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Abstract

A new viscoelastic wave inversion method for MRE, called Heterogeneous Mul-

tifrequency Direct Inversion (HMDI), was developed which accommodates het-

erogeneous elasticity within a direct inversion (DI) by incorporating first-order

gradients and combining results from a narrow band of multiple frequencies. The

method is compared with a Helmholtz-type DI, Multifrequency Dual Elasto-

Visco inversion (MDEV), both on ground-truth Finite Element Method sim-

ulations at varied noise levels and a prospective in vivo brain cohort of 48

subjects ages 18-65. In simulated data, MDEV recovered background material

within 5% and HMDI within 1% of prescribed up to SNR of 20dB. In vivo

HMDI and MDEV were then combined with segmentation from SPM to cre-

ate a fully automated “brain palpation” exam for both whole brain (WB), and

brain white matter (WM), measuring two parameters, the complex modulus

magnitude |G∗| , which measures tissue “stiffness”, and the slope of |G∗| values

across frequencies, a measure of viscous dispersion. |G∗| values for MDEV and

HMDI were comparable to the literature (for a 3-frequency set centered at 50Hz,
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WB means were 2.17 and 2.15kPa respectively, and WM means were 2.47 and

2.49kPa respectively). Both methods showed moderate correlation to age in

both WB and WM, for both |G∗| and |G∗| slope, with Pearson’s r ≥ 0.4 in the

most sensitive frequency sets. In comparison to MDEV, HMDI showed better

preservation of recovered target shapes, more noise-robustness, and stabler re-

covery values in regions with rapid property change, however summary statistics

for both methods were quite similar. By eliminating homogeneity assumptions

within a fast, fully automatic, regularization-free direct inversion, HMDI ap-

pears to be a worthwhile addition to the MRE image reconstruction repertoire.

In addition to supporting the literature showing decrease in brain viscoelasticity

with age, our work supports a wide range of inter-individual variation in brain

MRE results.

Keywords: elastography, magnetic resonance imaging, magnetic resonance

elastography, viscoelasticity, inverse problems

1. Introduction

Magnetic resonance elastography (MRE) (Hirsch et al., 2016) encodes in-

duced shear wave displacements using phase-contrast MRI imaging, enabling

estimation of in vivo tissue viscoelastic properties by wave inversion. These me-

chanical properties, including mechanical “stiffness” and viscosity, are of strong

medical interest (Mariappan et al., 2010; Sack et al., 2013), and elastography-

related research is widespread. One of the strengths of MRE is that full-field

displacements of tissue are acquired; however MRE is challenged by complicated

tissue structures and the ill-posed nature of wave inversion. The needed regu-

larization techniques can reduce effective resolution elements well below that of

the MRI acquisition voxel size, and some solutions require manual intervention.

There is thus an ongoing interest in MRE elasticity reconstruction techniques

that relax regularization constraints within a robust and fully automated image

processing pipeline.

In the present study a new approach to MRE stiffness reconstruction is de-
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scribed, called Heterogeneous Multifrequency Direct Inversion (HMDI), a direct

inversion (DI) method which admits heterogeneity while leaving boundaries free.

Such an approach potentially advances DI by accommodating heterogeneity in

stiffness within a fully automated pipeline. The method is validated through

the use of Finite Element Method (FEM) simulations and compared with the

more common form of DI, which neglects stiffness gradients, known as Algebraic

Helmholtz Inversion (AHI) (Papazoglou et al., 2008). As both DI methods are

fast and automatic, we investigate their performance in a fully automated “brain

palpation” exam which combines DI with image segmentation and analysis al-

gorithms from SPM (Friston et al., 1995) to measure stiffness and viscosity of

whole brain and white matter across the lifespan.

