
Reliable and efficient deployment for Virtual Network

Functions

Jian Sun
1
, Gang Sun

1,2
, Dan Liao

1,3
, Yao Li

1
, Muthu Ramachandran

4
, Victor Chang

5

1Key Lab of Optical Fiber Sensing and Communications (Ministry of Education), University of

Electronic Science and Technology of China, Chengdu, 611731, China
2Center for Cyber Security, University of Electronic Science and Technology of China,

Chengdu, 611731, China
3Guangdong Institute of Electronic and Information Engineering, UESTC, 523808, China

4Leeds Beckett University, United Kingdom
5Xi’an Jiaotong-Liverpool University, Suzhou, 215123, China

Abstract: Network function virtualization (NFV) is a promising technique

aimed at reducing capital expenditures (CAPEX) and operating expenditures

(OPEX), and improving the flexibility and scalability of an entire network.

However, this emerging technique has some challenges. A major problem is re-

liability, which involves ensuring the availability of deployed SFCs, namely,

the probability of successfully chaining a series of big-data-based virtual net-

work functions (VNFs) while considering both the feasibility and the specific

requirements of clients, because the substrate network remains vulnerable to

earthquakes, floods and other natural disasters. Based on the premise of users’

demands for SFC requirements, we present an Ensure Reliability Cost Saving

(ER_CS) algorithm to reduce the CAPEX and OPEX of telecommunication

service providers (TSPs) by reducing the reliability of the SFC deployments.

We employ big-data-based arbitrary topologies as the substrate network. The

results of extensive experiments indicate that the proposed algorithms perform

efficiently in terms of the blocking ratio, resource consumption and time con-

sumption.

Keywords: Network Function Virtual, Service Function Chains, Reliability,

Economical Big Data networking.

1 Introduction

Telecommunication service providers (TSPs) desire flexible and cost-efficient

methods for dispatching network services as market demands increase. NFV provides

an opportunity to efficiently and dynamically deploy service function chains (SFCs)

[1–3] without modifying dedicated infrastructure, which is costly and has become

complex over time. The basic idea behind NFV is to decouple these network func-

tions (e.g., firewall, WAN optimizers, and proxies) from the underlying customized

devices and accomplish equivalent network functions via software-based functions

running in virtual machines deployed on devices.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Leeds Beckett Repository

https://core.ac.uk/display/155778745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Because the reliability of NFV is critical and is a prerequisite for successfully ex-

ecuting SFCs and satisfying service level agreements (SLAs), improving reliability

while reducing the cost of network providers is a research objective in academic and

industrial arenas.

In this paper, we propose an ER algorithm to solve this problem. High reliability

requires TSPs to increase CAPEX and OPEX. If we can properly reduce the reliabil-

ity, we can also reduce CAPEX and OPEX. We first propose the algorithm ER_CS

(based on ER) that works in conjunction with the load balancing of the substrate net-

work. However, by analyzing the deployment scheme in ER_CS, we discover that it

does not appear to be the best scheme. Therefore, we further propose the

ER_CS_ADJ algorithm to adjust the deployment scheme by minimizing SFC re-

source consumption in the physical network. We conduct massive simulations on

arbitrary topologies to verify the effectiveness of these algorithms. From the simula-

tions and results, we determine that our algorithms are profitable in terms of resource

costs, block ratio and deployment time.

The remainder of this paper is organized as follows. In Section 2, we analyze re-

lated studies. In Section 3, we describe the problem in this research with some formu-

lations. In Section 4, we propose our heuristic algorithm and provide line-by-line

details. A performance evaluation of the network algorithm is presented in Section 5,

and Section 6 concludes this work.

2 Related Work

To satisfy various requests from users, service providers are eager to seek a flexi-

ble, scalable, agile, effective, resource efficient and energy efficient scheme for plac-

ing VNFs. Ensuring service reliability while finding an economical and re-

source-efficient solution to the problem of big-data-based VNF deployment is the

goal of this work.

Numerous studies are relevant to big-data-based NFV, including how to determine

and place network functions. N Bouten et al. [2] presented a set of affinity and an-

ti-affinity constraints that can be used by TSPs to define big-data-based placement

constraints. They proposed a semantic conflict mechanism to evaluate SFC requests

that filters invalid mechanisms to reduce the mapping time.

