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Deconvolution and Restoration of Optical
Endomicroscopy Images

Ahmed Karam Eldaly, Student Member, IEEE, Yoann Altmann, Member, IEEE, Antonios Perperidis, Nikola
Krstajić, Tushar R. Choudhary, Kevin Dhaliwal, and Stephen McLaughlin, Fellow, IEEE

Abstract—Optical endomicroscopy (OEM) is an emerging
technology platform with preclinical and clinical imaging ap-
plications. Pulmonary OEM via fibre bundles has the potential
to provide in vivo, in situ molecular signatures of disease such
as infection and inflammation. However, enhancing the quality
of data acquired by this technique for better visualization and
subsequent analysis remains a challenging problem. Cross cou-
pling between fiber cores and sparse sampling by imaging fiber
bundles are the main reasons for image degradation, and poor
detection performance (i.e., inflammation, bacteria, etc.). In this
work, we address the problem of deconvolution and restoration
of OEM data. We propose a hierarchical Bayesian model to solve
this problem and compare three estimation algorithms to exploit
the resulting joint posterior distribution. The first method is
based on Markov chain Monte Carlo (MCMC) methods, however,
it exhibits a relatively long computational time. The second
and third algorithms deal with this issue and are based on a
variational Bayes (VB) approach and an alternating direction
method of multipliers (ADMM) algorithm respectively. Results
on both synthetic and real datasets illustrate the effectiveness of
the proposed methods for restoration of OEM images.

Index Terms—Optical endomicroscopy, Deconvolution, Image
restoration, Irregular sampling, Bayesian models.

I. INTRODUCTION

PNEUMONIA is a major cause of morbidity and mortality
in mechanically ventilated patients in intensive care [1].

However, the accurate diagnosis and monitoring of suspected
pneumonia remain challenging [2]. Current methodologies
consist of culturing bronchoalveolar lavage fluid (BALF) re-
trieved from bronchoscopy, but this often takes 48 hours to
yield a result which still has low specificity and sensitivity
[3]. Structural imaging with X-ray or computed tomography
(CT) scans are also often non-diagnostic.

Optical endomicroscopy (OEM) is an emerging, optical
fibre-based medical imaging modality with utility in a range
of clinical indications and organ systems, including gastro-
intestinal, urological and respiratory tracts. The technology
employs a proximal light source, laser scanning or Light
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Emitting Diode (LED) illumination, linked to a flexible fi-
bre bundle, performing microscopic fluorescent imaging at
its distal end. The diameter of the packaged fibre can be
< 500 µm , enabling the real-time imaging of tissues that
were previously inaccessible through conventional endoscopy.
Probe-based confocal laser endomicroscopy, is currently the
most widely used clinical OEM platform approved for clinical
use. However, there have recently been a number of stud-
ies describing novel, flexible, versatile and low-cost OEM
architectures [4]–[6], employing wide-field LED illumination
sources, capable of imaging at multiple acquisition wave-
lengths [7]. Wide-field fiber optic imaging devices, such as the
one being developed by our group provide sparse and usually
irregularly-spaced intensity readings of the scene, due to the
irregular packing of the fibre cores within the fibre bundle.
Fibre bundles usually contain approximately 25,000 fibre cores
that are transmitting and collecting the light simultaneously.
Note that it is only the fibre cores which contain information
while the cladding, (the space between the fibre cores), does
not.

One of the main challenges of OEM images is enhancing the
restoration of the signals at the receiver for better image visu-
alization and/or subsequent analysis. Fiber core cross coupling
is one of the main reasons for image degradation in this type
of imaging [8], [9]. In confocal endomicroscopy, the detector
pinhole can mask out light coupled to neighbouring cores
before reaching the detector. Consequently, the effect of inter-
core coupling in imaging capabilities is inherently of greater
importance in wide-field endomicroscopy. Perperidis et al.
[10] have quantified the average spread of inter-core coupled
light, with approximately a third of the overall light coupling
to neighbouring cores. Consequently, cross coupling causes
severe blurring in the resulting images, whose restoration is
formulated as an inverse problem. We will discuss in detail
cross coupling effects in Section II. In this work, we consider
a noisy observation vector y, of an original intensity vector
x, that is modelled by the following linear forward model

y = Ax+w, (1)

where A is the matrix representing a linear operator which
can model different degradation. Here, A models fiber core
cross coupling and/or spatial blur. We specify the dimensions
of the variables later in the text. In (1), the vector w stands
for additive noise, modelling observation noise and model mis-
match and is assumed to be a white Gaussian noise sequence.
In wide-field OEM, the constant background fluorescence of
the fiber bundle [7], [11], is significant (between 90% and
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60% of the total signal) providing a significant offset to all
fluorescence measurements from tissue. Hence, the total noise
level does not depend on the tissue signal level. Also, we
consider applications where the photon flux is high (> 500
photoelectrons generated per pixel per typical exposure time
50 ms). Therefore, the Gaussian noise assumption holds [12]–
[14].

The problem of estimating x from y is an ill-posed linear
inverse problem (LIP); i.e., the matrix A is singular or very
ill-conditioned. Consequently, this problem requires additional
regularization (or prior information, in Bayesian inference
terms) in order to reduce uncertainties and improve estimation
performance. State-of-the-art algorithms for solving such prob-
lems can be split into either convex optimization or Bayesian
methods.

In [15]–[18], the problem of estimating x given y is for-
mulated as an unconstrained optimization problem as follows

minimize
x

1

2
∥Ax− y∥22 + λϕ(x) + iR+(x), (2)

where ϕ(·) is a regularization function, ∥.∥2 is the standard
ℓ2-norm, λ ∈ R+ is a regularization parameter, and iR+(x)
is the indicator function defined on the positive set of x. For
solving problems of the form (2), state-of-the-art algorithms
potentially belonging to the iterative shrinkage/thresholding
family [15]–[18] can be used. In [16], [19], the unconstrained
problem in Eq.(2) is solved by an algorithm called split
augmented Lagrangian shrinkage algorithm (SALSA) which
is based on variable splitting [20], [21].