1.1. Background

MRE wave inversion usually applies the Navier-Lamé equation for conserva-

tion of linear momentum in isotropic viscoelastic solids

(µ(ui,j + uj,i)),j + (λ div u),i = ρüi (1)

Where u is the 3D, vector-valued time-harmonic displacement field of the ma-

terial, λ and µ are the first and second Lamé parameters, ρ is the density, div

is the divergence operator, and body forces are assumed zero. Typically, MRE

applies steady-state vibration at driving frequency ω, assumes a uniform den-

sity set to that of water, and removes the divergence of the displacement field,

reducing Equation (1) to

µ ∇ · (∇u+∇Tu) +∇µ · (∇u+∇Tu) = −ρω2u (2)

where the shear term of Equation (1) has been expanded using a vector

calculus product rule. As Equation (2) contains 4 unknowns (the shear modulus

µ and its three directional gradients ∇µ) but only 3 scalar displacement fields

(the x, y, and z displacement components of u), a boundary condition needs to

be imposed on µ in order to be well-posed and thus produce a unique solution

for µ (Sánchez et al., 2010).
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In the MRE literature this difficulty been handled one of three ways. The

simplest model is to neglect ∇µ, or assume “local homogeneity”. Such an ap-

proach reduces the Navier-Lamé equation to an algebraic form

µ = ρω2u/∇2u (3)

where ∇2 is the Laplacian operator. This approach implicitly assumes an infi-

nite boundary condition, and would only be accurate to the extent the gradient

of µ is really neglectable. As u is complex-valued, Equation (3) yields a com-

plex shear modulus with both storage and loss information, and this technique

has been reported as Algebraic Inversion of the Differential Equation (AIDE)

(Oliphant et al., 2001; Manduca et al., 2001) and later as Algebraic Helmholtz

Inversion (AHI) (Papazoglou et al., 2008).While the imaginary component of µ

holds diagnostic potential, some further reformulation can increase robustness

for the real component, or the magnitude, of this modulus, which is the value

commonly measured. Local Frequency Estimation (LFE) neglects attenuation

and so estimates a real “shear stiffness” by combining local wavenumber esti-

mates at multiple scales (Manduca et al., 2001) which is more robust to noise.

The Multifrequency Dual Elasto-Visco Inversion (MDEV) method (Papazoglou

et al., 2012) delivers a complex modulus magnitude by handling only the mag-

nitudes of the displacement and Laplacian field images. This better handles

violations of the model assumptions such as boundaries, as the values remain

positive and tend to zero. (MDEV also fuses multifrequency results and this is

discussed below.) Nonetheless limitations to this approach include artifact at

discontinuities, inaccuracies at small features or within regions of rapid change,

and an increase in noise from the enforcement of local homogeneity prior to

inversion.

More complex inversion models that incorporate heterogeneity of µ are gain-

ing in use. A well-established technique is to integrate Equation (2) using

displacement field values at the boundaries, reducing modulus recovery to a

Dirichlet-type problem (Van Houten et al., 1999). Limitations to this approach

include the need for masking to set and determine boundaries, either manu-
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ally or by algorithm; overweighting of the values used for boundaries relative to

the other displacements (Park and Maniatty, 2006), and the reported need for

smoothing, and thus reduction in image resolution, to achieve stability (Park

and Maniatty, 2006; McGarry, 2013).

In recent mathematical work, Sánchez et al. (2010) showed that a unique,

DI-based solution for µ can be obtained by overdetermining the results from

two or more linearly decorrelated displacements and leaving boundaries free.

This proposed approach has several potential advantages: it is computationally

inexpensive; no masking or marking is required; no regularization is required for

stability; and heterogeneities in stiffness are accommodated. A straightforward

approach to obtaining such decorrelated acquisitions is to acquire multiple data

sets at varied driving frequencies within a narrow band, and assume that the

known wide-band frequency dispersion of the shear modulus (Szabo, 1995) can

be neglected. Such a “multifrequency” approach has been previously applied to

MRE, to better condition both the heterogeneous (Honarvar et al., 2013) and

homogeneous (Papazoglou et al., 2012) forms of the inversion problem.

