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Abstract: Network function virtualization (NFV) is a promising technique 

aimed at reducing capital expenditures (CAPEX) and operating expenditures 

(OPEX), and improving the flexibility and scalability of an entire network. 

However, this emerging technique has some challenges. A major problem is re-

liability, which involves ensuring the availability of deployed SFCs, namely, 

the probability of successfully chaining a series of big-data-based virtual net-

work functions (VNFs) while considering both the feasibility and the specific 

requirements of clients, because the substrate network remains vulnerable to 

earthquakes, floods and other natural disasters. Based on the premise of users’ 

demands for SFC requirements, we present an Ensure Reliability Cost Saving 

(ER_CS) algorithm to reduce the CAPEX and OPEX of telecommunication 

service providers (TSPs) by reducing the reliability of the SFC deployments. 

We employ big-data-based arbitrary topologies as the substrate network. The 

results of extensive experiments indicate that the proposed algorithms perform 

efficiently in terms of the blocking ratio, resource consumption and time con-

sumption. 

Keywords: Network Function Virtual, Service Function Chains, Reliability, 

Economical Big Data networking. 

1 Introduction 

Telecommunication service providers (TSPs) desire flexible and cost-efficient 

methods for dispatching network services as market demands increase. NFV provides 

an opportunity to efficiently and dynamically deploy service function chains (SFCs) 

[1–3] without modifying dedicated infrastructure, which is costly and has become 

complex over time. The basic idea behind NFV is to decouple these network func-

tions (e.g., firewall, WAN optimizers, and proxies) from the underlying customized 

devices and accomplish equivalent network functions via software-based functions 

running in virtual machines deployed on devices.  
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Because the reliability of NFV is critical and is a prerequisite for successfully ex-

ecuting SFCs and satisfying service level agreements (SLAs), improving reliability 

while reducing the cost of network providers is a research objective in academic and 

industrial arenas.  

In this paper, we propose an ER algorithm to solve this problem. High reliability 

requires TSPs to increase CAPEX and OPEX. If we can properly reduce the reliabil-

ity, we can also reduce CAPEX and OPEX. We first propose the algorithm ER_CS 

(based on ER) that works in conjunction with the load balancing of the substrate net-

work. However, by analyzing the deployment scheme in ER_CS, we discover that it 

does not appear to be the best scheme. Therefore, we further propose the 

ER_CS_ADJ algorithm to adjust the deployment scheme by minimizing SFC re-

source consumption in the physical network. We conduct massive simulations on 

arbitrary topologies to verify the effectiveness of these algorithms. From the simula-

tions and results, we determine that our algorithms are profitable in terms of resource 

costs, block ratio and deployment time. 

The remainder of this paper is organized as follows. In Section 2, we analyze re-

lated studies. In Section 3, we describe the problem in this research with some formu-

lations. In Section 4, we propose our heuristic algorithm and provide line-by-line 

details. A performance evaluation of the network algorithm is presented in Section 5, 

and Section 6 concludes this work. 

2 Related Work 

To satisfy various requests from users, service providers are eager to seek a flexi-

ble, scalable, agile, effective, resource efficient and energy efficient scheme for plac-

ing VNFs. Ensuring service reliability while finding an economical and re-

source-efficient solution to the problem of big-data-based VNF deployment is the 

goal of this work. 

Numerous studies are relevant to big-data-based NFV, including how to determine 

and place network functions. N Bouten et al. [2] presented a set of affinity and an-

ti-affinity constraints that can be used by TSPs to define big-data-based placement 

constraints. They proposed a semantic conflict mechanism to evaluate SFC requests 

that filters invalid mechanisms to reduce the mapping time.  

The performance of big-data-based NFVs with regard to resource allocation or 

consumption and the acceptance ratio when mapping big-data-based VNFs has been 

investigated for years. W Rankothge et al. [11] proposed a genetic algorithm to opti-

mize resource allocation. They demonstrated its efficiency in optimizing resource 

allocation via three network function centers proposed by the authors.  

