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Abstract

This study focuses on the clustering of the indentation-induced interlaminar and intralaminar 

damages in carbon/epoxy laminated composites using Acoustic Emission (AE) technique. Two 

quasi-isotropic specimens with layups of [60/0/-60]4S (is named dispersed specimen) and [604/04/-

604]S (is named blocked specimen) were fabricated and subjected to a quasi-static indentation 

loading. The mechanical data, digital camera and ultrasonic C-scan images of the damaged 

specimens showed different damage evolution behaviors for the blocked and dispersed specimens. 

Then, the AE signals of the specimens were clustered for tracking the evolution behavior of 

different damage mechanisms. In order to select a reliable clustering method, the performance of 

six different clustering methods consisting of k-Means, Genetic k-Means, Fuzzy C-Means, Self-

Organizing Map (SOM), Gaussian Mixture Model (GMM), and hierarchical model were 

compared. The results illustrated that hierarchical model has the best performance in clustering of 

AE signals. Finally, the evolution behavior of each damage mechanism was investigated by the 
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clustered AE signals with hierarchical model. The results of this study show that using AE 

technique with an appropriate clustering method such as hierarchical model could be an applicable 

tool for structural health monitoring of composite structures.

Keywords: Acoustic Emission; Laminated Composites; Damage Mechanisms; Clustering 

Methods; Indentation Loading.

1. Introduction

 Carbon Fiber Reinforced Polymer (CFRP) composites are increasingly utilized in many 

industries due to their high specific strength and stiffness [1-3]. One of the important issues that 

affected the functionality of these materials is their high susceptibility to damage under out-of-

plane loading. This type of load can induce different kinds of interlaminar and intralaminar 

damages in the composite structure such as delamination, matrix cracking, and fiber failure [4-6]. 

It will be more critical when the damages occur inside the structure without any evidence on the 

structure surface [7]. However, the adverse effects of these damage mechanisms on the structural 

integrity of the composite structures are not equal. For example, delamination reduces the stiffness 

of the structure considerably while the matrix cracking does not have a significant effect on the 

stiffness of the composite structures individually. Knowing some information about the type and 

also amount of the different damage mechanisms in a damaged composite structures is necessary 

to damage tolerance analysis of the structure. Thus, using a practical method to detect and classify 

different damage mechanisms in a composite structure is a valuable tool to damage tolerance 

analysis.

Structural Health Monitoring (SHM) has attracted many attentions to itself during the last 

decades [8, 9]. Non-Destructive Evaluation (NDE) techniques are capable tools for examining the 

integrity of laminated composite structures [10-12]. Among the NDE techniques, Acoustic 
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Emission (AE) is widely utilized for health monitoring of the composite structures [13-18]. AE is 

defined as the propagation of a transient elastic wave within the material caused by a sudden 

release of strain energy which can be due to the occurrence of a damage [19]. Detecting, analyzing 

and clustering of the originated AE signals from a damaged structure lead to obtaining some 

valuable information about the damage such as the damage location, damage type, amount of 

damage, etc. Ai et al. [20] used b-value method to analyze the AE signals of carbon/epoxy 

specimens under three-point bending test. The b-value parameter is an indicator that shows the 

state of damage in the material. They tracked the evolution of different damage mechanisms in the 

specimens by this method. Fotouhi et al. [21] classified damage mechanisms in glass/epoxy 

composites using analyzing of AE signals by Fuzzy C-Means (FCM) clustering. They partitioned 

three different damages, i.e. matrix cracking, fiber breakage, and fiber/matrix debonding. 

Pashmforoush et al. [22-23] used Genetic k-Means algorithm to cluster AE signals of the damage 

mechanisms in glass/epoxy and sandwich laminates under three-point bending and mode I loading 

conditions. As will be mentioned in the next sections, the drawback of these works is that the 

performance of FCM and Genetic k-Means methods to data clustering dependents on the selecting 

of the initial cluster centers and they often get stuck in local minima. Thus, it seems that these 

methods are not appropriate tools to create a robust and reliable SHM system based on AE 

technique.

By literature review, it is found that there are many studies on the numerical, analytical, and 

experimental investigation of the damage mechanisms in laminated composites under indentation 

and low-velocity impact loadings [24-29]. However, there is only a few research on AE-based 

study of the indentation and low-velocity impact-induced damages in laminated composites. 