1.2. Aims of the paper

In the present study, we apply the uniqueness findings of Sánchez et al. (2010)

to serial multifrequency acquisitions, in combination with sparsity-promoting

image processing, to directly overdetermine µ without neglecting gradients, es-

timating boundaries, or smoothing, a pipeline here called Heterogeneous Mul-

tifrequency Direct Inversion (HMDI). The study aims to:

1. Deliver the first heterogeneity accommodating DI images of in vivo MRE

data

2. Validate the method against ground-truth FEM simulations with a range

of noise (and hence signal-to-noise ratio (SNR)) values

3. Evaluate the performance of the method against Helmholtz inversion in

the FEM and in vivo cases

4. Exploiting that both methods require no manual intervention, evaluate

their performance in a fully automated “brain palpation” exam which

5



incorporates automated segmentation and co-registration from SPM.

A prospective data set spanning the adult human lifespan was acquired for

the study, allowing us to compare not only stiffness values with the rest of the

literature, but investigate whether we detect the previously reported relationship

between age and viscoelasticity decrease (Arani et al. (2015); Sack et al. (2009))

as well as whether aging effects interact with frequency.

2. Methods

2.1. Heterogeneous Multifrequency Direct Inversion (HMDI)

In HMDI, the divergence-free displacement fields u1..n and their derivatives

are “stacked” within a single block matrix system to overdetermine µ:
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(4)

where, in addition to terms identified earlier, n is the frequency index and I is

the identity matrix.

This equation can be compared with Equation 3 in (Sánchez et al., 2010),

however in that paper, it is proposed to either use decorrelated fields at the

same frequency, or use single fields in which special conditions obtain that en-

sure uniqueness (likely obtained in real-world data by projecting the data onto

a subspace with the desired properties). As acquisitions at different frequencies

are guaranteed to be orthogonal, by extending this method to multiple fre-

quencies we resolve these uniqueness and conditioning concerns without further

filtering of the data, which would be likely to have a smoothing effect.

Multiplying through the first two matrices on the left hand side (LHS) to

obtain
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reduces the stacked matrix to the familiar form Aµ = b wherein it is easily seen

that µ can be obtained by µ = A−1b. GNU Octave (Eaton et al., 2015) and

Matlab (Mathworks, Natick, MA) compatible code for the method is provided

in Supplementary Information.

2.2. MDEV

Neglect of the first-order gradients in Equation (4) leads to an overdeter-

mined least-squares inversion across ω1 . . . ωn for n ≥ 1, however, the condition-

ing of the problem can be improved with three reformulations.

First, the local homogeneity assumption reduces the shear term in Equa-

tion (1) to µui,jj . This enables replacement of the tensor divergence ∇ · ǫ with

the vector Laplacian ∇2u. Second, shear modulus magnitude, usually notated

as |G∗| (G∗ ≡ µ), can be recovered treating only the magnitude quantities, |u|

and |∇2u|, which do not show the same outlier behavior as the corresponding

complex quantities at discontinuities and other violations of local homogeneity

– they remain positive and tend toward zero. Third, the least-squares solution

projects u onto the space of the derivatives (shown in (Oliphant et al., 2001)),

which are more sensitive to noise; instead |u| and |∇2u| can be averaged, that

is projected onto the ones vector (Braun et al., 2014), as the averaged value is

also the barycentre. These observations lead to the MDEV inversion equation:
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|G∗| = ρ

∑3

m=1

∑N

n=1 ω
2
n|um(ωn)|

∑3

m=1

∑N

n=1 |∇
2um(ωn)|

(5)

Where m is the directional component index, n the frequency index, and u

the scalar displacement field. Applied in many brain studies (e.g. (Guo et al.,

2013; Fehlner et al., 2017; Streitberger et al., 2014)), MDEV is here compared

with HMDI.

2.3. Image processing pipeline

Identical pre- and post-processing was used for MDEV and HMDI data:

Phase unwrapping The data were phase-unwrapped using PhaseTools’ Lapla-

cian Based Estimate (Barnhill et al., 2014)

Denoising The complex wavefields were denoised in a complex dual-tree wavelet

(CDTW) basis (Barnhill et al., 2017; Selesnick et al., 2005) with soft

thresholding and VisuShrink (Donoho and Johnstone, 1995) threshold es-

timation. Here an 3D undecimated discrete wavelet transform (UDWT)

was used in place of the critically sampled transform used in Barnhill et al.