Other research projects have focused on issues such as the availability of 

big-data-based NFV. Due to potential failures (such as node or link failures) that can 

be caused by earthquakes, floods, or malfunctions such as power outages, many re-

searchers have expressed interest in the field of high availability (HA) to protect data 

or network functions. Unlike some schemes, which aim to solve general 

big-data-based VN mapping problems for unicast services (which includes two pro-



cedures: virtual node and link mapping) such as [4]. The authors of [13] proposed an 

efficient framework for evaluating the reliability of NFV deployments; however, they 

did not investigate how to adjust NFV deployments based on their framework. The 

proposed framework can be used only to evaluate deployment schemes but was not 

intended to improve the schemes based on its results.  

Although numerous studies have considered the reliability of deployed SFCs, few 

studies have considered the needs of users while also considering the TSP revenues. 

In other words, few studies have focused on building an economical network envi-

ronment. Therefore, we propose the ER_CS algorithm to reduce reliability under the 

premise of guaranteeing users’ demands while also considering economical VNF 

deployments. 

3 Problem Statement 

As described in Fig. 1, a SFC request consists of several VNFs, a source node s 

and a destination node t. Each of these VNFs represents a network function, as de-

scribed above. The thick blue dashed line represents another scheme whose reliability 

is 0.94 and resource consumption is 202, called service function forwarding path 1 

(SFP1). The thick red dotted line represents one deployment scheme for the request 

whose reliability is 0.97 and resource consumption is 232, called SFP2. We assume 

that the demand reliability of users is 0.90. The thin blue dashed line, which repre-

sents a VNF in SFC, is deployed on a substrate network in SFP1. The red line will 

yield the best experience for the users, whereas the blue line will generate a better 

balance for the network providers because the network can hold more requests, which 

allows greater potential profits for TSPs. The goal of this paper is to find a deploy-

ment scheme that both satisfies users’ reliability demands and minimizes resource 

consumption to reduce costs.  

To achieve effective and reliable network services while deploying SFC requests, 

we need to deploy VNFs to more reliable nodes and attempt to maximize the total 

availability of the deployment of SFC. This goal can be notated as formula (1). 
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Where rvp and rep represent the reliability of the nodes and links deployed for SFC 

requests, respectively. The reliability of each node and link in the underlying network 

is denoted by a positive number less than 1 according to the constraint behind the 

optimization objective. This paper estimates the total reliability of SFC by calculating 

the product of the reliability of each substrate node and link involved in a SFC de-

ployment scheme. 
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Fig. 1. Example of mapped VNFs 

Due to limited resources, considering only the reliability of SFC may cause enor-

mous resource consumption and reduce the mapping success rate. Therefore, the pa-

per aims to solve the contradiction between the reliability and the bandwidth con-

sumption, maintaining a balance between resource consumption and service reliability 

to ensure the effective use of resources. 

4 Algorithm Design 

4.1 Ensure-Reliability heuristic algorithm ER 

In a NFV environment, many virtual networks share one substrate network; con-

sequently, the failure of one substrate link or substrate node may cause massive fail-

ures in virtual networks, have a large-scale impact, and reduce network stability. 

Therefore, we propose a heuristic algorithm referred to as ER based on the reliabil-

ity-aware SFC mapping problem. The pseudo-code is presented in Algorithm 1. 

Algorithm 1: Ensure big-data-based reliability (ER) 

Input: 1. Substrate network GP = (VP, EP);  

        2. SFC request SR = (NS, LS, s, t). 

Output: SFC deployment scheme PS.  

1: Initialization: let Vremain = VP; 

2: for all VNF nf in SR, do 

3:      if nf is not the last VNF of SFC, then 

4:           initiateAllVertex() and let so

so so

v

v vr r ; 



5:           Call URSO procedure 1 to update the information; 

6:           let 
r   and 

tempv v ; 

7:           for each vertex v in VP,  do 

8:               if 
siv v and 

f

r

v nw w and sov

r vr  , then 

9:                ,  sov

r v tempr v v   ; 

10:              end if 

11:          end for 

12:          if 
r   , then return null; 

13:         generateScheme(
r , nf), let vso = vtemp; 

14:    else 

15:          repeat line 4 and 5, si

si si

v

v vr r  

16:        call URSI procedure 2 to update the information; 

17:        for each vertex v in VP , do 

18:          if 
f

r

v nw w and /si sov v

r v v vr r r   , then 

19:            /si sov v

r v v vr r r   , tempv v ; 

20:          end if 

21:        end for 

22:        repeat line 12 to line 13; 

23: end for 

When receiving a big-data-based SFC request, we firstly let vso = s, vsi = t. When 

one VNF has been deployed, we will change the value of vso just like line 13.  

