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Abstract: Fear is a conscious state caused by exposure to real or imagined threats that trigger 37 
stress responses that affect the body and brain, particularly limbic structures. A sub-group of 38 
patients with mesial temporal lobe epilepsy related to hippocampus sclerosis (MTLE-HS) have 39 
seizures with fear, which is called ictal fear (IF), due to epileptic activity within the brain 40 
defensive survival circuits structures. Synaptic transmission efficacy can be bi-directionally 41 
modified through potentiation (LTP, long-term potentiation) or depression (LTD, long-term 42 
depression) as well as the phosphorylation state of Ser831 and Ser845 sites at the GluA1 43 
subunit of the glutamate AMPA receptors, which has been characterized as a critical event for 44 
this synaptic plasticity. In this study, GluA1 levels and the phosphorylation at Ser845 and 45 
Ser831 in the amygdala (AMY), anterior hippocampus (aHIP) and middle gyrus of temporal 46 
neocortex (CX) were determined with Western blots and compared between MTLE-HS 47 
patients who were showing (n = 06) or not showing (n = 25) IF. Patients with IF had an 11% 48 
decrease of AMY levels of the GluA1 subunit (p = 0.05) and a 21.5% decrease of aHIP levels 49 
of P-GluA1-Ser845 (p = 0.009) compared to patients not showing IF. The observed 50 
associations were not related to imbalances in the distribution of other concomitant types of 51 
aura, demographic, clinical or neurosurgical variables. The lower levels of P-GluA1-Ser845 in 52 
the aHIP of patients with IF were not related to changes in the levels of the serine/threonine-53 
protein phosphatase PP1-alpha catalytic subunit or protein kinase A activation. Taken 54 
together, the GluA1 subunit levels in AMY and P-GluA1-Ser845 levels in the aHIP show an 55 
overall accuracy of 89.3% (specificity 95.5% and sensitivity 66.7%) to predict the presence of 56 
IF. AMY levels of the GluA1 subunit and aHIP levels of P-GluA1-Ser845 were not associated 57 
with the psychiatric diagnosis and symptoms of patients. This is the first report to address 58 
neuroplasticity features in human limbic structures connected to the defensive survival circuits, 59 
which has implications for the comprehension of highly prevalent psychiatric disorders and 60 
symptoms. 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
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1. Introduction 74 
Fear is a distinct and recognized human emotion that is considered to be a conscious 75 

state caused by exposure to real or imagined threats.1,2 Defensive survival circuits detect and 76 
respond to threats, which initiates stress responses in the brain and body that indirectly 77 
contribute to conscious fear.2 In predisposed individuals, acute and intense stress has been 78 
associated with post-traumatic stress disorder, and chronic and repetitive stress has been 79 
associated with depression and anxiety disorders.3 80 

Epilepsies are characterized by recurrent spontaneous hyperexcitable and 81 
hypersynchronic brain activity4,5 that occurs in approximately 0.5 to 1% of the world population. 82 
Thirty percent of all patients who have drug-resistant epilepsy are candidates for pre-surgical 83 
evaluation.6 Mesial temporal lobe epilepsy related to hippocampus sclerosis (MTLE-HS) is the 84 
most common type of surgically treatable epilepsy.7–9 In MTLE-HS, the hippocampus (HIP) is 85 
involved in seizure onset for 48.5% of cases, the amygdala (AMY) is involved in 26.7% of 86 
cases, and synchronous onset in the two structures occurs for the remaining 24.8% of cases.10 87 
Before consciousness is impaired, patients can become aware of their seizure symptoms in a 88 
phenomenon called epileptic aura.11 The typical MTLE-HS aura includes olfactory, abdominal, 89 
autonomic, cephalic or psychic sensations, including déjà-vu, jamais-vu and fear.14 The aura 90 
of fear, which is also termed ictal fear (IF), is characterized by a sudden, often short, conscious 91 
state of fear that occurs during the seizure and is unrelated to any real or imagined threats, 92 
including the fear of a seizure itself.13–16 In MTLE-HS patients evaluated with stereotactic 93 
implanted depth electrodes (SEEG), the IF sensation and associated behaviour occurred 94 
when epileptic discharges involved or interfered with orbito-prefrontal, anterior cingulate, and 95 
temporal limbic cortices but did not occur if only the AMY was activated by the epileptic 96 
discharge. Interestingly, sensation of fear without associated behavioural changes can be 97 
evoked by electric stimulation of the AMY.15 98 

Active synapses are bi-directionally modifiable in brain regions, such as the AMY, HIP 99 
and neocortex.17,18 A long-lasting increase in synaptic transmission, called long-term 100 
potentiation (LTP), is usually induced by high-frequency neuronal stimulation.17 Decreases in 101 
synaptic efficacy are caused by long-term depression (LTD) after low-frequency stimulation 102 
(LFS).17 In vivo pharmacological evidence suggests there is an association between LTP and 103 
the fear associative memory task one-trial inhibitory avoidance,19–22 which is thought to induce 104 
LTP in the HIP.23 Fear conditioning, which is another fear associative memory task, can be 105 
inactivated by LTD and reactivated by LTP in the AMY, which supports a causal link between 106 
these synaptic processes and fear associative memory.18 AMPA (α-amino-3-hydroxy-5-107 
methyl-4-isoxazolepropionic acid) receptors are heterotetrameric assemblies of GluA1-4 108 
subunits, and the phosphorylation states of Ser831 and Ser845 of the GluA1 subunit are 109 
involved in LTP and LTD.24–29 LTP induction increases the phosphorylation of both sites.28,29 110 
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Conversely, in naive synapses, LTD induction dephosphorylates Ser845, whereas in 111 
potentiated synapses, Ser831 is dephosphorylated by LTD induction. The level of GluA1 112 
subunit phosphorylation on the Ser831 and Ser845 sites can be used as biomarkers of 113 
synaptic plasticity changes in human brain samples.30  114 

