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Abstract — In this paper, a novel application of machine 

learning algorithms including Neural Network architecture 

is presented for the prediction of flood severity. Floods are 

considered natural disasters that cause wide scale 

devastation to areas affected. The phenomenon of flooding 

is commonly caused by runoff from rivers and 

precipitation, specifically during periods of extremely high 

rainfall. Due to the concerns surrounding global warming 

and extreme ecological effects, flooding is considered a 

serious problem that has a negative impact on 

infrastructure and humankind. This paper attempts to 

address the issue of flood mitigation through the 

presentation of a new flood dataset, comprising 2000 

annotated flood events, where the severity of the outcome is 

categorised according to 3 target classes, demonstrating the 

respective severities of floods. The paper also presents 

various types of machine learning algorithms for predicting 

flood severity and classifying outcomes into three classes, 

normal, abnormal, and high-risk floods. Extensive research 

indicates that artificial intelligence algorithms could 

produce enhancement when utilised for the pre-processing 

of flood data. These approaches helped in acquiring better 

accuracy in the classification techniques. Neural network 

architectures generally produce good outcomes in many 

applications, however, our experiments results illustrated 

that random forest classifier yields the optimal results in 

comparison with the benchmarked models. 

Keywords —Machine learning approaches; Flood 

datasets; Big data;; Receiver operating characteristic (ROC); 

Performance evaluations; Accuracy, The Area Under Curve 

(AUC); 

I. INTRODUCTION 

Flooding is considered a common natural phenomenon in the 
globe, causing economic damage, property, and most 
importantly to human lives. In order to prevent the devastating 
effects of floods before such events occur, early warning for 
people to evacuate in the nearby areas can be effective in saving 
lives and to prevent disasters. There is a significant need for 
collaboration and the sharing of experience among countries 
around the world, such as to mitigate the impact of flood events 
before they proceed to a serious condition. This long-standing 
natural disaster phenomenon cannot be escaped but suitable pre-
alarming and managing systems can mitigate the severity of its 
impact. As a result, inhabitants who are located within known 

flood zones are exposed to the prospect of repeat flooding events 
each year. To determine the river water levels, machine learning 
models offer the promise of an advanced predictive solution. 
Machine learning algorithms have been widely used to fulfil 
various classification requirements [1]. These models have 
substantial benefits for classifying datasets due to their 
computational efficiency, flexibility, and intuitive simplicity. 
Several machine learning techniques have been selected to carry 
out the classification of our research, including Artificial Neural 
Network (ANN) architectures, in conjunction with the 
Levenberg-Marquardt learning algorithm (LEVNN) [2, 3], 
Support Vector Machine (SVM) [4], and Random Forest 
Classifiers (RFC) [5].  

The initial case study is to investigate the potential of an 
empirical dataset for the classification of flood severity, using 
various machine learning algorithms to get better accuracy. In 
our study, the datasets integrate various types of features, which 
are important to distinguish the severity of flood. For instance, 
water level, duration during day, and Magnitude. The datasets 
were based on time series and were classified into three classes. 
Class one belongs to the normal flood, class two refers to the 
abnormal flood, while class three represents the high-risk level.  

Our simulation results indicated that support vector 
machines produced inferior results when compared to random 
forest model. The results also indicated that of the neural 
network models tested, the LEVNN and RF performed 
significantly better using the performance measures examined. 

 The reminder of this paper is organized as follows. Section 

II illustrates related work, while section III discusses the 

classification of flood data. Algorithms are described in Section 

IV. The methodology is introduced in Section V, followed by 

the presentation of our results in section VI. In Section VIII, We 

presented the conclusions and future work.   

II. RELATED WORKS 

 Intelligent systems technology provides a set of new 
primitive operations within the environmental domain and has 
become an increasingly important constituent in the 
advancement of many application areas. Significant 
developments have been achieved with the early warning 
systems for heavy excessive rainfall, when rivers overflow, 
dams or levees break [7]. Many researches have proposed 
various types of solution in order to solve problems that are 
related with flood natural disaster of small and large areas with 
various degree of success in obtaining optimum results. Duncan 
et al [8] proposed a Machine Learning-Based Early Warning 
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System for Urban Flood Management. It works with drainage 
systems and the use of overall rainfall data concurrently, in order 
to predict flooding of multiple urban zones using a single multi-
output ANN. In their study, there are three input time-series 
used: cumulative rainfall (mm), rainfall intensity (mm/hour), 
and the new antecedent precipitation index value (metres). The 
principal goal of their research is to find the true positive rates 
for sensitivity analysis. The research findings show that the 
predictive ability of the system depends on actual rainfall.  

