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Systems Toxicology Approach to Identifying Paracetamol
Overdose

Chantelle L. Mason1, Joseph Leedale2*, Sotiris Tasoulis1, Ian Jarman1, Daniel J. Antoine3 and Steven D. Webb1

Paracetamol (acetaminophen (APAP)) is one of the most commonly used analgesics in the United Kingdom and the United
States. However, exceeding the maximum recommended dose can cause serious liver injury and even death. Promising APAP
toxicity biomarkers are thought to add value to those used currently and clarification of the functional relationships between
these biomarkers and liver injury would aid clinical implementation of an improved APAP toxicity identification framework.
The framework currently used to define an APAP overdose is highly dependent upon time since ingestion and initial dose;
information that is often highly unpredictable. A pharmacokinetic/pharmacodynamic (PK/PD) APAP model has been built in
order to understand the relationships between a panel of biomarkers and APAP dose. Visualization and statistical tools have
been used to predict initial APAP dose and time since administration. Additionally, logistic regression analysis has been
applied to histology data to provide a prediction of the probability of liver injury.
CPT Pharmacometrics Syst. Pharmacol. (2018) 00, 00; doi:10.1002/psp4.12298; published online on 0 Month 2017.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� The current clinical framework for predicting para-

cetamol overdose is imprecise, predominantly due to

a dependency on uncertain information from patients,

such as dose amount and time since administration.
WHAT QUESTION DID THIS STUDY ADDRESS?
� Mathematical modeling and statistical methods are

applied to predict dose, time-since-administration, and

the probability of paracetamol-induced liver injury based

on biomarker information by exploiting the relative

abundance and quality of mouse data.
WHAT DOES THIS STUDY ADD TO OUR

KNOWLEDGE?
� A new in silico paracetamol toxicity identification

framework is described to simulate the PK/PD

behavior of paracetamol and a panel of correspond-
ing toxicity biomarkers with considerable translational
potential.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� Systems toxicology approaches to direct biomarker
identification and optimization can also be used to
develop predictive modeling frameworks for other
hepatotoxic drugs. An understanding of complex bio-
logical system interactions is required to refine
potential treatment strategies and improve safety,
ethics, and cost-efficiency. Mathematical modeling
provides an enhanced mechanistic understanding,
whereas statistical modeling can provide robust,
physiologically relevant predictions to underpin future
investigations.

Paracetamol (acetaminophen (APAP)) is the most com-

monly used painkiller in the world1 and the leading cause

for acute liver failure in the Western world.2 The current

antidote used to treat cases of APAP overdose, N-

acetylcysteine (NAC), reduces the likelihood of progression

into drug-induced liver injury (DILI).3 NAC is highly effective

when administered within 8–10 hours of initial APAP dose.4

Although NAC is currently the most effective APAP over-

dose treatment, there are many adverse side effects, such

as rash, vomiting, and anaphylactoid reaction.3 The decision

to administer NAC is currently based upon the nomogram

treatment line,5 which is influenced by a measurement of ala-

nine aminotransferase (ALT), but is also heavily dependent

on the initial dose amount and time elapsed since ingestion,6

information that is often highly unpredictable within the clinical

setting.
ALT elevation represents probable liver injury postoccur-

rence7 and is the most widely used blood-based biomarker

for measuring DILI.8 Aspartate aminotransferase (AST) is

another DILI biomarker8 that accumulates in the blood due

to liver damage, but it is also linked to other pathologies

(e.g., heart injury).9 Increased serum total bilirubin is indica-

tive of the substantial loss of functional hepatocytes; there-

fore, similar to ALT, this biomarker does not predict

hepatotoxicity potential but instead is a postoccurrence indi-

cator.7 In order to improve the treatment of APAP-induced

DILI via NAC therapy, biomarkers are required that can predict

liver damage a priori. Although there are clear limitations,
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clinics currently analyze changes in ALT, AST, and total biliru-
bin in combination to predict DILI.10 Recently, biomarkers
K18 and HMGB1 have been shown to add value to the mea-
surement of ALT11 and have the potential to predict DILI pre-
occurrence. However, such new biomarkers are often exam-
ined singly and clarification of their functional relationships is
required to aid clinical implementation.12 For a thorough
review of the mechanisms of DILI see, for example, ref. 13.

