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● Whole brain EM connectomics will revolutionise neuroscience
● Insects are at the forefront of this revolution
● Mapping between light and EM image data can integrate anatomy and function
● Quantitative definitions of cell type will promote experiments and communication
● Tools and resources that integrate big neuroscience data are critical for 

neurobiologists
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Abstract 
Parallels between invertebrates and vertebrates in nervous system development, organisation and 
circuits are powerful reasons to use insects to study the mechanistic basis of behaviour. The last few 
years have seen the generation in Drosophila melanogaster of very large light microscopy data sets, 
genetic driver lines and tools to report or manipulate neural activity. These resources in conjunction with 
computational tools are enabling large scale characterisation of neuronal types and their functional 
properties. These are complemented by 3D electron microscopy, providing synaptic resolution data. A 
whole brain connectome of the fly larva is approaching completion based on manual reconstruction of 
EM data. An adult whole brain dataset is already publicly available and focussed reconstruction is under 
way, but its 40x greater volume would require ~ 500-5000 person-years of manual labour. Nevertheless 
rapid technical improvements in imaging and especially automated segmentation will likely deliver a 
complete adult connectome in the next 5 years. To enhance our understanding of the circuit basis of 
behaviour, light and electron microscopy outputs must be integrated with functional and physiological 
information into comprehensive databases. We review presently available data, tools and opportunities 
in Drosophila. We then consider the limits and potential of future progress and how this may impact 
neuroscience in rich model systems provided by larger insects and vertebrates.
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1 Introduction 
Insects provide ideal model systems to obtain mechanistic understanding of the brain from the molecular 
basis of development, through circuit organisation and function to behaviour. There is a long history of 
studying invertebrate nervous systems that goes back beyond Cajal [1–3]. Insect brains encode efficient 
neural solutions matched to the animal’s neuroethological context [4]. Experimental advantages include 
accessible preparations, the numerical simplicity of the brain and the existence of identified cells, that 
can be studied from one animal to the next.

We believe that basic principles of insect nervous systems are shared with other species including 
vertebrates, due to shared computational challenges and deep conservation in basic neuronal hardware 
and developmental genetics [5]. Indeed there are now numerous examples of both shared principles of 
circuit organisation as well as specific cases of circuit mechanisms. For example the shared glomerular 
organisation of the first olfactory relay in insects and mammals has long been recognised [6], while more 
recently it has been proposed that higher olfactory processing and the insect mushroom bodies might 
share organisational principles with learning centres in mammalian brains [7,8]. Pioneering studies in 
insects (especially Calliphora) have had a historic impact on the study of motion vision; however recent 
studies in Drosophila have revealed striking examples of shared circuit mechanisms including the 
separation of ON and OFF motion pathways and the existence of cells tuned to four cardinal directions 
[9]. Whether these parallels are due to evolutionary conservation or convergence remains uncertain, but 
in some cases homologous genes argue for conservation. For example at the interface between the 
nervous system and metabolism, pathways with conserved peptide/hormone signals control analogous 
body systems e.g. Leptin/Upd2 [10], NPY/NPF [10,11] or NMU/hugin [12].

We believe that connectomics, computational neuroanatomy and molecular genetics combined with the 
traditional strengths of invertebrate preparations should enable the neurobiology of Drosophila, in 
particular, to have a major impact on the whole of neuroscience over the next 5-10 years. This will be the 
focus of our review. However we believe strongly that many of the technological advantages we discuss 
are already, or will increasingly become, accessible in other insects and in vertebrates.

2 History of Brain Maps
An essential enabling step in obtaining a mechanistic understanding of behaviour is to describe the 
neurons involved and their potential connections. The Golgi method as applied by Cajal [1] allowed for 
the first time the observation of the intricate morphology of neurons and glia. More importantly, it 
revealed how varied neuronal morphologies can be, and how structure and function might be linked.

