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ABSTRACT  

Terahertz pulsed imaging (TPI) was applied to analyse the inner structure of multiple 

unit pellet system (MUPS) tablets. MUPS tablets containing different amounts of 

theophylline pellets coated with Eudragit® NE 30 D and with microcrystalline cellulose 

(MCC) as cushioning agent were analysed. The tablets were imaged by TPI and the 

results were compared to X-ray microtomography. The terahertz pulse beam 

propagates through the tablets and is back-reflected at the interface between the 

MCC matrix and the coated pellets within the tablet causing a peak in the terahertz 

waveform. Cross-section images of the tablets were extracted at different depths and 

parallel to the tablet faces from 3D terahertz data to visualise the surface-near 

structure of the MUPS tablets. The images of the surface-near structure of the MUPS 

tablets were compared to X-ray microtomography images at the same depths. The 

surface-near structure could be clearly resolved by TPI at depths between 24 and 

152 µm below the tablet surface. An increasing amount of pellets within the MUPS 

tablets appears to slightly decrease the detectability of the pellets within the tablets 

by TPI. TPI was shown to be a fast and non-destructive method for the detection of 

pellets within the tablets and could resolve structures thicker than 30 µm. In 

conclusion, a proof-of-concept was provided for TPI as a method of quality control for 

MUPS tablets. 

 

Key words: MUPS tablets, terahertz pulsed imaging, 3D mapping, pellet distribution 

analysis, spectroscopy, quality control.  
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1 INTRODUCTION 1 

Multiple unit pellet system (MUPS) tablets have great potential as solid oral dosage 2 

forms, as they combine the advantages of coated single unit tablets with pellet 3 

containing capsules (Abdul et al., 2010; Bodmeier, 1997). The active pharmaceutical 4 

ingredient (API) in MUPS tablets is present in form of small coated pellets 5 

surrounded by a tablet matrix (Collet and Moreton, 2002). MUPS tablets disintegrate 6 

fast in the stomach resulting in the coated pellets to be released. These pellets pass 7 

the pylorus faster and at a more predictable rate than a coated single unit tablet 8 

(Bechgaard and Nielsen, 1978). A further advantage of MUPS tablets compared to 9 

coated single unit tablets is their divideability without losing the pellet coating 10 

functionality and thus providing high dosage flexibility (Bodmeier, 1997). However, to 11 

allow dividability, a homogeneous distribution of the API pellets within the tablet 12 

matrix is crucial and should be controlled and monitored during the manufacturing 13 

process. As a MUPS tablet formulation often contains pellets together with powder 14 

excipients, which strongly differ in terms of particle size, density and shape, 15 

segregation at various steps of the manufacturing process may occur (Reich, 2005; 16 

Wagner et al., 2000; Wagner et al., 1999). A fast and non-destructive method for 17 

quality control of the API pellet distribution within a MUPS tablet is thus needed.  18 

Several spectroscopic imaging techniques allow such non-destructive analysis for 19 

quality control of tablets including near-infrared (NIR) spectroscopy, Raman 20 

spectroscopy, ultraviolet (UV) imaging and terahertz pulsed imaging (TPI). The NIR 21 

region is defined as the range of the electromagnetic spectrum between 700 and 22 

2500 nm (12820 - 3959 cm-1) and NIR spectroscopy is a well investigated method for 23 

various pharmaceutical applications (Reich, 2005). Moreover, NIR spectroscopy has 24 

been demonstrated to be a powerful imaging tool for monitoring the API content 25 
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uniformity and API distribution in single unit tablets (Amigo and Ravn, 2009; Cruz and 26 

Blanco, 2011; Franch-Lage et al., 2011; Lee et al., 2006; Palou et al., 2012). Zhao et 27 

al. applied NIR mapping to visualize the distribution of metoprolol succinate pellets 28 

on the surface of commercially available MUPS tablets (Zhao et al., 2010). Raman 29 

spectroscopy is another frequently applied analytical method for the characterisation 30 

of pharmaceutical formulations. It is based on the inelastic scattering of light, often in 31 

the same range of energy as infrared spectroscopy (Gordon and McGoverin, 2011). 32 