 Li et al [6] established an ANN model to predict the trend of 
storm flooding in China. The ANN model was used to predict 
the storm flooding and built to simulate the historical storm 
surge at typhoon periods. The results showed that the ANN 
model provides stronger results than other models for flood 
prediction.  

 Xia, and Rao [7] designed a new application that utilised a 
Basis Prediction artificial (BP- artificial) neural network model 
to predict the flood level in lakes, rivers, and reservoirs. The 
errors between predicted and actual value are feedback in the 
process of learning. Their research primarily compares the data 
calculated by the model to actual monitoring data from the 
monitoring station from the city of Chaoan; with the result 
showing that the algorithm can obtain a better prediction. They 
compared the values calculated by the algorithm to actual 
monitoring data from monitoring control centre; the result shows 
that the BP- artificial neural network model can achieve better 
prediction in terms of accuracy and credibility, in comparison 
with other neural network architectures. 

 Our extensive research indicates that no studies have been 
applied for classifying flood datasets for the provision of 
providing accurate decision to the flood control system, based 
on previous datasets and flood severity. This study introduces 
the novel application of random forest and other machine 
learning techniques, which focus on flood data collection based 
on severity features. 

III. CLASSIFICATION 

       In recent times, machine learning models have been 

designed and used to deal with high-dimensional illustrations 

through the unification of supervised learning algorithms and 

feature selection [8, 9]. The classification techniques comprise 

the following: a number of attributes or features represents each 

object in a dataset, where such features in combination may be 

used to infer one or more classes to which a given object [10]. 

The features can be assembled into input vector x. A number of 

previous objects (training set), each involving vectors of feature 

values and the label of the correct class will be provided to the 

classifier. The principal aim of the learning process is to 

establish how to extract the most useful information from the 

labelled data. There are number of algorithms applied for the 

classification function. They are characterised into linear and 

nonlinear classifiers. The linear classifier is worked as a linear 

function 𝑔(𝑥) with input feature vector x, as shown in Equation  

1[11].  

                                                         𝑔(𝑥) = 𝑤𝑇𝑥 + 𝑏                                         (1) 

Where w refers to the set of weight, values and b refers to the 
bias. For two classes, problem 𝑐1 and 𝑐2, the input vector x is 
belonged to class 𝑐1 if g(x)>=0 and to class 𝑐2. The decision 
boundary between class 𝑐1 and 𝑐2 is simply linear. In the 
previous studies, several traditional linear classifiers were 
designed. It applied to perform classification in different areas 
such as Linear Discriminant Analysis. 

IV. ALGORITHM DESCRIPTIONS 

In this section, a series of machine learning models are 

introduced, denoting respectively the series of classification 

techniques applied within the experimental procedure of this 

study.  

A. Random Forest Classifier  

      Random Forest Classifier (RFC) is a high-order model to 
machine learning, employing an ensemble of weaker decision 
tree learners, in conjunction with feature bagging, to constitute 
a strong overall classifier. The RFC methodology was first 
proposed by Tin Kam Ho [12] and then developed into the 
current form by Brieman [5]. Importantly, the individual 
decision tree base learners produced as a result of RFC 
procedure are trained independently and therefore remain 
uncorrelated.  

RFC has become a prominent ensemble learning algorithm 
in the last decades, facilitating the learning of complex functions 
in numerous task domains [13]. The classifier produced is an 
intuitive model that provides a probabilistic structure for solving 
several learning tasks. Following a divide and conquer strategy, 
RFC efficiently generates partitions of high-dimensional 
attributes, over which a probability distribution is located. 
Therefore, the algorithm allows density estimation for arbitrary 
functions, with possible usage to task modalities of clustering, 
regression or classification. The methodology of RFC is 
therefore formally described in Equations 2 and 3  

𝑓(𝑥) =
1

𝑚
∑ 𝑓(𝑥, 𝑥𝑖𝑝 )

𝑚

𝑖=1
                                         (2) 

       Where 𝑥 refers to the variable that partial dependence is 

required, while 𝑥𝑖𝑝 is considered the other variable for data. The 

other variables belong to the features of flood data.  

𝑓(𝑥) = log𝑡𝑗 −
1

𝐽
∑ (log𝑡𝑘(y)

𝐽

𝑘=1
)                             (3) 

      Where J belongs the number of classes, whereas j refers to 

the class. In addition, 𝑡𝑘 belongs to the proportion of total votes 

for class j.  