In silico modeling allows for the development of mecha-
nistic understanding of biological systems, which may not
always be possible from in vitro/in vivo experiments alone.
An interdisciplinary, systems toxicology approach is a cost-
effective way of understanding and predicting drug efficacy
and toxicology while complying with the 3R’s (scientific
framework for use of animals in research).14 There have
been multiple in silico models that have been previously
developed to study APAP metabolism and associated toxic
potential. Reith et al.15 produced a system of equations
with parameters fitted to human data consisting of patients
dosed with pain relievers to provide clarification of the role
of the glucuronidation and sulfation pathways, providing a
basis for examining APAP metabolism in various disease
states. Diaz Ochoa et al.16 took a multiscale approach by
first creating a spatiotemporal prediction of drug and
metabolite concentrations within the liver, and then at the
whole-body level, including blood-flow between organs.
Remien et al.17 created a model for acetaminophen-
induced liver damage and derived ordinary differential
equations (ODEs) describing changes in AST, ALT, and
INR. The authors optimized initial APAP dose amount and
time since overdose by fitting the resulting ODEs to clinical
data (from 53 patients who overdosed). Remien et al.18

then extended this framework to a cell-based model. Our
study extends Remien’s approach by combining ALT with
additional biomarkers that have the potential to predict
APAP-induced liver injury pre-occurrence. Additionally, the
study is extended to nonoverdose and overdose cases in
an attempt to identify the key biomarkers that discriminate
between the two situations. Ben-Shachar et al.19 created a
retrospective study complementary to Remien’s model.
Although Remien’s model aimed to predict overdose occur-
rence, Ben-Shachar’s model was used to determine whether
an overdose would lead to fatal liver damage. Reddyhoff
et al.20 constructed a cell-based model that described major
pathways impacting on APAP clearance. Sensitivity analysis
determined which parameters had the largest effect on the
progression to toxicity. Shoda et al.21 mechanistically mod-
eled the biomarker HMGB1. Their focus was the role of
HMGB1 with regard to the innate immune response and con-
cluded that HMGB1 was a key input for immune cell
activation.

In this report, our focus is to investigate HMBG1 within a
panel of DILI biomarkers, attempting to predict APAP toxic-
ity in mice. We propose a novel framework to predict initial
APAP dose, time-since-administration, and the probability
of APAP-induced liver injury. The platform is distinctive pri-
marily due to the use of promising biomarkers, optimized
within the pharmacokinetic/pharmacodynamic (PK/PD)
framework by combining the use of deterministic modeling
with statistical analysis. The mouse is widely considered to

be a good model for APAP toxicity prediction in humans22

and we have utilized mouse-derived data in this study to

develop our new in silico framework by exploiting the rich

datasets available and also to avoid, at this early stage of

model development, the uncertainties associated with

APAP human overdose data. Translation to the human clini-
cal case would be, in theory, a relatively simple adjustment

of the PK/PD model parameters, which could be estimated

from a population-pharmacokinetic (Pop-PK) analysis of

clinical overdose data.23 However, the key feature of this

current work is to demonstrate the development and valida-

tion of our new predictive framework using the more ame-

nable mice data. The results from our investigation define

currently undocumented pharmacokinetic (PK) parameters

for APAP in mice, and the biomarkers are examined as a
panel, rather than individually. Additionally, the focus of this

work is the biomarkers that work well for DILI prediction

due to APAP, which may only represent certain pathways or

mechanisms that are not applicable with other drugs but

we anticipate that this in silico approach can be translated

across drug space with the necessary biomarker data.