For all the VNFs other than the last one, the ER algorithm initializes the reliability 

of all vertexes to the source to be negative infinity and the reliability of the source 

vertex to be its vertex’s reliability. Then, it initializes their prior vertex on the path to 

the source to be an inaccessible node. Next, it calls procedure 1—update all reliability 

to source (URSO)—to update the reliabilities of all nodes to the SFC source. In lines 

6 to 11, we initialize the maximum reliability variable and the substrate node that has 

the maximum reliability to map the VNF, and traverse all the nodes to find the varia-

ble defined in line 6, which cannot be the sink vertex. We generate the mapping 

scheme and map the VNF onto the vertex vtemp with the reliability calculated in the 

previous procedure. If the reliability variable remains negative infinity, we are unable 

to find a mapping vertex that satisfies the demands for mapping VNF. 

To map the last VNF in an SFC we must not only consider the mapping vertex’s 

reliability to the previous VNF mapping vertex but also its accessibility and reliability 

at the destination node of the SFC. Similar to the previously described algorithm, we 

update the reliabilities of all nodes to the SFC’s destination after updating the reliabil-

ities to the SFC’s source. 

URSO will compute all the path’s (from one underlying node in Vremain to the 

source node vso) reliability, choosing and saving a path which has the max reliability. 

This procedure will traverse the node in Vremain and find a node (this node must satisfy 

computing resource requirement of the current VNF, and the edges in the path (from 



source node to it) also need to satisfy bandwidth resource requirement of the virtual 

link (from prior VNF to current VNF)) that has max reliability. 

Procedure 2 (i.e., update all reliability to sink (URSI)) is similar to URSO; the only 

difference is that rather than computing the reliability to the source, it computes the 

reliability to the destination. 

4.2 Big-data-based Ensure-Reliability Cost Saving heuristic algorithm ER_CS 

based on load balancing 

To maximize the reliability, SFC functions should be deployed on vertexes with 

high reliability, which may cause imbalanced loading in the network. Based on the 

algorithm ER, we introduce the idea of load balance and present the reliabil-

ity-guarantee heuristic algorithm ER_CS, which is based on load balance. 

In this thesis, the objective of load balance is to assign service flow transport to 

links with lighter loads to reduce the possibility of congestion caused by load imbal-

ance. The following mathematical model describes load improvement: 
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Where e
o 

i  denotes the set of the out-degree edge of vertex vi, the denominator in 

the second fraction denotes the remaining bandwidth resource of the out-degree edge 

of vertex vi, and the last symbol denotes the sum of the bandwidth cost of the path 

from vertex vi to the source vso. As expressed by the formula, the smaller the load 

factor is, the larger the vertex’s remaining computing resource is, and the larger the 

remaining bandwidth resource of the out-degree is, the smaller the total bandwidth 

cost of the vertex to the source is.  

Therefore, we adjust the ER algorithm to compute the of all the vertexes that 

satisfy the criteria based on satisfying R
U
, the node’s computing resource demands 

and the link’s bandwidth resource demands. We add a comparison of the values of 

 in URSO to find the vertexes with smaller  values to host VNFs.  

4.3 Bandwidth optimizing algorithm ER_CS_ADJ 

We improve the ER_CS algorithm through bandwidth cost reduction, and we pro-

pose the bandwidth optimizing algorithm ER_CS_ADJ. We skillfully adjust the 

VNFs’ mapping position based on the mapping scheme generated by ER_CS to 

lengthen the mapping paths of virtual links with low bandwidth demands and shorten 

it with high bandwidth demands; consequently, we reduce the bandwidth cost.  

