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ABSTRACT

The vast majority of bacterial genome sequencing
has been performed using Illumina short reads. Be-
cause of the inherent difficulty of resolving repeated
regions with short reads alone, only ∼10% of se-
quencing projects have resulted in a closed genome.
The most common repeated regions are those cod-
ing for ribosomal operons (rDNAs), which occur in
a bacterial genome between 1 and 15 times, and are
typically used as sequence markers to classify and
identify bacteria. Here, we exploit the genomic con-
text in which rDNAs occur across taxa to improve as-
sembly of these regions relative to de novo sequenc-
ing by using the conserved nature of rDNAs across
taxa and the uniqueness of their flanking regions
within a genome. We describe a method to construct
targeted pseudocontigs generated by iteratively as-
sembling reads that map to a reference genome’s
rDNAs. These pseudocontigs are then used to more
accurately assemble the newly sequenced chromo-
some. We show that this method, implemented as
riboSeed, correctly bridges across adjacent contigs
in bacterial genome assembly and, when used in con-
junction with other genome polishing tools, can as-
sist in closure of a genome.

INTRODUCTION

Sequencing bacterial genomes has become much more
cost effective and convenient, but the number of com-
plete, closed bacterial genomes remains a small fraction of
the total number sequenced (Figure 1). Even with the ad-
vent of new technologies for long-read sequencing and im-
provements to short read platforms, assemblies typically re-
main in draft status due to the computational bottleneck
of genome closure (1,2). Although draft genomes are often

of very high quality and suited for many types of analysis,
researchers must choose between working with these draft
genomes (and the inherent potential loss of data), or spend-
ing time and resources polishing the genome with some
combination of in silico tools, polymerase chain reaction
(PCR), optical mapping, re-sequencing or hybrid sequenc-
ing (1,3). Many in silico genome finishing tools are available,
and we summarize several of these in Table 1.

The Illumina entries in NCBI’s Sequence Read Archive
(SRA) (4) outnumber all other technologies combined by
about an order of magnitude (Supplementary Table S1).
Draft assemblies from these datasets have systematic prob-
lems common to short read datasets, including gaps in the
scaffolds due to the difficulty of resolving assemblies of re-
peated regions (5,6). By resolving repeated regions during
the assembly process, it may be possible to improve existing
assemblies, and therefore obtain additional sequence infor-
mation from existing short read datasets in the SRA or the
European Nucleotide Archive.

The most common repeated regions are those coding for
ribosomal RNA operons (rDNAs). As ribosomes are es-
sential for cell function, sequencing of the 16S ribosomal
region is widely used to identify prokaryotes and explore
microbial community dynamics (7–10). This region is con-
served within taxa, yet retains enough variability to act
as a bacterial ‘fingerprint’ to separate clades informatively.
However, the 16S, 23S and 5S ribosomal subunit coding
regions are often present in multiple copies within a sin-
gle prokaryotic genome, and commonly exhibit polymor-
phism (11–14). These long, inexactly repeated regions (15)
are problematic for short-read genome assembly. As rD-
NAs are frequently used as a sequence marker for taxo-
nomic classification, resolving their copy number and se-
quence diversity from short read collections where the as-
sembled genome has collapsed several repeats into a sin-
gle region could help improve reference databases, increas-
ing the accuracy of community analysis. We present here
an in silico method, riboSeed, that capitalizes on the ge-
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Table 1. Some of the available in silico genome polishing tools for gap closure

Tool Method summary

GapFiller (45) iteratively uses paired-end reads to close contig junctions
GapCloser (46) uses paired-end reads to close contig junctions
IMAGE (47) iteratively uses local assemblies of reads belonging to assembly gaps
CloG (48) uses trimmed de novo contigs in hybrid assembly followed by a stitching algorithm
FGap (49,50) uses BLAST to find potential gap closures from alternate assemblies, libraries or references.
GFinisher (50) uses GC-skew to refine assemblies
GapFiller (51) produces ‘long-reads’ from paired-end sequencing data using a local assembler, which can then be used in a de novo

assembly
CONTIGuator (52) uses contigs from a de novo assembly along with one or more reference sequences to generate a contig map and PCR

primer sets to validate in the lab
Konnector (53) uses paired-end reads to make long reads to be used in a Bloom filter representation of a de Bruijn graph
MapRepeat(54) uses a directed scaffolding method to fill in rDNA gaps, but limited to Ion Torrent reads and affected by inversions

between rDNAs (40)
Pilon (55) compares mapping files to an assembly to correct mistakes and fill gaps
GRabB (16) selectively assembles tandem rDNAs and mitochondria