METHODS
Model development (i) – APAP pharmacokinetics
Four datasets from two separate published studies24,25

recording APAP concentration over time in mice following

intraperitoneal administration of 50, 150, 500, and 530 mg/

kg doses were used to parameterize a two-compartment

PK model describing APAP metabolism in mice. Note that

for applications to oral administration, the absorption rate

parameter, ka, would be multiplied by a bioavailability frac-

tion to implicitly take into account effects of gastric empty-

ing and absorbed fraction (details of the model selection
can be found in the Supplementary Material).

Two ODEs were used to represent changes in APAP con-

centration within two PK compartments (central and periph-

eral) of the mice in the following system:

dCc

dt
5

kaD0e2ka t

Vc
1k21Cp

Vp

Vc
2k12Cc2kel Cc ; (1)

dCp

dt
5 k12Cc

Vc

Vp
2k21Cp ; (2)

where Cc represents the central compartment concentration

of APAP (lmol/l), Cp represents the peripheral compartment

concentration of APAP (lmol/l), ka represents the absorption

rate from the peritoneal cavity (h21), D0 represents initial

dose (mg), k21 represents the transfer rate from the periph-

eral to the central compartment (h21), k12 represents the

transfer rate from the central to the peripheral compartment

(h21), Vp represents the theoretical volume of the peripheral
compartment (l/kg), Vc represents the theoretical volume of

the central compartment (l/kg), kel represents the overall

elimination rate (summation of both excretion and metabo-

lism processes) (h21), and t represents the time variable (h).
Solving both equations analytically through Laplace trans-

forms26 gives the following equation for paracetamol concen-

tration in the central compartment as a function of time:
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Cc tð Þ5 kaD0
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where a and b are related to the model parameters as

follows:

a5
1
2

k121k211kel 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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;

and

b5
1
2

k121k211kel 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k121k211kelð Þ224k21kel

q� �
:

Eq. 3 was fitted to the four aforementioned datasets simul-

taneously using a Nelder-Mead search algorithm,27 with

parameters ka; k21; Vc ; a, and b being optimized in order to

minimize the difference between the model output and the

observed APAP dynamics. Note that all subsequent data fit-

ting also uses this algorithm. Data fitting was performed

using the fminsearch tool in Matlab.28 Optimized parameter

values and model simulation codes are provided in the

Supplementary Material.

Model development (ii) – glutathione depletion
The role of glutathione (GSH) in APAP metabolism is to detox-

ify N-acetyl-p-benzoquinoeimine (NAPQI), a highly reactive

metabolite13 formed following the bioactivation of APAP. There-

fore, GSH stores are depleted in the case of an overdose and

NAPQI accumulates, eventually causing liver damage. In our

model, paracetamol biomarker response dynamics were

assumed to be directly dependent on GSH depletion. The

GSH parameter values were optimized such that the solution

was fitted to GSH time-course data from a literature study.25

GSH dynamics are described in the Eq. 4 below:

d gsh½ �
dt

5ko � gsh02ko � gsh2
n � kel � Cc � gsh

gsh1kpr
; (4)

where ko is the basal removal rate (including background

usage) of GSH (h21), gsh0 is the baseline value of GSH

(lmol/l) in the APAP-free steady state, n is the proportion

of eliminated APAP that is transformed into NAPQI, and kpr

is the ratio of NAPQI forming other protein adducts relative

to NAPQI detoxified by GSH. The APAP elimination rate,

kel , was identified during PK model development (above),

whereas all other parameters were optimized by fitting

Eq. 4 to the data in Antoine et al.25 Further information,

and full derivation of the GSH ODE in Eq. 4 is described in

the Supplementary Material.