Suresh Kumar et al. [30] characterized the indentation damage resistance of hybrid composite 

laminates using AE monitoring. They used the felicity effect and the sentry function for monitoring 
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the damage state of the material under repeated indentation loading. However, they did not perform 

the clustering of damage mechanisms. Boominathan et al. [31] used AE to characterize the effect 

of temperature on the falling weight impact damage in carbon/epoxy laminates. They did not 

directly analyze the impact-induced damages and instead, the impacted damaged specimens were 

subjected to the quasi-static flexural loading and the AE behavior of them was studied. Also, they 

classified AE signals of the specimens based on their frequency content without using any 

clustering method. Mahdian et al. [32] investigated the indentation-induced damages in 

glass/epoxy laminated composites by AE. They clustered the damage mechanisms by FCM 

method. Their study has some drawbacks, one is that the layup of their specimens was 

unidirectional ([08] layup) which is a non-practical layup and therefore no delamination occurred 

in the specimens. Also, as will be shown in the next sections, FCM clustering is not a reliable and 

repeatable clustering method to classify the AE signals of the damage mechanisms. Petrucci et al. 

[33] investigated the effect of hybridization of laminated composites on the impact and post-impact 

damages. They only used the AE technique to localize the damaged region without any 

furthermore AE signals analysis.

As been mentioned, there is a lack in AE-based study of indentation and low-velocity impact-

induced damages in laminated composites. Also, a few conducted studies on this subject have not 

used an appropriate clustering method to classify AE signals of damage mechanisms. Therefore, 

the aim of this study is the clustering of the indentation-induced interlaminar and intralaminar 

damages in carbon/epoxy laminated composites using AE technique. To achieving the in-plane 

isotropic properties, most of the real composite structures are fabricated with the quasi-isotropic 

layup. Also, in order to investigate the effect of ply-thickness on the induced damages, two quasi-

isotropic carbon/epoxy laminated composites with [60/0/-60]4S and [604/04/-604]S layups were 

fabricated and subjected to a quasi-static indentation loading. The load-displacement results and 
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the digital camera and ultrasonic C-scan images of the interlaminar and intralaminar damages 

showed different damage behaviors for the specimens. Then, the AE signals of the damaged 

specimens were classified to investigate the damage behavior of the specimens. In order to select 

the best clustering method, the performance of six different clustering methods that mostly have 

been used in literature consisting of k-Means, Genetic k-Means, FCM, Self-Organizing Map 

(SOM), Gaussian Mixture Model (GMM), and hierarchical model were compared. Based on the 

obtained results, the AE signals of the specimens were finally clustered by hierarchical model and 

the evolution behavior of the different damage mechanisms during indentation loading was 

studied. The obtained results show that the combination of AE technique with an appropriate 

clustering method such as hierarchical model can be used as a valuable tool for structural health 

monitoring of the composite structures.

2. Experimental Procedures

2.1.  Description of the Materials

The specimens were fabricated from 24 layers of Hexcel IM7/8552 unidirectional prepregs 

sheets (from Hexcel® Corporation) curried according to the manufacturer’s offered procedure [34]. 

The physical properties of unidirectional carbon fibers, IM7, and epoxy resin, 8552, and also the 

mechanical properties of the laminate are represented in Tables 1 and 2. 

Table 1. The physical properties of IM7/8552 [34].

Parameter Value

Fiber density (g/cm3) 1.77

Resin density (g/cm3) 1.30

Fiber volume (%) 57.70

Laminate density (g/cm3) 1.57
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Table 2. The mechanical properties of IM7/8552 [35].

E1 

(MPa)

E2 

(MPa)

E3 

(MPa)
12 23 G12 

(MPa)

G13 

(MPa)

G23 

(MPa)

161000 11400 11400 0.300 0.436 5170 5170 3980

2.2.  Test Method

The specifications of the rectangular specimens are presented in Table 3. The quasi-static 

indentation tests were conducted by forcing a Φ16 mm spherical-head indenter against the 

specimen which is simply supported over a 125×75 mm2 hollow window (see Fig. 1). The load 

was applied under displacement control mode at a constant feed rate of 0.5 mm/min and the 

temperature of 25°C by an INSTRON servo-hydraulic testing machine. The applied load and 

vertical displacement were continuously recorded during all the tests by the machine. According 

to Fig.1, four AE sensors which are placed on the face of the specimen capture the originated AE 

signals during the tests.

Table 3. The specifications of the specimens.

Specimens Dimensions

(mm)

Lay-up Ply thickness

(mm)

SD 150×100×3 [60/0/-60]4S 0.125

SB 150×100×3 [604/04/-604]S 0.125
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Fig. 1. a) The composite specimen, and b) the indentation test setup.

