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Vertebrate alarm calls signal danger and often encode graded or categorical information 

about predator proximity or type. In addition to allowing communication with conspecifics, 

alarm calls are a valuable source of information for eavesdropping heterospecifics. 

However, although eavesdropping has been experimentally demonstrated in over 70 

species, we know little about exactly what information eavesdroppers gain from 

heterospecific alarm calls. Here, we investigated whether Australian magpies, Cracticus 

tibicen, extract relevant information about the type of threat from functionally referential 

alarm calls given by noisy miners, Manorina melanocephala. Miner aerial alarm calls signal a 

predator in flight, whereas mobbing calls signal a terrestrial or perched predator. We 

therefore tested if magpies gain information on the elevation of expected danger. We first 

confirmed, by measuring bill angles on video, that magpie head orientation changes 

appropriately with differences in the elevation of a conspicuous moving object. We then 

conducted a field experiment that measured magpie bill angle in response to playback of 

miner aerial and mobbing alarm calls. The maximum and mean bill angles were higher in 

response to aerial compared to mobbing calls, suggesting that magpies use information 

from miner alarms to search visually at appropriate elevations for the specific type of 

danger. Magpies were also vigilant for longer after aerial alarm calls that followed mobbing 

calls, implying perception of an escalating threat level. Our work shows that individuals can 

gain information on the type or location of danger from heterospecific alarm calls, which is 

likely to increase the effectiveness of anti-predator responses.  

 

Keywords: alarm calls, communication, eavesdropping, functionally referential, information, 

predation, vigilance  
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Many mammal and bird species give alarm calls to warn others about detected 

predators (Caro, 2005; Hollén & Radford, 2009; Magrath, Haff, Fallow, & Radford, 2015a; 

Zuberbühler, 2009). Alarm calls often signal not only the presence of danger, but encode 

additional information about the urgency or the type of threat. This information can be 

graded (Leavesley & Magrath, 2005; Templeton, Greene, & Davis, 2005) or categorical 

(Seyfarth, Cheney, & Marler, 1980a; Suzuki, 2016a); in some cases, graded information can 

be included in calls also encoding categorical information (Manser, 2001; Sieving, Hetrick, & 

Avery, 2010). Functionally referential alarm calls, the focus of this paper, are those that are 

given to specific types of threat and that elicit appropriate responses by receivers (Gill & 

Bierema, 2013; Suzuki, 2016a; Townsend & Manser, 2013). The earliest experimental 

demonstration of referential calls came from vervet monkeys, Chlorocebus aethiops, which 

produce different alarm calls on detecting eagles, leopards and snakes, and to which 

receivers respond appropriately, such as fleeing to cover on hearing ‘eagle’ alarms and 

running into trees on hearing ‘leopard’ alarms (Seyfarth et al., 1980a,b). Convincing 

experimental evidence of functionally referential alarm calling now exists for about 20 

species, including 10 bird species that produce and respond appropriately to distinct ‘aerial’ 

alarms for airborne predators compared to ‘mobbing’ alarms to terrestrial or perched 

predators (Cunningham & Magrath, 2017; Farrow, Doohan, & McDonald, 2017; Gill & 

Bierema, 2013; Grieves, Logue, & Quinn, 2014; Suzuki 2016a).  

 

In addition to responding to conspecific alarm calls, over 70 species have been 

experimentally shown to eavesdrop on the alarm calls of other vertebrates (Magrath et al., 

2015a). Among birds, many species respond to the acoustic warning signals given by other 

avian species (e.g. Bell, Radford, Rose, Wade, & Ridley, 2009; Magrath, Pitcher, & Gardner, 

2007; Parejo, Avilés, & Rodríguez, 2012), and some even respond to mammalian alarm calls 

(Rainey, Zuberbühler, & Slater, 2004a,b). However, in comparison to conspecific receivers, 

much less is known about what information heterospecifics extract from alarm calls 