Comprehensive studies of cell types within a brain region have been critical drivers of experimental work. 
Electron microscopy can in theory reveal all the neurons within a brain, but the labour involved meant 
that for many years the complete reconstruction of the C. elegans nervous system [13] was a one-off. 
Therefore, the only widely applied methods have depended on sparse labelling, which stochastically 
labels subsets of cells [14]. Recently, the combination of molecular genetic labelling and high resolution 
confocal microscopy [15] has proven particularly effective in Drosophila, generating maps with single cell 
resolution of various brain regions and even spanning the whole brain [16–20]. 3D image registration 
enables direct integration and comparison of high resolution confocal microscopy data from different 
experiments [19,21,22]; this also allows successive additions to existing maps. Furthermore, functional 
data from targeted neuron manipulation and physiology can enrich these mostly anatomical brain maps, 
making it possible to develop and test circuit hypothesis [23–25].
 
Huge amounts of light microscopy-based neuronal image data are now available for the fruit fly brain. 
This raises new challenges. Neuroscientists need user-friendly tools to visualise and query these data 
and especially approaches to integrate across datasets and link neuroanatomical data with data on 
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neuron function, behaviour, etc. These are very significant practical issues when trying to understand 
complex brain data and we discuss them in detail below. However, there are major constraints in the 
resolution of light microscopy data when generating circuit maps. The labelling of the very fine and 
intricate neurites of single neurons is difficult, and small processes are often missing [26,27]. Crucially, 
however, connectivity between neurons can only be inferred, relying on overlap [16,19,20,28] or 
molecular proximity labelling systems like GRASP [29,30]. Recent advances that aim to obtain synaptic 
resolution with light microscopy by physically expanding the specimen up to 20x [31] in combination with 
approaches to label synaptic specialisations may eventually be fruitful. For the time being, this approach 
is likely to increase the density at which sparsely labelled specimens can be resolved. However, this will 
not allow us to achieve a full reconstruction of neurons and their connections.

3 Challenges and Rewards in Connectomics 
Mapping of neural circuits at synaptic level still requires electron-microscopy (EM), due to its ability to 
resolve nanometer scale synaptic contacts. Comprehensive synapse-level brain maps remain rare: to 
date, only two connectomes, C. elegans [13] and Ciona intestinalis [32], exist and the cost-benefit ratio 
of such maps is controversial. The complete wiring diagram of C. elegans’ 302 neurons has been 
available for more than 30 years, but its potential to explain behaviour was initially limited (reviewed in 
[33,34]. In brief, the lack of information beyond neural connectivity (e.g. neurotransmitter identities, 
neuronal activity or behavioural significance of individual neurons) made it difficult to understand more 
than a few basic modules of the worm’s connectome. This called the cost-benefit of the then enormous 
investments to acquire the map into question. Since then, huge technical and much conceptual progress 
has been made and today generation of another C. elegans connectome would be a matter of weeks, 
not years. Here, we will lay out reasons why we believe the time is ripe for more such maps.

Given their relative small size and neuron number, it appears likely that insect brains will among the next 
comprehensive connectomes (Figure 1A). However, generation of synaptic resolution connectomes still 
requires the allocation of considerable resources over extended periods of time. This long-term nature of 
large EM projects clashes with the short-lived “publish-or-perish” attitude in modern science. 
Encouragingly however, a number of large-scale projects have produced partial connectomes in 
vertebrates [35,36] and invertebrates [26,27,37,38] in recent years. The latter are part of efforts to map 
the brains of larval and adult Drosophila, respectively (Box 1 - Insect EM datasets). 

The larval EM project, hosted by Dr. Albert Cardona (Janelia Research Campus), is arguably the most 
successful connectomics effort to date. Begun in 2012, it has involved >15 different labs and > 50 
researchers. In the last 2 years multiple high-profile publications, have presented substantial advances 
on a range of topics: neuron morphology [39], olfaction [40], learning and memory [37], sensory 
integration [41], decision making [42], neurotransmission [12] and motor systems [43,44]. Multiple factors 
contribute to the success of this effort: a whole central nervous system EM volume was acquired, 
allowing reconstruction of all neurons within a single dataset. Instead of a monolithic approach aiming at 
completion from the beginning, reconstruction was tackled in a modular, circuit-focused manner by 
splitting up efforts across a large network of collaborating labs with differing interests. These labs 
brought in necessary expertise in a range of different fields (olfaction, motor systems, learning and 
memory, etc.) and ensured that reconstruction was from the start biology-guided. This, together with an 
in-house catalogue of single cell morphologies (obtained from enhancer driver screens), helping to 
identify EM skeletons and link them to the existing literature, as well as the use of cell-type selective 
genetic reagents to address circuit function [41], were key initial factors in the project’s success. 