The RF classifier can be trained by the development of an 
ensemble method of 𝐵 trees, giving the training sets  𝑋 =
 x1. . . xn , and the target class label (responses) is 𝑌 =  y1. . . yn. 
𝑓𝑜𝑟 𝑏 = 1, … , 𝐵: Instance with replacement B belong the 
training sample from X, Y which refer to Xb, Yb.  𝑌 Belongs to 
the predicted class that usually selected through the majority 
voting. In theoretical side, select a number of data sets for 
training phase M = {(X1, (Xn) … , (Y1, Yn), where   𝑋𝑖 , 𝑖 = 1. . , 𝑛 
is descriptors vector and 𝑌𝑖 is either the activity of interest or the 
corresponding label [14].  

 

 



B. Support vector machines (SVM) 

 Support vector machines (SVM) is considered supervised 
learning that able to analyse data sets, utilised for regression and 
classification task [15]. SVM is class of models that minimise 
misclassification through the training phase, known as 
maximum margin point. This model was developed by Cortes 
and Vapnik [4]. Given a training data sets containing an input 
and output, input belongs to the sample features 

(𝑥1, 𝑥2, 𝑥3,…, 𝑥𝑛)  and the output result (classes) 

{(𝑦1,𝑦2,𝑦3, … , 𝑦𝑁), (𝑥𝑁 , 𝑦𝑁)}  where 𝑥𝑖 ∈ input features 

and 𝑦𝑖 ∈ {𝑐𝑙𝑎𝑠𝑠 − 1, 𝑐𝑙𝑎𝑠𝑠 + 1}. This model can solve the 
following optimization issue in equation (4) [16]. There is a set 
of weight 𝑤𝑖  or (𝑤), in order to predict the correct value of (𝑦), 
we utilise the optimisation of maximizing the margin to decrease 
the total number of weights that belongs to nonzero vectors that 
related to the vital features to determine the hyperplane.  

The hyperplane usually needs to draw in the midway 
between the two margins. The SVM model requires to learn 
about where the optimal hyperplane should be fitted. The margin 
is the distance between the hyperplane and the closest vectors 
that near hyperplane. The main aim of maximising the margin is 
to minimise the probability between points of different classes 
that unclassified or unseen points may drop on the wrong side.  

𝑓(𝑥) = 𝑤𝑇 𝑥𝑖 + 𝑏 

      (4) 

𝑠𝑔𝑛(𝑤𝑇∅(𝑥) + 𝑏) =  𝑠𝑔𝑛(∑ 𝑦𝑖𝛼𝑖𝐾(𝑥𝑖 , 𝑥)

𝑁

𝑖−1

 

𝑓(𝑥) = ∑ 𝜆𝑖𝑦𝑖(

𝑖

𝑥𝑖
   𝑇 𝑥 + 𝑏 

𝑓(𝑥)  ≥ 1,       ∀𝑥 ∈ 𝑐𝑙𝑎𝑠𝑠 1                                           

𝑓(𝑥)  ≤ −1,       ∀𝑥 ∈ 𝑐𝑙𝑎𝑠𝑠 2 

𝐻 =  
|𝑔(𝑥)|

∥𝑤∥
 = 

1

∥𝑤∥
 

     Where 𝑤𝑇 𝑟efers to the vector weight, while 𝑓(𝑥) represents 

the features sets of both classes, 𝜆𝑖 belongs to the dual function 

returned after training, 𝑥  is the training data sets, 𝑦  is the classes 

(output), 𝑏 bias belongs to omega 0. To maximize the 

separable space, it is important to minimise the term 𝑤⃖  . The 

main target is to maximize the margin as much as possible so 

that can obtain the correct classifications. Among all potential 

hyperplanes match the constraints, we select the hyperplane 

with the smallest w due to having the biggest margin. 

C. Levenberg-Marquartdt training algorithm 

       Multilayer perceptron can be trained using the LMNN 
training algorithm based on neural network  [17] which is an 
approximation to Newton’s method of least squares 
optimisation. Therefore, this kind of machine learning model is 
much more memory intensive. It is indicated that this classifier 
offers a numerical solution for minimising the problem related 
to nonlinear functions over a space of parameters for the 
function.  

Consider an error function E(W) as shown in Equation (5) 
that required to be minimised in association with the parameter 
vector W. In this case Newton’s method is defined ∇2𝐸(𝑤) is 
refer to the Hessian matrix method and ∇𝐸(𝑤) is refer to the 
gradient procedure.  