The performance of big-data-based NFVs with regard to resource allocation or

consumption and the acceptance ratio when mapping big-data-based VNFs has been

investigated for years. W Rankothge et al. [11] proposed a genetic algorithm to opti-

mize resource allocation. They demonstrated its efficiency in optimizing resource

allocation via three network function centers proposed by the authors.

Other research projects have focused on issues such as the availability of

big-data-based NFV. Due to potential failures (such as node or link failures) that can

be caused by earthquakes, floods, or malfunctions such as power outages, many re-

searchers have expressed interest in the field of high availability (HA) to protect data

or network functions. Unlike some schemes, which aim to solve general

big-data-based VN mapping problems for unicast services (which includes two pro-

cedures: virtual node and link mapping) such as [4]. The authors of [13] proposed an

efficient framework for evaluating the reliability of NFV deployments; however, they

did not investigate how to adjust NFV deployments based on their framework. The

proposed framework can be used only to evaluate deployment schemes but was not

intended to improve the schemes based on its results.

Although numerous studies have considered the reliability of deployed SFCs, few

studies have considered the needs of users while also considering the TSP revenues.

In other words, few studies have focused on building an economical network envi-

ronment. Therefore, we propose the ER_CS algorithm to reduce reliability under the

premise of guaranteeing users’ demands while also considering economical VNF

deployments.

3 Problem Statement

As described in Fig. 1, a SFC request consists of several VNFs, a source node s

and a destination node t. Each of these VNFs represents a network function, as de-

scribed above. The thick blue dashed line represents another scheme whose reliability

is 0.94 and resource consumption is 202, called service function forwarding path 1

(SFP1). The thick red dotted line represents one deployment scheme for the request

whose reliability is 0.97 and resource consumption is 232, called SFP2. We assume

that the demand reliability of users is 0.90. The thin blue dashed line, which repre-

sents a VNF in SFC, is deployed on a substrate network in SFP1. The red line will

yield the best experience for the users, whereas the blue line will generate a better

balance for the network providers because the network can hold more requests, which

allows greater potential profits for TSPs. The goal of this paper is to find a deploy-

ment scheme that both satisfies users’ reliability demands and minimizes resource

consumption to reduce costs.

To achieve effective and reliable network services while deploying SFC requests,

we need to deploy VNFs to more reliable nodes and attempt to maximize the total

availability of the deployment of SFC. This goal can be notated as formula (1).

max

 , 0 1.0

 , 0 < r 1.0

p p
S S

p N p L

p

p

S

v e

v V e E

p P v

p P e

R r r

v V r

e E

 

  
  

  

   

  

 

 (1)

Where rvp and rep represent the reliability of the nodes and links deployed for SFC

requests, respectively. The reliability of each node and link in the underlying network

is denoted by a positive number less than 1 according to the constraint behind the

optimization objective. This paper estimates the total reliability of SFC by calculating

the product of the reliability of each substrate node and link involved in a SFC de-

ployment scheme.

A

B C

D

E

F

(b) mapped SFC on the substrate network

G

H

s

t

VNF 1 VNF 2 VNF 3

Service Function Forwarding Path 1 (SFP1)

Service Function Forwarding Path 2 (SFP2)

A VNF is mapped on a substrate node in SFP1

A VNF is mapped on a substrate node in SFP2

s VNF 1 VNF 2 VNF 3 t

(a) Service Function Chain request

Fig. 1. Example of mapped VNFs

Due to limited resources, considering only the reliability of SFC may cause enor-

mous resource consumption and reduce the mapping success rate. Therefore, the pa-

per aims to solve the contradiction between the reliability and the bandwidth con-

sumption, maintaining a balance between resource consumption and service reliability

to ensure the effective use of resources.

4 Algorithm Design

4.1 Ensure-Reliability heuristic algorithm ER

In a NFV environment, many virtual networks share one substrate network; con-

sequently, the failure of one substrate link or substrate node may cause massive fail-

ures in virtual networks, have a large-scale impact, and reduce network stability.

Therefore, we propose a heuristic algorithm referred to as ER based on the reliabil-

ity-aware SFC mapping problem. The pseudo-code is presented in Algorithm 1.

Algorithm 1: Ensure big-data-based reliability (ER)

Input: 1. Substrate network GP = (VP, EP);

 2. SFC request SR = (NS, LS, s, t).

Output: SFC deployment scheme PS.