Model development (iii) – pharmacodynamics
The toxic response to APAP overdose was mathematically

described with individual pharmacodynamic (PD) models

representing biomarker concentrations (r 5 ALT, HMGB1,

K18, and fragmented K18) over time, as described in Eq. 5:

dr
dt

5r0kout
Rn

501gshn
0

Rn
50

� �
12

gshn

Rn
501gshn

� �
2kout r ; (5)

where r0 is the biomarker baseline concentration, kout is

the natural decay rate of the biomarker (h21), R50 repre-

sents the concentration of GSH, which causes the bio-

marker production (response) to be half its maximal value

(lmol/l), and n is a parameter that reflects the steepness of

the biomarker production term.29 Further model details can

be found in the Supplementary Material. Although param-

eter values r0 and gsh0 can be identified directly from the

data, kout ; R50; and n were optimized by individually fitting

the model output to data measuring biomarker concentra-

tion over time following a 530 mg/kg dose of APAP.25

Model validation
The parameterized PK/PD model was validated against

data from a separate experiment (detailed below). The PK/

PD model simulated several dosing scenarios 0, 150, 300,

and 530 mg/kg and biomarker concentration outputs were

extracted at 5 hours and compared with the experimental

data. Further details and results can be found in the Sup-

plementary Figure S1.

Experimental animal treatment
The protocols described were undertaken in accordance

with criteria outlined in a license granted under the Animals

(Scientific Procedures) Act 1986 and approved by the Uni-

versity of Liverpool Animal Ethics Committee. Groups of six

individual CD-1 male mice (25–35 g) with free access to

food and water were included in the study. For the biomarker

time-course, treatment was as previously described.25 For the

dose/response data used for validation, study animals were

administered a 150, 300, or 530 mg/kg i.p. APAP injection

and were euthanized 5 hours post-treatment. The 5-hour time

point has been used in previous studies,25 and was chosen

here not only because the pathological and biomarker

response has been extensively categorized at this point, but

the majority of key mechanisms (apoptosis, necrosis, and

inflammation) are also identifiable at this time point. Control

animals received either 0.9% saline or solvent control in 0.9%

saline as appropriate. Serum ALT activity, HMGB1, and frag-

mented K18 levels were determined, and GSH content

assessment was carried out on the livers of all animals. Total

hepatic glutathione (GSH and oxidized glutathione) levels and

biomarker quantification/characterization were determined as

described previously.25,30

PREDICTING TIME SINCE ADMINISTRATION AND

INITIAL DOSE
Multiple linear regression
The in silico model was used to create virtual datasets for

testing and validation (Methodology in Supplementary

Material). A robust multiple linear regression model31 was

fitted to the in silico derived data to predict time-since-

administration and initial dose.

Visualization
Principal component analysis (PCA),32 and the T-SNE

method33 were applied to visualize the simulated in silico
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datasets with regard to linear combinations of all variables

(APAP and toxicity biomarkers combined) for each in silico

individual.

Classification
Appropriate classes for each dose and time range were

identified to see if the time-since-administration and dose

amount could be predicted for a new individual within the

population. Various classification techniques (detailed in

Supplementary Material) appropriate for such a task were

used and compared.

Predicting probability of liver injury
The biomarker time-course experimental data used to create

the PD model25 also provided a corresponding histology score

for each mouse from the range 0, 1, 2, and 3. These histology

scores were binarized based upon previously published

criteria.25 Forward-stepwise binary logistic regression34 was
applied in order to understand the most significant biomarker

or panel of biomarkers for DILI. The most significant bio-
markers were then used in combination with PK/PD model

simulations to predict the DILI probability.35

Further details of all aforementioned statistical techniques
can be found in the Supplementary Material.

RESULTS

Results from the parameter optimization of the PK/PD mod-
els can be seen in Figure 1. Note that sufficient early time

experimental APAP plasma concentrations are currently
unavailable, which would verify the accuracy of time of

maximum plasma concentration (Tmax) and peak plasma
concentration (Cmax) of the 530-mg dose. Nevertheless,

(a) (b)

(c) (d)

(e) (f)

Figure 1 In silico simulation outputs from the optimized model compared with the experimental data. (a) Acetaminophen (APAP) phar-
macokinetic simulations (solid lines) comparable to original data values with green, black, magenta, and red representing APAP time-
course following a 50, 150, 500, and 530 mg/kg dose, respectively. (b) Glutathione (GSH) simulations (black dashed lines) comparable
to original data (blue). Individual pharmacodynamic simulation (black dashed lines) comparable to data (blue) for biomarkers alanine
aminotransferase (ALT) (c), HMGB1 (d), full K18 (e), and fragmented K18 (f).
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with an R2 value of 0.8304 for the PK model, and values of