2.3.  AE system

The utilized AE sensors, WD, were broadband, resonant-type, and single-crystal piezoelectric 

transducers from Physical Acoustics Corporation (PAC). The optimum operating frequency range 

of the AE sensors was [100–900 kHz]. The AE events were recorded by the AE software, AEWin, 

and a data acquisition system PAC-PCI-2 with a maximum sampling rate of 40 MHz. Vacuumed 
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silicon grease was used as the acoustical coupling. The recorded AE signals were enhanced by a 

2/4/6-AST preamplifier. The gain selector of the preamplifier and the threshold of receiving AE 

signals were set to 40 dB. The test-sampling rate was 5 MHz with 16 bits of resolution between 

10 and 100 dB. The threshold of receiving AE signals was adjusted to 40 dB. A pencil lead break 

procedure was used to calibrate the data acquisition system and ensure good conductivity between 

the specimen surface and the sensors [36]. In order to record the AE signals during the tests, four 

AE sensors were placed on the front face of the specimens. Then, some features of these signals 

such as amplitude, frequency, and absolute energy (the integral of the squared voltage signal above 

the threshold which is divided by a reference resistance over the AE signal duration) were extracted 

to study the damage state of the specimens.

3. The Proposed Methods

In this section, a brief description of the utilized clustering methods in this study is represented. 

The aim is partitioning a set of AE signals, {A1, A2, … , An}, which each signal has p features, 

A1=[a1, a2, …, ap]), into k clusters (k≤n), {C1, C2, …, Ck}.

k-Means clustering: k-Means is an iterative clustering method that attempts to partition a set 

of data so that the sum of distance (similarity) between with-in cluster data to clusters centroid be 

minimized. The k-Means algorithm consists of two phases [37]:

Assignment phase: Assigns each data to the cluster with the nearest cluster centroid.

2 2
( ) ( ) ( ){ :  ,1 }t t t

i n n i n jC A A m A m j j k       (1)

where is cluster i and is the center of cluster i.( )t

iC ( )t

im

Update phase: The centroid of each cluster is recalculated and considered as the mean value of 

the cluster’s member data.
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These two phases are iterated until the clusters do not change anymore. There is no guarantee 

that the algorithm converges to an optimum solution because the performance of the algorithm 

depends on the initial randomly selected clusters centroid [23, 38].

Genetic k-Means clustering: In order to reduce the probability that k-Means get stuck in local 

minima, the Genetic algorithm could be linked to k-Means to establish an equilibrium between 

local exploitation and global exploration. It could lead to finding a near-optimum solution. The 

details of this algorithm can be found in our previous study [23]. 

FCM clustering: Although FCM clustering is similar to k-Means, however, they have some 

differences. The most significant difference is that in FCM clustering, a data point does not 

definitely belong to only one cluster and it can appertain to some other clusters concurrently, with 

different values of membership parameter between 0 and 1 [21]. If the membership value of a data 

point for a cluster is close to 1, this data is closer to that cluster. The FCM attempts to minimize 

the following objective function [39]:

2

1 1

( ; ) ( )
k n

ij j i

i j

J A C A C
 

  (3)

2
2 ( ) ( )T

ij j i j i j iD A C A C A C     (4)

As can be seen, this objective function is very similar to the objective function of k-Means with 

two main differences: addition of membership value ( ) and fuzzier (α) that determines the level 
ij

of fuzziness of the clustering. The objective function will be minimized if [39]:
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The FCM algorithm has three phases:

1. Specifying the cluster centers by Eqs. 5 and 6.

2. Calculating the distance by Eq. 4.

3. Updating of the objective function by Eq. 3.

Although the performance of FCM is much better than k-Means, however, it is still possible 

that FCM gets stuck in local minima, because its performance depends on the selection of the 

initial cluster centers or/and the initial membership values [40].

SOM clustering: SOM is a type of Neural Networks (NN) that can be trained by an 

unsupervised learning technique to be utilized as a data partitioning method. In this method, there 

is a lattice consisting of some neurons with random initial weights. When a data is fed into the 

network, the similarity of the data with the weight vector of all neurons is checked and finally, the 

weight vectors of the winning neuron ( ) and its neighborhood neurons are updated by the vW

following equation [41]:

( 1) ( ) ( , , ) ( ( ))v v i vW t W s u v t A W t     (7)
2

2
( , , ) exp( )

2 ( )

u vr r
u v t

t





 (8)

where t is the time (step) index, u is the index of the winning neuron for data Ai,  is the ( , , )u v t

neighborhood function which specifies the distance between neuron u and v at step t,  and  are ur vr
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the positions of neurons u and v, and  is the width of the neighborhood function. By time ( )t

proceeding, the SOM lattice gets the shape of the data space and data are clustered. 

