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Seasonal variations in the seismicity of volcanic and geothermal reservoirs are usually attributed to the hydrolog-
ical cycle. Here,we focus on theAluto-Langano geothermal system, Ethiopia, where the climate ismonsoonal and
there is abundant shallow seismicity. We deployed temporary networks of seismometers and GPS receivers to
understand the drivers of unrest. First, we show that a statistically significant peak in seismicity occurred 2–
3months after the main rainy season, with a second, smaller peak of variable timing. Seasonal seismicity is com-
monly attributed to variations in either surface loading or reservoir pore pressure. As loading will cause subsi-
dence and overpressure will cause uplift, comparing seismicity rates with continuous GPS, enables us to
distinguish between mechanisms. At Aluto, the major peak in seismicity is coincident with the high stand of
nearby lakes and maximum subsidence, indicating that it is driven by surface loading. The magnitude of loading
is insufficient to trigger widespread crustal seismicity but the geothermal reservoir at Aluto is likely sensitive to
small perturbations in the stress field. Thus we demonstrate that monsoonal loading can produce seismicity in
geothermal reservoirs, and the likelihood of both triggered and induced seismicity varies seasonally.

© 2018 Published by Elsevier B.V.
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1. Introduction

Induced or triggered seismicity can be caused by transient changes
in reservoir stress conditions. Induced seismicity is associated with an-
thropogenic fluid injection at geothermal and hydrocarbon reservoirs
(e.g. Ellsworth, 2013; Gaucher et al., 2015; Grünthal, 2014; Verdon,
2014), or surface loading such as water impoundment (e.g. Simpson
et al., 1988; Talwani et al., 2007). Natural processes, such as ice sheet
unloading (e.g. Stewart et al., 2000), dynamic stresses from large, dis-
tant earthquakes (e.g. Prejean et al., 2004), or magmatic overpressure
(e.g. Ebmeier et al., 2016) can also trigger seismicity in critically stress
reservoirs.

Seasonal variations in the number of small (M b 4) and shallow
(b5 km) seismic events have been observed at a range of settings in-
cluding, at volcanoes (e.g. Christiansen et al., 2005; Saar and Manga,
2003; Wolf et al., 1997), faults (Bettinelli et al., 2008; Christiansen et
al., 2007; Hainzl et al., 2006) and intraplate settings (Costain and
Bollinger, 2010; Costain et al., 1987). Two hydrological mechanisms
have been proposed to account for these observations 1) loading due
to seasonal changes in surface and near-surface water storage, and 2)
increased pore-pressure along faults within the reservoir due to
easonal patterns of seismicity
m. Res. (2018), https://doi.org
subsurface recharge (Saar and Manga, 2003). The time delay between
peak surface runoff and peak seismicity varies from days to months
and is attributed to the timescale of groundwater recharge, governed
by pore-fluid pressure diffusion (Hainzl et al., 2006; Lee and Wolf,
1998; Saar and Manga, 2003).

Hydrological processes also cause seasonal patterns in vertical dis-
placements and these can be measured by the Global Positioning Sys-
tem (GPS). GPS-derived estimates of ground-water storage
correspond well with those made by the Gravity Recovery and Climate
Experiment (GRACE) (Fu et al., 2015). Surface loading causes subsi-
dence, with snowfall causing an instantaneous elastic response (Argus
et al., 2014) and monsoonal loading causes delayed subsidence with
the delay attributed to the timescale of ground-water recharge
(Birhanu and Bendick, 2015). In contrast, fluid injection into reservoirs
is typically associated with uplift (Vasco et al., 2010; Vasco et al.,
2013) and extraction with subsidence (Fialko and Simons, 2000;
Parker et al., 2017).