(2017) to eliminate computational demands from cycle spinning. Median

absolute deviation (MAD) estimates (Gauss, 1816) for VisuShrink were

masked to anatomical regions of the complex wave volume (obtained by

thresholding the T2 magnitude image). The VisuShrink estimate was

vectorial, incorporating all three dimensions of wave propagation simulta-

neously.

Divergence removal As bulk wave wavelengths are estimated to be over an

order of magnitude larger than shear (Manduca et al., 2001; Sinkus et al.,

2005), very low frequencies were removed from the image using a 3D,

4th order Butterworth high pass filter with normalized frequency cutoff of

0.05.

Segmentation (brain only) Post-inversion, the averaged T2∗-weighted mag-

nitude image from the multifrequency acquisition was transformed and
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segmented in MNI space (Evans et al., 2012) with Statistical Parametric

Mapping (SPM) (Friston et al., 1995) and the deformation and segmenta-

tion matrices were applied to the |G∗| maps to obtain regional measure-

ments, similar to e.g. Guo et al. (2013) and Fehlner et al. (2017). As

the slab was incomplete, thresholding was required to accurately evaluate

partially acquired regions; labeled regions were thresholded using a mini-

mum cut-off of 500Pa, which was more than two standard deviations above

measured elastogram noise but below all measured anatomical values.

In this study derivatives were estimated by centered differences after denois-

ing. This procedure varies from some previously published approaches using

polynomial fit derivative estimates (e.g. Oliphant et al. (2001)) or derivative

estimates from polynomial shape functions (e.g. Honarvar et al. (2013)). Such

polynomial estimates are not noise-adaptive, which may be a source of error as

their accuracy to an underlying interpolated polynomial is a function of noise

level (Knowles and Renka, 2014). Such fits will further be a function of the

window over which they are estimated. Here noise is removed using wavelets,

which will adapt to noise while preserving boundaries, with the ensuing finite

difference estimates measuring the derivative in the smallest possible stable re-

gion.

2.4. Finite Element Simulation

For ground truth evaluations a FEM simulation was generated using ABAQUS

(Dassault Systèmes, France) using the methodology published in Hollis et al.

(2016). Voigt-model material was chosen and the mesh elements were isotropic

hexahedrons of 1mm × 1mm × 1mm cubic size, with overall simulation size

80mm × 100mm × 10mm. The simulation consisted of four cylindrical targets

of 9kPa stiffness, of radii 20mm, 10mm, 4mm and 2mm respectively, within a

background material of 3kPa, and both materials with shear viscosity of 1 Pa·s.

The simulation material was subjected to simulated steady state shear wave vi-

bration at 50 − 90 Hz in steps of 10 Hz from a surface traction on the top xz
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plane, and the other boundaries of the box were absorbent. Phase field noise

can be estimated as Gaussian for SNR > 2dB (Gudbjartsson and Patz, 1995)

so the robustness of the method to noise was tested using a range of Gaussian

noise levels as previously done in Barnhill et al. (2017). The FEM data were

compared by:

Recovery method The data were recovered using HMDI and MDEV

Number of frequencies The data were recovered combining all 5 frequencies,

as well as sliding widows of 3 frequencies each, in accordance with the in

vivo experimental design below

Noise levels Gaussian noise levels from 50 to 10dB, in units of 5, were added

using the awgn function from Matlab’s Communications System Toolbox.

2.5. Brain Cohort

Brain MRE data were prospectively acquired for a cohort of 48 healthy

volunteer subjects (22 men and 26 women, ages 18-65), at seven frequencies, 30

to 60 Hz in steps of 5. The acquisition protocol is the same as that described for

the healthy volunteers in Fehlner et al. (2016). All subjects gave their ethical

consent as specified by the ethical review board.

For analysis we followed Dittmann et al. (2016) which applied a “sliding

window” of three frequencies across a frequency band (30, 35, and 40 Hz, 35, 40,

and 45 Hz, etc.). Here the sliding window was used to evaluate the stability

of a three-frequency exam and investigate relationships in the data within and

across frequencies.