Alternatively, many studies have considered hierarchical
Bayesian models to solve the deconvolution and restoration
problem [22]–[31]. These models offer a flexible and consis-
tent methodology to deal with uncertainty in inference when
limited amount of data or information is available. Moreover,
other unknown parameters can be jointly estimated within the
algorithm such as noise variance(s) and regularization param-
eters. As such, they represent an attractive way to tackle ill-
posed problems such as the one considered in this work. These
methods rely on selecting an appropriate prior distribution for
the unknown image and other unknown parameters. The full
posterior distribution can then be derived from the Bayes’
rule, and then exploited by optimization or simulation-based
(Markov chain Monte Carlo) methods.

The main contributions of this work are fourfold:
1) We address the problem of deconvolution and restoration

in OEM. To the best of our knowledge, it is the first time
this problem is addressed in a statistical framework by
using a hierarchical Bayesian model.

2) We develop algorithms dedicated to irregularly sampled
images which do not rely on strong assumptions about the
spatial structure of the sampling patterns. The developed
methods can thus be applied to a wide range of imaging
systems, and fiber bundle designs.

3) We derive three estimation algorithms associated with the
proposed hierarchical Bayesian model and compare them
using extensive simulations conducted using controlled
and real data. The first algorithm generates samples
distributed according to the posterior distribution using

Markov chain Monte Carlo (MCMC) methods [32]. This
approach also allows the estimation of the hyperparam-
eters associated with the priors. However, as mentioned
previously, the resulting MCMC-based algorithm presents
a high computational complexity. The second and third
algorithms deal with this limitation and approximate the
joint posterior distribution. The second algorithm uses
the variational Bayes (VB) methodology [33], [34] to
approximate the joint posterior distribution by minimizing
the KullbackLeibler (KL) divergence between the true
posterior distribution and its approximation [35]. It can
also estimate the hyperparameters associated with the
prior distributions, and hence it is totally unsupervised,
as is the MCMC-based method. The third algorithm is
based on the alternating direction method of multipliers
(ADMM). Although the low computation complexity of
this algorithm, the hyperparameters associated with the
priors need to be chosen carefully by the user, and hence
it is considered as a semi-supervised method.

4) We use Gaussian Processes (GP) to interpolate the result-
ing samples to provide a meaningful image and quantify
uncertainties at each interpolated sample.

The remaining sections of the paper are organized as
follows. Section II discusses the cross coupling problem
and formulates the problem of deconvolution and restoration
of OEM data. The proposed hierarchical Bayesian model
is then presented in Section III. Section IV introduces the
three proposed estimation algorithms based on MCMC and
optimization. Results of simulations conducted using synthetic
and real datasets are discussed in Section VI and Section VII,
respectively. Conclusions and future work are finally reported
in Section VIII.

II. PROBLEM FORMULATION

Fig. 1 illustrates what happens in the fibre bundle when
receiving fluorescent light from an object being imaged. The
vectors xo, x, and g represent light intensities at the object
being imaged (tissue in this case), at the distal end of the fibre
bundle, and at the image plane respectively. The transform H
represents the cross coupling effect defined later in the text,
C represents the spatial blur acting between the proximal end
of the fibre bundle and the image plane, whereas C′ is that
between the distal end of the fibre bundle and the tissue being
imaged. The two spatial blurs C and C′ are spatially variant,
C can be characterized as the distance d between the image
plane and the proximal end of the fibre is known, whereas
C′ cannot be fully characterized as d′ is unknown and the
frames here are analyzed independently. Hence, to overcome
this problem, we aim to recover the intensity vector x rather
than xo.

Fig. 2 provides and illustrative example of cross coupling
between fiber cores. If an individual fiber core is illuminated
in x, the neighbouring cores in g will be affected by a
specific percentage of the incident light on the illuminated
core. Experimental results in current fiber bundle (which might
be different for other bundles) showed that around 61% of the
light transmitted through a single core remains in that core,
around 34% migrates to the immediate neighbouring cores,
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Fig. 1: Schematic diagram showing the forward model in OEM.

around 4% to the second order neighbours and less than 1%
to the third, fourth, and fifth order neighbours [10].

Fig. 2: Example of cross coupling between fiber cores, the green
circle represents the central illuminated core and the yellow and red
ones represent the immediate and further neighbours respectively.

Fig. 3 illustrates how we construct the forward observation
model to mimic the same output as the endomicroscopy
imaging system. The first image on the left-hand side of the
figure represents the illumination of one fiber core. This results
in cross coupling to the neighbouring cores (convolution with a
first linear operator H), then the spatial blurring effect around
each fiber core (convolution with a second linear operator
C) and finally the fourth image of the figure shows the final
system output after adding white Gaussian noise.

Fig. 3: Representation of the endomicroscopy system output images.

The linear model in (1) can now be written as

g = CHx+w, (3)

where A in (1) is replaced by CH in (3), the vector g is the
observed data matrix, and x is the image to be restored.

From preliminary results, we propose to model cross-
coupling by an isotropic zero mean 2D generalized Gaussian
kernel applied to the fiber intensities [10] as follows

[H]i,j = exp

(
−
(
di,j
αH

)βH
)
, (4)

where di,j denotes the euclidean distance between the cores (or
spatial locations) i and j, which corresponds to approximately

Fig. 4: (a) A background image, (b) a zoomed part of the image, and
(c) the intensity profile across one line in the image.

3.3 pixels between neighbouring cores. From (4), it can be seen
that neighbouring fiber cores will be more closely coupled than
distant ones. The values of αH and βH , which control the
amount of cross-coupling (the higher, the more coupling) and
which are system dependent, are adjusted from preliminary
measurements (calibration). Note that other cross-coupling
models could also be considered instead of (4) depending on
the imaging system used.