GMM clustering: GMM is a probabilistic model that assumes the data are a weighted sum of 

a finite number of Gaussian densities with unknown parameters [42]:

1

( ) ( , )
K

k k k

k

p x w g A


  (9)

T1
( )

1 2( , ) exp( )
( )(2 )

k

k k
k

k kk

A

g A
A






 
 

 
(10)

1

1
K

k

k

w


 (11)

where A is data, wk is the mixture weight function, and g is the Gaussian density function with 

mean vector µk and covariance matrix ฀k.

The GMM algorithm consists of three steps [42]:

1. The algorithm starts with some initial estimation for mean vectors and covariance 

matrixes. Then, it calculates the weight function for all data and all mixture combinations.

2. Using the membership weight and the data to calculate the new parameters. If the 

sum of membership weight for kth component is defined as NK=฀wik, the new mixture 

weight can be calculated by:

;   1new k
k

N
w k K

N
   (12)

The new mean vector and covariance matrix for Gaussian distributions are updated as 

follows:
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T

1

1
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k ik i k i k

ik

w A A k K
N

 


       (14)

3. Repeating steps 1 and 2 to satisfy the stopping criterion.

Hierarchical model: Hierarchical model partitions data by creating a cluster tree or 

dendrogram. This method usually is used under one of two following procedures: 1) divisive, and 

2) agglomerative.

 Divisive: In this procedure, 4 steps must be passed to achieve an appropriate clustering [43]: 

1. Each data is considered as a cluster and the distance between clusters are calculated.

2. Merging of two closest clusters.

3.  Calculation of the distance between the new cluster and the previous clusters (The 

number of clusters has been reduced as one unit)

4.  Repeating steps 2 and 3 to achieve the desired clusters number.

Due to the top-down structure of this method, it does not get stuck in local minima.

Agglomerative: It is completely reverse of the divisive approach.

4. Results and Discussions

The results are presented in two sections. At first section, the damage behavior of the specimens 

is studied based on the mechanical data, the digital camera and ultrasonic C-scan images. At the 

second section, the AE signals are used to study the damage mechanisms.

4.1.  The mechanical data, digital camera and ultrasonic C-scan images  
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Fig. 2 shows the load-displacement curve of the specimens. The load curve of the specimens 

have different behaviors. In the first region, where there is a linear relationship between the load 

and displacement, the flexural rigidity (the slope of the load-displacement curve) of specimen SD 

is about 27% higher than specimen SB which it is consistent with the theoretical calculation result 

(24%) [44]. The linear part of the curve is extended up to load 3 kN for specimen SD. It is then 

followed by a big load drop which is continued by a significant load-carrying recovery up to about 

2.6 times of the load magnitude at the first load drop, i.e. 7.8 kN, where, the final failure occurs. 

The behavior of the load curve of specimen SB differs from specimen SD. The linear part of the 

curve is finished earlier than specimen SD (i.e. 1.3 kN against 3 kN). In contrast to specimen SD, 

the linear part of the load curve of specimen SB is followed by a smooth reduction of the flexural 

rigidity without any significant load drop. This nonlinearity is continued up to load 4 kN, where, 

a big load drop occurs. After this region, there is another load recovery part. The ratio of the 

maximum load to the load at the end of the linear region is 2.6 and 3.1 for specimens SD and SB, 

respectively. Therefore, the load recycling capability of specimen SB is higher than specimen SD. 

While, based on the resistance against the occurrence of the initial significant damage (the end of 

the linear region in the load-displacement curve), specimen SD has a better performance in 

comparing with specimen SB (3 kN vs. 1.3 kN). Also, the maximum load of specimen SD is about 

1.7 times of maximum load of specimen SB.
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Fig. 2. The load-displacement curve of the specimens.

In order to fully description of the behavior of the damages, in addition to mechanical data, 

ultrasonic C-scan and digital camera were employed and pictures were taken at different stages of 

the loading process. To this aim, the state of the interlaminar and intralaminar damages have been 

studied at three points specified on the load curve as follows (see Fig. 3): point 1 near to the end 

of the linear elastic region, point 2 just after the linear elastic region, and point 3 at the final failure 

of the specimens. Fig. 3 shows the digital camera images of the front and back faces of the 

specimens at these three points. As can be seen, there is no matrix cracking at the first state for 

both specimens. At the end of the linear elastic region (point 1) some matrix cracking has occurred 

at the front face of the specimens, just under the punch surface. However, there is no matrix 

cracking at the back side of the specimens at this point. At point 2, in addition to the front face 
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matrix cracking, some matrix cracking is observed at the back face of the specimens. At point 3, 

the size of matrix cracking in the front face does not change significantly but the size of the matrix 

cracking at the back face obviously has been increased. The damages at the back face of specimen 

SD are almost locally and some fiber breakage is even seen, while the damages at the back face of 

specimen SB are located inside a wider region and no fiber breakage is also seen. It may show that 

the dominant loading mode for specimen SD is penetration, while the dominant loading mode of 

specimen SB is bending. As will be explained in the next paragraph, the number of delaminations 

for specimen SD is bigger than specimen SB and the distance between two adjacent delaminations 

in specimen SD is also less. Thus, by progressing the loading process and the occurrence of 

transverse matrix cracks, these delaminations connect to each other and consequently the punch 

can penetrate to specimen SD easier than specimen SB.  