The application of Raman imaging to analyse the tablet ingredient distribution within 33 

single unit tablets is extensively described in the literature (Boiret et al., 2014; Firkala 34 

et al., 2013, Sasić, 2007a, 2007b, Slipchenko et al., 2010; Vajna et al., 2011). The 35 

application of Raman imaging to analyse the structure of MUPS tablets has not yet 36 

been described in the literature, but is also theoretically possible. UV imaging has 37 

also been shown to be applicable for the visualisation of the distribution of 38 

theophylline pellets on the tablet surface (Novikova et al., 2016a). However, UV 39 

radiation does not provide a high penetration depth into a tablet. Therefore, only 40 

pellets directly at the tablet surface are considered in the analysis. With the described 41 

imaging techniques, information on structures below the tablet surface can only be 42 

obtained by destructive and time consuming handling of the tablet (Shen and Taday, 43 

2008).  44 

In the present study, terahertz pulsed imaging (TPI) is evaluated as a quality control 45 

tool for MUPS tablets. Terahertz radiation is defined as the range of the 46 

electromagnetic spectrum between microwaves and infrared radiation (2-133 cm-1, 47 

0.1-4 THz) (Zeitler et al., 2007a). Terahertz radiation propagates through most 48 

pharmaceutical materials, allowing a high penetration depth and thus analysis of the 49 

3D structure of pharmaceutical samples (Fitzgerald et al., 2005; Shen, 2011; Zeitler 50 
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et al., 2007a). Therefore, terahertz radiation has gained interest in pharmaceutical 51 

research for analysis of solid dosage forms with complex inner structures (Shen and 52 

Taday, 2008). The interfaces separating physical structures with different refractive 53 

indices, such as interfaces between pellets and the matrix in a MUPS tablet, are 54 

visible as peaks in the measured terahertz waveform. Therefore, these features in 55 

the terahertz waveform allow the detection of interfaces below the sample surface. 56 

The main applications of TPI in the pharmaceutical field are the analysis of the 57 

coating thickness (Haaser et al., 2013) and its uniformity (Zeitler and Shen, 2013) as 58 

well as in-line monitoring of coating processes (May et al., 2011). The application of 59 

TPI for chemical imaging as well as for API quantification has also been discussed in 60 

the literature (Cogdill et al., 2006; Shen et al., 2005a). Compared to NIR and Raman 61 

imaging, TPI allows the extraction of chemical and physical information on the 62 

different depths within a sample simultaneously (3D imaging) (Zeitler and Shen, 63 

2013). Therefore, it was possible to perform chemical imaging of lactose and tartaric 64 

acid with TPI in depth within a model tablet (Shen et al., 2005b). However, this model 65 

tablet consisted of polyethylene, which is completely transparent to terahertz 66 

radiation and therefore scattering of the terahertz radiation within the tablet was 67 

minimised (Shen et al., 2005b; Zeitler and Shen, 2013). Nevertheless, this method 68 

holds great potential for chemical imaging within a tablet. 69 

The suitability of TPI for the analysis of the inner structure of MUPS tablets was 70 

investigated in this study. For this purpose, MUPS tablets containing varying 71 

amounts of theophylline pellets coated with Eudragit® NE 30 D were compressed 72 

with microcrystalline cellulose (MCC) as a cushioning agent and thereafter analysed 73 

by TPI. The effect of the depth resolution limit and the influence of the coated pellet 74 

amount in the MUPS tablets on the detectability of the pellets below the tablet 75 
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surface was investigated. The TPI results were compared to X-ray microtomography 76 

(microCT) measurements as reference method.   77 
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2 MATERIALS AND METHODS 78 

2.1 Materials 79 

Theophylline matrix core pellets obtained by extrusion and spheronisation containing 80 

96.5% theophylline, were supplied by Temmler (Killorglin, Ireland). 81 

Eudragit® NE 30 D was donated by Evonik (Darmstadt, Germany). MCC (Ceolus® 82 

KG-802) was a gift by Asahi Kasei Chemicals (Tokyo, Japan). Hydroxypropyl 83 

methylcellulose (HPMC; Pharmacoat® 603) was purchased from Harke Pharma 84 

(Mülheim an der Ruhr, Germany), polysorbate 80 was obtained from Caelo (Hilden, 85 