Figure 1. Counts of bacterial assemblies in NCBI Genome database ac-
cording to completion level by release year; the four levels (Complete,
Chromosome, Scaffold and Contig) are ordered from complete to most
fragmented (44). Note that Illumina HiSeq was released in 2010. Accessed
14 September 2017.

nomic conservation of rDNA and flanking sequence within
a taxon to improve resolution of these difficult regions and
provide a means to benefit from unexploited information in
the SRA/ENA short read archives.

riboSeed is most similar in concept to GRabB, the
method of Brankovics et al. (16) for assembling mitochon-
drial and rDNA regions in eukaryotes. Both use targeted
assembly, but GRabB does not make inferences about the
number of rDNA clusters present in the genome or take
advantage of their genomic context. In riboSeed, genomic
context is resolved by exploiting both the rDNA sequences
and their flanking regions, harnessing unique characteris-
tics of the broader rDNA region within a single genome to
improve assembly.

The riboSeed algorithm proceeds from two observations:
first, that although repeated rRNA coding sequences within
a single genome are nearly identical, their flanking regions
(i.e. the neighboring locations within the genome) are dis-
tinct in that genome, and second, that the genomic contexts
of equivalent rDNA sequences are also conserved within a
taxonomic grouping (Supplementary Figure S4). riboSeed
uses only reads that map to rDNA regions from a reference

Figure 2. A comparison of de novo assembly to de fere novo assembly, as
implemented in riboSeed. In riboSeed, reads are mapped to a reference
genome, and those reads that align to rDNA and flanking regions are ex-
tracted. A subassembly for each group of reads that maps to an rDNA
region is constructed to produce a ‘pseudocontig’ for each region. These
pseudocontigs are concatenated together separated by 1 kb of Ns as a
spacer. Reads are then iteratively mapped to the concatenated pseudocon-
tigs, extracted and again subassembled to each region. After the final it-
eration, the pseudocontigs are included with raw reads in a standard de
novo assembly. The subassemblies attempt to bridge proper rDNA regions
by ensuring that flanking regions (represented here by colors) remain cor-
rectly paired. The de novo assembly collapses the rDNAs, but de fere novo
places the rDNAs in the proper genomic context.

genome, and is not affected by chromosomal rearrange-
ments that occur outside the flanking regions immediately
adjacent to each rRNA.

Briefly, riboSeed uses rDNA regions from a closely re-
lated organism’s genome to help generate rDNA cluster-
specific ‘pseudocontigs’ derived only from the input short
reads, that are seeded into the raw short reads to generate a
final assembly. We refer to this process in this work as de fere
novo (meaning ‘starting from almost nothing’) assembly.

MATERIALS AND METHODS

We present riboSeed: a software suite that allows users to
perform de fere novo assembly, given a reference genome se-
quence from a closely related organism and single or paired-
end short reads to be assembled (Figure 2). The code is
primarily written in Python3, with accessory shell and R
scripts.
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riboSeed relies on a closed reference genome assembly
that is sufficiently closely related to the isolate being assem-
bled (distance can be estimated using an alignment-free ap-
proach such as the KGCAK database (17), or a kmer based
method such as Kraken (18)), in which rDNA regions are
assembled and assumed to be in the correct genomic con-
text.

In an ideal scenario, reference selection would consist
of two steps: isolate identification (using Kraken), and
then average nucleotide identity analysis to find the clos-
est complete reference. We outline protocols for reference
selection in Supplementary Data, and in the riboSeed
documentation at http://riboseed.readthedocs.io/en/latest/
REFERENCE.html.

Usage

Installation (via either conda, pip or GitHub), installs the
ribo program. Installation using conda also installs third-
party tool dependencies, such as SPAdes, and is recom-
mended. The riboSeed pipeline can be executed with a sin-
gle command, ribo run or under stepwise control by the
user by means of distinct commands. ribo run performs
re-annotation of rDNAs in the reference genome (scan
command), operon inference (select command) and de
fere novo assembly (seed command). The most commonly
used parameters are accessible via the run command. Al-
ternatively, the full set of parameters for riboSeed can be
defined within a configuration file.

All steps in the assembly are controlled by riboSeed com-
mands described below, as ribo <command>:

Pre-processing.

scan. scan uses Barrnap (https://github.com/
tseemann/barrnap) to annotate rRNAs in the reference
genome, and EMBOSS’s seqret (19) to create GenBank,
FASTA and GFF formatted versions of the reference
genome. This pre-processing step unifies the annotation
vocabulary for downstream processes.

select. select infers ribosomal operon structure
from the genomic location of constituent 16S, 23S and 5S
sequences. Jenks Natural Breaks algorithm is used to group
rRNA annotations into likely operons on the basis of ge-
nomic coordinates, using the number of 16S annotations to
set the number of breaks. Output defines individual rDNA
clusters and describes component elements in a plain text
file. This output can be manually adjusted before assembly if
clustering does not reflect the known arrangement of oper-
ons, for example based on visualization of the annotations
in a genome browser.

