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Walsh TG, Poole AW. Do platelets promote cardiac recovery after
myocardial infarction: roles beyond occlusive ischemic damage. Am J
Physiol Heart Circ Physiol 314: H1043–H1048, 2018. First published
March 16, 2018; doi:10.1152/ajpheart.00134.2018.—Our understand-
ing of platelet function has traditionally focused on their roles in
physiological hemostasis and pathological thrombosis, with the latter
being causative of vessel occlusion and subsequent ischemic damage
to various tissues. In particular, numerous in vivo studies have
implicated causative roles for platelets in the pathogenesis of isch-
emia-reperfusion (I/R) injury to the myocardium. However, platelets
clearly have more complex pathophysiological roles, particularly as a
result of the heterogeneous nature of biologically active cargo se-
creted from their granules or contained within released microparticles
or exosomes. While some of these released mediators amplify platelet
activation and thrombosis through autocrine or paracrine amplifica-
tion pathways, they can also regulate diverse cellular functions within
the localized microenvironment and recruit progenitor cells to the
damage site to facilitate repair processes. Notably, there is evidence to
support cardioprotective roles for platelet mediators during I/R injury.
As such, it is becoming more widely appreciated that platelets fulfill
a host of physiological and pathological roles beyond our basic
understanding. Therefore, the purpose of this perspective is to con-
sider whether platelets, through their released mediators, can assume
a paradoxically beneficial role to promote cardiac recovery after I/R
injury.

cardiac recovery; myocardial infarction; platelets; secretion

INTRODUCTION

A classical understanding of platelet biology sees these
anucleate blood cells as physiological inhibitors of bleeding
from healthy blood vessels (hemostasis) but pathological insti-
gators of occlusive events in diseased blood vessels (thrombo-
sis) leading to ischemic damage to multiple tissues, including
the heart. Antiplatelet therapies, in particular aspirin and the
P2Y12 receptor antagonist clopidogrel, have therefore been
highly successful in the primary prevention and secondary
management of patients with cardiovascular disease at risk of
arterial thrombosis (6, 75). However, more recently, platelets
have been functionally implicated in an extensive list of non-
classical roles in the body, ranging from physiological roles in
tissue regeneration, lymphangiogenesis, and vascular integrity
to pathological roles in tumor angiogenesis and metastasis (22,
42, 63). Therefore, the purpose of this perspective was to
explore additional roles that platelets, beyond thrombosis-

mediated ischemic damage, may assume within the myocar-
dium after myocardial infarction (MI). Our proposition is that
platelets, in particular through the release of bioactive cargo,
have the capacity to substantially influence phenotypic re-
sponses within infiltrating inflammatory cells and resident
cardiac cells: we suggest that this allows platelets to provide
paradoxically beneficial roles in cardiac recovery after MI.

PLATELET SECRETION

Key to the functional heterogeneity of platelets is the release
of a broad range of biomolecules, including over 300 proteins
(comprising growth factors, chemokines, and adhesive li-
gands), nucleotides, and neurotransmitters. These are stored in
three different classes of secretable granules [�-, dense, and
lysosomal granules (7)] and are essential for classical platelet
biology, acting in autocrine/paracrine manners to amplify
platelet aggregation, consolidate thrombus formation, and fa-
cilitate clot remodelling. In a broader tissue context, however,
these secreted ligands mediate heterocellular cross talk at the
site of vascular damage and can also control the homing and
differentiation of progenitor cells to facilitate tissue regen-
eration (56). An additional layer of complexity has been
added through platelet microparticles/exosomes (PMP/Es),
which represent the most abundant form of extracellular
vesicles in blood (27). PMP/Es are released from activated
platelets and are loaded with multiple bioactive molecules
including proteins, lipids, and small noncoding mRNAs, in
particular microRNAs (miRNAs): the latter have been
shown to influence gene expression in a variety of different
vascular cell types (32, 49).