Germany), and talc from Fagron (Barsbüttel, Germany). 86 

 87 

2.2 Methods 88 

2.2.1 Sample preparation 89 

To obtain coated theophylline pellets for manufacturing of MUPS tablets, a 90 

Eudragit® NE coating dispersion was prepared by homogenising HPMC as a gelling 91 

agent in purified water at 40 °C using an Ultra Turrax® (IKA, Staufen, Germany). After 92 

a solution was formed, polysorbate 80 as a plasticiser and talc as anti-tacking agent 93 

were added and dispersed for at least 10 min and subsequently slowly poured into 94 

the Eudragit® NE 30 D dispersion under continuous stirring with a propeller stirrer 95 

(Eurostar 100 digital, IKA, Staufen, Germany) for at least 5 min. The resulting coating 96 

dispersion contained 22.7% Eudragit® NE 30 D, 6.8% talc, 0.7% polysorbate 80, and 97 

0.7% HPMC (w/w). After preparation of the coating dispersion, 400 g of theophylline 98 

pellets (mesh 900 - 1000 μm) were coated in a bottom spray fluidised bed apparatus 99 

(Solidlab 1, Bosch Packaging Technology, Schopfheim, Germany). The coating 100 

parameters were adjusted as follows: inlet air temperature 16 °C; inlet air flow rate 101 

35 m3 h−1; atomising air pressure 1.5 bar; microclimate 0.4 bar; spraying rate 102 
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1.5 - 3.0 g min−1. The nozzle diameter was 0.8 mm. The obtained coated pellets were 103 

subsequently dried in an oven at 40 °C for 48 h. The total coating applied to the 104 

pellets amounted to a 5% weight gain in polymer mass. 105 

The coated theophylline pellets were mixed with MCC powder to obtain five batches 106 

of tablets with varying amounts of pellets (30%, 40%, 50%, 60%, and 70% (w/w)). 107 

250 mg of each formulation were manually filled into the die and compacted at 108 

255 MPa using the single punch mode of an instrumented rotary press (Fette 102i, 109 

Fette Compacting, Schwarzenbek, Germany), equipped with 10 mm flat-faced 110 

punches, resulting in tablets between 2.2 and 2.4 mm thickness. The tablet thickness 111 

and tensile strength were determined with a tablet hardness tester (Erweka TBH425, 112 

Heusenstamm, Germany). The tensile strength of the produced tablets was above 3 113 

MPa to ensure tablets of significant hardness comparable to industrially produced 114 

tablets. 115 

2.2.2 Terahertz pulsed imaging  116 

Five MUPS tablets, one from each batch, were imaged with a commercial TPI system 117 

(TPI™ imaga 2000, TeraView, Cambridge, UK) which represents an automated 118 

tablet scanner. As shown in Fig. 1 the TPI system scans across the x- and y- 119 

direction of the top and bottom face of the sample tablets and thereby records single 120 

depth profiles at 200 µm lateral resolution. The scanning procedure is based on a 3D 121 

model of the surface, which is generated prior to the terahertz measurements. This 122 

3D model is further required for analysis of the terahertz data to locate each 123 

waveform and thus to enable the 3D reconstruction of the sample. Each terahertz 124 

waveform within a sample tablet represents a depth profile equivalent to 3.5 mm 125 

pulse propagation in air (refractive index, n=1). The actual penetration depth is 126 

dependent on the actual refractive index of the tablet matrix as well as the absorption 127 
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of the terahertz pulse by the matrix. Each 3D measurement thus covered a volume of 128 

9.7 x 9.7 x 3.5 mm3 (49 x 49 x 512 pixels). The scheme of the resulting terahertz 129 

waveform in Fig. 1 shows the peaks originating from the reflection at the front face of 130 

the tablet as well as at the interfaces of the surface-near pellets. As the average 131 

thickness of the pellets’ coating layers is below the depth resolution of the used TPI 132 

(≈ 35 µm), only two peaks per pellet are observed (e.g. labelled with 2, 3 or 4, 5 in 133 

Fig. 1) even though the coating and the pellet core have different refractive indices. 134 