De fere novo assembly.

seed. seed implements the algorithm described in Sup-
plementary Figure S1. Short reads for the sequenced iso-
late are mapped to the reference genome using BWA (20).
Reads that map to each annotated rDNA and its flanking
regions (where the flanking regions consist of 1 kb upstream
and 1 kb downstream of the rDNA, by default) are ex-
tracted into subsets (one subset per cluster). Each subset is

independently assembled into a representative pseudocon-
tig with SPAdes (21), using the reference rDNA regions as
a trusted contig (or untrusted, if mapping quality is poor).
Resulting pseudocontigs are evaluated for inclusion in fu-
ture mapping/subassembly iterations based on length, and
concatenated into a pseudogenome in which pseudocontigs
are separated by 1 kb of Ns as a spacer. As we are only con-
cerned with flanking regions, the order in which the pseudo-
contigs are concatenated is arbitrary. A 1 kb spacer length
was chosen for this study to ensure that reads did not span
the spacer. Pseudocontig generation is iterated at this stage
of the algorithm, using the previous round’s pseudogenome
as the reference.

After a specified number of iterations (three by default),
SPAdes is used to assemble all short reads in a hybrid assem-
bly using pseudocontigs from the final iteration as ‘trusted
contigs’ (or ‘untrusted contigs’ if the mapping quality of
reads to that pseudocontig falls below a threshold). As a
control, the short reads are also de novo assembled without
the pseudocontigs.

This implementation of riboSeed uses SPAdes to perform
both subassembly and the final de fere novo assembly, but
the pseudocontigs could be submitted to any hybrid assem-
bler that accepts short read libraries and contigs. After as-
sembly, de fere novo and de novo assemblies are assessed with
QUAST (22).

Assessment and visualization.

score. score extracts the regions flanking rDNAs in
the reference and in assemblies generated by riboSeed.
Flanking regions from an assembly are matched with ref-
erence flanking regions using BLASTn. Depending on the
ordering of the matches, assembled junctions are called as
correct, incorrect or ambiguous based on the criteria out-
lined below.

snag. snag is a helper tool to produce diagnostics and
visualization of rDNA sequences in the reference genome.
Using the clustering generated by select, sequences for
the clusters are extracted from the genome, aligned and
Shannon entropy (23) plotted with consensus depth for
each position in the alignment.

swap. We recommend assessing the performance of the ri-
boSeed pipeline visually using Mauve (24,25), Gingr (26) or
similar genome assembly visualizer to compare reference,
de novo and de fere novo assemblies. If contigs appear to be
incorrectly joined, the offending de fere novo contig can be
replaced with syntenic contigs from the de novo assembly
using the swap script.

stack. stack uses bedtools (27) and samtools (20) to
compare depth of coverage of reads aligning to the refer-
ence genome in the rDNA regions to randomly sampled re-
gions elsewhere in the reference genome. stack takes out-
put from scan, and a BAM file of reads that map to the ref-
erence. If the number of scan-annotated rDNAs matches
the number of rDNAs in the sequenced isolate, the coverage
depths within the rDNAs will be similar to the coverage in
other locations in the genome. If the coverage of rDNA re-
gions sufficiently exceeds the average coverage elsewhere in
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the genome, this may indicate that the reference strain has
fewer rDNAs than the sequenced isolate. In this case, us-
ing an alternative reference genome may produce improved
results.

Choice of parameters

Settings used for analyses in this manuscript are default (ex-
cept where otherwise noted) as of riboSeed version 0.4.35
(doi:10.5281/zenodo.1037965).

Validating assembly across rDNA regions

To evaluate performance of de fere novo assembly compared
to de novo assembly methods, we used Mauve to visual-
ize syntenic regions and contig breaks of each riboSeed as-
sembly in relation to the reference genome used to generate
pseudocontigs. We categorized each rDNA in an assembly
as either correct, unassembled, incorrect or ambiguous, as
follows.

An rDNA assembly is classed as ‘correct’ if two criteria
are met: (i) the assembly joins two contigs across an rDNA
region such that, based on the reference, the flanking re-
gions of the de fere novo assembly are syntenous with those
of the reference; and (ii) the assembled contig extends at
least 90% of the flanking region length. A cluster is defined
as ‘unassembled’ if the ends of one or more contigs align
within the rDNA or flanking regions (extension across the
rDNA region is not achieved). Finally, if two contigs assem-
ble across a rDNA region in a manner that conflicts with the
orientation indicated in the reference genome, suggesting
misassembly, the rDNA region is classified as ‘incorrect’.

