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IX. Summary 

The TAK1 and canonical IKK complexes are the two master protein kinases of 

the innate immune system that control the production of inflammatory mediators, but 

the mechanisms by which they are activated in this system are still unclear. In this 

thesis, I present the research I have carried out to solve these problems.  

The IKK component of the canonical IKK complex is required to activate the 

transcription factors NF-B and IRF5 and the protein kinase Tpl2, but how IKKβ itself is 

activated in vivo is still unclear. It was found to require phosphorylation by one or 

more ‘upstream’ protein kinases in some reports, but by autophosphorylation in 

others. In the first part of this thesis, I describe my work that has resolved this 

controversy by demonstrating that the activation of IKK induced by IL-1 (interleukin-1) 

or TNF (tumour necrosis factor) in embryonic fibroblasts, or by ligands that activate 

Toll-like receptors in macrophages, requires two distinct phosphorylation events: first, 

the TAK1 catalysed phosphorylation of Ser177 and, secondly, the IKK-catalysed 

autophosphorylation of Ser181. The phosphorylation of Ser177 by TAK1 is a priming 

event required for the subsequent autophosphorylation of Ser181, which enables IKK 

to phosphorylate exogenous substrates. I also present genetic evidence which 

indicates that the IL-1-stimulated, LUBAC (linear ubiquitin chain assembly complex)-

catalysed formation of Met1-linked/linear ubiquitin (Met1-Ub) chains and their 

interaction with the NEMO (NF-B essential modulator) component of the canonical 

IKK complex permits the TAK1-catalysed priming phosphorylation of IKK at Ser177 

and IKK at Ser176. These findings may be of general significance for the activation of 

other protein kinases. 
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The activation of the TAK1 complex by inflammatory stimuli is thought to be 

triggered by the binding of Lys63-linked ubiquitin chains to the TAB2 or TAB3 

components of the TAB1-TAK1-TAB2 and TAB1-TAK1-TAB3 complexes. In the second 

part of the thesis I tested whether this broadly accepted model was correct by 

knocking out the genes encoding TAK1 and its regulatory subunits TAB1, TAB2 and 

TAB3 by CRISPR/Cas9 gene-editing technology, alone and in combination, in an IL-1 

receptor expressing human cell line. These genetic studies led me to discover that the 

IL-1-dependent activation of TAK1 occurs by two different mechanisms. The first, 

involves the previously described interaction of Lys63-linked ubiquitin chains with 

TAB2 and TAB3, while the second can take place in the complete absence of TAB2 and 

TAB3.  The second mechanism, which involves activation of the TAB1-TAK1 

heterodimer is more transient than the first, but is sufficient for the IL-1-dependent 

transcription of immediate early genes (A20, IB).  I show that the activation of the 

TAB1-TAK1 complex requires the expression of the E3 ubiquitin ligase TRAF6 and the 

TRAF6-generated formation of Lys63-linked ubiquitin chains, which leads to the 

phosphorylation of TAK1 at Thr187 and activation.  However, neither TAB1 nor TAK1 

bind directly to Lys63-linked ubiquitin chains. I identify one novel IL-1-dependent 

phosphorylation site on TAB1 and two on TAK1 and propose that Lys63-linked 

ubiquitin chains activate an as yet unidentified protein kinase, which phosphorylates 

one or more of the novel phosphorylation sites on the TAB1-TAK1 heterodimer 

inducing a conformational change that permits TAK1 to autophosphorylate Thr187.  
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Chapter 1 Introduction to the thesis 

1.1 Preface  

Immunity is a host defence system employed by multicellular organisms for 

protection against invading pathogens. It comprises two major branches: the innate 

immune system and the adaptive immune system [1].  

The innate immune system serves as the first line of defence against 

microorganisms. It provokes an immediate response to recognised pathogenic 

components without any prior exposure. This form of defence is established by 

producing the effector proteins needed to target the pathogens directly but non-

specifically (such as components of the complement system [1] and nitric oxide 

synthase [2]), or by generating inflammatory mediators that rapidly recruit immune 

cells to the infected site to eliminate the pathogenic infection. Innate immunity also 

has an important role in activating the adaptive immune response by permitting 

antigen presentation [3].  

The adaptive immune system, also called acquired immunity, is found only in 

vertebrates [4]. Despite being a slower response, adaptive immunity is highly specific 

to particular invaders and produces precisely tailored responses to eradicate them. 

Immunological memory is another feature of the adaptive immune system, so that a 

subsequent encounter with the same antigen mounts a quicker and enhanced 

counterattack to remove the pathogens [5,6].  

The failure of immunity, termed immunodeficiency, makes people more 

susceptible to infection [7–9]. The tight regulation of the immune system is also critical, 

since hyper-activation of the immune system can cause chronic inflammatory and 

autoimmune diseases, including asthma, lupus, psoriasis, rheumatoid arthritis and 
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septic shock, and have other severe consequences, such as different types of 

lymphomas [10–15]. 

1.2 The innate immune system 

1.2.1 The pattern recognition receptor superfamily 

The innate immune system is usually considered to be a generic defence 

mechanism, but it has nevertheless evolved some relatively specific approaches to 

fight infection by pathogens. One of these is the recognition of conserved pathogenic 

components, termed pathogen-associated molecular patterns (PAMPs). These unique 

and invariant modules are essential for the organism’s survival and present only on 

pathogens and not the host [16]. 

The detection of PAMPs is conducted by pattern recognition receptors (PRRs) 

[17]. The PRR superfamily can be subdivided into four classes, including Toll-like 

receptors (TLRs) sensing a wide range of pathogens, NOD-like receptors (NLRs) sensing 

bacteria, RIG (retinoic acid-inducible gene)-I-like receptors (RLRs) sensing viruses, and 

C-type Lectin receptors (CLRs) sensing fungi and damaged cells [17–19]. The receptors 

recognise not only PAMPs, but also endogenous molecules released from damaged 

host cells, known as damage-associated molecular patterns (DAMPs) [19]. 

This thesis mainly focuses on the early events in the signalling pathways of the 

TLRs and the closely related Interleukin-1 receptor (IL-1R). These two types of 

receptors will be described in the following two subsections. 
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1.2.1.1 Toll-like receptors 

Toll-like receptors (TLRs) are germline-encoded membrane PRRs. They are 

human orthologues of the Toll receptor in Drosophila melanogaster, which has an 

essential role in detecting fungi and in promoting anti-fungal responses [20,21]. TLRs 

are widely expressed on immune and epithelial cells. To date, 13 different TLRs have 

been identified in mammals, 10 of which, namely TLR1-10, are present in human, 

whereas TLRs 1-9 and 11-13 are expressed in mice [22]. Studies in “knock-out”  (KO) 

mice have revealed that each TLR responds to a distinct set of PAMPs, demonstrating a 

degree of specificity [23].  

TLRs have been divided into two groups based on their subcellular locations. 

The plasma membrane bound TLRs (TLR1, 2, 4, 5, 6 and 11) detect the surface 

components of pathogens, whilst the TLRs (TLR3, 7, 8, and 9) expressed in intracellular 

vesicles (endosomes and endoplasmic reticulum) bind to nuclei acids from pathogens, 

primarily viruses [22]. 

All TLRs consist of an extracellular ligand-binding domain, a transmembrane 

(TM) domain and a cytoplasmic signalling domain (the TLR1/2 is shown as an example 

in Fig 1.1). The tandem copies of leucine-rich repeats (LRRs) at their N-termini form a 

horseshoe structure in TLR dimers, which permits the engagement of ligands [24]. TLRs 

can function as homo- or hetero-dimers to broaden the spectrum of ligand recognition 

[25], and additional diversity is contributed by variable residues distinct from leucine in 

the LRR regions [26]. In contrast, the cytoplasmic region is highly conserved. The 

Toll/Interleukin-1 receptor (TIR) domain is present in all TLRs as well as the receptors 

for Interleukin-1 (IL-1), IL-18 and IL-33 [27]. Since TLRs have no intrinsic catalytic 

activity, they require adaptor proteins for coupling to signal transduction pathways. 
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Figure 
1.1 Domain organisations of TLR1/2, IL-1R1 and IL-1RAcP. TLR1/2 contains several copies of 
leucine-rich repeats (LRR) at N terminus, whereas both IL-1R1 and IL-1RAcP share three Ig-like 
regions in their extracellular portion to sense ligands. TLR1/2, IL-1R1 and IL-1RAcP possess a 
transmembrane domain (TM), followed by a Toll/Interleukin-1 receptor (TIR) domain for the 
recruitment of TIR-containing adaptor proteins. 

1.2.1.2 IL-1 and the IL-1 receptor 

IL-1 is a critical pro-inflammatory cytokine and its generation and secretion is a 

major outcome of inflammatory responses induced by the activation of TLRs [28]. 

Three cytokines, IL-1, IL-1 and IL-1R antagonist (IL-1RA), bind to the type1 IL-1R (IL-

1R1).  IL-1 is retained in the cytosol and membrane, and only released when cells 

destruct as a result of necrosis or mechanical damage [29]. In contrast, IL-1 is 

produced in large amounts and secreted during inflammation [30]. The IL-1 precursor 

(pro-IL-1) exists as a biologically inactive propeptide in cytosol, and requires 

proteolytic cleavage to form an active cytokine. This procedure is performed by a 

complex termed the NLRP3 (NLR-, LRR- and pyrin-containing protein-3) inflammasome 

which comprises the NLR protein NLRP3, an adaptor protein ASC (apoptosis-associated 

speck-like protein containing a CARD domain) and a cysteine protease pro-caspase-1 

[31]. The autocatalytic cleavage of pro-caspase-1, which is induced by the formation of 

the inflammasome in the cytoplasm, activates caspase-1, which then processes pro-IL-

1into an active secreted form. The secretion mechanism of the mature IL-1 remains 
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elusive, but its export is independent of conventional endoplasmic reticulum (ER)-Golgi 

complex due to the lack of signal peptide [32,33]. Two separate signals are needed to 

activate the NLRP3 complex, the first is provided by PAMPs which activates the NF-B-

dependent transcription of NLRP3 and pro-IL-1, and the second is from DAMPs, 

including ATP, uric acid and the toxin nigericin, which triggers the specific activation of 

NLRP3 and assembly of the inflammasome complex [31,34]. The tight regulation of 

precursor processing prevents the abnormal production of IL-1 and minimizes 

potential disorder caused by hyper-inflammation. IL-1RA is expressed as two 

intracellular isoforms, which are present in the cytoplasm and only released upon cell 

death. They bind to IL-1R1 with higher affinity than IL-1 and IL-1. IL-1RA is unable to 

recruit IL-1R accessory protein (IL-1RAcP), and therefore restricts potential tissue 

damage caused by the action of pro-inflammatory cytokines [29]. 

Like TLRs, IL-1R1 contains an intracellular TIR domain (Fig 1.1). However, its 

extracellular region consists of three immunoglobulin (Ig)-like domains for the 

recognition of its ligands [24].  

The engagement of IL-1/with IL-1R1 triggers the recruitment of IL-1RAcP 

forming a heterodimeric complex [35,36]. The TIR domains of the IL-1R1-IL-1RAcP 

complex can then promote the recruitment of the adaptor protein MyD88 (myeloid 

differentiation primary response gene 88).  

1.2.1.3 TIR adaptor proteins 

The binding of ligands induces conformational changes within the intracellular 

TIR regions of TLRs and IL-1R1, allowing the recruitment of TIR-containing adaptor 

proteins so that signal propagation is initiated.  



6 
 

Five distinct adaptors have been identified so far, namely MyD88, MAL/TIRAP 

(MyD88 adaptor like/ TIR-associated protein), TRIF/TICAM-1 (TIR-domain-containing 

adaptor protein inducing interferon/TIR domain containing molecule 1), TRAM/ 

TICAM-2 (TRIF-related adaptor molecule/TIR domain containing molecule 2) and SARM 

(sterile - and HEAT/Armadillo containing protein) [37].  

The IL-1R1 and all TLRs, except TLR3, recruit MyD88 through a TIR-TIR domain 

interaction in their cytoplasmic region. TLR3 transmits its signal through TRIF, whereas 

TLR4 signals via both MyD88 and TRIF. TLR2 and TLR4, in particular, employ TIRAP to 

aid MyD88 recruitment. Once TLR4 has undergone translocation to the endosome, it 

requires TRAM to recruit TRIF [22]. The role of SARM remains unclear. It has been 

proposed to negatively regulate TRIF- and MyD88-dependent signalling pathways 

[38,39]. 

Signalling via MyD88 leads to the production of pro-inflammatory and anti-

inflammatory cytokines through TLR1, TLR2, TLR4, TLR5 and TLR6. The pro-

inflammatory cytokines include IL-1, IL-6, IL-12 and tumour necrosis factor TNF 

while the most important anti-inflammatory cytokine is IL-10.  In contrast, type 1 

interferons (IFNs) are induced through TLR7, TLR8 and TLR9. TRIF-dependent signalling 

is primarily responsible for the generation of IFN[22]. 

1.2.2 The MyD88-mediated signalling network 

The MyD88 adaptor protein is utilized by IL-1R1 and most TLRs, thus their 

downstream signalling pathways are similar. The pro-inflammatory cytokines 

produced by these pathways help to eliminate the pathogen and the anti-

inflammatory molecules resolve the inflammatory response. The production of pro-

inflammatory cytokines requires master transcription factors, such as NF-B (nuclear 
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factor B) and IRFs (interferon regulatory factors) [40,41]. Once activated, they 

translocate into nucleus and initiate the transcription of target genes encoding pro-

inflammatory molecules. In contrast, the generation of anti-inflammatory cytokines is 

dependent on the activation of the transcription factor CREB (cAMP response element 

binding protein) [42]. 

An overview of the MyD88 signalling network is depicted in Fig 1.2. The 

structure, function and regulation of key components of this network will be described 

in the following sections. 

Figure 1.2 An overview of early events in the IL-1-stimulated signalling pathway. The 
engagement of IL-1 on IL-1R1 induces the formation of Myddosome complex. The E3 ligases 
including TRAF6 and LUBAC complex generate K63/Met1 hybrid poly-ubiquitin chains, leading 
to the activation of TAK1 complex and the canonical IKK complex. This is followed by the 

activation of downstream kinases and transcription factors including AP-1, NF-B (p50:p65) 
and IRF5. They regulate the expression of genes encoding inflammatory cytokines. The 
phosphorylation event is indicated by P, without signifying the phosphorylation sites. 
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1.2.2.1 MyD88 and the formation of the Myddosome 

MyD88 was discovered as an adaptor that recruits members of the IRAK (IL-1R-

associated kinase) family to the IL-1 receptor [43]. It comprises an N-terminal death 

domain (DD), which facilitates its interaction with downstream DD-containing 

components such as IRAKs (Fig 1.3). The C-terminal TIR domain of MyD88 is required 

for its association with the TIR domain in the cytoplasmic region of TLRs and IL-1R1 (Fig 

1.1, Sections 1.2.1.1 and 1.2.1.2) [44]. MyD88 KO mice showed resistance against 

lipopolysaccharide (LPS)-induced endotoxic shock, and peritoneal macrophages from 

these mice did not respond to IL-1 nor LPS stimulation, suggesting an indispensable 

role for MyD88 in signal transduction triggered by IL-1 and TLR agonists [45,46]. The 

binding of MyD88 to TLRs or IL-1R1 induces the recruitment of IRAK4, which interacts 

with MyD88 via its DD (Fig 1.3). This association is thought to promote its 

oligomerization and auto-activation, followed by further recruitment of IRAKs 1 and 2 

to form a complex named the Myddosome (Fig 1.2) [47,48]. An X-ray crystallographic 

structure analysis of the DDs of the Myddosome suggested that six MyD88 molecules 

were first bound to receptor followed by four IRAK4 proteins, and then four IRAK1 or 

IRAK2 molecules. The entire Myddosome complex resembles a helical tower-like 

structure, with hexagonal staggered layers packed on top of one another [48]. 
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Figure 1.3 Domain organisations of MyD88 and IRAK family. MyD88 and all four IRAKs contain 
death domain (DD) at their N termini for the association with each other or other DD-
containing proteins. The TIR domain at the C-terminal on MyD88 facilitates its interaction with 

TLRs or IL-1R1 at their cytoplasmic TIR regions. IRAKs contain proline/serine/threonine (PST) 
rich domain and kinase domain. The C-terminal (CT) domain is essential for TRAF6 binding. 
IRAK4 lacks CT domain, and IRAKs 2 and 3 are catalytically inactive pseudokinases. The 
phosphorylation site is highlighted in red. 

1.2.2.2 IRAK kinases 

IRAK1, originally termed IRAK, is a human orthologue of Pelle, a protein kinase 

crucial for the activation of NF-B in Drosophila [49]. The IRAK family has four 

members, namely IRAK1 [49], IRAK2 [50], IRAK3 (also known as IRAKM) [51] and IRAK4 

[52], named according to the order in which they were discovered. Each IRAK 

comprises an N-terminal death domain (DD), which interacts with MyD88 and other 

DD-containing proteins [53], a proline/serine/threonine (PST) rich domain where 

multiple sites are thought to be phosphorylated extensively, and a serine/threonine 

kinase domain [44] (Fig 1.3). All IRAKs, apart from IRAK4, additionally possess a C-

terminal (CT) Pro-Xaa-Glu-Xaa-Xaa-Aaa motif (where Xaa represents any amino acid, 

and Aaa is an aromatic or acidic residue), which is required for their interaction with 

TRAF6 (tumour necrosis factor (TNF)-associated factor 6) [54].  
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IRAKs 1 and 4 contain intrinsic kinase activity, whereas IRAKs 2 and 3 appear to 

be catalytically inactive pseudokinases since the critical Asp residue in their Asp-Phe-

Gly (DFG) motifs is replaced by Asn and Ser, respectively [51]. IRAK3 is expressed only 

in monocytes, whereas the other IRAKs are expressed in most cell types [51].  

1.2.2.2.1 IRAK4  

The expression of IRAK4 and its kinase activity are essential for the 

inflammatory response. IRAK4 KO mice showed complete resistance to LPS-induced 

septic shock as well as considerably reduced IL-6 and TNF levels in serum [55,56]. The 

mouse embryonic fibroblasts (MEFs) or peritoneal macrophages from mice in which 

IRAK4 is deleted or replaced by kinase-inactive mutants showed severe reduction in 

the IL-1 or TLR agonist-induced activation of MAP (mitogen-activated protein) kinases 

and the canonical IKK (IB (inhibitor of NF-B) kinase) complex [55–57]. The activation 

of IRAK4 is believed to occur through trans-autophosphorylation [58], which is 

prompted by its oligomerization after interaction with MyD88 [59]. 

1.2.2.2.2 IRAK1 

MyD88 signalling and the secretion of inflammatory cytokines were reduced in 

IRAK1 KO bone marrow-derived macrophages (BMDMs) and MEFs, but re-expression 

of a catalytically inactive mutant of IRAK1 rescued the signal, indicating that the kinase 

activity of IRAK1 is not essential for the production of inflammatory cytokines in these 

cells [60] and suggesting that IRAK1 may function as a scaffold to recruit other proteins. 

The association between IRAK1 and TRAF6 has been demonstrated in vitro [54], but 

the genetic evidence needed to establish the in vivo significance of this interaction has 

yet to be obtained. The mechanism of IRAK1 activation has also not yet been 

established. It has been proposed that, like IRAK4, the oligomerization of IRAK1 
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permits its auto-phosphorylation at Thr209, which is essential for its activation in vitro 

[61].  

1.2.2.2.3 IRAKs 2 and 3 

Although IRAK2 and IRAK3 are both pseudokinases [51], they play distinct roles 

in the MyD88 signalling network. Studies in macrophages derived from IRAK2 KO mice 

revealed the importance of IRAK2 in the TLR-induced activation of NF-B and the 

expression of genes encoding pro-inflammatory cytokines after prolonged TLR 

signalling, though it is dispensable for the initial response to TLR agonists [62]. The 

mutation of Glu525 in the Pro-Xaa-Glu-Xaa-Xaa motif to Ala in IRAK2 disrupted the 

interaction between IRAK2 and TRAF6. Interestingly, the loss of this interaction did not 

affect the MyD88 signalling network in BMDMs during the early phase (0-2 h), but the 

transcription and secretion of pro-inflammatory mediators was almost completely 

gone in the late phase (2-8 h), indicating that IRAK2 is a positive regulator for the 

production of inflammatory cytokines [60]. Given that the deletion of both IRAK1 and 

IRAK2 leads to substantial defects in the TLR signalling pathway [62] and that IRAK1 is 

largely degraded 2-4 h after the initial response [60], it is possible that IRAK2 functions 

redundantly with IRAK1 in the early phase, but the IRAK2-TRAF6 interaction becomes 

essential for sustaining the signal during the late phase.  

As the least investigated member in the IRAK family, IRAK3 is thought to restrict 

the MyD88 signalling network, since BMDMs lacking IRAK3 expression showed 

enhanced release of inflammatory cytokines in response to stimulation by TLR agonists 

[63].   
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1.2.3 The E3 ligase TRAF6 and the activation of TAK1 by ubiquitin chains 

In 1996, Cao et al reported TRAF6 as the 6th member in the TRAF family [64]. 

The TRAF family of proteins were initially identified as molecules associated with the 

cytoplasmic portion of TNF receptors [65]. The seven members reported so far are 

characterized by similar structures [66]. All TRAFs, except TRAF1, contain an N-terminal 

RING (really interesting new gene) domain, followed by several zinc-finger (ZF) 

domains, and a coiled-coil (CC) region (TRAF6 is shown as an example in Fig 1.4). The 

TRAF-C (C-terminal) domain is present in all TRAFs except TRAF7. An structural analysis 

revealed that the TRAF-C domain of TRAF6 enables to interact with Pro-Xaa-Glu-Xaa-

Xaa-Aaa motif on IRAKs 1, 2 and 3 [54]. 

The overexpression of TRAF6 in human embryonic kidney 293 (HEK293) cells 

activated NF-B, while a dominant-negative mutant of TRAF6, which lacked the RING 

domain and four ZF domains, failed to trigger IL-1-induced NF-B activation [64]. The 

indispensable role of TRAF6 in MyD88-dependent signalling network was further 

demonstrated in MEFs from TRAF6 KO mice stimulated with IL-1 or LPS [67]. RING 

domains were subsequently found to possess E3 ubiquitin ligase activity [68], and 

Zhijian Chen’s group then discovered that TRAF6 functioned as an E3 ligase. Together 

with an E2 enzyme complex Ubc13-Uev1a, which contacts the RING and ZF1 domain in 

TRAF6 (Fig 1.4), the E3 ligase TRAF6 was shown to catalyse the formation of K63-linked 

ubiquitin (K63-Ub) chains specifically [69]. The pivotal role of TRAF6 E3 ligase activity in 

cells was established by the finding that IL-1-dependent signalling was restored to 

TRAF6 KO MEFs reconstituted with wild-type TRAF6, but not with E3 ligase-defective 

mutants [70,71]. Interestingly, TRAF6 is the only member of the TRAF family which has 
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been shown convincingly to display E3 ligase activity [69]. Other TRAFs, such as TRAF2, 

may function as scaffolds to recruit other active E3 ligases [72].  

The activation of TRAF6 is thought to result from its dimerization induced by 

the interaction of TRAF6 with IRAKs 1 and 2 in the Myddosome [73,74]. This is 

supported by the finding that oligomerization-defective TRAF6 mutants were unable to 

restore IL-1 signalling when re-expressed in TRAF6 KO MEFs [75]. 

Further investigation of the role of K63-Ub chains in the MyD88 signalling 

network by Zhijian Chen’s lab led to the now widely accepted model that K63-Ub 

chains activate the TAK1 (transforming growth factor  (TGF)-activated kinase 1) 

complex. This exciting achievement was made by the famous cell-free assays that he 

set up to study this system [76], which will be described in the following section. 

 
Figure 1.4 Domain organisation of TRAF6. TRAF6 comprises an N-terminal RING domain 
essential for its E3 ligase activity, followed by four zinc finger (ZF) domains for the interaction 
with E2. The coiled-coil (CC) domain is required for self-oligomerization, and TRAF-C domain 
allows its binding to IRAKs. 

1.2.4 The TAK1 complex  

TAK1 is a member of the mitogen-activated protein (MAP) kinase kinase kinase 

(MAP3K) family. As indicated by its full name (Section 1.2.3), TAK1 was initially 

identified as an activator of MAP kinases in cells stimulated with transforming growth 

factor  (TGF or bone morphogenetic protein (BMP) [77]. Soon after, it was shown 

that TAK1 can be activated by a variety of immune stimuli, including the pro-

inflammatory cytokines IL-1 [78], and agonists of TLRs and NLRs [79]. The catalytic 

subunit TAK1 together with the regulatory subunits namely TAK1-binding protein 1 
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(TAB1), TAB2 and TAB3, form two separate heterotrimeric complexes under 

physiological conditions: the TAB1-TAK1-TAB2 complex and the TAB1-TAK1-TAB3 

complex, respectively [80].  

The TAK1 catalytic subunit contains an N-terminal kinase domain, which is 

bound by TAB1, and a C-terminal domain (CTD), which interacts with TAB2 or TAB3 [44] 

(Fig 1.5). TAB1 is a pseudophosphatase which carries a protein phosphatase 2C (PP2C)-

like domain at its N-terminus [81], followed by a p38 MAP kinase binding (PB) domain 

and a TAK1-binding (TB) domain at its C terminus [44]. TAB2 and TAB3 are structurally 

similar. Both carry an N-terminal CUE (Cue1-homologous) domain, a coiled-coil (CC) 

region, followed by a TAK1-binding domain and a C-terminal Npl40 zinc-finger (NZF) 

domain [44] (Fig 1.5). Both CUE and NZF domains are highly conserved and interact 

with K63-Ub chains. However, the deletion of the NZF domain, but not the CUE domain, 

was found to impair the phosphorylation of IBby the canonical IKK complex in vitro 

([82], Section 1.2.5.1). This suggests that the NZF domain is the major ubiquitin-

binding region of  TAB2 and TAB3 involved in activating TAK1. 
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Figure 1.5 Domain organisations of TAK1 and TABs. TAK1 contains an N-terminal kinase 
domain and C-terminal domain (CTD) for its association with TAB2 or TAB3. TAB1 is a pseudo-
phosphatase containing a protein phosphatase 2C (PP2C)-like domain at N terminus, followed 
by a p38 binding (PB) domain and a TAK1 binding (TB) domain at C terminus. TAB2 and TAB3 
comprise an N-terminal ubiquitin binding (CUE) domain, a coiled-coil (CC) region, a TAK1-
binding (TB) domain and a C-terminal Npl4 zinc finger (NZF) domain. The phosphorylation sites 
are highlighted in red. 

1.2.4.1 The phosphorylation and activation of TAK1 

The protein kinase activity of TAK1 is required for the activation of NF-B and 

MAP kinases, because their upstream kinases, including the canonical IKK complex, c-

Jun N-terminal kinase (JNK) and p38 MAP kinases, were not activated in IL-1 stimulated 

fibroblasts that lack TAK1 expression [83] or that express a truncated, inactive version 

of TAK1 [84].  

The activation mechanism of TAK1 has been studied extensively. The IL-1-

induced activation of endogenous TAK1 occurs within a few minutes [78,85] and the 

phosphorylation on TAK1 is required for its activity, since phosphatase treatment of 

TAK1 prevents it from phosphorylating  its physiological substrate MKK6 (MAP kinase 

kinase 6) in vitro [85]. The activation of many protein kinases, including MAP3Ks, 

requires the phosphorylation of serine and/or threonine residues in the activation loop 

between subdomains VII (containing the DFG motif) and VIII (terminating in the 

M(A/S)PE motif) [86]. TAK1 contains four serine/threonine residues in this region that 

could potentially become phosphorylated, namely Thr178, Thr184, Thr187 and Ser192 

which are indicated by asterisks in the following sequence 
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DFGT*ACDIQT*HMT*NNKGS*AAWMAPE. The use of phospho-specific antibodies that 

recognise TAK1 at Thr187 revealed that this threonine only becomes phosphorylated 

when the MyD88 pathway is activated in cells [87].  Moreover, this site does not 

become phosphorylated and TAK1 is not activated in cells expressing the catalytically 

inactive TAK1[K63W] mutant in which Lys63 in ATP-binding pocket was mutated to Trp 

[87], suggesting that TAK1 is activated by the autophosphorylation at Thr187. 

