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Abstract— Nullclines provide a convenient way of charac-
terising and understanding the behaviour of low dimensional
nonlinear deterministic systems, but are, perhaps not unsur-
prisingly, a poor predictor of the behaviour of discrete state
stochastic systems in the low numbers regime. Such models
are appropriate in many biological systems. In this paper
we propose a graphical discrete ‘nullcline-like’ construction,
inspired by the Markov chain tree theorem, and investigate
its application to the original genetic toggle switch, which is
a feedback interconnection of two mutually repressing genes.
When the feedback gain (the ‘cooperativity’) is sufficiently
large, the deterministic system exhibits bistability, which shows
itself as a bimodal stationary distribution in the discrete
stochastic system for sufficiently large numbers. However, at
small numbers a third mode appears corresponding to roughly
equal numbers of each molecule. Without cooperativity, on the
other hand (i.e. low feedback gain), the deterministic system has
just one stable equilibrium. Nevertheless, the stochastic system
can still exhibit bimodality. In this paper, we illustrate that the
discrete ‘nullclines’ proposed can, without the need to calculate
the steady state distribution, provide an efficient graphical way of
predicting the shape of the stationary probability distribution in
different parameter regimes, thus allowing for greater insights
in the observed behaviours.

I. INTRODUCTION

Since its first appearance in 2000 [7], the synthetic genetic
toggle switch has inspired a lot of interest among both
the biological as well as the engineering community, as it
provides a potential explanation of how decisions are made in
biological processes. Its design includes two competing pro-
teins, x and y, each repressing (inhibiting) the transcription
of the other. In (1) the standard symmetric birth and death
reactions for the proteins (transcription factors) x and y are
presented [15], [14], [18], [7], with the difference that their
values are normalised by their respective equilibrium values,
x̄ and ȳ. The production of protein x is negatively regulated
by protein y, through binding of m copies of y to the promoter
of x (and vice versa).If m, the Hill coefficient, satisfies m> 1,
then the transcription factors are said to exhibit cooperative
binding, or simply ’cooperativity’ [14], [3]. k is a constant,
associated with the inverse of the repression strength [15],
[14], [4].
The traditional analysis using Ordinary Differential Equa-
tions [7] predicts two stable steady states in the coopera-
tive case (m > 1) and one stable steady state in the non-
cooperative case (m = 1). However, experimental results and
exact stochastic simulations [15] have shown that when the
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concentrations are small, then the system with cooperative
binding can also exhibit trimodality, something that is not
predicted using the Chemical Langevin Equation [9].
Furthermore, by the use of Langevin equations [4], direct use
of the Chemical Master Equations [14] or exact stochastic
simulations [14] as well as experimentally [23], it has
been shown that the non-cooperative case can also exhibit
bimodality in certain cases, without this being predicted in
the deterministic analysis.
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In this paper, we develop heuristic tools that allow the
analysis of such stochastic systems represented as a graph
of microstates, and with minimal calculations. For the toggle
switch, we aim to predict the behaviour of the system as the
equilibrium size changes.

We begin by showing that, with our choice of normalised
reaction rates, the Jacobian obtained about the equilibrium
is invariant to the equilibrium size. This allows us to
discriminate the stochastic effects resulting from the change
of equilibrium number from any deterministic phenomena.
Secondly, without explicitly finding the steady state of the
Chemical Master Equation, which represents the problem
as a continuous time Markov Process, we look for a way
of understanding the effect the change of equilibrium size
has on the system through a novel graphical construction,
proposing a discrete ‘nullcline-like’ analysis based simply
on the transition rates (propensities) of the system. This
graph construction is inspired by the well-known Markov
chain tree theorem and its graph theoretic representation,
which states that the stationary probability of a node
in a strongly-connected graph, if regarded as a root, is
proportional to the sum of the weights of its associated
rooted directed spanning trees, also known as arborescences
[2], with orientation from the leaves to the root. The weight
of each directed spanning tree is defined as the product of
the weights of the edges that form the tree.
Our aim, essentially, is to infer how the mean weight of
the directed spanning trees rooted at a particular node
compares with those rooted at the other nodes (as for
all given roots the number of directed spanning trees is
constant in balanced graphs [24]). Instead of looking at
the problem directly, which would make it combinatorially
very challenging, we try to extract as much information as
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we can from the requirements that must be satisfied for a
subgraph to be a rooted directed spanning tree.
The requirements that a subgraph is a rooted directed
spanning tree are that it is acyclic, the outdegree of the
rooted vertex is equal to zero and the outdegree of each
other vertex is equal to one [11].