1: Initialization: let Vremain = VP;

2: for all VNF nf in SR, do

3: if nf is not the last VNF of SFC, then

4: initiateAllVertex() and let so

so so

v

v vr r ;

5: Call URSO procedure 1 to update the information;

6: let
r   and

tempv v ;

7: for each vertex v in VP, do

8: if
siv v and

f

r

v nw w and sov

r vr  , then

9: , sov

r v tempr v v   ;

10: end if

11: end for

12: if
r   , then return null;

13: generateScheme(
r , nf), let vso = vtemp;

14: else

15: repeat line 4 and 5, si

si si

v

v vr r

16: call URSI procedure 2 to update the information;

17: for each vertex v in VP , do

18: if
f

r

v nw w and /si sov v

r v v vr r r   , then

19: /si sov v

r v v vr r r   , tempv v ;

20: end if

21: end for

22: repeat line 12 to line 13;

23: end for

When receiving a big-data-based SFC request, we firstly let vso = s, vsi = t. When

one VNF has been deployed, we will change the value of vso just like line 13.

For all the VNFs other than the last one, the ER algorithm initializes the reliability

of all vertexes to the source to be negative infinity and the reliability of the source

vertex to be its vertex’s reliability. Then, it initializes their prior vertex on the path to

the source to be an inaccessible node. Next, it calls procedure 1—update all reliability

to source (URSO)—to update the reliabilities of all nodes to the SFC source. In lines

6 to 11, we initialize the maximum reliability variable and the substrate node that has

the maximum reliability to map the VNF, and traverse all the nodes to find the varia-

ble defined in line 6, which cannot be the sink vertex. We generate the mapping

scheme and map the VNF onto the vertex vtemp with the reliability calculated in the

previous procedure. If the reliability variable remains negative infinity, we are unable

to find a mapping vertex that satisfies the demands for mapping VNF.

To map the last VNF in an SFC we must not only consider the mapping vertex’s

reliability to the previous VNF mapping vertex but also its accessibility and reliability

at the destination node of the SFC. Similar to the previously described algorithm, we

update the reliabilities of all nodes to the SFC’s destination after updating the reliabil-

ities to the SFC’s source.

URSO will compute all the path’s (from one underlying node in Vremain to the

source node vso) reliability, choosing and saving a path which has the max reliability.

This procedure will traverse the node in Vremain and find a node (this node must satisfy

computing resource requirement of the current VNF, and the edges in the path (from

source node to it) also need to satisfy bandwidth resource requirement of the virtual

link (from prior VNF to current VNF)) that has max reliability.

Procedure 2 (i.e., update all reliability to sink (URSI)) is similar to URSO; the only

difference is that rather than computing the reliability to the source, it computes the

reliability to the destination.

4.2 Big-data-based Ensure-Reliability Cost Saving heuristic algorithm ER_CS

based on load balancing

To maximize the reliability, SFC functions should be deployed on vertexes with

high reliability, which may cause imbalanced loading in the network. Based on the

algorithm ER, we introduce the idea of load balance and present the reliabil-

ity-guarantee heuristic algorithm ER_CS, which is based on load balance.

In this thesis, the objective of load balance is to assign service flow transport to

links with lighter loads to reduce the possibility of congestion caused by load imbal-

ance. The following mathematical model describes load improvement:

1 1
, so

i
o o o
v ii i vi

v

v i Pr r

e ev e

m v V
w m




     (2)

Where e
o

i denotes the set of the out-degree edge of vertex vi, the denominator in

the second fraction denotes the remaining bandwidth resource of the out-degree edge

of vertex vi, and the last symbol denotes the sum of the bandwidth cost of the path

from vertex vi to the source vso. As expressed by the formula, the smaller the load

factor is, the larger the vertex’s remaining computing resource is, and the larger the

remaining bandwidth resource of the out-degree is, the smaller the total bandwidth

cost of the vertex to the source is.

Therefore, we adjust the ER algorithm to compute the of all the vertexes that

satisfy the criteria based on satisfying R
U
, the node’s computing resource demands

and the link’s bandwidth resource demands. We add a comparison of the values of

 in URSO to find the vertexes with smaller  values to host VNFs.

4.3 Bandwidth optimizing algorithm ER_CS_ADJ

We improve the ER_CS algorithm through bandwidth cost reduction, and we pro-

pose the bandwidth optimizing algorithm ER_CS_ADJ. We skillfully adjust the

VNFs’ mapping position based on the mapping scheme generated by ER_CS to

lengthen the mapping paths of virtual links with low bandwidth demands and shorten

it with high bandwidth demands; consequently, we reduce the bandwidth cost.