The spatial blur affecting each fiber core can be modelled by
a Gaussian spatial filter, as illustrated in Fig. 4, which shows
a background image i.e., an image from a sample presenting
constant intensity, using an endomicroscopy imaging system,
and a zoomed-in region of this image, bright and dark areas
represent fiber cores and their cladding, respectively. The
intensity profile across one line in this image is a series of
Gaussian kernels. However, the variation of the shape and
width of the kernels is due to the variation in core sizes.

Due to the variation in core sizes, the blurring kernel C
varies accordingly, and hence the cores tend to overlap. So the
complete model in (3) becomes more complex, and potentially
computationally expensive for long image sequences (videos).
Indeed, there is no structure in C which allows us to compute
CHx rapidly. Hence we propose a simplification of this model
and represent each core by a single intensity value. The mean
intensities of fibre core pixels could be used, but the overlap
between the cores makes its computation difficult. Since the
variation of the width of this blur is not too significant, the
maximum intensity of each core is considered instead (yn in
Fig. 1).

Following the above mentioned points, the model in (3) can
be simplified to

y = Hx+w. (5)

Assume that N is the total number of pixels in the image,
and N1 representing number of fibre cores in the image, the
input y ≈ C+g ∈ RN1 , where C+ is the pseudo-inverse of C,
and the output x ∈ RN1 are two vectors representing central
core intensities, where, N1 << N , and H ∈ RN1×N1 . The
noise w ∈ RN1 is assumed to be additive white noise which
is independent and identically distributed (i.i.d) zero mean
Gaussian noise with variance σ2, denoted as w ∼ N (0, σ2I),
where ∼ means “is distributed according to” and I is the
identity matrix.

The problem investigated in this paper is to estimate the
actual intensity values x, and the noise variance σ2 from the
observation vector y. As mentioned previously, to solve this
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problem, we propose a hierarchical Bayesian model and a
set of different estimation methods to estimate the unknown
parameters.

III. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model pro-
posed to estimate the unknown parameter vector x and σ2.
This model is based on the likelihood function of the obser-
vations and on prior distributions assigned to the unknown
parameters.

A. Likelihood

Eq. (5) yields that y|(x, σ2) ∼ N (Hx, σ2I). Consequently,
the likelihood can be expressed as

f(y|x, σ2) =

(
1

2πσ2

)N1/2

exp

(
−
∥y −Hx∥22

2σ2

)
. (6)

B. Parameter Priors

1) Prior for the underlying intensity field x: A truncated
multivariate Gaussian distribution (MVG) is assigned to the
intensity field x.

f(x|γ2) ∝
(
γ2
)−d/2

exp

(
−xT∆−1x

2γ2

)
1R+(x), (7)

where 1R+(x) is the indicator function defined on the positive
set of x, γ2 controls the global correlation between intensi-
ties, and the covariance matrix ∆ which defines the spatial
correlation between the cores is defined by

[∆]n,n′ = exp

(
−
(
dn,n′

ℓ

)κ)
, (8)

where dn,n′ denotes the distance between the spatial locations
n and n′, and d = N1. Equations (7) and (8) promote smooth
intensity variations between neighbours while ensuring that
the prior dependence between neighbouring cores decrease as
dn,n′ increases. In this work dn,n′ is the standard euclidean
distance. The parameters ℓ, κ were learned from the irregular
sampling pattern of the OEM system. Precisely, we used
known images and selected (ℓ, κ) by maximum likelihood
estimation, which occurs when p(ℓ, κ|x) is at its greatest,
which corresponds to maximizing log p(ℓ, κ|x). While γ2 is
left unknown for each image, (ℓ, κ) are fixed in the rest of the
simulations as the average values obtained with the training
images.

Considering such a prior is equivalent to assuming a Gaus-
sian process on x, this allows us to interpolate the resulting
deconvolved intensities using Gaussian processes [36] as we
will see in section V.

2) Prior for the noise variance σ2: A conjugate inverse-
Gamma IG prior is assigned to the noise variance σ2

f(σ2|α, β) ∼ IG(α, β), (9)

where α = 10 is fixed arbitrarily, while the hyperparameter β
is estimated within the algorithm.

3) Prior for the hyperparameter β: The hyperparameter
associated with the parameter prior defined above is assigned
to a conjugate Gamma distribution:

β ∼ G(αo, βo), (10)

where αo and βo are fixed and user-defined parameters which
might depend on the quality of the data to be recovered. In
this work, we fixed (αo, βo) = (10, 0.1) arbitrarily.

4) Prior for the hyperparameter γ2: To reflect the lack of
prior knowledge about the regularization parameter γ2 in (7),
the following weakly informative conjugate inverse-Gamma
prior is assigned to it.

γ2 ∼ IG(η, ν), (11)

where (η, ν) are fixed to (η, ν) = (10−3, 10−3). Note that
we did not observe significance change in the results when
changing these hyperparameters.

The next section derives the joint posterior distribution
of the unknown parameters associated with the proposed
Bayesian model.

C. Joint posterior distribution

Assuming the parameters x and σ2 are a priori independent,
the joint posterior distribution of the parameter vector Ω =
{x, σ2} and hyperparameters ϕ = {β, γ2} can be expressed
as

f(Ω,ϕ|y) ∝ f(y|Ω)f(Ω|ϕ)f(ϕ), (12)

where

f(Ω|ϕ) = f(x|γ2)f(σ2|β), and f(ϕ) = f(γ2)f(β).
(13)

The directed acyclic graph (DAG) summarizing the structure
of proposed Bayesian model is depicted in Fig. 5. This poste-
rior distribution will be used to evaluate Bayesian estimators of
Θ = {Ω,ϕ}. For this purpose, we propose three algorithms:
an MCMC-based approach and two optimization-based ap-
proaches, in which VB and ADMM are considered. The first
approach uses an MCMC method to evaluate the minimum-
mean-square-error (MMSE) estimator of Θ by generating
samples according to the joint posterior distribution. Moreover,
it allows the estimation of the hyperparameter vector ϕ along
with the noise variance σ2. However, it exhibits a relatively
long computational time. The second and third algorithms
which deal with this issue and provide fast MMSE estimate for
the VB approach and MAP estimate for the ADMM approach.
The VB approach approximates the joint posterior distribution
in (12) by minimizing the Kullback-Leibler (KL) divergence
between the true posterior distribution and its approximation
[35]. The ADMM approach is achieved by maximizing the
posterior distribution (12) with respect to (w.r.t.) Θ. Note
however, that the hyperparameters ϕ as well as σ2 are fixed for
this approach. The three estimation algorithms are described
in the next section.
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Fig. 5: Graphical model for the proposed hierarchical Bayesian model
(fixed quantities appear in boxes).