0.7513, 0.9634, 0.7413, and 0.6526 for the PD models for

ALT, HMGB1, K18, and fragmented K18, respectively, it is

shown that the in silico model recapitulates in vivo experimen-

tal dynamics. Optimized parameters for all of the PK/PD mod-

els can be found in the Supplementary Table S1.
The R50 parameter in the biomarker PD models defines a

concentration of GSH at which the biomarker has reached

half of its maximal production rate (MPR). For biomarkers

ALT, HMGB1, K18, and fragmented K18, the R50 values were

227.67, 399.08, 212.87, and 72.09 lmol/L, respectively.

Therefore, in the model, as GSH is depleted from a baseline

of 696.91 lmol/L36 and reaches a concentration 399.08 lmol/

L (42.73% depletion), HMGB1 has reached half of its MPR

and is, therefore, considered to be the fastest responding bio-

marker. GSH must be further depleted to 227.67 lmol/L and

212.87 lmol/L (67–69% depletion), respectively, before bio-

markers ALT and K18 reach half of their MPR. Approximately

90% GSH depletion is required for fragmented K18 to reach

half of its MPR in the model.

Identifying time/dose category following APAP dose
Projecting the in silico derived data onto the principal compo-

nents and visualizing with respect to time-since-administration

and dose amount, as can be seen in Figure 2a,b, allowed

classes to be clearly distinguished with minimal level of over-

lap confirming the biomarker utility in class prediction. The

level of class overlap with respect to dose is significantly

lower. Visualizing the data with the T-SNE method (Figure 2c-

d) enhances the previous visualization, and that dose may be

separated more accurately. Additionally, the time-since-

administration classes are more separable with the T-SNE

method, particularly with earlier time ranges.
The classification results are consistent across the different

methodologies (Table 1). Should a new observation arise, this

framework could predict which “time-since-administration” and

“dose” category it should be placed in with 73.7% and 86.5%

accuracies, respectively. The results of the linear regression

model used to evaluate time-since-administration and initial

dose, both as continuous variables, are reported in Table 2. In

both cases, the model is significant at the 99% confidence

level. The R2 values indicate that when predicting time-since-

administration, �53% of the variance in results can be

explained by the model, whereas when predicting dose �80%

of the variation can be explained by the model. An exact time-

since-administration value was able to be predicted with a

residual standard error and accuracy of 3.6 hours, whereas an

exact dose was predicted with only an error of 56.81 mg/kg.

Figure 2 Visualization and classification of time-since-administration and dose results. For time-since-administration, dark green represents
class 0–2, orange represents 2–5, blue represents 5–10, pink represents 10–15, and pale green represents 15–24 hours. For dose, green
represents 0–200, orange represents 201–400, and blue represents 401–600 mg/kg. (a, b) Two-dimensional Principal Components Analysis
(PCA) visualization of in silico mouse observations with respect to time-since-administration and dose, respectively. (c, d) Two-dimensional
TSNE visualization of in silico mouse observations with respect to time-since-administration and dose, respectively.
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Predicting the probability of liver injury following an
APAP dose
From the forward-stepwise logistic regression analysis, the
model that used HMGB1 concentration alone as a predictor
had the highest significance (P value 0.003). Figure 3a-f
represents the fold-changes in biomarker concentrations
with respect to time following various doses. For higher
doses, APAP and related toxicity biomarker concentrations
are significantly increased during the time course, whereas
GSH is significantly decreased at higher doses, represent-
ing depletion of stores. Figure 3g shows how the probabil-
ity of serious liver injury (dependent only on HMGB1
concentration as predicted by the logistic regression model)
changes over time for doses between 0 and 600 mg/kg. A
threshold probability of 0.5 (i.e., 50% liver injury likelihood)
was used to determine likeliness of DILI. Any observation
within the white contour boundary is, therefore, predicted
likely to be a concentration representative of liver injury
(i.e., 50% chance). For lower toxic doses, according to the
model, HMGB1 concentrations that likely indicate liver
injury are most apparent between 5 and 10 hours postdose.
As the dose increases, the time frame increases to �5–15
hours. Note that combinations of APAP/ALT and APAP/full
K18 were also significant; therefore, these biomarker com-
binations could be investigated in the case of predicting
DILI following late presentation of paracetamol toxicity and
prognosis within the 24-hour window.