2.5.1. Stiffness and age measurements

|G∗| was reported for both whole brain and segmented white matter (WM)

for each frequency set. Further, correlation to age, using Pearson’s correlation

coefficient r, was reported for each quantity. Some previous studies (e.g. Arani

et al. (2015); Sack et al. (2009)) have treated age in a more complex manner,

building models and deriving both goodness of fit measurements and coefficient
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of determination R2. In this initial study the focus is on evaluating two inver-

sion algorithms, and model-building was deemed out-of-scope. The present r is

compared with previous R2 in Discussion. Increase of |G∗| values was expected

across the frequency sets due to frequency-related dispersion. Again to keep the

present study model-free, the slope across the sliding frequency windows was

measured with a linear fit, and correlations of this quantity to age were also

measured.

2.5.2. Image quality measurements

We incorporated three image quality measurements to investigate the quality

of the present data set. In contrast to MRI magnitude images, empty space

in phase images contains salt-and-pepper rather than background noise, and

this has led to the development of alternative SNR measures for MRE. These

alternative measures produce values as high as ≈ 750 (Plewes et al., 2000) and

as low as ≈ 3 (McGarry et al., 2011). Among these measures some recent work

has suggested that SNR of derivative images, such as of the octahedral shear

strain (OSS) (McGarry et al., 2011) or the Laplacian (Manduca et al., 2015),

are better predictors of final image quality than SNR of displacements.

SNR of such derivative images is of interest. However, widespread and robust

methods of blind noise estimation exist that produce SNR values which relate

to mainstream, best-practice SNR values, rather than relating only to their own

sui generis scalings. There is no reason such methods cannot be applied to an

image of MRE displacements or its derivatives. Here we use one of the most

widely used noise estimation metrics in signal processing, that of Donoho and

Johnstone (1995)

σ̂ = median(|ψJ−1|)/0.6745

where ψJ−1 is the finest band of wavelet coefficients in a J-level multi-resolution

analysis (MRA). Not only is this a common measure but it would be expected to

apply exceptionally well to MRE as wavelet transforms are considered optimally

sparse for wave images with discontinuities (Selesnick et al., 2005). This measure

is applied to the anatomical regions using a mask. The power SNR is then

11



estimated as SNRdB = 20log10(σsignal/σnoise). We estimated the SNR of the

displacement, OSS, and Laplacian images.

3. Results

3.1. Simulation

Figure 1 shows simulation recovery at all five frequencies. Qualitatively,

HMDI recovers target shapes more accurately than MDEV. Figure 2 shows re-

sults for the simulation study. Values are grouped by inversion method (MDEV,

HMDI) and data are plotted by target, noise level, and sliding frequency win-

dow. For both methods, the background material accurately reproduces the

prescribed value of ≈ 3000Pa, as seen by the bottom line, until ≈ 20Hz. For

the range of 50− 20Hz, MDEV estimated 3154± 32Pa while HMDI estimated

3067± 11Pa.

Outside of target 2, the targets show variation with frequency on the order

of 3%, with an average standard deviation of 269Pa for MDEV and 174Pa

for HMDI respectively. Target 2 was an outlier in both cases with average

standard deviation by frequency of 734Pa and 383Pa respectively. The targets

also showed some sensitivity to noise: while estimates for HMDI large target at

50dB noise averaged 9797Pa, this decreased slightly but stayed about 9000Pa

until 20dB. MDEV showed more noise sensitivity, with an initial average of

10679Pa but decreasing more sharply so that at 20dB noise, only 8373Pa was

measured.

The smaller targets were not recovered accurately with either method, sug-

gesting that below a threshold of 20mm radius, accuracy is increasingly im-

peded by inaccurate readings at the boundary. In many cases, the targets were

nonetheless distinguishable from background; in the case of HMDI, they were

in fact all distinguishable, with means of 8 − 9kPa, 5 − 6kPa, and 4 − 5kPa

respectively. In the MDEV case, all targets except the first and second regis-

tered at 5kPa or lower. For all data, the average of all five frequencies sat in

the center of the range of results.
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Figure 1: Illustration of simulation denoising results at 30dB noise: ground truth, MDEV

method and HMDI method.

