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Abstract—Type 2 Diabetes condition is a multifactorial 

disorder involves the convergence of genetics, environment, diet 

and lifestyle risk factors. This paper investigates genetic and 

conventional (clinical, sociodemographic) risk factors and their 

predictive power in classifying Type 2 Diabetes. Six statistically 

significant Single Nucleotide Polymorphisms (SNPs) associated 

with Type 2 Diabetes are derived by conducting logistic 

association analysis. The derived SNPs in addition to conventional 

risk factors are used to model supervised machine learning 

algorithms to classify cases and controls in genome wide 

association studies (GWAS). Models are trained using genetic 

variable analysis, genetic and conventional variable analysis, and 

conventional variable analysis. The results demonstrate of the 

three models, higher predictive capacity is evident when genetic 

and conventional predictors are combined. Using a Random 

Forest classifier, the Area Under the Curve=73.96%, 

Sensitivity=68.42%, and Specificity=78.67%. 

Keywords—Clinical data, Genetics, Machine Learning, Single 

Nucleotide Polymorphism, Type 2 Diabetes  

I. INTRODUCTION  

Currently, the prevalence of Type 2 Diabetes (T2D) 
throughout the world has reached epidemic proportions. In 
2012, the World Health Organization (WHO) [1] estimated that 
1.5 million deaths were directly attributed to diabetes, and that 
by 2030 diabetes will be the seventh leading cause of mortality 
worldwide [2]. T2D is the most predominant form of all types 
of diabetes [1]. T2D (also known as insulin resistance) is a 
chronic disease that occurs as a consequence of the ineffective 
use of insulin by body cells [1]. T2D remains the leading cause 
of serious long-term health complications [3]. It is responsible 
for most cases of blindness (Diabetic retinopathy), kidney 
failure and lower limb amputation [1]. Moreover, high glucose 
levels (raised blood sugar) or Hyperglycemia in the bloodstream 
can damage blood vessels which increase the likelihood of 

atherosclerosis (cardiovascular disease) and stroke and can 
cause nerve damage [3]. Until recently, T2D was recognized 
only in people who are over the age of 40, but currently children 
are also being diagnosed with T2D [4]. 

Researchers have indicated that T2D results from the 
convergence of genetics, environment, diet and lifestyle choices 
[5]. Various risk factors are involved in the development of T2D 
including obesity and overweight (with a body mass index 
(BMI) of 30 or more), family history, older age (people over the 
age of 40), ethnicity, and physical inactivity [6]. 

Since the completion of the Human Genome Project in 2003, 
researchers have confirmed that among the 3 billion base pairs 
of DNA, 99.9% are remarkably similar [7] with the remaining 
0.1% making an individual unique. The 0.1% of variations are 
termed Single Nucleotide Polymorphisms (SNPs). A SNP is a 
single base-pair change in the genetic code (Deoxyribonucleic 
Acid (DNA Sequence)), and it is the main cause of human 
genetic variability [8]. Genotyping technology has facilitated 
rapid progress in genome-wide association studies (GWAS) 
typically used to study SNPs and their prevalence within and 
across different population groups [9]. More specifically, 
GWAS has seen widespread use in studies that investigate the 
genetic architecture of human disease in the entire genome [10]. 
Within these kinds of studies genetic markers that show 
evidence of increased predisposition to a complex disease, such 
as T2D and related traits, are identified as being important for 
furthermore in-depth analysis. Identifying high risk SNPs allows 
researchers to investigate the interactions between genes, the 
environment, and sociodemographic factors to provide a 
complete understanding of specific diseases, treatment options 
and prevention. In the case of T2D this might require a change 
in diet and lifestyle to prevent or delay the onset of the disease 
in high-risk individuals [11], [12]. 
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Machine learning and predictive modeling have become 
important tools in a variety of medical domains [13], [14] 
particularly biomedical research [15], [16], [17], [18]. 
Investigators have successfully applied machine learning to 
model the relationships between combinations of SNPs, the 
environmental, clinical factors and human disease. This paper 
builds on early positive results in this area and investigates 
genetic and clinical factors and their relation to T2D. Utilizing 
three different machine models, the predictive capacity of SNPs, 
clinical data and both of these combined, are evaluated to 
determine their predictive capacity in distinguishing between 
cases and controls in GWAS. 

