = 1.02), E = 3 × 10−5 and Pr = 1. The simulation is run for 1 viscous

diffusion time or 3.33 × 104 rotation units, and the output is transformed to cylindrical co-ordinates.

As predicted by theory (Busse 1970; Zhang & Busse 1987), the solution is the classical geostrophic

columnar structure, consisting of quasi-geostrophic modes. This is evident from Fig. A1 which shows

the equatorial slice of radial velocity, us, and for s/d = 0.82, ϕ− z slices of us and uz , all at the same

time. It is interesting to note the familiar alternate cyclone-anticyclone structure in the ϕ−z slices, and

an asymmetry in the sign of uz . Let us now repeat our statistical procedure of §2.1 for this simulation.

The resolution in space is (74, 192, 148) points in (s, ϕ, z). We choose 300 time co-ordinates in the

duration ∆Ωt = 104, i.e. between Ωt = [2.33, 3.33] × 104. Note that the plots in Fig. A1 are at

Ωt = 2.33× 104.

For s/d = 0.82, the longitude-time plots of ∂T/∂ϕ at z = 0 (equator) and of u̇z at z/d = 0.65

(above the equator) are shown in Figs. A2a,b respectively. Note that the columns drift in the prograde

or eastward direction, as would be expected at a small E (Zhang & Busse 1987). The slope in these

graphs indicates that the time taken for one complete rotation is ∼ 7764 rotation units (0.233 diffusion

units), corresponding to a drift frequency of 9.4×10−9 sec−1 or 0.295 year−1. In the vertical direction,

the flow is perfectly correlated at all times, as evident from Fig. A2c showing the cross-correlation

function, Rϕ−t (14). The time-distance plot of u̇z , fixing (s/d, ϕ/π) = (0.82, 1), is shown in Fig. A3.
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Figure A1. Onset calculation: equatorial slice of radial velocity, us, ϕ− z slices of us and uz at s/d = 0.82.

Clearly, there are no internally-driven inertial waves present at the onset of convection and the only

frequency present in the simulation is the drift frequency.
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Figure A2. Longitude-time plots of (a) ∂T/∂ϕ at z = 0, (b) u̇z at z/d = 0.65. (c) Cross-correlation, Rϕ−t (14)

of (a) with (b).
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Figure A3. Time-distance plot of u̇z , for (s/d, ϕ/π) = (0.82, 1).
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