Furthermore, an antibody developed later that recognises TAK1 phosphorylated at 

both Thr178 and Thr184 did not detect the phosphorylation of these sites when 

Thr187 was mutated to Ala [88].  This suggests that phosphorylation at Thr178 and 

Thr184 may be autophosphorylation events occurring subsequent to the 

phosphorylation at Thr187. Thr187 phosphorylation is therefore used as the major 

readout of TAK1 activation throughout this thesis.  

1.2.4.2 The role of TAB1 in the activation of TAK1 

TAB1 was the first regulatory subunit in the TAK1 complex to be identified [89], 

and is bound constitutively to TAK1 in cells [78,80,85].  Thus early studies focused on 

the role of TAB1 in TAK1 phosphorylation and activation [89,90]. The kinase activity of 

wild type TAK1, but not the catalytically inactive TAK1[K63W] mutant, was greatly 

enhanced only when TAB1 was  co-expressed with TAK1 in yeast [89] or mammalian 

cells [90], confirming that TAK1 can activate itself in an ATP-dependent manner, and 

that TAB1 can promote TAK1 autophosphorylation. The C-terminal 68 amino acids of 

TAB1 is sufficient for association with and activation of TAK1 when it is either 

overexpressed in unstimulated HeLa cells [90] or fused covalently to the catalytic 

domain of wild type TAK1 [91]. A mutagenesis study showed that the conserved 

residue Phe 484 on TAB1 was crucial for TAK1 binding and activation [92], which 
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further indicated the importance of TAB1 in TAK1 activation. The crystal structure of 

TAB1-TAK1 chimera provided further details on the molecular basis of TAB1-mediated 

TAK1 activation [93]. However, two groups reported that the IL-1-induced activation of 

TAK1, and subsequent activation of MAP kinases and NF-B occurred normally in the 

TAB1-deficient MEFs, indicating that TAB1 is dispensable for TAK1 activation [83,94]. 

The investigation of the role of TAB1 in TAK1 activation was largely discontinued as a 

result of these observations, and attention switched to the roles of the other two 

subunits, TAB2 and TAB3. 

1.2.4.3 The roles of TAB2 and TAB3 in the activation of TAK1 

Early studies showed that TAK1 was recruited to TRAF6 in response to IL-1 

stimulation [78], and TAB2 (Fig 5 in [95]) and TAB3 (Fig 5 in [96]) were identified as two 

adaptors aiding this ligand-dependent association. These studies were also the first to 

indicate how the activation of the TAK1 complex might be linked to the TRAF6 E3 ligase 

in the MyD88 signalling network. The discovery that the IL-1-dependent activation of 

TAK1 was dependent on one or more TRAF6-catalysed ubiquitylation events [76] led 

Ishitani et al to propose that the IL-1-induced TRAF6-mediated ubiquitylation of TAB2 

and TAB3 may activate TAK1.  However, the data they presented only demonstrated 

that Ub chains were co-immunoprecipitated with TAB2 or TAB3 [96]. Kanayama et al 

then revealed that the NZF domain was the major Ub-binding region of TAB2 and TAB3 

as described earlier (Section 1.2.4, [82]). They also demonstrated that the NZF 

domains of TAB2 and TAB3 interact with K63-Ub chains, which may induce a 

conformational change in the TAK1 complex, leading to TAK1 auto-phosphorylation 

and auto-activation in vitro [82]. This mechanism for the K63-Ub-dependent activation 

of TAK1 was supported by the observation that replacing the conserved Cys residues in 
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the NZF domains with Ala prevented the activation of TAK1, and that the replacement 

of the NZF domain by a ubiquitin-binding motif from unrelated proteins restored TAK1 

activation in a cell-free system (Fig 4 in [82]). The TRAF6-catalysed formation of K63-Ub 

chains was shown to only activate the TAB2-TAK1 complex in vitro, but not the TAB1-

TAK1 complex nor the TAK1 catalytic subunit alone [76]. Moreover, the depletion of 

TAB2 from HEK293 cells abolished the kinase activity of immunoprecipitated TAK1 in 

vitro, which was restored when recombinant TAB2-TAK1 was added in the assay (Fig 2c 

in [76]). These pieces of evidence further suggested the importance of TAB2 in the 

activation of TAK1. 

As discussed in Section 1.2.3, the wild type TAB2 and TAB3, but not mutants 

lacking the NZF domains, associated with K63-Ub chains synthesized by TRAF6 and 

Ubc13-Uev1a ([69], Fig 1b in [97]), but not with K48-Ub chains in vitro (Fig 3 in [82], Fig 

4a in [98]), and the TAK1 complex could only be activated by K63-Ub chains, but not 

K48- nor Met1-Ub chains in vitro (Fig 2f and S10 in [97]). Moreover, the presence of 

CYLD (Cylindromatosis), a deubiquitylase that only cleaves K63-Ub and Met1-Ub chains 

[98], completely blocked the activation of TAK1. These data indicate that TAB2, as well 

as TAB3, activates TAK1 by binding to K63-Ub chains specifically. A recent study on the 

crystal structures of the TAB2 NZF domain bound to K63-linked di- and tri-ubiquitin 

molecules demonstrated that the NZF domain contains two ubiquitin-binding sites, 

which associate with neighbouring Ub molecules at two sites in a K63-Ub oligomer [99]. 

A Met1-Ub oligomer was unable to bend like a K63-Ub chain to contact the two 

binding sites in the NZF domain simultaneously, explaining the specificity of TAB2 for 

K63-Ub chains. Taken together, these findings indicated that TAB2 and TAB3 induce 

the activation of TAK1 by binding to K63-Ub chains specifically.  
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Although the model for the activation of TAK1 via the interaction of K63-Ub 

chains with TAB2/TAB3 is simple and elegant, it was built up mainly based on in vitro 

experiments, and the genetic evidence needed to establish this hypothesis was still 

lacking when I started my project. TAB2-deficient MEFs showed normal MAP kinase 

activity and NF-B DNA binding activity, suggesting that TAB2 alone is not essential for 

IL-1 signalling [100]. Similar results were obtained from studies in TAB3-deficient MEFs 

and macrophages after TLR agonists stimulation [101]. The knockdown of both TAB2 

and TAB3 (but not either protein alone) using siRNA (small interfering RNA) technology 

in HeLa cells largely prevented the phosphorylation-induced slower migration of TAK1, 

as well as the activation of MAP kinases and NF-B [96], strongly suggesting that TAB2 

and TAB3 are functionally redundant in the activation of TAK1.  These observations 

inspired me to generate a cell line in which both TAB2 and TAB3 were genetically 

ablated and in this thesis to re-express mutated versions of these TAB subunits to try 

to elucidate the roles of TAB2 and TAB3 in the activation of the endogenous TAK1. 

Once TAK1 is activated, it prompts the activation of NF-B by phosphorylating 

and activating the canonical IKK complex [76,78]. The next section focuses on the 

structure of the canonical IKK complex, its functional role in activating the NF-B 

transcription factor, and how it was thought to be activated at the time the work 

described in this thesis was started. 

1.2.5 The canonical IKK complex   

The canonical IKK complex is composed of two protein kinases, IKKand IKK 

(also called IKK1 and IKK2) [102–104], and one regulatory subunit called NEMO (NF-B 

Essential Modifier, also called IKK) [105,106]. The IKK and IKK components of the 

complex display 51% identity in amino acid sequence [102]. They both contain an N-
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terminal kinase domain, in which two key serine residues located in the activation loop 

(Ser176 and Ser180 for IKKand Ser177 and Ser181 for IKK) have to be 

phosphorylated for the kinases to be activated [102,107,108]. Recent structural 

analysis of IKK revealed that it also carries an ubiquitin-like domain (ULD), a -helical 

scaffold/dimerization domain (SDD), and a C-terminal NEMO-binding domain (NBD) 

[109] (Fig 1.6). The ULD is required for kinase activity and the SDD mediates its 

dimerization. IKK is predicted to have a similar structural organisation to IKK [109]. 

NEMO was discovered as the third subunit in the canonical IKK complex 

[105,106]. This 48 kDa polypeptide contains an -helical region and two coiled-coil (CC) 

domains. The first CC domain (CC1) promotes NEMO dimerization and its interaction 

with the IKKs [110] (Fig 1.6). The second CC domain (CC2) together with the leucine 

zipper (LZ) motif is the ubiquitin binding domain [111]. The C-terminal zinc-finger (ZF) 

domain targets the IKK complex to substrates such as IB. The  molar ratio 

IKK:IKK:NEMO is 1:1:2 [113], consistent with a crosslinking experiment indicating 

that the canonical IKK complex comprises two IKKtwo IKK and four NEMO 

molecules in cells  [114–117].  

  
Figure 1.6 Domain organisations of the canonical IKK complex. Both IKK and IKK contain a 
kinase domain at N terminus, followed by an ubiquitin-like domain (ULD) required for 

kinase activity, an -helical scaffold/dimerization domain (SDD) for dimerization, and a 
C-terminal NEMO-binding domain (NBD). NEMO comprises a coiled-coil domain (CC1) 
for the dimerization and interaction with IKKs, followed by CC2 and leucine zipper (LZ) 
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motif forming an ubiquitin binding region. The C-terminal zinc-finger (ZF) domain is for 

IB interaction. The phosphorylation sites are highlighted in red. 

1.2.5.1 The activation of NF-B transcription factors 

The canonical IKK complex activates NF-B by inducing the phosphorylation 

and subsequent degradation of IB[118]. NF-B is a family of dimeric transcription 

factors consisting of NF-B1 (p50 and its precursor p105) or NF-B2 (p52 and its 

precursor p100) complexed to c-Rel, RelA (p65) or RelB. NF-B dimers are implicated in 

regulating many physiological processes, including not only innate immunity but also 

the cellular response to DNA damage [116,119,120].  

When the innate immune system is not activated, NF-B dimers (except p52: 

RelB) are sequestered in the cytoplasm by IB proteins (IB, IB and IB) [121–

123]. When the MyD88 signalling pathway is activated, IB is phosphorylated by the 

canonical IKK complex on Ser32 and Ser36 [124–126], and the dual-phosphorylated 

protein is  recognised by the -TrCP F-box–containing component of a Skp1-Cullin-F-

box (SCF)–type E3 ubiquitin-protein ligase complex, called SCFβTrCP. This leads to the 

K48-linked polyubiquitylation and degradation of IB by the 26S proteasome [127–

129]. It is followed by the liberation of NF-B subunits and the exposure of the nuclear 

localization sequence (NLS) on RelA (p65) [44,117,130], causing the dimeric 

transcription factors to translocate into nucleus and initiate the transcription of target 

genes [116]. The canonical IKK complex also enables phosphorylation of RelA at Ser536 

in cells [131,132], and a recent study in knock-in mice suggested that this 

phosphorylation is not required for its nuclear translocation but negatively regulates 

NF-B signalling [133]. 
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1.2.5.2 IKKand IKK 

Although IKK is a component of the canonical IKK complex, it is not essential 

for the MyD88-dependent activation of NF-B [107]. The mutation of two serine 

residues to alanine in the activation loop of IKK did not impair the IL-1-activated IKK 

complex from phosphorylating IB in vitro [107]. Moreover, the immunoprecipitated 

IKK complex from IL-1-stimulated IKK-deficient MEFs phosphorylated IB in vitro 

similarly to the canonical IKK complex from wild type MEFs [134]. In addition, the IL-1-

induced phosphorylation of p105 at Ser933 and RelA at Ser536 and degradation of 

IB was comparable in wild type and IKK-deficient MEFs [135]. 

IKK activity is required to activate the alternative (or non-canonical) NF-B 

pathway, which is triggered by a subset of TNF superfamily members, including 

lymphtoxin-, CD40L, BAFF and RANKL (receptor activator of NF-B ligand) [136–

138]. The engagement of these ligands stabilizes the NF-B-interacting kinase (NIK), 

which is thought to phosphorylate and activate IKK homodimers [108]. The active 

IKK then phosphorylates p100, triggering its proteolytic processing to p52, which 

associates with the RelB dimer to stimulate gene transcription [138]. In contrast to the 

rapid degradation of IB isoforms in the canonical NF-B pathway, IKK-dependent 

processing of p100 to p52 is much slower [139]. Notably, neither IKK nor NEMO is 

involved in this pathway. 

Unlike IKK, IKK is vital for IL-1-induced NF-B activation. The IKK complex 

isolated from IL-1-stimulated IKK-deficient MEFs and embryonic stem (ES) cells was 

not capable of phosphorylating IB in vitro, and no activated NF-B capable of 

binding to DNA was detected in the nuclear extracts of these cells [140]. Moreover, the 

deletion of IKK in MEFs resulted in a dramatic reduction in the IL-1-mediated 
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phosphorylation of p105 and RelA, and the degradation of IB was completely 

abolished [135]. The replacement of Ser177 and Ser181 of IKK by Ala residues 

prevented IB phosphorylation in vitro, whereas their replacement by Glu residues 

(to mimic the effect of phosphorylation by introducing negative charges) enhanced its 

kinase activity [102,107]. These results suggest that phosphorylation of the two serine 

residues in the activation loop of IKK is required for its activation. 

1.2.5.3 NEMO  

NEMO was established as an indispensable regulator of the activation of IKK 

complex, by the finding that neither IKK activity nor NF-B activation was observed in 

NEMO-deficient MEFs and ES cells in response to IL-1 or LPS [141,142]. Recent work 

identified NEMO as an ubiquitin-binding protein. NEMO was initially found to associate 

with K63-linked oligomers [143,144], but more recently was shown to interact with 

Met1-linked ubiquitin dimers with 100-fold higher affinity than with K63-Ub dimers 

[111,145,146], which is discussed in more detail in Section 1.2.6. The point mutation of 

Asp311 to Asn or Gly in the CC2-LZ domain (Section 1.2.5, Fig 1.6) disrupted the 

noncovalent interaction with Ub chains, and impaired but did not abolish the 

activation of IKK complex and subsequent NF-B signalling in response to pro-

inflammatory cytokines, including IL-1 [8,147]. Patients carrying these NEMO 

mutations suffer from a disease termed anhidrotic ectodermal dysplasia with 

immunodeficiency (EDA-ID) [8,147]. These findings indicate a critical role for ubiquitin-

binding to NEMO in the activation of IKK complex. 

1.2.5.4 The activation of the canonical IKK complex 

Since the canonical IKK complex plays a critical role in the activation of NF-B, 

the mechanism by which IKK is activated has been investigated extensively. Two 



24 
 

general mechanisms for the activation of this complex have been proposed. Firstly, 

IKK is phosphorylated by one or more upstream kinase(s); secondly, the canonical IKK 

complex may phosphorylate and activate itself in the absence of any other activating 

protein kinase. The first mechanism was supported by the finding  that IL-1 failed to 

activate the IKK complex in MEFs lacking TAK1 activity (Section 1.2.4.1, [83,84]) or in 

the presence of relatively specific inhibitors of TAK1 [135,148,149]. The time course of 

IL-1-induced TAK1 activation is also compatible with being the trigger of IKK activation 

[135]. Taken together, these results implicate TAK1 as a prominent candidate kinase 

phosphorylating and activating IKK. However, support for the second mechanism 

comes from the finding that mutation of the two Ser residues in the activation loop of 

IKK to Asp residues resulted in the auto-phosphorylation of IKK (probably at 

phosphorylation sites near the C-terminus), which did not occur if this IKK mutant 

was converted to a catalytically inactive form by the additional mutation of Lys44 to 

Met or Ala [102,108]. Moreover, in IL-1-stimulated IKK-deficient MEFs, BI605906, a 

specific inhibitor of IKK that does not inhibit TAK1, prevented IKK from being 

detected by an antibody that recognises IKK phosphorylated at both Ser177 and 

Ser181 [135]. Furthermore, structural analysis has demonstrated that human IKK 

exists as a dimer of dimers under the conditions of crystallisation [109], and the 

structure is compatible with trans auto-phosphorylation being the mechanism of 

activation.  

The following section will detail recent studies indicating that the binding of 

NEMO to Ub chains, especially Met1-Ub chains, may trigger a conformational change 

of IKK complex, which might induce autophosphorylation.  
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1.2.6 The linear ubiquitin assembly complex (LUBAC)  

The formation of Met1-Ub chains described in Section 1.2.5 is catalysed by the 

Linear UBiquitin Assembly Complex (LUBAC) [150], which is composed of three 

subunits: HOIL-1 (heme-oxidized IRP2 ubiquitin ligase 1), HOIP (HOIL1-interacting 

protein) and SHARPIN (SHANK-associated RH domain-interacting protein) [150–153]. 

HOIP is the catalytic subunit of the complex. It is a RING-in-between-RING (RBR) 

E3 ligase, which exploits the RING1 domain to associate with the ubiquitin-loaded E2 

conjugating enzyme UbcH7 (also known as UBE2L3) [154,155], followed by the transfer 

of activated ubiquitin from UbcH7 to the catalytic cysteine (C885 of human HOIP) in 

the RING2 domain, and subsequent conjugation to another ubiquitin molecule 

[156,157]. The RBR domain alone in HOIP is sufficient for Met1-Ub chains synthesis, 

but the domains located N-terminal of RBR largely restrict its E3 ligase activity [156]. 

The interaction of the HOIL-1 and SHARPIN components with HOIP facilitates the 

formation of Met1-Ub chains in vitro (Fig 2 in [151]), which is proposed to release the 

auto-inhibition of HOIP in the LUBAC complex (Fig 3 in [156]). 

LUBAC and its E3 ligase activity are critical for IKK activation in the MyD88-

mediated signalling. The IL-1-induced activation of the canonical IKK complex was 

largely decreased in the MEFs from HOIP [C879S] knock-in mice [158], HOIL1-deficient 

mice [159] or mice with a mutation in SHARPIN [151–153]. Moreover, the 

reconstitution of LUBAC with E1 activating enzyme and E2 conjugating enzyme 

(UbcH5c) to HeLa cell extracts deprived of these components restored the activation of 

IKK complex in vitro [145].  

Early studies demonstrated that LUBAC complex interacts with NEMO and 

catalyses the ubiquitylation of NEMO with linear Ub chains at Lys285 and Lys309 in the 
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CC2-LZ domain, which were believed to induce the activation of NF-B [159]. A more 

recent study showed that the combination of an E2 conjugating enzyme UbcH5C and 

the TRAF6 E3 ligase synthesized Ub chains of various linkage types in vitro, which 

promoted the phosphorylation and activation of IKK and the subsequent 

phosphorylation of IB (Fig S8 and S10 in [97]). A point mutation within a ubiquitin-

binding domain of NEMO (Tyr308Ser) prevented Ub chains from mediating IKK 

activation in vitro (Fig S7 in [97]), strongly suggesting that Ub chains activate IKK via 

direct binding to NEMO, at least in this cell free system. Moreover, the mutation of 

Lys270 in the hydrophobic CC2-LZ domain to Ala, which is believed to mimic the 

conformational change induced by the binding of Ub chains with NEMO, leads to a 

constitutively activated IKK complex either measured in vitro or by the activation of 

NF-B in cells [160]. Furthermore, the overexpression of a Met1-linked Ub dimer fused 

to NEMO induces the phosphorylation of the endogenous IKK complex and the 

activation of NF-B in HEK293 cells in which MyD88 signalling has not been activated 

(Fig 3 in [145]). These data suggest a critical role of Met1-Ub-binding NEMO in the 

activation of the canonical IKK complex. 

1.2.7 The signalling network downstream of TAK1 and the canonical IKK complex 

1.2.7.1 The NF-B pathway downstream of the canonical IKK complex  

The activated IKK complex triggers the phosphorylation and activation of NF-B 

transcription factors as described in Section 1.2.5.1. Additionally, another transcription 

factor IRF5 is phosphorylated at Ser462 by the IKK complex in TLR7 agonist-stimulated 

myeloid cells including human plasmacytoid dendritic cells (pDC) and murine 

macrophages [161]. The phosphorylation induces the dimerization and activation of 

IRF5, which then translocates into the nucleus and induces transcription of the genes 

encoding inflammatory cytokines [161,162].   
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In addition to the activation of transcription factors, the canonical IKK complex 

also regulates the activation of an essential MAP3K known as Tpl2 (tumour progression 

locus 2)/MAP3K8. In cells where the MyD88 pathway is not activated, the inactive Tpl2 

is complexed with p105 (Section 1.2.5.1) and ABIN2 (A20-binding inhibitor of NF-B 2), 

both of which are required for Tpl2 stability [163,164]. The stimulation-induced 

activation of IKK complex results in the IKK-catalysed phosphorylation and 

degradation of p105 as well as the phosphorylation of Tpl2 [165,166], causing the 

activation of Tpl2.  

Tpl2 activates the protein kinases MEK1 and MEK2 (MAP kinase or ERK kinases 

1 and 2), which then activate the MAP kinase family members ERK1 and ERK2 

(extracellular-signal regulated kinases 1 and 2). This signalling axis is essential for the 

lipopolysaccharide (LPS)-induced conversion of pre-TNFto its secreted from 

[167,168], which is catalysed by TNF-converting enzyme (TACE) [169]. 

More recently Tpl2 has been implicated in activating the MAP kinase kinases 

MKK3 and MKK6, which will be described in the following subsection. 

1.2.7.2 MAP kinase cascades 

In  MAP kinase signalling cascades one or more MAP3Ks activate MAP2Ks (MAP 

kinase kinases), which then activate the MAP kinases, which can be subdivided to 

three types, namely, ERK1/2, p38s and JNKs [2,170]. In general, the activation of MAP 

kinases requires the dual phosphorylation of a Thr–Xaa–Tyr motif in the activation loop 

by one or more MAP2K(s). MAP2Ks are activated by serine and/or threonine 

phosphorylation in their activation loops by MAP3Ks [2].  

The ERK1/2 kinases can, in turn, activate ribosomal protein S6 kinases 

(RSK1/2/3) and MSK1 (mitogen- and stress-activated protein kinase) and MSK2 [2] and 
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MNK1 and MNK2 (MAP kinase integrating kinases) [171]. RSK1/2/3 have been 

implicated in TLR-mediated endocytosis [172,173], whereas the MSKs are nuclear 

protein kinases, which phosphorylate and activate the transcription factor CREB.  CREB 

has a key role in stimulating the transcription of anti-inflammatory cytokines, such as 

IL-10 (Section 1.2.1.3) and IL-1 receptor antagonist protein (IL-1RA, Section 1.2.1.2) 

[174–176]. MNKs are reported to phosphorylate a number of components in the 

translational machinery, including the eukaryotic initiation factor 4F (eIF4F) complex, a 

critical regulator in the protein synthesis [171]. 

The p38 MAP kinase also mediates the phosphorylation of MSKs [177]. In 

addition, it phosphorylates and activates MAP kinase-activated protein kinase-2 (MK2) 

and MK3, which then stimulate the translation of TNF mRNA and therefore TNF 

production [178,179]. Interestingly, the p38 MAP kinase negatively regulates TAK1 

activity. In this feedback control mechanism, activated p38 MAP kinase 

phosphorylates three TAB regulatory subunits in the TAK1 complex, and therefore 

suppress TAK1 activity [180,181]. This may be one mechanism that prevents the 

overproduction of inflammatory mediators. 

The phosphorylation and activation of p38 is carried out by the upstream 

MAP2Ks, termed MKK3, MKK4 and MKK6. For a number of years it was thought that  

all three MKKs were direct substrates of TAK1 [170,182]. However, a recent study 

demonstrated that Tpl2, but not TAK1, is the physiological upstream kinase 

phosphorylating and activating MKK3 and MKK6 in the TNF and MyD88 signalling 

pathways [183].  These findings indicate that p38 can be activated by two distinct 

pathways, namely the TAK1-MKK4 and Tpl2-MKK3/MKK6 axis, respectively (Fig 1.2).  
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The third class of MAP kinases, comprising JNK1, JNK2 and JNK3, are activated 

by the MAP2Ks, termed MKK4 and MKK7, of which MKK7 appears to be the major 

contributor in the IL-1 signalling pathway [184]. JNK1 and JNK2 phosphorylate the 

subunits of transcription factor AP-1 (activator protein 1), including c-Jun and ATF2 

(activating transcription factor 2), which then translocate into nucleus and are involved 

in regulating the production of cytokines [185,186].  

1.2.8 Human diseases associated to the deficiency or mutations of the components 

in the MyD88-mediated signalling pathway. 

Many human diseases have been shown to be associated with the defect of key 

components in the MyD88 signalling network ([9,15,187–190], Table 1.1). The loss of 

essential proteins results in immunodeficiency, whereas the specific mutation which 

hyper activated the pathway caused inflammatory and autoimmune diseases, or even 

cancer. It is therefore critical to understand how the activation of MyD88-dependent 

signalling pathway is tightly regulated, especially the activation and restriction 

mechanisms of essential protein kinases, such as TAK1 and the canonical IKK complex. 

Table 1.1 The genetic defects of the components in the MyD88 signalling network 
and consequences. 

Genetic 

defects 

Molecular 

effects 
Phenotype Reference 

MyD88 deficiency Unable to 

activate NF-B 

Recurrent pyogenic 

bacterial infections 

[45,46,191] 

MyD88[L265P] Constitutively 

activate NF-B  

Diffuse large B-cell 

lymphoma (DLBCL); 

Waldenström's 

[12,192] 
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macroglobulinemia 

IRAK4 deficiency Unable to 

activate NF-B 

Susceptible to pyogenic 

bacterial infections 

[56,187,193] 

IRAK4 kinase 

inactive knock-in 

Severely 

Impaired NF-B 

activation 

Susceptible to pyogenic 

bacterial infections 

[55,57,194] 

TRAF6 deficiency Defective IL-1, 

CD40 and LPS 

signalling 

Embryonic lethal; 

enlarged spleen; 

defective lymph node 

organogenesis 

[67,195] 

TAK1 deficiency Unable to 

activate NF-B 

Embryonic lethal [83] 

TAK1 kinase 

inactive mutant 

Unable to 

activate NF-B 

Embryonic lethal; 

impaired B cell 

development 

[84] 

IKK deficiency Unable to 

activate NF-B 

Embryonic lethal; 

uncontrolled liver 

apoptosis 

[140] 

IB[S32I] Impaired IB 

degradation 

Anhidrotic ectodermal 

dysplasia with 

immunodeficiency (EDA-

ID)  

[196,197] 

NEMO deficiency Unable to 

activate NF-B 

EDA-ID [141,142] 
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NEMO[D311N/G] Unable to 

interact with Ub 

chains 

EDA-ID [8,147] 

HOIP deficiency Unable to 

generate Met1-

Ub chains 

Autoinflammation, 

immunodeficiency and 

lymphangiectasia. 

[7] 

HOIP[C879S] Unable to 

generate Met1-

Ub chains 

Embryonic lethal. [158] 

 

1.3 Aim of the thesis   

At the time I began the studies described in this thesis, the canonical IKK 

complex had been identified and studied in great detail for many years [102–104], and 

its essential role in the response to various inflammatory stimuli was well established 

[145,147]. However, the molecular mechanism by which it became activated remained 

controversial.  It was widely accepted that the activation of IKKand IKK required 

their phosphorylation at two serine residues in their activation loops [102,107,108], 

but whether activation was catalysed by TAK1 or by auto-phosphorylation [97,135] 

had not been resolved. Moreover, the important role of ubiquitin chains in activating 

the IKK complex had not become clear adding another tier of complexity to the 

activation process.  I therefore decided to solve this problem, and my results are 

presented in Chapter 3 of the thesis. 