For analyses where manual inspection was intractable
(such as repeated simulations), ribo score was used to
categorize the rDNA assemblies. In cases where the pro-
gram could not distinguish between a correct assembly or
an incorrect assembly, the rDNA was classed as ‘ambigu-
ous’.

In all cases, SPAdes was used with the same parameters
for both de fere novo assembly and de novo assembly, apart
from addition of pseudocontigs in the de fere novo assembly.

RESULTS

Characteristics of rDNA flanking regions

The use of rDNA flanking sequences to uniquely identify
and place rDNAs in their genomic context requires their
flanking sequences to be distinct within the genome for
each region. This is expected to be the case for nearly all
prokaryotic genomes where rRNA coding sequences are
structured as operons. We determined that a 1 kb flank-
ing region was sufficient to include differentiating sequence
(Supplementary Figure S2). To demonstrate this, rDNA
and 1 kb flanking regions were extracted from Escherichia
coli Sakai (28) (BA000007.2), a strain in which rDNAs have
been well characterized (29). These regions were aligned
with MAFFT (30), and consensus depth and Shannon en-
tropy calculated for each position in the alignment (Figure
3A).

Figure 3A and Supplementary Figure S4 show that
within a single genome the regions flanking rDNAs are

variable between operons. This enables unique placement
of reads at the edges of rDNA coding sequences in their
genomic context (i.e. there is not likely to be confusion
between the placements of rDNA edges within a single
genome). In E. coli MG1655 (NC 000913.3), the first rDNA
is located 363 bases downstream of gmhB (locus tag b0200).
Homologous rDNA regions were extracted from 25 ran-
domly selected complete E. coli chromosomes (Supplemen-
tary Table S2). We identified the 20 kb region surrounding
gmhB in each of these genomes, then annotated and ex-
tracted the corresponding rDNA and flanking sequences.
These sequences were aligned with MAFFT, and the Shan-
non entropies and consensus depth plotted (Figure 3B).

Figure 3B shows that equivalent E. coli rDNAs, plus
their flanking regions, are well-conserved across several re-
lated genomes. Assuming that individual rDNAs are mono-
phyletic within a taxonomic group, short reads that can be
uniquely placed on a related genome’s rDNA as a reference
template are also likely able to be uniquely placed in the ap-
propriate homologous rDNA of the genome to be assem-
bled.

Taken together, when these two properties hold, this
allows for unique placement of reads from homologous
rDNA regions in the appropriate genomic context. These
‘anchor points’ effectively reduce the number of branching
possibilities in de Bruijn graph assembly for each individ-
ual rDNA, and thereby permit reconstruction of a complete
balanced path through the full rDNA region.

Simulated reads with artificial chromosome

To create a small dataset for testing, we extracted all seven
distinct rDNA regions from the E. coli Sakai genome
(BA000007.2), including 5 kb upstream and downstream
flanking sequence, using the tools scan, select and
snag. Those regions were concatenated to produce an
∼100 kb artificial test chromosome (see Supplementary
Methods). pIRS (31) was used to generate simulated reads
(100 bp, 300 bp inserts, stdev 10, 30-fold coverage, built-
in error profile) from this test chromosome. These reads
were assembled using riboSeed, using the E. coli MG1655
genome (NC 000913.3) as a reference. Simulation was re-
peated eight times to assess variability of method perfor-
mance on alternative read sets generated from the same
source sequence; Figure 4 shows a Mauve alignment for a
representative run.

De fere novo assembly bridged four of the seven rDNA re-
gions in the artificial chromosome, while de novo assembly
failed to bridge any (Supplementary Figure S3). To illus-
trate how choice of reference sequence determines correct
assembly through rDNA, we ran riboSeed with the same E.
coli reads using pseudocontigs derived from the Klebsiella
pneumoniae HS11286 (CP003200.1) reference genome (32).
De fere novo assembly with pseudocontigs from K. pneumo-
niae failed, as the reference is too divergent from the reads.

Effect of reference sequence identity on riboSeed perfor-
mance

To investigate how riboSeed assembly is affected by choice
of reference strain, we implemented a simple mutation
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Figure 3. Consensus coverage depth (gray bars) and Shannon entropy (black points, smoothed with a window size of 351 bp as red line) for aligned rDNA
regions (16s in red, 23S in yellow, and 5S in green). For the seven Escherichia coli Sakai rDNA regions (A), entropy sharply increases moving away from
the 16S and 5S ends of the operon. In this case flanking regions would be expected to assemble uniquely within a genome. By contrast, the rDNA regions
occurring closest to homologous gmhB genes from 25 E. coli genomes (B) show greater conservation in their flanking regions. This indicates that flanking
regions are more conserved for homologous rDNA than for paralogous rDNA operons, and implies that related genomes can be useful reference templates
for assembling across these regions. Similar plots for each of the GAGE-B genomes used later for benchmarking can be found in Supplementary Figure
S4.