Because the AMY is a part of a set of defensive survival circuits and its activation 115 
contributes to feelings of fear2 and the anterior hippocampus (aHIP) is mostly connected to 116 
the AMY and associated with emotional encoding,31 we investigated whether the occurrence 117 
of IF was differentially associated with the levels of the GluA1 subunit and its phosphorylation 118 
at the Ser831 and Ser845 sites in the AMY and aHIP of MTLE-HS patients. For comparison, 119 
we analysed samples resected from the middle temporal neocortex (CX). We also investigated 120 
if the IF and the levels of the GluA1 subunit and its phosphorylation in the AMY and aHIP were 121 
independently associated with the psychiatric diagnosis and symptoms found in our patients. 122 
 123 
2. Materials and Methods 124 
 125 
2.1. Patients 126 

Thirty-one adult patients who were surgically treated between May 2009 and 127 
December 2012 at Centro de Epilepsia de Santa Catarina were prospectively included in this 128 
study, which was approved by the Ethics Committee for Human Research of Universidade 129 
Federal de Santa Catarina (365-FR304969). Written informed consent was obtained from all 130 
participants. They had seizures impairing awareness at least once a month despite adequate 131 
treatment with antiepileptic drugs (AEDs).32 The anamnesis, neurological examination, 132 
psychiatric and neuropsychological evaluation, surface video-EEG analysis, and magnetic 133 
resonance imaging (MRI, 1.5 Tesla) were consistent with unilateral MTLE-HS.7–9,33–37 The 134 
analysed variables were gender, race, marital status, current work activity, history of initial 135 
precipitating injury (IPI), laterality of HS, AEDs, psychiatric diagnosis, age, level of education, 136 
disease duration, monthly frequency of seizures, and quality of life. Psychiatric diagnoses 137 
were determined by the Fourth Edition of the Diagnostic and Statistical Manual of Mental 138 
Disorders (DSM-IV)38 and the identification of psychiatric conditions frequently associated with 139 
epilepsy.34,39,40 Quality of life was evaluated using the Quality of Life in Epilepsy Inventory-31 140 
(QOLIE-31).7,8,41 Anxiety and depressive symptoms were assessed by the Hospital Anxiety 141 
and Depression Scale (HADS)37,42 in the last 26 patients who were included in the study. 142 
 143 
2.2. Characterization of IF and other epileptic auras 144 

Patients were evaluated by a board-certified clinical neurophysiologist with expertise in 145 
epilepsy surgery and who were well familiar with auras, including IF. In all patients, the seizure 146 
semiology was essentially the same for several years. The reported auras included epigastric, 147 
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cephalic, fear, déjà vu, sternal, jamais-vu, dizziness, autonomic, olfactory, gustatory, 148 
sensations of ascending body chills, or poorly defined symptoms. Patients described only one 149 
type of aura or a sequence of two or three different auras. IF was assessed as previously 150 
described13 using a standardized interview and confirmed only if (1) it was reported as being 151 
concomitant with an epileptic seizure; (2) it arose spontaneously out of context without any 152 
external or mental motivation; and (3) it could be clearly distinguished from fear of a seizure. 153 
IF perception was described by our using the words “fear”, “fear sensation”, “sensation of 154 
death”, “thoughts of dread”, “impending death” or “bad feeling of fear”. Care was taken to avoid 155 
suggestive questioning. Patients who could not remember any type of aura were classified in 156 
the group without aura (see the supplementary table 1). A careful VEEG analysis showed that 157 
all patients with IF (n=06) showed a horrified, tense or preoccupied facial expression during 158 
the seizure. Two of the twenty-five patients who did not report IF showed facial behaviour that 159 
suggested fear during their seizures. However, because they did not report ictal fear, they 160 
were classified in the group without IF. No patient had hypermotor behaviour that suggested 161 
frontal lobe semiology. 162 

 163 
2.3. Anaesthesia protocol 164 

The anesthetic protocol was the same for all patients,30 starting between 7:30 to 8:30 165 
a.m. with intravenous (i.v.) bolus of propofol (2 mg/kg), fentanyl (2 µg/kg) and rocuronium (0.9 166 
mg/kg), followed by i.v. remiphentanil infusion (0.1-0.2 µg/kg/min) and isofluorane inhalation 167 
(0.5-0.6 MAC). A dexamethasone bolus (10 mg i.v.) was infused immediately after intubation 168 
as an adjunctive anti-inflammatory in 20 patients. Hydration was done with isotonic saline (1.2 169 
ml/kg/h) plus the half volume of diuresis. Cephalotine (30 mg/kg) was given 30 min before the 170 
anesthesia. Oral AEDs were maintained until the day of surgery (6 a.m.). Patients received 20 171 
mg/kg of phenytoin i.v. 12 hours before the surgery and those under phenytoin at home only 172 
received their oral dose at the day of surgery. All patients received a phenytoin bolus (5 mg/kg 173 
i.v.) after the brain samples were collected. 174 
 175 
2.4. Surgery, intraoperative variables and brain tissue sampling 176 

The analysed samples from brain tissue were removed by a standard anterior and 177 
temporal lobectomy8,9 without thermo-coagulation following the recommended prospective 178 
collection model43 as previously described.30,44 A 1-cm2 sample of middle temporal cortex (CX) 179 
localized 3 cm posterior to the temporal lobe pole was gently dissected from the white matter. 180 
After assessing the mesial temporal region, two-thirds of the AMY, including its basal and 181 
lateral nucleus, were resected. Finally, the HIP head and body were removed "en bloc", and 182 
the anterior hippocampus (aHIP) was quickly dissected on ice-refrigerated glass. Immediately 183 
after collection, the samples were transferred to an Eppendorf tube, frozen in liquid nitrogen 184 
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and stored in a -80°C freezer for later analysis. The anaesthesia duration for collecting the 185 
brain samples was controlled. Arterial blood gases, electrolytes, haematocrit/haemoglobin, 186 
pH, mean arterial pressure, heart and respiratory rate during the AMY/aHIP sampling were 187 
controlled. Haemodynamic and respiratory parameters remained stable during all procedures, 188 
and there were no surgical complications.  189 

