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LRRK2 kinase in Parkinson’s disease 

Signalling analysis uncovers roles for Rab proteins and immune responses in Parkinson’s. 
Dario R Alessi1 and Esther Sammler1,2 

MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of 
Dundee, Dundee DD1 5EH. 2. Department of Neurology, School of Medicine, Dundee, 
Ninewells Hospital, Ninewells Drive, Dundee DD1 9SY, United Kingdom 
d.r.alessi@dundee.ac.uk and e.m.sammler@dundee.ac.uk 

Despite intensive research, attempts to pause or even just slow the progression of Parkinson’s 
have thus far failed. While most cases of Parkinson’s are idiopathic and with largely unknown 
aetiology, mutations in about 20 genes including LRRK2 (leucine-rich repeat kinase 2), cause 
rare, genetic Parkinsonism. In the case of LRRK2, all pathogenic mutations result in 
hyperactivation of the LRRK2 kinase, offering the prospect of elaborating disease-modifying 
treatments. Indeed, LRRK2 inhibitors have entered Phase I clinical trials. Data is also emerging 
for LRRK2 involvement in idiopathic Parkinson’s, suggesting that inhibitors may benefit 
patients beyond LRRK2 mutant carriers. Recent advances point towards LRRK2 controlling 
autophagy and lysosome function by phosphorylating a subgroup of Rab proteins and 
regulating their ability to bind cognate effector proteins. LRRK2 is highly expressed in immune 
cells. Intriguing research indicates that in early life, increased LRRK2 activity may protect 
against opportunistic pathogenic infection, but later, increases the risk of developing 
Parkinson’s, a concept known as antagonistic pleiotropy.  
Autosomal dominant missense mutations within the LRRK2 gene account for 1-2% of all 
Parkinson’s cases, and a much higher proportion in some populations (Ashkenazi Jews and 
North African Berbers) (1). LRRK2-associated Parkinson’s closely resembles idiopathic 
disease in terms of late age of onset, signs and symptoms (1). The penetrance of LRRK2 
mutations is incomplete and dependent on age and specific mutation. For example, the majority 
of carriers of the most common G2019S mutation may never develop disease (penetrance as 
low as 24%), while the R1441G mutation appears to be more penetrant (up to 95% in later life) 
(2, 3). Variations at the LRRK2 locus also mildly increase the risk for idiopathic Parkinson’s 
(1, 3). LRRK2 is a large protein (2527 residues) that in addition to its kinase domain possesses 
a second enzymatic GTPase domain (ROC/COR domain) as well as other motifs (Fig). The 
clearly pathogenic genetic changes cluster within the GTPase (e.g R1441G) as well as kinase 
domains (e.g. G2019S) and stimulate protein kinase activity. The G2019S mutation results in 
a moderate increase in kinase activity (~2-fold). Pathogenic mutations in the GTPase domain 
enhance GTP binding and stimulate LRRK2 activity to a greater extent (around 4-fold), 
through interactions with the Rab29 protein and the Golgi apparatus (4, 5). 

Much research, based on studying localization and verifying consequences of manipulating the 
expression of wild type and mutant forms of LRRK2, reveals that it plays a major role in 
vesicular membranes, as well as autophagy and lysosome, function (6). Recent work suggests 
that this role of LRRK2 could be mediated via the ability of LRRK2 to phosphorylate a 
subgroup of Rab GTPases, including Rab8A (Thr72) and Rab10 (Thr73), at a highly conserved 
site located at the centre of the effector binding motif of these GTPases (7, 8) (Fig). Rab 
proteins are master regulators of membrane trafficking, orchestrating vesicle formation, vesicle 
movement along actin and tubulin networks, as well as membrane docking and fusion; all 
important aspects in autophagy and lysosome biology. Consistent with Rab proteins 
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comprising relevant substrates for Parkinson’s, all pathogenic LRRK2 mutations tested 
enhance Rab phosphorylation in vivo (7,8).  

There is mounting evidence that disruption of Rab biology and membrane trafficking is 
involved in Parkinson’s. Mutations in genes encoding two Rab proteins (Rab29 and Rab39B) 
and at least 3 other membrane trafficking machinery components (VPS35, VPS13C, DNAJC6) 
are causally linked to Parkinson’s (3). Mutations in the PINK1 protein kinase are associated 
with young-onset recessive Parkinson’s, and PINK1 indirectly controls the phosphorylation of 
certain Rab GTPases including Rab8A, at a distinct site relative to LRRK2 (Ser111 on Rab8A) 
(9). Furthermore, various Rab proteins, including LRRK2 substrates Rab3A and Rab8A, can 
attenuate cytotoxicity linked to aggregated α-synuclein, a factor that is frequently associated 
with Parkinson's and other neurodegenerative disorders (10). Recent work has also revealed 
that poorly studied proteins termed RILPL1 and RILPL2, previously implicated in regulating 
ciliary membrane content, specifically bind to Rab8 and Rab10 once they have been 
phosphorylated by LRRK2 (8). Interestingly, pathogenic LRRK2 mutations inhibit primary 
cilia formation induced by serum starvation (8), but it remains to be established whether this is 
mediated through LRRK2 phosphorylated Rab8/10 interaction with RILPL1/2 (Fig). 