Clarification of the mechanism of IKK activation inspired me to study how TAK1, 

the master kinase of the innate immune system, was activated. Unlike the IKKs, it was 
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widely accepted that TAK1 was activated by K63-Ub chains, which interacted with the 

TAB2 and TAB3 components to induce TAK1 activation. The evidence supporting this 

elegant model had mainly been based on biochemical studies in cell-free assays 

[76,82,90]. However, this model had been challenged by a study showing normal 

activation of MAP kinases and NF-B in BMDM from mice lacking expression of both 

TAB2 and TAB3 [101]. The newly developed CRISPR/Cas9 (clustered regularly 

interspaced short palindromic repeat (CRISPR) associated protein 9 (Cas9)) gene 

editing technology [198] encouraged me to re-investigate the requirement for the 

three TAB subunits in the activation of the TAK1 complex in human cells. This study led 

me to discover that the TAK1 complex is activated by two distinct mechanisms and 

these results are presented in Chapter 4 of this thesis. 
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Chapter 2 Materials and methods 

2.1 Materials  

2.1.1 Chemicals 

Reagents used in tissue culture were as following: Dulbecco’s modified Eagle 

medium (DMEM), Foetal Bovine Serum (FBS), Opti-MEM reduced serum media, 

Dulbecco’s phosphate buffered saline (PBS), Trypsin/EDTA (0.05%), L-Glutamine, 

sodium pyruvate, Versene (0.48 mM) and penicillin/streptomycin solution were from 

GIBCO (Paisley, UK). 6, 12, 24 and 96 well tissue culture plates, 10 cm and 15 cm tissue 

culture dishes, cell scrapers, cryovials and Spin-X centrifuge tube filters (CLS 8161)  

were from Corning Incorporated (NY, USA). Polyethylenimine (PEI) was from 

Polysciences (Warrington, PA). Lipofectamine 2000 transfection reagent was from 

Invitrogen (MA, USA). GeneJuice transfection reagent was from EMD Millipore 

(Germany). Mouse macrophage colony-stimulating factor (M-CSF) was from R&D 

systems. The protamine sulphate, geneticin (G418), and puromycin were from Sigma. 

GeneJuice transfection reagent was from Novagen (Germany). 

Reagents used in biochemistry techniques were as following: 40% (w/v) 29:1 

Acrylamide: Bis-Acrylamide solution was from Flowgen Bioscience (Humberside, UK). 

Precision Plus protein marker and Bradford reagent were from BioRad (Herts, UK). 

Immobilon Western Cemiluminescent HRP Substrate and Immobilon-P Polyvinylidene 

fluoride (PVDF) 0.45 µm membrane was from EMD Millipore (Germany). Skimmed 

milk (Marvel) was from Premier Beverages (Stafford, UK). Enhanced 

chemiluminescence (ECL) kit and Hyperfilm MP were from GE Healthcare (Piscataway, 

USA). X-ray films were from Konica Corporation (Japan). Photographic developer (LX24) 

and liquid fixer (FX40) were from Kodak (Liverpool, UK). InstantBlue coomassie stain 
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was from Expedeon (Cambridge, UK). The mono-phosphorylated peptide 

KELDQGpSLCTSFVGTLQ and the diphosphorylated peptide KELDQGpSLCTpSFVGTLQ 

(where pS is phosphoserine), corresponding to amino acid residues 171-187 of IKK 

with phosphoserine at Ser177 only or at both Ser177 and Ser181, respectively, were 

synthesized by Pepceuticals Ltd. Precast gels (4-12% Bis-Tris, NuPAGE) and NanoDrop 

spectrophotometer were from Thermo Scientific. 

Reagents used in molecular biology techniques were: Luria Bertani broth (LB) 

and LB agar plates were from the Central Technical Services team, University of 

Dundee. Plasmid Midi or Maxi kits were from Qiagen Ltd (Crawley, UK). Homogenizer 

mini column (HCR003), RNA MicroElute kit (R6831-01) and DNase I Digestion Set 

(E1091) were from Omega. The iScript cDNA synthesis kit (170-8891) and SsoFast 

EvaGreen Supermix (172-5204) was from Bio-Rad. 

Agonists and inhibitors used throughout this thesis were: Murine interleukin 1α (IL-1α), 

TNF, and cytokine ELISA kits were from Peprotech (New Jersey, USA). 

Lipopolysaccharide (LPS) O55:B5 was from Enzo Life Sciences (USA). Pam3CSK4 was 

from InvivoGen (San Diego, USA). The IKKβ inhibitor BI605906 [135] was synthesized 

by Dr Natalia Shpiro, Medical Research Council Protein Phosphorylation and 

Ubiquitylation Unit (MRC-PPU), University of Dundee, and the TAK1 inhibitor NG25 by 

Dr Nathanael Gray, Harvard Medical School [199]. The TAK1 inhibitor 5Z-7-oxozeaenol 

was purchased from BioAustralis Fine Chemicals (Australia). KOD Hot Start DNA 

polymerase was from Novagen (Germany). 

Other common chemicals include:  Ampicillin, adenosine 5’-triphosphate 

sodium salt (ATP), ammonium persulphate (APS), beta‐mercaptoethanol (β-ME), 

bovine serum albumin (BSA), benzamidine, dimethyl sulphoxide (DMSO), dithiothreitol 
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(DTT), doxycycline, ethanol, glycerol, glycine, hexadimethrine bromide (polybrene), 

isopropanol, iodoacetamide, leupeptin, kanamycin, methanol, magnesium acetate 

(MgAc), magnesium chloride (MgCl2), phenylmethanesulphonylfluoride (PMSF), 

polyethylene glycol sorbitan monolaurate (Tween-20), polyethylene glycol dodecyl 

ether (Brij-35), Ponceau S,  sodium chloride (NaCl), sodium ethylenediaminetetraacetic 

acid (EDTA), sodium ethylene glycol tetra acetic acid (EGTA), sodium fluoride, sodium 

2-glycerophosphate, sodium orthovanadate, sodium dodecyl sulphate (SDS), toctyl 

phenoxypolyethoxyethanol (Triton)-X-100, and tetramethylethylenediamine (TEMED) 

were from Sigma‐Aldrich (Poole,UK). Protein G-Sepharose and Glutathione Sepharose 

were from GE Healthcare (Piscataway, USA). The monophosphorylated peptide 

KELDQGpSLCTSFVGTLQ and the diphosphorylated peptide KELDQGpSLCTpSFVGTLQ 

(where pS is phosphoserine), corresponding to amino acids 171–187 of IKKβ with 

phosphoserine at Ser177 only or at both Ser177 and Ser181 respectively, were synthesized 

by Pepceuticals. γ32ATP was from PerkinElmer (MA, USA).  

2.1.2 Buffers and other solutions 

The composition of buffers regularly used throughout this thesis is listed in Table 2.1. 
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Table 2.1 List of commonly used buffers 

Buffer Composition 

MRC cell lysis buffer 50 mM Tris/HCl pH 7.5, 1 mM EDTA, 1 mM 
EGTA, 1% (v/v) Triton X-100, 10 mM sodium 
glycerol 2-phosphate, 50 mM sodium fluoride 
(NaF), 5 mM sodium pyrophosphate 
(Na2P2O7), 0.27 M sucrose. 1 mM sodium 
orthovanadate (Na3VO4), 1 mM DTT, 1 mM 
PMSF, 1 µg/ml Aprotinin and 1 µg/ml 
Leupeptin are added before use. 

8-12% acrylamide resolving gels (separating 
gels) 

375 mM Tri-HCl (pH 8.8), 0.1% (w/v) SDS and 
6-12% acrylamide (depending on the size of 
separated proteins). 0.1% (w/v) ammonium 
persulfate (APS) and 0.1% (v/v) N,N,N',N'-
tetramethylethylenediamine (TEMED) were 
added to initiate polymerisation.  

Stacking gels 125 mM Tri-HCl (pH 6.8), 0.1% (w/v) SDS, and 
4% (w/v) acrylamide. 0.1% (w/v) APS and 
0.1% (v/v) TEMED were added to initiate 
polymerisation. 

SDS sample buffer (1X) 2% (w/v) SDS, 1% (v/v) β-mercaptoethanol 
(freshly added), 50 mM Tris/HCl pH 6.8 and 
10% (v/v) glycerol, 0.02% Bromophenol Blue. 
Buffer was prepared as a 5x stock. 

Tris-glycine SDS/PAGE running buffer (1X) 25 mM Tris, 192 mM Glycine, 0.1% (w/v) SDS. 
Buffer was prepared as a 10x stock. 

Tris-glycine transfer buffer (1X) 25 mM Tris, 192 mM Glycine, 20% (v/v) 
methanol. Buffer (without methanol) was 
prepared as 10x stock. Methanol was added 
before use. 

MOPS running buffer 50 mM MOPS, 50 mM Tris base, 0.1% (w/v) 
SDS, 1 mM EDTA, pH 7.7. 

Tris buffered saline-Tween (TBS-T) 50 mM Tris/HCl pH 7.5, 0.15 M NaCl and 0.2% 
(v/v) Tween-20. 

Phosphatase assay buffer (Purchased from 
New England Biolabs) 

50 mM HEPES, 100 mM NaCl, 2 mM DTT, 
0.01% (w/v) Brij 35, 1 mM manganese 
chloride, pH 7.5. 

Immunoprecipitation high salt washing 
buffer 

50 mM Tris/HCl, pH 7.5, 1% (v/v) Triton X-100, 

0.05% (v/v) ME and 0.2 M NaCl  

Immunoprecipitation washing buffer 50 mM Tris/HCl, pH 7.5, 1% (v/v) Triton X-100, 

0.05% (v/v) ME 

PreScission protease buffer 50mM Tris/HCl pH7.5, 150mM NaCl, 1mM 
EDTA pH8.0, 1mM DTT, 0.03% Brij 35. 

Halo-link resin wash buffer 50 mM Tris/HCl, pH 7.5, 0.5 M NaCl and 1% 
(v/v) Triton-X100 

Notes on MRC cell lysis buffer:  

 Lysis buffer is used to inhibit protein kinases, phosphatases and proteases 

immediately during lysis process, in order to fix and remain the phosphorylation state 
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of proteins in the extracts at the levels present in vivo. EDTA was used to chelate 

divalent cations including Mg2+ and thus inhibited metal dependent enzymes such as 

kinases and many phosphatases. EGTA was used as a chelator with high affinity 

towards Ca2+. Sodium fluoride (NaF) and sodium pyrophosphate (Na2P2O7) were used 

as Ser/Thr protein phosphatases inhibitors, while sodium orthovanadate (Na3VO4) 

inhibited protein tyrosine phosphatases. PMSF was used as a serine protease inhibitor. 

Aprotinin inhibited trypsin and related proteolytic enzymes while Leupeptin inhibited 

cysteine, serine and threonine peptidases. 0.1 M Na3VO4 solution was prepared by 

several successive rounds of boiling, cooling to room temperature (RT) on ice and 

adjusting to pH 10. This was repeated until the solution remained stable at pH 10 after 

boiling and became colourless. This procedure ensures that the majority of the Na3VO4 

is in the monomeric state that favours tyrosine phosphatase inhibition. 0.1 M Na3VO4 

was stored at -20 °C. Lysis buffer was stored at 4 °C. DTT and protease inhibitors were 

added freshly before each use. 

2.1.3 Commercial antibodies 

The antibodies purchased from commercial supplies are listed in Table 2.2. The 

antibodies were diluted 1:1000 in 5% (w/v) BSA in TBS-T (Table 2.1). The PVDF 

membrane was incubated with antibody solution overnight at 4 °C. 
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Table 2.2 List of commercial antibodies 

Antibody  Source  Catalogue No. Host 

IL-1R1 Santa Cruz  SC688 Rabbit 

p-IRAK4 (T345/S346) Pfizer N/A Rabbit 

TRAF6 Santa Cruz  SC7221 Rabbit 

K63-ubiquitin linkage 

specific 
CST 5621 Rabbit 

p-TAK1 (T187) CST 4536 Rabbit 

p-TAK1 (S439) CST 9339 Rabbit 

TAK1 CST 4505 Rabbit 

TAB1 Abcam Ab151408 Rabbit 

TAB2 CST 3745 Rabbit 

TAB3 CST 14211 Rabbit 

M1-ubiquitin linkage 

specific 
Genentech N/A Human 

p-IKKα(S176/S180) 

p-IKKβ(S177/S181) 
CST 2697L Rabbit 

p-IKKα(S176) 

p-IKKβ(S177) 
CST 2078S Rabbit 

p-IKKα(S180) 

p-IKKβ(S181) 
Abcam AB55341 Rabbit 

IKKβ 
Merck-

Millipore 
05-535 Mouse 
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NEMO Santa Cruz SC8330 Rabbit 

p-p105/NF-B (S933) CST 4806S Rabbit 

p-JNK1/2 (T183/Y185) Invitrogen 44682 Rabbit 

JNK1/2 CST 9258S Rabbit 

p-p38 MAP kinase (T180/Y182) CST 9211 Rabbit 

p38 MAP kinase CST 9212S Rabbit 

p-ERK1/2 (T202/Y204) CST 9101s Rabbit 

GAPDH CST 2118S Rabbit 

XIAP CST 2042 Rabbit 

cIAP1 CST 7065 Rabbit 

Anti-Flag Sigma F3165 Mouse 

Anti-GST Sigma G7781 Rabbit 

Anti-haemagglutinin (HA) Roche 
12-013-819-

001 
Rat 

Anti-rabbit IgG HRP Pierce  31210 Goat 

Anti-mouse IgA HRP Pierce 62-6720 Goat 

 

2.1.4 In-house antibodies 

The antibodies generated by the antibody production group of Division of 

Signal Transduction Therapy (DSTT) MRC-PPU, University of Dundee, are listed in Table 

2.3. All of these antibodies were raised in sheep at Diagnostics Scotland (Carluke, 

Lanarkshire, UK).  
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Table 2.3 List of in-house antibodies 

Antibody Sheep No. Bleed No. 

HOIP S174D 3 

TAK1 S828A 1 

TAB1 S823A 1 

IKKβ S189C 1 

HA epitope tag Mouse Monoclonal 12CA5 N/A 

 

2.1.5 Plasmids 

The plasmids provided by Dr Mark Peggie and Thomas Macartney in the cloning 

team of DSTT, MRC-PPU, University of Dundee, were presented in Table 2.4.  

Table 2.4 List of plasmids 

Protein/Target Vector Source Code 
Resistanc
e marker 

Purpose 

IL-1R1 pBabe DSTT 
DU4648
1 

G418 
Constitutive 
expression 

GST- IKK[D166A] pEBG6P DSTT 
DU4389
7 

 
Transient 
expression  

GST-TAK1 pEBG6P DSTT DU3652  
Transient 
expression  

GST-TAK1[D175A] pEBG6P DSTT DU3785  
Transient 
expression  

Myc-TAK1 pCMV DSTT DU3027  
Transient 
expression  

Myc-TAK1[S439A] pCMV DSTT DU3859  
Transient 
expression  

Tet-on 
Tet-on 
Advanced 

Clontec
h 

630930 G418 

Doxycycline-
controlled 
transactivato
r 

Gag/pol pCMV DSTT 
DU3508
5 

 
Retrovirus 
generation 

VSV-G pCMV DSTT 
DU3530
9 

 
Retrovirus 
generation 

HA-tagged empty 
vector (EV) 

pRetroXTigh
t 

DSTT 
DU4610
2 

Puromyci
n 

Inducible 
expression 

HA-IKK 
pRetroXTigh
t 

DSTT 
DU4607
9 

Puromyci
n 

Inducible 
expression 

HA-IKK [S177A] 
pRetroXTigh
t 

DSTT 
DU4608
0 

Puromyci
n 

Inducible 
expression 

HA-IKK [S177E] pRetroXTigh DSTT DU4605 Puromyci Inducible 
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t 4 n expression 

HA-IKK 
[D166A/S177E] 

pRetroXTigh
t 

DSTT 
DU4623
3 

Puromyci
n 

Inducible 
expression 

TAK1 * 
pRetroXTigh
t 

DSTT 
DU5127
0 

Puromyci
n 

Inducible 
expression 

TAK1[D175A] * 
pRetroXTigh
t 

DSTT 
DU5129
3 

Puromyci
n 

Inducible 
expression 

HA-TAB1 
pRetroXTigh
t 

DSTT 
DU5110
3 

Puromyci
n 

Inducible 
expression 

HA-TAB1[S395A] 
pRetroXTigh
t 

DSTT 
DU5114
0 

Puromyci
n 

Inducible 
expression 

HA-TAB1[F484A] 
pRetroXTigh
t 

DSTT 
DU5116
4 

Puromyci
n 

Inducible 
expression 

HA-TAB2 
pRetroXTigh
t 

DSTT 
DU4650
0 

Puromyci
n 

Inducible 
expression 

HA-
TAB2[T674A/F675A
] 

pRetroXTigh
t 

DSTT 
DU4651
1 

Puromyci
n 

Inducible 
expression 

TRAF6 
pRetroXTigh
t 

DSTT 
DU5158
3 

Puromyci
n 

Inducible 
expression 

TRAF6[L74H] 
pRetroXTigh
t 

DSTT 
DU5158
4 

Puromyci
n 

Inducible 
expression 

TRAF6[C70A] 
pRetroXTigh
t 

DSTT 
DU5158
5 

Puromyci
n 

Inducible 
expression 

TRAF6 pBabe DSTT 
DU4722
3 

Puromyci
n 

Constitutive 
expression 

TRAF6[L74H] pBabe DSTT 
DU4722
4 

Puromyci
n 

Constitutive 
expression 

Flag-TRAF6[120-
522] 

pBabe DSTT 
DU5144
5 

Puromyci
n 

Constitutive 
expression 

TAB1 (exon 1) pU6 gRNA DSTT 
DU4841
1 

 TAB1 KO  

TAB2 (exon 4) pU6 gRNA DSTT 
DU4865
4 

 TAB2 KO  

TAB3 (exon 7) pU6 gRNA DSTT 
DU4835
4 

 TAB3 KO  

TRAF6 (exon 2) 
pU6 gRNA 
(sense) 

DSTT 
DU5238
2 

Puromyci
n 

TRAF6 KO  

TRAF6 (exon 2) 
pU6 gRNA 
(anti sense) 

DSTT 
DU5239
2 

Puromyci
n 

TRAF6 KO 

TAK1 (exon 1) 
pU6 gRNA 
(sense) 

DSTT 
DU5213
8 

Puromyci
n 

TAK1 KO 

TAK1 (exon 1) 
pU6 gRNA 
(anti sense) 

DSTT 
DU5214
1 

Puromyci
n 

TAK1 KO 

TAB1 (exon 2) 
pU6 gRNA 
(sense) 

DSTT 
DU5238
3 

Puromyci
n 

TAB1 KO 

TAB1 (exon 2) 
pU6 gRNA 
(anti sense) 

DSTT 
DU5239
3 

Puromyci
n 

TAB1 KO 
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TAB2 (exon 4) 
pU6 gRNA 
(sense) 

DSTT 
DU5238
4 

Puromyci
n 

TAB2 KO 

TAB2 (exon 4) 
pU6 gRNA 
(anti sense) 

DSTT 
DU5239
4 

Puromyci
n 

TAB2 KO 

TAB3 (exon 7) 
pU6 gRNA 
(sense) 

DSTT 
DU5238
5 

Puromyci
n 

TAB3 KO 

TAB3 (exon 7) 
pU6 gRNA 
(anti sense) 

DSTT 
DU5239
5 

Puromyci
n 

TAB3 KO 

XIAP (exon 2) 
pU6 gRNA 
(sense) 

DSTT 
DU5246
2 

Puromyci
n 

XIAP KO 

XIAP (exon 2) 
pU6 gRNA 
(anti sense) 

DSTT 
DU5247
4 

Puromyci
n 

XIAP KO 

Halo-NEMO pFN18A DSTT 
DU3593
9 

 
Bacterial 
expression 

Halo-NZF2 (644- 
692 TAB2) 

pET28a DSTT 
DU2383
9 

 
Bacterial 
expression 

*: Two constructs encode truncated version of TAK1 in which residues 414-430 are 

missing. 

2.1.6 Proteins 

The proteins used throughout this thesis, presented in Table 2.5, were 

expressed and purified by the Protein Production Team, headed by James Hastie, DSTT, 

MRC-PPU, by Sam Strickson, or by myself. All proteins are human based unless 

otherwise stated. 

Table 2.5 List of proteins 

Protein  Code Source 

GST-IKK[D166A] DU43897 Jiazhen Zhang 

GST-TAK1 DU3652 Jiazhen Zhang 

GST-TAK1[D175A] DU3785 Jiazhen Zhang 

His6-TAK1[1-303]-TAB1[437-504] DU753 DSTT 

GST- PP1 DU1807 DSTT 

GST-MAP4K1 (1-821) DU32902 DSTT 

His6-MAP4K2 (2-812) DU1760 DSTT 

GST-MAP4K3 (1-873) DU38666 DSTT 

GST-MAP4K5 (2-846) DU38642 DSTT 

PreScission proteinase DU34905 DSTT 

Halo-NEMO DU35939 Sam Strickson 

Halo-NZF2 (644- 
692 TAB2) 

DU23839 Sam Strickson 
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2.2 Methods 

2.2.1 Mammalian cell culture 

2.2.1.1 Cell culture growth media 

The composition of growth media was as following: Dulbecco’s modified eagles 

medium (DMEM), 10% (v/v) foetal bovine serum (FBS), 4 mM L-Glutamine, 100 U/ml 

penicillin, 100 µg/ml streptomycin and 1 mM sodium pyruvate.  

2.2.1.2 Cell maintenance and passaging 

Cells were cultured in the growth media at 37 °C under 5% CO2 atmosphere. 

Cells were passaged when they were 80% - 90% confluency in 10 or 15 cm tissue 

culture dishes. The media was removed by aspiration. Cells were washed with PBS and 

incubated with 1 or 2 ml trypsin/EDTA (0.05%) at 37 °C until they detached (usually 2-3 

min). Trypsin was quenched by the addition of serum-containing media and cells were 

plated onto new tissue culture dishes. 

2.2.1.3 Immortalised cell lines 

2.2.1.3.1 Human embryonic kidney (HEK) 293 cells 

HEK293 cells stably overexpressing the IL-1R, namely IL-1R cells, were kindly 

provided by Dr Xiaoxia Li (Cleveland Clinic Foundation, Cleveland, Ohio, U.S.A.). The 

Flp-InTM HEK293 T-Rex cells were originally purchased from Invitrogen, which were 

engineered by Yosua Kristariyanto (MRC-PPU) to express Flag-tagged Cas9 under a 

doxycycline-inducible promoter, known as HEK293_Cas9 cell line. The HEK293FT cells 

were purchased from Invitrogen and used for virus generation.  

2.2.1.3.2 Mouse embryonic fibroblasts (MEFs) 

The IKKα-deficient MEFs were kindly given by Dr Inder Verma (Salk Institute for 

Biological Studies, San Diego, USA). The MEFs isolated from knock-in mice expressing 
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NEMO[D311N] mutant or HOIP[C879S] mutant were generated by Dr Sambit Nanda 

(Cohen lab) and Dr Christoph Emmerich (Cohen lab), respectively.  

2.2.1.4 Bone-marrow-derived macrophages (BMDM) 

The bone marrow from the knock-in mice expressing catalytically inactive IKKα 

was kindly provided by Dr Toby Lawrence (Centre d’Immunologie de Marseille-Luminy, 

Marseille, France). 

The bone marrow was extracted from the tibia and femurs of mice by flushing 

the bone cavity with L929 media (provided by Dr Sambit Nanda). The bone-marrow-

derived macrophages (BMDM) were obtained after filtering the bone marrow through 

sieve, and incubated for 7 days at 37 °C in the L929 media containing mouse M-CSF.  

The media in 10 cm dish was removed by aspiration. BMDM was washed with 

sterile PBS and incubated for 10 min with 5 ml Versene at RT until they are detached. 

Cells were collected by scrapping and brief centrifugation for 5 min at 300 xg, and re-

seed in the plate with L929 media containing mouse M-CSF 24 h ahead of stimulation. 

 

2.2.1.5 Freezing and thawing of cells 

Cells with 90-95% confluency in 15 cm dish were incubated with 2 ml 

trypsin/EDTA (0.05%) for 3 min at 37 °C. The cell suspension was centrifuged for 5 min 

at 1200 rpm and resuspended  in 3 ml of freezing medium (10% DMSO, 90% FBS) and 

divided in 3x 1 ml aliquots in cryovials. The tubes were placed into a cell-freezing 

chamber (Thermo Scientific) for 24 h at -80 °C, and then transferred to liquid nitrogen 

tank for long term storage.  
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For thawing, the cryovials were placed in a water bath at 37 °C, and gently 

mixed with 9 ml growth media followed by brief centrifuge. The pellet was 

resuspended with 10 ml growth media (Section 2.2.1.1) and seed in a 10 cm tissue 

culture dish. 

2.2.1.6 Cell transfection 

2.2.1.6.1 PEI 

The Polyehylenimine (PEI) stock solution (1 mg/ml) was prepared in 20 mM 

HEPES buffer (pH 7.5), sterilised by filtration through a 0.22-mm filter, aliquoted and 

stored at -80 °C. For the transfection of HEK293 cells in 10 cm dishes, 10 µg of plasmid 

DNA was diluted in 1 ml of Opti-MEM reduced serum media, mixed with 30 µl of 1 

mg/ml PEI by brief vortex and incubated at RT for 15 min. The mixture was then added 

drop-wise to the cells. Cells were lysed after 24 hours. 

2.2.1.6.2 Lipofectamine 2000 

Lipofectamine 2000 was used to transfect 293FT cells for virus production. 10 

μg of plasmid DNA was diluted in 300 μl of Opti-MEM reduced serum media, and then 

gently mixed with 36 μl of Lipofectamine 2000 diluted in 300 μl of Opti-MEM reduced 

serum media. This solution was incubated for 15 min at RT and added drop-wise to the 

cells cultivated in 10 cm dish with antibiotic-free medium. 

2.2.1.6.3 GeneJuice 

GeneJuice transfection reagent was used to transfect gRNAs into 293 cells for 

gene knockout. 60 l GeneJuice reagent was diluted in 1000 μl of Opti-MEM reduced 

serum media by brief vortex and incubated at RT for 10 min. 10 μg of gRNA plasmid 

was then added, gently mixed and incubated at RT for extra 10 min. The mixture was 

then added drop-wise to the cells.  
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2.2.1.7 Inhibition and stimulation of cells 

All the inhibitors used throughout this thesis are listed in Table 2.6. 10 mM 

stock of inhibitors dissolved in DMSO was provided by DSTT, and stored in aliquots at -

20 °C. The inhibitor solution was added directly into the cell culture medium and 

incubated for 1 h at 37 °C. An equivalent volume of DMSO was used as a vehicle 

control.  

Typically the 1000x stock of agonists were prepared after dissolving in PBS, and 

stored in aliquots at -20 °C. They were added directly into the cell culture medium at 

the concentrations indicated in the figure legends. 

Table 2.6 List of protein inhibitors 

Inhibitor Reported target 

NG25 TAK1 [199] 

5z-7-oxozeaenol TAK1 [148] 

BI605906 IKK [135] 

PD 0325901 MEK1/2 [200] 

BIRB 0796 p38 [201] 

 

 

2.2.1.8 Generation of stable cell lines 

2.2.1.8.1 Generation of IL-1R* cells 

To stably express IL-1 receptor in the HEK293_Cas9 cells, the cDNA encoding 

the IL-1 receptor was inserted into a pBABE retroviral vector with a neomycin-

resistance gene (Table 2.4). To generate retroviral particles, 6 g of retroviral vector, 

3.75 g of vector encoding gag/pol packaging protein (Table 2.4) and 2.25 g of vector 

encoding vesicular stomatitis virus G protein (VSV-G) envelope proteins (Table 2.4) 

were diluted in 300 l Opti-MEM reduced serum media. It was gently mixed with 36l 

Lipofectamine 2000 diluted in 300 l Opti-MEM reduced serum media, and incubated 
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for 15 min at RT. The solution was added drop-wise into cell culture cultivated in Opti-

MEM reduced serum media in 10 cm dish with 90% confluency. The media was 

replaced with fresh growth media 4 h after transfection. The media containing 

retrovirus was collected after 48 h, and passed through a 0.45 m filter to remove cell 

debris. 1 ml retrovirus was added to 4 ml of HEK293_Cas9 cell culture (roughly 1X 105 

cells) in a 6 cm dish with 2 g/ml protamine sulphate to facilitate infection. The media 

was refreshed 24 h after virus infection, and further 24 h later cells were selected by 

exposure for 1-2 weeks to media containing 1 mg/ml G418. 

