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ABSTRACT 
 

Footings subjected to dynamic loads are commonly designed under the simplifying assumption of linear or 

equivalent-linear soil behaviour. Even though this approach is simple to implement and, in some cases, could 

take advantage of available closed-form solutions, the outcomes remain a gross approximation. Although 

considerable research has been conducted for the case of high-amplitude footing vibrations, where uplift, 

slippage or even failure may occur, there remains a research gap for small to medium strain amplitudes, for 

which the behaviour is also non-linear. To address this problem, a numerical methodology is developed herein, 

for the analysis and design of shallow footings, while taking into consideration shear modulus degradation and 

hysteretic damping increase effects for the foundation subsoil. The analysis methodology is based on the 

implementation of the modified hyperbolic model as a user-defined formulation into the explicit finite difference 

code FLAC. Focus is then given on a rigid strip surface foundation subjected to a harmonic rocking motion, and 

results from preliminary analyses are presented in terms of the variation of the dynamic impedance with the 

dimensionless frequency of the excitation. Different excitation amplitudes are examined to demonstrate the 

effects of soil non-linearity, while strain rate effects are also investigated. 

 

Keywords: shallow foundations; machine vibrations; modified hyperbolic model; strain rate effects 

 

 

1. INTRODUCTION  

 

The design of machine foundations requires evaluation of the dynamic impedance function (stiffness 

and damping) of the footing-subsoil system to an externally applied load for one or several degrees of 

freedom. Apart from the geometrical characteristics of the footing, the impedance function depends on 

soil material constants and vibration frequency. For elastic analysis, it can be estimated using well-

established graphs, charts and regression-based formulae in the literature (e.g., Barkan 1948; 

Richart et al. 1970; Pais and Kausel 1988; Gazetas 1991; Mylonakis et al. 2006; NIST 2012). 

However, as the vibration amplitude increases, soil shear modulus decreases in a non-linear fashion 

and can be modelled as such for fine grained soils of different plasticity (Vucetic and Dobry 1991; 

Vardanega and Bolton 2013, 2014; Kishida 2017; Wichtmann and Triantafyllidis 2017). Furthermore, 

in the case of fine-grained soils, shear modulus degradation also becomes sensitive to strain rate 

effects (e.g., Richardson and Whitman 1963; Matešić and Vucetic 2003; Vucetic and Tabata 2003). 

 

The importance of these non-linearities are explored with the aid of numerical analyses, carried out 

with the finite difference code FLAC and an implemented non-linear-elastic modified-hyperbolic 

model (Kondner 1963; Hardin and Drnevich 1972) that accounts for shear modulus degradation and 
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damping increase with both the cyclic shear strain amplitude and the shear strain rate. These 

simulations allow the extent of non-linearity and its variation with frequency, geometry, material 

characteristics and loading amplitude to be quantified. For practical design applications, 

recommendations are made with respect to selection of equivalent-linear parameters, which can be 

used in combination with existing methodologies, without the need to resort to rigorous numerical 

investigations. Although this research involves different footing configurations and loading conditions, 

for the sake of brevity, the focus of this paper is limited to rocking response. 

 

1.1. Problem Description 

 

The configuration examined in this paper is illustrated in Figure 1 as a weightless strip footing of half-

width B, resting on a clay stratum of thickness H, density ρ, shear wave velocity Vs, shear modulus 

G = ρ Vs
2
, damping ratio ξ, and Poisson’s ratio ν. The footing is subjected to rocking oscillations of 

amplitude θ, induced by a concentrated harmonic moment M as shown in Figure 2 (a). Both the 

footing and the bedrock underlying the soil layer are assumed to be perfectly rigid, while the soil is 

modelled as a non-linear material according to the modified hyperbolic model.  

 

weightless rigid

footing

Rigid Bedrock

H

s

2B

M

 
 

Figure 1. Problem description; footing resting on clay layer 

 

For every response mode, the dynamic soil-foundation system can be analysed using a set of springs 

and dashpots, the characteristics of which are functions of the input excitation frequency, ω. This 

frequency dependence originates from the infinite dynamic degrees of freedom of the soil mass (and 

the associated wave propagation phenomena), which are now condensed to a finite set of degrees of 

freedom atop the footing. In the case of rocking vibrations, the corresponding dynamic spring of 

stiffness      and dashpot with coefficient Crx (Mylonakis et al. 2006) are illustrated in Figure 2(b). 