Selecting a particular directed edge when forming the
rooted directed spanning tree (arborescence) places a con-
straint on the rest of the directed edges that can be selected
in order to satisfy the requirements that the directed subgraph
created is a rooted directed spanning tree. In fact, it is
this constraint that makes the related directed spanning
tree problems much more combinatorially difficult than the
corresponding undirected spanning tree problems, as for
example is the classical problem of finding the spanning tree
of minimum weight [6], [10], [12].
Heuristically, for consistently forming large weight arbores-
cences (and therefore having a large mean weight of arbores-
cences), the location of the root would be expected to allow
the consistent selection of the most beneficial (i.e. the largest
of the two) direction for each edge. Based on this argument,
we suggest that knowing the preferential transition direction
of each edge can be a useful tool that could enable inference
of the final form of the stationary probability distribution.

In the 1-D Markov chain case (as well as in higher dimen-
sions when detailed balance is observed) the ‘net propensity’
used to construct the discrete ‘nullclines’ fully define the
stationary distribution. For the 2-D case without detailed bal-
ance, illustrated through the Genetic toggle switch example,
it is shown that it can be a very useful heuristic tool, both
in the symmetric as well as in the asymmetric cases.

II. THE DETERMINISTIC ANALYSIS PROVIDES AN
INVARIANT TO THE EQUILIBRIUM SIZE JACOBIAN

In this section, we illustrate that the usual deterministic
analysis, transforming the discrete problem into a continuous
time stochastic differential equation, can provide an invariant
Jacobian at equilibrium.

It is standard to approximate (1) as a pair of coupled
SDE’s:
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From Eq. 2, deterministic ODEs can be obtained by setting

the noise terms to zero (taking the large numbers limit) [25].
This results in
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(3)

An equilibrium solution of the ODEs of (3), when km

km+1 =
β , is (x,y) = (x̄, ȳ). Linearising and then normalising about
this point, letting δx = x− x̄ and δy = y− ȳ [22],
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Thus the equilibrium Jacobian when there is no cooperativity
(m = 1) is invariant and given by

J =

(
−β − β

k+1
− β

k+1 −β

)
(5)

III. CHEMICAL MASTER EQUATION AND ITS GRAPH
THEORETIC INTERPRETATION

A. Chemical Master Equation

To investigate the stochastic effects due to the change of
equilibrium size (e.g. small number effects), it is possible to
directly approximate the steady state of the Chemical Master
Equation (CME) by truncating the infinite grid into a finite
one [21], [17]. The microstate of the system involving, in this
case, two species, x and y, is defined as x(t) = {x(t),y(t))}
∈ N2.The discrete Chemical Master Equation is illustrated
in (6), where the positive real transition rates, also called
propensities, from one state to another (i.e. from state x′
to state x) are represented by A(x,x′), while P(x, t) is the
continuous time probability of each discrete state [16].

dP(x, t)
dt

= ∑
x′ 6=x

[
A(x,x

′
)P(x

′
, t)−A(x

′
,x)P(x, t)

]
(6)

The general Chemical Master Equation can be represented
explicitly for this system, where we represent the microstate
probability at time t, P(x, t), using its x and y components,
as Px,y :
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dt = km x̄
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ȳ

)m Px−1,y +β (x+1)Px+1,y

+ km ȳ
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The equation can also be written in matrix vector
form, where A is called the matrix of propensities.
Matrix A is a zero column sum (ZCS) square matrix, as
A(x,x) =− ∑

x′ 6=x
A(x′,x).

dP(x, t)
dt

= AP(x, t) (8)

Thus, in order to approximate the stationary probability
distribution across all microstates, Ps(x), one can just solve
(8) at equilibrium by finding the null space of A, which is
unique as this process is irreducible (since the associated
graph is strongly connected [21]) and then normalising so
that the sum of probabilities of the states adds up to one.
We perform this calculation for comparison purposes, but our



aim is to infer features of the stationary distribution directly
from the propensities.