16

Fig. 3. The damages at the front and back faces of the specimens at different load levels.
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Fig. 4 illustrates the detected interlaminar damages in the specimens by the ultrasonic C-scan 

at points 2 and 3. No delamination was detected by the ultrasonic C-scan at point 1 for both 

specimens, thus the images of point 1 have not been shown. The C-scan images at point 2 show 

some delamination. Area of the delaminated region was obtained by calculating area of the 

delaminated region’s pixels by image processing technique and it is reported in Table 4. The area 

of the delaminated region at point 2 for specimen SB is 4.5 times of specimen SD while the number 

of delaminated interfaces for specimen SD is higher than specimen SB. In order to specify the 

number of delaminated interfaces, some damaged specimens were cutted at the midplane of the 

longitudinal direction by a cutting machine with a very sharp circular blade. Fig. 5 shows the 

magnified cross-section overview of the damaged specimens at points 2 and 3. As can be seen, at 

point 2, at least 7 interfaces of specimen SD are delaminated while only 2 delaminated interfaces 

are seen in specimen SB. The higher number of the delaminated interfaces for specimen SD is due 

to the higher number of dissimilar interfaces in this specimen in comparison with specimen SB (22 

dissimilar interfaces for SD against 4 dissimilar interfaces for SB). The C-scan images at point 3 

show that the area of the delaminated region for specimen SB gets much bigger than specimen SD 

(i.e. 6.9 times), while the number of delaminations for specimen SD is more than specimen SB (22 

delaminated interfaces for SD against 4 delaminated interfaces for SB). The higher area of the 

delaminated region for specimen SB in comparison with specimen SD is due to the higher value of 

the interfacial shear stress between two adjacent dissimilar plies in this specimen. In other words, 

the blocking leads to increasing of the interlaminar shear stress at the dissimilar interfaces [45]. 
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Fig. 4. Delamination contours obtained from ultrasonic C-scan of a) SD-point 2, b) SD-

point 3, c) SB-point 2, d) SB-point 3. 
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Fig. 5. A cross-section overview of midplane of the longitudinal direction for a) SD-point 

2, b) SD-point 3, c) SB-point 2, d) SB-point 3.

Table 4. The area of the delamination region for the specimens.

Specimen Load level Delamination area (mm2)

Point 2 135.6
SD Point 3 556.5

Point 2 615.2
SB Point 3 3847.4

4.2.  AE-based study of damage mechanisms

Load and cumulative AE absolute energy versus displacement curves of the specimens are 

presented in Fig. 6. The AE activity of specimen SB initiates earlier than specimen SD. The first 
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significant damage in the specimens is well defined by a jump in the cumulative AE energy curve. 

The total AE energy of specimen SB is about 7 times of the total AE energy of specimen SD that it 

shows the occurrence of more damages in this specimen.

Fig. 6. Load and cumulative AE absolute energy versus displacement curves of the 

specimens.

One of the appropriate tools for characterization of damage evolution in composite materials 

which was utilized in literature, is the sentry function. The sentry function is defined as the 

logarithm of mechanical energy introduced to the structure/specimen to AE energy due to damage 

[46]:

( )
( ) Ln[ ]

( )

s

a

E x
f x

E x
 (15)

where ES(x), Ea(x) and x are the mechanical energy (area beneath the load-displacement curve), 

the cumulative AE events energy and the displacement, respectively. 
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 According to the state of the damage in the material, it may show four different trends as 

follows (see Fig. 7): S1: increasing trend; that shows there is no any considerable damage in the 

material. S2: suddenly drop; which shows that a considerable damage has been occurred in the 

material. S3: gradually decreasing; which illustrates the material is losing its load carrying 

capability. S4: constant trend; which shows that there is a balance between the occurrence of 

damages and some stiffening phenomena such as fiber bridging in the material. 

Fig. 7. The different trends of sentry function.

Fig. 8 shows sentry function curve of the specimens. For both specimens, there is an increasing 

trend (S1) at the end of the elastic region. Some oscillations and slope reduction in S11 may be due 

to the infinitesimal matrix cracking. Because matrix cracking cannot considerably degrade the 

stiffness of the structure individually, it usually does not lead to S2 type of the sentry function. 