In this paper, we use a network of continuous GPS (cGPS) and seis-
mometers at Aluto-Langano geothermal reservoir, Ethiopia to study
seasonal patterns of deformation and seismicity. Aluto volcano is
known to be actively deforming and experiences a monsoonal climate,
while the geothermal system generates significant seismicity. In theory,
increased loading due to lake level rise will cause subsidence, while in-
creased pore pressure within the reservoir would cause uplift. Thus we
and deformation at the Alutu geothermal reservoir, Ethiopia, induced
/10.1016/j.jvolgeores.2018.03.008

https://doi.org/10.1016/j.jvolgeores.2018.03.008
mailto:juliet.biggs@bristol.ac.uk
Journal logo
https://doi.org/10.1016/j.jvolgeores.2018.03.008
Unlabelled image
http://www.sciencedirect.com/science/journal/03770273
www.elsevier.com/locate/jvolgeores
https://doi.org/10.1016/j.jvolgeores.2018.03.008


2 Y. Birhanu et al. / Journal of Volcanology and Geothermal Research xxx (2018) xxx–xxx
investigate the relationship between seismicity, deformation, precipita-
tion and lake level to better understand the stress state of geothermal
reservoirs.

2. Background

The Aluto-Langano system lies in the Main Ethiopian Rift, between
Lake Ziway to the north and Lake Langano to the south (Fig. 1). The
Main Ethiopian Rift divides the Nubian and Somalian plates at a rate
of ~5–6 mm/year (Bendick et al., 2006; Bilham et al., 1999). Magmatic
segments in the rift floor accommodated ~80% of the strain (Birhanu
et al., 2016; Kogan et al., 2012) and most of the seismicity (Ayele and
Kulhánek, 1997; Keir et al., 2006; Mazzarini et al., 2013). At Aluto,
large ignimbrite forming eruptions took place at ~316 ka and 306 ka
(Hutchison et al., 2016c), with post-caldera, edifice building volcanism
consisting of highly-evolved peralkaline rhyolite lavas, ignimbrites and
pumice fall deposits starting at ~55 ka (Hutchison et al., 2016a). The
most recent eruption has been dated at ~400 years ago (Hutchison et
al., 2016a). Magnetotelluric studies show a highly conductive clay cap
in the upper 2 km, but no evidence for a deeper magmatic system
(Samrock et al., 2015).

A two-year seismic deployment detected 1361 earthquakes in a
15 km radius area around Aluto, ranging in magnitude from −0.4 to
3.0 (Wilks et al., 2017). The majority of events (760 of 1361) were lo-
cated within the geothermal reservoir (Fig. 2), defined as 1) 2 km
from the surface (above sea level), and b) within 15 km from the centre
of the caldera (defined as seismic station A01E). Applying a Gutenberg-
Richter relationship to this subset, gives a b-value of 2.55 ± 0.55 and
high seismicity rate (a= 5.64), consistent with other volcanic environ-
ments where circulation of fluidsmeans strain is preferentially released
by numerous small events (Wilks et al., 2017). Fault plane solutions for
Fig. 1. a) Topographicmap of Aluto volcano showing the seismic and GPS network, the Aluto-La
2011) while the Artu Jawa fault zone (AJFZ) and other faults of the Aluto volcanic complex
interpretation of the references to colour in this figure legend, the reader is referred to the we
Modified fromWilks et al. (2017).
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a subset of the deeper and off-edifice events show ~NNE-SSW normal
faults, consistent with the current direction of extension. No fault
plane solutions are available for the shallow events.

Surface deformation measurements from satellite InSAR have
shown two pulses of uplift in 2004 and 2008 (N15 cm) separated by pe-
riods of slow (~3 mm/year) subsidence (Biggs et al., 2011; Hutchison et
al., 2016b). It is not possible to discriminate betweenmagmatic and hy-
drothermal processes using deformation alone, but the uplift episodes
at Aluto are interpreted to represent the repeated injection of magmatic
fluids to shallow (b5 km) depths causing inflation, whereas the cooling
and flow of hydrothermal fluids causes the subsequent subsidence
(Hutchison et al., 2016b).