The data acquisition time for one tablet face was 25 min. Analysis of the images was 135 

performed with Matlab (ver. 8.1, Mathworks, Natick, USA). Wavelet denoising was 136 

applied on each terahertz waveform using 4-layer Daubechies wavelets and 137 

performing the wavelet decomposition at level 8. This procedure helped to highlight 138 

inner structures and supressed noise in the terahertz waveforms.  139 

2.2.3 X-ray microtomography 140 

The same MUPS tablets that were analysed by TPI were scanned with X-ray 141 

microtomography (Skyscan 1172, Bruker microCT, Kontich, Belgium) applying a 142 

source voltage of 59 kV. The tablets were rotated during the measurement, and 803 143 

transmission images were recorded in steps of 0.25°. The exposure time for each 144 

transmission image was 780 ms. The scan duration for one tablet varied between 43 145 

and 53 min. Reconstruction of the microCT images was performed with NRecon 146 

software (ver. 1.6.8, Bruker microCT, Kontich, Belgium) and further analysis of the 147 

images was conducted with the Dataviewer software (ver. 1.5.2, Bruker microCT, 148 

Kontich, Belgium). The isotropic voxel size of the reconstructed images varied 149 

between 3.04 µm and 3.98 µm.   150 
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3 RESULTS AND DISCUSSION 151 

In the present study, the suitability of TPI to analyse the inner structure of MUPS 152 

tablets was investigated. The signals caused by propagation of the terahertz 153 

radiation through the MUPS tablets were correlated with the physical structure of the 154 

tablets. The pulse of terahertz radiation propagates through the tablet and is partly 155 

reflected by interfaces of structures with different refractive indices (Zeitler and Shen, 156 

2013). The time delay �� between the reflections of two different interfaces can be 157 

measured and used to calculate the actual depth �	 = 		���/2�, where � is the 158 

refractive index of the medium and � is the speed of light (Shibuya and Kawase, 159 

2013). A sample terahertz waveform resulting from the reflection of the terahertz 160 

pulse at the interface of the structures in a MUPS tablet containing 30% (w/w) of 161 

coated theophylline pellets is presented in Fig. 2a. The terahertz electric field is 162 

plotted versus the time delay relative to the reflection from the surface of the MUPS 163 

tablet (corresponds to 0 µm time delay). The units are propagation distance of the 164 

equivalent length of travel in air (n=1). The first reflection peak (1) is caused by the 165 

terahertz pulse being reflected at the tablet surface in the matrix area. Thereafter, the 166 

terahertz pulse propagates into the tablet matrix and is reflected at the interface 167 

between the tablet matrix (MCC) and a coated pellet resulting in a second peak (2). 168 

The contact region between the tablet matrix and the pellet includes both an interface 169 

between the tablet matrix and the coating and an interface between the coating and 170 

the pellet core. However, the coating (coating level 5%) is thinner than the TPI depth 171 

resolution limit of about 35 µm (Haaser et al., 2013). Thus, the reflections at these 172 

interfaces result only in a single peak representing a “combined” interface caused by 173 

the short time delay between these signals. After the reflection at this “combined” 174 

interface, the terahertz pulse further propagates into the theophylline pellet until it 175 
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once again is reflected at the “combined” interface between the pellet and the tablet 176 

matrix resulting in a third peak (3).  177 

Another example of the waveform caused by the terahertz pulse that propagates into 178 

the MUPS tablet is outlined in Fig. 2b. The first peak (4) is again caused by terahertz 179 

pulse reflection at the surface of the tablet. In this case, however, the signal for the 180 

reflection of the terahertz pulse at the interface between the tablet matrix and pellet 181 

core is not detectable because this particular pellet is too close to the tablet surface 182 

and its signal is overlapped by the first peak. After that reflection, the terahertz pulse 183 

further propagates into the theophylline pellet. Subsequently, the second peak (5) is 184 

the result of the reflection at the interface between the pellet core and the tablet 185 

matrix. This described waveform is presented for a pellet, which is located close to 186 

the surface and has lost its spherical shape during compression. 187 

As the measured terahertz waveform is the result of the convolution of the incident 188 

terahertz pulse and the impulse response function of the sample, features of the 189 

incident terahertz pulse (e.g. negative peaks) are also visible in the measured 190 

waveform. In the majority of cases, this is corrected by a deconvolution using a 191 

reference waveform (e.g. the reflection measurement of a mirror). Such 192 

deconvolution amplifies high-frequency noise, which can be reduced by applying a 193 

filter. In the present study a deconvolution was applied and different filters (double 194 

Gaussian and Wiener filter) were tested, which improved the overall signal to noise 195 

ratio. However, the filters introduced artificial features causing a misdetection of 196 

pellets and it suppressed characteristic peaks originating from the pellet interfaces. 197 