The remainder of this paper organized as follows. Section II 
provides details about the database used followed by the steps 
conducted in quality control and association analysis. 
Additionally, details about the classification models adopted 
and the evaluation techniques considered are demonstrated. The 
results are presented in section III, while the findings are 
discussed in section IV, before the paper is concluded in section 
V. 

II. MATERIALS AND METHODS 

A. Data Description 

The data, for this study, was obtained following authorized 
access to the Database of Genotypes and Phenotypes (dbGaP) 
[19]. The Nurses’ Health Study (NHS) and the Health 
Professionals Follow-up Study (HPFS) in T2D (Study 
Accession: phs000091.v2.p1 ) are used in this paper. The NHS 
and HPFS cohorts are part of the Gene Environment Association 
Studies initiative (GENEVA, http://www.genevastudy.org) 
funded by the trans-NIH Genes, Environment, and Health 
Initiative (GEI). The NHS was started in 1976; participants 
include 121,700 female registered nurses aged between 30 and 
55 years of age that reside in 11 U.S states. The HPFS study was 
established in 1986; participants include 51,529 male health 
professionals aged between 40 and 75 years that reside in 50 U.S 
states. All participants responded to a mailed questionnaire 
requesting information related to their medical history and 
lifestyle characteristics. Since then, on a 2 to 4-year cycle, cohort 
members have been asked to provide dietary information using 
validated semi-quantitative food frequency questionnaires. 
Participants were also requested to provide blood samples, in 
which 32,826 members of the NHS and 18,225 members of the 
HPFS responded. The case and control participants were 
selected from those who provided a blood sample. Cases were 
identified as those who reported themselves to be affected by 
T2D, and it was confirmed by a medical record validation 
questionnaire. Controls were defined as those without diabetes. 
The DNA of case and control participants were genotyped at the 
Broad Centre for Genotyping and Analysis (CGA) using the 
Affymetrix Genome-Wide Human 6.0 array. 

A total of 6041 NHS and HPFS case-control subjects with 
genotype information across 909622 SNPs successfully passed 
the initial quality control at the Board CGA and were used as a 
final version of the dataset. The NHS subjects consist of 1581 
T2D cases and 1854 controls, and the HPFS subjects comprise 
1232 T2D cases and 1374 controls. The NHS and HPFS 
participants belong to one of four racial categories (White, 

African-American, Asia or Other). Participants are 
predominantly white representing 97.4% and 96% of the NHS 
and HPFS subjects, respectively. 

Clinical and dietary data information is also collected for 
NHS and HPFS participants including age, gender, Body Mass 
Index (BMI), alcohol intake, smoking status, physical activity, 
height, weight, family history of diabetes among first degree 
relatives, high blood pressure, high blood cholesterol, 
polyunsaturated fat intake, magnesium intake, cereal fibre 
intake, and glycaemic load. A comprehensive description of 
GENEVA NHS and HPFS dataset can be found in the quality 
control report for the GENEVA NHS and HPFS T2D project 
[20], [21]. 

B. Data Preprocessing 

Data quality control (QC) and preliminary analysis are 
performed using PLINK v1.07 and v1.9 [22] for Windows. 
PLINK is also used to merge the NHS and HPFS datasets (NHS 
and HPFS participants were genotyped using the Affymetrix 
Genome-Wide Human 6.0 array) and filtering procedures. 
Before QC, the 0 Chromosome was removed, and non-T2D 
participants, i.e. other types of diabetes (65 NHS, 68 HPFS), the 
HapMap controls (44 NHS, 29 HPFS) and those belonging to 
ethnicity other than white (61 NHS, 103 HPFS) were excluded 
from the study. This study is restricted to white ancestry to 
reduce potential bias due to population stratification. The 
dataset was subjected to pre-established quality control 
protocols as recommended in [23]. In addition, quality control 
parameters are tuned to meet the requirements of the analysis 
presented in this study. Quality control assessments for 
individuals and genetic data are conducted separately. 