 190 
2.5. Biochemical analysis 191 

All samples were homogenized by the same researcher on the same day and stored 192 
at -80oC until the analysis. The phosphorylation levels and total amount of target proteins were 193 
determined in a blinded manner for all clinical data by western blot (WB) as previously 194 
described.30,45–47 Briefly, the brain samples were mechanically homogenized in buffer  solution 195 
containing 50 mM Tris, pH 7.0, 1 mM EDTA, 100 mM NaF, 0.1 mM PMSF, 2 mM Na3VO4, 196 
1% Triton X-100, 10% glycerol, protease inhibitor cocktail and centrifuged 10,000 x g at 4°C 197 
for 10 min. The supernatants were diluted in electrophoresis buffer. The protein content was 198 
estimated by the method described by Peterson (1977).48 The proteins (60 µg per track) were 199 
electrophoresed in 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-200 
PAGE) and transferred to nitrocellulose membranes. Proteins were detected with specific 201 
antibodies [anti-phospho-GluA1-Ser831 (Sigma-Aldrich, A4352); anti-phospho-GluA1-Ser845 202 
(Sigma-Aldrich, A4477); anti-total-GluA1 (Santa Cruz Biotechnology, sc-13152); anti-PP1 203 
(Santa Cruz Biotechnology, sc-7482); anti-phospho-PKA substrates (Cell Signaling, #9624); 204 
anti-EAAT1 (Cell Signaling, #5684); anti-EAAT2 (Cell Signaling, #3838); anti-GFAP (Cell 205 
Signaling, #3670) in a 1:1000 dilution. The blots were developed by chemiluminescent 206 
reaction. For load control all membranes were incubated with anti-β-actin antibody (Santa 207 
Cruz Biotechnology, sc-47778, 1:2000). The phosphorylation level was determined as a ratio 208 
of the optic density (OD) of the phosphorylated band relative to the OD of the total band. The 209 
protein immunocontent was determined as a ratio of the OD of the protein band to the OD of 210 
the β-actin band.30 Due to the lack of brain tissue samples from healthy controls, an internal 211 
control (IC) sample was applied as a reference in all electrophoresis. The reference sample 212 
was obtained from 3 pooled HIP prepared as all other samples. The OD ratio 213 
(phosphorylated/total or total/β-actin) for each target protein in the reference sample was 214 
considered 100% and the data were expressed as percentage variation from the reference 215 
sample.30 216 
 217 
2.6. Statistical analysis 218 

Continuous variables showed a normal distribution (Kolmogorov–Smirnov, p<0.10) 219 
and differences between patients with and without IF were analysed with the Student’s t-test. 220 
Categorical variables were analysed by Fisher’s exact test. Pearson’s coefficient was used for 221 
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analysis of correlations. A univariate analysis was done to identify imbalances in the 222 
distribution of demographic, clinical, laboratorial and neurosurgical variables between patients 223 
with and without IF with a p<0.20. These variables were included in a multiple binary 224 
regression analysis to determine the independent association between IF and the target 225 
variables. Because we had a predetermined hypothesis and to avoid a type II error, no 226 
corrections for multiple comparisons were applied, and p<0.05 was considered statistically 227 
significant. 228 

  229 
3. Results 230 
 Six patients (19.4%) had no aura, 25 (80.6%) had at least one aura type, and six (19.4 231 
%) had IF alone or in combination with other auras (supplementary table 1).   232 

Table 1 shows that patients with IF had lower levels of GluA1 (-11%) in the AMY (p = 233 
0.05) but not in the aHIP (p=0.82) and CX (p=0.38) compared to patients without IF. Patients 234 
reporting IF also had 21.5% lower levels of P-GluA1-Ser845 in the aHIP (p=0.009) but not in 235 
the AMY (p=0.28) and CX (p=0.20). Patients with IF showed a non-significant trend (p=0.14) 236 
for lower levels of P-GluA1-Ser831 in the aHIP, but not in the AMY and CX, compared to 237 
patients without IF. The results remained unchanged when the two patients without IF that 238 
exhibited facial expressions of fear were excluded from the analysis (p=0.03 for the AMY 239 
levels of GluA1 subunit and p=0.01 for the a-HIP levels of P-GluA1-Ser845, data not shown). 240 

Because IF could be related to imbalances in tissue gliosis, we compared the levels of 241 
glial fibrillary acidic protein (GFAP) between patients reporting or not reporting IF (Table 1). 242 
There were no differences in the GFAP levels in the AMY (p=0.75), aHIP (p=0.52) and CX 243 
(p=0.84) between patients with or without IF. There was also no correlation between the GluA1 244 
subunit and the GFAP levels in the AMY (r=0.03, p=0.88, data not shown).  245 

As a second marker of gliosis, and because glutamate transmission could be affected 246 
by changes in glutamate reuptake by astrocytes, the levels of excitatory amino acid transporter 247 
type 1 and 2 (EAAT1 and EAAT2) were determined in the same analysed samples (Table 1). 248 
No significant association (p≥0.64) was observed between the occurrence of IF and the levels 249 
of EAAT1 and EAT2 in all of the analysed structures. 250 
 Multiple linear regressions were performed to investigate the independent association 251 
between the levels of the GluA1 subunit in the AMY or P-GluA1-845 in the aHIP and the IF 252 
(see Suppl. Table 2). After controlling for the distribution of other frequent auras, only IF was 253 
independently associated with aHIP levels of P-GluA1-Ser45 (supplementary table 2, final 254 
model 1) or the AMY levels of the GluA1 subunit (supplementary Table 2, final model 2).  255 