Currently, toxicity is thought to be apparent in mice after a
300 mg/kg dose, shown by the red line in Figure 3g. Our
binary logistic regression (model based solely on HMGB1
concentration) states there is >50% chance of liver injury at
a 200 mg/kg dose, shown by the white contour in Figure 3g.
The currently used toxic dose (300 mg/kg) coincides with
around 90% GSH depletion, which can be seen in Figure 3b.
This coincides with a relationship well known in the litera-
ture.13 This toxic level is also the dose at which fragmented
K18 begins to elevate, as shown in Figure 3f. The toxic
dose proposed by the in silico model (200 mg/kg) is the
dose at which ALT and full K18 begin to elevate (Figure 3c
and Figure 3e, respectively) and HMGB1 first reaches peak
concentration (Figure 3d).

Visualizing the probability of liver injury following an
APAP dose
Combining the PCA/T-SNE analysis with our proposed
framework for predicting the probability of liver injury

allowed the virtual datasets to be visualized not only with

regard to the initial dose and time since ingestion, but

also the subsequent probability of liver injury. With refer-

ence to Figure 4, observations with a high probability of

liver injury are clearly clustered within the parameter

space and separable from low probability cases. Addi-

tional similar projections (with both the PCA and T-SNE

methods), including the estimated maximum probability of

liver injury for each observation, are shown in the Supple-

mentary Material.

DISCUSSION

The current clinical framework for predicting whether or

not APAP antidote treatment is necessary is highly depen-

dent upon information provided by the patient, such as

when the dose was taken and in what quantity. This infor-

mation is often vague and/or unreliable. Consequently,

critically vulnerable patients are often left untreated or,

conversely, NAC is unnecessarily administered. Changes

in legislation have already led to an estimated increased

cost of £8.3 million per year due to overused NAC treat-

ment.37 Mathematical and statistical analysis provide a

proof-of-concept tool to predict information with a much

higher level of certainty, based on a panel of promising

biomarkers.
We have developed an optimized PK/PD model for APAP

and appropriate biomarkers of liver injury in a systems toxi-

cology approach. The model was used to conduct investi-

gations within a dosing range of 0–600 mg/kg without any

Table 1 Classification results for several algorithms with respect to time-

since-administration and dose, respectively, with numbers representing lev-

els of accuracy

Classification method Time accuracy Dose accuracy

Multinomial logistic regression 0.728 0.865

Ordinal multinomial logistic regression 0.570 0.859

Naive Bayes 0.689 0.844

Linear discriminant analysis 0.657 0.860

Quadratic discriminant analysis 0.737 0.853

K-nearest neighbor 0.664 0.859

Optimal weighted nearest neighbor 0.676 0.858

For example, the multinomial logistic regression model can predict time-

since-administration with 72.8% accuracy.