∆𝑤 = [∇2𝐸(𝑤)]−1 ∇𝐸(𝑤) 

(5) 𝐸(𝑤) = ∑ 𝑒𝑗
2w

𝑀

𝑗=1

 

∇(𝑤) =  𝐽𝑇(𝑤) 𝑒 (𝑤) 

∇2(𝑤) =  𝐽𝑇(𝑤) 𝐽(𝑤) + 𝑆 (𝑤) 

      Where 𝐽(𝑤) is the jacobian matrix as shown in equation 

(6)[18],  

𝐽 =  [
𝜕𝑓

𝜕𝑥1
…

𝜕𝑓

𝜕𝑥𝑛
]  

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2

𝜕𝑓1

𝜕𝑥3
  

⋮ ⋱ ⋱
𝜕𝑓𝑚

𝜕𝑥1

𝜕𝑓𝑚

𝜕𝑥2

𝜕𝑓𝑚

𝜕𝑥3

𝜕𝑓1

𝜕𝑥4
…

𝜕𝑓1

𝜕𝑥𝑛
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𝜕𝑓𝑚

𝜕𝑥4
…

𝜕𝑓𝑚

𝜕𝑥𝑛

              (6)                    

𝑆(𝑤) = ∑ 𝑒𝑗
2(w)

𝑀

𝑗=1

∇∇2𝑒𝑗(𝑤) 

      The LMNN is aimed to use second-order training speed, 

which provides the ability without computing the Hessian 

matrix. For instance, J refers the Jacobian matrix that involves 

the initial derivatives in association with weights and biases of 

the network errors. μI represent the gradient computed, while e 

represents the vector of network errors.  

D. Baseline algorithms 

Baseline algorithms are extremely important when dealing 

with machine learning models, which provides a point of 

reference to compare with other classifiers [19]. The main 

benefits of using such this technique is to predict a constant 

value, which is considered useful and effective process for 

performance evaluation that can estimate a majority class. In 

other words, classify to the largest target value (class). 

Furthermore, it is essential to make comparison if our selected 

approaches able to outperform the baseline models during the 

training phase and testing phase.  

 A Random Oracles Model involves a random guessing 

task that characterises uninformed mapping from 

features to responses [20]. This model results serve as a 

baseline in this study to compare the error rates and 

performance of other models with the uninformed 

mapping, and to establish dependent bias of any data. We 

found that in particular, such a set of reference controls 

is effective and useful in the same time to justify the 

integrity of the outcomes gained, meanwhile it can be 

shown that the performance of informed models cannot 

be reached through random guessing. 

 A Linear Neural Network (LNN) is similar to the 

feedforward neural network (FFNN) architecture 

utilising linear transfer function [21].  The activation 

function in is linear, in this case, the approach is 

considered imperfect in expressive power to the class of 

linear mappings, irrespective of the total number of 

layers (Inputs, hidden, outputs) within the network. 

Therefore, the model is employed as a linear baseline for 

our empirical study. LNN offers a reference control to 

validate the use of complex non-linear algorithms, since 
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it can be revealed that, the performance of the non-linear 

class of model cannot be reached through a linear 

mapping. 

V. THE PROPOSED METHODOLOGY/FRAMEWORK 

        Machine learning models have been utilising to classify the 

severity of flood disaster, instead of using advanced classification 

techniques to send immediate notification to the local authorities 

[22].  Using the proposed system, the target is to establish 

reproducible and optimised standard of intelligent system unlike 

flood monitoring settings across the UK, and indeed 

internationally. One main benefit of this experiment is to utilise 

recent advances technologies in machine learning algorithms, to 

assist the meteorological department in offering more accurate 

outcomes about flood status based on previous data. Due to the 

pattern of the flood data sets, we aim to propose the prediction 

of the severity of the floor using classification methods, 

according to the data sets that have been collected previously.  

       The proposed model comprises of a number of important 

procedures; data collection, pre-processing data, data splits to 

three major parts, build the model based on the training data, 

and evaluating the model depends on the testing set, this then 

will lead to select the appropriate model. In the framework (as 

shown in figure 1), the data collection process starts when the 

flood occurs at any area under the flood monitoring centre. To 

apply machine learning, we require first to clean the data sets 

(dealing with missing data). Afterward, we select a various type 

of machine learning models for evaluating the data sets. We 

used holdout technique that can divide our data sets into 

training, validation, and testing phases.  

 

Fig. 1. The Methodology Process 

In this research, we aim to tackle the problem of a severity 

of flood disaster depending on special features that have been 

integrated in the flood data sets in association with a predictive 

classification perspective.  