Pathways for fluids are controlled by shallow structures including
the NNE-SSW Artu Jawe Fault Zone (AJFZ) which crosscuts the volcanic
edifice and a caldera ring fault (Braddock et al., 2017; Hutchison et al.,
2015). The majority of geothermal fluids are derived from precipitation
on the riftflanks,with b10% fromnearby lakes (mainly from lake Ziway)
(Darling et al., 1996). Although there is no long-term ground-based
monitoring, the distribution and the fumaroles can be mapped using a
12 year archive of thermal infrared images from the ASTER satellite.
The temperature and extent of the fumaroles show no relation to the
surface deformation, but the Bobesa fumaroles, located along the cal-
dera ring fault in the east, show a delayed response to rainfall
(Braddock et al., 2017). Geothermal development at Aluto-Langano
began in 1981 (Hochstein et al., 2017) and continue at the present
time. The plant was only operational for a small fraction of the experi-
ment (14th January 2012 until 4th July 2012) with power production
ranging from 10-35MWh during this period.

Lake Ziway is the largest volume fresh water lake in the Main Ethio-
pian Rift with surface area 440 km2 andmaximumdepth of 8.9m and is
the only source of fresh water to the town of Ziway and nearby villages
nganoGeothermal Power Plant and geothermalwells. Border faults are red (Agostini et al.,
are blue (Kebede et al., 1985; Hutchison et al., 2015). b) Location of Aluto volcano. (For
b version of this article.)

and deformation at the Alutu geothermal reservoir, Ethiopia, induced
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Fig. 2. Seismicity at Aluto-Langano volcano. a) Earthquake locations in 2012–2014 recorded by the ARGOS network (Wilks et al., 2017). Basemap as for Fig. 1. White triangles are the
seismometer locations, the event size is denoted by circle size and depth by colour (Wilks et al., 2017). b) Earthquake catalogue projected onto an E-W profile, with event date
denoted by colour. The histogram shows that the majority of events occur within the upper 2 km (above sea level), which corresponds to the geothermal reservoir. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Modified fromWilks et al. (2017).
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(Ayenew, 1998). Lake Langano is smaller in area (230 km2), but deeper,
with amaximumdepth of 46m. High sulphur levelsmean it is brown in
colour, and the lake is mostly used for recreational purpose by tourists
and villagers (Mepham et al., 1992). The two lakes have different eleva-
tions (Lake Ziway at 1636 m and Lake Langano at 1582 m above sea
level) and fluid flow from north to south occurs through ground-
water flow and along the Bulbula River (Mepham et al., 1992).

Precipitation is bimodal with one short rainy season from February
to May (monthly average b 150 mm), known locally as Belg, and a
long and heavy rainy season from June to September (monthly average
N 150 mm), known locally as Kiremt. Although the intensity of precipi-
tation varies from year to year, this pattern remains consistent.
3. Methods

Weuse data from twelve seismometers, four cGPS stations, monthly
precipitation and lake level records to study the seasonal variations of
Please cite this article as: Birhanu, Y., et al., Seasonal patterns of seismicity
by hydrological loading, J. Volcanol. Geotherm. Res. (2018), https://doi.org
seismicity at Aluto-Langano hydrothermal and magmatic systems
(Figs. 3, 4).