B. Directed spanning trees, the Markov chain tree theorem
and its consequences

Before presenting the discrete nullcline construct, we first
recall the notion of rooted directed spanning trees (also
mentioned as arborescences in literature).

Let G = (V,E,w) be a weighted strongly connected di-
rected graph, where w : E→ R is a weight function defined
on its edges. A directed spanning tree rooted at r ∈ V with
orientation from the leaves to the root (i.e. the root vertex is
in fact a sink) is a subgraph Q of G such that the undirected
version of Q is a tree, while there is a directed path from all
vertices in V to the root r [26]. This means that the outdegree
(the number of edges directed away from a vertex) of all
vertices in Q is equal to 1, whereas the outdegree of r is
equal to 0 [11].

From (9), one can see that the null space of A can be
calculated by taking any one column of the adjoint matrix,
as it is known that if A is a zero column sum (ZCS) matrix,
then adj(A) has identical columns [5].

(ad j(A))A = A(ad j(A)) = (detA)I = 0 (9)

From here, moving to the well-known Markov Chain
Tree Theorem for A (an n × n matrix), presented in
Theorem III.1, is natural. We can observe that the elements
a j,i of A correspond to the elements wi, j of a strongly
connected directed graph, where wi, j represents the weight
of the edge directed from vertex i to vertex j. The
weight W (T ) of a directed spanning tree T is given by
W (T ) = ∏

edge i→ j in T
wi, j = ∏

edge i→ j in T
a j,i.

Theorem III.1. The ith diagonal of ad j(A) is (−1)n−1

times the sum of the weights over all directed spanning trees
(arborescences) with sink i. [5], [2].

The first consequence of this theorem is that the stationary
probability of every microstate is proportional to the sum
of all the directed spanning trees rooted (sinked) on
the microstate, as mentioned several times in literature
dealing with non-equilibrium dynamics [1], [8]. The second
consequence comes from the way the directed spanning
trees are formed. As the outdegree of all vertices but the
root needs to be equal to one, there can be no directed
spanning tree which includes both directions of the same
edge (i.e. if the edge i→ j belongs to the directed spanning
tree, then the edge j→ i does not).

The third consequence is indirect, yet is critical for con-
structing a graphical heuristic tool to infer the formation
of the stationary probability distribution. For graphs that
are balanced (i.e. for each vertex the number of inward
edges equals the number of outward edges), such as the one
obtained in this genetic toggle switch example, the number of
directed spanning trees that can be formed given a particular

vertex as the root is constant [24]. Therefore the stationary
probability of each microstate is also proportional to the
mean weight of the rooted directed spanning trees . This is
particularly important, as now we can consider the expected
weight of a random directed spanning tree T that can be
formed given a distinguished vertex r = j .

Ps( j) ∝ E(W (T )|root = j) (10)

Therefore, if the aim is to infer which roots will have
large stationary probabilities, heuristically we need to search
for the possible roots that are located in such positions in
the graph that would allow the most beneficial directions for
each edge to be consistently preferred in their corresponding
random directed spanning tree.

C. Discrete ‘nullcline’ construct proposed
It is evident that in the discrete Markov process setting, the

classical notion of nullclines is not applicable, as the ODEs
do not capture any effects coming from the ‘discreteness’ of
the system. In the graph formulation, traditional nullclines
calculate the difference between the ‘birth’ and ‘death’ jump
given a particular node, i.e. fd = wi,i+1−wi,i−1 [21] when
the birth and death jumps considered occur from node i
to nodes i+ 1 and i− 1 respectively . This, however, does
not generalise well with the graph representation coming
from the Markov Chain Tree Theorem, especially at the grid
boundaries. One can clearly see that at the grid boundaries,
fd in the direction orthogonal to the boundary will always be
positive, suggesting that a ‘birth’ jump is the most probable
operation to take place, no matter how strong the propensity
of the ‘death’ jump towards the grid boundary is. The reason
for this problem is that the calculation in discrete space
depends on two edges, therefore the calculation is not well-
defined at the boundaries, as there is no second edge to
perform the calculation.
Clearly, a more appropriate calculation, given the fact that
a directed spanning tree cannot include both directions of
the same edge, would be fs = log

(
wi,i+1
wi+1,i

)
, taking into

consideration the birth jump from node i to node i+ 1 and
the death jump from node i + 1 to node i instead. This
means that the sign of fs provides information about the
preferential (largest) transition direction for each edge. It is
important, however, to also note the fs does not just provide a
preferential direction, but it is in itself a quantitative measure
of the strength of preference of a particular direction. This
is particularly important in asymmetric examples, as we will
see later.