Figure 4. Representative Mauve output describing the results of riboSeed
assemblies of simulated reads generated by pIRS from the concatenated
Escherichia coli Sakai artificial chromosome. Red regions represent rRNA
coding sequences, vertical black lines indicate boundaries between assem-
bled contigs and shading represents synteny. From top to bottom: artificial
reference chromosome; rDNA clusters (red bars); de fere novo assembly
and de novo assembly (both using E. coli MG1655 as the reference). ri-
boSeed’s de fere novo method assembles four of seven rDNA regions, but
the de novo assembly recovers no rDNA regions correctly.

model to generate reference sequence variants of the arti-
ficial chromosome described above, with a specified rate of
mutation. A simple model of geometrically distributed mu-
tations at a desired mutation frequency applied across all
bases uniformly does not address the disparity of conserva-
tion between rDNAs and their flanking region observed in
nature, so a second model was applied wherein substitutions
are restricted to the rDNA flanking regions. We assembled
the artificial chromosome’s reads using the mutated artifi-
cial chromosome as a reference, using both models (Figure
5). The maximum substitution rate exceeded our recom-
mended threshold sequence identity, and a corresponding
dropoff of performance is observed at a value of 0.2 (cor-
responding to the 80% mapping percentage identity thresh-
old).

To obtain an estimate of substitution rate for the E. coli
strains used above, Parsnp (26) and Gingr (26) were used

Figure 5. Variants of the artificial chromosome with substitution frequen-
cies between 0 and 0.3 (i.e. up to 300 substitutions per kb). Correctly
assembled rDNAs were counted, and the distribution of results shown
against the appropriate substitution frequency. Results are shown for mod-
els where substitutions are permitted throughout the chromosome (or-
ange), and only in the flanking regions (blue), the latter approximating the
relative rate of substitution in rDNA and flanking regions. The lilac area
corresponds to substitution frequencies resulting in average sequence iden-
tity over 95%, denoting an estimated species boundary. Loess smoothing
was used to generate the blue and yellow trendlines. Circle size indicates
number of simulations per value. n = 100.

to identify single nucleotide polymorphisms (SNPs) in the
25 genomes used in Figure 3, with respect to the same re-
gion in E. coli Sakai. An average substitution rate of ∼3.5
substitutions per kb was observed. Compared to the results
from simulated genomes, we expect successful riboSeed per-
formance under the model of mutated flanking regions, and
partial success under the model of substitutions throughout
the region.
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Figure 5 indicates that the greater the similarity of the ref-
erence sequence to the genome being assembled, the greater
the likelihood of correctly assembling all rDNA regions.
When mutating only flanking regions (Figure 5), which
more closely resembles the relative substitution frequen-
cies of the rDNA regions, the procedure correctly assem-
bles rDNAs with tolerance to substitution frequencies up
to ∼30 substitutions per kb. With the widely adopted av-
erage nucleotide identity species boundary of 95% (33), we
anticipate that riboSeed should correctly place and assem-
ble most rDNA regions when using a complete reference
genome of the same species, and that reasonable success will
be achieved even when using a more distantly related refer-
ence.

Simulated reads with E. coli and K. pneumoniae genomes

To investigate the effect of short read length on riboSeed
assembly, pIRS (31) was used to generate paired-end reads
from the complete E. coli MG1655 and K. pneumoniae
NTUH-K2044 genomes, simulating datasets at a range of
read lengths most appropriate to the sequencing technol-
ogy. In all cases, 300 bp inserted with 10 bp standard de-
viation and the built-in error profile were used. Coverage
was simulated at 20× to emulate low coverage runs and at
50× to emulate coverage close to the optimized values de-
termined by Miyamoto (34) and Desai (35). De fere novo
assembly was performed with riboSeed using E. coli Sakai
and K. pneumoniae HS11286 as references, respectively, and
the results were scored with score (Figure 6).

At either 20× or 50× coverage, de novo assembly was un-
able to resolve any rDNAs with any of the simulated read
sets. De fere novo assembly with riboSeed showed improve-
ment to both the E. coli and K. pneumoniae assemblies. In-
creasing depth of coverage and read length improves rDNA
assemblies.

Benchmarking against hybrid sequencing and assembly

To establish whether riboSeed performs as well with short
reads obtained by sequencing a complete prokaryotic chro-
mosome as with simulated reads, we attempted to assemble
short reads from a published hybrid Illumina/PacBio se-
quencing project. The hybrid assembly using long reads was
able to resolve rDNAs directly, and provides a benchmark
against which to assess riboSeed performance in terms of:
(i) bridging sequence correctly across rDNAs, and (ii) as-
sembling rDNA sequence accurately within each cluster.