3.1. Seismicity

A temporary network of seismometers was installed at Aluto vol-
cano between January 2012 and January 2014 and the spatial pattern
of seismicity has been described by (Wilks et al., 2017). We use the
same event catalogue and explore the temporal characteristics of the
seismicity, before comparing the results to deformation measurements.
We briefly summarize the deployment and location methods but refer
to (Wilks et al., 2017) for further details. The network consisted of 12
three-component broadband stations located within and around the
caldera, providing good spatial coverage (Fig. 1). For accurate event lo-
cation, we use the nonlinear global-search earthquake location tool,
NONLINLOC (Lomax et al., 2000) and a 1D velocity model combining
data from regional tomography and local well-log data as described in
(Wilks et al., 2017). In the uppermost 2–3 km, lithologies determined
and deformation at the Alutu geothermal reservoir, Ethiopia, induced
/10.1016/j.jvolgeores.2018.03.008
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Fig. 3.Temporal Variation in seismicitywithin the geothermal reservoir at Aluto-Langano volcano. a) seismicmoment, b) daily earthquake count, c) Schuster diagram showing seasonality.
Shallow seismicity includes 760 events from a 2 year period at depthsb2 kmandwithin a 15 km radius of the caldera centre. The days onwhich earthquakes occur are converted to vectors
and summed, such that the position after a year corresponds the peak of seismicity. The poles at time zero and after one and two years are the red circles. The concentric circles represent
confidence intervals of 95% and99% respectively that the seismicity doesnot satisfy the null hypothesis of a uniformdistribution. The resultant vector has the pole,φ=295.3° and length, R
= 113.9. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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from well-log data (Gianelli and Teklemariam, 1993; Gizaw, 1993;
Teklemariam et al., 1996) were mapped to seismic velocities
(Christensen, 1984; Press, 1966). At greater depths the velocity struc-
ture is taken from a passive-source tomographic study (Daly et al.,
2008).

We focus our analysis on the subset of 760 events within 15 km of
the caldera and in theupper 2 km,which represents the geothermal res-
ervoir. We test for seasonality in the seismicity by discounting the null
hypothesis that events are distributed as a random Poisson process
throughout the year (Schuster, 1898). Known as a Schuster test, this is
done by converting each day of earthquake occurrence to a polar vector
of unit length and a phase angle (ω) from 1 to 360° (1st January = 0°)
and then vectorially adding over the number of events (N) (Fig. 3). If
this vector, R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
where A ¼ PN

i¼1 cosωi and B ¼ PN
i¼1 sinωi,

exceeds a certain length then the null-hypothesis of a completely ran-
dom distribution can be rejected and it can be concluded that the ten-
dency of earthquakes to occur around the date indicated by the
resultant vector is statistically significant (e.g. Jiménez and García-
Fernández, 2000; McClellan, 1984). We also tested for clustering using
a range of algorithms (Gardner and Knopoff, 1974; Reasenberg, 1985;
Uhrhammer, 1986). We then apply a moving average of 30 days for
Fig. 4. Daily time series of continuous GPS measurements at Aluto-L

Please cite this article as: Birhanu, Y., et al., Seasonal patterns of seismicity
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comparison to themonthly cGPSdisplacement time series, precipitation
and lake level datasets (Section 5.2).

3.2. GPS

Continuous GPS sites at Aluto volcanowere installed in early 2013 in
order to study the temporal and spatial variation of deformation related
to the hydrothermal andmagmatic processes.We use data from the pe-
riodMarch 2013–December 2015,with data recorded at a 30 s sampling
interval. Finding secure and stable locations for the sites was challeng-
ing. Most houses, schools and clinics in the region are constructed of
wood and mud and situated on flat-lying lands comprised of old lake
sediments or volcanic deposits. The volcanic edifice is comprised of ob-
sidian flows typically b10 m thick, interbedded with volcaniclastic de-
posits. We chose to locate our sites on major obsidian flows, close to
houses for security reasons. For all sites, a local person was contracted
as a guard, and where appropriate, a thorn bush fence was built around
the site to deter animals. The gaps in time series (Fig. 4) reflect the dif-
ficulty in operating and maintaining GPS equipment in areas such as
this, which are further compounded by the necessity for short-term
funding and equipment loans.
angano volcano, Ethiopia. Location of GPS sites is given in Fig. 1.