A. Data Collection 

      The datasets used in our study is collected from the 

environment agency website[23]. These datasets are gathered 

from different cities the around the globe. Each sample involves 

12 attributes deemed significant features for predicting the 

severity as shown in Table I. The main idea behind choosing 

the severity feature instead of other features is related to the fact 

that severity feature is considered highly important to the flood 

control centre. To deal with a large amount of data, 

environmental agencies were supported with several flood 

records. Moreover, the datasets involved 2000 sample points, 

with 3 target values describing the severity of the flood. The 

target value was discretised into 3 class labels, target 1 (normal 

level), target 2 (abnormal one), target 3 (dangerous level). Such 

a division is important to deliver proper class representation 

over the datasets sample.  

TABLE I.  SAMPLE OF FLOOD DATASETS 

Type Number  Descriptions 

Data Samples 

(predictors) 

2000 Data have been collected within 31 

years from the environment agency 
website.  

Class variables 

(response) 

3 Normal, abnormal, dangerous 

Attributes  12 Duration in day, Dead, Displaced, 
Total of Affected area, Magnitude, 

Centroid, Total annual flood, 

Torrential Rain, Heavy Rain, 

Tropical Storm, Snowmelt and Ice 

Jams, Monsoonal Rain 

B. Exploratory analysis 

 In order to undertake an exploration of the used data in our 

experiments, visualisation techniques containing Principal 

Component Analysis (PCA) has been used as shown in Figure 

2. PCA is considered as one of the most popular methods for 

dimensionality reduction. This type of method performs a linear 

mapping with lower-dimensional space of the datasets in such 

way that instance of our data sets representation is maximized. 

According to our dataset, it is shown that our datasets can be 

separated. The plots illustrate a number of linearly uncorrelated 

variables that refer to principal components. The initial 

component is controlled through their contribution to the 

maximum instance in the data sets. Then, all other 

subcomponents are found through the equivalent maximum-

variability constraint. The PCA plot (figure. 2) shows that there 

are possible clusters of values present within the data, a finding 

that is further elaborated through the tSNE plot as presented in 

the following section, which demonstrates that the data can be 

geometrically separated when considering various intervals of 

dosage level. The statistical tools and computation techniques 

for our datasets are based on PRTools, a Matlab toolbox used for 

pattern recognition [24]. 

 

Fig. 2. Principal Component Analysis (PCA). 

      Another kind of, visualisation techniques containing is t-

Distributed Stochastic Neighbor Embedding (t-SNE) as 

demonstrated in figure 3. t-SNE technique is used to represent 



dimensionality reduction that suitable to visualise our data sets 

with high dimensional. t-SNE scales depending on the total 

number of objects N, it’s appropriate to a limited number of data 

sets with few thousand instances.  We applied this technique to 

our data sets up to 2000 instance divided into three classes. The 

main point of using this method is to show how the 3 classes 

been demonstrated and the possibility of separating the data sets 

into three groups.  

 

Fig. 3. T-distributed Stochastic Neighbourhood Embedding (tSNE). 

      Exploratory procedures outcomes expose that some 

noticeable structure is shown within the flood datasets. The PCA 

figure demonstrates that there are potential clusters of flood 

features presented, which shows that the data can be 

geometrically separated into three classes when observing 

different intervals of severity level. Fig 3 shows that our flood 

datasets can be possibly separated and classified. 

VI. EXPERIMENTAL PROCEDURE 

      The experimental setup in this section covers the design of 

the test environment used in our experiments, the configuration 

of each model, and the models tested. The performance 

evaluation techniques used to find out the results of the machine 

learning algorithms for the flood forecasting datasets.  

Holdout technique is applied in our study for the purpose of 

evaluating how the statistical analysis can generalise to an 

independent data sets [25]. The total proportion of the flood 

data sets is divided into training, validation, and testing phases. 

This method is used to discover an average percentage of the 

correct classifications or the incorrect classifications. In this 

context, the training set receives 70%; the validation set 

receives 10%, while the testing set receives 20%. The flood 

datasets split into training and testing sets, for the purpose of 

ensuring that the generalisation error of the classifiers can be 

evaluated and to demonstrate the capability of classifiers to 

compute on unseen data.  

The algorithms are composed of trained classifiers using 
three kinds of integrated machine learning approaches: RFC, 
SVM, and LEVNN. The main purpose of selecting these models 
is to deal with high performance and strong non-linear 
classifiers. In this context, the linear method model comprises a 
single layer neural network with a linear transformation function 
at each class output unit. In order to obtain performance 
estimates, we calculated the mean of the responses for the 
proposed algorithms by running each simulation 50 times. Table 
II describes all models that are used in our experiments. The 
(LNN) and the (ROM) are applied as baseline classifiers to build 

random case performance by the task of random responses for 
each class. 