IV. BAYESIAN INFERENCE

A. MCMC algorithm

To overcome the challenging derivation of Bayesian estima-
tors associated with f(Θ|y), we propose to use an efficient
MCMC method to generate samples asymptotically distributed
according to the posterior presented in (12). More precisely,
we consider a Gibbs sampler described next. The principle of
the Gibbs sampler is to sample according to the conditional
distributions of the posterior of interest [[32], Chap. 10]. In
this work, we propose to sample sequentially the elements of
Θ using updates that are detailed below.

1) Sampling the intensity field x: From (12), since the
prior (7) is conjugate to the Gaussian distribution, the full
conditional distribution of x is given by

f(x|y, σ2) ∼ NR+(x;µ,Σ), (14)

where
µ = σ−2ΣTHTy,

Σ =
(
σ−2HTH+ γ−2∆−1

)−1
.

(15)

Sampling from (14) can be achieved efficiently by using the
Hamiltonian method proposed in [37].

2) Sampling the noise variance σ2: By cancelling out the
terms that don’t depend on σ2 from the posterior distribution
in (12), its conditional distribution can be written as

f(σ2|y,x) ∼ IG

(
α+

N1

2
, β +

∥y −Hx∥22
2

)
, (16)

which is easy to sample from.
3) Sampling the hyperparameters β and γ2: It can be easily

shown that β can be sampled from the following Gamma
distribution

f(β|σ2) ∼ G
(
α+ αo,

σ2βo

σ2 + βo

)
. (17)

In a similar fashion to the noise variance, γ2 can be sampled
from the following inverse-Gamma distribution

f(γ2|x) ∼ IG
(
η +

N1

2
, ν +

xT∆−1x

2

)
. (18)

The algorithm for generating samples asymptotically dis-
tributed according to the posterior distribution using Gibbs
sampler is shown in Algorithm 1.

Algorithm 1 Deconvolution via MCMC: Gibbs Sampling
Algorithm

1: Fixed input parameters: Number of burn-in iterations
Nbi, total number of iterations NMC

2: Initializations (k = 0)
• Set x(0), σ2(0), β(0), γ2(0)

3: Repeat (1 ≤ k ≤ NMC)
• Sample x(k) from (14)
• Sample σ2(k) from (16)
• Sample β(k) from (17)
• Sample γ2(k) from (18)

4: Set k = k + 1.

The posterior distribution mean or minimum mean square
error (MMSE) estimator of x can be approximated by

x̂ =
1

NMC −Nbi

NMC∑
t=Nbi+1

x(t), (19)

where the samples from the first Nbi iterations (corresponding
to the transient regime or burn-in period, which is determined
visually from preliminary runs) of the sampler are discarded.

B. Variational Bayes algorithm

For this approach, we consider an approximation of p(Θ|y)
by a simpler tractable distribution q(Θ) following the varia-
tional methodology [34], moreover, here, we relax the pos-
itivity constraints about the intensity field vector x. Note,
however that the positivity constraints can be incorporated but
the covariance matrix of the intensity field x would become
more complicated [38], chap. 5. As will be shown in Sections
VI and VII, this constraint relaxation yields a fast estimation
procedure providing estimation results which compete with
the methods incorporating this constraint. The distribution
q(Θ) will be found by minimizing the Kullback-Leibler (KL)
divergence, between the actual posterior distribution and its
approximation, given by [35] [39]

DKL (q(Θ)||p(Θ|y)) =
∫

q(Θ) log

(
q(Θ)

p(Θ|y)

)
dΘ, (20)

which is always non-negative and equal to zero only when
q(Θ) = p(Θ|y). In order to obtain a tractable approximation,
the family of distributions q(Θ) are restricted utilizing the
mean field approximation [40] so that q(Θ) = q(ϕ)q(x)q(σ2),
where q(ϕ) = q(γ2)q(β).

The lower bound of the KL divergence is given by

p(Θ,y) ≥ p(y|Θ)p(Θ|ϕ)p(ϕ) = F (Θ,y). (21)

For H ∈ {x, σ2, γ2, β}, let us denote by Θ\H, the subset
of Θ with H removed; for instance, if H = x, Θ\x =
{σ2, γ2, β}. Then utilizing the lower bound F(Θ,y) for the
joint probability distribution in (20) we obtain an upper bound
for the KL divergence as follows
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M (q(Θ)) =

∫
q(Θ) log

(
q(Θ)

p(Θ|y)

)
dΘ

≤
∫

q(H)
(∫

q(Θ\H) log

(
q(H)q(Θ\H)

F (Θ,y)

)
dΘ\H

)
dH

=M (q(H)) .
(22)

Therefore, we minimize this upper bound instead of mini-
mizing the KL divergence in (20). Note that the form of the
inequality in (22) suggests an alternating (cyclic) optimization
strategy where the algorithm cycles through the unknown
distributions and replaces each variable with a revised estimate
given by the minimum of (22) with the other distributions
held constant. Thus, given q(Θ\H), the posterior distribution
approximation q(H) can be computed by solving

q̂(H) = minimize
q(H)

DKL
(
q(Θ\H)q(H)||F (Θ,y)

)
. (23)

In order to solve this equation, we note that differentiating
the integral on the right hand side in (22) w.r.t. q(H) results
in (see [41], Eq. (2.28))

q̂(H) = const× exp
(
Eq(Θ\H)[logF (Θ,y)]

)
, (24)

where

Eq(Θ\H)[logF (Θ,y)] =

∫
logF (Θ,y)q(Θ\H)dΘ\H.