Figure 2: Results for the simulation experiment: each sliding window of 3 frequencies,

as well as the five frequency result, plotted across noise levels. Target is indicated by

line pattern. Frequency is indicated by color.
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Figure 3: Results for the brain SNR measurements. Solid lines indicate SNR measurements

prior to denoising, and dashed lines indicate SNR measurements after denoising.

3.2. SNR Results

Figure 3 show results for the SNR measures. Displacement SNR values, the

equivalent of using a typical blind SNR measure on Fourier-transformed MRE

output, showed results of 21.5 ± 3.1dB. SNR of the OSS image results were

in the range of 15.6 ± 1.4dB. SNR of the Laplacian images were in the range

of 4.6 ± 0.6dB. After denoising, displacement SNR measured 50.0 ± 2.4dB,

OSS image SNR measured 34.2 ± 1.0dB, and Laplacian image SNR measured

29.8± 1.7dB.

3.3. Brain

Figure 4 shows images from the central slice of a subject chosen at random,

by method and by frequency. The results at each frequency show the expected

frequency dispersion. Qualitatively, the heterogeneous images show more sta-

bility but also more smoothness.

Results for the segmentation and co-registration of a second brain are shown

in Figure 5. Panel (a) shows the central slice of the acquisition in native space,

in orthogonal views of XY, XZ and YZ . Panel (b) shows approximately the

same region of the brain after co-registration to MNI space. Despite being only

a 30mm slab, the MRE acquisition is accurately situated in MNI space. Panel

14



Figure 4: |G∗| images for MDEV and HMDI by frequency, as well as an example Fourier-

transformed wave image at each frequency, for a subject chosen at random. Frequencies on

the top row correspond to center frequencies of 3-frequency inversions.
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Figure 5: Example images from segmentation of a second brain.

(c) shows results for the SPM segmentation of this brain: the accompanying T2

image used for the segmentation is shown at left, followed by the segmentation

results for gray matter (GM), white matter (WM), and cerebro-spinal fluid

(CSF).

3.3.1. Stiffness values and correlations to age

Figure 6 plots |G∗| stiffness against sliding window frequency group, for

each subject, for both whole brain and WM segmentation. Inset within each

plot is Pearson’s r results by frequency. For both methods, stiffness values rose

by frequency in each set as predicted by known viscoelastic frequency disper-

sion. Negative correlation to age was more pronounced at higher frequencies.

Both methods had comparable values at the lowest frequencies: for the 35Hz

inversions, MDEV |G∗| was estimated at 1189 ± 121Pa and HMDI |G∗| was

1022 ± 136Pa. As the frequencies increased, HMDI stratified more, and in-

creased more: for the 55Hz inversions, MDEV estimated 2376 ± 193Pa and

HMDI estimated 2589± 321Pa. Stratification was greater in the white matter
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Figure 6: |G∗| values by sliding frequency window for (a) whole brain MDEV (b) whole brain

HMDI (c) white matter MDEV (d) white matter HMDI.

analysis where MDEV ranged from 1483 ± 160Pa to 2670 ± 230 and HMDI

ranged from 1305± 161Pa to 2979± 312Pa.

To capture the relation between dispersion and age, Pearson’s r was calcu-

lated for the average slope across frequencies, by subject, for both whole brain

and WM |G∗| . For whole brain, MDEV showed slope-to-age correlation of

r = 0.38; for HMDI r = 0.45. In white matter MDEV showed slope-to-age

correlation of r = 0.18; for HMDI, r = 0.37.

4. Discussion

4.1. Simulation Experiment

The simulation results as seen in Figure 1 can be qualitatively compared with

the FEM-based analyses found in Figure 2 of Sánchez et al. (2010) and Figure

6 of Barnhill et al. (2017), which both also contain either circular or cylindrical

targets. Both studies like the present study show similar shape distortions using

Helmholtz-type methods around the inserts. In Sánchez et al. (2010) and the

present study, a gradient-inclusive DI shows substantial improvement in the
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shape of recovered inclusions. We thus confirm the qualitative observations

about the two methods in Sánchez et al. (2010).