PLATELETS IN CARDIAC INFLAMMATION AND RESOLUTION

After MI, the heart undergoes a robust inflammatory phase
lasting 3–4 days (in mice) involving upregulation of inflam-
matory genes and immune cell infiltration into the myocardial
interstitial space to remove damaged cardiomyocytes and other
cardiac cells (47). It is well known that the recruitment,
transendothelial migration, and activation of immune cells
such as neutrophils and monocytes into the extravascular space
are facilitated by secreted platelet cargo [including chemokine
(C-X-C motif) ligand 4, chemokine (C-C motif) ligand 5, and
histamine] and direct interactions with proteins expressed on
the platelet surface [CD62P and glycoprotein (GP)Ib�] (Fig. 1)
(15, 50, 52, 62). Importantly, it has been shown that platelets,
along with leukocytes, also rapidly accumulate within the
infarcted myocardium, which is consistent with their tissue
accumulation in other diseases, while recent studies have
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demonstrated a novel migratory capacity of platelets (18, 33,
37). Additionally, numerous studies demonstrating causative
roles for platelets in the pathogenesis of myocardial ischemia-
reperfusion (I/R) injury have shown platelet-neutrophil com-
plexes and neutrophil accumulation in the myocardium after
MI, and immune cell recruitment during this period is thought
to further exacerbate the extent of myocardial damage (12, 30,
68). Indeed, platelets actively contribute to inflammatory dis-
eases, including atherosclerosis and rheumatoid arthritis, and
an excessive cardiac inflammatory response in the days after
MI would cause additional cellular damage and contractile
dysfunction, increasing infarct size and causing aberrant car-
diac remodelling (3, 26). On the other hand, an initial, acute
period of controlled inflammation is fundamental for restoring
tissue homeostasis, and there are numerous studies that have
reported cardioprotective and prosurvival benefits of innate
immune responses after MI, including a recent study (6)
demonstrating worsened cardiac function after neutrophil de-

pletion after MI (14, 24, 65). There are therefore mixed roles
for the inflammatory response in damage resolution after MI.
After the acute phase, the resolution of the inflammatory
cascade is crucial, allowing for an effective switch in resident-
and monocyte-derived M1 macrophages toward a reparative
M2 macrophage phenotype (47). In this context, it is becoming
better understood that platelets actively support inflammation
resolution by releasing an abundance of proresolving mediators
including lipoxin A4, maresin 1, and annexin A1, which
attenuate neutrophil trafficking and enhance their apoptosis (1,
2, 40, 53). The clinical potential of lipoxin A4 and annexin A1
(NH2-terminal derived peptide) has been recently demon-
strated in vivo, by restraining inflammatory processes during
cerebral I/R injury through engagement of the Fpr2/3 receptor
on neutrophils (61). Interestingly, maresin 1 can induce a
proresolving phenotype from platelets by suppressing their
release of proinflammatory mediators (34). This proresolving
capacity of platelets is further evidenced in inflammatory
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Fig. 1. Roles for released platelet factors in inflammatory and reparative cell responses in cardiac tissue after myocardial infarction. After coronary thrombosis,
activated platelets secrete granule components and release platelet microparticles/exosomes that regulate (1) inflammatory cell extravasation and accumulation
in the myocardium and (2) influence the immuno-activatory responses of leukocytes, in particular neutrophils and monocytes/M1 macrophages, while also
exerting immune-suppressive effects on these cells allowing M2 macrophage activity necessary for repair. Secreted platelet cargo and released platelet
microparticles/exosomes can also modify resident cardiac cell responses, including (3) fibroblast activation and conversion to myofibroblasts to promote
extracellular matrix (ECM) synthesis, while specific biomolecules known to be released from activated platelets have demonstrated roles in facilitating (4) cardiac
progenitor cell proliferation, mobilization, and differentiation (5) toward cardiomyocytes to promote cardiac remodeling and repair. (6) Cardiomyocytes are also
sensitive to released platelet molecules, which may enhance cardiomyocyte inotropic activity (adenine nucleotides and serotonin) but also provide protective/
antiapoptotic signals (stromal cell-derived factor-1�/transforming growth factor-�1) during ischemic injury.
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models demonstrating elevated levels of proinflammatory cy-
tokines in the absence of platelets (8, 67). This raises intriguing
questions regarding the pro- and anti-inflammatory properties
of platelets and how they may potentially regulate inflamma-
tory cell “switching.” For example, are there distinct stimuli
that facilitate differential release/secretory patterns from plate-
lets either to activate or suppress inflammation? Undoubtedly,
it will be crucial to understand if (and how) platelets, in
particular through released factors, influence innate immune
responses in cardiac tissue after MI and whether they can act
synergistically or independently of other resident cardiac
cells to regulate immune cell activation, resolution, and the
subsequent transition to a reparative response. Defining
these temporal, localized signaling cues within the cardiac
microenvironment after MI is undoubtedly challenging but
could reveal unsuspected roles for platelets and lead to
attractive novel therapeutic targets in the management of
cardiac recovery after MI.