 

M

(a)                   

M

K Crx rx

 
 

 
Figure 2. (a) Footing subjected to clockwise moment is rotating towards an angle θ, (b) Spring-dashpot analogue 

of the footing rocking mode of vibration  

 

When a footing is subjected to a harmonic moment, with amplitude M and frequency ω, a harmonic 

steady-state rotation occurs. In the linear regime, this rotation has the same frequency with the 

Clay layer 

Vs, ρ, ν, ξ 

θ 
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harmonic moment but is not in phase with the excitation. Using complex notation, the above can be 

written as: 

 

                          (1) 

 

and 

 

                          (2) 

 

where Μ and   are generally not in phase, so   in Equation (2) is typically complex valued. Therefore, 

the dynamic impedance can be expressed in the form of Equation (3): 

 

    
    

    
                       (3) 

 

in which the complex exponents in Equations (1) and (2) cancel out from the numerator and the 

denominator. Note that this cancellation is not possible with ordinary trigonometric functions, which 

highlights the usefulness of using complex notation in such problems. Although the above expressions 

apply to all modes of excitation (translational and rotational), this paper focuses solely on the rocking 

mode.  

 

For static conditions and under the assumption of a smooth soil-footing interface, Muskhelishvili 

(1963) (cited in Poulos and Davis 1974 p. 165) derived an exact solution for the rocking stiffness, 

which can be expressed in the form shown as Equation 4. 

 

            
 

       
             (4) 

 

Note that rocking stiffness is measured in units of force in accordance with the plane-strain nature of 

the problem. In the presence of rock at a shallow depth Gazetas (1983) introduced an empirical 

correction factor to the above solution, to account for the soil layer thickness. 

 

            
 

       
          

 

 
          (5) 

 

where H is the thickness of the soil layer. For dynamic conditions, the dynamic stiffness   rx is 

obtained by multiplying the above static values with the following approximate dynamic stiffness 

modification coefficient introduced by Gazetas (1983) based on the results by Luco and Westmann 

(1972): 

 

                       (6) 

 

where             is the familiar dimensionless frequency. In light of this expression, the dynamic 

stiffness at    = 5 is zero and beyond that becomes negative. This should not come as a surprise, as a 

zero value for   rx merely suggests that inertia forces perfectly balance the elastic ones in the soil 

medium, while negative stiffness (which is inadmissible for static conditions) implies a phase 

difference between excitation and response greater than 90
o
. 

 

 

2. NUMERICAL ANALYSIS METHODOLOGY 

 

2.1 FLAC 7.0 Finite Difference Code 

 

All the analyses were carried out using FLAC 2D version 7.0, commercial software developed by 

Itasca Inc (2011). FLAC (an abbreviation for Fast Lagrangian Analysis of Continua) is a two-

dimensional explicit finite difference code for geotechnical engineering applications, which allows the 
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implementation of user-defined constitutive models (UDMs), written in C++ and compiled as 

Dynamic Link Libraries (DLL files). Due to the explicit nature of the integration algorithm, the main 

UDM function is to return new stresses given the current stress condition and the applied strain 

increment, namely a procedure that is rather straightforward even for complicated constitutive laws. 

This functionality is utilized herein, for the implementation of the modified hyperbolic model, as 

outlined in the following section. 

 

Furthermore, FLAC contains a built-in programming language, FISH, which enables the user to define 

new variables and functions. These functions are compiled and stored in FLAC’s memory space and 

hence they can be executed parallel to the analysis. In this case, FISH is used to prescribe a variation 

of model properties across the grid (mesh), as a function of the strain-rate given by FLAC for every 

zone (element) during every time-step. This allows the accurate implementation of strain-rate effects, 

as presented in Section 4. 