2.2.1.8.2 Generation of TAK1 KO, TAB1 KO, TAB2/3 double KO, TAB1/TRAF6 double 

KO, TAB2/3/TRAF6 triple KO and TAB2/3/XIAP triple KO IL-1R* cells 

In the original CRISPR/Cas9 approach, the IL-1R* cells were transfected with 

TAB1, TAB2 or TAB3 gRNA plasmid (Table 2.4) using GeneJuice transfection reagent 

(Section 2.2.1.6.3). After 8 h, the expression of wild type Cas9 was induced with 

doxycycline (1 g/ml). After 18 h later, the transfection of gRNA plasmid was repeated. 

Cells were then diluted and seed on 96-well plate with the density of 1 cell per 100 l 

media, and left until colonies began to form (2-3 weeks). The single clones were 

analysed by immunoblotting of the cell extracts with antibodies indicated in the figures, 

or by restriction cleavage analysis after polymerase chain reaction (PCR). 

Later, a pair of guide RNAs (sense and anti-sense gRNAs) was designed for each 

gene (Table 2.4). The sense gRNA aiming the region upstream of cleavage site was 

introduced into a plasmid containing a puromycin-resistance gene. The anti-sense 

gRNA aiming the region downstream of cleavage site was inserted into a plasmid 

encoding Cas9[D10A] nickase which only cleaves one strand of the DNA 

complementary to gRNA [198]. To knock out TAK1, TAB1 and TAB2 in the IL-1R* cells 
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individually, each gRNA plasmid (1.0 g) was mixed with 1 ml of Opti-MEM reduced 

serum media and 20 l of PEI (1 mg/ml, Section 2.2.1.6.1). After incubation for 15 min 

at RT, the solution was added to the cells drop-wise for transfection. After 24 h and 48 

h, the medium was replaced with fresh medium containing 2 g/ml puromycin.  The 

cells were then single cell-plated into 96 well plates and left until colonies began to 

form (2-3 weeks). The single clones were analysed by immunoblotting of the cell 

extracts with antibodies indicated in the figures. 

Several TAB1-null and TAB3-null clones were obtained, a few of which were 

selected for further study. Double knock-out (DKO) IL-1R* cells lacking expression of 

both TAB2 and TAB3 were generated by targeting TAB3-null IL-1R* cells with gRNAs 

specific for TAB2. Double knock-out (DKO) IL-1R* cells lacking expression of both TAB1 

and TRAF6 were generated by targeting TAB1-null IL-1R* cells with gRNAs specific for 

TRAF6. Triple knock-out IL-1R* cells lacking the expression of TAB2, TAB3, and each of 

TAB1, TRAF6 and XIAP were generated by targeting the TAB2/TAB3 double KO cells 

with gRNAs specific for TAB1, TRAF6 and XIAP, respectively. 

2.2.1.8.3 Generation of cells stably expressing reconstituted target proteins. 

To stably express proteins of interest under the control of an inducible 

promoter, cDNA of interest was introduced into a pRetroXTight retroviral vector 

carrying a puromycin-resistance gene (Table 2.4). The pRetroXTight retroviral particles 

and the Tet-On vector encoding a doxycycline-controlled transcriptional transactivator 

were generated same as pBABE retroviral vector described in Section 2.2.1.8.1. 

Retroviruses were diluted 4-fold with fresh media, and incubated for 24 h with cells of 

interest in the presence of 2 μg/ml protamine sulphate. Fresh medium containing 1 

mg/ml G418 (when Tet-On vector is in use) and 3 μg/ml puromycin (gene of interest) 
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was added to select the transduced cells. Cells were cultured for 16 h with doxycycline 

(0.1-1.0 g/ml) to induce the expression of protein of interest when pRetroXTight 

vector is in use. 

2.2.2 Molecular biology techniques 

2.2.2.1 Plasmid transformation, amplification and isolation 

Approximately 10 ng of one plasmid (1 l) were added to 25 l of thawed E.coli 

DH5 competent cells which were then placed on ice for 15 min. Cells were heat-

shocked by incubation at 42 °C for 35 sec in a thermomixer to facilitate the uptake of 

DNA, and placed back on ice for a further 2 min to recover. All of cells were spread 

directly onto Luria-Bertani (LB) agar plates containing 100 g/ml ampicillin. Plates were 

left in a 37 °C incubator overnight to allow colony growth. 

To amplify the plasmid, one colony was inoculated into 250 ml LB media 

containing 100 g/ml ampicillin, and incubated for 16 h on a shaking incubator at 37 °C. 

The cells were pelleted by centrifugation at 3000 rpm for 15 min in a J-6 Beckman 

centrifuge at 4 °C. The plasmid DNA was isolated using the Qiagen plasmid Midi or 

Maxi kit according to the manufacturer’s instructions. One preparation yielded about 1 

mg plasmid DNA. 

2.2.2.2 Measurement of DNA and mRNA concentration 

NanoDrop spectrophotometer (Thermo Scientific) was calibrated with 

nuclease-free water, and then used to determine the absorbance of isolated DNA or 

mRNA in aqueous solution at 260 nm. The concentration was calculated accordingly. 
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2.2.2.3 DNA cloning techniques  

All recombinant DNA procedures, amplifications, restriction digestions and 

ligations were carried out using standard protocols by the DSTT cloning team, 

University of Dundee, jointly headed by Mark Peggie and Rachel Toth. The cDNA 

constructs used during the course of this Thesis are listed in Table 2.4. All PCR 

reactions were performed using KOD Hot Start DNA polymerase (Novagen). DNA 

sequencing was performed by the DNA Sequencing Service, College of Life Sciences, 

University of Dundee (www.dnaseq.co.uk). 

2.2.2.4 Real-time quantitative reverse transcription PCR (qRT-PCR) 

IL-1R* cells were seeded into 24-well plates at a final concentration of 1.5 x 105 

and the RNA was extracted using a RNA MicroElute kit from VWR (R6831-01). RNA was 

reverse transcribed using the iScript cDNA synthesis kit from Bio-Rad (170-8891). PCR 

was performed using SsoFast EvaGreen Supermix from Bio-Rad (172-5204) in the 

CFX384 (Bio-Rad). Primer sequences are as following:  

IL-8 forward, 5’-ATAAAGACATACTCCAAACC-TTTCCAC-3’;  

IL-8 reverse, 5’-AAGCTTTACAATAATTTCTGTGTTGGC-3’;  

IBforward, 5’- GATCCGCCAGGTGAAGGG-3’;  

IBreverse, 5’- GCAATTTCTGGCTGGTTGG-3’;  

A20 forward, 5’- GCAGAAAAGCCGGCTGCGTG-3’;  

A20 reverse, 5’- CGCTGGCTCGATCTCAGTTGCT-3’.  
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Normalisation was performed using 18S RNA and the ΔΔCt method. Primer 

sequence 18S forward, 5’- GTAACCCGTTGAACCCCATT-3’; 18S reverse, 5’- 

CCATCCAATCGGTAGTAGCG-3’.  

2.2.3 Biochemistry techniques 

2.2.3.1 Cell lysis 

Cells were washed twice with ice-cold PBS on ice when the media was removed 

by aspiration. Cells were lysed with ice-cold MRC Lysis Buffer (Table 2.1, 0.5 ml for 10 

cm dish), scraped from the plates and transferred into Eppendorf tubes. Cell lysates 

were clarified by centrifugation at 4 °C for 10 min at 14,000 rpm. The supernatants 

were taken and its protein concentration was then determined (Section 2.2.3.2).    

2.2.3.2 Quantification of protein concentration 

Protein concentration of cell lysates was determined by using the Bradford 

method [202]. It is a colorimetric protein assay based on an absorbance shift from 465 

nm (red) to 595 nm (blue) once coomassie dye binds to proteins. A serial dilution of 

BSA was applied (0.03125 to 1 g/ml, a dilution factor of 2) to generate a standard 

curve. Samples were diluted 10x in water and 5 l was placed in triplicate a 96 well 

plate along with 250 l Bradford reagent. The plate was incubated at RT for 5 min. The 

absorbance at 595 nm was measured using a 96 well plate reader, and the 

concentrations of samples were calculated by plotting to standard curve. 

2.2.3.3 Purification of GST-fusion proteins from IL-1R* cells lacking the expression 

of TAB1/2/3 

Cells from 5x 15 cm dishes were lyzed and clarified lysates were incubated for 

4-6 h on a rotating platform at 4 °C with 1 ml Glutathione Sepharose equilibrated with 

MRC lysis buffer (Table 2.1). The Sepharose were then washed once with washing 
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buffer (Table 2.1), three times with high salt washing buffer (Table 2.1) and two times 

with PreScission protease buffer (Table 2.1).  To cleave GST-tag and release protein, 1 

ml of slurry (0.5 ml of buffer and 0.5 ml of beads) was incubated with 125 μg of 

PreScission protease at 4 °C overnight under gentle agitation. The slurry was then 

transferred to a Spin-X tube filter and spun 30 sec at top speed. The concentration of 

eluted protein present in the flow-through was measured, and 1 g of protein was 

analysed for its purity by SDS-PAGE, while the rest was aliquoted and stored at -80 °C. 

2.2.3.4 Immunoprecipitation 

The cell lysate (500 g) was incubated with 2 g of in-house antibodies (Table 

2.3) for 1 h at 4 °C on a rotating wheel. 10 l Protein G-Sepharose washed with lysis 

buffer (Table 2.1) was added and incubate for extra 0.5 h. The beads were collected by 

brief centrifugation, washed three times with high salt washing buffer (Table 2.1) and 

once with washing buffer (Table 2.1). The samples were denatured in SDS sample 

buffer and subjected to SDS/PAGE. 

2.2.3.5 Halo-NEMO/NZF2 pulldown assays 

To capture ubiquitin (Ub) chains from cell extracts, 3 mg cell extract protein 

was incubated with Halo-linked ubiquitin binding proteins. Halo-NEMO beads, in which 

the Halo-tagged full-length NEMO is bound to HaloLink resin, were used to capture 

Met1-Ub chains. Halo-NZF2 beads contain two copies of Npl40 zinc finger (NZF) domain 

from N terminus of TAB2, and they were mainly used to capture K63-linked Ub chains 

[158]. Beads were kindly provided by Drs Christoph Emmerich, Sam Strickson and 

Siddharth Bakshi in our group. After incubation for 16 h at 4°C, the beads were washed 

3 times with 1 ml of Halo resin wash buffer (Table 2.1) and once with 500 μl of 10 mM 

Tris/HCl (pH 7.5). The slurry was then transferred to a Spin-X tube filter, and after a 
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brief centrifuge, the dried resin was mixed with SDS sample buffer and placed on a 

thermomixer for 3 min at RT to release captured Ub chains. The Spin-X tube filters 

were briefly centrifuged again and the sample was subjected to SDS/PAGE. 

2.2.3.6 In vitro kinase assay of IKK activity 

IKK immunoprecipitates were assayed for IKK activity in a 50 l reaction 

containing 50 mM Tris/HCl pH 7.5, 0.1 mM EGTA and 0.1% (v/v) 2-mercaptoethanol 

(ME), 1 M microcystin (to inactivate any remaining traces of PP1), 0.3 mM of the 

peptide KKKKERLLDDRHDSGLDSMKDEEY (EP5709 in MRC-PPU database, corresponding 

to amino acid residues 26-42 of IBwith multiple Lys at N terminus facilitating its 

association with membrane, 10 mM magnesium acetate and 0.1 mM 32P[ATP] (5 x 

105 cpm/nmol). After incubation for 10 min at 30 oC on a shaking platform, the 

reaction was stopped by the addition of 5 l EDTA (0.5 M), and 40 l of sample was 

dropped into p81 membranes (2x2 cm), which were then submerged and washed 

extensively with 50 mM phosphoric acid. The membranes were fixed with acetone, 

and dried in the air. The incorporation of 32P-radioactivity into peptide substrates was 

measured by Cerenkov counting in a scintillation counter. 

2.2.3.7 Immunoprecipitation and dephosphorylation of IKK  

 For the overexpressed HA-tagged IKKin HEK293 cells, 40 g of cell extract 

protein was incubated for 60 min at 4 °C with 4 g anti-HA antibody (Table 2.3), 

whereas for the endogenous IKK 0.2 mg of cell extract protein was incubated with 

2.5 g anti-IKKantibody (Table 2.2). 10 l packed Protein G-Sepharose was added 

and after 30 min incubation at 4 °C, beads were collected by brief centrifugation, 

washed three times in cell lysis buffer plus (Table 2.1). The dephosphorylation included 

100 g GST-PP1Table 2.5for 60 min at 30 oC, and the immunoprecipitates were 
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collected, washed three times with high salt washing buffer, and three times with 50 

mM Tris/HCl pH 7.5, 0.1 mM EGTA and 0.1% (v/v) ME to remove the phosphatase.  

2.2.3.8 Analysis of samples/Protein resolution by electrophoresis and 

immunoblotting 

2.2.3.8.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE allows the resolution of proteins based on their electrophoretic 

mobility in accordance with molecular weights. Sodium dodecyl sulphate (SDS) is an 

anionic detergent capable of coating proteins in a constant weight ratio (about 1.4 g 

SDS/g protein), therefore providing a net negative charge proportional to the 

molecular weight. The migration of a protein is a function of the logarithm of its 

molecular weight, as smaller proteins migrate faster and larger proteins move slower. 

The presence of reducing agents including SDS and ME broke disulphide bonds so 

that amino acid sequence became linear.  

Samples were prepared with 1x SDS Sample Buffer (Table 2.1) containing 1% 

ME and heated at 95 °C for 5 min. 20 g sample was loaded into each slot and 

electrophoresis was performed in 1x SDS/PAGE running buffer (Table 2.1) at 0.02 A for 

90 min until the dye front reached the bottom of the gel. Protein samples were 

concentrated in the stacking gel (pH 6.8) (Table 2.1), which permits samples to move 

into the separating gel (pH 8.8) (Table 2.1) at the same time and ensures proteins of 

similar molecular weight to migrate in narrow bands. Separating gels were made of 

different percentages of acrylamide in order to achieve a better resolution of protein 

of a particular molecular weight.  
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Commercial precast gels were used in the studies of ubiquitin chains or 

proteins subjected to mass spectrometry. Commercial gels were run in MOPS running 

buffer (Table 2.1) at a constant 120 V for 1.5 h.  

Both gel types were either stained with Coomassie dye (Section 2.2.3.8.2) or 

transferred onto PVDF membranes (Section 2.2.3.8.3). 

2.2.3.8.2 Coomassie Blue staining of SDS/PAGE gels 

Once SDS/PAGE finished, gels were washed with deionised water, and 

incubated for 1 h in 20 ml InstantBlue coomassie staining solution on a rotating 

platform. Gels were de-stained by repeatedly washing with deionised water.  

2.2.3.8.3 Transfer of proteins from gels to PVDF membranes 

Before assembling the transfer cassette, the PVDF (polyvinylidene difluoride) 

membrane was soaked with 100% methanol, while nylon sponge pads and the 

Whatmann 3-mm filter papers were equilibrated in 1x Tris-glycine transfer Buffer 

(Table 2.1). The transfer cassette was assembled as follows: 

Anode (+) 

Sponge pad 

Whatmann paper 

Membrane 

Gel 

Whatmann paper 

Sponge pad 
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Cathode (-) 

 The transfer was run at 80 V for 80 min in 1x Tris-glycine transfer Buffer (Table 

2.1) in Bio-Rad transfer apparatus.  

2.2.3.8.4 Immunoblotting (Western blotting) 

To visualize transferred proteins, PVDF membranes were stained with Ponceau 

S for 1 min and then washed in deionised water. The membranes were cut with a 

scalpel so that different proteins on the same membrane could be probed at the same 

time. 

To avoid non-specific binding of antibodies, the PVDF membranes were blocked 

for 30 min with TBS-T (Table 2.1) containing 5% (w/v) skimmed milk at RT. After 

washing with TBS-T three times, the membranes were then incubated with 1 g/ml 

primary antibody (Table 2.2) diluted in TBS-T at 4 °C overnight on a rotating roller.  

The blots were then washed 3 times with TBS-T and incubated for 1 h at RT 

with secondary horseradish Peroxidase (HRP)-conjugated antibodies diluted in TBS-T at 

1:10000. After washing as before, the membrane was incubated with enhanced 

chemiluminescence (ECL) reagent for 1 min, drained, placed in an X-ray cassette and 

exposed to X-ray films until the exposure was satisfactory. X-ray films were developed 

using a film automatic processor.  

2.2.3.9 Measurement of cytokines by an enzyme-linked immunosorbent assay 

(ELISA) 

IL-1R* cells were seeded into 24 well plates at a final concentration of 1.5x105. 

The next day, the cell culture media were collected after stimulation for the times 

indicated. Samples were diluted 8 times with 0.05% Tween-20/0.1% BSA in PBS, and 
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100 μl were placed in triplicate in a 96-well plate (VWR Nunc-immuno Microwell plate, 

#439454) coated with capture antibody from Peprotech ELISA kits (900-K18). ABTS 

(2,2'-Azino-bis[3-ethylbenzothiazoline-6-sulfonicacid]- diammonium salt) was used as a 

substrate activated by avidin peroxidase. The ELISA reaction was stopped by the 

addition of 0.5 M sulphuric acid and absorbance was measured at 450 nM. A standard 

curve was generated by plotting the absorbance against a dilution of cytokine 

standards. The concentration of IL-8 in the culture medium was calculated. For 

statistical analysis, values were shown as means ± SEM (standard error of means). 

The Student’s t-test was performed using GraphPad Prism software and the two-tailed 

P value was calculated. 

2.2.4 Mass spectrometry  

To identify novel phospho sites on TAK1 and TAB1 in the TAB2/3 DKO cells, 

mass spectrometry was utilized. The TAB1-TAK1 complex was immunoprecipitated 

from 10 mg total lysate by 10 g of TAK1 antibody (S828A, Table 2.3) for 1 h at 4 oC. 50 

l slurry of Protein G-Sepharose was added and incubated for extra 30 min. The 

Sepharose were then collected and thoroughly washed. The bound proteins were 

released by denaturation in SDS, subjected to SDS/PAGE in commercial precast gel and 

stained with Instant Blue followed by destain with ionized water.  

To avoid contamination, the sample preparation process was conducted in a 

laminar flow hood (Model A3VB, Bassaire Limited). The protein bands containing TAK1 

and TAB1 were excised with clean scalpels from stained precast gel. Gel pieces were 

minced into small cubes (about 1 mm3) and collected in a LoBind 1.5 ml tube 

(Eppendorf). Gel pieces were washed for 10 min with 0.5 ml water, 50% acetonitrile 

(ACN), and 100 mM NH4HCO3 followed by 50% ACN/50 mM NH4HCO3. After incubating 
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with 10 mM DTT/100 mM NH4HCO3 for 45 min at 65 °C to reduce disulphide bonds, gel 

pieces were alkylated with 50 mM iodoacetamide (IAA)/100 mM NH4HCO3 for 30 min 

at RT in the dark. It is followed by repeatedly washing with 100 mM NH4HCO3 and 50% 

ACN/50 mM NH4HCO3 to remove all staining dye. Gel pieces were then dehydrated 

with 0.3 ml ACN for 30 min at RT, and residual moisture was removed using a 

SpeedVac. The shrunk gel pieces were incubated with 100 μl of 25 mM 

Triethylammonium bicarbonate (TEABC) and pre-activated Trypsin (5 μg/ml) for 30 min 

at 37 °C. Extra 25 mM TEABC was added to ensure the gel pieces were covered. After 

incubation for 16 hours at 30 °C on a shaking platform, an equivalent volume of ACN 

was added and incubated for 15 min at RT. Supernatants were transferred to 1.5 ml 

LoBind tubes. To maximise the recovery of peptide, 150 μl of 50% ACN/ 2.5% formic 

acid was added to dried gel pieces for 15 min at RT. The supernatant was combined 

with the previous fraction, and dehydrated completely by a SpeedVac. Samples were 

logged in and sent to the Proteomics and Mass Spectrometry Team, MRC-PPU for 

analysis by David Campbell. 

Tryptic peptide analysis using LC (liquid crystallography)-MS/MS (tandem MS) 

was conducted on an Easy-nLC HPLC coupled to an LTQ Orbitrap Classic (Thermo) and 

data was analysed using the Mascot search program (http://www.matrixscience.com).  
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Chapter 3 The activation of IKKβ is primed by TAK1 and completed by 

autophosphorylation 

3.1 Introduction  

The canonical IB kinase (IKK) complex comprises the protein kinases IKK and 

IKK and a polyubiquitin-binding subunit called NEMO (Section 1.2.5, [102–106]). It 

has been widely accepted that the canonical IKK complex plays a pivotal role in 

mediating the response to many inflammatory stimuli [135,140]. The absence of the 

IKK complex led to failure to activate NF-B, and hence abolished the production of 

inflammatory mediators. Despite extensive studies on the biological roles of the IKK 

complex, the molecular mechanism of its activation remains controversial. It has been 

established that the activation of IKKα and IKKβ requires phosphorylation at two serine 

residues in their activation loops (Ser176 and Ser180 in IKK and Ser177 and Ser181 in 

IKKrespectively[102,107,108]. However, whether these phosphorylation events are 

catalysed by “upstream” protein kinases or by the complex itself is still debatable. The 

TGF-activated kinase-1 (TAK1) complex has been reported to catalyse IKK activation 

in vitro [76], while cytokines, such as IL-1 and TNF, failed to activate IKKs in MEFs that 

lack TAK1 expression [83] or that express a truncated inactive version of TAK1 [84]. In 

addition, TAK1 inhibitors prevented the IL-1- and TNF-stimulated activation of IKKα 

and IKKβ in MEFs [135,148,149]. These results indicated that TAK1 triggers the 

phosphorylation within the activation loops of IKK and IKK, therefore activating the 

canonical IKK complex in response to IL-1 and TNF.   

On the other hand, it has been suggested that activation of the canonical IKK 

complex may be mediated by an autophosphorylation mechanism, since the mutation 

of the two Ser residues within the activation loop of IKK to Asp residues led to the 
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auto-phosphorylation, which was prevented in the catalytically inactive form of IKK 

[102,108].  Moreover, structural analysis of human IKK has revealed that two surfaces 

required for its dimerization are also essential for its activation [203]. This suggests 

that, under some conditions, the interaction of ubiquitin chains with NEMO might 

induce dimerization and trans-autophosphorylation and hence activation of IKKβ. Our 

laboratory has reported previously that an IKK specific inhibitor prevented the IL-1- or 

TNF-induced phosphorylation of IKK in IKK-deficient MEFs, employing an antibody 

that recognises IKK only when it is phosphorylated at both Ser177 and Ser181 [135]. 

These findings suggest that autophosphorylation might be at least part of the 

mechanism that activates IKK.  

In this Chapter, I present the results of experiments that I have carried out to 

understand the relative importance of TAK1 and autophosphorylation in the activation 

of the canonical IKK complex.  These studies have allowed me to propose a new model 

for how the IKK complex is activated. 

3.2 Results 

3.2.1 An IKKβ specific inhibitor prevents the phosphorylation of IKKβ at Ser181 but 

not Ser177.  

I first carried out experiments to see whether the protein kinase activity of 

TAK1 was essential for the IL-1 or TNF-dependent “dual” phosphorylation of IKK at 

both Ser177 and Ser181 in IKK-deficient MEFs. I found that phosphorylation could be 

prevented by two structurally unrelated TAK1 inhibitors, NG25 [199] and 5z-7-

oxozeaenol [148], which do not inhibit IKK (Figs 3.1A and B, top panel, lanes 1-9).  

These experiments confirm that TAK1 catalytic activity is essential for IKK activation in 

MEFs. However, interestingly, this dual phosphorylation was also abolished when cells 
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were pre-treated with BI605906 [135], an IKK-specific inhibitor (Figs 3.1A and B, top 

panel, compare lanes 1-3 with 10-12). This phospho-specific antibody used in these 

experiments only recognises IKK when both Ser177 and Ser181 are phosphorylated. It 

was therefore possible that TAK1 inhibitors and /or IKKinhibitor only suppress the 

phosphorylation of just one of the two serine residues. In order to address this point, 

antibodies recognising IKK phosphorylated at either Ser177 or Ser181 were employed. 

Surprisingly, I found that BI605906 prevented the IL-1- or TNF-induced 

phosphorylation at Ser181 but not Ser177 (Figs 3.1A and B, second and third panels 

from top, lanes 10-12). In contrast, NG25 and 5Z-7-oxozeaenol suppressed the IL-1- or 

TNF-stimulated phosphorylation of IKK at both Ser177 and Ser181 (Figs 3.1A and B, 

second and third panels from top, lanes 4-9). Similar observations were made in bone 

marrow-derived macrophages (BMDM) from knock-in mice expressing catalytically 

inactive IKK [S176A/S180A] mutant following stimulation with the TLR4 agonist LPS or 

the TLR1/2 agonist Pam3CSK4 (Figs 3.1C and D), indicating that these findings might be 

of general significance.   
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Figure 3.1 Effect of protein kinase inhibitors on the phosphorylation of IKK at Ser177 and/or 

Ser181 in MEFs lacking IKK expression and BMDM expressing catalytically inactive IKK (A) 

IKK-deficient MEFs were pre-treated for 1 h without (-) or with (+) 1 M NG25, 1 M 5z-7-

oxozeaenol or 5 M BI605906, and then stimulated for 10 min with 5 ng/ml IL-1. Cell lysates 

(20 g protein) were subjected to SDS/PAGE and immunoblotted with the antibodies indicated. 

(B) Same as A except that the cells were stimulated with 10 ng/ml TNF. (C, D) BMDM from 

knock-in mice that express the catalytically inactive IKKS176A/S180A] mutant were pre-

treated for 1 h without (-) or with (+) 2 M NG25 or 2 M BI605906, and then stimulated for 

10 min with 1 g/ml Pam3CSK4 (C) or 0.1 g/ml LPS (D). Cell extracts (20 g protein) were 
subjected to SDS/PAGE and immunoblotted with the antibodies indicated. The results are 
representative of at least three independent experiments.    
 

The recognition of IKKβ by the phospho-Ser177 specific antibody showed a 

great enhancement in IKK-deficient MEFs pre-treated with BI605906 and then 

stimulated with IL-1 or TNF (Figs 3.1A and B, second panel from top, compare lanes 

10-12 with 1-3). One explanation for this result is that phosphorylation at Ser177 is not 

detected by the phospho-Ser177-specific antibody when Ser181 is phosphorylated. 

This was confirmed by an immunoblotting experiment using synthetic phospho-

peptides corresponding to amino acid residues 171-188 of IKKβ. The mono-

phosphorylated peptide carried one single phospho-serine at the position equivalent 

to Ser177, whereas the di-phosphorylated peptide carried phosphate at both Ser177 

and Ser181. The antibody recognising phospho-Ser177 detected the mono-
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phosphorylated peptide, but hardly detected the di-phosphorylated species (Fig 3.2A). 

The phospho-Ser181-specific antibody only detected the di-phosphorylated but not 

mono-phosphorylated peptide (Fig 3.2B), since Ser177 is excluded from the peptide 

epitope (Cys-Thr-pSer-Phe-Val) used to raise this antibody. As expected, the antibody 

that detects the dual-phosphorylated peptide did not recognise the peptide 

phosphorylated at Ser177 only (Fig 3.2C). 

 
Figure 3.2 Phosphorylation at Ser181 interferes with the recognition of phospho-Ser177 by 
the phospho-Ser177-specific antibody. (A) The indicated amounts of phosphopeptides 

corresponding to amino acid residues 171-187 of IKKphosphorylated at only Ser177 or both 
Ser177 and Ser181 were spotted onto nitrocellulose membranes, and probed with the 
phospho-specific antibody recognising phospho(p)-Ser177. (B, C) Same as A, except that the 

peptides were immunoblotted with the antibody recognising IKK phosphorylated at Ser181 (B) 

or with the antibody only recognising the IKK di-phosphorylated at both Ser177 and Ser181 
(C).  
 
 

3.2.2 The expression of IKKβ[S177E] induces the IKKβ autophosphorylation of 

Ser181 and autoactivation. 