Furthermore, note that in the 1-D case as well as in
higher dimensional cases where detailed balance is satisfied,
knowing the fs value for each edge is sufficient to calculate
accurately the entire stationary probability distribution. This
is a direct consequence of the definition of detailed balance,
which means that for all nodes (vertices) i, j [8],

wi, j

w j,i
=

Ps( j)
Ps(i)

(11)
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Fig. 1. Illustration of discrete ‘nullcline’ visualisation procedure.
The direction of the arrows represent the direction of the net propen-
sity

(
fs = log

(
wi,i+1
wi+1,i

))
. The green squares illustrate the net horizontal

propensity-reversal nodes, blue squares the net vertical propensity-reversal
nodes and yellow squares both net vertical and net horizontal propensity-
reversal nodes. Net propensity-reversals take place when the sign of the net
propensity changes (i.e.from positive to zero or negative, zero to positive
or negative and negative to zero or positive)

It is not a coincidence that in thermodynamics literature,
where detailed balance is usually assumed, fs is used to
calculate the local energy difference [20].

Furthermore, this calculation now involves only one edge
every time, thus it is well-defined near the grid boundaries
as well.
From now on, fs is to be called the ‘net propensity’ of
each edge. This will be calculated by moving either across
the x-axis (horizontal net propensity) or across the y-axis
(vertical net propensity).

The aim is to find when the direction of either the net
horizontal or the net vertical propensity reverses (i.e. their
sign changes from positive to zero or negative, zero to
positive or negative and negative to zero or positive). In this
way, a discrete ‘nullcline’ analogue is created.
The procedure of creating visualised ‘nullclines’ can be done
as follows:
• Let α ((p,q) ,(r,s)) ,p,q,r,s ∈ N0 represent the propen-

sity from state (p,q) to state (r,s) i.e. dPr,s
dt =

α ((p,q) ,(r,s))Ppq + . . .
• If x > 0 and

sign
(

log α((x−1,y),(x,y))
α((x,y),(x−1,y))

)
6= sign

(
log α((x,y),(x+1,y))

α((x+1,y),(x,y))

)
then there is a horizontal net propensity reversal. For
visualisation purposes, the square associated with state
(x,y) is coloured green.

• If y > 0 and
sign

(
log α((x,y−1),(x,y))

α((x,y),(x,y−1))

)
6= sign

(
log α((x,y),(x,y+1))

α((x,y+1),(x,y))

)
then there is a vertical net propensity reversal. For
visualisation purposes, the square associated with state
(x,y) is coloured blue.

• If both conditions are satisfied then there is both a
horizontal and a vertical net propensity reversal. For
visualisation purposes, the square associated with state
(x,y) is coloured yellow.

Summarising, net horizontal propensity-reversal nodes are

colored green, blue squares illustrate net vertical propensity-
reversal nodes and yellow squares represent both net vertical
and net horizontal propensity-reversal. Note that it is not
possible for a square at the vertical boundary (x = 0) to
be colored green (or yellow therefore). Similarly it is not
possible for a square at the horizontal boundary (y = 0) to
be colored blue (or yellow). This visualisation procedure is
illustrated in Fig.1.

This ‘nullcline-like’ construct should not be confused
with explanatory stochastic ‘nullclines’ explanations utilising
already calculated stationary probability distributions either
directly or by Monte Carlo simulations, as in [15], as the
construct presented here just utilises the transition rates
(propensities) coming directly from the definition of the
system. There is no requirement to calculate the steady state
solution first. This graphical ‘nullcline-like’ construction is
aimed to allow a very quick, without calculations, inference
of the stationary probability distribution as well as provide an
insight for the appearance of unexpected probability modes
in the stationary probability distribution.

D. Applying the discrete nullclines to the genetic toggle
switch example

As shown in Fig. 2, decreasing the equilibrium size
x̄ = ȳ, the normalised by the equilibrium fixed point (1,1)
varies from being the least dominant mode in the stationary
probability distribution to a mode of almost equal probability
with the initial two dominant modes, while other modes are
appearing as well. The stationary probability distribution of
the coarser discretised system (right) can also be used to
explain trimodality as an effect of small numbers as this is
experimentally observed in [15].