PLATELETS AND CARDIAC FIBROSIS

In addition to infiltrating immune cells, there are other
critical, resident cardiac cells that respond to the MI insult.
Cardiac fibroblasts are traditionally viewed as principally re-
sponsible for the laying down of the extracellular matrix after
tissue injury, a response that is essential for providing struc-
tural and functional integrity to the myocardium (59). How-
ever, this leads to the replacement of lost cardiomyocytes with
collagenous scar tissue. Numerous mediators of fibroblast
activation have been identified, including serotonin, transform-
ing growth factor (TGF)-�1 and platelet-derived growth factor,
all of which are highly enriched in platelet granules, which
trigger fibroblast expansion and transdifferentiation to myofi-
broblasts (Fig. 1) (44, 69). Indeed, platelet-derived TGF-�1 has
been specifically implicated in cardiac fibrosis and dysfunction
after pressure overload, with a corresponding increase in
plasma TGF-�1 derived from platelets (39). Prolonged induc-
tion of fibroblast activation leads to cardiac fibrosis and ad-
verse remodeling, which can spread into the noninfarcted
myocardium. Therefore, knowledge of endogenous inhibitory
signals to control fibroblast activity would be of great thera-
peutic benefit as current antifibrotic strategies target activatory
signals that reciprocally facilitate tissue repair (35). Thrombos-
pondin-1 (TSP-1), a protein that is highly abundant in platelet
�-granules, has been shown to negatively regulate myofibro-
blast density and infiltration into noninfarcted areas and also to
suppress prolonged post-MI inflammatory responses (17, 66).
Considering the high abundance of platelet TSP-1 relative to
other tissues (29), it would be interesting to assess the direct
contribution of platelet-derived TSP-1 to cardiac fibrosis with
conditional knockout mice. Numerous miRNAs have been
implicated in myocardial fibrosis, some of which are highly
enriched in PMP/Es and can positively (miRNA-21 and
miRNA-199) or negatively (miRNA-29 and miRNA-101) reg-
ulate fibrotic responses in cardiac tissue (9, 25, 45, 55).
Crucially, there is experimental evidence to support the trans-
fer of genetic material (including miRNAs) via microvesicles
from other resident and nonresident cardiac cells to influence
cardiac fibrosis (21, 70). Considering the abundance of
PMP/Es contained by platelets, it is plausible to suggest that
activated platelets could exert such heterologous cellular re-

sponses. However, given that PMP/Es (and platelet granules)
possess both pro- and antifibrotic modulators, there would need
to be greater complexity of control to allow fibroblasts to
discriminate between opposing signals. A similar paradigm
exists within the context of platelet-mediated regulation of
angiogenesis and vasculogenesis, where platelets store and
secrete an array of both pro- and antiangiogenic proteins
from �-granules. At this time, it remains a contentious issue
within the platelet field as to whether such functionally
opposing proteins are differentially secreted from distinct
�-granule populations or whether their release is more a
stochastic process influenced by the nature of the stimulus
and chemical properties of the protein (28).

CARDIAC PROGENITOR CELL MODULATION BY PLATELETS

It has become widely appreciated that miRNAs play pivotal
roles in the cardiovascular system. Endogenously, they regu-
late numerous vascular cells (endothelial, smooth muscle, and
immune cells as well as platelets) but also resident fibroblasts,
cardiomyocytes, and cardiac progenitor cells (CPCs) (55).
Manipulating miRNA activity or expression is considered an
attractive therapeutic target, particularly within the context of
cardiac regeneration (23). Targeting CPCs to trigger their
differentiation to cardiomyocytes (Fig. 1) or the “reactivation”
of proliferation within cardiomyocytes to replace the cells lost
during MI are some of the proposed therapeutic avenues, both
of which are regulated by miRNAs but also by locally trans-
duced mechanical and biochemical stimuli (38). Platelets also
store and release a spectrum of miRNAs, including those
where both positive (miRNA-199) and negative (miRNA-29)
influences on cardiomyocyte cell cycle reentry have been
reported (4, 16). Furthermore, miRNA-1, which is also con-
tained within PMP/Es, has been shown to regulate CPC dif-
ferentiation toward the cardiomyocyte lineage, whereas
chemokine stromal cell-derived factor-1�, which is secreted
from platelet �-granules, also facilitates CPC mobilization and
transdifferentiation (5, 54, 58). miRNA-126, which was orig-
inally believed to be an endothelium-specific miRNA, has been
confirmed by several independent groups to be one of the most
abundant miRNAs in PMP/Es, and plasma levels of miRNA-
126 appear to correlate with platelet activation (10, 57). Nota-
bly cardio- and atheroprotective functions have been ascribed
to miRNA-126, and it has also been shown to regulate isch-
emia-induced angiogenesis (46, 51, 60). Currently, there is no
evidence supporting PMP/E uptake by cardiac cells, but
there are a number of in vitro reports demonstrating func-
tionally relevant miRNA transfer from PMP/Es to endothe-
lial cells and monocytes, with additional evidence support-
ing their release during MI (20, 32, 49). Undoubtedly,
further in vitro and in vivo studies are warranted to deter-
mine if (and how) PMP/Es alter resident cardiac cell fate
and whether this would confer protective or adverse conse-
quences for cardiac recovery after MI.