The simplest explanation of the results shown in Fig 3.1 was that TAK1 

catalysed the phosphorylation at Ser177, allowing IKKβ to autophosphorylate itself at 
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Ser181. To investigate this hypothesis, I generated IKK knock-out MEFs stably 

expressing different forms of HA-tagged IKK, including IKK[S177A], in which Ser177 

was mutated to alanine (Ala) to prevent phosphorylation, and IKK[S177E] in which 

Ser177 was mutated to glutamic acid (Glu) to mimic the effect of phosphorylation by 

introducing a negative charge. After induction with doxycycline, Ser181 became 

phosphorylated only when the IKK[S177E] mutant was expressed in cells without any 

stimulation with IL-1 or TNF (Fig 3.3A). Moreover, the inclusion of BI605906 led to 

substantial de-phosphorylation of the IKK[S177E] mutant at Ser181, but incubation 

with the TAK1 inhibitor NG25 had no effect. Furthermore, a catalytically inactive form 

of IKK[S177E] mutant produced by the further mutation of Asp166 to Ala, prevented 

Ser181 from becoming phosphorylated (Fig 3.3B). Taken together, these lines of 

evidence indicate that the phospho-mimetic Ser177Glu mutation induces the 

autophosphorylation of Ser181. 
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Figure 3.3 Expression of IKK[S177E] induces the autophosphorylation of Ser181 and 

activation of IKK. (A) IKK-deficient MEFs stably expressing HA-tagged wild type IKK (WT), 

IKK[S177E] (S177E), IKK[S177A] (S177A) or empty vector (EV) were incubated for 16 h with 1 

g/ml (WT and EV), 0.2 g/ml (S177A) or 0.1 g/ml (S177E) doxycycline to induce the 

expression of these proteins, and then incubated for 1 h without (-) or with (+) 5 M NG25 or 5 

M BI605906.  Cell extracts (20 g (EV, S177E, S177A) or 80 g (WT) protein) were analysed by 
immunoblotting with the antibodies indicated. (B) Same as A, except that Ser181 

phosphorylation was studied in MEFs stably expressing HA-IKK[D166A/S177E] and HA-

IKK[S177E], and no inhibitors were used. (C, D) HA-tagged IKK[S177E] was transfected into 

HEK293 cells, immunoprecipitated from the cell extracts (200 g protein) using anti-HA 

antibody, incubated without (-) or with (+) PP1 and assayed for IKK activity (C) or 
immunoblotted with antibodies indicated (D). The results are representative of at least three 
independent experiments. **p < 0.01.   
 

IKK activates the NF-B signalling by phosphorylating IB at Ser32 and Ser36 

in cells. The phosphorylation by IKK[S177E] of a synthetic peptide corresponding to 

amino acid residues 26-42 of IB was suppressed by BI605906 similarly to wild type 

IKK (Fig 3.4A), establishing that the activity being assayed was catalysed by IKK and 

not any other contaminating protein kinase in the immunoprecipitates.  Phosphatase 

treatment inactivated the IKK[S177E] mutant (Fig 3.3C), which was consistent with 

the dephosphorylation of Ser181 and small increase in the electrophoretic mobility of 
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IKK (Fig 3.3D). These experiments suggest that the IKK[S177E] mutant is inactive but 

becomes activated when Ser181 is autophosphorylated.   

 
Figure 3.4 Effect of BI605906 on IKK kinase activity. (A) HA-tagged wild type IKK (WT) or 

IKK[S177E] mutant (S177E) were expressed in HEK293 cells, immunoprecipitated from the cell 

extracts (200 g protein) using anti-HA antibody and assayed for activity in the absence or 
presence of BI605906. The activities were plotted as a percentage of that obtained in the 

absence of inhibitor. N.S. means not significant. (B) BI605906 is a reversible inhibitor of IKK. 

IKK-deficient MEFs were stimulated for 10 min with 5 ng/ml IL-1. The endogenous IKK was 

immunoprecipitated from cell extracts (0.2 mg protein) using anti-IKK antibody and incubated 

for 1 h at 30 oC without (-, Lane 1) or with (+, Lanes 2 and 3) 20 M BI605906.  In Lane 3 only, 
the immunoprecipitates were washed extensively to remove BI605906.  All the 

immunoprecipitates were then assayed for IKK activity. **p < 0.01. 

3.2.3 Phosphorylation of IKKβ at Ser177 induces little activity if Ser181 is not 

phosphorylated.  

In order to investigate whether the phosphorylation at Ser177 could activate 

IKKβ without Ser181 phosphorylation in cells, I incubated IKK-deficient MEFs with 

BI605906 to prevent the phosphorylation at Ser181, immunoprecipitated IKK from IL-

1-stimulated IKK-deficient cells and after washing to completely remove BI605906, 

the immunoprecipitates were assayed for IKK catalytic activity. The endogenous IKKβ 

phosphorylated at Ser177 alone showed much lower activity than IKKβ phosphorylated 

at both Ser177 and Ser181 (Fig 3.5). Since BI605906 is a reversible inhibitor (Fig 3.4B), 

the reduction of activity was not due to the presence of BI605906. Taken together, 

these experiments established that the phosphorylation of Ser177 is a requisite to 

permit the autophosphorylation at Ser181 on IKKβ, and the phosphorylation at Ser181 
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is required for the full catalytic activity of IKKβ in cells. 

 
Figure 3.5 IKK phosphorylated at Ser177 has little activity if Ser181 is not phosphorylated. 

(A) IKK-deficient MEFs were incubated for 1 h without (-) or with (+) 5 M BI605906 or 2 M 

NG25, and then stimulated for 10 min with 5 ng/ml IL-1. The endogenous IKK was 
immunoprecipitated from cell extracts (0.2 mg protein) and assayed for activity. The results 
are representative of at least three independent experiments. *p < 0.05. (B) The 
immunoprecipitates from A were denatured before and after the assay, and aliquots of each 
sample were subjected to SDS/PAGE, transferred to PVDF membranes and immunoblotted 
with antibodies indicated. 

3.2.4 Activation of the canonical IKK complex 

The results presented above were carried out in IKK-deficient MEFs or in 

BMDM from knock-in mice expressing the catalytically inactive IKK[S176A/S180A] 

mutant. Interestingly, the phosphorylation of IKK at Ser181 was only decreased 

slightly by BI605906 in IL-1- or TNF-stimulated wild type MEFs (Figs 3.6A and B) and 

was not affected significantly in Pam3CSK4- or LPS-stimulated BMDM (Fig 3.6C). The 

IKK inhibitor BI605906 has no effect on IKKactivity [135]. This suggests that in wild 

type cells, in which IKK, IKK and NEMO form a complex, IKKmight be able to 

catalyse the phosphorylation of IKK at Ser181 in trans when IKK activity is inhibited 

by BI605906, as indicated by the block of p105 phosphorylation.   
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Figure 3.6 Effect of protein kinase inhibitors on the phosphorylation of IKK at Ser177 and 

Ser181 in MEFs and BMDM. (A, B) Wild type (WT) or IKK-knock-out (KO) MEFs were 

incubated for 1 h without (-) or with (+) 5 M BI605906 and then stimulated for 10 min with 5 

ng/ml IL-1 (A) or 10 ng/ml TNF (B). Cell extracts (20 g protein) were subjected to 
SDS/PAGE and immunoblotted with antibodies indicated. (C) Same as A, B, except that BMDM 
from wild type (WT) mice and knock-in (KI) mice expressing the catalytically inactive 

IKKS176A/S180A] mutant were stimulated for 10 min with 1 g/ml Pam3CSK4. The results 
are representative of at least three independent experiments.    

3.2.5 The Met1-Ub chains and their interaction with NEMO are required for the IL-

1-stimulated phosphorylation of IKKα and IKKβ. 

HOIP is the catalytic subunit of the Linear Ubiquitin Assembly Complex (LUBAC), 

the only E3 ligase that generates Met1-linked (also called linear) ubiquitin (Met1-Ub) 

chains in response to IL-1, at least in MEFs (Section 1.2.6, [158]). To investigate the 

role of Met1-Ub chains in the phosphorylation of IKK and IKK in their activation 

loops, I studied MEFs from knock-in mice expressing the catalytically inactive 

HOIP[C879S] mutant.  The IL-1-stimulated phosphorylation of IKK at Ser177 and 

Ser181 or IKK at Ser176 and Ser180 were impaired in MEFs from HOIP[C879S] knock-

in mice (Fig 3.7A). The phosphorylation of p105 at Ser933, a physiological substrate of 
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IKK, was also decreased (Fig 3.7A).  

The LUBAC-catalysed Met1-Ub chains associate with NEMO regulatory subunit 

of the canonical IKK complex (Section 1.2.6). To investigate the importance of this 

interaction in the phosphorylation of IKK at Ser177 and/or Ser181, I used MEFs from 

knock-in mice expressing the polyubiquitin-binding-defective NEMO[D311N] mutant. I 

found that the IL-1-stimulated phosphorylation of IKK at Ser177 or Ser181, or IKK at 

Ser176 or Ser180 was significantly reduced (Fig 3.7B), similar to the results in MEFs 

from HOIP[C879S] knock-in mice.  

 
Figure 3.7 Met1-Ub chains and their interaction with NEMO are required for the IL-1-

stimulated phosphorylation of IKKand IKK in MEFs. (A) Cells from wild type (HOIP[WT]) or 

knock-in mice expressing the HOIP[C879S] mutant were stimulated with 5 ng/ml IL-1 for the 

times indicated. 20 g cell extract protein was subjected to SDS/PAGE and probed with the 
antibodies indicated. (B) As in A except that the study was performed with MEFs from wild 
type (NEMO[WT]) or knock-in mice expressing the NEMO[D311N] mutant. The results are 
representative of at least three independent experiments.    
 

The IL-1-induced phosphorylation of MAP kinases (JNK1/2 and p38) in MEFs 

from HOIP[C879S] or NEMO[D311N] knock-in mice was similar to wild type MEFs (Fig 
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3.8), but was prevented by the TAK1 inhibitors NG25 or 5z-7-oxozeaenol (Fig 3.9). 

These control experiments indicate that the activation of TAK1 is not affected in MEFs 

from HOIP[C879S] or NEMO[D311N] knock-in mice. Furthermore, the TAK1 inhibitor 

NG25 did not affect the IL-1-stimulated formation of K63-Ub and Met1-Ub chains (Fig 

3.10). This suggests that TAK1 activity is not required for the formation of poly-

ubiquitin chains, and that TAK1 inhibitors do not impair the phosphorylation of IKK by 

blocking the formation of ubiquitin chains. Taken together, these findings indicate that 

the formation of Met1-Ub chains and their interaction with NEMO is required for TAK1 

to phosphorylate IKK at Ser176 and IKK at Ser177.  

 

Figure 3.8 Phosphorylation of MAP kinases is not affected in HOIP[C879S] and NEMO[D311N] 
MEFs. (A) MEFs from wild type mice (HOIP[WT]) or knock-in mice expressing the inactive 

HOIP[C879S] mutant were stimulated with 5 ng/ml IL-1 for the times indicated. 20 μg cell 
extract protein was subjected to SDS/PAGE, and immunoblotted with the antibodies indicated. 
(B) Same as A except that the experiment was performed with MEFs from wild type 
(NEMO[WT]) or knock-in mice expressing the NEMO[D311N] mutant. 
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Figure 3.9 Effect of TAK1 inhibitors on the IL-1-stimulated phosphorylation of MAP kinases in 
HOIP[C879S] and NEMO[D311N] MEFs. (A) MEFs from mice expressing the HOIP[C879S] 

mutant were pre-treated for 1 h without (-) or with (+) the TAK1 inhibitors NG25 (1 M) or 5z-

7-oxozeaenol (1 M) before stimulation with 5 ng/ml IL-1 for the times indicated. (B) Same as 
A except that MEFs from mice expressing the polyubiquitin-binding-deficient mutant 
NEMO[D311N] were used. The results are representative of at least three independent 
experiments.    
 

 
Figure 3.10 Effect of TAK1 inhibitors on the IL-1-stimulated formation of Met1-linked (M1) 
and Lys63-linked (K63) ubiquitin chains. Wild type MEFs were incubated for 1 h with (+) or 

without (-) 2 M NG25 or 1 M 5z-7-oxozeaenol, and then stimulated for 10 min with 5 ng/ml 

IL-1. The Met1-linked and Lys63-linked ubiquitin chains in 2 mg of cell extract protein were 
captured on Halo-NEMO as described in Materials and Methods (Section 2.2.3.5), released by 
denaturation in SDS and immunoblotted with antibodies that recognise Met1-linked (M1) or 
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Lys63-linked (K63) ubiquitin chains specifically. The same cell extracts (20 g protein) were 
immunoblotted with anti-GAPDH as a loading control. 
 

Finally, it should be noted that although TAK1 complex contributes to the 

phosphorylation of IKK at Ser177 in IKK-NEMO complex in IKK-deficient MEFs (Fig 

3.1), the active TAK1 is capable of phosphorylating a catalytically inactive mutant of 

IKK at Ser177 as well as Ser181 in vitro (Fig 3.11), which does not happen in cells.  It is 

therefore possible that the interaction of NEMO with IKK and/or the recruitment of 

the TAK1 complex to K63-Ub chains are factors that prevent TAK1 from 

phosphorylating Ser181 in cells.  

 
Figure 3.11 TAK1 phosphorylates IKKβ at Ser177 and Ser181 in vitro. Catalytically inactive 
IKKβ[D166A] mutant (0.8 μM) (Section 2.1.6) was incubated for 3 min at 30 oC with the 
indicated concentrations of the active TAB1-TAK1 fusion protein in 50 mM Tris/HCl pH 7.5, 0.1 
mM EGTA, 2 mM dithiothreitol, 10 mM magnesium acetate and 0.1 mM ATP. Reactions were 
terminated by SDS denaturation. Samples were subjected to SDS/PAGE, transfer to PVDF 
membranes and immunoblotted with antibodies indicated. 

3.3 Discussion 

The activation of IKK requires the dual phosphorylation on both Ser177 and 

Ser181 [102,107]. In this Chapter, I clarified the mechanism by which the canonical IKK 

complex is activated. In particular, I showed that TAK1 catalyses the phosphorylation 

of IKK at Ser177, serving as a priming event which allows auto-phosphorylation at 

Ser181 by IKK itself. This two-step phosphorylation mechanism was demonstrated in 

IL-1- or TNF-stimulated IKK-deficient MEFs and in TLR agonist-stimulated BMDM, 

suggesting that it is of general significance for IKK activation.  



73 
 

The phosphorylation within the activation loop of a protein kinase by two 

different kinases has been reported before. One example is that MAP kinase kinase 7 

(MKK7) and MKK4 synergistically activate JNK by phosphorylating Thr183 and Tyr185 in 

the activation loop, respectively [204]. The kinase activation contributed by both 

‘upstream’ kinases and auto-phosphorylation has been described previously for other 

kinases, including the phosphorylase kinase [205] and the NDR (nuclear DBF2-related) 

kinases [206].   

3.3.1 TAK1 functions upstream of IKK 

TAK1 is a master kinase in the MyD88 signalling pathway, at least in MEFs, 

where the absence of TAK1 kinase activity impairs the activation of canonical IKK 

complex as well as its downstream consequences and the activation of p38 and JNK 

MAP kinases [83,84]. In this Chapter, I have shown that two structurally unrelated 

TAK1 inhibitors, NG25 [199] and 5z-7-oxozeaenol [148], abolished the phosphorylation 

of IKK at Ser177 and Ser181 induced by IL-1 and TNF in MEFs and Pam3CSK4 and LPS 

in BMDM (Fig 3.1), confirming that TAK1 acts upstream of IKK in these cells. 

3.3.2 The use of IKKinhibitor 

Incubation of IKK-deficient MEFs with the IKK inhibitor BI605906 caused an 

apparent enhancement of IKK phosphorylation at Ser177 in IL-1-stimulated IKK KO 

MEFs (Fig 3.1). However, I also found that a Ser177 phospho-specific antibody 

displayed much better recognition of a synthetic peptide phosphorylated at Ser177 

alone than a peptide phosphorylated at both Ser177 and Ser181 (Fig 3.2A).  These 

experiments indicate that the phosphorylation of IKK at Ser181 impedes the 

recognition of Ser177 phosphorylation by the antibody. In contrast, the phospho-

Ser181 specific antibody recognised Ser181 phosphorylation in the dual 
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phosphorylated peptide (Fig 3.2B). This is because the epitope used to raise the 

antibody does not include Ser177, which allowed the phosphorylation at Ser181 to be 

detected in IKK mutants where Ser177 was replaced with other amino acids.  

Interestingly, Ser177 phosphorylation was elevated in the presence of the IKK 

inhibitor, even in MEFs not stimulated with IL-1 (Figs 3.1A and B, top panel, lanes 10). 

This finding could be explained in several ways. First, the binding of inhibitor to IKK 

may induce a conformational change making Ser177 of IKK more accessible to TAK1 

or other kinase(s) that phosphorylate Ser177. Second, by blocking IKK-mediated basal 

phosphorylation at Ser181, the inhibitor encourages the de-phosphorylation of this 

serine residue, thus improving recognition of phospho-Ser177 by the antibody.  

In BMDM from mice expressing the catalytically-inactive IKK[S176A/S180A] 

mutant, I found that the IKK inhibitor abolished agonist-induced phosphorylation of 

S181, but the recognition of Ser177 phosphorylation by the phosphor-Ser177-specific 

antibody was slightly reduced (Figs 3.1C and D) in contrast to the enhancement seen in 

IKK KO MEFs (Figs 3.1A and B, top panel, compare lanes 1-3 with 10-12). One 

possible explanation for this difference is that the catalytically inactive IKK may 

inhibit the TAK1-catalysed phosphorylation of IKK at Ser177 or accelerate its de-

phosphorylation by a phosphatase(s).  

The present study established the mechanism of IKK activation based on the 

use of IKK-specific inhibitor BI605906 in IKK-deficient MEFs. In wild type MEFs, 

however, BI605906 did not suppress the IL-1- or TNF-stimulated phosphorylation of 

IKK at Ser181 (Fig 3.6). This is presumably because the phosphorylation of IKK at 
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Ser181 can be catalysed by IKK through trans auto-phosphorylation when the kinase 

activity of IKK is inhibited, and IKK activity is unaffected by BI605906 [135]. 

3.3.3 Mutation of IKK 

Since the phosphorylation of two serine residues in the activation loop is 

essential for IKK kinase activity, both sites have been mutated to glutamic acid in 

previous studies to mimic the effect of phosphorylation by introducing a negative 

charge, or to alanine to prevent activation [102,107]. However, the effect of mutating 

just one of these sites has never been studied before. Here I showed that the single 

mutation of Ser177 of IKK to Glu allowed IKK to auto-phosphorylate at Ser181 which 

triggered IKK activation in over-expression experiments even in unstimulated cells (Fig 

3.3A). The canonical IKKs share sequence similarity with the IKK-related kinases, TBK1 

and IKKInterestingly, the IKK-related kinases possess a glutamic acid residue at 

position 168 in their activation loops, which is the site equivalent to Ser176/Ser177 of 

IKKSer172, the residue whose phosphorylation is required for its activation, is 

equivalent to Ser180/Ser181 of IKK/IKK(Fig 3.12, [207]). This suggests that the 

activation of TBK1 and IKK in TAK1-deficient MEFs occurs by an auto-phosphorylation 

or trans auto-phosphorylation mechanism (Fig 2C in [135]). However, Ser172 could 

also be phosphorylated by other protein kinases that have not yet been identified. 

 
Figure 3.12 Alignment of the activation loops in the canonical IKKs and IKK-related kinases. 

Comparison of primary amino acid sequences of the activation loops in IKK, IKK, IKK and 

TBK1. The key serine residues in IKK and IKK are highlighted with red asterisks.  
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The mutation of aspartic acid 166 in IKK to alanine on top of the Ser177E 

mutation abolished the phosphorylation of this IKK mutant at Ser181 (Fig 3.3B), 

indicating that IKKauto-phosphorylates itself at Ser181. However, it is possible that 

IL-1 or TNF stimulation may trigger the activation of another kinase(s) in cells 

phosphorylating IKK at Ser181. To investigate this possibility, it would be interesting 

to examine stimulus-induced Ser181 phosphorylation in IKK-deficient MEFs 

expressing either the IKK[D166A/S177E] or [S177A] mutants. 

The effect of mutating Ser177 of IKK reported in this Chapter was studied in 

IKK-deficient MEFs in which the endogenous IKK is still expressed. To rule out 

interference from the endogenous IKK the use of MEFs from IKK/IKKdouble KO 

mice would have improved this experiment but time did not allow me to establish this 

cell model.  

3.3.4 Role of Met1-Ub chains and NEMO in the activation of IKK complex 

The activation of the canonical IKK complex requires not only the dual 

phosphorylation at two serine residues within its activation loop, but also the 

formation of both K63- and Met1-linked ubiquitin chains. It has been demonstrated 

that TRAF6-catalysed K63-Ub chains interact with the TAB2 and TAB3 subunits in the 

TAK1 complex, leading to conformational changes which induce the auto-activation of 

TAK1 in vitro [76,82,97]. The Met1-Ub chains catalysed by LUBAC [150–153] interact 

with NEMO [111,145,146], which is critical for the activation of the canonical IKK 

complex in vitro and the activation of NF-B in cells [145,159]. Most of the IL-1-

induced Met1-Ub chains are attached covalently to K63-Ub chains, so that both 

ubiquitin linkage types are present in the same hybrid polyubiquitin chains [158]. This 

may permit the co-localisation of TAK1 and the canonical IKK complex so that TAK1 is 
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able to phosphorylate the IKK complex more efficiently. The catalytically inactive HOIP 

mutant (HOIP[C879S]) or the knock-down of HOIP/HOIL-1 reduces the phosphorylation 

of p105, a physiological substrate of the canonical IKK complex (Fig 4 in [158]). 

Consistently, I found that the IL-1-stimulated dual phosphorylation of IKK at 

Ser176/Ser180 and IKKat Ser177/Ser181 was suppressed not only in HOIP[C879S] 

MEFs, in which the Met1-Ub chains cannot be formed, but also in NEMO[D311N] MEFs, 

in which the Met1-Ub chains are formed but cannot bind to NEMO in the canonical IKK 

complex (Fig 3.7). As a consequence, the subsequent p105 phosphorylation mediated 

by IKK was also reduced. These observations suggest that the formation of Met1-Ub 

chains and their association with NEMO are required for the TAK1-catalysed 

phosphorylation of IKK/IKK at Ser176/Ser177.  

3.3.5 Downstream of the canonical IKK complex 

As discussed in section 1.2.7.2, the activation of p38 MAP kinase is regulated 

by MKK3, MKK4 and MKK6 in the MyD88 signalling pathway. A recent study has shown 

that the activation of MKK3/6 is mediated through a direct phosphorylation catalysed 

by Tpl2, a kinase downstream of the IKK[183]. In HOIP[C879S] and NEMO[D311N] 

MEFs, I observed that the IL-1-stimulated phosphorylation of p38 was similar to wild 

type MEFs (Fig 3.8), despite greatly decreased activation of the canonical IKK complex 

(Fig 3.7). Since the IKK-Tpl2-MKK3/MKK6 axis should be blocked, the phosphorylation 

of p38 might be conducted by MKK4 in the HOIP[C879S] MEFs. It would be 

interesting to investigate this further by using CRISPR/Cas9 gene-editing technology to 

generate cells lacking any expression of MKK4 and HOIP.  
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Chapter 4 Studies on the mechanism by which the TAK1 complex is activated by 

IL-1 

4.1 Introduction  

As reported in Chapter 3, the activation of the canonical IKK complex requires 

the TAK1-catalysed phosphorylation at Ser176 on IKK and Ser177 on IKK, 

respectively. TAK1 is also required for the MyD88-dependent activation of MAP 

kinases (Section 1.2.7). TAK1 is therefore a master kinase of the MyD88 signalling 

pathway and, for this reason, its mechanism of activation has been studied extensively 

(Section 1.2.4.1). Briefly, there are two TAK1 complexes in cells, which are the TAB1-

TAK1-TAB2 complex and the TAB1-TAK1-TAB3 complex, respectively [80]. It is widely 

accepted that IL-1 stimulation triggers the formation of K63-Ub chains, which bind to 

TAB2 and TAB3 through the Npl40 zinc finger (NZF) domain at their C termini [82]. This 

association alters the conformation of TAK1 complex, leading to auto-phosphorylation 

and auto-activation of TAK1 in vitro. However these discoveries were made using cell 

free assays, but the genetic evidence needed to establish that they really operate in 

cells is still lacking. If the model is true, the removal of both TAB2 and TAB3 from cells 

should abolish the activation of TAK1 by IL-1. In this Chapter, I present the results of 

the experiments that I have carried out to understand the physiological roles of key 

components in the activation of TAK1, including TAB1, TAB2, TAB3 and TRAF6.  These 

studies have revealed that the mechanism of activation of TAK1 is far more complex 

than expected. 
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4.2 Results 

4.2.1 Generation and characterization of IL-1R* cells   

As a recently developed genetic engineering approach, CRISPR/Cas9 (clustered 

regularly interspaced short palindromic repeat (CRISPR) associated protein 9 (Cas9)) 

technology is being applied successfully to knock out target genes in different cell 

types and in mice [208,209]. In this method, a guide RNA (gRNA), designed to 

specifically bind to the gene of interest, directs the Cas9 DNA endonuclease to the 

target site, and makes a double-strand cleavage, which disrupts the target gene. In the 

MRC Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), the gene encoding 

Cas9 has been integrated into HEK293 cell line by the laboratory of Yogesh Kulathu. 

These HEK293 cells inducibly expressing Flag-tagged Cas9 (HEK293_Cas9) facilitated 

the generation of knock-out cell lines and have been exploited extensively in the study 

reported in this Chapter.  

The HEK293_Cas9 cell line was unresponsive to IL-1, due to the lack of 

expression of the IL-1 receptor (Fig 4.1A). I therefore transfected HEK293_Cas9 cells 

with virus carrying the gene encoding the IL-1 receptor (Section 2.2.1.8.1). I found that 

the newly established cell line, named IL-1R*, presented strong signal transduction in 

response to IL-1 stimulation, which was comparable to the previously described IL-1R 

cells [49], despite the far lower level of expression of the IL-1 receptor (Fig 4.1A). The 

phosphorylation of p105, JNK1/2 and p38 in the IL-1 signalling pathway were 

triggered rapidly after stimulation with IL-1, reaching a maximum at 10-30 min, slightly 

slower than IL-1R cells (Fig 4.1B). The compound NG25, a specific inhibitor of the TAK1 

kinase [199], completely blocked signal transduction downstream of TAK1 (Fig 4.1C). 

The level of inducibly expressed Cas9 was unaffected after transfection of IL-1 receptor 

(Fig 4.1D). Taken together, IL-1R* cell line resembles IL-1R cells in its response to IL-1 
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stimulation, and the high level of Cas9 expression maximizes the success of knocking-

out genes in this cell line.  

 
Figure 4.1 Characterization of IL-1R* cells. (A) HEK293_Cas9, IL-1R* and IL-1R cells were 

stimulated for 10 min with 5 ng/ml IL-1. Cells were lysed and subjected to SDS/PAGE and 
immunoblotted with the antibodies indicated. (B) IL-1R* and IL-1R were stimulated with 5 

ng/ml IL-1 for the times indicated. Cells were lysed and subjected to SDS/PAGE and 
immunoblotted with the antibodies indicated. (C) IL-1R* and IL-1R were incubated for 1 h 

without (-) or with (+) 5 M NG25, and then stimulated for 5 min with 5 ng/ml IL-1. Cells were 
lysed and subjected to SDS/PAGE and immunoblotted with the antibodies indicated. (D) 

HEK293_Cas9 and IL-1R* cells were incubated for 16 h with 1 g/ml doxycycline to induce the 
expression of Flag-tagged Cas9, and cells were lysed,  subject to SDS/PAGE and immunoblotted 
with the antibodies indicated. The results are representative of at least three independent 
experiments.    