The discretisation observed, inversely proportional to the
equilibrium size, has an immediate effect on the discrete
‘nullcline’ structure of the system, as illustrated in Fig. 2
(bottom). Firstly note that the discrete ‘nullclines’ when the
equilibrium size is large (thus the discretisation is very fine)
resemble the deterministic nullclines obtained using Ordinary
Differential Equations [7]. Secondly and most importantly,
note that the first two discrete ‘nullclines’ of Fig. 2 are
different to the third discrete ‘nullclines’ diagram as well
as to the ‘nullclines’ of Fig. 3. In the latter two cases we
observe a boundary ‘nullcline’ gap formation, dotted in the
figures in red. For the horizontal boundary, for instance,
a ‘nullcline’ gap is formed when the first net horizontal
propensity reversal node at the horizontal boundary (coloured
green) is to the right of all net vertical propensity reversal
nodes (coloured blue or yellow). The exact definition is
provided below.
Let the x− and y−coordinates of each net horizontal propen-
sity reversal node i be (hi

x,h
i
y) and belong to set H. Let the

x− and y−coordinates of each net vertical propensity reversal
node j be (v j

x,v
j
y) and belong to set V . Let the largest x-

coordinate component found in the elements of set V be vmax
x

and the largest y-coordinate component found in the elements
of set H be hmax

y . Let hmin
x,0 be the minimum x-coordinate



Fig. 2. The stationary probability distributions (top) with the corresponding discrete ‘nullclines’ (bottom) in the case of cooperative binding (m=2, k=0.8).
By decreasing x̄ = ȳ (20 to 15 to 3), the normalised by the equilibrium fixed point (1,1) varies from being the least dominant mode in the stationary
probability distribution to a mode of almost equal probability with the initial two dominant modes. Note that there is no boundary ‘nullcline’ gap formation
(like the ones dotted in red) in the first two cases (x̄ = ȳ = 20 and x̄ = ȳ = 15), and that the initial two dominant modes are not found exactly on the
boundaries of the grid in contrast with the results in Fig.3. The stationary probability distribution when the equilibrium size is small (and discretisation is
coarse) (right) can be used to explain the trimodality observed experimentally in [15].

Fig. 3. m=2, k=0.4, x̄ = ȳ = 8. The net horizontal and net vertical propensity-reversal nodes form a ‘nullcline’ gap on each boundary which is dotted in
red, where the orthogonal to the boundary net propensities are pointing towards the boundary.

component of the elements (hi
x,0) of set H and vmin

0,y be the
minimum y-coordinate component of the elements (0,vy) of
set V . Then,

Definition III.2. A horizontal boundary ‘nullcline’ gap is
defined to be formed when hmin

x,0 > vmax
x . If that is true, then

the size of the gap is equal to hmin
x,0 −vmax

x . Similarly, a vertical
boundary ‘nullcline’ gap is defined to be formed when vmin

0,y >

hmax
y . If that is true, then the size of the gap is equal to

vmin
0,y −hmax

y .

This essentially means that the preferential direction of
the orthogonal to the boundary edge is towards the boundary
(i.e. towards zero), whereas the preferential direction of the
parallel to the boundary edge is towards further growth. This
can be interpreted by saying that it is preferential for one



Fig. 4. The stationary distributions (top) with the corresponding discrete ‘nullclines’ (bottom) for the non-cooperative binding case (m=1). By decreasing
x̄ = ȳ, the normalised by the equilbrium fixed point (1,1) (which is always coloured yellow as it is both a net vertical and a net horizontal propensity-reversal
node) varies from being the dominant mode in the stationary probability distribution to the least dominant mode, while two dominant modes appear on
the boundaries. At the same time boundary ‘nullcline’ gaps are formed (dotted in red) in both the horizontal and the vertical boundaries.

species to completely vanish, while it is preferential for the
other species to continue growing.

Fig. 3 greatly resembles the examples in literature where
the genetic toggle switch with no cooperative binding ex-
hibits bimodality [14].