Algorithm 2: Big-data-based ER_CS adjust (ER_CS_ADJ) 

Input: SFC deployment scheme PS. 

Output: Adjusted SFC deployment scheme PS. 

1: let
move = findMinLink(SR); 

2: if 
move = 0, then return; 

3: while 
move > 0 



4:     for all nf need to be removed, do 

5:       for all forwarding vertex v between two related 

function vertex, do 

6:      if 
f

r

v nw w  and 
min

remain requestB B , then 

7:       deploy nf on vertex v; 

8:       end if 

9:      end for 

10:   end for 

11:  
move --; 

12: end while 

The function findMinLink(SR) finds the virtual link with the minimum bandwidth 

request in the SFC. The VNFs behind this link are the VNFs that must be moved; we 

denote the number of these asχmove. When moving these VNFs, we need to traverse 

the VNFs in reverse order. When we adjust the mapping position of one VNF, we 

traverse all the forwarding vertexes on the path between this VNF and the updated 

VNF in reverse order. For example, when moving the last VNF, we traverse forward 

from the first forwarding vertex prior to the destination of the SFC. When moving the 

penultimate VNF, the deployment position of the last VNF is determined; thus, we 

traverse forward from the deployment position of the last VNF. The remaining steps 

can be performed in the same manner. 

5 Simulation Results 

5.1 Simulation Environment 

To evaluate the schemes described in Section IV, we implemented an event simu-

lation in Java. To demonstrate the applicability of the algorithm for all circumstances, 

we employ the Waxman 2 model from GT-ITM [15] to randomly generate small and 

large network instances as substrate networks. The small substrate network includes 

20 nodes and the large substrate network contains 100 nodes.  

During the simulation process, to compare and evaluate the performance of the 

three algorithms, we modified Compute followed by Network Load Balance (CNLB) 

[9] to the Link Mapping First (LMF) algorithm [10] without changing its core concept 

to be the compared algorithm in this paper. 

5.2 Simulation Results and Analysis 

All the left figures below was simulated in a small simulation topology, and the 

right one was simulated in a big simulation topology. 

Fig. 2 shows the simulation results of the SFC block rate when deploying SFC re-

quests for these four algorithms. We vary the number of functions of each SFC from 3 

to 12 and randomly generate 10,000 SFC requests for each number of functions. The 

block rate denotes the proportion of the failed SFC deployment requests in all 10,000 



SFC requests. The comparisons shown in left and right indicate that the three algo-

rithms have a distinct advantage in block rate as the network size increases.  

The results of the bandwidth overhead for SFC requests, shown in Fig. 3, reveal 

that the three algorithms proposed in this paper have an advantage over the LMF 

scheme in terms of bandwidth consumption, and that the ER_CS_ADJ algorithm 

performs the best.  

The time consumption of each SFC mapping algorithm was evaluated by gradually 

increasing the number of service function chain requests, as shown in Fig. 4. The 

average time overhead of the SFC requests deployed by the three algorithms proposed 

in this paper is substantially lower than the average time overhead of the LMF algo-

rithm.  
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Fig. 2. Block rates of SFCs in different topology 
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Fig. 3. Average resource consumption (i.e., computing resource and bandwidth resource) of 

SFCs in different topologies 
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Fig. 4. Average time consumed when SFCs are deployed 



6 Conclusions and future work 

In this paper, we identified a problem: the high reliability requests of users reduce 

the CAPEX and OPEX of TSPs. Thus, we proposed ER to guarantee the basic relia-

bility needs of users. However, considering the revenue of the TSPs, we discover that 

network imbalances will influence the request success rate and the resource utilization 

rate. Therefore, we proposed ER_CS, which is based on ER and considers the load 

balance factor. Although this algorithm achieved substantial progress, we discovered 

that the scheme used for ER_CS can be improved. Thus, we proposed ER_CS_ADJ. 

The simulation results indicate that ER_CS_ADJ achieves the objectives of this study. 

We demonstrated that our network algorithms can successfully work in a range of test 

environments and satisfy user demands.  
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