 

2.2 Modified Hyperbolic Model 

 

The modified hyperbolic model (used in Darendeli 2001; Zhang et al. 2005; Vardanega and Bolton 

2013, 2014) is based on the hyperbolic model, with the addition of a curvature parameter. The secant 

shear modulus reduction curve (MR curve) for this model is described as: 

 
  

    
 

 

   
 

  
 
             (7) 

 

where γr is a pseudo-reference shear strain which is equal to the level of shear strain for which 

Gs/Gmax= 0.5, while α is a curvature coefficient as illustrated in Figure 3. The parameters α and γr are 

predominantly determined through experiments conducted on the soil type of interest. The model has 

been found reliable to maximum shear strains of about 0.1 to 0.3% and should not be used in the 

vicinity of the soil shear strength. 

 

 
 

Figure 3. Illustration of reference strain and the effect of curvature parameter on the shape of the modulus 

reduction curve 

 

 

2.3 Model Implementation 

 

Implementation of the modified hyperbolic model into an incremental solution algorithm such as 

FLAC, requires the tangent shear modulus Gt to be derived from Equation (7) and given here as 

Equation (8):  

 



5 

 

 

  

    
 

 

    

      

  
 

        
 

  
 
 

    
 

  
 
 
 
          (8) 

 

As described in the above, user-defined models in FLAC must calculate stress increments as a 

function of the current stress state and the applied strain increment. As a result, Equation 8, where Gt 

is expressed in terms of the total developing strain γ, cannot be directly applied. To obtain Gt as a 

function of the current shear stress τ, Equation 7 is substituted in       : 

 
 

    
  

 

  
 
 

                 (9) 

 

The tangent shear modulus Gt can be obtained by solving Equation 9 for γ and substituting the result 

back into Equation 8. 

 

In the case of α = 1 or τ = 0, solving Equation 9 is trivial. However, for α ≠ 1 and τ ≠ 0, no general 

analytical solution is available. Therefore, the Newton-Raphson procedure is incorporated in the 

implementation algorithm and γ is computed iteratively, as: 

 

        

 

    
  

    
  

 
 
        

 

    
 

 

    
  

    
  

 
   

  
         (10) 

 

Nevertheless, the function in Equation 9 is not monotonic, as its derivative (hence also the 

denominator in Equation 10) becomes zero for a critical value of γ, namely: 

 

     
       

 

   
 

 

   
           (11) 

 

Therefore, to ensure convergence to the correct root γ, an appropriate value of γ1 needs to be selected 

for the first iteration. For α < 1, there exists only one positive solution which is always obtained if the 

initial value is γ1 > γcr (e.g.,          ). 

 

In the case of α > 1, the modified hyperbolic model predicts a peak shear stress. The shear strain at 

which this is occurring can be obtained by setting Gt = 0 in Equation 8: 

 

       
 

   
 

 

 
             (12) 

 

The peak stress can be then calculated by replacing Equation 12 into Equation 9: 

 

                 
 

 
  

 
          (13) 

 

For γ > γpeak, the tangent shear modulus becomes negative, while, using Equation 7, it can be easily 

shown that for γ → ∞, τ → 0. As a result, for α > 1 and τ < τpeak, Equation 10 has two positive roots. To 

ensure convergence to the appropriate one, the following procedure is followed: In the beginning of 

each loading cycle, the initial value for the Newton Raphson iterations is selected as γ1 < γcr (e.g., 

γ1 = 0). Once the peak shear stress is reached, the initial value for each iteration is selected as γ1 > γcr 

(e.g.,        ). This algorithm has been tested extensively and has been found to always converge 

with an accuracy of γ ±10
8

 within a maximum of 5-10 iterations. 

 

Following the above, the model is implemented into FLAC using the following non-linear elastic 

formulation (expressed using Kronecker’s δ symbol): 
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                  (14) 

 

where ν is Poisson’s ratio, which is assumed to remain constant. To obtain the tangent shear modulus 

as a function of the current multiaxial stress state, the shear stress τ in Equation 10 is replaced by: 

 

    
 

 
        

           
            (15) 

 

where sij is the deviatoric stress                 , while sij
LR

 is the deviatoric stress at the 

beginning of the analysis or at the last shear reversal. Finally, to allow for the formation of closed τ-γ 

loops, after the first shear reversal, the reference shear strain γr is replaced by γr΄ = 2γr. 

 

2.4 Finite Difference Grid 

 

The finite difference grid utilized in the analyses is shown in Figure 4.  