Individual QC: Samples with discordant sex information 
(homozygosity rate between 0.2 and 0.8) were identified 
resulting in 14 samples being removed from the dataset. 
Individuals with elevated missing data rates (genotype failure 
rate ≥ 0.05) and outlying heterozygosity rate (heterozygosity 
rate ±3 standard deviations from the mean) were identified 
resulting in 131 individuals being discarded from the analysis. 
Identity-by-descent (IBD) was estimated to remove duplicated 
or related individuals (IBD > 0.185). This resulted in eight 
individuals being excluded from the dataset. Individuals with 
divergent ancestry were identified using the 2nd principal 
component score < 0.061 resulting in 51 individuals being 
removed. 101 individuals were removed due to missing 
genotype data rate of 0.05. 

Genetic Marker QC: Genetic Markers (SNPs) that met any 
of the following criteria were removed from the analysis. SNPs 
with excessive missing data rates were identified resulting in 29 
SNPs being excluded. 116863 variants with missing genotype 
rate of 0.01 and 178004 variants with minor allele frequency 
(MAF) < 0.05 were removed. 2248 variants removed due to 
Hardy-Weinberg Equilibrium (HWE) with p-value < 0.001 in 
control samples. Following the QC steps, there were 5393 
individuals (2481 cases, 2912 controls) and 608342 markers 
with a 0.961665 genotype rate in the remaining samples. 

C. Association Analysis 

For association analysis, the case-control study design is 



 

Fig. 1. Manhattan Plot for Logistic Regression Analysis. Showing the 

SNPs that reached Bonferroni Level of Significant, Red Line. 

TABLE I.  SNPS FROM LOGISTIC ASSOCIATION 

Chr Gene SNP P-Value 

10 TCF7L2 rs4132670 9.253×10-10 

10 TCF7L2 rs12243326 1.164×10-9 

10 TCF7L2 rs12255372 1.591×10-9 

10 TCF7L2 rs7901695 1.701×10-9 

10 TCF7L2 rs4506565 1.992×10-9 

3 ADAMTS9 rs2371765 2.206×10-8 

used to obtain statistically significant SNPs associated to T2D. 
Allelic and Logistic association analyses are conducted for 
preliminary and confirmatory explorations, respectively. Six 
SNPs from logistic association analysis reached Bonferroni 
corrected genome-wide significance threshold of 5×10-8  
including (rs4132670, rs12243326, rs12255372, rs7901695, 
rs4506565, rs2371765) as demonstrated in Table I, these are 
located in chromosome (Chr) 10 and 3. 

Fig. 1 illustrates the logistic regression model for association 
analysis showing the level of statistical significance as measured 
by the negative log of the corresponding p-value, for each SNP. 
The red line corresponds to the Bonferroni level of significance 
and the SNPs that reached this threshold were considered to be 
statistically significant. These six SNPs were extracted and 
reformatted to construct a new dataset that is used for T2D 
classification and risk prediction using several machine learning 
algorithms.  

D. Classification Models 

Seven supervised machine learning algorithms have been 
selected for binary classification of T2D (control = 1, case = 2). 
The performance of each model is measured using the Area 
Under the Curve (AUC), Sensitivity and Specificity values. The 
dataset is split randomly into training (80%) to train the models 
and testing (20%) to evaluate model performance on unseen 
data. Several evaluations are considered which includes 
modelling using genetic features only, genetics and clinical 
features, and clinical features only. 

10-fold cross-validation with 3 repetitions is employed in 
this analysis to repeatedly split the training data into 10-fold 
repeated 3 times. 

 Sensitivity and specificity are used to represent the number 
of correctly identify case and control participants. Sensitivity 
refers to the true positive rate which describes the ability of the 
test to correctly classify people with T2D. While Specificity 
describes the true negative rate which is the ability of the test to 
correctly classify people without T2D [24]. 

Furthermore, in this analysis the area under the curve (AUC) 
and the receiver operating characteristic curve (ROC curve) are 
used to assess and compare classifiers performance, both quality 
measures are widely used to assess binary classifiers [25]. 