4.2.2 Generation and characterization of TAK1-null IL-1R* cells  

Most previous studies of TAK1 activation have been performed in mouse 

embryonic fibroblasts (MEFs) [83,84]. To investigate the importance of the TAK1 

catalytic subunit in IL-1R* cells, I knocked out the TAK1 gene using the CRISPR/Cas9 

approach described in Materials and Methods (Section 2.2.1.8.2).  All four clones from 

the first screen were TAK1 knockout (KO) cells (data not shown). I then studied the 

effect of TAK1 deletion on IL-1 signalling. Consistent with previous studies in MEFs, IL-1 

did not induce the phosphorylation of the activation loops of canonical IKK complex, its 

substrate p105, and JNK1/2 and p38MAP kinases (Fig 4.2A), indicating that TAK1 
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expression is crucial for IL-1-induced signalling in the IL-1R* cell line. The signalling was 

restored by re-expression of wild type TAK1, but not by re-expression of the 

catalytically inactive TAK1[D175A] mutant in which the Asp of the Asp-Phe-Gly (DFG) 

motif was mutated to Ala (Fig 4.2B). These findings indicate that the kinase activity of 

TAK1 is essential for IL-1-induced signal transduction in IL-1R* cells. It was noted that 

the expression of TRAF6, an E3 ligase situated “upstream” of TAK1 in this signalling 

pathway (Section 1.2.3), was not affected in the TAK1 KO IL-1R* cells (Fig 4.2C). The 

formation of Met1-Ub chains was also unimpaired in two different clones TAK1 KO IL-

1R* (Fig 4.2D), indicating that the IL-1-induced signalling upstream of TAK1 is normal, 

and that TAK1 expression is not required for LUBAC to catalyse Met1-Ub chain 

formation. 

  



82 
 

 
Figure 4.2 The expression and activity of TAK1 is essential for IL-1 signalling in IL-1R* cells.  (A) 
Wild type (WT) and TAK1-knockout clone 34 (TAK1 KO) IL-1R* cells were stimulated for the 
times indicated with 5 ng/ml IL-1β. Cells were lysed and subjected to SDS/PAGE, followed by 
transfer to PVDF membranes and immunoblotting with the antibodies indicated. (B) TAK1-
knockout clone 34 (TAK1 KO) IL-1R* cells re-expressing wild type (WT) TAK1 or the kinase-

inactive TAK1[D175A] mutant were incubated for 16 h with 1 g/ml doxycycline to induce the 
expression of these proteins (lanes 7-12). These cells, together with wild type (WT) and TAK1-

knockout clone 34 (TAK1 KO) IL-1R* cells were stimulated for 10 min with 5 ng/ml IL-1. 

Aliquots of the cell extract protein (20 g Lanes 1-6 or (due to reduced expression of TAK1) 40 

g protein lanes 7-12) were subjected to SDS/PAGE, followed by immunoblotting with the 
antibodies indicated. (C) Wild type (WT) and TAK1-knockout clone 34 (TAK1 KO) IL-1R* cells 
were lysed and subjected to SDS/PAGE, followed by transfer to PVDF membranes and 
immunoblotting with the antibodies indicated. (D) Wild type (WT) and two clones (34 and 37) 

of TAK1-knockout (TAK1-null) IL-1R* cells were stimulated for 10 min with 5 ng/ml IL-1The 
Met1-linked ubiquitin chains in 2 mg of cell extract protein were captured on Halo-NEMO as 
described in Materials and Methods (Section 2.2.3.5), released by denaturation in SDS and 
immunoblotted with the antibody that recognise Met1-linked (M1) chains specifically. The 

same cell extracts (20 g protein) were immunoblotted with anti-GAPDH as a loading control. 
This experiment was carried out by Dr Christoph Emmerich in our laboratory. The results are 
representative of at least three independent experiments.    

4.2.3 The role of TAB1 in the IL-1-stimulated activation of TAK1 in IL-1R* cells  

It has been reported that IL-1-dependent TAK1 activation occurs normally in 

MEFs lacking the expression of TAB1 [94]. To investigate the role of TAB1 in TAK1 

activation in the human cell line, I generated TAB1-deficient IL-1R* cells (Fig 4.3A). In 

these cells, I found that the initial IL-1-induced phosphorylation of IKK/IKK and 
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p105 was similar to the parental IL-1R* cells despite slightly decreased TAK1 

phosphorylation (Fig 4.3B). Consistent with these findings, the IL-1-induced 

transcription of two NF-B-dependent immediate early genes IB (Fig 4.4A) and A20 

(Fig 4.4B), and the production of IL-8 mRNA (Fig 4.4C) was similar in the TAB1 KO and 

parental IL-1R* cells for up to 60 min. However, the phosphorylation of TAK1, JNK1/2 

and p38/ MAP kinases was reduced modestly, especially after prolonged stimulation 

(Fig 4.3C). These observations may explain why IL-8 mRNA production, was similar in 

TAB1-null and wild type IL-1R* cells up to 1 h, but IL-8 mRNA and IL-8 secretion was 

reduced at later time points (Figs 4.4C and D). Similar results were obtained with a 

second clone of TAB1-null IL-1R* that was isolated independently (Fig 4.5). 

 
Figure 4.3 IL-1 signalling in IL-1R* cells lacking expression of TAB1. (A) Generation of two 
clones of TAB1 KO IL-1R* cells. TAK1 was immunoprecipitated from the extracts of wild type 
(WT) IL-1R* cells, two different clones (30 and 44) of cells devoid of TAB1 (Section 2.2.3.4). 
Immunoprecipitates were denatured in SDS, subjected to SDS-PAGE, and immunoblotted with 
the antibodies indicated. (B, C) Wild type (WT) IL-1R* cells and TAB1 KO cells (clone 44) were 
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stimulated for up to 1 h (B) or 2 h (C) with 5 ng/ml IL-1. Aliquots of the cell extracts (20 g 
protein) were denatured in SDS, subjected to SDS/PAGE and immunoblotted with the 
antibodies indicated. The results are representative of at least three independent experiments.    

  
Figure 4.4 IL-1-dependent gene expression in IL-1R* cells lacking expression of TAB1. (A-C) 

Cells were stimulated with IL-1 as in Fig 4.3B, and RNA was extracted from wild type (WT) IL-
1R* cells and TAB1 KO cells (clone 44 from Fig 4.3A) at the times indicated. The formation of 

IBA), A20 (B) and IL-8 (C) mRNA was quantitated by qRT-PCR and normalised to the level 
of 18S RNA (Section 2.2.2.4). The ordinate shows the fold-increase relative to the level present 

in cells not stimulated with IL-1 (D) As in C, except that IL-8 secreted into the culture medium 
was measured by ELISA (Section 2.2.3.9). Data were pooled from two independent 
experiments.   ***p < 0.001. 
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Figure 4.5 IL-1 signalling in a second clone of IL-1R* cells lacking expression of TAB1. (A, B) 
Same as Fig 4.3B and 4.3C, except that the studies were carried out in TAB1 KO cells clone 30 
(from Fig 4.3A). (C, D) Same as Fig 4.4C and 4.4D, except that the experiments were carried out 
in TAB1 KO cells clone 30 (from Fig 4.3A). In panels A and B, the results are representative of at 
least three independent experiments. In panels C and D, data were pooled from two 
independent experiments.  **p < 0.01. 

4.2.4 The role of TAB2 and TAB3 in the IL-1-stimulated activation of TAK1 in IL-1R* 

cells  

The IL-1-induced activation of the TAK1 complex is thought to be mediated by 

the binding of K63-Ub chains to TAB2 and TAB3 (Section 1.2.4.3). To investigate this 

hypothesis I generated IL-1R* cells lacking any expression of TAB2 and TAB3, named 

“double knock-out” (DKO) cells (Fig 4.6A, lane 2 and 3). In these cells, TAK1 and TAB1 

remained as a complex whether or not the cells were stimulated with IL-1 for up to 2 

hours (Figs 4.6A and B). I found that IL-1 induced the phosphorylation of the activation 

loop of TAK1 in DKO cells, and the subsequent phosphorylation of the canonical IKK 

complex, its substrate p105, as well as p38 MAP kinase (Fig 4.6C). This demonstrates 
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that IL-1 can activate the TAB1-TAK1 complex by a mechanism that is independent of 

the binding of TAB2 and TAB3 to ubiquitin chains. 

 
Figure 4.6 IL-1 signalling in IL-1R* cells lacking expression of TAB2 and TAB3. (A) Generation 
of IL-1R* cells lacking TAB2 and TAB3 or all three TAB subunits. TAK1 was immunoprecipitated 
from the extracts of wild type (WT) IL-1R* cells (Lane 1), two different clones (4 and 11) of cells 
devoid of TAB2 and TAB3 (Lanes 2 and 3) and two different clones (A4 and H17) lacking 
expression of all three TAB components. Immunoprecipitates were denatured in SDS, 
subjected to SDS-PAGE, and immunoblotted with the antibodies indicated. (B) TAB2/3 KO cells 

(clone 4 from A) were stimulated for the times indicated with 5 ng/ml IL-1, and TAK1 was 
immunoprecipitated from the extracts, processed as in A and immunoblotted with the 
antibodies indicated. (C, D) Wild type (WT) IL-1R* cells or TAB2/3 KO cells (clone 4 from A) 

were stimulated for up to 1 h (C) or 2 h (D) as in B, and cell extracts (20 g protein) were 
subjected to SDS/PAGE and immunoblotted with the antibodies indicated. The results are 
representative of at least three independent experiments. 
 

Interestingly, the IL-1-dependent phosphorylation of JNK1/2 and p38 MAP 

kinases was greatly reduced in the DKO cells (Fig 4.6C). JNK1 and JNK2 are activated by 

MKK4 and MKK7 (Section 1.2.7.2). Therefore, this suggests that TAB2 and/or TAB3 

may have a potential role in guiding the TAK1 complex to these substrates.  TAB2/3 

may also target TAK1 complex to the kinase(s) that activates p38 MAP kinase.   
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Surprisingly, and in contrast to wild type IL-1R* cells in which signalling was 

sustained for up to 2h, the IL-1-dependent phosphorylation of TAK1 and IKK/IKK 

was transient and had returned to near basal levels by 60 min in DKO cells. 

Consistently, the IL-1-induced transcription of two immediate early genes, IB (Fig 

4.7A) and A20 (Fig 4.7B), was similar in the DKO cells and parental wild type IL-1R* 

cells for up to 60 min after stimulation, but production of the mRNA (Fig 4.7C) and the 

secretion (Fig 4.7D) of IL-8 was reduced drastically in the DKO cells. This might be 

explained by the transient activation of IKK/IKKand low level of activation of JNK1/2 

and p38 MAP kinases in the DKO cells. Similar results were obtained with a second 

clone of DKO cells that was isolated independently (Fig 4.8). 

  
Figure 4.7 IL-1-dependent gene expression in IL-1R* cells lacking expression of TAB2 and 

TAB3. (A-C) Cells were stimulated with IL-1 as in Fig 4.6, and RNA was isolated at the times 

indicated. The formation of mRNA encoding IB(A), A20 (B) and IL-8 (C) was quantitated by 
qRT-PCR and normalised to the level of 18S RNA. The ordinate shows the fold-increase relative 

to the level present in cells not stimulated with IL-1 (D) As in C, except that IL-8 secreted into 
the culture medium was measured by ELISA. Data were pooled from two independent 
experiments. ***p < 0.001. 
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Figure 4.8 IL-1 signalling in a second clone of IL-1R* cells lacking expression of TAB2 and 
TAB3. (A, B) Same as Fig 4.6C and 4.6D, except that the experiments were carried out in 
TAB2/3 KO cells clone 11 (from Fig 4.6A). (C, D) Same as Fig 4.7C and 4.7D, except that the 
experiments were carried out in TAB2/3 KO cells clone 11 (from Fig 4.6A). In panels A and B, 
the results are representative of at least three independent experiments. In panels C and D, 
data were pooled from two independent experiments.  ***p < 0.001. 

4.2.5 A reconstitution approach to study the role of TABs in the activation of TAK1 

by IL-1 

To further assess the importance of TABs in the activation of the TAK1 complex, 

I generated IL-1R* cells lacking expression of all three TAB components, (Fig 4.6A, 

lanes 5 and 6).  These triple KO cells showed neither phosphorylation of TAK1 nor 

activation of its downstream signalling in response to IL-1 (Fig 4.9A). As expected, the 

re-expression of wild-type TAB1 restored the activation of JNK1/2 and p38 MAP 

kinase (Fig 4.9B). These experiments confirm that TAB1 has an essential role in the IL-

1-dependent activation of the TAK1 kinase in the absence of TAB2 and TAB3.  
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Figure 4.9 IL-1 signalling in IL-1R* cells lacking expression of TAB1, TAB2 and TAB3. (A) 

Absence of IL-1 signalling in TAB1/TAB2/TAB3 triple KO IL-1R* cells. Wild type (WT) or 
TAB1/2/3 triple KO (clone A4 from Fig 4.6A) IL-1R* cells were stimulated for the times 

indicated with 5 ng/ml IL-1. Cell extracts (20 g protein) were subjected to SDS/PAGE and 
immunoblotted with the antibodies indicated.  (B) As in A, except TAB1/TAB2/TAB3 triple KO 
IL-1R* cells (clone A4 from Fig 4.6A) re-expressing HA-tagged TAB1 were incubated for 16 h 

with 1 g/ml doxycycline to induce the expression of these proteins. These cells, wild type IL-
1R* cells (WT) and TAB1/2/3 triple KO IL-1R* cells (clone A4 from Fig 4.6A) were stimulated for 

10 min with 5 ng/ml IL-1. Cell extracts (20 g from wild type IL-1R* cells and (due to reduced 

expression of TAK1) 40 g from TAB1/2/3-null cells) were denatured in SDS, subjected to 
SDS/PAGE and immunoblotted with the antibodies indicated.  (C) HA-protein tagged TAB2 or 
the K63-Ub-binding-defective mutant HA-TAB2[T674/F675A] were re-expressed in TAB1/2/3 

triple KO IL-1R* cells (clone A4 from Fig 4.6A) after induction for 16 h with  1g/ml doxycycline.  
These cells, TAB1/2/3 KO cells not re-transfected with HA-TAB2 and wild type (WT) IL-1R* cells 

were stimulated for 10 min with 5 ng/ml IL-1. Cell extracts (20 g (WT cells) or 40 g protein 
(TAB1/2/3 triple KO cells)) were subjected to SDS/PAGE and immunoblotted with the 
antibodies indicated.  (D) WT IL-1R* cells or TAB1/2/3 triple KO IL-1R* cells were stimulated for 

10 min with 5 ng/ml IL-1or left unstimulated. The Met1-Ub chains or K63-Ub chains were 
then captured specifically from 2 mg cell extract protein on Halo-NEMO beads or Halo-NZF2 
beads respectively (Section 2.2.3.5), and released by denaturation in SDS and immunoblotted 
with the antibodies that recognise Met1-linked (M1) or Lys63-linked (K63) ubiquitin chains 
specifically. This experiment was carried out by Dr Christoph Emmerich in our laboratory. The 
results are representative of at least three independent experiments. 
 

To investigate the importance of TAB2 in the activation of the TAK1 complex, I 

re-expressed TAB2 in IL-1R* cells lacking all three TAB components. The 

phosphorylation of JNK1/2 and p38 was restored by the re-expression of wild type 
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TAB2, but not by the re-expression of a TAB2 mutant, in which Thr674 and Phe675 in 

the C-terminal NZF motif were mutated to Ala (Fig 4.9C). These two sites are next to 

the critical Cys673 residue [82,97], therefore unable to interact with K63-Ub chains. 

Taken together, these experiments indicate that both the expression of TAB2 and its 

interaction with K63-Ub chains are essential for the IL-1-dependent activation of the 

TAB2-TAK1 complex in IL-1R* cells lacking expression of TAB1 and TAB3.  

Notably, the IL-1-dependent formation of K63-Ub chains or Met1-Ub chains in 

IL-1R* cells lacking all three TAB subunits was similar to the formation of these 

ubiquitin chains in IL-1R* cells expressing all three TAB components (Fig 4.9D). 

Together with the findings from TAK1 KO cells, it suggests that the expression and 

kinase activity of TAK1 are not required for the IL-1-dependent formation of these 

types of ubiquitin chains. 

4.2.6 The role of TRAF6 in the IL-1-induced activation of TAK1 complexes 

While my experiments were in progress, Dr Sam Strickson in our laboratory 

showed that the IL-1-dependent activation of TAK1 was partially restored when E3 

ligase-inactive versions of TRAF6 were re-expressed in TRAF6-null IL-1R* cells [210]. 

Since my experiments indicated that TAK1 was activated by two independent 

mechanisms involving TAB1 or TAB2/3, I investigated whether the TRAF6 protein 

and/or its E3 ligase activity were required for both pathways of TAK1 activation. 

In order to investigate the role of TRAF6 in the activation of the TAB1-TAK1 

complex, I first ablated TRAF6 expression in TAB2/3-null IL-1R* cells (Fig 4.10A).  As 

expected, IL-1 signalling downstream of TRAF6 was abolished in these 

TAB2/TAB3/TRAF6 triple knock-out (TKO) cells stimulated with IL-1 for up to 2 hours 

(Fig 4.10B), but signalling upstream of TRAF6 was not impaired, since IL-1-dependent 
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phosphorylation of IRAK4 remains the same or increased at least in some clones (Fig 

4.10A). These findings establish that the expression of TRAF6 is essential for the IL-1-

dependent activation of the TAB1-TAK1 complex.  

Next, the wild type TRAF6 and two E3 ligase-inactive mutants were re-

introduced into TAB2/TAB3/TRAF6 TKO IL-1R* cells (Fig 4.10C). The TRAF6[L74H] 

mutation fails to interact with the E2 conjugating enzyme Ubc13, but its RING domain 

is able to coordinate zinc ions [75], while the TRAF6[C70A] mutation destroys the RING 

structure (Section 1.2.3) and is therefore unable to coordinate zinc ions [69,211]. 

Interestingly, the re-expression of wild type TRAF6 could restore IL-1 signalling to the 

TKO cells but E3 ligase-inactive TRAF6 mutants did not (Fig 4.10C). Similar results were 

obtained with a second clone of TKO cells that was isolated independently (Fig 4.10D). 

The expression of TRAF6, as well as its E3 ligase activity, are therefore essential for the 

activation of the TAB1-TAK1 complex in TAB2/3 DKO IL-1R* cells.  
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Figure 4.10 TRAF6 E3 ligase activity is required for the IL-1-dependent activation of the 
TAB1-TAK1 complex in IL-1R* cells lacking expression of TAB2 and TAB3. (A) Wild type (WT) 
and five clones of TAB2/TAB3/TRAF6 triple KO cells (clone 8, 11, 23, 26, 41) were stimulated 

for 10 min with 5 ng/ml IL-1, then subjected to SDS/PAGE and immunoblotted with the 
antibodies indicated.  (B) TAB2/3 DKO (clone 4 from Fig 4.6A) and TAB2/TAB3/TRAF6 triple KO 

IL-1R* (clone 11 from A) were stimulated for the times indicated with 5 ng/ml IL-1Other 
details are as A.  (C) Wild type (WT) TRAF6, two E3-ligase-inactive mutants of TRAF6, 
TRAF6[L74H] and TRAF6[C70A], were re-expressed in the TAB2/TAB3/TRAF6 triple KO IL-1R* 

(clone 11 from A) after induction for 16h with 1 g/ml doxycycline. These cells, together with 
TAB2/3 DKO cells (clone 4 from Fig 4.6A) and TAB2/TAB3/TRAF6 triple KO cells (clone 11 from 

A)  not re-transfected with TRAF6, were stimulated with 5 ng/ml IL-1 for the times indicated. 
Other details are as in A.  (D) Same as C, except that experiments were carried out using a 
second clone (clone 41 from A) of TAB2/TAB3/TRAF6 triple KO IL-1R* cells. The results are 
representative of at least three independent experiments. 
 

To assess the importance of TRAF6 in the activation of the TAB2-TAK1 and 

TAB3-TAK1 complexes, I also knocked out the TRAF6 gene in TAB1 KO IL-1R* cells (Fig 

4.11A). Consistent with previous studies, the deletion of TRAF6 abolished IL-1 

signalling downstream of TRAF6 (Fig 4.11A). The E3 ligase inactive TRAF6[L74H] 

mutant and TRAF6[120-522], a truncated version of TRAF6 which lacks the N-terminal 

region containing the catalytic RING domain (Section 1.2.3), partially restored IL-1 

signalling to TAB1/TRAF6 DKO cells (Fig 4.11B). Taken together, these experiments 
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show that, in contrast to the TAB1-TAK1 complex, the activation of the TAB2-TAK1 and 

TAB3-TAK1 complexes present in the TAB1 KO cells requires the expression but not the 

ligase activity of TRAF6. 

 
Figure 4.11 TRAF6 E3 ligase activity is not required for the IL-1-dependent activation of the 
TAB2/3-TAK1 complex in IL-1R* cells lacking expression of TAB1. (A) TAB1 KO cells (clone 44 
from Fig 4.3A) and four clones of TAB1/TRAF6 double KO IL-1R* cells (clone 1, 3, 4, 7) were 

stimulated with 5 ng/ml IL-1 for the times indicated. Cell extracts (20 g protein) were 
subjected to SDS/PAGE and immunoblotted with the antibodies indicated.  (B) Wild type (WT) 
TRAF6, the E3-ligase-inactive TRAF6[L74H] mutant and the TRAF6[120-522] mutant lacking the 
RING domain, were stably re-expressed in TAB1/TRAF6 double KO cells (clone 1 from A).  
These cells, together with TAB1 KO cells (clone 44 from Fig 4.3A) and TAB1/TRAF6 double KO 

cells not re-transfected with TRAF6 (clone 1 from A), were stimulated with 5 ng/ml IL-1 for 
the times indicated. Other details are as in C. The results are representative of at least three 
independent experiments. 

4.2.7 The XIAP, cIAP1 and cIAP2 E3 ligases are not required for the IL-1-induced 

activation of TAB1-TAK1 complex  

A major unresolved question concerned the mechanism by which the TAB1-

TAK1 complex became phosphorylated at Thr187 and activated in response to IL-1.  

The N-terminal region of TAB1 has been shown to interact with X-linked Inhibitor of 

Apoptosis Protein (XIAP), which inspired a hypothesis that the dimerization of XIAP 

may induce the dimerization of the TAB1-TAK1 complex, leading to its trans-

autophosphorylation and activation [212]. However, I did not observe any association 

between the endogenous XIAP and endogenous TAK1 in IL-1- stimulated wild-type or 

TAB2/3 DKO IL-1R* cells (Fig 4.12A). Moreover, I found that IL-1-signalling in the 

TAB2/3/XIAP triple KO cells that I made was enhanced (Fig 4.12B). Incubation of the 
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cells with SMAC (second mitochondrion-derived activator of caspase) mimetic, which 

results in the degradation of two other members of the IAP family, namely cIAP1 

(cellular inhibitor of apoptosis protein 1) and cIAP2 [213], also did not impair IL-1 

signalling in TAB2/TAB3/XIAP KO IL-1R* cells (Fig 4.12C). These experiments indicate 

that XIAP and cIAP1/2 are not essential for TAB1-TAK1 complex activation in the 

TAB2/3-deficient IL-1R* cells. 

 
Figure 4.12 XIAP and cIAP1/2 are not required for the activation of the TAB1-TAK1 complex 
in IL-1R* cells lacking expression of TAB2 and TAB3. (A) IL-1R* and TAB2/3 DKO IL-1R* cells 
(clone 4 from Fig 4.6A) were stimulated for 10 min with 5 ng/ml IL-1β. The cell extract protein 

(100 g) was incubated with the antibodies recognising TAB1 or TAK1 for 1 hour at 4 °C, 
followed by addition of Protein G Sepharose beads. The immunoprecipitates were denatured 
in SDS, subjected to SDS/PAGE, followed by transfer to PVDF membranes and immunoblotting 
with the antibodies indicated. (B, C) TAB2/3 DKO IL-1R*cells (clone 4 from Fig 4.6A) and 
TAB2/TAB3/XIAP triple KO (clone 9) cells were incubated for 1 h without (B) or with (C) SMAC 
mimetic GT12911 (100nM), and then stimulated for the times indicated with 5 ng/ml IL-1β. 

The cell extract protein (20 g) was subjected to SDS/PAGE, followed by transfer to PVDF 
membranes and immunoblotting with the antibodies indicated. 
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4.2.8 The role of MAP4K family members in the IL-1-induced activation of TAB1-

TAK1 complex 

As TAK1 is a MAP3 kinase (Section 1.2.4), it is possible that the activation of 

TAK1 might be mediated by phosphorylation catalysed by another protein kinase, such 

as a MAP4 kinase. To investigate this possibility, I expressed and purified wild type 

TAK1 catalytic subunit from TAB1/2/3-null cells (Section 2.2.3.3, Fig 4.13A) in order to 

eliminate the influence of these binding partners. The TAK1 protein was then 

incubated with each of four MAP4K(s), namely MAP4K1, MAP4K2 (germinal centre 

kinase, GCK), MAP4K3 (GCK-like kinase, GLK) and MAP4K5 (GCK-related kinase, GCKR) 

(Section 2.1.6) to see if any of these enzymes was able to phosphorylate Thr187 in the 

activation loop of TAK1. I found that MAP4K2 and, to a lesser extent, MAP4K3 and 

MAP4K5 was able to phosphorylate wild type TAK1 at Thr187, whereas MAP4K1 could 

not (Fig 4.13C). To exclude the possibility that interaction with MAP4Ks stimulates 

TAK1 auto-phosphorylation, I purified the catalytically inactive TAK1 [D175A] mutant 

(Fig 4.13B). Again MAP4K2 was the only kinase that phosphorylated the TAK1 [D175A] 

mutant robustly (Fig 4.13D). These experiments suggest that MAP4K2 can directly 

phosphorylate the activation loop residue Thr187 of TAK1 in vitro. 
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Figure 4.13 MAP4K2 phosphorylates TAK1 in vitro. (A, B) The GST-tagged wild type TAK1 (A) 
and catalytically inactive TAK1[D175A] mutant (B) were expressed in the TAB1/2/3-null cells 
(clone A4 from Fig 4.6A) and purified by affinity chromatography on GSH Sepharose (lane 1). 
After cleavage with PreScission protease that cleave GST from GST-tagged TAK1 (lane 2), the 
TAK1 protein was released (lane 3 and 4). Proteins were separated via SDS/PAGE and stained 
with Instant Blue. (C, D) MAP4K family members phosphorylate wildtype TAK1 and catalytically 

inactive TAK1[D175A] in vitro. 1 M purified wildtype TAK1 (C) or the catalytically inactive 
TAK1 [D175A] mutant (D) were incubated for 1 h with Mg-ATP and 0.1 U MAP4Ks at 30 °C. The 
reactions were terminated by denaturation in SDS, and aliquots were subjected to SDS/PAGE, 
followed by transfer to PVDF membranes and immunoblotting with the antibodies indicated. 