The first S1, S11, is then followed by a sudden drop (S21) which is due to delamination. After this 

point, the sentry function behavior of specimen SD can be explained by some S1 type trends that 

each of them is followed by one S2 trend. However, the slope of S1 trends gradually decreases due 

to the accumulation of damages and reducing the load carrying capability of the material with load 
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proceeding. The sentry function of specimen SB has a similar trend with specimen SD with this 

difference that after two increasing and suddenly drop trends, two constant trends are observed 

which is followed by a gradually decreasing of the sentry function (S31) that shows the specimen 

is losing its load carrying capability. Thus, sentry function shows that specimen SB is lost its load 

carrying capability earlier than specimen SD.

Fig. 8. The sentry function of the specimens.
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4.3.  Damage classification by AE

In order to characterize the induced damages at various load levels, the AE signals of different 

damages should be differentiated and be classified. Many researchers have used different 

clustering methods to classify AE signals of damaged composite laminates. However, they did not 

perform a thorough study about the limitation and repeatability of the utilized clustering methods. 

Thus, in order to establish a reliable SHM system based on AE, it is necessary to compare the 

performance of different clustering methods to classify AE signals. To this aim, six different 

clustering methods that mostly have been used in literature containing k-Means, Genetic k-Means, 

FCM, SOM, GMM, and hierarchical model are utilized to cluster AE signals of specimens SD and 

SB. Prior to clustering, the optimum number of clusters should be specified. To this aim, four 

criteria consisting of Calinski-Harabasz [47], Silhouette [48], Gap [41], and Davies-Bouldin [49] 

were utilized to specify the optimum clusters number. These methods do an iterative procedure to 

find the optimum clusters number, but their performances are a little different. The Calinski-

Harabasz criterion is based on a ratio of the between-cluster variance to the within-cluster variance. 

The best solution has the largest between-cluster variance and the smallest within-cluster variance. 

The silhouette criterion measures the similarity of one point with its own cluster. The values of 

silhouette criterion are varied from -1 to +1 and the highest value of silhouette criterion shows that 

the point has a good similarity to its own cluster and is poorly matched to other clusters. The Gap 

criterion analyzes the change in within-cluster dispersion with the expected value of this parameter 

for the reference distribution. The highest value of Gap criterion illustrates the optimum solution. 

The Davies-Bouldin criterion is opposite to the Calinski-Harabasz criterion and it is defined as the 

ratio of within-cluster to between-cluster distances. Thus, the lowest value of Davies-Bouldin 

criterion shows the best clusters number. Thus, the highest value of Calinski-Harabasz, Silhouette, 

and Gap indices and the lowest value of Davies-Bouldin index show the best clusters number. Fig. 
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9 represents the values of these indices for the specimens. For specimen SD, the best clusters 

number according to Calinski-Harabasz, Silhouette, and Gap criteria is 3 while Davies-Bouldin 

offers 2 as the optimum clusters number. Because most of the criteria suggest 3 clusters and also 

Davies-Bouldin index for 3 clusters is near to the index of 2 clusters, thus the optimum clusters 

number is considered 3. In the case of specimen SB, Silhouette, Gap, and Davies-Bouldin criteria 

suggest 3 classes and Calinski-Harabasz suggests 6 classes. Because the Calinski-Harabasz index 

for 3 clusters is near to index for 6 clusters and also most of the criteria suggest 3, thus the optimum 

clusters number is considered 3.
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Fig. 9. The optimum clusters number for AE signals of specimens SD and SB.

According to literature review, the best parameters for AE signals clustering in composite 

materials are frequency and amplitude [21-23]. Thus these two parameters are selected as the 

features of the AE signals. Then, AE signals of specimens SD and SB are classified using the 

clustering methods. Fig. 10 shows the clustered AE signals of specimen SD by different clustering 

methods. As can be seen, Genetic k-Means, FCM, SOM, and hierarchical methods partitioned data 
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into three classes with frequency ranges [50-150 kHz], [150-400 kHz], and above 400 kHz, which 

has a good consistency with the data appearance. While, k-Means method divides the first 

partition, [50-150 kHz], into two clusters and combines two next clusters, i.e. [150-400 kHz] and 

above 400 kHz.  In addition, GMM method partitions two first clusters in a wrong manner. This 

fault is due to the fact that the performance of k-Means clustering depends on the initial randomly 

selected cluster centroids and there is no guarantee that the algorithm converges to the optimum 

solution every times [23, 38]. Also, the performance of GMM depends on the initially selected 

Gaussian parameters and they may be changed during each iteration [42].
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Fig. 10. The functionality of the different clustering methods for clustering AE signals of 

specimen SD.
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The aim is selecting the best clustering method among Genetic k-Means, FCM, SOM, and 

hierarchical methods. Most of the clustering methods get stuck in local minima when there are 

some dense regions in the space of data, where huge amount of data aggregate there. In order to 

examine the performance of the clustering methods in this situation, one artificial cluster with the 

frequency range of [0-50 kHz] is added to the AE signals of specimen SD. To create this artificial 

cluster, the cluster with the frequency range of [50-150 kHz] is copied and the number of its data 

is increased to three times by duplication of data in this cluster. The best clusters number which 

was evaluated for the new data set is 4. In order to ensure the repeatability of the results of the 

clustering methods, the clustering process is repeated several times for each clustering method. 