Our model evaluation framework consists of training and 

testing diagnostics, supported by five important performance 

evaluations [10]. It is involved sensitivity (True positive)[26] , 

specificity (true negative), precision level, the F1 score point 

(F1), Youden’s J statistic (J1), and accuracy calculated as 

illustrated in Equations 9 to 13. In addition, the models were 

characterised using ROC figures and the AUC figures, while the 

classification capability across operating method was 

determined.  

Precision: 𝑇𝑃 =
TP

TP+FP
 (9) 

F1 Score: 𝑇𝑃 =
2 ∗ (Precision∗Recall)

(Precision+Recall)
 (10) 

J1: Sensitivity +  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 –  1 (11) 

Accuracy:   
(TP+TN)

(TP+FN+TN+FP)
 (12) 

AUC:  0 <= Area under the ROC Curve <= 1 (13) 

TABLE II.  THE DESCRIPTIONS OF THE USED MODELS  

Models Description Architecture Training 

Algorithm 

Parameters Role 

LEVNN Multilayer 

Perceptron, 

Trained using 

the 

Levenberg-

Marquardt 

algorithm 

Units: 13-2-3, 

tansig 

activations 

Levenberg-

Marquardt 

Initialisation: 

Nguyen Widrow 

Adaptive learning 

rate settings: 

initial value: 0.001 

coefficient for 

increasing LR: 10 

coefficient for 

decreasing LR: 0.1 

maximum learning 

rate: 1e10 

Non-

linear 

Comparis

on Model 

RFC Random 

Forest, 

Decision Tree 

Ensemble 

Classifier 

13 inputs, 200 

Trees, 3 

outputs 

Random 

feature 

bagging 

Number of decision 

trees to be generated 

200; 

Size of feature 

subsets: 1 

Non-

linear 

Comparis

on Model 

SVM Support 

Vector 

Machine 

13 inputs, 3 

outputs 

Quadratic 

Optimisatio

n 

Kernel: Polynomial 

kernels 

Linear 

Comparis

on Model 

LNN Linear 

Combiner 

Network 

Units: 13-3, 

linear 

activations 

Widrow-

Hoff 

Learning rate: 0.01 Linear 

Comparis

on Model 

ROM Random 

Oracle Model 

Pseudorando

m number 

generator 

N/A N/a Random 

Guessing 

Baseline 

VII. RESULTS 

The results are shown in Tables III and IV for our empirical 

study, listing the outcomes for the supervised learning 

techniques, by applying the training and testing of the 

classifiers, respectively. We also provide very high-

performance visualisations through using the receiver operating 

characteristic curve (ROC) plots (as shown in Figures 4 and 5) 

and the use of the area under the curve (AUC) plots as 

illustrated in the bar charts in Figures 6 and 7. The AUC graphs 

offer a visual comparison in association with the AUC across 

the classifiers tested. 

The outcomes gained from our experiments indicate that the 

RFC and LEVNN models outperformed all other models. These 



models obtain proper fit over the used training sets for all 

computing points, as illustrated in Table III and the ROC and 

AUC graphs shown in Figures 4 and 6, respectively. 

Furthermore, the performance of the LEVNN and RFC 

classifiers acquired during the training is exposed to provide 

optimal generalisation to the test data selection, which obtained 

excellent outcomes in terms of AUCs in average with 3 classes 

0.994 for RFC and 0.858 for LEVNN, while obtaining good 

outcomes during testing process in average 0.877 for LEVNN 

and   0.907 for RFC. In this context, the strong generalisation 

of RFC and the LEVNN shows that there occurs rich 

information within our selected datasets source, presenting a 

great upper bound on classification in regard with accuracy and 

performance. We carried out extra experiments using SVM, 

illustrating that this approach is less capable of classifying our 

data sets.  

The training sets of the LNN classifier model generated 

accuracy values between 0.296 and 0.744, while the testing sets 

produced values 0.33 to 0.85 as expected. With this regard, the 

LNN model was incapable to learn specifically the non-linear 

components. It yields weak classification outcomes against the 

other models. Random oracles model was unable to learn the 

non-linear components and offered modest results, as shown in 

figure 5 and figure 6 and representing, by contrast, the 

significance of the outcomes from the other trained models.  