 

 
 

Figure 4. View of typical finite difference 2-D mesh 

 

More specifically, a grid of width (14 B) was used, with a total depth of (8 B), where B is the half-

width of the footing. In this case, a value of B = 2.5m was selected, although the results can be readily 

generalized to other footing widths. Quiet boundaries were employed at the sides of the model, while 

movements at the base were fixed in both directions. The model was discretized to square elements of 

(0.4 B). Note that the accuracy of this discretization was verified through rigorous mesh sensitivity 

analyses. 

 

Soil behaviour was simulated using the aforementioned Modified Hyperbolic Model. A shear wave 

velocity of Vs = 158m/s and a soil mass density  = 2Mg/m
3
 were considered, resulting in a maximum 

shear modulus Gmax = 50MPa. The Poisson’s ratio was taken as ν = 0.35. In the dynamic analyses, a 

Rayleigh damping was also incorporated, namely ξ = 3% to account for soil damping at small shear 

strain amplitudes. For larger amplitudes, additional hysteretic damping was obtained inherently from 

the non-linear response of the implemented soil model. It should be noted that damping has a minor 

influence in the stiffness values reported in this work and won’t be discussed further. 

 

Finally, the footing rotation was applied as a prescribed velocity or acceleration imposed to the 

corresponding model nodes. The reactions at these nodes allowed to calculate, using FLAC’s inbuilt 

programming language FISH, the corresponding developing moment. Since the implemented model 

does not account for failure, the initial loading applied to the model does not affect the obtained 

results. Nevertheless, the obtained response is only valid for medium factor-of-safety values (e.g., 

FS = 2 to 3) and small-to-medium moments/rotations, when the applied cyclic loading does not induce 

bearing capacity failure or foundation uplifting. 
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3. VERIFICATION 

 

3.1 Footing resting on linear elastic soil subjected to static loading 

 

Firstly, a linear static analysis was carried out to evaluate FLAC’s performance in rocking response. 

The scope of this analysis is to prove the suitability of model dimensions and boundary fixities on the 

accuracy of stiffness calculation. For the case examined herein, Equation 5 predicts a rocking stiffness 

Krx,elastic = 7.74 x 10
5 

kN/m
2
. This is in notably good agreement (less than 0.7% discrepancy) with the 

numerically obtained value of 7.79 x 10
5 
kN/m

2
. 

 

3.2 Footing resting on linear elastic soil subjected to dynamic loading 

 

Following static loading, linear dynamic analyses were conducted for non-dimensional frequency 

values ranging between 0 and 1.2. The sinusoidal input motion used for the dynamic analyses is shown 

in Figure 5, in terms of the acceleration applied directly on the footing. Only the constant amplitude 

part of the sinusoidal motion (20 cycles) is accounted for in the stiffness and damping coefficient 

calculations.  

 

 
Figure 5. Sinusoidal input motion expressed in terms of acceleration applied directly on the rigid footing 

 

Results from the numerical analyses are compared against the classical semi-analytical solution by 

Luco and Westmann (1972) and they are shown below in Figure 6. A very good agreement is observed 

for dimensionless frequencies α0 of less than approximately 0.6. The discrepancies observed at higher 

frequencies might be attributed to differences in the boundary conditions between the two solutions. 

 

 
 

Figure 6. Evaluation of linear dynamic analyses 
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4. PARAMETRIC INVESTIGATION 

 

4.1. Non-linear analyses  

 

In order to accurately capture non-linear soil-structure interaction effects, it is essential to simulate 

non-linear soil behaviour at small and medium cyclic shear strain amplitudes. In this case, the 

response is governed by a hysteretic behaviour, which can be modelled using non-linear elastic stress-

strain relationships. Soil shear modulus reduces with increasing strain and this reduction can be 

approximated by various forms of a hyperbolic function (e.g., Kondner, 1963; Hardin and Drnevich 

1972; Darendeli 2001; Zhang et al. 2005). Specific studies for databases of sands have been published 

(e.g., Oztoprak and Bolton 2013; Wichtmann and Triantafyllidis 2013a, 2013b) and for fine grained 

soils (e.g., Vardanega and Bolton 2013, 2014; Wichtmann and Triantafyllidis 2017). For the analysis 

presented in this paper soil non-linearity was explored by means of a modified hyperbolic model 

(equation 7).  