Fig. 11 shows the results of different clustering methods for the new AE data. As can be seen, 

SOM method detects the artificial cluster in all iterations but it does not classify other AE data 

correctly. For example, it combines a part of signals with the frequency less than 300 kHz with the 

signals that have the frequency higher than 500 kHz. This is due to the fact that because of defining 

a neighborhood function between lattice neurons, most of the lattice neurons usually aggregate in 

the dense regions of the data [41]. Thus, because a considerable number of AE data has been 

located in the frequency range of [0-50 kHz], therefore neurons try to aggregate in this region. 

Although FCM and Genetic k-Means could classify the data appropriately, but their results do not 

have repeatability for the next iterations. Therefore, although the combination of Genetic and 

Fuzzy methods with k-Means clustering could considerably improve the performance of this 

method, however, they do not still have a unique result at each iteration for more complicated 

situations.  Thus, these methods are not reliable methods to be used in a SHM system. Finally, the 

only method which gives a unique optimum result at each iteration is hierarchical model clustering. 

Due to the top-down structure of hierarchical clustering method, it does not get stuck in local 
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minima and gives a unique result at each iteration [43]. Thus, hierarchical model clustering is 

utilized for the final clustering of AE signals of specimens SD and SB.
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Fig. 11. The performance of the different clustering methods for clustering of the 

artificial AE signals.
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Fig. 12 shows the clustered AE data for specimens SD and SB by hierarchical model. The next 

step is assigning these clusters to the interlaminar and intralaminar damage mechanisms. Fig. 13 

shows the reported frequency ranges in literature for different damage mechanisms in carbon/ 

epoxy laminated composites under different loading conditions. All of these damages usually do 

not occur simultaneously and only some of these damages may occur in the material depending on 

the loading conditions. For example, Boominathan et al. [31] reported the occurrence of three 

damage mechanisms in carbon laminated composites under low-velocity impact, consisting of 

matrix cracking, fiber failure, and delamination which are in accordance with the observed 

damages in specimens SD and SB. Although there are considerable differences between the reported 

frequency range of different damage mechanisms in literature (see Fig. 13), however, most of the 

researchers reported that matrix cracking has the lowest frequency content, fiber failure has the 

highest frequency, and the frequency of delamination signals is located between these two 

damages [31, 50, 53]. Therefore, the clusters in Fig. 12 are dedicated to these three damage 

mechanisms as follows: Cluster 1 which has the lowest frequency content is dedicated to matrix 

cracking, cluster 3 with the highest frequency content is devoted to fiber failure, and cluster 2 with 

the frequency content between these clusters is allocated to delamination.
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Fig. 12. The clustering of the AE signals of specimens SD and SB using hierarchical 

method.
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Fig. 13. The frequency content reported in literature for different damage mechanisms 

in carbon/epoxy laminated composites under different loading conditions.

The cumulative number of AE events for each cluster was calculated and it is shown in Fig. 14. 

As can be seen, for specimen SD, matrix cracking signals initiate a little before the first load drop 

which has a good consistency with the observed first matrix cracking at point 1 of Fig. 3, while 

the delamination and fiber failure signals initiate after matrix cracking, at the moment of the first 

load drop. In the case of specimen SB, matrix cracking and fiber failure start a little before the 

nonlinearity point and delamination initiates a little after them. Also, the total number of damage’s 
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AE events for specimen SB is much higher than specimen SD (about 5 times) that it shows the 

damage of specimen SB is more than specimen SD. This is consistent with the fact that the load 

carrying capacity of specimen SB is less than specimen SD (see Fig. 2). Also, as it was mentioned 

previously, the dominant loading mode of specimen SD is penetration, thus most of damages occur 

in a small region around the loading point, while the dominant loading mode of specimen SB is 

bending that leads to increasing the area that is susceptible to damage. 
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Fig. 14. The AE events of different damage mechanisms of specimens SD and SB.

The number of events is not an appropriate parameter to characterize damages in the specimens, 

because an event does not offer any information about the intensity of the corresponded damage. 