Seven supervised machine learning algorithms that are 
specific for modelling dichotomous data are investigated in this 
paper. The selected machine learning algorithms fall into two 
categories either developed to model the non-linear or the linear 
effects. The former includes Stochastic Gradient Boosting 
(GBM), Support Vector Machines with Radial Basis Function 
Kernel (SVM), Random Forest (RF), K-Nearest Neighbor 
(KNN), Classification and Regression Trees (CART), 
Monotone Multi-Layer Perceptron Neural Network 
(MONMLP). While the later includes Lasso and Elastic-Net 
Regularized Generalized Linear Models (GLMNET). The 
implementation, comparison, and the evaluation of the 
predictive classification models were performed using R 
software specifically caret package [26]. 

Each of the machine learning model mentioned above is 
automatically tuned during models’ training to best adapt for a 
given dataset through an automatic grid search. Table II 
demonstrates tuning parameters for three analyses: genetic 
analysis, genetic and clinical analysis, clinical analysis. These 
tuning parameters values were selected among different options 
since they optimized the ROC values for the models. 

III. RESULTS 

Several analyses are considered to investigate the risk 
prediction of T2D including genetic features, genetic with 
clinical features, and clinical features only. 

The first analysis was conducted using genomic features 
only; these include rs4132670, rs12243326, rs12255372, 
rs7901695, rs4506565, and rs2371765. The results presented in 
Table III show that sensitivities and specificities are imbalanced 
for all the models, sensitivities are lower than specificities. This 
indicates that the selected features for these models are 
inadequate at distinguishing between cases and controls. This 
analysis also reveals that the performance using AUC for linear 
and nonlinear classifiers are almost the same ranging between 
57.09% for the RF and SVM classifiers and 57.84% for the 
KNN. Fig. 2 illustrates the ROC curve for the chosen models. 

A separate analysis is conducted using clinical variables only 
these include Body Mass Index (BMI), alcohol intake (Alcohol), 
smoking status (SMK), physical activity (ACT), family history 
of diabetes (Famdb), high blood pressure (Hbp), high blood 
cholesterol (Chol), AGE and SEX. The results in Table IV show 
that the RF classifier yields the best accuracy measure of 
72.41%. Although RF produced the best AUC performance, the 
model can classify unaffected (control) better than affected 
(case) classes with 68.42% and 75.81% for sensitivity and 
specificity, respectively. The AUC values for KNN and RPART 



TABLE II.  TUNING PARAMETER FOR MODELS 

Classifier Parameters Best Tuning GWAS Best Tuning Clinical Best Tuning GWAS&Clinical 

GLMNET 
Alpha 

lambda 

alpha=0.1  

lambda= 0.008532955 

alpha=0.55  

lambda= 0.003759095 

alpha=1  

lambda= 0.003759095 

GBM 

n.trees 
interaction.depth 

shrinkage 

n.minobsinnode 

n.trees = 50  
interaction.depth = 1  

shrinkage = 0.1  

n.minobsinnode = 10 

n.trees = 150  
interaction.depth = 1  

shrinkage = 0.1  

n.minobsinnode = 10 

n.trees = 150  
interaction.depth = 1 

shrinkage = 0.1  

n.minobsinnode = 10 

SVM 
Sigma 

C 

sigma= 0.2731565  

C = 0.25 

sigma= 0.08706031  

C = 0.25 

sigma= 0.04792686   

C = 1 

KNN k k = 9 k = 9 k = 9 

RF mtry mtry = 2 mtry = 2 mtry = 2 

RPART cp cp= 0.001526718 cp= 0.01156677 cp = 0.01156677 

MONMLP 
hidden1 
n.ensemble 

hidden1 = 1  
n.ensemble = 1 

hidden1 = 1  
n.ensemble = 1 

hidden1 = 1 
n.ensemble = 1 

are lower than other classifiers. However, RPART is the only 
classifier with sensitivity higher than specificity (70.11%, 
68.44%) which means that RPART model can better separate 
cases than controls. Fig. 3 shows the ROC curve for the selected 
models. 