The same key points are likely to also hold true for even larger ongoing projects such as the adult 
Drosophila EM project. The first complete volume acquired by the group of Davi Bock at Janelia over ~ 
16 months is about 45 times larger and has 10 times more neurons than the larva [26]. The image data 
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for this adult female whole brain volume are already publicly available (see Box 1) and at least 10 groups 
are already carrying out collaborative reconstruction. Our Drosophila Connectomics Group in Cambridge 
in collaboration with groups at Janelia and Oxford, is focussing on the olfactory-memory circuits, 
especially the mushroom body. We are already generating hugely valuable data by focussing efforts on 
tracing of neurons of interest. Our experience of manual reconstruction in this volume is that one can 
make sudden breakthroughs from just a few days or weeks of work, such as the discovery of previously 
unknown connections for neurons of interest. Comprehensive reconstruction on the other hand is 
extremely slow. We have seen that ~4 person-years of tracing has resulted in about 0.7m of neuronal 
cable (roughly 0.1mm/hour). We calculate based on [40] that Drosophila neuropil contains at least 10 km 
of arbour per mm3; we therefore estimate that the adult brain contains about 100m of cable to 
reconstruct. This serves to underscore that most of the time (and money) associated with connectomics 
is in the annotation of data – tracing out neurons and synapses – rather than initial acquisition of serial 
EM sections [45]. Figure 1B provides some estimates of these quantities in relation to brains of interest. 
These numbers represent idealised reconstruction times and do not take overhead (e.g. for planning and 
analysis) into account which we estimate to at least double the time required.

In the long term, annotation must be automated to make connectomics scale. Automated segmentation 
using machine learning has the potential to speed up data annotation by orders of magnitude [46–48]. 
However at the moment, it requires higher-resolution, isotropic data to be more effective than manual 
reconstruction by humans [27,38]. This has important implications when selecting an EM technique for 
data acquisition. Briefly, ssTEM offers superior x/y resolution and acquisition speed whereas SBEM and 
FIB-SEM sacrifice speed for improved z resolution (Box 1, reviewed in [49,50]). Ultimately, the method of 
choice depends on two key factors: the z resolution required to resolve fine dendritic processes and the 
absolute dimensions of the sample of interest: at current speeds, acquisition times for 1 mm3 (the size of 
a honey bee brain [51], Figure 1A) range between 400 years on a single FIB-SEM [38], ~30 years on an 
automated camera array ssTEM [26,38]. Multibeam SEMs could theoretically reduce this to 6 months 
[52]. Assuming a cable density of about 4.6km/mm3 (mouse cortex, [53,54]) and a manual reconstruction 
speed of about 0.1mm/h, annotation of a 1 mm3 volume would take 22,115 person-years to complete.

This sample calculation simply illustrates the current realistic limits in connectomics research and is not 
to be mistaken for pessimism for the future. In fact, a considerable number of densely (all neurons) and 
sparsely (only circuits of interest) reconstructed EM volumes have been published in recent years 
(Figure 1C). We expect many connectomic studies focussed on particular brain regions to be produced 
in the next 1-2 years using the two whole brain EM datasets already available for the Drosophila larva 
and adult. However by combining higher resolution FIB-SEM and advances in machine learning, it is 
quite feasible that we will obtain a whole adult brain connectome in the next 5 years. Whether dealing 
with sparse, focussed or complete connectomes, data integration poses major practical challenges to 
biological interpretation. This is our next topic.