Therefore, the raw terahertz waveforms were used for comparison with the microCT 198 

data.  199 
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For better visualisation of the 3D structure of the MUPS tablet with a theophylline 200 

pellet amount of 30% (w/w), microCT and TPI images at six different depths (24 µm, 201 

49 µm, 73 µm, 97 µm, 128 µm and 152 µm) below the tablet surface are presented in 202 

Fig. 3. In the microCT greyscales images, the pellets are visualised by darker grey 203 

colour, as a result of lower density, compared to the MCC matrix. The colours in the 204 

TPI images represent the strength of the terahertz electric field. In this context, the 205 

yellow colour indicates a high electric field and blue colour - a low one. In this proof of 206 

concept study, the coated theophylline pellets embedded in the MCC matrix can be 207 

identified in the TPI images up to a depth of 152 µm. Although the terahertz radiation 208 

penetrates through the entire tablet, the contrast of the pellets’ interfaces is very low 209 

at depths >152 µm because of the used optics (i.e. the focal point is at the surface of 210 

the tablet) and scattering losses. A yellow colour of the pixels corresponds to a high 211 

terahertz electric field indicating that the terahertz pulse reaches the surface of the 212 

pellet within the tablet and is reflected at this interface as described above. The first 213 

cross-section image was analysed at the depth of 24 µm. This depth resolution limit 214 

was determined by comparison of the first TPI cross-section image with the microCT 215 

data. As expected, the results show that the signals caused by the back-reflection of 216 

the terahertz pulse from the internal interface still overlap with the signal of the back-217 

reflected terahertz pulse from the surface of the tablet.  218 

The pellets that can be detected based on the TPI data in the first image of Fig. 3 are 219 

marked with a red “1”. The TPI results for the pellet distribution at the depth of 24 µm 220 

in the tablet were confirmed by the microCT investigation. The depth position of the 221 

pellets below the surface determined by TPI may slightly differ (several µm) from that 222 

determined by microCT. This deviation is primarily attributed to the different refractive 223 

indices of MCC, the Eudragit® coating of the pellets and the theophylline pellets 224 
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causing variations in the propagation velocity of the terahertz pulse while it 225 

propagates through the tablet. In addition to that, it was difficult to accurately 226 

superimpose both datasets in 3D.  227 

In the second image of Fig. 3 (depth of 49 µm) a change of the yellow colour to green 228 

or blue for various pellets that are marked with “1” can be observed. This change 229 

results from the decrease of the terahertz electric field after the peak maximum. 230 

However, the differentiation between various pellets that are marked with “1” and the 231 

tablet matrix is impossible at this depth because there is no interface present. 232 

Therefore, to analyse the pellet distribution deep below the tablet surface of a MUPS 233 

tablet, the TPI images at several depths should be analysed instead of TPI image at 234 

one preselected depth. Pellets which were first detectable at the depth of 49 µm are 235 

marked with “2” (Fig. 3, image 2).   236 

The pellets contain 96.5% of theophylline and are coated with a flexible polymer 237 

(please refer to section 2.1), resulting in soft pellets, which have lost their spherical 238 

structure during compression. Therefore, the shape of the pellets may vary 239 

depending on their location below the surface of the MUPS tablet. Thus, several 240 

interface spots between the pellet and the matrix exist for one pellet at varying 241 

depths. The terahertz pulse is reflected at these interfaces resulting in a high 242 

terahertz electric field (yellow colour) for one pellet at varying depths. This can be 243 

observed for the pellets marked with “1” in the lower left corner of the TPI images. 244 

These pellets are characterised by a high terahertz electric field in the first image and 245 

then again especially in the fourth image. As described above, the detectable 246 

interface spots of these pellets increase at the depth of 97 µm leading to new 247 

interfaces resulting in back-reflection of the terahertz pulses and therefore in high 248 

terahertz electric field values (yellow colour).  249 
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In a previously performed study on the determination of the coating thickness of 250 

coated tablets with TPI, it was possible to analyse the inner tablet structure up to a 251 

depth of 300 µm (Novikova et al., 2016b). In contrast, in the present study 252 

investigating MUPS tablets it was only possible to detect pellet structures up to 253 