TABLE III.  PERFORMANCE EVALUATION (TRAINING) 

Models Class Precision F1 Score J Score Accuracy AUC 

ROM Class 1 0.151 0.172 -0.0274 0.676 0.48 

Class 2 0.581 0.3 -0.0167 0.434 0.502 

Class 3 0.229 0.222 -0.00431 0.649 0.509 

LEVNN Class 1 0.837 0.26 0.148 0.853 0.847 

Class 2 0.804 0.838 0.556 0.797 0.876 

Class 3 0.679 0.349 0.201 0.796 0.851 

RFC Class 1 1 0.375 0.231 0.871 0.997 

Class 2 0.981 0.882 0.777 0.871 0.988 

Class 3 0.984 0.961 0.934 0.982 0.997 

SVM Class 1 0.667 0.0333 0.0154 0.834 0.67 

Class 2 0.71 0.781 0.337 0.708 0.782 

Class 3 0 0 0 0.768 0.795 

LNN Class 1 0.168 0.287 0 0.168 0.634 

Class 2 0.6 0.75 0 0.6 0.296 

Class 3 0.232 0.377 0 0.232 0.744 

TABLE IV.  PERFORMANCE EVALUATION (TESTING) 

Models Class Precision F1 Score J Score Accuracy AUC 

ROM Class 1 0.167 0.194 0.0574 0.749 0.621 

Class 2 0.643 0.364 0.0207 0.447 0.546 

Class 3 0.24 0.248 -0.00823 0.618 0.565 

LEVNN Class 1 0.6 0.194 0.104 0.874 0.829 

Class 2 0.772 0.789 0.413 0.731 0.911 

Class 3 0.525 0.304 0.151 0.759 0.895 

RFC Class 1 1 0.0377 0.0192 0.872 0.864 

Class 2 0.897 0.742 0.513 0.726 0.938 

Class 3 0.549 0.462 0.291 0.771 0.921 

SVM Class 1 0 0 -0.00867 0.862 0.68 

Class 2 0.743 0.793 0.364 0.724 0.87 

Class 3 1 0.0202 0.0102 0.756 0.89 

LNN Class 1 0.131 0.231 0 0.131 0.67 

Class 2 0.623 0.768 0 0.623 0.333 

Class 3 0.246 0.395 0 0.246 0.85 

      Figures 4 and 5 show the outcomes for each classifier for 

calculating the training and testing methods of the models. The 

ROC Curve figures offer a visual comparison across the 

algorithms tested. In our experiments, we utilised the holdout 

techniques for distributing training sets and testing sets. In order 

to train the flood datasets, it is essential to operate two important 

phases to form the learning schemes. Firstly, we attempt to build 

the initial structure for each classifier during the training 

method, to estimate the total error rates as presented in figure 4. 

Secondly, we evaluate the flood forecasting datasets by 

applying the testing set in association with predicting the total 

error rate and accuracy for each classifier as illustrated in figure 

5. We compared the performance and error rate through our 

machine learning classifiers that are used in our experiments 

over 3 output classes formed into 3 classes: Class 1, class 2, and 

class3. RFC (test) outperformed among other classifiers and 

generated the best accuracy as shown in the figures 4 and 5. 

 

Fig. 4. ROC Curve for the Training Data Sets 

 

Fig. 5. ROC Curve per Model for the Testing Data Sets. Class 1 for normal 

level, class 2 for abnormal level, and class 3 for high risk level. 



      Figures 6 and 7 illustrate the complete outcomes for each 

class over each classifier within our experiments. AUC 

demonstrates result each model with three classes. Training set 

outcomes are illustrated in figure 7, while figure 8 shows the 

testing set results. In our graphics, the Y-axis demonstrates the 

AUC that corresponds to each model entries, while the X-axis 

indicates the classes and models. In our plots, an AUC of one 

yields an ideal model, whereas an AUC of 0.5 depicts random 

performance. Each of the bars in the AUC figure plotted is 

associated with a corresponding curve in both Figures 6 and 7. 

One main benefit of using AUC plots in our experiments is to 

emphasise the AUC standards in a great graphical form, in such 

way that a visual comparison can be drawn. 

 

Fig. 6.   Train AUC per Model Using the Training Data Sets 

       Compare to other machine learning approaches, RFC has 

been proved to obtain a comparable accuracy, despite the fact 

that being faster. The classification outcomes in terms of 

accuracy of RFC for class one, class two, and class three for all 

the variables in the flood datasets are illustrated in Table III and 

Table IV. RFC also demonstrated crucial overlaps between 

inputs variables and classes in the training sets. To assess the 

classification accuracy of the RFC in contrast with other 

machine learning classifiers, we have estimated the accuracy 0 

to 1. The results of the flood datasets are demonstrated in 

Figures 6 and 7. The three bar graphs for class 1, class 2, and 

class 3 (training and testing figures) showed RFC outperformed 

other classifiers as well as yield acceptable accuracy for three 

classes. Eventually, RFC can be easily employed to multi-class 

classification, while other models normally deal with binary 

classification. 

 

           Fig 7. Test AUC per Model Using the Testing Data Sets. 