4.2.9 Identification of novel IL-1-stimulated phosphorylation sites in TAB1 and 

TAK1 in TAB2/3-null IL-1R* cells 

It is also possible that in the absence of TAB2 and TAB3, IL-1-stimulation might 

lead to phosphorylation of one or more sites in the TAB1-TAK1 complex, which triggers 

the activation of this complex. To study this possibility, I used mass spectrometry to 

identify the amino acid residues in TAK1 and TAB1 that became phosphorylated in 

TAB2/TAB3 KO cells only upon IL-1 stimulation.  Since TAK1 is subject to a feedback 

control mechanism in which p38 and ERK1/2 MAP kinases phosphorylate TAB1 at 
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Ser423, Thr431 and Ser438 [180], I incubated the TAB2/3 DKO IL-1R* cells with 

BIRB0796 (an inhibitor of all forms of p38 MAPK at the concentration used) and PD 

0325901 (a potent MEK1/2 inhibitor that suppresses the phosphorylation of ERK1/2), 

and then stimulated the cells with IL-1 (Fig 4.14A). The TAB1-TAK1 complex was then 

immunoprecipitated and separated on SDS-PAGE gel (Fig 4.14B). The peptides 

identified by MS covered 80% of the sequence of TAK1 and 84% of the sequence of 

TAB1 (data not shown). Two novel IL-1-dependent phosphorylation sites (Ser417 and 

Thr476) on TAK1 and one (Ser469) on TAB1 were discovered (Table 4.1).   
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Figure 4.14 Identification of novel sites phosphorylated on TAB1-TAK1 complex using mass 
spectrometry. (A) TAB2/3 DKO IL-1R* cells (clone 4 from Fig 4.6A) were incubated for I h 

without (-) or with (+) 1 M BIRB0796 and 0.1 M PD0325901, and then left unstimulated 

(lane 1) or stimulated (lane 2) for 10 min with 5 ng/ml IL-1β. Cell extract (20 g protein) was 
subjected to SDS/PAGE and immunoblotted with the antibodies indicated.  (B) Same as A, 
except that 10 mg of cell extract protein from unstimulated (lane 1) and stimulated (lane 2) 

cells were incubated for 1 h with 10 g of TAK1 antibody (S828A). 50 l slurry of Protein G-
Sepharose was added and incubated for 30 min at 4 oC. The Sepharose was then collected and 
washed thoroughly. The bound proteins were released by denaturation in SDS, subjected to 
SDS/PAGE and the bands located at the same position as TAK1 and TAB1 were excised, washed 
and digested with trypsin overnight. The dried peptide was delivered to the MS facility for 
analysis (Section 2.2.4).  
 

Table 4.1 Summary of phospho-sites identified by mass spectrometry. Summary of phospho-
sites identified on TAK1 and TAB1 in the TAB2/3 DKO cells (clone 4 from Fig 4.6A) in response 
to IL-1 stimulation. The novel phosphosites were highlighted in bold and in red. 

 
 

4.3 Discussion 

The project presented in this Chapter was initiated because the widely 

accepted model that the IL-1-induced activation of the TAK1 complex depended on the 



99 
 

association between its regulatory subunits TAB2/3 and K63-Ub chains, lacked genetic 

evidence. Such studies were critical to verify if the hypothesis implicit in the model 

really operated in cells. The unanticipated findings presented in this Chapter have 

shown that concerns about the model were justified and suggested that the signalling 

network is more complex than considered previously. In the following sections I 

discuss the implication of my discoveries for future studies that will be aimed at the 

complete elucidation of the IL-1 signalling network. 

4.3.1 Application of CRISPR/Cas9 gene editing technology 

The newly developed genetic engineering approach CRISPR/Cas9 technology 

was utilized throughout the current study. This new powerful approach makes it 

possible to ablate target genes much more efficiently than traditional approaches, and 

allowed me to generate many stable knock-out cell lines within a relatively short 

period of time.  

At the beginning of this project, I employed the originally described 

CRISPR/Cas9 method to disrupt genes encoding TAB1, TAB2 and TAB3 (Section 

2.2.1.8.2). The gene encoding Flag-tagged Cas9 endonuclease was integrated into the 

genome, and its expression was induced by doxycycline (Section 4.2.1). The stable 

expression of the 160 kDa Cas9 endonuclease and the straightforward transfection of 

one single gRNA-containing plasmid maximizes the efficiency of gene knock-out [214]. 

Later, I exploited an improved approach in which the Cas9[D10A] nickase mutant is 

utilized (Section 2.2.1.8.2, [198]). This mutant is directed by a pair of gRNAs to the 

target sites separated by an appropriate distance, and cleaves only one strand of the 

DNA complementary to the gRNA, forming two individual nicks. The use of paired 

gRNAs extends the number of specifically recognised bases for target cleavage, 
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thereby providing higher specificity for gene disruption [215]. If the disruption is not 

accomplished, the individual nick on each strand is repaired by the high-fidelity base 

excision repair pathway, thereby largely reducing the undesired off-target mutagenesis 

on double-stranded breaks (DSBs) [215,216]. The puromycin-resistance gene in the 

gRNA plasmid allows for the selection of transfected cells, which enhances the knock-

out efficiency.  

Although the CRISPR/Cas9 technology performs well in knocking out genes with 

high specificity and efficiency, there are at least three major issues that require 

particular attention. First, the gRNA is normally designed to target the first shared exon 

among the transcripts of genes of interest, but the destruction of the starting exon 

may be insufficient to create a knockout clone. Sometimes the remaining gene 

sequence can still be transcribed and translated, leading to the synthesis of a 

truncated version of the protein which may possess biological functions.  Indeed, I 

found that this occurred during the generation of TAB2-deficient clones, in which the 

truncated TAB2 could be recognised by immunoblotting (data not shown). I therefore 

re-designed the gRNA and the new knock-out clones generated were examined by 

using two antibodies raised against epitopes that are far apart in the primary sequence 

of TAB2. Today, starting with a set of at least two gRNAs has become standard practice 

in the MRC-PPU in the application of CRISPR/Cas9 technology. 

Second, FACS (flow-cytometry associated cell sorting) results showed that the 

expression level of the IL-1 receptor can vary in different knock-out clones (data not 

shown). Such variation makes the signal strength inconsistent, rendering data 

interpretation more difficult. To minimize this problem, I therefore carried out all 

experiments using at least two knock-out clones generated independently (Figs 4.3-
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4.11), and kept scrutinising a read-out of the pathway located upstream of the protein 

of interest (e.g. the phosphorylation of IRAK4 as a readout of Myddosome formation 

(Fig 4.10)), to check that disruption of the pathway had not resulted from the loss of 

the IL-1R or another essential upstream element.  

Third, some proteins are essential for cell life and the removal of their genes 

may not be achievable. For example, despite many attempts, I failed to completely 

knock-out the E2 conjugating enzymes Ubc13 and UbcH7. It is possible that this issue 

could be addressed in the future by making the conditional knock-out cells or cells 

where the target gene might be inducibly degraded. Thus, for example, it might be 

possible to combine CRISPR/Cas9 technology with the Flp/FRT and Cre/LoxP system to 

build an inducible knockout cell line [217], or use a modified von Hippel-Lindau 

(VHL) protein-dependent degradation system to direct specific endogenous target 

proteins for proteolysis [218].   

CRISPR/Cas9 technology has the potential to edit multiple genes 

simultaneously, which may further speed up the generation of desired cell models. 

Recently, my laboratory, as well as other research groups, has demonstrated that the 

CRISPR/Cas9 approach can be used to make knock-in cell lines. A recent exciting study 

has shown that CRISPR/Cas9 technology can be used to achieve robust DNA knock-in 

even in non-dividing cells [219]. The generation of knock-in cell lines opens up the 

possibility of making selective mutations in essential genes to identify their functions 

without having to disrupt them completely. Biochemical studies and structural analysis 

carried out over the past decades has provided some understanding of the critical sites 

on many of the key proteins that participate in the innate immune signalling network. 

Many theories have been built up based on these in vitro experiments, which can now 
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be tested stringently using CRISPR/Cas9 technology to generate these mutations in 

cells and in vivo. 

4.3.2 The role of TAB2 and TAB3 in regulating the phosphorylation of JNK1/2 and 

p38 MAP kinases 

In the present study, I found that phosphorylation within the activation loops of 

TAK1, the canonical IKK complex and p38 MAP kinase occurred robustly in TAB2/3 

DKO cells for the first 30 min after IL-1 stimulation (Figs 4.6 and 4.8), but the 

phosphorylation of JNK1/2 was greatly impaired and the phosphorylation of 

p38vanished in the TAB2/3 DKO cells (Figs 4.6 and 4.8). Conversely, the re-expression 

of TAB2 in TAB1/2/3 triple KO cells restored both JNK1/2 and p38 phosphorylation 

(Fig 4.9C).  In contrast, the activation loops of TAK1, IKK, JNK1/2 and p38 and p38 

were all phosphorylated normally in TAB1 KO cells (Figs 4.3 and 4.5), Taken together, 

these findings indicate that TAB2/3, but not TAB1, are required for the TAK1-catalysed 

phosphorylation of MKK4 and/or MKK7, which are the protein kinases phosphorylating 

the activation loop of JNK (Section 1.2.7.2, [171]).  

However, the activation of JNK is unique among MAP kinase family members 

since the threonine and tyrosine residues in the activation loop are phosphorylated by 

distinct upstream kinases, MKK7 phosphorylating the threonine and MKK4 

phosphorylating the tyrosine residue, at least in vitro [204,220]. Since the phospho-

specific antibody used to immunoblot JNK1/2 only recognises the JNKs phosphorylated 

at both sites, it is unclear whether the reduced phosphorylation of JNK1/2 in TAB2/3 

DKO cells results from the failure of the TAB1-TAK1 to phosphorylate MKK4, MKK7 or 

both kinases. This could be addressed in the future by immunoblotting extracts from 

wild-type and TAB2/3 DKO cells with antibodies that recognise the individual 
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phosphorylated site in the activation loop of JNK, or that detect the dual 

phosphorylation on MKK4 or MKK7, respectively. The knockout study indicated that 

although both MKK4 and MKK7 are required for environmental stress-induced JNK 

activation, the pro-inflammatory cytokines, including TNF and IL-1, trigger the 

activation of JNK via MKK7 alone in MEFs (Fig 5A in [184]), suggesting that the relative 

contribution of MKKs is highly dependent on stimulus. It would be informative to 

generate single or double knockout clones of MKK4 and MKK7 in IL-1R* cells, and 

investigate whether MKK7 is the primary regulator of JNK activation in the innate 

immune signalling pathway. 

The dramatic reduction of JNK phosphorylation in TAB2/3 DKO cells raises 

another possibility that the regulatory subunits TAB2 and TAB3, in addition to their 

roles in interacting with K63-Ub chains (Section 1.2.4.3), may also participate in 

directing TAK1 to specific substrates, such as MKK4/7. The re-expression of TAB2 

truncation mutants lacking different domains may identify which region of the protein 

is responsible for this targeting function. A similar guiding function has been reported 

for other regulatory subunits of protein kinases. For example, the C-terminal zinc 

finger domain of NEMO interacts with IB thereby directing the canonical IKK 

complex to IBand facilitating the phosphorylation of this substrate (Section 1.2.5, 

[112]).  

The disappearance of IL-1-triggered p38 phosphorylation in TAB2/3 DKO cells 

may result from several reasons. First, the stability of p38 may require TAB2 and/or 

TAB3. The test in the total extract of DKO cells immunoblotted with p38 specific 

antibody would solve this puzzle. Second, TAB2 and/or TAB3 are needed to activate 

the protein kinase phosphorylating p38. Previous study using MKK3-deficient and 



104 
 

MKK6-deficient MEFs has demonstrated that both MKK3 and MKK6 are responsible for 

the environmental stress-induced phosphorylation of p38, but the disruption of MKK6 

gene alone is sufficient to prevent p38 phosphorylation in response to TNF (Fig 4E in 

[221]). It is necessary to investigate whether MKK6 is the major regulator in the 

phosphorylation of p38 in IL-1 signalling, which could be fulfilled by generating MKK6 

knockout IL-1R* cells. It is equally important to examine if MKK6 and MKK3 are 

activated in the IL-1-stimulated TAB2/3 DKO cells.  

Besides JNK and p38, ERK1/2 MAP kinases are another classical MAP kinase tier 

(Section 1.2.7.2). The IL-1-dependent phosphorylation of ERK1/2 occurred normally in 

TAB2/3 DKO cells for up to 30 min (Fig 4.15). These MAP kinase family members are 

known to be activated by MKK1 and MKK2 (also known as MEK1 and MEK2), which are 

themselves activated by Tpl2, which is activated by IKK (Section 1.2.7.1). Consistent 

with this pathway, I found that Compound 1 (C1), a potent and relatively specific 

inhibitor of Tpl2, blocked the IL-1-dependent phosphorylation of ERK1/2 (Fig 4.16).  

Tpl2 is also reported to be the protein kinase that activates MKK3 and MKK6 in the 

MyD88 signalling system, at least in BMDMs [183]. However, I did not observe any 

reduction in the IL-1-induced phosphorylation of p38 in the wild type IL-1R* cells nor 

p38 in TAB2/3 DKO cells when C1 was included in the culture medium (Fig 4.16). This 

suggests that IL-1-induced MKK4 activity is sufficient to phosphorylate p38 in these 

cells if MKK3 and MKK6 are not activated, and that some other kinase rather than 

MKK3 and MKK6 mediate the phosphorylation of p38, at least in IL-1R* cells. The 

potent and specific inhibitors of MKK3 and MKK6 are therefore essential for further 

investigation in the future. 
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Figure 4.15 The phosphorylation of ERK1/2 in IL-1R* cells lacking expression of TAB2 and 
TAB3. (A, B) Wild type (WT) IL-1R* cells or TAB2/3 KO cells (clone 4 from Fig 4.6A) were 

stimulated for up to 60 min (A) or 120 min (B) with 5 ng/ml IL-1. Cells were lysed and 
subjected to SDS/PAGE, followed by transfer to PVDF membranes and immunoblotting with 
the antibody recognising dual phosphorylation of ERK1/2 at Thr202 and Tyr204. 

 
Figure 4.16 The effects of Tpl2 inhibitor C1 on IL-1 signalling in IL-1R* cells lacking 
expression of TAB2 and TAB3. Wild type (WT) IL-1R* cells or TAB2/3 KO cells (clone 4 from Fig 

4.6A) were treated with Tpl2 inhibitor C1 (10 M) for 60 min, and then stimulated for the 

times indicated with 5 ng/ml IL-1. Cells were lysed and subjected to SDS/PAGE, followed by 
transfer to PVDF membranes and immunoblotting with the antibodies indicated. 

4.3.3 The mechanism of activation of the TAK1 complex 

The notion that the activation of the TAK1 complex is dependent on its 

regulatory subunits TAB2 and TAB3 has been established for many years [82]. Here I 

demonstrated that the IL-1-induced activation of TAK1 occurs by two different 

mechanisms in IL-1R* cells: the activation of TAB2/3-TAK1 complex relies on the 
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association between TAB2/3 and K63-Ub chains, but it does not require TRAF6 E3 

ligase activity; the activation of TAB1-TAK1 complex needs the E3 ligase activity of 

TRAF6, but the details remain elusive.  

4.3.3.1 The mechanism of activation of the TAB2/3-TAK1 complex 

In the TAB1 KO cells, the IL-1-dependent activation of TAB2/3-TAK1 complex 

was rapid, robust and only slightly less sustained than in TAB1-expressing IL-1R* cells 

(Figs 4.3 and 4.5). The transcription of IL-8 and immediate early genes are well 

stimulated (Fig 4.4). However, the re-expression of wild type TAB2, but not an Ub-

binding-deficient version of TAB2, restored IL-1-induced signalling in cells devoid of all 

three TABs (Fig 4.9C). These findings support the view that the activation of the 

TAB2/3-TAK1 complex is dependent on the interaction of TAB2/3 subunits with K63-Ub 

chains, which is consistent with the model proposed previously from studies in vitro 

[82].  

Dr Sam Strickson in our laboratory recently found that the IL-1 signalling, which 

is lost in TRAF6-deficient IL-1R* cells, could be partially rescued by the re-expression of 

E3 ligase-inactive TRAF6 mutants [210], indicating that TRAF6 E3 ligase activity is not 

essential for IL-1 signalling. Consistent with these results, I found that the deletion of 

TRAF6 in the TAB1 KO IL-1R* cells eliminated TAK1 activation in response to IL-1 

stimulation (Fig 4.11A), which was rescued by the re-expression of wild type TRAF6 

and partially rescued by E3 ligase-inactive TRAF6 mutants (Fig 4.11B).  

Sam Strickson also found that the re-expressed E3-ligase-inactive TRAF6 

mutant was only able to rescue the IL-1-induced activation of the complete TAK1 

complex when two other E3 ligases, termed Pellinos 1 and 2, were present [210]. 

Given that the E3-ligase inactive TRAF6 can rescue the IL-1-induced activation of the 
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TAB2/3-TAK1 complex (Fig 4.11B) but not TAB1-TAK1 complex in the presence of 

Pellinos 1 and 2 (Fig 4.10D, discussed below), it is proposed that Pellinos 1 and 2 are 

mainly involved in the activation of the TAB2/3-TAK1 complex. Previous studies 

showed that Pellinos 1 and 2, through their Fork-Head-Associated (FHA) domains, 

interact with phosphorylated threonine residues on IL-1-activated IRAK1 [52,222]. 

IRAK1 then phosphorylates Pellinos 1 and 2 converting them from inactive to active E3 

ligases [223,224]. Taken together, these findings suggest that in cells expressing E3-

inactive TRAF6 mutant, the role of TRAF6 appears to enable Pellino1/2-generated K63-

Ub to activate the TAB2/3-TAK1 complex in an unknown way. This is supported by the 

rapid IL-1-dependent association between TAB2, TAK1 and TRAF6 in the IL-1R 293 cells 

(Fig 5 in [225]). To understand the physiological significance of the E3 ligase activity of 

Pellino1/2, our laboratory are currently crossing knock-in mice that express E3 ligase-

inactive mutants of Pellino1/2 to knock-in mice that express an E3 ligase-inactive 

mutant of TRAF6. 

The expression of the IRAK1 protein is essential for the IL-1-dependent 

activation of TAK1 in IL-1R* cells. Interestingly, the IL-1-stimulated ubiquitylation of 

IRAK1 was unaffected in Pellino1/2 KO cells, enhanced in TRAF6 KO cells and abolished 

in Pellino1/2/TRAF6 triple KO cells [210]. Taken together, these results indicate that 

Pellino1/2 and TRAF6 function redundantly in the ubiquitylation of IRAK1 and that 

IRAK1 ubiquitylation may be a prerequisite to activate the intact TAK1 complex.  

Earlier studies in our laboratory demonstrated that the co-transfection of wild-

type IRAK1 and Pellino2, but not inactive forms of these proteins, causes the formation 

of K63-Ub chains on IRAK1, and the transfection of Pellino2 alone triggers the 

polyubiquitylation of endogenous IRAK1 with K63-Ub chains (Fig 7 in [223]). Two of the 
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sites on IRAK1 ubiquitylated by Pellino1 in vitro were identified as Lys355 and Lys397 

(Fig S3 in [224]). Lys134 and Lys180 have also been suggested to undergo 

ubiquitylation, because their mutation to arginine suppressed IL-1 signalling in MEFs 

(Fig 5C in [226]). Further analysis is needed to investigate whether the IL-1-dependent 

ubiquitylation of these four lysine residues occurs in cells [226].  It is also essential to 

identify the key lysine residue(s) modified by K63-Ub chains on other constituents in 

Myddosome and perform mutagenesis of these sites to elucidate which pools of K63-

Ub chains are required for the activation of the TAB2/3-TAK1 complex. In addition, 

three ubiquitylation sites have been identified on Pellino 1 in vitro (Fig S3 in [224]), 

thus these potential pools of Ub chains may also contribute to the activation of TAK1 

complex in cells. 

Interestingly, Xia et al reported that the unanchored Ub chains purified from IL-

1-stimulated IL-1R 293 cell line are capable of activating TAK1 complex in vitro (Figs 3 

in [97]). If this operates in cells, the ubiquitylation on Myddosome components may 

not be essential. Alternatively, the working hypothesis would be that IL-1-activaed 

IRAK1 recruits and activates Pellinos 1/2, which catalyse the formation of free Ub 

chains that, with the assistance of TRAF6, are recognised and bound by TAB2 or TAB3 

in TAK1 complex, leading to subsequent activation. 

4.3.3.2 The mechanism of activation of the TAB1-TAK1 complex 

In the current study, I found that the IL-1 induced activation of the TAB1-TAK1 

complex is rapid and robust, but more transient in TAB2/3 DKO IL-1R* than that 

observed in TAB2/3-expressing IL-1R* cells (Figs 4.6 and 4.8). The transcription of 

immediate early genes is also stimulated, but not for IL-8 (Fig 4.7). In addition, the re-

expression of wild type TAB1 rescued IL-1 signalling in the TAB1/2/3 triple KO cells (Fig 
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4.9B). These observations demonstrate that the TAB1-TAK1 complex can be activated 

transiently by IL-1, but it fails to sustain the signal after 60 min. 

The additional knockout of TRAF6 in the TAB2/3 DKO IL-1R* cells prevented the 

IL-1-induced TAK1 activation, demonstrating an essential role of TRAF6 in activating 

the TAB1-TAK1 complex. However, in contrast to the TAB2/3-TAK1 complex in 

TAB1/TRAF6 DKO cells, the activation of the TAB1-TAK1 heterodimer was partially 

restored by wild type TRAF6, but not by E3-ligase-deficient TRAF6 mutants (Fig 4.10C 

and D). These findings imply that the E3 ligase activity of TRAF6, and presumably the 

Ub chains generated by TRAF6 are required for the activation of the TAB1-TAK1 

complex. I attempted to examine the importance of K63-Ub chains in the TAB2/3 DKO 

IL-1R* cells by knocking down the Ubc13 E2 conjugating enzyme with specific shRNAs 

[158], However, as discussed earlier, the complete knock-out of Ubc13 drastically 

reduced the rate of cell proliferation and insufficient cells were produced for any 

experiments (data not shown).  

Nevertheless, an in vitro assay found that the TAB1-TAK1 complex could not be 

activated by the Ub chains synthesized by TRAF6/Ube13-Uev1a in vitro (Fig 2a in [76]). 

In addition, to my knowledge, no Ub-binding domain has so far been identified and 

reported in either TAK1 or TAB1 [44]. It would therefore appear that an intervening 

step must exist which links the K63-Ub chains to the activation of the TAB1-TAK1 

complex in cells. An additional component(s), including a kinase(s), E3 ligase(s), or an 

unidentified interacting protein(s), may be introduced into the signalling complex by 

the TRAF6-catalysed Ub chains, which then participates in the activation of TAB1-TAK1 

complex in cells.  
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One possibility is that TRAF6-generated Ub chains activate another protein 

kinase that phosphorylates TAK1 at Thr187 and triggers its activation. In the current 

study, I found that MAP4K2 phosphorylates Thr187 on wild type TAK1 as well as on the 

catalytically inactive TAK1 [D175A] mutant in an in vitro kinase assay (Figs 4.13C and D), 

raising the possibility that MAP4K2 contributes to the phosphorylation and the 

activation of TAK1 in cells. The generation of a MAP4K2 knockout in TAB2/3 DKO IL-

1R* cells should help to clarify its physiological role for the activation of TAB1-TAK1 

complex. However, it may also be necessary to knock-out the closely related kinases 

MAP4K3 and MAP4K5 to fully address this issue. 

Several previous studies suggested that TAK1 is activated by auto-

phosphorylation and auto-activation [87,88]. In the current study, I found that the 

TAK1 inhibitor NG25 blocked the phosphorylation at Thr187 on TAK1 (Fig 4.17). 

Similarly, I discovered that the wild type TAK1, but not catalytically inactive TAK1 

[D175A] mutant, restored the phosphorylation of TAK1 at Thr 187 and IL-1 signalling in 

the TAK1-deficient IL-1R* cells (Fig 4.2B). However, these results cannot completely 

exclude the possibility that a separate “upstream” kinase phosphorylates TAK1 at 

Thr187. In fact, the NG25 compound is reported as a dual inhibitor able to block not 

only TAK1 but also MAP4K2 [199]. The mutation of Asp175, which is in vicinity of 

Thr187, to Ala may result in an inhibitory conformation that prevents the recognition 

of Thr 187 by an upstream kinase(s). It is therefore necessary to test at least one more 

catalytically inactive TAK1 mutant, such as TAK1 [K63W] mutant. A new TAK1 inhibitor 

with higher potency and specificity would also help to clarify whether Thr187 is auto-

phosphorylated in cells. 
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Figure 4.17 The effects of TAK1 inhibitor NG25 on IL-1 signalling in wild type IL-1R* cells and 
IL-1R* cells lacking expression of TAB2 and TAB3. Wild type (WT) IL-1R* cells or TAB2/3 KO 

cells (clone 4 from Fig 4.6A) were treated with TAK1 inhibitor NG25 (5M) for 60 min, and then 

stimulated for the times indicated with 5 ng/ml IL-1. Cells were lysed and subjected to 
SDS/PAGE, followed by transfer to PVDF membranes and immunoblotting with the antibodies 
indicated. The results are representative of at least three independent experiments. 
 

The TAB1[F484A] mutant, which disrupts the association between TAK1 and 

TAB1 (Section 1.2.4.2, [92]), was unable to restore IL-1-signalling in TAB1/2/3 TKO cells 

(Fig 4.18), which suggests that this interaction is essential for TAK1 activation. Instead 

of directly phosphorylating Thr187 within the activation loop of TAK1, the putative 

“upstream” kinase may also phosphorylate TAB1 and/or TAK1 at other amino acid 

residue(s) and induce a conformational change that permits TAK1 to auto-

phosphorylate Thr187. I exploited mass spectrometry to scrutinise the 

phosphorylation states of immunoprecipitated TAK1 and TAB1 from IL-1-stimulated 

TAB2/3 DKO cells. Several novel IL-1-dependent phosphorylation sites were identified 

(Table 4.1), including Ser417 and Thr476 in the TAB2/3-binding domain of TAK1. It is 

therefore possible that these phosphorylation events mimic the conformational 

change induced by the association of TAB2/3 and K63-Ub chains, leading to the auto-
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phosphorylation of TAK1.  In addition, I found that IL-1-induced the phosphorylation at 

Ser469 in the TAK1-binding region of TAB1. The phosphorylation of this site by an 

unknown “upstream” kinase could also promote TAK1 auto-phosphorylation via a 

conformational alteration. Further investigation, including the reconstitution of 

phospho-mimetic mutants of TAK1 and TAB1 will be necessary to reveal the biological 

significance of these phosphorylation events. 

 
Figure 4.18 The interaction between TAK1 and TAB1 is required for IL-1signalling. 
TAB1/TAB2/TAB3 triple KO IL-1R* cells (clone A4 from Fig 4.6A) re-expressing HA-tagged wild 

type TAB1 or TAB1[F484A] mutant were incubated for 16 h with 1 g/ml doxycycline to induce 
the expression of these proteins. These cells and wild type IL-1R* cells (WT) were stimulated 

for 10 min with 5 ng/ml IL-1. TAB1 was immunoprecipitated from the extracts of cells 

(Section 2.2.3.4). Immunoprecipitates and cell extracts (20 g) were denatured in SDS, 
subjected to SDS/PAGE and immunoblotted with the antibodies indicated. The results are 
representative of at least three independent experiments. 
 

Another hypothesis is that some other E3 ligase, working together with TRAF6, 

contributes to the activation of TAB1-TAK1 complex. A recent paper claimed that an E3 

ligase, termed Huwe1, catalyses the formation of K48-Ub linkages on pre-formed K63-

Ub oligomers synthesized by TRAF6, forming K48/K63 hybrid ubiquitin chains [227]. 

The knockdown of Huwe1 reduced the activation of TAK1 and its downstream 

signalling. These interesting data suggest a simple scenario for the activation of TAB1-

TAK1 complex, namely that the TAB1-TAK1 complex binds directly binds to a unique 

topological structure formed by branched-Ub chains. It would be interesting to 
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investigate whether the TAB1-TAK1 complex is activated by K48/K63 branched-Ub 

chains in vitro.  Since the association between TAK1 and TAB1 is critical for TAK1 

activation, TAB1 may play an essential role in the formation of an interface between 

the complex and branched-Ub chains. Rapid hydrolysis of the K48-ub linkages could 

explain the transient activation of the TAB1-TAK1 complex.  

While the current project was undergoing, Ori et al made conditional TAB2/3 

knock-out mice and they reported that the activation of the MAP kinase cascade and 

the NF-B pathway was not impaired, at least for the first 20 min after stimulation of 

BMDM with the TLR9 ligand CpG DNA (Fig 7H in [101]). This is consistent with the 

transient activation of the TAB1-TAK1 complex in the TAB2/3 DKO IL-1R* cells (Figs 4.6 

and 4.8). Interestingly, the BMDM lacking both TAB2 and TAB3 produced IL-6, IL-12p40, 

and TNF in similar amounts to wild type cells in response to LPS, CpG DNA or Pam2CSK4 

(Fig 7E in [101]). These results differ from the failure of IL-1 to induce IL-8 production 

in TAB2/3 DKO IL-1R* cells (Figs 4.7C and 4.8C). This could be a real difference and 

mean that activation of the TAB-TAK1 heterodimer is sustained in BMDM. However, it 

could also be explained, at least in part, by the Cre/LoxP-mediated conditional deletion 

of TAB2 being incomplete (Figs 7A,B in [101]), so that TAB2 was only partially deleted 

in these cells. Another possible explanation is that in BMDM, there is an alternative 

pathway, which can compensate for the absence of the TAK1-dependent network to 

produce the pro-inflammatory cytokines. 