The demographic and clinical variables are shown in table 2. The patients were mostly 256 
female (58.1%), had a mean age of 36.4 years, 6.6 years of education, 9 seizures impairing 257 
awareness per month and 24 years of disease duration. None of the investigated variables 258 
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were significantly associated with the occurrence of IF. There was a non-significant trend (p = 259 
0.17) for lower prevalence of IF in patients taking benzodiazepines. Supplementary Table 3 260 
shows that surgical and laboratory variables, e.g., storage time of samples and time since the 261 
last seizure before surgery, were not associated with IF. There was a non-significant trend for 262 
higher levels of arterial PO2 pressure during surgery (p=0.13) and longer storage time (p=0.15) 263 
for the samples from patients with IF (supplementary Table 3).  264 

Table 3 shows that after controlling for imbalances in the distribution of the arterial 265 
PO2, benzodiazepine use, and time of sample storage with multiple binary regression, the 266 
presence of IF remains independently associated with aHIP levels of P-GluA1-Ser845 267 
(adjusted OR 0.92, CI 95% 0.85-0.99, p=0.04) and shows a trend for association with GluA1 268 
subunit levels in the AMY (adjusted OR 0.92, CI 95% 0.84-1.01, p=0.09). Considering the 269 
biological plausibility and the small sample size, we believe the observed trend (p=0.09) was 270 
a false negative result and both biomarkers were maintained in the final binary regression 271 
model (table 3).  The aHIP levels of P-GluA1-Ser845 alone had an overall accuracy of 92.1% 272 
(specificity 95.5% and sensitivity 33.3%) to predict the occurrence of IF. The AMY levels of 273 
the GluA1 subunit alone had an overall accuracy of 87.2% (specificity 100% and sensitivity 274 
33.3%) to predict the occurrence of IF. Together, the AMY levels of GluA1 and the aHIP levels 275 
of P-GluA1-Ser845 showed an overall accuracy of 89.3% (specificity 95.5% and sensitivity 276 
66.7%) to predict the IF occurrence. 277 

Because protein kinase A (PKA) phosphorylates and the serine/threonine-protein 278 
phosphatase PP1-alpha catalytic subunit (PP1) dephosphorylates GluA1-Ser845, we 279 
investigated the correlation between the aHIP levels of P-GluA1-Ser845 and PKA activation 280 
or PP1. There was a significant positive correlation between PKA activation and P-GluA1-281 
Ser845 levels (figure 1A). The PP1 levels were not correlated with P-GluA1-Ser845 levels 282 
(figure 1B).  However, the multiple linear regression analysis revealed that only IF, but not the 283 
levels of PKA activation or PP1 levels, were independently associated with the aHIP levels of 284 
P-GluA1-Ser845 (figure 1). The results indicate the association between IF and lower aHIP 285 
levels of P-GluA1-Ser845 was not related to changes in the levels of PKA activation or PP1. 286 

Finally, IF was not associated with the psychiatric diagnosis (DSM criteria, p=0.78) or 287 
with anxiety (p=0.77) or depression (p=0.53) symptoms (Table 2). No significant correlations 288 
were observed between the AMY levels of the GluA1 subunit and HADS scores for anxiety 289 
(figure 2A, r=0.27, p=0.21) or depression (figure 2B, r=0.18, p=0.41). Finally, the aHIP levels 290 
of P-GluA1Ser-845 were also not associated with HADS scores for anxiety (figure 2C, r=0.08, 291 
p=0.71) or depression (figure 2D, r=0.04, p=0.85).  292 

Representative Western blot results are shown in suppl. figure 1. 293 
 294 
4. Discussion 295 
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Patients with unilateral drug-resistant MTLE-HS and IF had significantly lower levels 296 
of P-GluA1-Ser845 in the aHIP and GluA1 subunit in the AMY ipsilateral to the HS than 297 
patients without IF. The association between P-GluA1-Ser845 levels and IF was not related 298 
to changes in PKA activation or PP1 levels in the aHIP. The phosphorylation of GluA1-Ser845 299 
also can be modulated by protein phosphatases 2A and 2B27 as well as by protein kinase G.49 300 
Furthermore, GluA1-Ser-845 can also be modified by O-linked N-acetylglucosamine (O-301 
GlcNAc),50 a post-translational modification regulated by O-GlcNAc transferase (OGT) and O-302 
GlcNAcase, which are enzymes that were not analysed in this present study. It should be 303 
noted that this process could impair GluA1-Ser-845 phosphorylation and might be associated 304 
with hippocampal LTD.50 Therefore, these mechanisms might affect GluA1-Ser845 305 
phosphorylation and deserve further investigation.  306 

Using MRI, Cendes et al.14 showed that MTLE-HS patients reporting IF had a 307 
significant reduction in their AMY volume (16%) compared to patients without IF, and their 308 
post-operative histopathology correlated well with AMY atrophy.14 We believe the 11% 309 
reduction in the AMY levels of the GluA1 subunit observed in our patients with IF may reflect 310 
the neurochemical aspects of the MRI results reported by Cendes at al. several years ago.14  311 