152 µm below the tablet surface (Fig. 3), because of high scattering losses and the 254 

high density of the MUPS tablet components compared to the coating of coated 255 

tablets. Therefore, the location of small objects such as pellets at greater depth is 256 

difficult, as the divergence of the terahertz beam as well as scattering and absorption 257 

losses will further decrease the signal contrast. Nevertheless, the analysis of depths 258 

>152 µm below the tablet surface appears still feasible, because Zeitler et al. 259 

demonstrated that internal interfaces up to 2 mm below the tablet surface of coated 260 

tablets can be detected (Zeitler et al., 2007b).  261 

To determine the influence of the pellet amount in the MUPS tablets on the 262 

detectability of the pellets embedded in the MCC matrix, tablets with different 263 

amounts of pellets (expressed as the weight percentage of pellets in the MUPS 264 

tablet) were investigated. As shown in Fig. 3 for a MUPS tablet with a pellet amount 265 

of 30% (w/w), all pellets which were detectable in the microCT images were also 266 

detected in the TPI images. In Fig. 4 microCT and TPI images of four MUPS tablets 267 

with a pellet amount between 40 and 70% (w/w) are displayed. The images are 268 

presented only at one selected depth per tablet. However, to detect as many pellets 269 

as possible, images at depths below the selected depths were also analysed (data 270 

not shown). Pellets  detected in the TPI images at depths below the selected depths 271 

are marked with “1”. Furthermore, pellets detected in the TPI images of the selected 272 

depths are marked with “2”. In the image of the MUPS tablet with a pellet amount of 273 

40% (w/w) all pellets which were present in the microCT image, were also detected 274 
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in the TPI image. In the microCT image of the MUPS tablet with a pellet amount of 275 

50%, two pellets (marked with “0”) were found, which were undetectable in the TPI 276 

images (Fig. 4b). Interestingly, these pellets were visible with microCT on the tablet 277 

surface. Thus, the peak caused by the back-reflection of the terahertz pulse at the 278 

interface between the pellet and the matrix may have overlapped with that at the 279 

interface between air and tablet surface (matrix), or this surface peak is already 280 

caused by the back-reflection at the interface between air and pellet surface. The two 281 

undetected pellets are located close to the edge of the tablet. In the TPI image of the 282 

MUPS tablet with a pellet amount of 60% (w/w) again two pellets (marked with “0”), 283 

which were also located close to the edge of the tablet, were not found in the TPI 284 

images. Apparently, edge effects are occurring in the terahertz waveforms acquired 285 

close to the tablet edge because of a diffraction-limited focal spot of about 200 µm. 286 

As shown in Fig. 4d, for the MUPS tablet with a pellet amount of 70% (w/w) the 287 

number of undetected pellets increases to six (marked with “0”), compared to the 288 

MUPS tablets with lower pellet amounts. Three of the undetected pellets were again 289 

located close to the tablet edge confirming the assumption that the applied optics 290 

decreases the pellet detectability at the edge of the tablet. The other three of the 291 

undetected pellets were not located close to the tablet edge, but are already visible 292 

on the tablet surface. This confirms the hypothesis that the back-reflection peak of 293 

the terahertz pulse beam at the interface between matrix and pellets which are visible 294 

on the tablet surface may overlap with the back-reflection peak of the terahertz pulse 295 

at the tablet surface. However, in general, the detectability of pellets based on the 296 

TPI images appears to decrease slightly with increasing pellet amount in the MUPS 297 

tablet. Nevertheless, it should be mentioned that these pellets may still be detected 298 

based on terahertz electric field values at other depths below the tablet surface.  299 
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In Table 1 the results regarding the number of pellets detected in the TPI and 300 

microCT images of MUPS tablets up to the depths presented in Fig. 4 are 301 

summarized. For better comparison of the results for the different pellet amounts 302 

within the MUPS tablets the percentage of the number of pellets detected in the TPI 303 

images with regard to the actual number of visible pellets in the microCT images was 304 

calculated. For tablets with a low pellet amount (30 and 40% (w/w)) all pellets that 305 

were visible in the microCT images, could also be detected in the TPI images. In the 306 