(25)
We obtain the following iterative procedure to find q(Θ) by

applying this minimization to each unknown in an alternating
way

Algorithm 2 VB algorithm

1: Set k = 1, choose q1(σ2), q1(β) and q1(γ2), initial
estimates of the distributions q(σ2), q(β) and q(γ2),

2: repeat (k = k + 1)
3: qk(x) = minimize

q(x)

∫ ∫
qk(Θ\x)q(x) ×

log

(
qk(Θ\x)q(x)

F (Θk
\x,x,y)

)
dΘ\xdx

4: qk(σ2) = minimize
q(σ2)

∫ ∫
qk(Θ\σ2)q(σ2) ×

log

(
qk(Θ\σ2 )q(σ

2)

F (Θk
\σ2 ,x,y)

)
dΘ\σ2dσ2

5: qk(γ2) = minimize
q(γ2)

∫ ∫
qk(Θ\γ2)q(γ2) ×

log

(
qk(Θ\γ2 )q(γ

2)

F (Θk
\γ2 ,x,y)

)
dΘ\γ2dγ2

6: qk(β) = minimize
q(β)

∫ ∫
qk(Θ\β)q(β) ×

log

(
qk(Θ\β)q(β)

F (Θk
\β ,β,y)

)
dΘ\βdβ

7: until some stopping criterion is satisfied.

Now we detail the solutions at each step of algorithm (2)
explicitly.

1) Updating intensity field vector x: From (24), it can be
shown that qk(x) is an N1-dimensional Gaussian distribution,
rewritten as

qk(x) = N
(
x;Eqk(x)(x),Σqk(x)(x)

)
, (26)

where the mean Eqk(x)(x) and covariance Σqk(x)(x) of this
normal distribution can be calculated from step 3 in Algorithm
2 as

Eqk(x)(x) =
(Σqk(x)(x))

THTy

Eqk(σ2)(σ2)
, (27a)

Σqk(x)(x) =

(
HTH

Eqk(σ2)(σ2)
+

∆−1

Eqk(γ2)(γ2)

)−1

. (27b)

2) Updating noise variance σ2: It is easy to show from (24)
that the noise variance follows an inverse-Gamma distribution
given by

qk(σ2) = IG
(
σ2;

N1

2
+ α,Eqk(β)(β) + Eqk(x)

[
∥y −Hx∥22

])
,

(28)
whose mean is given by

Eqk(σ2)(σ
2) =

Eqk(β)(β) + Eqk(x)

[
∥y −Hx∥22

]
N1/2 + α− 1

, (29)

where

Eqk(x)

[
∥y −Hx∥22

]
= ∥y −HEqk(x)(x)∥

2
2

+tr
(
HTHΣqk(x)(x)

)
.

(30)

where tr(.) denotes the trace of the matrix.
3) Updating regularization parameter γ2: In a similar

fashion to noise variance, the regularization parameter γ2

follows an inverse-Gamma distribution given by

qk(γ2) = IG
(
γ2;

N1

2
+ η, ν +

1

2
Eqk(x)

[
xT∆−1x

])
,

(31)
whose mean is given by

Eqk(γ2)(γ
2) =

ν + 1
2Eqk(x)

[
xT∆−1x

]
N1/2 + η − 1

(32)

where

Eqk(x)

[
xT∆−1x

]
= Eqk(x)(x

T )∆−1Eqk(x)(x)

+ tr
(
∆−1Σqk(x)(x)

)
.

(33)

4) Updating the hyperparameter β: The hyperparameter β
follows a Gamma distribution given by

qk(β) = G
(
β;α+ αo,

βoEqk(σ2)(σ
2)

βo + Eqk(σ2)(σ2)

)
, (34)

whose mean is given by

Eqk(β)(β) =
(α+ αo)βoEqk(σ2)(σ

2)

βo + Eqk(σ2)(σ2)
. (35)
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In Algorithm 2, no assumptions were imposed on the
posterior approximation of q(x). We can, however, assume
as [28]–[31], [42], that this distribution is degenerate, i.e.,
distribution which takes one value with probability one and
the rest of the values with probability zero. We can obtain
another algorithm under this assumption which is similar to
algorithm 2.

Algorithm 3 Deconvolution via VB

1: Set k = 1,
2: Initialize Eq1(σ2)(σ

2), Eq1(γ2)(γ
2) and Eq1(β)(β),

3: repeat (k = k + 1)

4: Eqk(x)(x) =
(

HTH
E

qk(σ2)
(σ2) +

∆−1

E
qk(γ2)

(γ2)

)−1
HTy

E
qk(σ2)

(σ2)

5: Eqk(σ2)(σ
2) =

E
qk(β)

(β)+∥y−HE
qk(x)

(x)∥2
2

N1/2+α−1

6: Eqk(γ2)(γ
2) =

ν+ 1
2 (Eqk(x)

(x))
T
∆−1E

qk(x)
(x)

N1/2+η−1

7: Eqk(β)(β) =
(α+αo)βoEqk+1(σ2)

(σ2)

βo+E
qk+1(σ2)

(σ2)

8: until some stopping criterion is satisfied.

9: Set x̂ = Eqk(x)(x), σ̂2 = Eqk(σ2)(σ
2), γ̂2 = Eqk(γ2)(γ

2),
and β̂ = Eqk(β)(β)

The stopping criterion we use is
∑

H∈{x,σ2,β,γ2}∥H(k) −
H(k+1)∥F ≤ ϵ, where ϵ =

√
N1 × 10−5 [43].

It is clear that using degenerate distribution for q(x) in
Algorithm 3 removes the uncertainty terms of the intensity
field estimate. It has been shown that this helps to improve
the restoration performance [28]–[31], [42]. Moreover, it also
reduces the computational complexity as there is no need
to compute explicitly the covariance matrix Σqk(x)(x) at
each iteration. Finally, a few remarks are needed to ob-
tain a fast algorithm. The inverse of the covariance matrix
∆ needs to be computed only once before the loop in
Algorithm 3. We also considered the MATLAB operation(

HTH
Ek(σ2)

+ ∆−1

Ek(γ2)

)
\(HTy) for the update of the intensity

field vector x, which is faster than computing the covariance
matrix in (27b), then updating the mean in (27a). For very
big images, diagonal approximation [29] or conjugate gradient
[44] can be considered for the update of the intensity field
vector x.