 

4.1.1 Database analysis  

 

Vardanega and Bolton (2013) corrected a database of 67 tests on 21 fine grained soils for the influence 

of rate effects assuming a 5% reduction per log cycle (an assumption made based on the findings of 

Lo Presti et al. 1997 and d’Onofrio et al. 1999). The analysis of the database produced expressions for 

the reference stain linked to plasticity index (following the observations of Vucetic and Dobry 1991). 

For the static adjustment, the curvature parameter and the reference strain were shown to be linked to 

changes in plasticity via the empirical relationships shown as equation 16: 

 

                   
  

    
                           (16) 

 

while for the dynamic adjustment the curvature parameter and the reference strain were shown to be 

linked to changes in plasticity via the empirical relationships shown as equation 17: 

 

                   
  

    
                       (17) 

 

which correspond to a strain rate of 10
-2

/s. Note that Ip is expressed numerically for both equations 

(16) and (17). 

 

4.1.2 Parametric range investigated 

 

The modified hyperbolic model parameters α, γr alter depending on the strain rate correction applied. 

In the initial set analysis for this paper the  and r was held constant and were taken to be α = 0.736 

and γr = 1.1·10
3 

(using Equations 16), which describes a static adjustment (STA). A second set of 

analyses is conducted with the parameter values α = 0.943 and γr =1.85·10
3

 (using Equations 17), 

which describes a pseudo shear strain rate adjustment (PSSR) in the model. Using these sets of 

parameters, analyses were carried out for both static and dynamic rocking loads. 

 

Nevertheless, a rigorous analysis of the problem also requires considering the variation of shear strain 

rates across the foundation subsoil. To achieve this, a third set of analyses was carried out, more 

accurately accounting for shear strain rate effects, by appropriately varying the model parameters with 

location and with time, a function of the shear strain rate in each element of the mesh. As a first 

approximation, the expressions used for intermediate values of strain rates were obtained from linear 

interpolation between the two aforementioned sets of limiting values (STA and PSSR) see Figure 7. 
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Figure 7. Modified hyperbolic model parameter γr (left) and α (right) as functions of the strain rate (units of 

frequency). 

 

 

5. RESULTS 

 

The results are illustrated in Figure 8. In vertical axes, static values of normalised nonlinear rocking 

stiffness Krx/Krx,elastic  are plotted versus the rocking angle θ (left graph) and θ normalised by the 

reference strain γr (right graph). Evidently, stiffness degradation might be stronger for the case of 

pseudo-shear strain rate parameters, notably beyond θ = 10
4

 and θ/γr = 10
1

. In these curves, the effect 

of model parameters is also evident. Overall, the increase in stiffness due to pseudo strain rate effects 

does not exceed 10% or so.  

 
 

Figure 8. Normalised static rocking stiffness versus rocking angle (left) and normalised rocking angle (right) 

 

The curves in Figure 8 can be fitted by a modified hyperbolic expression of normalised nonlinear 

rocking stiffness as a function of rocking angle normalised by a ‘pseudo-reference’ rocking angle, θr 

 
   

           
 

 

   
 

  
 
            (18) 

 

where θr is the ‘pseudo-reference’ rocking angle equals to 1.5·γr, and γr, α as specified in equations 

(16) and (17) for static and dynamic adjustment, respectively.  

 

Results for dynamic conditions are reported in Figure 9, where the nonlinear dynamic rocking stiffness 

is plotted in normalised form as     /Krx, elastic (left graph) and     /Krx (right graph) versus the 

dimensionless excitation frequency a0 = 2f B/Vs for three different rocking amplitudes 

θmax (10
5

, 10
4

, 10
3

).  
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Figure 9. Normalised nonlinear dynamic rocking stiffness over elastic (left) and non-linear (right) static rocking 

stiffness versus dimensionless frequency for different rotation amplitudes. Modified hyperbolic model 

parameters correspond to STA conditions according to Equation (16). 