TPI images of tablets with pellet amounts of at least 50% (w/w) more than 87% of 307 

pellets that were visible with microCT, could be detected.  308 

Table 1: Comparison of the number of pellets detected in MUPS tablets with 309 

varying pellet amounts by microCT and TPI. 310 

Pellet amount in MUPS 

tablet: 
30% (w/w)1 40% (w/w)2 50% (w/w)2 60% (w/w)2 70% (w/w)2 

Number of pellets detected 

in microCT images 
18 16 19 25 45 

Number of pellets detected 

in TPI images 
18 16 17 23 39 

Percentage of pellets 

detected by TPI compared 

to microCT 

100% 100% 89% 92% 87% 

1 Number of pellets detected up to the depth of 49 µm below the tablet surface. 311 

2 Number of pellets detected up to the selected depth below the tablet surface. 312 

In general, it can be stated that it was possible to detect most of the pellets in the TPI 313 

images up to the selected depth regardless of the pellet amount in the MUPS tablets 314 

and to confirm these results with the microCT images. TPI has been shown to be a 315 

faster and safe method than microCT, with a pixel size in depth of 4.9 µm and the 316 

possibility to precisely resolve structures thicker than about 30 - 40 µm for the 317 

analysis of the surface-near structure of MUPS tablets. 318 
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The dividability is an advantage of MUPS tablets. Therefore, rapid and non-319 

destructive methods for the evaluation of the pellet distribution within the MUPS 320 

tablet are needed. The advantage of TPI compared to surface imaging methods is 321 

the possibility to obtain additional information on the pellet distribution below the 322 

tablet surface. As already mentioned, with the optics of the TPI device it was possible 323 

to analyse the pellet distribution up to 152 µm below the tablet surface. Novikova et 324 

al. investigated the suitability of UV imaging for analysis of the pellet distribution on 325 

the MUPS tablet surface (Novikova et al., 2016a). In this study it could be shown that 326 

the pellet amount in a MUPS tablet can be estimated based on the amount of pellets 327 

determined on the tablet surface. In addition, the pellet amount in a tablet half after 328 

tablet division could be estimated based on the pellet amount determined on the 329 

surface of this tablet half. Based on the data of the present study, the determination 330 

of the pellet amount within a MUPS tablet by TPI analysis of the tablet appears to be 331 

more suitable than a surface method (e.g. UV imaging). Especially for tablets with a 332 

low pellet amount and, thus also a low number of detectable pellets at the tablet 333 

surface, estimation of the pellet amount in the tablets based on TPI images may 334 

improve the quality of the determination. Additionally, Novikova et al. showed that for 335 

thicker tablets the estimation of the pellet amount within a tablet based on the tablet 336 

surface analysis by a UV imager was less precise than for the thinner tablets 337 

(Novikova et al., 2016a).  338 

NIR mapping has also been shown to be applicable for visualization of the pellet 339 

distribution on the surface of MUPS tablets (Zhao et al., 2010). Nevertheless, NIR, 340 

such as NIR mapping in reflection, is a surface-biased method and may not be 341 

applicable for tablets with a low amount of pellets on the tablet surface or for thicker 342 

MUPS tablets. As described in the introduction, Raman imaging has not yet been 343 
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applied for analysis of the pellet distribution within MUPS tablets. Moreover, Raman 344 

is also a surface biased technique. Therefore, depth information may only be 345 

obtained by microtoming the samples and successively imaging every plane. 346 
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4 CONCLUSION 347 

In this study, the suitability of TPI for the detection of coated theophylline pellets 348 

within a MUPS tablet was investigated. It was found, that a pellet in a tablet causes 349 

two peaks: one as soon as the terahertz pulse is back-reflected at the interface 350 

between the tablet matrix and the pellet surface and a second when the terahertz 351 

pulse leaves the pellet and is reflected at the interface between the pellet and the 352 

matrix. Thus, TPI allows the visualisation of the interfaces between the pellets and 353 

the tablet matrix. The first evaluable cross-section TPI images were achieved at 354 

24 µm below the tablet surface. With the applied optics it was possible to detect the 355 

pellets in the TPI images up to at least 152 µm below the tablet surface. Increasing 356 

the amount of pellets within the MUPS tablets appeared to slightly decrease the 357 

pellet detectability. The undetected pellets were located close to the tablet edge or at 358 

the tablet surface. In conclusion, TPI was shown to be a promising technique for fast 359 

and non-destructive analysis with a high depth resolution within the MUPS tablets. 360 

Therefore, the present study serves as a proof-of-concept for quality control of MUPS 361 

tablets by means of TPI.   362 
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