Sanjar et al. published the genome sequence of Pseu-
domonas aeruginosa BAMCPA07-48 (CP015377.1) (36), as-
sembled from two libraries: ca. 270 bp fragmented genomic
DNA with 100 bp paired-end reads sequenced on an Il-
lumina HiSeq 4000 (SRR3500543), and long reads from
PacBio RS II. The authors obtained a closed genome se-
quence by hybrid assembly. We ran the riboSeed pipeline
on only the HiSeq dataset in order to compare de fere novo
assembly to the hybrid assembly and de novo assembly of the
same reads, using the related genome P. aeruginosa ATCC
15692 (NZ CP017149.1) as a reference.

De fere novo assembly correctly assembled across all four
rDNA regions, whereas de novo assembly failed to assemble
any rDNA region (Table 3A).

A

B

Figure 6. Comparison of de fere novo assemblies of simulated reads gener-
ated by pIRS. In most cases, increasing coverage depth and read length re-
sulted in fewer misassemblies. Assemblies were scored using score; the y-
axis reflects the total number of rDNAs in the genome (seven and eight rD-
NAs, for Escherichia coli and Klebsiella pneumoniae, respectively). The (n
= 9) assemblies shown for each genome are the result of differently seeded
read simulations.

Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gky212/4955760
by guest
on 16 April 2018



Nucleic Acids Research, 2018 7

Table 2. rDNA region SNPs between hybrid assembly of P. aeruginosa
BAMCPA07-48 and de fere novo assembly in rDNA regions, including 1
kb upstream and downstream of the rDNA

rDNA region (5S,16S,
23S with flanking
region) CP015377.1 Location Substitution

398001–405418 402331 T → C
402332 C → T
404332 C → T
404380 G → T

1039539–1045687 - -
1862045–1869194 1864462 A → G

1868402 A → C
1868426 A → T

2809154–2816303 2811180 G → A
2813886 T → C

Comparing the BAMCPA07-48 reference to the de fere
novo assembly, we found a total of nine SNPs in the rDNA
flanking regions (Table 2). The same regions from the
ATCC 15692 reference used in the de fere novo assembly
showed 108 SNPs compared to the BAMCPA07-48 iso-
late. This demonstrates that this subassembly scheme suc-
cessfully recovers the correct sequence with remarkably few
SNPs, despite a large number of differences between the
reference and the sequenced isolate, and that the riboSeed
method does not simply transpose the reference genome
rDNA sequence into the new assembly.

Further, to assess how riboSeed’s assembly would com-
pare to supplying the whole reference as a trusted contig
in SPAdes (a strategy not recommended by the SPAdes au-
thors), we assembled the same reads with the P. aeruginosa
ATCC 15692 as a trusted contig and compared results to de
fere novo and de novo assemblies. De novo assembly yielded
the lowest error rates, and reference-based assembly yielded
the longest contigs, but de fere novo assembly exhibited very
low error rates, the highest genome recovery fraction and
the lowest number of contigs (Supplementary Table S5).

We find that the de fere novo assembly using short reads
performs better than de novo assembly using short reads
alone. Comparison of de fere novo to hybrid assembly al-
lows assessment of de fere novo accuracy, and indicates that
de fere novo can recover rDNA sequences correctly placed
in their genomic context, with a low error rate.

Case Study: closing the assembly of S. aureus UAMS-1

Staphylococcus aureus UAMS-1 is a well-characterized,
USA200 lineage, methicillin-sensitive strain isolated from
an osteomyelitis patient. The published genome was
sequenced using Illumina MiSeq (300 bp reads), and the
assembly refined with GapFiller as part of the BugBuilder
pipeline http://www.imperial.ac.uk/bioinformatics-data-
science-group/resources/software/bugbuilder/. Currently,
the genome assembly is represented by two scaffolds
(JTJK00000000), with several repeated regions acknowl-
edged in the annotations (37). As the rDNA regions were
not fully characterized in the annotations, we proposed
that de fere novo assembly might resolve some of the
problematic regions.

Using the same reference S. aureus MRSA252 (38)
(BX571856.1) with riboSeed as was used in the original as-
sembly, de fere novo assembly correctly bridged gaps corre-
sponding to three of the five rDNAs in the reference genome

(Table 3B). Furthermore, de fere novo assembly bridged two
contigs that were syntenic with the ends of the scaffolds in
the published assembly, indicating that the regions resolved
by riboSeed could improve closure of the genome.