Algorithm 2: Big-data-based ER_CS adjust (ER_CS_ADJ)

Input: SFC deployment scheme PS.

Output: Adjusted SFC deployment scheme PS.

1: let
move = findMinLink(SR);

2: if
move = 0, then return;

3: while
move > 0

4: for all nf need to be removed, do

5: for all forwarding vertex v between two related

function vertex, do

6: if
f

r

v nw w and
min

remain requestB B , then

7: deploy nf on vertex v;

8: end if

9: end for

10: end for

11:
move --;

12: end while

The function findMinLink(SR) finds the virtual link with the minimum bandwidth

request in the SFC. The VNFs behind this link are the VNFs that must be moved; we

denote the number of these asχmove. When moving these VNFs, we need to traverse

the VNFs in reverse order. When we adjust the mapping position of one VNF, we

traverse all the forwarding vertexes on the path between this VNF and the updated

VNF in reverse order. For example, when moving the last VNF, we traverse forward

from the first forwarding vertex prior to the destination of the SFC. When moving the

penultimate VNF, the deployment position of the last VNF is determined; thus, we

traverse forward from the deployment position of the last VNF. The remaining steps

can be performed in the same manner.

5 Simulation Results

5.1 Simulation Environment

To evaluate the schemes described in Section IV, we implemented an event simu-

lation in Java. To demonstrate the applicability of the algorithm for all circumstances,

we employ the Waxman 2 model from GT-ITM [15] to randomly generate small and

large network instances as substrate networks. The small substrate network includes

20 nodes and the large substrate network contains 100 nodes.

During the simulation process, to compare and evaluate the performance of the

three algorithms, we modified Compute followed by Network Load Balance (CNLB)

[9] to the Link Mapping First (LMF) algorithm [10] without changing its core concept

to be the compared algorithm in this paper.

5.2 Simulation Results and Analysis

All the left figures below was simulated in a small simulation topology, and the

right one was simulated in a big simulation topology.

Fig. 2 shows the simulation results of the SFC block rate when deploying SFC re-

quests for these four algorithms. We vary the number of functions of each SFC from 3

to 12 and randomly generate 10,000 SFC requests for each number of functions. The

block rate denotes the proportion of the failed SFC deployment requests in all 10,000

SFC requests. The comparisons shown in left and right indicate that the three algo-

rithms have a distinct advantage in block rate as the network size increases.

The results of the bandwidth overhead for SFC requests, shown in Fig. 3, reveal

that the three algorithms proposed in this paper have an advantage over the LMF

scheme in terms of bandwidth consumption, and that the ER_CS_ADJ algorithm

performs the best.

The time consumption of each SFC mapping algorithm was evaluated by gradually

increasing the number of service function chain requests, as shown in Fig. 4. The

average time overhead of the SFC requests deployed by the three algorithms proposed

in this paper is substantially lower than the average time overhead of the LMF algo-

rithm.

2 4 6 8 10 12
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

B
lo

c
k
 R

a
te

length of SFC

 ER

 ER_CS

 ER_CS_ADJ

 LMF

2 4 6 8 10 12

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

B
lo

c
k
 R

a
te

length of SFC

 ER

 ER_CS

 ER_CS_ADJ

 LMF

Fig. 2. Block rates of SFCs in different topology

6 7 8 9 10 11 12
90

100

110

120

130

140

150

160

170

180

190

200

210

R
e

s
o
u

rc
e
 C

o
n
s
u

m
p
ti
o

n

length of SFC

 ER

 ER_CS

 ER_CS_ADJ

 LMF

2 4 6 8 10 12

60

80

100

120

140

160

180

200

220

240

260

R
e

s
o

u
rc

e
 C

o
n

s
u

m
p

ti
o

n

length of SFC

 ER

 ER_CS

 ER_CS_ADJ

 LMF

Fig. 3. Average resource consumption (i.e., computing resource and bandwidth resource) of

SFCs in different topologies

2 4 6 8 10 12 14 16
0

2

4

6

8

10

2 4 6 8 10 12
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

T
im

e
 C

o
n
s
u

m
p
ti
o

n
 (

m
s
)

length of SFC

 ER

 ER_CS

 ER_CS_ADJ

 LMF

2 4 6 8 10 12 14 16

0

1000

2000

3000

4000

5000

2 4 6 8 10 12
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

T
im

e
 C

o
n

s
u

m
p

ti
o

n
 (

m
s
)

length of SFC

 ER

 ER_CS

 ER_CS_ADJ

 LMF

Fig. 4. Average time consumed when SFCs are deployed

6 Conclusions and future work

In this paper, we identified a problem: the high reliability requests of users reduce

the CAPEX and OPEX of TSPs. Thus, we proposed ER to guarantee the basic relia-

bility needs of users. However, considering the revenue of the TSPs, we discover that

network imbalances will influence the request success rate and the resource utilization

rate. Therefore, we proposed ER_CS, which is based on ER and considers the load

balance factor. Although this algorithm achieved substantial progress, we discovered

that the scheme used for ER_CS can be improved. Thus, we proposed ER_CS_ADJ.