In rodents, the HIP encodes contextual aspects of conditioned fear and has major 312 
projections to both the prefrontal cortex and the basolateral AMY.51  Inhibitory avoidance 313 
learning promotes an increase in P-GluA1-Ser831 but not GluA1-Ser-845 in HIP 314 
synaptoneurosomes.23,52 The phosphorylation pattern of these two sites of the GluA1 subunit 315 
in relation to fear memory resembles what occurs in the LTP induced in posterior hippocampal 316 
area CA1 by high-frequency stimulation.23,53 In addition, phosphorylation of the GluA1 subunit 317 
at Ser845 by PKA has been implicated in the enhancement of AMPAR-mediated currents,54,55 318 
insertion of AMPARs into the postsynaptic membrane,54,56 and LTP induction after prior LTD.29 319 
During LTD, the P-GluA1-Ser845 levels may be decreased56,57 and associated with the 320 
removal of AMPARs from synapses, whereas LTP is associated with the delivery of AMPARs 321 
to synapses.25,28,29 Our results may indicate an LTD-like neuroplasticity in the aHIP of patients 322 
showing IF compared to patients without IF. Moreover, in contextual fear conditioning, the 323 
increased HIP levels of P-GluA1-Ser831 seem to be specifically associated with learning 324 
rather than a non-specific effect of aversive stimuli (such as a foot shock or novel context 325 
exposure).23,52,53,58 This outcome could mean that the slight, but not significant, decrease in 326 
Ser831 phosphorylation in the aHIP (p = 0.14) observed in this study is an indication that IF is 327 
distinct from fear conditioning.   328 

The association between the lower aHIP levels of P-GluA1-Ser-845 and IF may be 329 
related to previous findings collected with magnetic resonance spectroscopy (MRS) that show 330 
a higher degree of neuronal dysfunction in the aHIP of MTLE-HS patients reporting IF.13 Taken 331 
together, both results agree with the classical view of a functional role for aHIP within fear and 332 
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anxiety-related behaviours and the endocrine stress response.31 In physiological conditions, 333 
fear caused by exposure to threats results in stress responses1,59. Increased levels of 334 
glucocorticoids released during chronic stress reduces dendritic branching and spine count in 335 
the rat hippocampus60,61 and has been associated with HIP atrophy62 and psychiatric illness, 336 
including anxiety and mood disorders.3 However, we did not find any association between the 337 
psychiatric diagnoses or symptoms of depression or anxiety and the presence of IF as well 338 
the aHIP levels of P-GluA1-Ser-845 and the AMY levels of the GluA1 subunit.  339 

The relationship between fear caused by exposure to real or imagined threats and the 340 
unmotivated aura of fear in temporal lobe epilepsy seizures is unknown. The differential 341 
diagnosis between panic attacks and IF can be challenging,15,63 and several findings suggest 342 
that both disorders can be part of a continuum of abnormal hyperexcitability or involvement of 343 
defensive survival circuits.63–65 We speculate that our findings in patients with MTLE-HS may 344 
have some implications for the role of neuroplasticity in panic attacks. Testing this idea will 345 
require some ingenuity since the occurrence of spontaneous fear cannot be investigated 346 
under experimental conditions. Temporal lobe epilepsy surgery is the only opportunity to 347 
obtain samples from defensive survival circuit structures under adequate conditions to 348 
investigate biomarkers of synaptic plasticity. However, our study design does not allow us to 349 
make a definitive conclusion as to whether IF is a cause, consequence, or an epiphenomenon 350 
of the lower levels of GluA1 in the AMY and P-GluA1-Ser-845 in the aHIP. 351 

Variations in gliosis in aHIP and the AMY of MTLE-HS66,67 patients could be a 352 
confounding bias in our study. Because histopathological analysis was not feasible in the 353 
samples used for WB analysis, determining the GFAP and astrocytic glutamate transporters 354 
levels were viable alternatives for controlling the gliosis distribution in our samples. The small 355 
sample size is a well-known limitation in WB studies, and false negative results are definitely 356 
possible. However, the significant associations that were found in a small sample strengthens 357 
the credibility of the results. 358 

We would like to emphasize the positive aspects of our study: i) the hypothesis was 359 
established prior to the analysis; ii) the prospective study design had a blinded analysis; iii) 360 
use of the HADS questionnaire avoided reliance on identifying aspects of the somatic 361 
symptoms of psychiatric illness; iv) the extensive control applied to clinical variables and 362 
collection of the brain samples; and v) the multivariate analysis approach, which is rarely 363 
applied in studies using Western blot results of protein phosphorylation under clinical 364 
scenarios. Therefore, we do believe that our results provide reliable information concerning 365 
neuroplasticity in fear-related brain structures. 366 
  In conclusion, recurrent IF is associated with lower levels of P-GluA1-Ser-845 in the 367 
aHIP and the GluA1 subunit in the ipsilateral AMY of patients with unilateral MTLE-HS. This 368 
is the first report to address neuroplasticity features in human limbic structures connected to 369 
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the defensive circuit, which may have implications for understanding highly prevalent 370 
psychiatric disorders and symptoms. 371 
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Table 1: Variation in the neurochemical parameters levels are expressed as a percentage of the 
reference sample in AMY, aHIP and CX according to the presence of IF. 

Data are expressed as the mean (SD) level of the neurochemical parameter expressed as 
percentage of the reference sample which was considered 100%; 
a Significant decrease of 11 % in AMY levels of GluA1 subunit in patients with IF; 
b Significant decrease of 21.5 % in HIP levels of P-GluA1-Ser845 in patients with IF. 