4 Towards Comprehensive Databases
Numerous terabyte scale Drosophila neuroanatomical datasets have been generated in the last few 
years using light microscopy. These datasets fall into two major classes: single cell morphologies 
(23,000 images: FlyCircuit) [20,55], that are sufficient to define a neuron type, or genetic driver lines 
(13,500 images: Janelia GAL4 and LexA lines [56,57], and Dickson VT lines (B. Dickson, personal 
communication)) (Box 1) that allow researchers to manipulate specific sets of neurons. Although these 
represent large efforts, we expect many more of these datasets to be produced in the coming years, as 
the mapping of the estimated 100,000 neurons of the adult fly brain gathers pace. The generation of 
more datasets using different methods will also help to overcome the labelling bias (i.e., some individual 
neurons or neurons types are much more frequently labelled) observed with the current ones. The use of 
intersectional labelling systems [58], in particular, which allow the targeting of a small number of 
neurons, will both benefit from and contribute to this increase [23].
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In order for the potential advantages of these datasets to be realised, it is necessary to develop user-
friendly tools that allow cross-querying and linking to other relevant data (morphology, function and 
expression for example). In genomic datasets, the organising unit is normally the gene; for brain 
mapping efforts, we suggest that neuron type is the best fit. Although there is no clear consensus 
definition of a neuron type [59], operationally this refers to a single or homogeneous group of neurons 
(from a few to hundreds) marked by features that are reproducibly found from one brain to the next. In 
practise, scientists seem to cope relatively well without formal definitions of neural type – certainly in the 
case of identified neurons present at the level of one per brain hemisphere. Recently, efficient neural 
similarity and search tools have been developed for single traced neurons [60–62]. We also note that 
there has been significant progress on the more difficult problem of matching traced neurons against 3D 
images potentially containing many labelled neurons [62,63]. In particular the NBLAST tool [62] has been 
validated for the morphological definition of cell types on a database of 16,000 single Drosophila neurons 
[20,62]; such approaches may eventually automate classification [64]. In the near future, genome-wide 
gene expression profiles from single cells [65] will inform the current morphology-focused classification 
of neuron types.

As mentioned earlier, integrating 3D data can now routinely be achieved with image registration 
[19,21,22]; the spatial stereotypy of insect brains (reported at 2-3 µm per axis in Drosophila [19]) makes 
this particularly effective. However, even large data providers do not always make their data or metadata 
available in a format that can be easily shared, integrated, or linked to other data. The challenge, is then, 
one of resources. Most neuroscientists cannot yet carry out large scale image registration themselves, 
even though the whole community would benefit from processed data of this sort. In the Drosophila 
neuroscience field, these challenges are being met by the development of the Virtual Fly Brain web 
resource (VFB) [66] (Box 1). VFB integrates and links neuromorphological data to curated information 
from the literature, providing tools to easily search and visualise the data. Other fly and non-fly 
databases that specialise in anatomical data (Allen Brain Atlas [67]; NeuroMorpho.org [68] and Insect 
Brain database; Box 1), have also been developed in the last few years to cope with this challenge. 
 
The availability of EM connectomics data (Figure 2A) presents a new data integration challenge. One 
key issue is simply how to match a given EM tracing with light level/genetic driver imagery (Figure 2B). 
The larval Drosophila project has relied extensively on a collection of confocal images of single cell 
morphologies as an intermediate. However this dataset is indexed by the pattern recognition ability of a 
human expert: there is (presently) no automated query process because of the absence of co-registered 
data [41]. In the adult fly where the number of cell types is likely to be significantly greater, new tools 
have been developed that use image registration techniques to move EM data onto a light microscopy 
template brain or vice versa (e.g. elm/elmr, Box 1). This means EM data can be compared to any of the 
light microscopy datasets available. For example, this enables an EM neuron to be searched in seconds 
with NBLAST [62] against a database of single cell morphologies or driver lines (Figure 2C-G). Our team 
finds this functionality incredibly helpful in our tracing work focussed on the adult olfactory 
system/mushroom body.

Tools to analyse connectivity information – the significant advantage of EM data – in large datasets, as 
the adult fly brain, are still in their early development. It is not only the number of synapses that is 
relevant to interpret the circuit output, but also their location relative to their partners’ morphology e.g. on 
dendritic or axonal arbours. Although reconstruction tools such as CATMAID [39,69] (Box 1) provide 
support for interactive network analysis, this is limited to a relatively small number of interactions 
(number of neurons or paths on a circuit).