The existence of features whose stiffness change is “detectable but not accu-

rate” was first reported in Manduca et al. (2001), and is a continuing limitation

in MRE, where spatially extended maps always contain a trade-off between

resolution and stability. Here the HMDI method estimated the large target

with good accuracy and the 10mm target with ≈ 90% accuracy, and remained

consistent across noise levels in its estimations of the smaller targets, while

the MDEV method also preserved detectability for the most part, but showed

greater sensitivity to noise.

The simulation experiment also shed some light into the relations between

results by frequency: the noise removal process does introduce some variation

by frequency, which the combination of greater numbers of frequencies helps to

stabilize. This variation was on the order of 3%, although the 10mm target

was an outlier, and had a range of 6 − 10%. Despite this variation, this is an

altogether positive finding for these methods, as it rules out the possibility that

the strong frequency dependence in the brain results is a result of sensitivity to

changes in noise values or wavelength.

4.2. Image Quality Measures

The use of mainstream SNR measures shows immediate benefits in the inter-

pretability of our SNR results. Our wave images prior to denoising show SNR

in the 18 to 25dB range, which is the same range of the T2∗-weighted magni-

tude images of the same acquisition. The strain image shows lower SNR, as is

expected from taking a derivative, while the second-derivative Laplacian image

is dominated by noise. The denoising procedure, however, produces consistent

and steady improvements. Displacement SNR is now around 50, considered very

high, and the two derivative images are similar in SNR and above 30, which is

also considered high. We interpret these results as showing our denoising pro-

cedures to be sufficient, not only for the images but for the derivatives used in

the inversion.
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4.3. Brain Experiment

The brain results can be profitably interpreted in light of the simulation

and SNR findings. As regards comparison of methods, values are comparable

in the lower end of the spectrum, but diverge for the highest frequency, with

HMDI higher than MDEV; this is explained by the dip in SNR values at the

60Hz frequency, in combination with the greater noise-sensitivity of the MDEV

method, and indeed inspection of the highest MDEV group shows that the

slope is slightly lower than at the other frequencies, suggesting that this one

result was, in the end, impacted by SNR concerns. The overall robustness

of a multifrequency approach is supported by the internal consistency of the

individual results in Figure 6, that is, subjects that were stiffer at one frequency

also tended to be stiffer at another.

The HMDI group had two outliers, both older. One cause may have been

challenges in the co-registration; systematic guidelines to verify successful co-

registration will be produced in future work.

Most brain MRE studies were performed at the relatively higher frequencies

of 50 (Johnson et al., 2013) and 60 (Arani et al., 2015) Hz. Johnson et al.

(2013) found a mean of ≈ 2.0kPa for gray matter (GM) at and ≈ 2.7kPa

for WM at 50Hz, and we find ≈ 2.1kPa and 2.5kPa respectively. Arani et al.

(2015) found ≈ 2.6−2.8kPa for whole brain at 60Hz and we find a slightly lower

≈ 2.4− 2.6kPa at a slightly lower 55Hz. We report slightly lower values for a

central frequency of 45Hz than Dittmann et al. (2016) which found 2.18±0.2kPa

to our 1.8 − 1.9kPa for 45Hz, however, both methods arrive at ≈ 2.2kPa for

50Hz. We conclude that our values are a good fit to the recent literature.

The multifrequency approach of a relatively large number of subjects yielded

interesting insights into in vivo brain mechanics. While brain MRE has been

shown to be highly reproducible for a given individual, the literature reports

a surprisingly wide variance in brain stiffness for healthy volunteers (Hiscox

et al., 2016). Our study supports a wide range of individual variation. As seen

in Figure 6, the data have a wide range not from isolated outliers (though HMDI

had two), but rather from the full range of the results being densely populated.
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One paradox of investigating inter-individual variability, is that MRE results

can be made more similar through tight filtering bands, but at the expense of

biasing the results. By using a noise-adaptive multi-scale filtering scheme, we

preserve a large amount of bandwidth, enabling the full stiffness variation of the

data to be observed with reduced bias.