and deformation at the Alutu geothermal reservoir, Ethiopia, induced
g/10.1016/j.jvolgeores.2018.03.008
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Fig. 5.Monthly time series of precipitation, lake level, seismicity and vertical deformation
at Aluto-Langano volcano, Ethiopia. a) Hydrological cycles. Precipitation data is from the
Climate Research Unit (Harris et al., 2014) and lake level of Lake Ziway from the Ziway
Fisheries unit (Senbete, 2014). b) Seismicity. Based on a monthly average from a
network of 12 seismometers. c) Vertical displacement from four cGPS sites (ALPL, ASRG,
A12G and A03G), which have been detrended to remove ongoing subsidence. Vertical
black line shows the primary peak of seismicity in 2013 and the grey line shows the
secondary peak.
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Four cGPS sites are located on the volcanic edifice (ASRG, A03G,
A12G, ALPL). The reference site (ADTU) is on the roof of a house in the
Ethiopian Electrical Power Corporation (EEPCO) compound in Adami
Tulu located ~15 km away from the volcano (Fig. 1). The design of the
building was altered to provide a solid platform; the breeze blocks
above the major structural beam were filled with cement and the an-
tenna mast drilled directly into that. ASRG is located in the SW part of
the caldera and is the highest elevation station at 2133 masl (Fig. 2).
A03G is located at the NW part of the caldera at an elevation of
1975masl overlooking lake Ziway (Fig. 2). A12G is located on the south-
ern rim of the caldera, close to Lake Langano (~5 km) at an elevation of
1851 masl. The site was abandoned in July 2015 due to security issues,
and after this date, only campaign measurements are available. ALPL is
located at the centre of the caldera (Fig. 2) and close to the AJFZ which
is the primary pathway for hydrothermal upwelling (Hutchison et al.,
2015). The station is mounted on the roof of a service building associ-
ated with the geothermal power station, but the power plant was
mostly non- operational during this time period and is not thought to
have affected the measurements.

The coordinates of the cGPS sites were processed using the GAMIT/
GLOBK software developed by MIT (Herring et al., 2010) with correc-
tions for the ionosphere and modeled wet troposphere (Reilinger et
al., 2006). We used 12 IGS reference sites including ADIS station,
which is located ~130 km from Aluto to generate the daily solutions in
the International Terrestrial Reference Frame 2014 (ITRF14)
(Altamimi et al., 2016). Daily position solutions were then corrected
for ocean loading using the FES2004 model and the wet zenith delay
using standard hydrostatic model in GAMIT (Herring et al., 2010). The
daily solutions (h-files) were then combined with the daily global solu-
tions (H-files) obtained from MIT, using the global Kalman filter in
GLOBK. We then inspect the position of the north, east and vertical co-
ordinates in order to remove outliers above two-sigma uncertainties
and offsets caused by antenna change, earthquakes, and any other phe-
nomena (Fig. 4). As Aluto is known to be subsiding (Biggs et al., 2011),
we remove a linear trend using a weighted least squares approach.
The de-trended daily positions were then aggregated into weekly and
monthly time series (Fig. 5c).

3.3. Precipitation and lake level

We use monthly average precipitation data from the Climate Re-
search Unit (CRU) database (Harris et al., 2014), which is processed
monthly and has spatial resolution of 0.5° × 0.5°. The lake level data
for Lake Ziway was collected by Ziway Fisheries Research Center
(Senbete, 2014). Lakes Abijata, Langano and Shala lie to the south of
Aluto and likely contribute to the lake loading, but the level of the
lakes is not monitored.

4. Results

4.1. Surface deformation

Fig. 5 shows the comparison between monthly time-series of verti-
cal deformation, lake level and precipitation. In 2014, precipitation
followed a typical bimodal pattern with ~10 cm during the light rains
in May and a more intense, and longer rainy season, peaking at
~19 cm in September. In 2013, the rains were unusually continuous
with peaks of precipitation of ~25 cm in May and ~19 cm in August.
The lake level has a single broad maximum in September–November
and is lowest around May. The peak occurs ~1–2 months after the
heavy rains, and the time lag can be attributed to the time taken for re-
charge of the lakes by tributaries which drain water from the Ethiopian
Plateau. The light rains in May appear to have little impact on the lake
level.