Neuroscientists naturally need to test functional predictions from connectomics results. One apparently 
simple issue is to determine the significance of different numbers of synaptic inputs (pairs of neurons in 
the adult dataset can have from 1 to >400 connections). At a higher level, the ability to model the output 
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of complex networks will become ever more important [70,71]. Furthermore, approaches to link 
behavioural outputs to the activity of specific neuron types at scale [72] will be very significant. To 
achieve accurate predictions, however, these models should integrate information on morphology and 
connectivity (synapse number and location), physiology, neurotransmitter and gene expression. In order 
to facilitate the work of experimental neuroscientists, these data must be curated and integrated into 
comprehensive databases, following the example of the approach taken by genomic research [73]. 

5 Future Perspectives
The future development of connectomics (and specifically EM connectomics) as an approach to 
understand brain and behaviour will depend strongly on technological advances. When the human 
genome project began in 1990 it seemed an almost impossible task; 13 years later it was complete at an 
aggregate cost of 3 billion dollars. Now genomes can be sequenced in hours for <$1000. Will 
connectomics see the same huge speed-ups? And what will the consequences be? 

Present estimates for the effort to complete manual tracing and review of the adult brain of Drosophila 
are in the range 500-2000 person-years (implying a $50-200M project). To bring this into a plausible 
range, manual labour must be reduced by a factor of 10-100. This means that the accuracy and 
completeness of automated results must result in 10-100x less user interaction. If correcting a mistake 
takes as long as making a manual tracing decision (it probably takes rather longer) then this means that 
tracing annotation must aim to be >99% accurate. A related issue is whether all results must be manually 
proof-read. Even if reviewing correct results is much faster than manual tracing this could severely limit 
the attainable speed-up. This implies that quality control must become increasingly automated. One 
general approach will be to ensure that automated software can reliably quantify its uncertainty. For 
whole brain data, quantitative approaches based on left-right symmetry of morphology or connectivity 
may be one possibility. We suspect that a key issue will be identifying homologous neurons or small 
groups of neurons and ensuring that they show consistent numbers, morphology and connectivity. 
Comparison across more than one specimen will clearly also be desirable.

If automated tracing can indeed result in a >10-100x speedup, then imaging speed again becomes an 
issue. A regular FIB-SEM instrument is the highest resolution tool available but is relatively slow. In 
theory, new SEM instruments containing >100 parallel scanning beams could speed up imaging by two 
orders of magnitude [45]. However, for technical reasons, these devices are not currently available with 
integrated FIB ion beam abrasion columns and therefore can only be used with other cutting methods, 
likely to have considerably poorer Z slice thickness (>=20 nm). This, in itself, may have a huge impact on 
the performance of automated reconstruction methods for neurites as fine as those in Drosophila, but 
may be acceptable for other species. In the long term, we should also bear in mind the real possibility 
that a different approach will supplant volume EM in its ability to deliver connectomic information.

We believe that recent efforts to map neural circuits are just the first wave of synapse-resolution 
connectomes to come. It is entirely plausible that in the future connectomic analyses will be just as 
ordinary to neuroscientists as sequencing is to present-day geneticists. Assuming that we are indeed 
able to obtain connectomes routinely, how will they change the science we do? Work already mentioned 
in the Drosophila larva has confirmed the value of using connectivity information to inform our 
understanding and select new experiments. We would also emphasise the value of comprehensive 
morphological reconstruction from EM – this frequently reveals previously unknown neuronal classes or 
enables a census of all neurons of a particular class. We have already highlighted quantitative 
approaches to morphology and data integration that should streamline the use of connectomes in the 
study of circuits and behaviour. 

Comparative work across specimens will open up new possibilities. First it will be possible to examine 
variation across individuals. This may have origins in sex differences, in learning during an animal’s life 
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or in random developmental processes. Having complete, high resolution reference connectomes it may 
be possible to use lower resolution imaging that is not guaranteed to reveal fine dendrites and synaptic 
connectivity. Likewise, it may be possible to image quite small volumes in conjunction with genetically 
targeted EM visible markers [74,75]. Either of these possibilities may be useful in combination with 
functional imaging protocols prior to fixation and preparation for EM.