The results for Pearson’s r of |G∗| vs. age reach ≈ 0.4 at high frequencies

which is considered on the high end of moderate correlation. As we do not

build a model, statistical inference from these correlations is not appropriate

at present, beyond noting overall agreement with the findings in the models

of Sack et al. (2009) and Arani et al. (2015). Particularly noteworthy from

the present multifrequency study is the increasing correlation with frequency;

again Figure 6 is illustrative as to why. As the frequency increases, dispersion

between young and old brains increases; Pearson’s r for slope-to-age also showed

a similar correlation of ≈ 0.4.

4.4. Texture Differences Between MDEV and HMDI

Finally, the present results should help refocus the debate in the MRE com-

munity about the “local homogeneity assumption” along more productive lines.

Many papers (e.g. Sinkus et al. (2010)) suggest the homogeneity assumption

is a cause of numerous limitations on image resolution, such more blurry and

incoherent images. This reflects a fundamental misunderstanding of what the

homogeneity assumption does. Neglecting the gradient in the solution means

that where the solution does have non-neglectable gradient, it will be unstable

and exaggerated; this will have a sharpening effect rather than a smoothing ef-

fect. The consequences of assuming local homogeneity are not lower resolution,

but local instability, particular in regions of change in material properties, and

we show in this paper that MDEV shows less stability than HMDI when noise

is combined with property change. Furthermore, we conclude that the numer-

ical schemes used to implement the assumptions are at least as important as

the assumptions themselves. In the present case, HMDI finds the least-squares

solution with a global solve, which will produce the smoothest admissible so-
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lution. This produced a more stable, but also more smoothed, solution than

an Helmholtz inversion which operates locally. A scheme that incorporates lo-

cal heterogeneity but which evaluates locally is likely to resemble MDEV more

than HMDI, and this will be shown in future work. In both cases, the summary

statistics are very similar and either method could be used to progress future

investigations in MRE of the brain.

4.5. Limitations

We note two limitations of the study that were deemed outside the scope

of this paper and reserved for future work. The first limitation concerns the

recovery of modulus magnitude only. While HMDI magnitude can be validated

against ground truth (and against MDEV in vivo), ℑ(G) does not currently pro-

vide meaningful information. Sánchez et al. (2010) note this as well and suggest

constraining the minimization problem to force the imaginary component to be

positive, effectively turning the inversion from an unconstrained to a constrained

minimization problem, with corresponding increase in computational demands.

However it is not clear that mere enforcement of non-negativity is sufficient

constraint to produce a convincing loss modulus. Delivery of a clinically useful

ℑ(G) is consequently reserved for a future investigation.

The second limitation involves divergence removal. The present study used

a high-pass filter to remove low-frequency artefact rather than, for example, the

divergence-free wavelet found in Barnhill et al. (2017). A high-pass approach

is well established in MRE, well understood, preserved the fine detail of the

image and did not have a detrimental effect on simulation value recovery whose

wavelengths are similar in range to MRE acquisitions. A detailed comparison

and validation of various divergence removal techniques in MRE is underway

and will be presented in future work.

5. Conclusion

HMDI appears to be a valuable addition to the MRE image reconstruction

repertory. It applies a more sophisticated material model while maintaining the
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speed and convenience of a direct inversion. It produced highly similar results

to MDEV but showed more robustness to noise and to mechanical property

change. The least-squares solve used for HMDI was stable but does create

smoother images, and some desired MRE applications require sharp boundaries.

Future work will investigate sparsity promotion in the HMDI solve, as well as

a reformulation in terms of local stencils. Our brain exam confirmed previous

insights into aging and brain mechanical properties. By analyzing results from

48 subjects across 7 frequencies, we observed that age-related differences grow

with driving frequency due to viscosity-related dispersion, demonstrated the

robustness of the multifrequency paradigm, and added support to the case for

wide-ranging inter-individual variation in stiffness values when measured with

brain MRE.
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