The main reason behind RFC outperformed other types of 

machine learning is due to the type of data and its distribution. 

We note that each application and datasets present different 

challenges and diverse relationships among the variables. It is 

vital to adjust the parameters in each model to build a more 

accurate predictive model. The data sample method of our data 

is considered to be much bigger than the total dimensionally of 

our datasets. According, to deal with the large number of 

instances in our datasets, Random Forest managed to combine 

some types of soft non-linear boundaries, especially at the 

decision surface. In the testing technique, we used an average 

of 50 trees in order to obtain smooth of separation. Thus, more 

trees can provide better decision boundaries. We also estimated 

the probability distribution for the purpose of produce 

guardians of the split datasets that would provide a better model 

with high performance and accuracy. The most important point 

that RFC provided was a good outcome due to the high 

complexity control and the overfitting that model included.  

A. Discussion 

In this study, a data science methodology is used that 

combines 12 features extracted from 2000 records for the 

prediction of flood severity outcomes. The main reason that our 

methods powerful is due to the achievement that been made 

during training and testing phase as shown in table III and IV. 

The accuracy outcomes of RF showed 0.994 for the training 

sets, while testing sets produced 0.907, which considerably a 

great achievement due to the use of nonlinear methods as well 

as inseparable data sets. Our experiment produced statistical 

methods that are not affected by outliers as well as to offer 

methods with better performance with a few departures that 

control by parametric distributions. 

Furthermore, the performance evaluations for data drawn 

from a number of probability distributions, particularly for 

distributions that are not standard.  RFC is a powerful model for 

the analysis of flood datasets, as has been proven for this 

domain to offer strong predication accuracy and performance in 

comparison with other classifiers. This type of 

classifiers/algorithm employs the out-of-bag method instead of 

cross-validation, which enhances the stability of results during 

training and testing process. A great relationship between input 

features and target values has been discovered during the 

development process. The datasets were moderate in size, with 

20% of the input features randomly selected for testing and the 

remaining percentages of 70% and 10% used for training and 

validation, respectively. In this context, the test set errors were 

averaged, and the procedure was repeated 50 times. 

Generally, RFC preserves the appealing attributes of 

decision trees, for instance, handling of redundant/irrelevant 

descriptors, numerous mechanisms of action, the capability to 

deal both regression and classification, and the ability to handle 

various kinds of descriptors simultaneously. This model was 

much faster with respect to the training procedure, in 

comparison to the ensemble techniques. A key reason that RF 

produced the highest performance is due to the fact that the 

https://en.wikipedia.org/wiki/Statistical_method
https://en.wikipedia.org/wiki/Statistical_method
https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Normal_distribution


model did not have the issue of over-fit, and most importantly 

did not require guidance. Some of the variables are mislabelled 

for our datasets; the algorithm can handle and detect such 

missing values, in addition to operating effectively on 

unbalanced and categorical data, which is less viable for other 

classifiers, such as SVMs. With the integration of accuracy and 

efficiency in addition to the useful analytical techniques, the RF 

algorithm constitutes a viable and effective technique for the 

multi-source classification of flood datasets, where no suitable 

statistical algorithms are available.  

VIII. CONCLUSIONS AND FUTURE WORK  

In this study, we have conducted an empirical investigation 

into the use of different kind of machine learning algorithms for 

the predictions of flood data in terms of outcome severity. In 

this study, five types of machine learning model have been 

investigated, including baseline models, which are used for 

drawing relative comparisons with other classifiers. The RFC, 

SVM, LEVNN were used as the main classifiers. While LNN 

and ROM were applied as the baseline mechanism that utilised 

for our empirical study. These models are principally used for 

the purpose of analysing flood forecasting time series obtained 

from several locations. The target value was discretised into 3 

class labels, target 1 (normal level), target 2 (abnormal one)], 

target 3 (dangerous level). Such a division is important in order 

to deliver proper class representation over the datasets sample, 

whereas preserving some level of precision for the severity 

outcome. However, the results of our experiments illustrated 

that random forest yields the optimal results in comparison with 

the benchmarked models. REC yield better outcomes 

outperform other classifiers during the training set and testing 

set with 0.994 and 0.904, respectively. In our study, we 

calculate sensitivity, specificity, precision, the F1 score, J 

statistic (J1), and accuracy, ROC, and AUC.  

Former studies have revealed that Machine learning 

algorithms show considerable effectiveness for the pre-

processing of environmental time-series datasets, as a precursor 

to the classification of flood data. For future improvement, we 

consider using other types of machine learning techniques, 

including the use of global optimisation algorithms, for 

instance, the genetic algorithm that can expand the scope and 

scale of this study.  
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