Table 2 Multiple linear regression analysis results - summary statistics for

models used to predict both time-since-administration and dose

Dependent variable

(coefficient and related error)

Time (1) Dose (2)

APAP concentration -18.141***

(1.095)

445.602***

(13.865)

ALT concentration 2.402**

(0.988)

94.724***

(12.830)

HMGB1 concentration -15.928***

(0.636)

Full K18 concentration 8.964***

(0.837)

241.527***

(12.958)

Fragmented K18 concentration 310.574***

(13.260)

Constant 14.812***

(0.268)

67.068***

(3.193)

Observations

Residual SE (df 5 994)

1,000

3.593

1,000

56.805

The first number in each element of the table represents the biomarker coef-

ficient in the regression model, whereas the second number represents the

coefficient’s corresponding error. For example, 218.141 is the APAP con-

centration coefficient in the model predicting time-since-administration, and

this coefficient has an error of 1.095. The significance of each biomarker in

the model is indicated by the number of asterisks *P< 0.1; **P< 0.05;

***P<0.01.

ALT, alanine aminotransferase; APAP, acetaminophen.
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further in vivo testing. The optimized in silico framework is
suitable for use in further theoretical investigations, provid-
ing a greater scope for reducing the dependency on animal
testing in toxicity and complying with the 3Rs principles.14

For example, results from our analysis could improve
experimental refinement, such as predicting the probability
of liver injury and toxicity at 200 mg/kg in mice rather than
300 mg/kg. Not only may experimentalists be dosing mice
at amounts higher than necessary, they may also be miss-
ing vital information apparent at lower doses.

APAP-induced liver toxicity is thought to occur when
GSH depletes by around 80–90%,13 which coincided with
elevated fragmented K18 levels. The in silico PD model
and its reported R50 values suggest that levels of HMGB1,

ALT, and full K18 elevate prior to this depletion level, elevat-
ing at 43%, 67%, and 69%, respectively. As a result,
HMGB1 in particular could be considered as an earlier indi-
cator of DILI.

The identification of more accurate predictions of dose
timing and amount, informed by biomarker concentration
samples, will improve nomogram treatment line accuracy.6

Predictions for the time-since-administration were success-
fully categorized into 0–2, 2–5, 5–10, 10–15, and 15–24-
hour ranges based on APAP, ALT, HMGB1, and full K18
concentration values with 73.7% accuracy. Should this
framework be translated to a similar level of efficiency in
the human clinical case, this information will have impact
regarding the determination of the potential liver injury,

Figure 3 (a–f) Fold-changes in biomarker concentration relative to their baseline values over time 0–24 hours for acetaminophen
(APAP), glutathione (GSH), alanine aminotransferase (ALT), HMGB1, full K18, and fragmented K18, respectively, following APAP doses
ranging from 0–600 mg/kg. (g) Proposed framework for predicting probability of liver injury dependent upon dose, time, and HMGB1
concentration. The white contour indicates the threshold of probability 0.5 of liver injury, the red dashed-line represents currently used
APAP dose for toxicity studies in mice, the white dashed-line represents toxic dose proposed by our model, and the green dashed-line
indicates current known therapeutic dose for mice.
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with less dependency on patient information. Additionally,
an exact value was predicted with an accuracy of 3.6
hours. Similarly, initial dose was able to be classified into
0–200, 201–400, and 401–600 mg/kg categories with
86.5% accuracy and an exact dose predicted with an
expected error of 6 56.81 mg/kg. A panel of biomarker
measurements could be used in this manner to provide
the dose and time information, which will identify a (time-
dose) point on the liver injury framework, provided in Fig-
ure 3g, from which one can read off an instantaneous
probability of liver injury and how this probability is pre-
dicted to change as time progresses. Obtaining dose and
time information based on biomarker concentrations and
combining this with our proposed liver injury framework
shows the utility of these biomarkers in predicting dose
amount, time since ingestion, and the subsequent proba-
bility of liver injury.

Although ALT concentration is currently used as a clinical
measure to inform potential toxicity, it was found to have
the least importance in the regression model for predicting
time-since-administration as a continuous variable. Out of
all the biomarkers used in the multiple linear regression
analysis, HMGB1 was found to have the highest time-
since-administration model coefficient. This analysis sug-
gests, therefore, that not only is HMGB1 an earlier indicator
of DILI, but it is also an important biomarker in accurately
predicting the time elapsed since administration. Further-
more, logistic regression analysis identified HMGB1 as the
most significant predictor for liver injury, in line with recent
studies defining HMGB1 as a more sensitive DILI predic-
tor.38 As noted above, the focus of this work has been the
biomarkers that work well for DILI prediction due to APAP,
in which case HMGB1 is highlighted by our analysis. How-
ever, for different drugs, DILI may involve different mecha-
nisms and, as such, HMGB1 may not perform so well as a
singular biomarker but instead a panel would be more
predictive.