 

No rate effects have been considered in this plot (STA conditions). Despite the different levels of soil 

nonlinearity involved in the analysis, the frequency variation in the three curves follows that of the 

elastic model in Figure 5. This is particularly evident in the right graph and suggests that the 

nonlinearity mainly affects the static stiffness Krx, while the dynamic stiffness modifier krx can still be 

obtained from the elastodynamic Equation (6) for dimensionless frequencies ao as high as 0.8. 

 

Analogous patterns are observed in Figure 10 where the normalised nonlinear dynamic rocking 

stiffness is plotted versus dimensionless frequency using the pseudo shear strain rate (PSSR) 

adjustment according to Equations 17. The behaviour is like the previous case, with all curves 

exhibiting similar frequency variations, independent of strain level, and nonlinearity affecting 

primarily the static stiffness term Krx. 

 

 
 

Figure 10. Normalised nonlinear dynamic rocking stiffness over elastic (left) and non-linear (right) static rocking 

stiffness versus dimensionless frequency for different rotation amplitudes. Modified hyperbolic model 

parameters correspond to PSSR conditions according to Equation (17) 

 

Results for shear strain rate (SSR) effects on nonlinear dynamic footing stiffness      are provided in 

Figure 11. Since the model is formulated in terms of absolute strain rate (measured in units of 1/Time, 

Figure 6), use of dimensionless frequency a0 is not possible. For the small rocking amplitudes 

θmax = 10
5

 and 10
4

, the curves exhibit patterns analogous to those observed for STA and PSSR 

conditions in Figures 9 and 10. For the largest rocking amplitude (θmax = 10


), however, a different 

pattern is observed, with the nonlinear rocking stiffness increasing with frequency. The causes of this 

behaviour could be sought to stress-induced inhomogeneities in the soil mass, as strain rate varies for 
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point to point in proportion to strain. Further research is required to quantify this effect. 

 

 
 

Figure 11. Normalised nonlinear dynamic rocking stiffness over elastic static rocking stiffness (left) and 

additionally over the elastic dynamic rocking stiffness as shown in Figure 6 (right) versus absolute frequency for 

different rotation amplitudes. Modified hyperbolic model parameters correspond to SSR conditions according to 

Figure 7. 

 

 

6. CONCLUSIONS 

 

The main conclusions of the study are summarized in the following: 

 A practical numerical methodology for nonlinear analysis of rigid surface footings under rocking 

oscillations, was presented. A modified hyperbolic model originally calibrated using an 

experimental database was implemented into the finite difference code FLAC, to account for 

stress-strain and shear strain rate behaviour of soil. The two required model parameters,  and γr, 

can either be constant, pertaining to static or dynamic conditions, or vary as a function of shear 

strain rate. 

 Parametric analyses on shear rate effects showed that for rocking amplitudes θmax = 10
5

 and 10
4

 

nonlinear dynamic rocking stiffness is fluctuating past α0= 0.4 following a very similar trend to the 

linear case. For the rocking amplitude of 10
3

 the values are dropping significantly, and curves are 

smoother. This suggests that nonlinearity mainly affects the static stiffness Krx, while the dynamic 

stiffness modifier krx can be obtained from the elastodynamic Equation (6) for dimensionless 

frequencies α0 as high as 0.8. The drop in static stiffness can be explained by shear modulus 

degradation effects, as shown in Figure 7.  

 Regarding SSR effects, an increase in rocking stiffness is observed with increasing frequency for 

the largest rocking amplitude (θmax = 10


). The causes of this behaviour may be related to stress-

induced inhomogeneity in the soil mass, as shear strain rate varies for point to point in proportion 

to strain. On the other hand, for small rotation amplitudes stiffness is unaffected by shear strain 

rate which shows that, in this case, soil non-linearity would be of minor importance. 

 SSR effects are becoming evident from very low frequencies for rocking amplitudes larger than 

θmax = 10
-4

 and they are increasingly more significant with increasing frequency. For rocking 

amplitudes equal or under θmax = 10
-4

, non-linearity and SSR effects have negligible impact on 

dynamic stiffness.  

 Finally, the results presented in this paper should be verified experimentally. Carefully designed 

model tests in controlled environments (e.g., in geotechnical centrifuges, shaking tables and soil 

pits) would be useful in this regard.   
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