The Drosophila larva appears likely to yield the next connectome of an entire central nervous system, 
but we naturally anticipate maps for other insects. We see huge value in whole brain EM volumes that 
would support the kind of focussed but interlocking studies typical of the Drosophila larva even before 
very highly automated reconstruction was possible. One possible area of interest would be to look at 
other Drosophilids with interesting neuroethology/ecology. Other key next targets could include insects of 
great significance to man such as the honey bee or mosquito. We suggest that a mosquito effort (e.g. A 
gambiae) is already worth planning given that it is in the size range of D. melanogaster [76], whereas 
order of magnitude technology advances would be required to bring the honeybee into range. In the long 
term, we see great potential for the fusion of neuroethology, ecology and evo-devo studies through the 
application of neural circuit studies informed by connectomics to diverse insect models.
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Box 1- Current Methods and Resources
Methods
ssTEM: serial section Transmission Electron Microscopy. This technique relies on manually cutting thin 
serial sections prior to imaging. It offers the highest acquisition speed when combined with camera 
arrays and automated high speed sample movement/exchange); resolution is better than FIB-SEM in in 
x/y (4nm), but worse in z (40nm). Image data has to be realigned into a cohesive volume  [26,50,77]. 
FIB-SEM: Focused Ion Beam milling Scanning Electron Microscopy. This technique combines a SEM 
and gallium ion source. During image acquisition, layers are sequentially shaved off by an ion beam. 
FIB-SEM has the highest z-resolution currently possible (5nm) and allows generation of isotropic data at 
the cost of greatly reduced acquisition speed. Images do not need to be realigned but sample is lost 
during acquisition [50,77].
SBEM: serial block-face scanning electron microscopy. Combination of SEM and in-chamber microtome. 
Fast cutting and imaging times at cost of x/y resolution [26,50,77].
CATMAID: Collaborative Annotation Toolkit for Massive Amounts of Data. Web interface that allows the 
nationalnavigation and collaborative annotation of 3D biological image datasets. The interface allows the 
reconstruction of neurons from ssTEM volumes, browsing and initial analysis of the neurons’ morphology 
and connectivity [39,69]. 
Knossos/WebKnossos: Used to visualise EM data and support skeleton as well as volume 
reconstruction. WebKnossos (https://www.webknossos.org) is the web-based implementation of 
Knossos (https://knossostool.org) [78].
elm+elmr: Fiji/ImageJ plugin to allow co-visualisation of Electron-Light Microscopy data 
(https://github.com/saalfeldlab/elm) allowing iterative identification of landmarks in two image volumes, 
defining a transformation between them. Building on this, elmr is an R package that moves neuronal 
tracing and other data between light and EM volumes described in Zheng et al. [26] 
(https://github.com/jefferis/elmr). It interacts with CATMAID and the Neuroanatomy Toolbox 
(https://github.com/jefferis/nat) package, allowing more sophisticated analysis. 

Resources
Large light microscopy datasets: 

● FlyCircuit (http://www.flycircuit.tw/): around 23,000 single neuron images obtained by MARCM 
[20,55]. 

● FlyLight (http://flweb.janelia.org/cgi-bin/flew.cgi): around 3,500 GAL4 and near 1500 LexA driver 
lines [56,57]. 

● Dickson VT lines (https://braingazer.org/): around 8,500 GAL4 lines. braingazer.org provides  
advanced querying tools to search for neurons of interest, potential connectivity and similarity 
[79]. 

Most of these datasets provide expression data per neuropil. These datasets are available for academic 
reuse, but may have limitations for commercial purposes.
Unfortunately, datasets are often released with unclear licenses. This is an issue that data producers 
should address to maximise the use of their data.

Insect EM datasets:
● FAFB (http://www.temca2data.org/): Adult Drosophila brain of female adult fly comprising 

100,000 neurons [26]. 
● Larval Drosophila (https://neurodata.io/data/): CNS of first instar larva comprising 10-12,000 

neurons [41].

Anatomical data:
Virtual Fly Brain (VFB) (http://www.virtualflybrain.org/): Integrates Drosophila neural information, 
including published data (anatomy, innervation, connectivity, expression, etc) and image datasets. Users 
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can query the data in a variety of ways, view and compare the images on a 3D browser, find similar 
neurons using NBLAST [62], and download the image data [66].
Fruit Fly Brain Observatory (FBBO) (http://fruitflybrain.org/): web resource focused on network 
simulation. It integrates existing data types including morphology, connectivity and physiology, to 
generates circuit models [80].
Insect Brain Database (https://insectbraindb.org/): web inventory of single neurons and 3D brain 
models in various insect species including honeybee and monarch butterfly. Users are able to submit 
data. 
NeuroMorpho.org (http://neuromorpho.org/): Inventory of digitally reconstructed neurons, from many 
different species, including Drosophila. Different datasets are not cross-registered. Users are able to 
submit and download data [68].
Allen Brain Atlas (http://www.brain-map.org/): web resource that generates and aggregates neuronal 
data for mostly mouse and human. It includes large scale gene expression and characterisation of 
tissues, a cell type inventory of visual cortex neurons based on activity and anatomy and mesoscale 
connectivity data [67].