In summary, the findings in the current study allow me to draw a conclusion 

that the TAK1 complex is activated via two distinct mechanisms (Fig 4.19). The working 

model stated in this figure is supported by the data derived from my project and other 

relevant data obtained by Dr Sam Strickson in our laboratory. One mechanism is to 
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activate the TAB2/3-TAK1 complex, in which TRAF6 acts as an adaptor protein to 

couple Pellino1/2-generated K63-Ub chains (possibly on the ubiquitylated IRAK1 or 

other components in Myddosome) to TAB2/3-TAK1 complex. One or more of these 

pools of K63-Ub chains are recognised and bound by TAB2 or TAB3 in the TAK1 

complex, followed by a conformational change and subsequent auto-phosphorylation 

and activation of TAK1.  The other mechanism is TAB2/3-independent and involves the 

activation of the TAB1-TAK1 complex, in which TRAF6 generates K63-Ub chains to 

recruit and/or activate a yet identified component(s), that induces the phosphorylation 

and activation of TAK1. 

The results presented in this Chapter provide the piece of genetic evidence that 

has been missing for more than ten years, which support the current established 

model of the TAK1 protein kinase activation. In addition, the findings on the TAB1-

TAK1 complex suggest a novel activation mechanism of TAK1 in the MyD88-dependent 

signalling pathway. The discovery raises the question of whether this novel TAK1 

activation also exists in other critical signalling pathways triggered by agonists such as 

TNF in innate immunity, or the antigenic stimulation in T and B cells in the adaptive 

immune system. It also implies that the interplay between phosphorylation and 

ubiquitylation is not as simple and straightforward as expected. In fact, the studies on 

the polyubiquitin chain-dependent activation of protein kinases could be subdivided 

into several aspects: 1. whether the kinase of interest is involved in different 

complexes; 2. whether each complex requires the same population of ubiquitin chains; 

3. whether the E3 ligase(s) and its activity is needed for the activation of kinase 

complex. Since the cross-talk between phosphorylation and ubiquitylation has been 

observed and extensively investigated in many cellular events, the current study and 
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ideas that it has generated should be beneficial in tackling similar issues in other areas 

of biology.   

 
Figure 4.19 Two distinct mechanisms of TAK1 activation. IL-1-stimulation triggers the 
formation of the Myddosome, which recruits and activates the E3 ligases TRAF6 and Pellino1/2. 
In the absence of TAB2 and TAB3, TRAF6 catalyses the formation of K63-Ub chains, which 
transiently activate TAB1-TAK1 complex (possibly by activating a yet identified protein X). In 
the absence of TAB1, TRAF6 and Pellino1/2 generate K63-Ub chains on components in 
Myddosome. In addition, TRAF6 couples K63-Ub chains, possibly on IRAK1 or other 
components in Myddosome, to TAB2 and/or TAB3 regulatory subunit in TAB2/3-TAK1 complex. 
The association between TAB2/3 and K63-Ub chains leads to a conformational change that 
induces the auto-phosphorylation and activation of TAB2/3-TAK1 complex.  
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Chapter 5 General discussion of other mechanisms that have been proposed for 

the regulation of TAK1 complex and canonical IKK complex 

5.1 How is phosphorylation within the activation loop of TAK1 regulated? 

5.1.1 Phosphorylation of other sites on TAK1 

The phosphorylation of TAK1 within its activation loop has been established to 

be essential for its activation [87,88]. However, phosphorylation sites outside the 

activation loop have also been reported to play a role in modulating TAK1 activity. 

Ouyang et al reported that Ser439 in human TAK1 (Ser412 in mouse TAK1) became 

phosphorylated in IL-1-stimulated IL-1R 293 cells, LPS-stimulated RAW cells and TNF-

stimulated HEK293T cells (Fig 1A in [228]). The re-expression of the TAK1[Ser439Ala] 

mutant in TAK1 KO MEFs slightly reduced the LPS-stimulated activation of MAP kinases 

and NF-B (Fig 1B, C in [228]). Furthermore, they reported that the siRNA knock-down 

of cAMP-dependent protein kinase catalytic subunit  (PKAC) and X-linked protein 

kinase (PRKX) alone and in combination suppressed the IL-1-dependent 

phosphorylation at Ser439 in HeLa cells and in LPS-stimulated RAW cells (Figs 6B,C in 

[228]).  In order to test the validity of this paper, I examined the phosphorylation at 

Ser439 in IL-1R* cells with a validated phospho-specific antibody recognising phospho-

Ser439 (Fig 5.1A). However, although Ser439 was phosphorylated, I found that it was 

phosphorylated in cells not stimulated with IL-1 and no increase in phosphorylation 

was observed upon stimulation with IL-1 (Fig 5.1B). The presence of TAK1 inhibitor 

NG25, which prevented TAK1 activity, did not affect the phosphorylation at Ser439 (Fig 

5.1B). These findings suggest that the phosphorylation at Ser439 is constitutive and 

does not contribute significantly to the activation of TAK1, at least in IL-1R* cells. It 

would be essential to assess whether the re-expressed TAK1[Ser439Ala] mutant could 

restore IL-1 signalling in TAK1 KO IL-1R* cells. 
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Figure 5.1 The phosphorylation of TAK1 at Ser439 has little effect on TAK1 activity. (A) 

Validation of phospho-specific antibody recognising phospho-Ser439 on TAK1. Myc-
tagged wild type TAK1 (WT) or TAK1[S439A] mutant ([S439A]) were transiently transfected in 
the TAK1 KO IL-1R* cells. These cells, together with wild type IL-1R* cells (WT) and TAK1 KO 

cells not re-transfected with TAK1, were stimulated with 5 ng/ml IL-1 for 10 min, then 
subjected to SDS/PAGE and immunoblotted with the antibodies indicated. This experiment 
was carried out by Dr Sam Strickson. (B) The Ser439 was constitutively phosphorylated and not 
affected by TAK1 inhibitor. Wild type IL-1R* cells were incubated for 1 h without (-) or with (+) 

TAK1 inhibitor NG25 at indicated concentration (M). Cells were then stimulated with 5 ng/ml 

IL-1 for 10 min. Other details are as in A. 

5.1.2 The dephosphorylation of TAK1  

Protein phosphorylation is a reversible covalent modification and the 

dephosphorylation of proteins is carried out by protein phosphatases. Since the 

activation of TAK1 requires phosphorylation at Ser and Thr residues, Ser/Thr-specific 

phosphatases are required to inactivate TAK1 [229].  

Four major types of Ser/Thr protein phosphatases (PP1, PP2A, PP2B, and PP2C) 

exist in cells. Early studies reported that two isoforms of PP2C (PP2C1 and PP2C) co-

immunoprecipitated with endogenous TAK1 in 293 cells (Fig 5 in [230]) and the ectopic 

expression of PP2Cs suppressed IL-1-induced NF-B activity [230,231]. However, 

although the TAK1 catalytic subunit can be dephosphorylated by PP2Cs in vitro (Fig 4 in 

[231]), their physiological role in regulating TAK1 in cells and the sites that they 

dephosphorylate on TAK1 has not yet been determined.  
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The PP2A-related protein phosphatase 6 (PP6) was later found to associate 

constitutively with endogenous TAK1 in IL-1R 293 cells (Fig 4C in [232]). Moreover, the 

knockdown of PP6 increased the IL-1-induced phosphorylation of TAK1 at Thr187 in IL-

1R 293 cells (Fig 6B in [232]), suggesting that PP6 is involved in the dephosphorylation 

of TAK1 at this key phosphorylation site. In contrast, the siRNA knockdown of the PP2A 

catalytic subunit had no effect on the IL-1-stimulated phosphorylation of TAK1 at 

Thr187 in these cells (Fig 6C in [232]), indicating that PP2A does not contribute to the 

negative regulation of IL-1-induced TAK1 phosphorylation at least in IL-1R 293 cells.  

Calyculin A, a potent inhibitor of all members of the PP1 and PP2A families, 

including PP6, was reported to increase TAK1 phosphorylation using a phospho-

specific antibody (presumably against Thr187 but not specified in the paper) in the wild 

type and TAB2-deficient keratinocytes, but not in TAB1 KO keratinocytes. The re-

expression of TAB1 in these cells restored the calyculin A-induced TAK1 

phosphorylation (Fig 3 in [233]).  The interpretation of this interesting observation is 

unclear but one possibility is that TAB1 recruits a TAK1-activating kinase responsible 

for the basal phosphorylation of TAK1 in cells where the MyD88 signalling pathway is 

not activated. It would be interesting to compare how calyculin A affects TAK1 

phosphorylation at Thr187 in the wild type, TAB2/3 DKO and TAB1 KO IL-1R* cells that 

I have generated. IL-1 might activate the TAB1-TAK1 complex by inducing a transient 

inhibition of a PP2A family member, such as PP6.  

A recent paper reported that the knockdown of PP1 reduced the 

phosphorylation of TAK1 at Ser439 but not Thr187 in LPS-stimulated RAW cells (Fig 2C 

in [234]), suggesting that PP1 may be the phosphatase that dephosphorylates this site 
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in cells. However, the significance of these observations is unclear because Ser439 

seems to have little or no effect on TAK1 catalytic activity.  

Nearly all investigations on the protein phosphatases controlling TAK1 activity 

have been based on the RNAi-mediated knockdown of PP6, PP2A and PP1, or the 

inhibitor calyculin A, which inhibits almost all members of the PPP (phosphoprotein 

phosphatase) family of Ser/Thr-specific phosphatases. With the development of the 

CRISPR/Cas9 genetic editing technology, it would be of interest to knockout these 

phosphatases completely in the IL-1R* cells, and study how this affects the 

phosphorylation of each of the components of the TAK1 complexes using advanced 

labelling methods, like multiplex SILAC [235] or stable isotope dimethyl labelling 

[236,237], as well as the powerful mass spectrometry machinery.  This may enhance 

our understanding of the exact roles of these phosphatases in regulating TAK1 

phosphorylation and activation in response to different stimuli.   

5.1.3 The ubiquitylation of TAK1 

Several research groups have reported that TAK1 becomes modified by 

ubiquitylation at different lysine residues.  Lys34 of TAK1 was predicted to be a site of 

ubiquitylation, since this lysine residue is followed by an EIE sequence, which is similar 

to the KEEE motif predicted to be a preferred site of ubiquitylation by bioinformatics 

analysis [238]. The IL-1-induced formation of ubiquitin chains identified in TAK1 

immunoprecipitates was largely reduced when the TAK1[K34R] mutant was over-

expressed in HEK293T cells, and the phosphorylation of TAK1 at Thr187 and p38 MAP 

kinases was also impaired (Fig 5f in [239]).  It is suggested from these experiments that 

TAK1 ubiquitylation may influence its phosphorylation and activation.  
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Later, Yamazaki et al reported that Lys209 was the predominant site of 

ubiquitylation on TAK1, because the TAK1[K209R] mutant, co-transfected with TRAF6 

and K63Ub, failed to induce the presence of ubiquitin chains in TAK1 

immunoprecipitates, in contrast to wild type TAK1 or TAK1 mutants, in which other Lys 

residues were mutated to Arg (Fig 1D in [240]). Moreover, the reconstitution of the 

TAK1[K209R] mutant in TAK1 KO MEFs only partially restored the IL-1-induced 

phosphorylation of TAK1 at Thr187 and the activation of the NF-B pathway (Fig 2 in 

[240]). In contrast, IL-1 signalling was entirely rescued by the overexpression of wild 

type TAK1 and the TAK1 [K34R] mutant, suggesting that Lys34 is not the key site on 

TAK1, at least in the IL-1 signalling network.  

However, another research group led by Jianhua Yang challenged both the 

above mentioned studies, claiming that it is K158 but not K34 nor K209 that is required 

for TRAF6-mediated TAK1 polyubiquitylation [241,242].  The reconstitution of the 

TAK1[K158R] mutant in TAK1 KO MEFs failed to rescue the stimulation-dependent 

activation of JNK1/2 and p38 MAP kinases, nor the canonical  IKK complex, which were 

restored by the re-expression of wild type TAK1, TAK1[K34R] or TAK1[K209R] mutants 

in response to TGF- or IL-1, respectively [241,242]. A similar study from the same 

laboratory showed that IL-1 or TNF induced the ubiquitylation of overexpressed wild 

type TAK1 but not overexpressed TAK1[K158R] in HeLa cells. The phosphorylation of 

the TAK1 mutant at Thr187 was also not detectable when Lys158 was mutated to Arg 

(Fig 4A, B in [243]). Given that the same cell line (TAK1 KO MEFs) and stimuli (TGF- or 

IL-1) were used in all these studies, the reasons for all these different observations is 

unclear and may results from the over-expression of re-introduced wild type TAK1 and 

its mutants. Moreover, none of these studies used wild type MEFs as a positive control. 
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Additionally, the mutation of Lys residues to Arg may affect TAK1 regulation and 

activity by a mechanism that is unrelated to the loss of ubiquitylation.   

To understand whether TAK1 catalytic activity is controlled by ubiquitylation, it 

is clearly critical to undertake a rigorous investigation to establish whether the 

endogenous TAK1 becomes ubiquitylated and, if so, which lysine(s) on the endogenous 

TAK1 plays the role of ubiquitylation in regulating TAK1. To perform these experiments 

TAK1 immunoprecipitates should be digested with trypsin, ubiquitylated peptides 

enriched with a di-Gly specific antibody should be isolated and analysed by mass 

spectrometry to identify possible ubiquitylation sites on TAK1 [244,245]. I 

immunoprecipitated the endogenous TAK1 from the IL-1-stimulated IL-1R* cells lysed 

with the DUB inhibitor iodoacetamide, but failed to observe any ubiquitylated TAK1 in 

the immunoprecipitates when I probed them with a TAK1 specific antibody (data not 

shown). In the published studies [239–243] the possibility was not excluded that the 

ubiquitin chains found associated with TAK1 immunoprecipitates were not attached 

covalently to TAK1, but bound non-covalently to TAB2 and TAB3 subunits. Therefore 

these papers do not present convincing evidence that TAK1 was ubiquitylated. 

5.1.4 The deubiquitylation of TAK1 

Like phosphorylation, ubiquitylation is also a reversible modification. Fan et al 

built a library of expression vectors encoding 38 human USPs (Ub-specific peptidases), 

which are the largest subclass of deubiquitylases (DUBs). They found that USP4 was 

the only DUB that inhibited NF-B activation induced by the overexpression of TAK1 

and TAB1 in 293 cells (Fig 2a in [246]). The knockdown of USP4 not only increased the 

ubiquitylation of Flag-TAK1 in TNF-stimulated Flag-TAK1-expressing HeLa cells, but also 

enhanced NF-B activation in TNF-stimulated HeLa cells (Fig 7 in [246]), suggesting that 
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the deubiquitylation of TAK1 (or a component of the pathway “upstream” of TAK1) by 

USP4 negatively regulates TAK1 activation. Notably, CYLD, a DUB that cleaves both 

K63-Ub and Met1-Ub chains in vitro [98], did not inhibit TAK1 and TAB1 co-

overexpression-induced TAK1 polyubiquitylation (Fig 1 in [246]). 

In two subsequent studies, USP18 was reported to bind to the TAB1-TAK1 

complex and catalyse the deubiquitylation of TAB1-TAK1 [247,248]. Liu et al reported 

that the overexpression of both TAK1 and TAB1, but not TAK1 alone, resulted in 

measurable ubiquitylation of immunoprecipitated TAK1 which was abolished by the 

overexpression of wild type USP18 but not the USP18[C16S] inactive mutant in 293T 

cells (Fig 9 B,C in [247]). Yang et al reported that USP18 deubiquitylated K63-Ub but 

not K48-Ub chains in the transient transfection experiments in 293T cells (Fig 5A in 

[248]), and that knockdown of USP18 slightly enhanced the LPS-induced activation of 

MAP kinases and NF-B, and increased the transcription of genes encoding pro-

inflammatory cytokines and IL-6 secretion by about 50% in the THP-1 monocyte cell 

line (Fig 2 in [248]). Similar to the studies on TAK1 ubiquitylation discussed earlier, 

what is missing in these studies is any evidence that the endogenous TAK1 is 

ubiquitylated and whether it affects TAK1 phosphorylation.  

5.2 The regulation of TAK1 activation by the modification of its TAB subunits 

5.2.1 The phosphorylation and dephosphorylation of TAB subunits 

In earlier studies in our laboratory it was established that TAB1 is 

phosphorylated by p38 MAP kinase at Ser423, Thr431 and Ser438 in vitro and in IL-1-

stimulated KB cells and LPS-stimulated RAW cells. The phosphorylation at Ser423 and 

Thr431 was prevented by a p38 specific inhibitor, coincident with the enhancement 

of TAK1 catalytic activity (Figs 7,8 in [180]).  These studies suggest that p38 MAP 
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kinase-mediated TAB1 phosphorylation may serve as a negative feed-back mechanism 

for the regulation of TAK1 activity. The p38-dependent phosphorylation of TAB1 at 

Ser423 and Thr431 was also shown to inhibit TAK1 activation in the epidermal growth 

factor receptor (EGFR) signalling pathway in HeLa cells [249], suggesting that this 

negative feedback may be a general mechanism for controlling TAK1 activity.  

There is a serine rich area located near the C terminus of TAB1, in which six 

serine residues are clustered in the region comprising amino acid residues 449-461: 

HTQSSSSSSDGGL. Wolf and co-workers identified Ser452/453 and Ser456/457 as novel 

phosphorylation sites on TAB1 [250]. However, despite the potential role in regulating 

p38 MAP kinase activity and subcellular localization (Figs 4 and 5 in [250]), these 

phosphorylation events did not appear to affect the phosphorylation or ubiquitylation 

of TAK1 (Fig S3 in [250]), and therefore seem dispensable for TAK1 activation.   

A further study from our laboratory identified two IL-1-stimulated 

phosphorylation sites on TAB2 (Ser372 and Ser524) and three on TAB3 (Ser60, Thr404 

and Ser506) in IL-1R cells and MEFs [181]. Ser60 and Thr404 of TAB3 appear to be 

phosphorylated directly by p38α MAP kinase, while Ser506 is phosphorylated by 

MAPKAP-K2/MAPKAP-K3 (MAPK-activated protein kinase 2 and 3), which are protein 

kinases activated by p38 MAP kinase. The phosphorylation at these sites may 

therefore also contribute to the feedback control of TAK1. However, Ser372 and 

Ser524 of TAB2 are not phosphorylated by pathways dependent on p38α/β MAPKs, 

ERK1/2 or JNK1/2 [181]. The physiological functions of these phosphorylation events 

are unknown and require further investigation. 

In terms of dephosphorylation of TABs, Yang et al reported that dual-specificity 

phosphatase 14 (DUSP14, also known as MAPK phosphatase 6, MKP6) interacted 



124 
 

constitutively with TAB1 in murine primary T cells (Fig 3D in [251]), and overexpressed 

DUSP14 dephosphorylated TAB1 at Ser438 in HEK293 cells (Fig 4D in [251]). Moreover, 

DUSP14 deficiency enhanced the phosphorylation of TAB1 at Ser438, the 

phosphorylation of TAK1 (presumably at Thr187 but not specified in the paper), and 

activated MAP kinase and NF-B signalling in T cells stimulated by anti-CD3 plus anti-

CD28 antibodies or by phorbol 12-myristate 13-acetate (PMA) plus ionomycin (Fig 5 in 

[251]). These observations suggest that DUSP14 negatively regulates TAK1 activation 

either by the dephosphorylation of TAB1 at Ser438 or TAK1 at Thr187. It would 

therefore be interesting and important to investigate whether DUSP14 regulates TAK1 

activity in cells where TAB1 is replaced by the TAB1[S438A] mutant. 

5.2.2 The ubiquitylation of TAB subunits 

A recent study reported that in embryonic stem (ES) cells TGF- or EGF induced 

the Lys63-linked ubiquitylation of TAB1 and that this was catalysed by the RING 

domain in MEKK1 (MAP kinase/ERK kinase kinase 1), the only protein kinase that 

possesses an E3 ligase activity in its catalytic domain [252]. An MEKK1 mutant in which 

the E3 ligase activity was inactivated exhibited defective TAB1 ubiquitylation (Fig 4F in 

[252]), as well as defective JNK and p38 activation following TGF- stimulation (Fig 2 in 

[252]). The re-expression of TAB1 mutant in TAB1-deficient ES cells, in which four 

lysine residues were mutated to alanine (K294A, K319A, K335A and K350A), failed to 

restore TAK1 phosphorylation and MAP kinase activation by TGF- (Fig 4I in [252]), 

suggesting that TAB1 underwent ubiquitylation at multiple sites and that one or more 

of these lysine residues are critical for TAK1 phosphorylation in TGF--stimulated ES 

cells. These experiments implied that ubiquitylation of TAB1 may be important for 

TGF- signalling. However, in these studies the deletion of TAB1 abolished TGF--
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induced TAK1 phosphorylation and MAP kinase activation (Fig 4G in [252]), which is 

entirely different from my observations in IL-1-stimulated TAB1 KO IL-1R* cells 

(Section 4.2.3).  Moreover, Gopal Sapkota’s lab in our Unit reported that TGF 

stimulation does not activate TAK1 and that TGF-induced activation of p38 MAP 

kinases occurs normally in TAK1 KO MEFS and in HaCaT keratinocytes where TAK1 is 

knocked down (Figs 1 and 4 in [253]). However, it is possible that the TAK1 activation 

mechanism in TGF- signalling in ES cells differs from the MyD88 signalling network in 

HEK293 cells.  

Theivantherian et al recently reported that the E3 ubiquitin ligase Itch catalysed 

the Lys48-linked ubiquitylation of TAB1, leading to its degradation (Fig 3 in [254]). The 

Itch deficiency increased TAB1 abundance and sustained p38 phosphorylation for up 

to 2 hours in TNF-stimulated BMDMs, but the phosphorylation of MKK3/6 was 

decreased. The re-expression of wild type Itch, but not E3-ligase-inactive mutant, 

reversed this effect (Fig 4 in [254]).  Although TAK1 phosphorylation was not examined 

in this study, it is possible that Itch may play a role in TAK1 activation. An earlier study 

from the same group found that the abundance and the phosphorylation of TRAF2-

associated TAK1 was sustained for up to 60 min after TNF stimulation in BMDMs that 

lack either Itch E3 ligase or the DUB CYLD (Fig 5a in [255]), but the phosphorylation and 

activation of TAK1 in the cell extracts was not investigated. They concluded that Itch 

and CYLD formed a complex which sequentially cleaved K63-Ub chains and catalysed 

the formation of K48-Ub chains on TAK1 to terminate TNF signalling. 

5.2.3 Additional covalent modification of TAB subunits 

TAB1 and TAB3 have been reported to be modified by glycosylation with N-

acetylglucosamine (O-GlcNAcylation) [256,257]. Ser395 was identified as single O-
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GlcNAcylation site on TAB1, and the expression of TAB1 [S395A] mutant led to slightly 

reduced IL-1-dependent phosphorylation of TAK1 at Thr187 compared to wild type 

TAB1 when it was re-expressed in TAB1 KO MEFs (Fig 4 in [256]).  It was concluded that 

this modification is necessary for full activation of TAK1. However, I found that the 

expression of the TAB1 [S395A] mutant in TAB1/2/3 KO IL-1R* cells restored IL-1 

signalling similarly to wild type TAB1 (Fig 5.2).  

 
Figure 5.2 The mutation of Ser395 to Ala on TAB1 did not affect IL-1 signalling. The stable 
TAB1/2/3 triple KO cell lines which inducibly express HA-tagged wild-type TAB1 (WT) or 
TAB1[S395A] mutant ([S395A]) were established via retroviral transfection (Section 2.2.1.8.3). 

After doxycycline induction for 18 hours, cells were stimulated with 5 ng/ml IL-1 for 10 min. 

20 g total cellular extracts were loaded onto SDS-PAGE gel and transferred to PVDF 
membrane. Proteins were probed by indicated antibodies. 
 

Tao et al recently discovered that the TAB3 was O-GlcNAcylated at Ser408 by 

O-GlcNAc transferase (OGT) in the triple negative breast cancer (TNBC) cells. This 

modification was thought to be required for the phosphorylation of TAB3 at Thr404 

(Fig 4 in [257]), and the activation of TAK1 and NF-B (Fig 3 in [257]), based on studies 

in IL-1 stimulated MDA-MB-231 cells involving transient transfection of TAB3. It will be 

of interest to test whether the reconstitution of the TAB3[S408A] mutant restores IL-1-

induced TAK1 activation in TAB1/2/3 TKO cells. 
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5.2.4 Other TAK1 binding proteins 

At least two papers reported a new TAB member, termed TAB4 [258,259]. TAB4 

was initially identified as a type2A phosphatase-interacting protein (TIP). In transient 

transfection experiments, TAB4 co-immunoprecipitated with TAK1 but not the TAB1-

TAK1 complex (Fig 3A, [259]). TAB4 was shown to bind constitutively to the 

TAK1/IKKcomplex in human neutrophils [258], but the exact role of TAB4 remains 

elusive. In order to understand what the role of TAB4 in regulating TAK1 activation 

might be, it is critical to knock-out this protein in cells and investigate whether the 

activation of TAK1 by one or more stimuli is impaired.  

TAK1 and its regulatory subunit TABs have been reported to become covalently 

modified in several ways, including phosphorylation beyond the activation loop, 

ubiquitylation, and O-GlcNAcylation. At this moment, little hard evidence is present to 

support if any of them contributes to the activation of TAK1 complex. It is therefore 

suggested that the investigation on the regulation of TAK1 activation would be an 

important challenge in the future. 

5.3 Other mechanisms underlying the phosphorylation and activation of IKKs 

5.3.1 Kinases implicated in IKK activation 

It has been controversial whether TAK1 is the only kinase directly 

phosphorylating IKK in the MyD88 signalling network. Other MAP3Ks, such as 

members of the MEKK family, have also been proposed to phosphorylate IKK. Early 

studies revealed that MEKK1 activates IKKs in vitro [260], and that the overexpression 

of MEKK1 induced the activation of IKK and IKK in cells [261]. However, IL-1-

stimulated MEKK1-deficient MEFs exhibited similar NF-B activity to wild type MEFs, 
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suggesting that the endogenous MEKK1 is dispensable for activation of the canonical 

IKK complex (Fig 5B in [262]).  

Soon after, MEKK2 and MEKK3 were also shown to activate IKK and IKK in 

transient transfection experiments [263], and the deletion of MEKK3 was reported to 

impair the TNF-induced phosphorylation of IB and the activation of NF-B in MEFs 

[264]. In addition, these knockout studies demonstrated that MEKK3 is critical for the 

activation of IKK and subsequent induction of NF-B activity in MEFs, and that MEKK3, 

but not MEKK2, was essential for IL-1- or LPS-induced IL-6 production in MEFs (Fig 3 in 

[265]). Yao et al reported that the IL-1-stimulated phosphorylation of IB and 

activation of NF-B was not completely abolished in the TAK1-deficient MEFs or in wild 

type MEFs treated with a TAK1 inhibitor, but was entirely blocked in MEKK3-deficient 

MEFs treated with the TAK1 inhibitor (Fig 5 in [266]). It was concluded from these 

studies that TAK1 and MEKK3 both contribute to the activation of IKK and hence NF-

B. Furthermore, they reported that it was IKK, but not IKK, that was 

phosphorylated in the MEKK3-dependent, but TAK1-independent pathway in MEFs (Fig 

7 in [266]), and that NF-B was released from IB and activated without any IB 

degradation in this signalling axis (Fig 8 in [266]). Since these findings have only been 

reported by one laboratory, it will be important for at least one other lab to establish 

whether this is correct.  
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