C. ADMM algorithm

This section describes another alternative to the MCMC
algorithm which is based on an optimization algorithm. The
latter maximizes the joint posterior distribution (12) f(Ω|y,ϕ)
with respect to (w.r.t.) the parameters of interest, with fix-
ing the hyperparameter vector ϕ, to approximate the MAP
estimator of Θ, or equivalently, by minimizing the negative
log-posterior distribution given by F = − log [f(Θ|y]. The
resulting optimization problem is tackled using ADMM that
sequentially updates the different parameters, which is widely
used in the literature for solving imaging inverse problems

[19], [43], [45]. We rewrite the model as an optimization
problem as follows

minimize
x

1

2
∥Hx− y∥22 + λϕ(x) + iR+(x), (36)

where the regularization function ϕ(x) is proportional to the
negative logarithm of the intensity field prior considered in
(7) up to an additive constant, i.e. ϕ(x) = xT∆−1x

2 , and
λ = σ2/γ2 is the regularization parameter. Given this objec-
tive function, we write the constrained equivalent formulation
as follows

minimize
u,x

1

2
∥Hx− y∥22 + λϕ(x) + iR+(u),

subject to u = x,
(37)

where u and x are the variables to minimize. In order to
solve for u and x, we construct the augmented Lagrangian
corresponding to (37) as follows

L(u,x,d1) =
1

2
∥Hx− y∥22 + λϕ(x) + iR+(u)

+
µ

2
∥x− u− d1∥22,

(38)

where µ > 0 is a positive parameter. The ADMM algorithm
for solving (38) is shown in Algorithm (4). During each step
of the iterative algorithm, L is optimized w.r.t. u (step 3) and
x (step 4) and then the Lagrange multipliers are updated (step
6). The stopping criterion we use is ∥u(k)−x(k)∥F ≤ ϵ, where
ϵ =
√
N1 × 10−5 [43].

Algorithm 4 Deconvolution via ADMM

1: set k = 0, choose µ > 0,u(0),x(0), and d
(0)
1

2: repeat (k = k + 1)
3: u(k+1) = max

(
x(k) − d

(k)
1 , 0

)
4: x(k+1) =

(
HTH+ λ∆−1 + µI

)−1
[
HTy + µ

(
u+ d

(k)
1

)]
5: Update Lagrange multipliers:
6: d

(k+1)
1 = d

(k)
1 −

(
x(k+1) − u(k+1)

)
7: Update iteration k ← k + 1
8: until some stopping criterion is satisfied.

V. NON-LINEAR INTERPOLATION USING GAUSSIAN
PROCESS REGRESSION

In order to visually view a meaningful image from the
deconvolved intensities, we consider non-linear interpolation
based on Gaussian processes (GP) [36], since it can provide
confidence intervals for each interpolated pixel. A classic
choice consists of considering a zero-mean GP with an ar-
bitrary covariance matrix. Here, we choose this covariance
matrix to be ∆′ = ∆/γ2. Precisely, we interpolate using the
prior distribution previously defined in (8). If dn,n′ is very
small, then ∆′(n, n′) approaches its maximum 1/γ2. If n
is distant from n′, we have instead ∆′(n, n′) ≈ 0, i.e. the
two points are considered to be a priori independent. So, for
example, during interpolation at new n∗ location, distant cores
will have negligible effect. The amount of spatial correlation
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depends on the parameters ℓ, and κ, which are estimated in
the way we previously mentioned in section III-B1.

If we consider ∆′(z, z) ∈ RN1×N1 , z = [z1, . . . , zN1 ]
T

contains all the positions of all the observed cores (whose
estimated intensities are gathered into x), and a new spatial
location z∗ for which we want to predict the intensity x∗, the
GP can be extended as follows[

x
x∗

]
∼ N

(
0,

[
∆′(z, z) ∆′(z, z∗)
∆′(z∗, z) 1/γ2

])
, (39)

where ∆′(z, z∗) = ∆′(z∗, z)
T ∈ RN1 . Eq. (39) shows

that the conditional distribution of each predicted intensity
given the previously estimated intensities, follows a Gaussian
distribution x∗|x ∼ N (µ,Σ) whose mean and variance are
given by

µ = ∆′(z∗, z)∆
′(z, z)−1x,

Σ = 1/γ2 −∆′(z∗, z)∆
′(z, z)−1∆′(z, z∗).

(40)

By setting x = x̂, the mean in (40) is finally used to
estimate each interpolated intensity, while the variance is used
to provide additional information (measure of uncertainty)
about the interpolated intensity values.

VI. SIMULATIONS USING SYNTHETIC DATA

A. Data creation

The performance of the proposed methods is investigated by
reconstructing a standard test image. A subsampled version of
this image is obtained by considering the sampling pattern
of an actual endomicroscopy system, as illustrated in Fig. 6.
This figure provides an example of a homogeneous region
imaged through Alveoflex (Mauna Kea Technologies, France)
fiber bundle [46][47]. Such image is used for calibration and
to identify the number and positions of the fiber cores. The
build-in MATLAB function “vision.BlobAnalysis” was used
to detect central fibre core pixels.

Fig. 6: (a) Example of 512×512 pixels image of the endomicroscopy
system (b) Image with detected fiber core centres superimposed (red
crosses).

Fig. 7 shows the original Lena image (left) and an example
of system output (right) after applying the model in Eq. (3).
This image is formed by creating a binary mask in which a
value of 1 is assigned to pixels corresponding to the central
pixels of each core in Fig. 6(b), and zero otherwise. This mask
is then multiplied point by point by the Lena image in Fig.
7(a) in order to obtain the subsampled image. The model in
Eq. (3) is then applied to obtain an image that simulates the
system’s output which is shown in Fig. 7(b). This image is

created using subsampled intensities corresponding to 1.29%
of the original Lena image. For simulated data, we considered
a Gaussian spatial blurring kernel with one size σ2

C = 2 in all
the simulations.