At sites A12G, A03G and ARSG, located on the caldera rim, the verti-
cal component of each cGPS displacement time series show seasonal
Please cite this article as: Birhanu, Y., et al., Seasonal patterns of seismicity
by hydrological loading, J. Volcanol. Geotherm. Res. (2018), https://doi.org
variations of ~±10 mm, above error. Peak subsidence occurs 2–
3months after the peak of precipitation, consistent withmeasurements
at cGPS sites elsewhere in Ethiopia (Birhanu and Bendick, 2015) and co-
incident with the maximum lake level. There is a single broad peak of
subsidence, similar to the lake level curve but unlike the bimodal pat-
tern of precipitation, thus further supporting the suggestion that the
subsidence is an elastic response to the surface load. The north-south
and east-west components show no annual variability above the uncer-
tainty (~2 mm), consistent with a loading model for which the vertical
component would be several times larger than the horizontal compo-
nent (Wahr et al., 2013). As there is no long-term geophysical monitor-
ing at Aluto, our analysis relies on temporary deployments, which have
insufficient overlap to statistically test the correlations between
datasets.

The time-lag at site ALPL ismuch shorter than at the other sites, with
the maximum subsidence occurring during the rainy season itself. The
annual signal is greatest in the vertical component (~20 mm) but also
appears at a lower magnitude in the north-south (3 mm) and east-
west (3mm) components. The explanation for this anomalous behavior
may lie in the location of ALPL, which sits on the caldera floor, close to
the Artu Jawe Fault zone and the geothermal plant. Firstly, there is tran-
sient local loading associated with a shallow lake that forms during
heavy rainfall, and disperses again within weeks. The time taken for
water to drain from the caldera rim into the central caldera is much
shorter than from the plateau into the lakes, thus the time lag is much
and deformation at the Alutu geothermal reservoir, Ethiopia, induced
/10.1016/j.jvolgeores.2018.03.008
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Fig. 6. Proposed mechanisms of seasonal seismicity, illustrated using Mohr circles. The
dashed semi-circle is the initial stress state and the solid semi-circle the final stress
state. (a) An increase in surface loading, increases σ1, causing the Mohr circle to expand
and intersect the Coulomb failure criteria, τ = τ0 + μσ′n where μ is the effective
coefficient of friction. (b) An increase in pore-fluid pressure, pf decreases the effective
normal stress, σn′ = σn − pf, on the fault, causing the Mohr circle to shift to the left, and
intersect the Coulomb failure criteria.
(After Saar and Manga (2003).)
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shorter. More significantly, the Artu Jawe Fault zone is a major pathway
for hot upwelling fluids, which may also facilitate downwards flow of
cold meteoric water. Although Braddock et al. (2017) showed that the
fumaroles along the Artu Jawe Fault zone did not have a seasonal re-
sponse to precipitation, the structure may still reduce the time taken
to recharge shallow ground-water aquifers.

4.2. Seismicity

Applying the Schuster test to the selected subset of 760 earthquakes
occurring over a duration, t=752 days, produce a resultant vector pole,
φ ¼ tan−1ðB�AÞ at an angle of ~295°, which corresponds to 25th Octo-
ber (Fig. 3). With just two years of data, there is uncertainty in the cal-
culation of the pole, which is illustrated by the difference between the
angle of the resultant vector following one year (26th November) and
after two years (25th October).

The probability P (P-value), of a random walk being equal to or
greater than distance R is given by P = e−R2/N (N ≥ 10), where the
lower the P-value, the higher the probability that the stacked distribu-
tion over the period is non-random. Although two years is a relatively
short period of time to perform a Schuster test, the vector length, R =
112, corresponds to a P-value of 3.86 × 10−8 which exceeds the 99%
confidence limit for all periods, T ≥ 1 day (P = 1.33 × 10−5 (Ader and
Avouac, 2013)). This indicates that the temporal distribution of these
shallow events contains a non-random component.