A combination of six genetic variables with nine clinical 
variables is used as input features for the third analysis. The 
results in Table V show that the best classification accuracy of 
73.96% was obtained by the RF algorithm. The AUC values for 
GLMNET, GBM, SVM, KNN, RF, RPART, MONMLP with 
this analysis yielded better results than using clinical or genomic 
data separately. As illustrated in Fig. 5, the predictive values of 
the machine learning models used in this investigation are due 
to clinical data, with slight evidence arising from genetic data. 
Body Mass Index (BMI) was significantly important for all 
models apart from GLMNET. Moreover, the importance of 
other clinical variables including Famdb, Hbp, Chol, SMK, Sex, 
Alcohol, ACT, and AGE appeared varied among these seven 
models. For the RPART model, the rank features for ACT, 
SMK, AGE, and SEX seemed completely trivial. For the 
GLMNET model the Alcohol, ACT, and AGE were considered 
not relevant.  

The importance of genetic variables, in relation to the 
predictive values for these seven algorithms, is varied, but they 
always proved to be less relevant in comparison to clinical 
variables. Although all six genetic variables are used by SVM, 
RF, and MONMLP, their rank measurement is low. For 
GLMNET, GBM and RPART not all genetic variables were 
considered, and they show minor to no influence on the 
predictive results. Fig. 4 presents the ROC curve for the selected 
models. 

TABLE III.  PREDICTIVE RESULTS FOR GENETIC ANALYSIS 

Classifier Sensitivity Specificity Accuracy 

GLMNET 0.2587           0.8417           0.5746 

GBM 0.2546           0.8399           0.5718          

SVM 0.2424           0.8485           0.5709           

KNN 0.2668           0.8417 0.5784           

RF 0.2505           0.8417           0.5709           

RPART 0.2607           0.8382           0.5737           

MONMLP 0.2668           0.8313 0.5728           

TABLE IV.  PREDICTIVE RESULTS FOR CLINICAL ANALYSIS 

Classifier Sensitivity Specificity Accuracy 

GLMNET 0.6189           0.8065           0.7202           

GBM 0.6484           0.7706           0.7144 

SVM 0.6526           0.7778           0.7202 

KNN 0.5642           0.7151           0.6457 

RF 0.6842           0.7581 0.7241 

RPART 0.7011           0.6703           0.6844           

MONMLP 0.6716           0.7634           0.7212 

TABLE V.  PREDICTIVE RESULTS FOR GENETIC AND CLINICAL  

Classifier Sensitivity Specificity Accuracy 

GLMNET 0.6484           0.8029           0.7318           

GBM 0.6632           0.7742           0.7231           

SVM 0.6737 0.7760           0.7289           

KNN 0.5684           0.7133           0.6467            

RF 0.6842           0.7867           0.7396          

RPART 0.7011           0.6703           0.6844 

MONMLP 0.6821           0.7706           0.7299           

 

 
Fig. 2. ROC Curve for Seven Models using Genetic Features.  



 

Fig. 3. ROC Curve for Seven Models using Clinical Features.  

 

 

Fig. 4. ROC Curve for Seven Models using a Combination of Genetic and 
Clinical Features.  

IV. DISCUSSION 

In this paper, our interpretation of the results is 
predominantly based on investigation conducted to determine 
the most relevant features for the classification of T2D in a case-
control study. Genetic variables obtained from logistic 
regression association analysis, mainly SNPs variables, and 
clinical/sociodemographic variables are investigated to 
effectively understand and identify predisposition to T2D using 
advanced machine learning algorithms.  

In the first analysis, genomic data variables extracted from 
logistic association analysis consisting of the six most 
significant SNPs are utilized as input features for the machine 
learning models. In general, as shown in Table III the 
classification accuracy of all seven machine learning models are 
low and almost show similar accuracy values ranging from 
57.09% for RF to 57.84% for KNN. The low values of the 
predictive accuracy for the selected models is an indication that 
genomic data particularly SNPs passed GWAS failed to classify 
case and control observations, and these are often due to the fact 
that these SNPs are false positives. So far, the prediction of 
disease risk based on highly significant association SNPs 
demonstrated little predictive power [27]. This can be explained 
due to the limited heritability [28], which means how much of 
the phenotypic variance (combines the genotype variance with 
the environmental variance) is due to genetic variance [29].  