For that reason, the same analysis was performed for the
genetic toggle switch with no cooperative binding (m=1), the
results of which are shown in Fig.4. When discretisation is
very fine (left), the discrete ‘nullclines’ resemble what we get
with deterministic nullclines, accompanied with monomodal-
ity in the stationary distribution. Yet, as the equilibrium size
becomes smaller and therefore the discretisation becomes
coarser, the discrete ‘nullclines’ reveal the gap on the grid
boundaries as that observed in Fig. 3, explaining the move-
ment from monomodality to an intermediate multimodality
and finally to essentially bimodality with the two modes
always found on the boundaries, as in Fig. 3.
These results show that the discrete ‘nullclines’ proposed can
capture the effects of the changes in both the equilibrium size
and k, associated with the inverse of the repression strength,
and provide the insight that the mechanism providing bi-
modality in the non-cooperative binding case can, in certain
cases, be the same mechanism providing bimodality in the
cooperative binding case (e.g. as in Fig. 3).

IV. THE COMPARISON WITH NUMERICAL METHODS
ILLUSTRATES THAT THE HEURISTIC METHOD PROVIDES

UPPER-BOUND ESTIMATES

Clearly, the discrete ‘nullclines’ constructed can provide
a good starting point for inference of potential stochastic
effects, prior to any calculations. In this section we aim to
compare the value of k, associated with the inverse of the
repression strength, obtained through the heuristic nullcline
procedure with the minimum numerically-found value of k,
which guarantees that the corresponding to the equilibrium
point, (x̄, x̄), x̄ = ȳ, node in the associated graph is the global
mode.

Proposition IV.1 provides the necessary and sufficient con-
dition relating the equilibrium size x̄(= ȳ) and the parameter
associated with the inverse of the repression strength, k, for
the discrete ‘nullcline’ boundary gap to be formed.

Proposition IV.1. Consider the symmetric genetic toggle
switch system presented in (1) with β = km

km+1 , x̄ = ȳ ≥ 1
and k > 0. Horizontal and vertical boundary ‘nullcline’ gaps
are formed, as defined in Definition III.2, if and only if
d km+1

km x̄−1e> b m
√
(km +1) x̄m+1− kmx̄mc

Proof: At point (0,0) the net vertical and the net
horizontal propensities are both equal to fs = log

(
x̄(km+1)

km

)
.

For x̄ ≥ 1 and k > 0, fs > 0. Looking at the horizontal
boundary, the horizontal net propensity is given by fsH =

log
(

x̄(km+1)
(x+1)km

)
, whereas the vertical net propensity is given



Fig. 5. In the regime of small numbers and non-cooperativity (m = 1),
we compare, for different equilibrium solutions, the numerically-found
minimum k for (x̄, x̄), x̄= ȳ, to be the global mode (i.e. the node with unique
maximum stationary probability) against the sufficient (k < 1/x̄) condition
obtained for the formation of boundary ‘nullcline’ gaps.

by fsV = log
(

ȳ(km+1)
km+( x

x̄ )
m

)
. It is easily seen that as we increase

x both terms will monotonically decrease and ultimately be-
come negative. For a fixed x, x0, the vertical net propensities
as y is increased are also monotonically decreasing as can be

seen: f y
sV = log

(
ȳ(km+1)

(y+1)(km+( x0
x̄ )

m
)

)
. Therefore we only need

to find the points where the change of sign occurs at the
boundary. Balancing the horizontal propensities of the edge
on the right of (xH ,0) for x̄ = ȳ,

km

km +1
xH +1

x̄
= 1⇒ xH =

km +1
km x̄−1

Balancing the vertical propensities of the edge on the top of
(xV ,0),

km

km +1
1
x̄
=

km

km +
( xV

x̄

)m

⇒ xV = m
√
(km +1) x̄m+1− kmx̄m

Thus

dxHe> bxV c ⇔
⌈

km +1
km x̄−1

⌉
>

⌊
m
√
(km +1) x̄m+1− kmx̄m

⌋
Since hmin

x,0 = dxHe and vmax
x = bxV c, it follows that there exists

a horizontal boundary ‘nullcline’ gap (see Definition III.2)
under the same condition. The same calculation applies to the
vertical boundary due to the symmetry of the problem.