 
 

 

Variables  
All cases 

n = 31 
Mean (SE) 

 No Ictal Fear 
n = 25 

Mean (SE) 

 Ictal Fear 
n = 06 

Mean (SE) 

 
“p” 

value  
 

 

          
Amygdala          
GluA1 subunit  97.5 (12.5)  99.6 (9.0)  88.6 (20.6)    0.05 a  
P-GluA1-Ser845  108.1 (18.3)  109.7 (17.7)  99.8 (21.3)  0.28  
P-GluA1-Ser831  109.3 (16.8)  109.8 (15.7)  107.1 (22.6)  0.73  
          
GFAP   108.2 (10.6)  107.9 (11.3)  109.5 (8.3)  0.75  
EAAT1  95.5 (23.0)  96.0 (24.3)  93.5 (18.2)  0.82  
EAAT2  93.6 (15.2)  94.1 (16.8)  91.1 (15.1)  0.65  
          
Anterior Hippocampus          
GluA1 subunit  96.7 (15.9)  97.5 (15.3)  94.0 (19.7)  0.82  
P-GluA1-Ser845  104.2 (19.2)  108.8 (17.0)  87.3 (18.5)    0.01 b  
P-GluA1-Ser831  97.0 (19.8)  99.8 (19.7)  88.7 (16.7)  0.14  
          
GFAP  105.0 (7.4)  104.3 (7.8)  107.7 (5.7)  0.52  
EAAT1  96.1 (22.6)  95.1 (23.8)  99.5 (19.4)  0.65  
EAAT2  90.3 (20.6)  90.7 (19.8)  88.7 (25.4)  0.97  
          
P-PKA substrates  97.5 (25.7)  101.1 (23.6)  83.9 (31.2)  0.15  
PP1   95.6 (12.0)  96.6 (13.2)  92.0 (4.1)  0.36  
          
Middle temporal neocortex          
GluA1 subunit  101.5 (8.1)  102.5 (7.0)  97.8 (11.5)  0.38  
P-GluA1-Ser845  11.7 (17.2)  114.8 (15.6)  103.1 (16.2)  0.12  
P-GluA1-Ser831  118.6 (17.2)  118.3 (17.5)  119.7 (17.9)  0.88  
          
GFAP  112.4 (16.1)  110.3 (7.5)  116.7 (12.5)  0.84  
EAAT1  108.6 (14.7)  109.9 (14.2)  104.8 (16.9)  0.64  
EAAT2  106.5 (11.2)  106.5 (9.5)  106.2 (17.6)  0.87  

          



Table 2: Clinical, demographic, neuroradiological, neurophysiological, and surgical variables of 
patients with MTLE-HS according to the presence of IF. 

     Ictal Fear    

Variables 
 

All cases 
n = 31  No 

n = 25 (80.6)  Yes 
n = 06 (19.4)  

“p”  
value 

Gender         
Female  18 (58.1)  15 (60.0)  03 (50.0)   
Male  13 (41.9)  10 (40.0)  03 (50.0)  0.67 

         
Race         

Caucasian  27 (87.1)  22 (88.0)  05 (83.3)   
Others  04 (12.9)  03 (12.0)  01 (16.7)  1.0 

         
Marital status         

Single  17 (54.8)  14 (56.0)  03 (50.0)   
Married  10 (32.3)  09 (36.0)  01 (16.7)   
Divorced or Widower  04 (12.9)  02 (8.0)  02 (33.3)  0.22 

         
Current work activity         

Working  11 (35.5)  08 (32.0)  03 (50.0)   
House wife  06 (19.4)  04 (16.0)  02 (33.3)   
Health Insurance  04 (12.9)  04 (16.0)  0   
Not working  10 (32.3)  09 (36.0)  01 (16.7)  0.48 

         
History of initial precipitant injury         

No  07 (22.6)  05 (20.0)  02 (33.3)   
Yes  24 (77.4)  20 (80.0)  04 (66.7)  0.60 

         
MRI side of HS         

Right side  16 (51.6)  13 (52.0)  03 (50.0)   
Left side  15 (48.4)  12 (48.0)  03 (50.0)  1.0 

         
Antiepileptic drugs regimenc         

Monotherapy  09 (29.0)  06 (24.0)  03 (50.0)   
Two or more drugs  22 (71.0)  19 (76.0)  03 (50.0)  0.32 

         
Benzodiazepines         

No  16 (51.6)  11 (44.0)  05 (83.3)   
Yes  15 (48.4)  14 (56.0)  01 (16.7)  0.17 

         
Carbamazepine         
  No  06 (19.4)  05 (20.0)  01 (16.7)   
  Yes  25 (80.6)  20 (80.0)  05 (83.3)  1.0 

         
Phenobarbital         
  No  19 (61.3)  15 (60.0)  04 (67.7)   
  Yes  12 (38.7)  10 (40.0)  02 (33.3)  1.0 

         
Diphenilhydantoin         
  No  28 (90.3)  22 (88.0)  06 (100.0)   
  Yes  03 (9.7)  03 (12.0)  0  1.0 



a Anxiety disorders: generalized anxiety disorder (two patients in the group without fear), social phobia (one patient 
in IF group); 
b HADS anxiety and depression were applied only in 26 patients (5 had IF); 
c Seizures impairing awareness; 
d QOLIE-31 = Quality of Life in Epilepsy Inventory-31 overall score. 

 

         
Valproic acid         
  No  27 (87.1)  21 (84.0)  06 (100.0)   
  Yes  04 (12.9)  04 (16.0)  0   

        0.56 
Lamotrigine         
  No  27 (87.1)  21 (84.0)  06 (100.0)   
  Yes  04 (12.9)  04 (16.0)  0  0.56 

         
Topiramate         
  No  29 (93.5)  23 (92.0)  06 (100.0)   
  Yes  02 (6.5)  02 (8.0)  0  1.00 
         
Hand dominance         

Right  27 (87.1)  21 (84.0)  06 (100.0)   
Non-right  04 (12.9)  04 (16.0)  0  0.56 

         
Psychiatric comorbidities         

No diagnosis  15 (48.4)  13  (52.0)  02 (33.3)   
Depressive disorder  08 (25.8)  06 (24.0)  02 (33.3)   
Anxiety disorder a  03 (9.7)  02 (8.0)  01 (16.7)   
Interictal dysphoric disorder  03 (9.7)  02 (8.0)  01 (16.7)   
Ictal psychosis  02 (6.4)  02 (8.0)  0  0.78 
         