The declustering algorithms (Gardner and Knopoff, 1974;
Reasenberg, 1985; Uhrhammer, 1986) did not detect any statistically
significant aftershocks, likely because the background seismicity has a
high b-value, and few large events occurred. Visual inspection corrobo-
rates that the largest magnitude events, such as theM N 2.5 in 2012, are
not followed by a significant number of aftershocks and this is not the
cause of the non-random behavior.

The peak in seismicity corresponds to highs of both lake level and
subsidence, which implies that the seismicity is caused by an increase
in surface load. The precise timing of the peak depends on the timing
of the peak rainfall, which varies from year to year. In addition to the
major peak in October/November of identified by the Schuster analysis,
there are secondary peaks in August 2012 andMay 2013. These second-
ary peaks have 1.5–2.5 events per day compared to an average of 3–4
events per day for the major peak and may not be statistically signifi-
cant. This secondary peak occurred towards the end of the main rainy
season in 2012 and towards the start in 2013. During 2013, when
both GPS and seismometers were deployed, the secondary peak in seis-
micity corresponds to a period of uplift, which is consistentwith the hy-
pothesis that the secondary peak in seismicity is caused by recharge of
the subsurface hydrothermal reservoir. However, due to the low ampli-
tude and variable timing, the existence and mechanism of this minor
peak in seismicity remains ambiguous.

5. Discussion

5.1. Timescale and mechanism of reservoir response

We use Mohr circles to illustrate the principles behind the two pro-
posed mechanisms of seasonal seismicity, surface loading and reservoir
overpressure (Fig. 6). An increase in surface and near-surface loading
increases vertical stress, which in a rift setting is the largest principal
stress, σ1, and increases the size of theMohr circle (Fig. 6a). An increase
in reservoir pore-pressure, pf, will decrease the effective normal stress,
σn′ = σn − pf, moving the Mohr circle to the left (Fig. 6b). The conse-
quence of both mechanisms is that the stress envelope intersects the
Coulomb failure criteria, τ = τ0 + μσ′n triggering seismicity, where μ
is the effective coefficient of friction.

Seasonal seismicity has also been documented in the Canary Islands,
where the rainfall and seismicity are contemporaneous (Jiménez and
Please cite this article as: Birhanu, Y., et al., Seasonal patterns of seismicity
by hydrological loading, J. Volcanol. Geotherm. Res. (2018), https://doi.or
García-Fernández, 2000), and at Mt Hood in the Cascades where the
delay between precipitation and seismicity is on the order of 5 months,
and is driven by an increase in reservoir pore pressure (Saar andManga,
2003). In contrast, our observations at Aluto suggest that the primary
peak in seismicity is contemporaneous with themaximum lake loading
and associated with subsidence.

Themechanismand timescale of response for a given reservoir is de-
pendent on reservoir geometry, fluid pathways andmaterial properties.
At Mt Hood, the seismicity occurs at ~4.5 km and the delay is consistent
with the time needed for diffusion over this distance (Saar and Manga,
2003). At Aluto, we only consider seismicity at depths b 2 km, and the
downward flow of cold, meteoric water may be enhanced by edifice-
crossing faults, which are known to act as permeable pathways for up-
welling hydrothermal fluids and gases (Braddock et al., 2017;
Hutchison et al., 2015).

Similarly, the magnitude of the annual cycle of surface loading will
depend on local variations in hydrology and climate. Ethiopia's mon-
soonal climate drives large seasonal variations in lake and water-table
levels, and the topography of the rift causing a significant time delay be-
tween rainfall on the riftflank andfilling of the lakes. Large seasonal var-
iations in seismicity rates might also be expected at snow-capped
volcanoeswhereas in temperate climates, seasonal variations in loading
may be insufficient to cause a measurable change in seismicity.