Figure 1 - Size and cost of connectomes
A) Comparison of brain volume and neuron number for some widely used model systems. Insect 

brains are well suited for comprehensive mapping due to their relatively small size and lower 
neuron number. References: [51,81–85]; zebrafish larva (6 dpf) neuron count: 130,000 (T. 
Kawashima and M. Ahrens, personal communication).

B) Estimated time and cost to generate whole brain connectomes using state-of-the-art manual 
annotation tools. An adult Drosophila connectome is feasible as a multi-lab collaboration whereas 
a larval connectome might even be within reach of a single lab effort. Calculations are based on 
assumed 5km cable/mm3 and $50,000/person-year, and do not include overhead from planning 
and analysis. Reconstruction speeds for different tools are based on [35,40,78,86].

C) Various EM dataset have been published in recent years. Reconstruction method (dense/sparse) 
refers to whether all or a subset of neurons in given volume were reconstructed. References not 
already mentioned in the text: Platynereis [87]; zebra finch [87,88]; zebrafish [89].

Figure 2 - Using light level tools to analyse EM data 
A) Single identified mushroom body output neuron ɑ2sc (MBON-ɑ2sc) reconstructed in the FAFB 

EM dataset [26], plotted in the light level template (FCWB). Input synapses in cyan, output ones 
in red, brain template in grey.

B) Comparison between two images of the MBON-ɑ2sc: one obtained by light level microscopy (LM, 
brown) [23] and another traced in the FAFB EM dataset (EM, green). There is one MBON-ɑ2sc 
neuron per brain hemisphere, and both are shown. The left EM neuron has not been fully traced; 
the difference is noticeable in its dendritic domain. 

C) Flow-chart showing how existing light level tools can aid identification of neurons traced in EM. 
First, a traced neuron can be imported into R and transformed onto a light level template, FCWB, 
using elm and elmr (Box 1). Then, neurons are mirrored to the left hemisphere (if needed) using 
a mirroring registration [21]. After this, the neuron can be searched against a light level database 
of ~16,000 single neuron images (Flycircuit) [20] (all on the left hemisphere), using NBLAST, to 
find its best match based on morphology and position [62]. Around half of the FlyCircuit dataset 
have been assigned a neuron type (http://www.virtualflybrain.org/), allowing users to identify their 
traced neuron. 

D) Local lateral horn neurons of the AV1 type (n=59) traced in the FAFB EM dataset. The neurons 
were fetched from CATMAID and transformed onto the light level template FCWB.
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D') Morphological clustering of AV1 neurons based on NBLAST scores. The NBLAST similarity 
scores for the neurons shown in D (each one against all others) were calculated and used to 
perform hierarchical clustering. The resulting dendrogram was cut at a height that produced 5 
different groups (1-5). This approach can be used to reveal groups of similar neurons, and helps 
to identify types and subtypes. The inset shows the neurons coloured according to the clustering 
group, highlighting that morphologically similar neurons are part of the same group. Neurons on 
the right hemisphere were mirrored to the left before calculating the scores.

E) Plot of the neurons in group 3 (n=10) from D’. This group includes neurons on the left and right 
hemispheres, suggesting they might be homologous neurons of the same subtype.

F) EM neuron (EM, green) and its light level best NBLAST hit (LM, brown) from the Flycircuit 
dataset. The EM neuron used was from group 3 (E). The approach followed is detailed in C.

G) Group 3 neurons (E) (mirrored to the right, in green) and its best NBLAST hit against a database 
of genetic driver lines [56] (R66B12, in grey and brown) [62]. The full driver line expression is 
shown in grey, and the regions that match with group 3 neurons are shown in brown.
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