(a) (b)

Fig. 7: Creation of the synthetic data: (a) Original image (b) example
of final system output with σ2

H = 20 and σ2
N = 10.

B. Performance analysis

The performance discriminator adopted in this work to
measure the quality of the deconvolved fiber cores is the
root mean square error (RMSE), which is computed using
intensities at the core locations using

RMSE(x, x̂) =

√∑N1

n=1 (x(n)− x̂(n))
2

N1
, (41)

where x and x̂ are vectors of the subsampled reference Lena
image and its deconvolved version respectively, and N1 is the
number of fibre cores.

For synthetic data, in order to check the performance of
the algorithm with different cross coupling effects, different
values of αH and βH in (4) can be considered. However, this
can be simplified by considering a 2D Gaussian kernel defined
by (42)

[H]i,j = exp

(
−d2i,j
2σ2

H

)
, (42)

since it involves only one variable to change, namely σ2
H (rep-

resenting a squared distance, in pixels). This is equivalent to
setting βH = 2 and α2

H = α2
H/2. Note that this simplification

is considered only for synthetic data in order to assess the
influence of the kernel width. The generalized Gaussian cross
coupling kernel H defined in (4) will be considered for real
data.

The three methods showed similar results in terms of
RMSE and interpolated images. The following shows the
VB method’s results. Fig. 8 shows examples of interpolated
intensities after deconvolution using GP in the noise-free case
(σ2

N = 0) and noisy case (σ2
N = 10) and different values of

σ2
H, with the corresponding confidence interval images. we can

observe that the structure of the Lena image can be recovered
in the two cases. Moreover, in the confidence interval images,
we can observe that as we go away from central cores, the
confidence interval of the interpolated intensities decreases.

In order to measure the performance of the algorithms, we
consider different noise variances (σ2

N ) as well as different
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(a) (b)

(c) (d)

Fig. 8: Examples of interpolated samples by GP after deconvolution
(a) σ2

N = 0 and σ2
H = 1, and (b) σ2

N = 10 and σ2
H = 20, and the

corresponding confidence interval images.

Fig. 9: Plot of RMSEs before and after deconvolution (in-log scale)
versus σ2

H at σ2
N = 10.

cross coupling effects (σ2
H). Fig. 9 shows the RMSE (in log-

scale) before and after deconvolution versus σ2
H at σ2

N = 10.
We can observe that all of the methods are very effective
since the RMSE after deconvolution is always lower than that
before deconvolution. Moreover, the gain increases with cross
coupling.

In order to analyze the effect of noise variance and cross
coupling separately, we fix one of them and change the other
as shown in Fig. 10. In this figure, we show plots of RMSEs
after deconvolution for different σ2

N at fixed σ2
H and vice versa.

In Fig. 10(a), we can observe that there is roughly a linear
relationship between RMSE and σ2

N at fixed σ2
H. Moreover,

the behaviour at σ2
H = 1, 5, 10 and 15 is almost the same. In

Fig. 10(b), we can observe that RMSE is fairly constant as σ2
H

increases at constant σ2
N . Furthermore, it starts to increase as

σ2
N increases but still remains constant when changing σ2

H.
For the MCMC method, in all of the simulations in this

paper including the real datasets, NMC = 1500, including
Nbi = 500, which were determined visually from preliminary
runs, were used. For the ADMM method, different regu-
larization parameter values are tested, we pick up the one
corresponding to the lowest RMSE.

(a) (b)

Fig. 10: Plot of RMSEs after deconvolution (a) versus σ2
N at fixed

σ2
H , and (b) versus σ2

H at fixed σ2
N .

Fig. 11: Plot of RMSEs before and after deconvolution for the three
methods versus σ2

N as well as σ2
H .

C. Comparison

In this section, we compare the three proposed methods
for deconvolution and restoration of OEM images. The com-
parison is conducted in terms of RMSE before and after
deconvolution, as well as in terms of computation time.

Fig. 11 compares RMSEs after deconvolution versus differ-
ent σ2

N as well as different σ2
H. We can observe that for all of

the methods, as σ2
N increases at constant σ2

H, RMSE increases.
On the other hand, at fixed σ2

N , RMSE seems to be roughly
constant for σ2

H = 1, 5, and 10, then, it starts to increase as
σ2
H increases. It is clear that all the methods behave similarly

in terms of RMSE.
Table I shows the average computation time (in seconds) of

the three proposed methods. The experiments were conducted
on ACER core-i3-2.0 GHz processor laptop with 8 GB RAM.
It is clear that the MCMC method is the most computationally
expensive method. The ADMM method is second, and the VB
the least. Despite the relatively high computation time of the
MCMC method, it is a parameter free method compared to the
ADMM-based method in which the regularization parameter
λ should be chosen carefully. The VB approach is considered
to be the best compared to MCMC and ADMM, it can provide
similar RMSE but with lower computation complexity, more-
over, it is fully automatic in the sense that it can estimate the
hyperparameters associated with the parameters as mentioned
previously in section IV-B.

Although the MCMC and ADMM algorithms can estimate
the noise variance and model hyperparameters, in practice
these parameters are very difficult to estimate accurately,
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TABLE I: The average computation time (in seconds) of the three
proposed methods. In order to maintain a fair comparison between
the three algorithms, the computational time of the ADMM algorithm
corresponds to the duration of five runs (used to select the best
regularization parameter among the five values).

Method MCMC ADMM VB
Computation time (sec.) 3100 35.51 5.12

(specifically σ2 and γ2) due to the similarity between HTH
and ∆−1 in (15b) and (27b). Therefore, we have to make an
informed choice about one of these parameters, specifically
the choice of the hyperparameters α, α0 and β0 in (9) and
(10). In Fig. 10(b), we observe that the RMSEs in practise are
close to the true noise standard deviation, and hence the noise
variance can be inferred.