5.2. Loading stress

A stress change on the order of ~0.1 MPa is typically considered nec-
essary to trigger seismicity, particularly when considering aftershocks
(e.g. Beeler and Lockner, 2003). The seasonal stress imposed at Aluto-
Langano will have contributions from both surface (lake) and
and deformation at the Alutu geothermal reservoir, Ethiopia, induced
g/10.1016/j.jvolgeores.2018.03.008
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subsurface (vadose zone) components and can be estimated from
GRACE satellite data, which measured the large-scale variation in
water storage. For the central Main Ethiopian Rift, the annual variability
in liquid water equivalent thickness was found to be ~6 cm (Birhanu
and Bendick, 2015; Landerer and Swenson, 2012), equivalent to a verti-
cal load of b1 kPa. Although this is sufficient to produce seasonal vertical
deformation of up to 10 mm at GPS sites in the region (Birhanu and
Bendick, 2015), it would be unlikely to trigger regional seismicity.

The heterogeneous distribution of surface and subsurface water
storage,means the1° resolution of theGRACE satellite is unlikely to cap-
ture the spatially variability in themagnitude of surface loading. For ex-
ample, the 10–15 cm variation in height of Lake Ziway is twice that
inferred from the GRACE measurements. Although monitoring data is
not available for Lakes Abijata, Langano and Shala, we expect the varia-
tions in lake level to be larger there as thewide, shallow Lake Ziwaypro-
duces a more muted response to hydrological changes than its
neighbours. For example, studies have shown that water abstraction
projects in the Lake Ziway catchment caused a greater longer-term re-
duction in the Lake Abijata water level than for Lake Ziway (Ayenew
and Legesse, 2007). However, even taking the local variations into ac-
count, the magnitude of the loading is likely to be b0.01 MPa, below
the threshold typically considered for aftershocks or regional earth-
quakes (0.1 MPa).

The response to loading is restricted to shallow seismicity occurring
within Aluto's geothermal reservoirwith no seasonal pattern in regional
or deep seismicity. Hydrothermal systems, particularly those containing
gas bubbles, are more sensitive to small stress changes than surround-
ing areas. Distant large earthquakes have caused seismic swarms (e.g.
Prejean et al., 2004) and subsidence (Pritchard et al., 2013) at hydro-
thermal systems in response to dynamic stresses as low as 0.01 MPa.
The abundant seismicity, high b-value (Wilks et al., 2017) and low Vp/
Vs ratio of the Aluto geothermal reservoir suggest it is gas-rich and crit-
ically-stressed, thus sensitive to small-magnitude seasonal variations in
stress associated with hydrological loading. Alternatively, stress
changes can cause failure of an impermeable barrier, causing brecciation
of a shallow aquifer and inducing seismicity (De Natale et al., 2001).

6. Conclusion

Seasonal variations in seismicity are seen across a range of settings,
including in hydrothermal reservoirs.We combine observations of seis-
micity at Aluto volcano, Ethiopia, with geodetic measurements from a
GPS network and hydrological observations to distinguish betweenpos-
sible mechanisms for seasonal seismicity. We conclude that the major
seasonal peak in seismicity is driven by an increase in vertical loading
as the lakes and groundwater aquifers fill. The magnitude of the stress
change is insufficient to cause a regional change in crustal seismicity,
but the Aluto-Langano geothermal reservoir is gas-rich and critically-
stresses, thus particularly sensitive to low magnitude stress changes.
Thus seismic and GPS data suggests that fractured reservoirs are closer
to failure during at times of the year defined by the local hydrology, res-
ervoir geometry and fluid pathways.

Key points

- Seasonal variations in seismicity occur in the geothermal field at
Aluto, Ethiopia, indicating the reservoir is critically stressed.

- The peak in seismicity is driven by surface loading, as it is coincident
with high lake.
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