A much higher predictive accuracy is obtained using clinical 
variables solely. Among the selected models, the RF achieved 
the best accuracy measure at 72.41% with 68.42% for sensitivity 
and 75.81% for specificity. Moreover, the predictive accuracy 
when employing both genomic and clinical data as input features 
showed satisfactory results as the RF classifier again achieved 
the best results at 73.96%. Comparatively, GLMNET, GBM, 
SVM, KNN, RF, RPART, MONMLP yielded better results than 
using clinical or genomic data separately. The interpretation of 
the results suggested that the improvement of classification 
prediction accuracy for all classifiers is entirely due to clinical 
variables, with no predictive value emerging from genotype 
variables alone. This is confirmed through the use of variable 
importance as illusterated in Fig. 5. Although, the variables for 
each model showed the disparity in relation to their rank 
measurement. Variable importance of the tested models shows 
that clinical data specifically BMI is the most associated variable 
in comparison to other features including clinical and genetic 
data.  Although the predictive power is mainly due to the clinical 
variables, however, we could claim that combining genetic and 
clinical information might have more significant utility for T2D 
prediction than employing genetic or clinical data separately. 
For instance, RF classification accuracy values improved 
dramatically from 57.09% for genetic variables to 72.41% and 
73.96% for clinical variables and the joint effects of genetic and 
clinical variables respectively. 

In the clinical analysis and the analysis for the joint effects 
of genetic and clinical data the AUC for RF attained the best 
results (72.41% for clinical, 73.96% for the joint of genetic and 
clinical) in comparison to other models. The reason for this is 
that RF algorithm is a randomized decision tree-based ensemble 
[30]. RF trees are typically grown deeply (hundreds to thousands 
of trees) and each tree is grown using bootstrap aggregating or 
bagging to the training algorithm. The prediction of unseen data 
is based on the majority voting for classification. The RF 
algorithm is generally favoured in the genomic domain as deep 
trees promote low bias, while bootstrap aggregation improves 
the performance of the final model because bootstrap sampling 
is able to de-correlate the trees so that it reduces variance [30]. 

Our genetic-based prediction analysis showed little predictive 
power when employing SNPs found to have genome-wide 
significance as inputted features. In future work to optimize 
predictive accuracy; it would be interesting to drop the 
suggestive association threshold of p < 1×10-5 to increase the 
number of SNPs utilize in the classification analysis as 
demonstrated in [31][32]. Wei et al. [31] and Gul et al. [32] 
found that much higher predictive accuracy is obtained when 
increasing the number of SNPs, and comparatively poorer 
performance is attained when including only SNPs above 
genome-wide significance threshold. However, increasing the 
number of SNPs introduces an additional layer of complexity in 
machine learning modelling construction including the problem 
of multicollinearity [33], and the problem of dimensionality 
[34]. Consequently, an alternative approach such as deep 
learning needs to be investigated. The motivation of considering 
the application of deep learning is that the ability to transform 
big data into valuable knowledge through its characteristic of 
automatic feature learning in which performing feature 
extraction at multiple levels of abstraction that allow a system to 



   

   

 

 

 

Fig. 5. Variable Importance Plots for Each Model. 

  
learn complex functions that mapping the input features to the 
output directly from raw data. In addition to artificial neural 
networks of multiple nonlinear layers, the hierarchical 
representations of data can be explored with increasing levels of 
abstraction [35]. 

V. CONCLUSION 

We investigated the contribution of genotypic risk factors 
and conventional risk factors including clinical, and 
sociodemographic factors for the classification of T2D in case-
control cohorts. This study used existing datasets provided by 
the Genotypes and Phenotypes (dbGap) database. Various 
stringent quality control assessment steps followed by logistic 
regression association analysis are performed to find the top-
ranked significant SNPs associated with T2D. Seven supervised 
machine learning algorithms are used to conduct three analyses 
considering genomic data only, the combination of genetic and 
clinical data, and lastly clinical data only. The simulation results 
revealed that genetic data analysis achieved the predictive 
performance of 57.84% for K-Nearest Neighbor. While for 
clinical data analysis and the joint effects of genetic and clinical 
data analysis, Random Forest obtained the best predictive 
accuracy of 72.41% and 73.96%, respectively. Using genotype 
variables alone significantly reduced the predictive 
classification accuracy in comparison to the joint effects of 
genetic and clinical variables analysis. The interpretation of the 
results suggested that the improvement of classification 

prediction accuracy for all classifiers are entirely due to clinical 
variables, with no predictive value emerging from genotype 
variables alone. 
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