We modified the BugBuilder pipeline (https://github.
com/nickp60/BugBuilder) used in the published assembly
to incorporate pseudocontigs from riboSeed. Further, we
compared the performance of Pilon, GapFiller and no fin-
ishing software with both the de fere novo and de novo as-
semblies (see Supplementary Table S6). All assemblies re-
sulted in a single scaffold (updates to BugBuilder and many
of its dependencies prevented exact recapitulation of the
published assembly), but scaffolds varied in length, num-
ber of ambiguous bases and resolution of rDNA repeats.
In all cases, riboSeed’s de fere novo assemblies resulted in
more rDNA regions being resolved. In this case, riboSeed
was able to assist in bringing an existing high-quality scaf-
fold to near closure.

Benchmarking against GAGE-B datasets

We used the Genome Assembly Gold-standard Evaluation
for Bacteria (GAGE-B) datasets (39) to assess the perfor-
mance of riboSeed against a set of well-characterized as-
semblies. These datasets represent a broad range of chal-
lenges; low GC content and tandem rDNA repeats prove
challenging to the riboSeed procedure.

Mycobacterium abscessus has only a single rDNA operon
and does not suffer from the issue of rDNA repeats, so it was
excluded from this analysis. We also excluded the Bacillus
cereus VD118 HiSeq dataset, as metagenomic analysis re-
vealed likely contamination (see Supplementary Figure S5
and Supplementary Data).

When the reference used in the GAGE-B study was also
the sequenced strain (e.g. Rhodobacter sphaeroides and B.
cereus), we chose an alternate reference, as using the original
reference could provide an unfair advantage to riboSeed.
The GAGE-B datasets include both raw and trimmed reads;
in all cases, the trimmed reads were used. Results are shown
in Table 3C.

Compared to de novo assembly, the de fere novo approach
improved the majority of assemblies. In the case of the S.
aureus and R. sphaeroides datasets, particular difficulty was
encountered for all references tested. In the case of Bac-
teroides fragilis, the entropy plot (Supplementary Figure
S4.3) shows that sequence variability on the 5’ end of the
operon is much lower within the genome compared to many
of the other within-genome figures, possibly contributing to
misassembly.

DISCUSSION

We demonstrate that regions flanking equivalent rDNAs
from related strains show a high degree of conservation
in related organisms. This allows us to correctly place rD-
NAs within a newly sequenced isolate, even in the absence
of the resolution that would be provided by long read se-
quencing. Comparing the regions flanking rDNAs within
a single genome, we observed that when considering suf-
ficiently large flanking regions, flanking sequences show
enough variability to differentiate each instance of the rD-
NAs. Taken together with the within-taxon homology, this
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Table 3. Comparison of de novo and riboSeed’s de fere novo assemblies

Sequenced Strain Name Platform Length Depth Reference Strain de novo de fere novo

Name rDNAs � – × � – ×
A. Pseudomonas aeruginosa BAMCPA07-48 HiSeq 100 200 ATCC 15692 4 0 4 0 4 0 0
B. Staphylococcus aureus UAMS-1 MiSeq 300 110 MRSA252 5 0 5 0 2 3 0

Aeromonas hydrophila SSU HiSeq 101 250 ATCC 7966 10 0 10 0 4 6 0
Bacillus cereus ATCC 10987 MiSeq 250 100 NC7401 14 0 14 0 12 2 0
Bacteroides fragilis HMW 615 HiSeq 101 250 638R 6 0 5 1 0 3 3

C. Rhodobacter sphaeroides 2.4.1 HiSeq 101 210 ATCC 17029 4 0 4 0 1 3 0
Rhodobacter sphaeroides 2.4.1 MiSeq 251 100 ATCC 17029 4 1 2 1 1 2 1
Staphylococcus aureus M0927 HiSeq 101 250 USA300 TCH1516 5 0 5 0 3 2 0
Vibrio cholerae CO 0132(5) HiSeq 100 110 El Tor str. N16961 8 0 8 0 5 3 0
Vibrio cholerae CO 0132(5) MiSeq 250 100 El Tor str. N16961 8 0 8 0 4 4 0
Xanthomonas axonopodis pv. Manihotis
UA323

HiSeq 101 250 pv. Citrumelo 2 0 1 1 2 0 0

� correct assembly; – unassembled; × incorrect assembly.

allows inference of the location (i.e. the flanking regions) of
rDNAs, and the variability of these flanking regions within
a genome enables unique identification of reads likely be-
longing to a specific cluster.

The extent of sequence similarity between the sequenced
isolate and the reference influences de fere novo assembly.
If fewer than 80% of reads map to the reference, resulting
pseudocontigs are treated as ‘untrusted’ contigs by SPAdes
to prevent spurious joining of contigs. Figure 5 shows that
although one should preferentially use the closest com-
plete reference available for optimal results, the subassembly
method is robust against moderate discrepancies between
the reference and sequenced isolate’s flanking regions.