MODULATION OF CARDIOMYOCYTE FUNCTION BY
PLATELETS

Outlined above are possible routes of communication be-
tween platelets and other vascular and cardiac cells. There are,
however, several lines of evidence to suggest that platelets and
their “secretome” can affect cardiomyocyte function indepen-
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dent of their role in occlusive coronary thrombosis and isch-
emia. From a pathophysiological context, numerous small
signaling molecules that are released from platelet-dense gran-
ules (ADP/ATP, histamine, and serotonin) and thromboxane
A2 can exert positive inotropic effects on cardiomyocytes (11).
There have been a number of reports that have indirectly
implicated platelets in exacerbating ischemia-induced ventric-
ular fibrillation, while a more recent publication by Dhanjal et
al. (13) provided evidence for a direct role in increasing the
incidence of ventricular fibrillation (31). Interestingly, coro-
nary artery ligation in Unc13djinx mice, in which platelets do
not secrete dense granule cargo, has no protective effect on
infarct size, which argues against a significant role for dense
granule secretion in the pathophysiology of myocardial injury
after MI (43). On the other hand, several publications have
supported a cardioprotective effect of platelet-released factors
during myocardial I/R injury, including adenine nucleotides,
serotonin, and thromboxane A2, although these effects appear
to be indirectly mediated by an intact endothelium (71–73).
Similarly, recently published work from our group has further
supported this cardioprotective capacity of secreted platelet
factors during myocardial I/R injury (64). In this case, the
protective effect on ventricular cardiomyocytes during isch-
emia was directly mediated by cargo actively secreted from
platelet �-granules, including stromal cell-derived factor-1�
and TGF-�1, and, importantly, this effect was substantially
attenuated when platelets were pretreated with a P2Y12 antag-
onist. Given that P2Y12 antagonists are commonly adminis-
tered to patients with MI, this observation may have implica-
tions for the clinical utility of these drugs during the early
recovery phase of MI. It is also well established that platelets,
through secreted molecules and PMP/Es, exert both pro- and
antiapoptotic effects on different target cells (19). However,
similar to the pro- and antiangiogenic capabilities of platelets,
the mechanisms differentiating these opposing effects are not
well understood but may reflect the relative expression levels
of the respective death/survival receptors on target cells.

CONCLUSIONS

Considering the diverse heterogeneity of the platelet secre-
tome and PMP/Es, it is anticipated that future experimental
work will uncover additional roles for released platelet factors
on the various resident and nonresident cardiac cells in the
acute (hours/days) and chronic (weeks) phases after MI. It is
our assertion that platelets have the capacity to negate some of
the deleterious consequences of coronary thrombosis by pro-
viding favorable paracrine mediators to initiate or facilitate
cardiac repair processes, as directly evidenced by studies in
other tissues including the liver and lungs (19, 36, 48). How-
ever, teasing out the relative contribution of platelets in an in
vivo context after MI is challenging, as interfering with platelet
activation and thus secretion/PMP/E release, would be likely to
reduce myocardial damage after coronary thrombosis and
therefore skew subsequent interpretations about roles for plate-
lets in cardiac recovery. However, with the current, nonthrom-
botic model of myocardial I/R injury induced by coronary
artery ligation, there have been some reports of comparable
infarct rates in mice with markedly reduced platelet activation,
including the study using Unc13djinxmice mentioned above
(41, 43, 74). While these responses presumably relate to the

nature of the model, it would be interesting to follow up
longer-term studies in conditional (PF4/GPIb�-Cre) transgenic
mice with specific defects in platelet secretion or PMP/E
release to monitor the post-MI responses of the various cardiac
cells discussed. In conclusion, platelets are continually pushing
the boundaries in terms of functional diversity, particularly
through the biomolecules they release. While roles for platelets
in coronary thrombosis and subsequent cardiac damage are
undeniably established, there is sufficient credible evidence, as
outlined in this perspective, to imply a “double-edged sword”
functionality of platelets promoting cardiac recovery after MI.
Furthermore, this raises intriguing questions regarding the
efficacy of antiplatelet therapies, as they interfere with the
release of platelet paracrine mediators and have the potential,
paradoxically, to adversely impact cardiac recovery. Further
work will be required to understand these complexities.
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