A sufficient condition for boundary ‘nullcline’ gap
formations is the one presented in Proposition IV.1, yet
without taking the floor and ceiling operations into account.
For non-cooperative binding (m = 1), x̄ = ȳ ≥ 1, and k > 0,
this sufficient condition simply becomes k < 1/x̄≤ 1.
Figure 5 illustrates that, in the regime of small numbers,
the sufficient value of k for boundary ‘nullcline’ gap

formations, is an upper-bound estimate of the numerically-
found minimum k for the equilibrium point (x̄, ȳ), x̄ = ȳ, to
be the global mode when m = 1. The reason the latter is
calculated for integers only, is that an integer is required for
the equilibrium point in the deterministic domain to coincide
exactly with a vertex (microstate) in the corresponding
graph depicting the Markov process.

Although k in Fig. 5 can be found numerically directly
by calculating the null space of matrix A for each k, we use
a formulation of ours proved in [19], extending a result by
Karim et al [13]. In our formulation A′q = b, where A′ is the
principal submatrix of A after the removal of the row and
of the column corresponding to the equilibrium microstate
j without loss of generality. b is the jth column of A with
element j deleted. q =

[
q1,q2,q3, ...,q j−1,q j+1,q j+2, ...,qn

]T
, qk =

[
Ps(k)
Ps( j)

]
, represents the vector of ratios of stationary

probabilities of all the nodes compared to the stationary
probability of the microstate j. Then the microstate j is the
unique global mode if and only if ‖ q ‖∞< 1. Therefore
another way to investigate this problem numerically is by
investigating ‖ q ‖∞ in the parameter space of x̄ and k.

V. THE DISCRETE ‘NULLCLINE’ CONSTRUCT CAN ALSO
BE USED IN THE ASYMMETRIC CASE

Even though up to now we only considered the symmetric
case of the toggle switch, as this is the one most com-
monly investigated in literature [16], [14], we would like to
emphasize that the discrete ‘nullclines’ we propose can be
used effectively in asymmetric cases as well. For example,
(12) increases both the ‘birth’ as well as the ‘death’ rates
associated to species x, while leaving the corresponding rates
for y equal to the ones shown in (1).

x

(1.2k)mx̄

(1.2k)m+( y
ȳ )

m

−−−−−−−−→ x+1, x
1.3βx−−−→ x−1

y
kmȳ

km+( x
x̄ )

m

−−−−−→ y+1, y
βy−→ y−1

(12)

In Fig. 6 we can see that the boundary modes in the
stationary probability distribution can be predicted from the
boundary gaps of the corresponding discrete ’nullclines’.
As this case is asymmetric however, we need to make a
further prediction regarding which of the two boundary gaps
will produce the largest mode. To do so, we can use the
value of the net propensities (i.e. the logarithm of the ratio
of the weights of the two directions of each edge) of the
edges orthogonal to the boundary gaps. It is observed that
in the horizontal boundary, the vertical net propensity is less
negative than the horizontal net propensity at the vertical
boundary, while the size of the ‘nullcline’ boundary gap is
also smaller. Therefore, we expect to have the largest mode
on the vertical boundary, which is exactly what we observe.

VI. CONCLUSIONS

We have proposed a new discrete ‘nullcline’ construct,
inspired by the Markov chain tree theorem, aimed to be



Fig. 6. The discrete ‘nullclines’ can be used to provide predictions for the stationary probability distributions in the asymmetric genetic toggle switch
example as well. For the asymmetric case presented in (12) with m = 1, k = 0.1, x̄ = ȳ = 4, we also need to make a further prediction regarding which of
the two boundary ‘nullcline’ gaps will produce the largest mode. To do so, we can use the value of the net propensities of the edges orthogonal to the
boundary gaps. It is observed that in the horizontal boundary, the vertical net propensity is less negative than the horizontal net propensity at the vertical
boundary. Therefore, we expect to have the largest mode on the vertical boundary, which is exactly what we observe.

used as a heuristic graphical tool for investigating stochastic
phenomena, requiring minimum calcluations. Its effective-
ness was investigated through the genetic toggle switch
example, where it was illustrated that it is effective in finding
parameter regimes where different stochastic phenomena
are to be expected as well as providing good inference
of the stationary probability distributions to be expected
both in the symmetric and asymmetric cases. Unlike other
constructs [15], its aim is not to be explanatory but predictive,
thus requiring no previous calculation of the steady-state
distribution either through direct means [17], [21] or through
Monte Carlo Simulations [15].
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