Strains possessing a single rDNA (such as M. abscessus)
do not suffer from repeated region assembly issues. Simi-
larly, the rRNA coding regions in some taxa (such as Ther-
mus thermophilus or Leptospira interrogans, see Supplemen-
tary section ‘Atypical rDNA operon structure’, Supplemen-
tary Figures S6 and 7) are not organized into operons. Such
genomes do not require correction with riboSeed.

The method of constructing pseudocontigs implemented
by riboSeed relies on having a relevant reference sequence,
where the rDNA regions act as ‘bait’, fishing for reads that
likely map specifically to that region. This makes riboSeed
a valuable tool for assembly or reassembly of bacterial or
archaeal strains (Supplementary Tables S7 and 8) for which
such a reference is available, but application to community
ecology where one may be sequencing novel organisms from
unsequenced genera will be limited by the requirement for
such a reference genome. Although we show this ‘baiting’
method to be an effective way to partition the reads, a more
robust method may be to use a probabilistic representation
of equivalent rDNA regions for the sequenced taxon. By
using a database of sequence profiles (e.g. Hidden Markov
Models) from homologous rDNAs in a taxon, the step of
choosing a single most appropriate reference might be cir-
cumvented. For datasets where the choice of reference de-
termines riboSeed’s effectiveness, a probabilistic approach
may improve performance.

Several checks are implemented after subassembly to en-
sure that resulting pseudocontigs are fit for inclusion in the
next round in the next mapping/subassembly iteration or
the final de fere novo assembly. If a subassembly’s longest
contig is >3× the expected pseudocontig length or shorter
than 6 kb (a conservative minimum length of a 16S, 23S

and 5S operon), this is taken to be a sign of poor parameter
choice so the user is warned, and by default no further seed-
ings will occur to avoid spurious assembly. Such an outcome
can be indicative of any of several factors: improper cluster-
ing of operons; insufficient or extraneous flanking sequence;
sub-optimal mapping; inappropriate choice of k-mer length
for subassembly; inappropriate reference; or other issues. If
this occurs, we recommend testing the assembly with dif-
ferent k-mers, changing the flanking length or trying alter-
native reference genomes. Mapping depth of the rDNA re-
gions is also reported for each iteration; a marked decrease
in mapping depth may also be indicative of problems.

Many published genome finishing tools and approaches
offer improvements when applied to suitable datasets, but
none (including the approach presented in this paper) is able
in isolation to resolve all bacterial genome assembly issues.
One constraint on the performance of riboSeed is the qual-
ity of rRNA annotations in reference strains. Although it
is impossible to concretely confirm in silico, we (and oth-
ers (40)) have found several reference genomes during the
course of this study that we suspect have collapsed rDNA
repeats. We recommend using a tool such as 16Stimator (41)
or rrnDB (42) to estimate number of 16S (and therefore rD-
NAs) prior to assembly, or stack to assess mapping depths
after running seed.

As riboSeed relies on de Bruijn graph assembly, the re-
sults can be affected by assembler parameters. Care should
be taken to explore appropriate settings, particularly in re-
gard to read trimming approach, range of k-mers and error
correction schemes.

One difficulty in determining the accuracy of rDNA
counts in reference genome occurs because genome se-
quences are often released without publishing the reads
used to produce the genome assembly. This practice is a ma-
jor hindrance when attempting to perform coverage-based
quality assessment, such as to infer the likelihood of col-
lapsed rDNAs. While data transparency is expected for
gene expression studies, that stance has not been univer-
sally adopted when publishing whole-genome sequencing
results. To ensure the highest quality assemblies from his-
torical data, we strongly recommend that researchers share
raw reads.
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CONCLUSION

Demonstration that rDNA flanking regions are conserved
across taxa and that flanking regions of sufficient length
are distinct within a genome allowed for the development
of riboSeed, a de fere novo assembly method. riboSeed uti-
lizes rDNA flanking regions to act as barcodes for repeated
rDNAs, allowing the assembler to correctly place and ori-
ent the rDNA. De fere novo assembly can improve the as-
sembly by bridging across ribosomal regions, and, in cases
where rDNA repeats would otherwise result in incomplete
scaffolding, can result in closure of a draft genome when
used in conjunction with existing polishing tools. Although
riboSeed is far from a silver bullet to provide perfect as-
semblies from short read technology, it shows the utility
of using genomic reference data and mixed assembly ap-
proaches to overcome algorithmic obstacles. This approach
to resolving rDNA repeats may allow further insight to be
gained from large public repositories of short read sequenc-
ing data, such as SRA, and when used in conjunction with
other genome finishing techniques, provides an avenue to-
ward genome closure.
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