VII. SIMULATIONS USING REAL DATA

The performance of the proposed methods has been eval-
uated on two real datasets; the 1951 USAF resolution test
chart and ex vivo human lung tissue. Both of them were
collected using OEM system [7] with monochrome detec-
tion (Grasshopper3 camera GS3-U3-23S6M-C, Point Grey
Research, Canada) and 470 nm LED illumination (M470L3,
Thorlabs Ltd, UK) for lung autofluorescence excitation. Ex-
cised human lung tissue was placed in a well plate. Hu-
man tissue was used with regional ethics committee (REC:
13/ES/0126) approval and was retrieved from the periphery
of specimens taken from lung cancer resections. In order to
adjust the cross coupling kernel parameters αH and βH, a
study was performed to measure, analyze and quantify inter-
core coupling within coherent fibre bundles [10]. This study
showed how light is spread over the neighbouring cores, and
gave statistical analysis on coupling percent in neighbouring
cores. It showed that around 61% of transmitted light remains
in the central core, around 34% in the first neighbouring cores,
around 4% in the second neighbouring cores, and less than 1%
in the third, fourth and fifth neighbouring cores. This leads to
fixing αH = 4 (in pixels) and βH = 0.8.

A. 1951 USAF resolution test chart

The 1951 USAF chart is a resolution test pattern set by US
Air Force in 1951. It is widely accepted to test the resolution
of optical imaging systems such as microscopes, cameras and
image scanners [48]. Fig. 12 (a) shows the original USAF
resolution test chart used in the project. The resulting image
obtained by fiber bundle is shown in Fig. 12 (b) with image
size 760× 760 and is composed of 7,776 fiber cores (1.34%
of the image).

A non-linear interpolation based on GP of central core inten-
sities of the image in Fig. 12(b) is presented in Fig.13(a), with
the corresponding confidence intervals image in Fig.13(c). We
can observe the blurring which is caused by the cross coupling
effect as well as the sparsity of the data.

The outputs of the MCMC, VB, and ADMM algorithms
are very similar. Thus, we show the results of the VB method.
Fig. 13(b) shows an example of one of the output images with
the corresponding confidence intervals in Fig. 13(d). The set
of ticker strips (top left corner of the image) is now better

(a) (b)

Fig. 12: (a) Scanned image of an USAF 1951 Resolution test chart.
(b) The 1951 USAF resolution test chart imaged by the OEM system.

(a) (b)

(c) (d)

Fig. 13: Non-linear interpolation (a) before, and (b) after deconvo-
lution, and their corresponding confidence intervals in (c), and (d)
respectively.

resolved and the overlap between them is reduced. The small
set of strips which is at the bottom could not be resolved,
which gives an indication about the resolving resolution of this
endomicroscopy system. Regions of high uncertainty (which
appear as blobs in dark red) are where there may be no cores
or they are dead, this in addition to the irregular core sampling
are the reasons for some strips appear a bit fragmented.

B. Ex vivo human lung tissues

Fig. 14(a) shows the output image of the OEM system.
Image size is 1000 × 800 and is composed of 13,343 fiber
cores (1.66% of the image). Non-linear interpolation based on
GP of central core intensities is presented in Fig.14(b). Similar
to the USAF resolution test chart, we aim at reducing cross
coupling effect as well as getting a more resolved image.

Similar to the USAF resolution test chart results, the outputs
of the MCMC, VB, and ADMM algorithms are very similar.
We only show the results of the VB method. Fig. 14(c) shows
an example of interpolated deconvolved samples using GP.
The lung structure is now better resolved and more sharper
than before deconvolution. Moreover, confidence intervals are
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(a) (b)

(c) (d)

Fig. 14: (a) Ex vivo lung tissue imaged by the endomicroscopy system
[7]. Non-linear interpolation (b) before, and (c) after deconvolution,
(d) the confidence intervals of the image in (c).

shown in Fig. 14(d). We can observe that as we move away
from the central cores, the confidence of the interpolated
intensities decreases and vice versa.

Table II provides the computation time of the 1951 USAF
resolution test chart and the ex vivo lung tissue image. It is
clear that the VB is still the fastest despite the change of the
images size.
TABLE II: Computation time (in seconds) for the real data. In
order to keep a fair comparison between the three algorithms, the
computational times of the ADMM algorithm correspond to the
duration of five runs (used to select the best regularization parameter
among five values).

Dataset/Method MCMC ADMM VB
USAF chart 1.12× 105 250 5.9
Lung tissue 1.46× 106 870 16.05

VIII. CONCLUSION AND FUTURE WORK

This paper introduced a hierarchical Bayesian model and
three estimation algorithms for the deconvolution of optical
endomicroscopy images. The deconvolution accounts and
compensates for fibre core cross coupling which causes major
image degradation in this type of imaging. The resulting joint
posterior distribution was used to approximate the Bayesian
estimators. First, a Markov chain Monte Carlo procedure
based on a Gibbs sampler algorithm was used to sample
the posterior distribution of interest and to approximate the
MMSE estimators of the unknown parameters using the
generated samples. Second, a variational Bayes approach to
approximate the joint posterior distribution by minimizing the
Kullback-Leibler divergence was used. Third, an approach
based on an alternating direction method of multipliers was
used to approximate the maximum a posteriori estimators.
The three algorithms showed similar estimation performance

while providing different characteristics, the MCMC and VB
based approaches are fully automatic in the sense that they
can jointly estimate the hyperparameters associated with the
priors, however, the MCMC based approach showed high
computational complexity which could be overcome by the
VB and ADMM approaches. Although the ADMM approach
has low computational complexity, it is semi-supervised in the
sense that the hyperparameters associated with the priors need
to be chosen carefully by the user. A non-linear interpolation
approach based on Gaussian processes was considered to
restore the full images from the samples to provide a mean-
ingful image for interpretation. In the future, we will consider
temporal information while deconvolving. Accounting for the
different core sizes is also clearly an interesting route currently
under investigation.
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