HADS anxiety scores b  8.3 (3.4)  8.5 (3.2)  8.0 (4.3)  0.77 
         
HADS depression scores b  7.0 (3.9)  7.3 (4.0)  6.0 (3.9)  0.53 

         
Age (years)  36.4 (12.1)  36.7 (12.1)  34.8 (13.1)  0.75 
         
Education (years)  6.6 (3.0)  6.8 (2.9)  5.7 (3.5)  0.41 
         
Disease duration (years)  24.3 (11.7)  24.6 (11.1)  23.0 (11.9)  0.77 
         
Monthly seizures frequency c  7.5 (4.9)  7.1 (4.68)  9.6 (6.5)  0.32 
         

QOLIE-31 overall score d  35.2 (15.3)  34.6 (14.6)  37.7 (19.6)  0.66 

         



Table 3: Independent association between IF and aHIP levels of P-GluA1-Ser-845 and AMY levels of GluA1 after controlling for 
imbalances in the distribution of potential confounding variables. 

a Overall accuracy 89.3% (specificity 95.5% and sensitivity 66.7%) to predict the occurrence of IF (Nagelkerke R2 = 0.50); 
 HIP levels of P-GluA1Ser845 alone has an overall accuracy of 92.1% (specificity 95.5% and sensitivity 33.3%) to predict the occurrence of IF 
(Nagelkerke R2 = 0.34); 
AMY levels of GluA1 subunit alone has an overall accuracy of 87.2%% (specificity 100% and sensitivity 33.3%) to predict the occurrence of IF 
(Nagelkerke R2 = 0.17). 

 

Predictive variables   Crude OR 
(CI 95%) 

 “p” 
level 

 Adjusted OR 
(CI 95%) 

 “p” 
levels 

Initial model          

HIP levels of P-GluA1-Ser845  0.92 (0.86 to 0.99)    0.03  0.88 (0.74 to 1.05)  0.17 
AMY levels of GluA1 subunit  0.93 (0.97 to 1.00)    0.07  0.91 (0.80 to 1.04)  0.16 
PO2 pressure during surgery (mmHg)  0.99 (0.98 to 1.00)  0.20  0.98 (0.95 to 1.00)  0.16 
Storage time of samples (months)  1.08 (0.97 to 1.20)  0.15  0.96 (0.73 to 1.26)  0.76 
Benzodiazepines use  0.16 (0.02 to 1.55)  0.11  6.6 (0.18 to 238.7)  0.30 

Final model a         
aHIP levels of P-GluA1-Ser845  0.92 (0.86 to 0.99)    0.03  0.92 (0.85 to 0.99)  0.04 
AMY levels of GluA1 subunit  0.93 (0.97 to 1.00)    0.07  0.92 (0.84 to 1.01)  0.09 
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  aHIP levels of  P-GluA1-Ser845   

Predictive variables  Multiple linear regression coefficients  “p” value 
  r  r2  B (CI 95%)   

Initial model    0.51  0.26    0.05 

Constant      92.8 (65.2 to 120.3)  < 0.0001 
Ictal fear      - 18.8 (- 35.7 to – 1.9)  0.03 
PKA activation in the HIP      0.16 (- 0.11 to 0.43)  0.24 
PP1 levels in the HIP      - 0.004 (- 0.57 to - 0.56)  0.98 

Figure 1: Correlations between the variation in the level of PKA activation (A) and PP1 (B) in aHIP and the variation in 
the P-GluA1-Ser845 levels in the aHIP. Data are expressed as the level of the neurochemical parameter determined as 
percentage of the reference sample which was considered 100%. PKA activation was determined using an antibody 
against phospho-PKA substrates (indirect measure of PKA activation) which detects peptides and proteins containing a 
phospho-serine/threonine residue with arginine at the -3 and -2 positions, which is a consensus sequence that 
undergoes PKA-dependent phosphorylation. There was a significant positive correlation between the levels PKA 
activation and the P-GluA1-Ser845 (r = 0.33, p = 0.04). No association was observed between the P-GluA1-Ser845 and 
the PP1 levels (r = 0.10, p = 0.30). Statistical analysis done by Pearson correlation (1-tailed). After the multiple linear 
regression analysis (bottom of Figure 1) only the presence of the IF, but not the levels of PKA activation and PP1, remain 
independently and negatively associated with the P-GluA1Ser845 variation in the aHIP. The validity of the model was 
confirmed by many aspects: there were no outliers, the data points were independent, the distribution of residuals 
satisfied the normality assumptions, the variance was constant and there was no multicollinearity.  
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Figure 2: Pearson’s correlation between the neurochemical changes in AMY and aHIP and the psychiatric symptoms 
of MTLE-HS patients (n = 26).  A) AMY levels of GluA1 subunit and anxiety symptoms (HADS Anxiety); B) AMY levels 
of GluA1 subunit and depression symptoms (HADS Depression); C) aHIP levels of P-GluA1-Ser845 and anxiety 
symptoms (HADS Anxiety); D) aHIP levels of P-GluA1-Ser845 and depressive symptoms (HADS Depression). 

 



SI Table 1: Frequency of different of auras reported by MTLE-HS patients. 
 

Epileptic auras, n (%) 
 

All Cases 
  n = 31 (%) 
   
None   06 (19.4) 
   
Any type of aura a   25 (80.6) 
   
    Fear  06 (19.4) 
   
    Abdominal sensation   06 (19.4) 
   
    Chest sensation  05 (16.1) 
   
    Poorly defined symptoms  04 (12.9) 
   
    Cephalic sensation   03 (9.7) 
   
    Déjà-vu   02 (6.5) 
   
    Dizziness   02 (6.5) 
   
    Jamais-vu   01 (3.2) 
   
    Tachycardia   01 (3.2) 
   
    Olfactory  01 (3.2) 
   
    Body ascending chill  01 (3.2) 
   
a Patients described only one type of aura or a sequence of two or three 
different auras. 