The simulation results indicate that ER_CS_ADJ achieves the objectives of this study.

We demonstrated that our network algorithms can successfully work in a range of test

environments and satisfy user demands.

Acknowledgement

This research was partially supported by the National Natural Science Foundation of China

(61571098), Fundamental Research Funds for the Central Universities (ZYGX2016J217),

Guangdong Science and Technology Foundation (2013A040600001, 2013B090200004,

2014B090901007, 2015A040404001, 2013B040300001).

References

1. M Mechtri, C Ghribi, and D Zeghlache. A Scalable Algorithm for the Placement of Ser-

vice Function Chains. IEEE Transactions on Network and Service Management, 13(3), pp:

533-546, 2016.

2. N Bouten, R Mijumbi, J Serrat, et al. Semantically Enhanced Mapping Algorithm for Af-

finity-Constrained Service Function Chain Requests. IEEE Transactions on Network and

Service Management, 14(2), pp: 317-331, 2017.

3. MT Beck, JF Botero. Scalable and coordinated allocation of service function chains.

Computer Communications, 102, pp: 78-88, 2017.

4. N.M.M.K. Chowdhury, M.R. Rahman, and R. Boutaba, Virtual Network Embedding with

Coordinated Node and Link Mapping. INFOCOM, pp: 783-791, 2009.

5. X Gao, Z Ye, et al. Virtual Network Mapping for Multicast Services With Max–Min

Fairness of Reliability. IEEE/OSA Journal of Optical Communications and Networking,

7(9), pp: 942-951, 2015.

6. R Cziva, D.P. Pezaros. Container Network Functions: Bringing NFV to the Network Edge.

IEEE Communications Magazine, 55(6), pp: 24-31, 2017.

7. G Sun, D Liao, S Bu, et al. The Efficient Framework and Algorithm for Provisioning

Evolving VDC in Federated Data Centers. Future Generation Computer Systems, 73, pp:

79-89, 2017.

8. G Sun, V Anand, D Liao, C Lu, et al. Power-efficient provisioning for online virtual

network requests in cloud-based datacenters. IEEE Systems Journal, 9(2), pp: 427-441,

2015.

9. Z Ye, A.N. Patel, P.N. Ji, et al. Virtual Infrastructure Embedding over Software-Defined

Flex-Grid Optical Networks. GLOBECOM, pp: 1204-1209, 2013.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Zilong%20Ye.QT.&newsearch=true

10. Z Ye, X Cao, J Wang, et al. Joint Topology Design and Mapping of Service Function

Chains for Efficient, Scalable, and Reliable Network Functions Virtualization. IEEE Net-

work, 30(3), pp: 81-87, 2016.

11. W Rankothge, F Le, A Russo, et al. Optimizing Resource Allocation for Virtualized Net-

work Functions in a Cloud Center Using Genetic Algorithms. IEEE Transactions on Net-

work and Service Management, 14(2), pp: 343-356, 2017.

12. M.C. Luizelli, W.L.D.C. Cordeiro, L.S. Buriol, et al. A fix-and-optimize approach for effi-

cient and large scale virtual network function placement and chaining. Computer Commu-

nications, 102, pp: 67-77, 2017.

13. J Liu, Z Jiang, N Kato, et al. Reliability evaluation for NFV Deployment of future mobile

broadband networks. IEEE Wireless Communications, 23(3), pp: 90-96, 2016.

14. D.E. Knuth. A generalization of Dijkstra’s algorithm. Information Processing Letters, 6(1),

pp: 1-5, 1977.

15. K.L. Calvert, E Zegura. Gt-itm: Georgia tech internetwork topology models (Software).

Georgia Tech, [Online]. Available: http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt

-itm.tar.gz.

https://www.researchgate.net/profile/Ellen_Zegura
http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt%20-itm.tar.gz
http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/gt%20-itm.tar.gz