Although the results from the T-SNE method for visuali-

zation showed clear separation, particularly with regard to

the probability of liver injury, there was a slight overlap in

the time-since-administration and dose plots. This result

supports the possibility of defining further classes through

unsupervised methodologies in future investigations. The

classification techniques used provided incredibly high

accuracy levels considering the nature of the problem. A

further investigation of interest is the rate of misclassifica-

tion between the classes with regard to critical errors at the

edges of the variable ranges.
The framework proposed has the potential for substantial

clinical impact once translated to human. The analysis was

applied to mice due to the relative abundance and quality

of data (especially for toxicity cases) and the quantity of rel-

evant biomarker data required to properly characterize such

a mathematical and statistical predictive framework. Equiva-

lent APAP clinical data is available but has a tendency to

be noisy, sparse, and inconsistent. Analysis of such data

would, therefore, require the significant application of (top-

down) Pop-PK to unravel the stochasticity of the mixed-

effects involved, in addition to understanding and capturing

the mechanisms of the PK/PD problem. For example, the

relative influence of variation in certain model parameters

on quantitative model outputs can be determined by sensi-

tivity analysis, allowing for identification of mechanistic pro-

cesses that would require particularly careful consideration

when translating this model to a human clinical Pop-PK

framework (see Supplementary Materials for further

details).
An advantage of our study is that the same biomarkers

can be measured in both humans and animals by the

same methodologies. Moreover, the model hepatotoxin we

have used, acetaminophen, is directly comparable between

human and mice with respect to mechanism of toxicity and

action of the antidote. The major differences between

human and mouse studies are the mass dose of acetamin-

ophen needed to induce toxicity in mice and the kinetics of

the biomarker profile.25,39,40 The dose response in mice is

well documented and is consistent with our data. Further-

more, this can be adjusted as a parameter within our

model to reflect the clinical situation. There are a number

of clinical studies now published that have measured these

biomarkers from human studies in a time-dependent

way.41,42 The approach we describe to modify dose adjust-

ment can also be undertaken to reflect biomarker kinetic

differences. It is important to note that it is difficult to prop-

erly obtain or assess human pathology in the acute setting,

and it is only really in the event of liver transplantation that

we see a strong relationship between humans and

mice.25,43 Given the strong relationship between the bio-

marker signatures and mechanism of APAP action

between humans and mice, it would be reasonable to

translate findings from mouse acute data,25,39 to human

acute data.11 Taking these points into consideration, in its

current form, our framework is highly predictive and pro-

vides promise for clinical use in discriminating time-since-

administration, initial dose amount, and subsequent proba-

bility of liver injury. This would be a significant application
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and could instruct the determination of NAC intervention in
patients suspected of APAP overdose.

Clinical assessment of DILI is, in practice, often based
on causality assessment, with expert opinion being the
gold standard, and does not wholly depend on simple
biochemical tests. We have recently discussed the poten-
tial improvement to laboratory-based measures in aiding
DILI assessment and one key feature we propose is that
laboratory measurements should be repeated when DILI
is suspected.11,44 This could allow for the determination
of the cause of injury as well as the derivation of the
area under the curve (AUC) of a liver toxicity marker. A
limitation of our current in silico model framework is that
it is focused on whether or not liver injury occurs, rather
than prediction of the maximum damage observed in an
individual. The cause of this limitation is the sparsity of the
histology data used for model parameterization. However,
if such additional AUC-based measurements could be
obtained, then this could potentially offer vital data to
extend the predictive potential of our in silico platform by
quantifying the maximal liver injury and further aiding DILI
assessment.
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