For example, both an infinitesimal delamination growth and a big delamination growth introduce 
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one event, while the energy content of the event of the big delamination growth is much higher 

than the event of the infinitesimal delamination growth. Thus, in order to compare the behavior of 

different damage mechanisms, the cumulative AE energy of the AE events is calculated. Fig. 15 

illustrates the cumulative AE energy of the damage mechanisms in the specimens. The cumulative 

AE energy curves of specimen SD have an unstable behavior (jumping behavior) while the curves 

of specimen SB are smoother. Although matrix cracking signals initiates before the first load drop 

in specimen SD, but the energy content of these signals is not considerable until displacement 2.5 

mm, while, the energy of delamination signals at the first load drop is considerable. This is due to 

occurring of many delaminations at this point in specimen SD. The energy of fiber failure signals 

also starts increasing after other damage mechanisms. The unstable behavior of cumulative AE 

energy curves of specimen SD is due to inducing new delamination at different interfaces with the 

load proceeding. In the case of specimen SB, because the number of induced delamination at the 

end of linear region is low, thus there is not a significant jump in cumulative AE energy curve of 

delamination at this point, while matrix cracking shows a jump at there. Fiber failure is also the 

last mechanism that activates in this specimen.
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Fig 15. The cumulative AE energy curves of damage mechanisms for specimens SD and 

SB.

Table 5 represents the number of events and cumulative AE energy of each damage mechanisms 

for the specimens. The total number of events and cumulative AE energy of specimen SB are 5 and 

7 times of specimen SD, respectively. It shows that amount of the damages in specimen SB is higher 

than specimen SD. Comparing of the load carrying capacity of the specimens (see Fig. 2) also 

confirms this claim. 
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As been mentioned above, to characterize the state of damages in the specimens, cumulative 

AE energy is a better parameter in comparing with the number of AE events. The dominant damage 

mechanism in both specimens is matrix cracking with 50.3% and 77.1% of AE energy of damage’s 

signals for specimens SD and SB, respectively. The second damage mechanism in the specimens is 

delamination. The percentage of delamination in specimen SD (38.0%) is higher than specimen SB 

(16.5%). The lower value of matrix cracking percentage and higher value of delamination 

percentage in specimen SD is due to the higher number of dissimilar interfaces that susceptible to 

delamination in SD. Thus, amount of matrix cracking reduces while delamination increases in this 

specimen. Also, the higher percentage of fiber failure in specimen SD refers to the penetration of 

indenter through the specimen SD that leads to fiber fracture at the back face of this specimen (see 

Figs. 3 and 5).  

Table 5. The value of AE events and cumulative AE energy of the damage mechanisms.

Damage mechanisms
Specimen

Matrix cracking Delamination Fiber failure
Total

Events number
14,352

71.7%

3,960

19.8%

1,698

8.5%

20,010

100%
SD Cum. AE 

energy (aJ)
3.26e9

50.3%

2.46e9

38.0%

7.57e8

11.7%

6.48e9

100%

Events number 51,245

50.8%

24,699

24.5%

24,842

24.7%

100,785

100%SB

Cum. AE 

energy (aJ)
3.54e10

77.1%

7.59e9

16.5%

2.94e9

6.4%

4.59e10

100%

5. Conclusion

This study was devoted to the clustering of the indentation-induced interlaminar and 

intralaminar damages in carbon/epoxy laminated composites using AE technique. To this aim, two 

quasi-isotropic carbon/epoxy laminated composites with dispersed ([60/0/-60]4S) and blocked 
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([604/04/-604]S)  layups were fabricated and subjected to a quasi-static indentation loading. First, 

the load-displacement curve and the digital camera and ultrasonic C-scan images used to study the 

intralaminar and interlaminar damages of the specimens. The results showed the load carrying 

capability of dispersed specimen is 1.7 times of blocked specimen and also the area of delaminated 

region for this specimen is 0.14 times of the delaminated area for blocked specimen. However, the 

number of delaminated interfaces for the dispersed specimen is higher than the blocked specimen 

(22 delaminated interfaces for SD against 4 delaminated interfaces for SB). Then, the AE signals 

were clustered to identify different damage mechanisms in the specimens. In order to select the 

best clustering method, the performance of six different clustering methods consisting of k-Means, 

Genetic k-Means, FCM, SOM, GMM, and hierarchical model were compared. The results showed 

that the best clustering method which has a reliable and repeatable performance is hierarchical 

model. Thus, the AE signals of the specimens were clustered by hierarchical model and the 

evolution behavior of different damage mechanisms during loading was studied. The obtained 

results show that the combination of AE technique with an appropriate clustering method such as 

hierarchical model can be a valuable tool for structural health monitoring of composite structures.
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