Inflammation plays an important role in the development of Parkinson’s. LRRK2 is highly 
expressed in macrophages, monocytes and neutrophils suggesting it functions in the defence 
against intracellular pathogens. In humans, single nucleotide polymorphisms within or close to 
the LRRK2 gene have been linked to inflammatory conditions including ulcerative colitis, 
Crohn’s disease and also increased susceptibility to leprosy infection (11). In mice, LRRK2 is 
required for mucosal immunity against the opportunistic pathogen, Listeria monocytogenes, 
and co-localizes with intracellular S. Typhimurium during bacterial infection in macrophages 
(11). The LRRK2 kinase is most closely related to the RIP kinases that are key regulators of 
inflammasomes. Inflammasomes are multi-protein signalling complexes assembled upon 
stimulation of the innate immune system by either pathogens or toxins and play a crucial role 
in the inflammatory response and host defence (12). Recent findings indicate that LRRK2 may 
participate in modulating inflammasome assembly. Mice lacking LRRK2 or treated with an 
LRRK2 inhibitor, exhibit impaired ability to clear S. Typhimurium infection (13). In contrast, 
knock-in mice bearing the kinase-activating G2019S LRRK2 mutation, are protected from 
infection (13). Moreover, in response to S. Typhimurium infection, LRRK2 interacts with and 
reportedly phosphorylates the NLRC4 protein at a critical residue (Ser533) required for the 
assembly of NLRC4 containing inflammasomes (13). This leads to the activation of Caspase-
1, which processes and produces a variety of pro-inflammatory agents such as IL-1b that if 
sustained over a long time, could lead to neuroinflammation and increased Parkinson’s 
susceptibility. Therefore, current understanding suggests that LRRK2 activation would 
promote pro-inflammatory responses offering protection against infection and survival benefit 
in earlier life, before Parkinson’s strikes.  

Highly potent, selective and brain penetrant LRRK2 inhibitors have been reported. Such drugs 
could offer benefit not only to subjects bearing LRRK2 mutations but also other patients in 
whom LRRK2 activity is driving disease. Much research is taking place to develop tests to 
interrogate LRRK2 activity and function in patients. This includes studying LRRK2 
autophosphorylation and Rab protein phosphorylation in neutrophils, monocytes and 
cerebrospinal fluid. Several pharmaceutical companies are in late stages of preclinical 
evaluation of LRRK2 inhibitors, while one has recently completed a Phase 1 clinical trial in 
healthy volunteers. Studies in LRRK2-deficient rodents and non-human primates treated with 
LRRK2 inhibitors, highlighted potential liability concerns in lung and kidney, resulting from 
loss of LRRK2 kinase activity that might be linked with altered autophagy and lysosomal 
biology (14, 15). Therefore, lung and kidney function will need to be closely monitored in 



LRRK2 inhibitor clinical trials. Given challenges of translating findings in immunity from 
mice to human, LRRK2 inhibitor clinical trials present a unique opportunity for refining our 
understanding of the LRRK2-related immune function in humans. Above all, it would be 
important to establish whether LRRK2 inhibitor treatment significantly increases the risk for 
opportunistic infections. 
In conclusion, LRRK2 lies at the nexus of an emerging signalling network of high relevance 
for understanding and developing treatments for Parkinson’s. It will be essential to define in 
clearer detail the upstream and downstream components of this pathway. Understanding the 
interplay between LRRK2 mediated immune defence mechanisms and Parkinson’s will also 
undoubtedly reveal fascinating biology. Reports of monozygotic LRRK2 mutation-carrying 
twins discordant for Parkinson’s and the incomplete penetrance of LRRK2 mutations highlight 
the importance of environment (e.g. exposure to toxins, herbicides, pesticides, and fungicides), 
lifestyle (e.g. smoking, exercise, diet), gut microbiome and infection in the development of 
LRRK2-dependent Parkinson’s. It is possible that these factors synergise with genetic 
mutations. In the future, aligning mechanistic insight into disease pathways with genetics and 
clinical phenotyping could define the roles that LRRK2 signalling plays in idiopathic 
Parkinson’s. This will help justify the use of LRRK2 inhibitor therapy in more patients. 
However, for now the most exciting question will be whether LRRK2 inhibitors have disease-
modifying effects in Parkinson’s patients with LRRK2 mutations.    
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 Figure: LRRK2 Signalling Pathway. Domain structure of LRRK2 and location of most well 
characterized pathogenic mutations that enhance LRRK2 activity. G2019S mutation is by far 
the most common. LRRK2 phosphorylates a subgroup of up to 14 Rab proteins (Rab3A, 
Rab3B, Rab3C, Rab3D, Rab5A, Rab5B, Rab5C, Rab8A, Rab8B, Rab10, Rab12, Rab29, 
Rab35 and Rab43) at the equivalent site within the centre of the effector binding loop. The 
possible downstream consequences of Rab protein phosphorylation are summarized. The 
predicted impacts of activating (green box) and inhibiting (red box) LRRK2 in the immune 
system are also indicated. 
 

 