 
 



SI Table 2: Independent association between aura of fear and aHIP levels of P-GluA1-Ser45 and AMY 
levels of GluA1 after controlling for imbalances in the distribution of other types of aura.  

 
 

 
 

 

 
 

Variables and models  Linear regression coefficients  
“p” value 

HIP levels of  P-GluA1-Ser845 
 r  r2  B (CI 95%)   

Initial Model 1  0.51  0.26    0.18 
Constant      109.5 (98.4 to 120.6)  < 0.0001 
Ictal fear (n = 06)      -21.1 (-38.0 to -3.6)  0.02 
Abdominal sensation (n = 06)      -2.9 (-21.4 to 15.6)  0.75 
Chest sensation (n = 05)      -3.6 (-23.5 to 16.2)  0.71 
Cephalic sensation (n = 04)      -0.5 (-29.9 to 18.3)  0.62 
Poorly defined symptoms (n = 03)      -7.5 (-14.7 to 29.8)  0.49 

         
Final Model 1  0.47  0.22     
     Constant      108.8 (101.5 to 116.0)  < 0.0001 
     Ictal Fear      -21.5 (-37.4 to -5.6)  0.01 

AMY levels of  GluA1  r  r2  B (CI 95%)   

Initial Model 2  0.46  0.21    0.27 
Constant      99.7 (92.9 to 106.6)  < 0.0001 
Ictal fear (n = 06)      -9.9 (-21.7 to 1.7)  0.09 
Abdominal sensation (n = 06)      -1.0 (-13.2 to 11.7)  0.87 
Chest sensation (n = 05)      -6.0 (-19.2 to 7.2)  0.36 
Cephalic sensation (n = 04)      12.3 (-4.0 to 28.6)  0.13 
Poorly defined symptoms (n = 03)      -0.3 (-17.7 to 11.7)  0.68 

         
Final Model 2  0.35  0.12     
    Constant      99.6 (94.7 to 104.4)  < 0.0001 
    Ictal fear      - 11.0 (- 22.0 to 0.06)  0.05 

         



SI Table 3: Surgical and laboratorial variables, storage time of samples and time since the last seizure 
before the epilepsy surgery according to the presence of IF. 

a Biochemical analysis was done in the arterial blood collected during surgery when AMY and HIP were resected;  
b Time course since brain tissue sampling and storage until the neurochemical analysis; 
c Time course since the last seizure attack occurrence and brain tissue sampling; 
d Time course since anesthesia induction until CX tissue sampling; 
e Time course since anesthesia induction until AMY/HIP tissue sampling; 
f  Time course since HIP vessels thermo-coagulation started until the complete resection of the HIP; 
g Dexamethasone administered during anesthetic induction (single i.v. dose of 10 mg). 

 
 

Variables     Ictal Fear    

  
All cases 

n = 31  No 
n = 25 (80.6)  Yes 

n = 06 (19.4)  
“p”  

value 

         
Mean arterial pressure (mmHg)  67.5 (9.6)  68.2 (10.4)  64.8 (5.3)  0.38 
Heart rate (per minute)  73.7 (11.9)  73.9 (11.9)  72.8 (13.4)  0.98 
Respiratory rate (per minute)  11.6 (1.7)  11.7 (1.8)  11.2 (1.3)  0.70 

         
Biochemical analysis of blood a         
    pH  7.41 (0.4)  7.41 (0.04)  7.43 (0.04)  0.52 

 Arterial PCO2 pressure (mmHg)  28.6 (4.3)  28.6 (4.7)  29.0 (3.2)  0.94 
   Arterial PO2 pressure (mmHg)  229.6 (61.5)  236.6 (53.1)  200.4 (88.7)  0.13 
   Hematocrit (%)  35.0 (3.8)  34.6 (3.7)  37.0 (3.9   0.21 
         
   Glucose (mg/dL)  116.3 (24.6)  118.7 (25.8)  104 (6.3)  0.28 
   Sodium (mEq/L)  138.2 (3.5)  138.0 (3.7)  139.0 (2.0)  0.63 
   Potassium (mEq/L)  4.1 (0.4)  4.1 (0.4)  4.2 (0.1)  0.21 
   Ionic calcium (mg/dL)  4.2 90.8)  4.2 (0.9)  4.5 (0.1)  0.51 
   Lactic acid (mg/dL)  2.1 (1.1)  2.1 (1.1)  2.0 (1.0)  0.88 

         
Storage time of samples (months) b  24.0 (8.9)  22.8 (8.7)  28.7 (9.2)  0.15 
         
Time since last seizure (hours) c  225 (418)  216 (330)  264 (455)  0.82 
         
Time for CX sampling (min) d  188 (39)  192 (40)  173 (34)  0.30 
         
Time for AMY/HIP sampling (min) e  260 (54)  262 (57)  246 (43)  0.62 
         
Time of HIP manipulation (min) f  11.2 (4.9)  11.6 (4.8)  9.8 (5.7)  0.42 
         
Dexamethasone,  n (%) g         
     No  11 (35.5)  08 (32.0)  03 (50.0)   
     Yes  20 (64.5)  17 (68.0)  03 (50.0)  0.64 



 
 
 

 
 
 
Sl Figure 1: Representative western blots of GluA1 subunit of AMPA receptor (A), PKA (B), PP1 
catalytic subunit (C), GFAP (D) EAAT1 (E), EAAT2 (F) and β actin (G) in the middle temporal 
neocortex (CX), amygdala (AMY) and anterior hippocampus (HIP) of patients and the internal control 
sample (I.C.). The images are illustrative and represent the pattern detection of targets of interest. 
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