(Magrath et al., 2015a). In some cases, heterospecifics can gain graded information on the 

degree of a threat, such as superb fairy-wrens, Malurus cyaneus, and white-browed 

scrubwrens, Sericornis frontalis, which respond to urgency information encoded in each 

other’s aerial alarm calls (Fallow & Magrath, 2010). In other cases, individuals can gain 

categorical information on the type of threat. For instance, black- and yellow-casqued 
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hornbills, Ceratogymna atrata and C. elata, approach and call after Diana monkey, 

Cercopithecus diana, ‘eagle’ but not ‘leopard’ alarm calls, which is appropriate because the 

hornbills are only threatened by eagles (Rainey et al., 2004a,b). Similarly, Carolina 

chickadees, Poecile carolinensis, freeze and become silent in response to aerial alarm calls of 

tufted titmice, Baeolophus bicolor, but approach and call on hearing titmice mobbing calls 

(Hetrick & Sieving, 2012). 

 

Most previous studies of responses to heterospecific alarm calls have focused on 

gross motor behaviour, such as fleeing (Magrath & Bennett, 2012), startling (Carlile, Peters, 

& Evans, 2006) or mobbing (Templeton et al., 2005), which in some cases could indicate the 

degree rather than the type of danger. However, more subtle reactions, such as changes in 

head orientation, can reveal whether eavesdroppers extract location information about 

danger from heterospecific alarm calls. The rationale is based on the orienting response, 

whereby animals are expected to move their heads to align their centres of acute vision 

with the direction from which they need to collect high-quality visual information (Sokolov, 

Nezlina, Polyanskii, & Evtikhin, 2002). Changes in head orientation in response to 

heterospecific alarm calls have been examined in primates (Kirchhof & Hammerschmidt, 

2006; Seyfarth & Cheney, 1990). For example, saddleback and moustached tamarins, 

Saguinus fuscicollis and S. mystax, faced upwards for longer when hearing heterospecific 

aerial alarm calls and faced downwards for longer when hearing heterospecific terrestrial 

calls (Kirchhof and Hammerschmidt, 2006). This difference in head orientation indicates that 

the monkeys gain information on the type of predator and so search at the appropriate 

elevation. Among birds, some heterospecifics respond to playback of ‘jar’ alarm calls of 

Japanese tits, Parus minor, given specifically to snakes, by pointing their bills towards the 

ground (Suzuki, 2016b). This is the same orienting response of Japanese great tits to their 

own ‘jar’ calls, suggesting that these heterospecifics might gain information on snake 

presence from the calls (Suzuki, 2016b), although the relevant information may also have 

been obtained by watching the response of the great tits that were present during 

playbacks. To the best of our knowledge, there has been no other study of avian head 

orientation in response to functionally referential alarm calls of heterospecifics, and none in 

which head orientation was quantified. 
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Head orientation of birds is not as simply related to the direction of visual attention 

as in primates, but can still provide a useful indicator of search direction. Primates have 

forward-facing eyes, so that head orientation gives a strong indication of the direction of 

visual attention (Treves, 2000). However, the more lateral placement of avian eyes makes 

studying the direction of visual attention more challenging, because the retinal centres of 

acute vision and visual attention often project laterally in birds (Davidson, Butler, 

Fernández-Juricic, Thornton, & Clayton, 2014; Fernández-Juricic, 2012). As a result, birds 

move their heads rapidly to align their centres of acute vision with objects of interest 

(Dawkins, 2002; Moore, Tyrrell, Pita, Bininda-Emonds, & Fernández-Juricic, 2017). 

Nonetheless, changes in the head orientation of birds can be indicative of visual exploration 

and visual fixation behaviours (Butler, Hosinski, Lucas, & Fernández-Juricic, 2016; Dawkins, 

1995; Fernández-Juricic et al., 2011), and a few avian studies have used qualitative scoring 

of head orientation to assess the response to conspecific alarm signals. On hearing an alarm 

call indicating a predatory threat overhead, domestic hens, Gallus gallus domesticus, 

rotated their heads, likely to make use of their lateral vision (Evans, Evans, & Marler, 1993). 

Three studies of passerines have shown that individuals point their bills in the expected 

direction of a threat. Japanese great tits perched in trees pointed their bills at the ground 

when hearing a call indicating a predatory snake, while they moved their heads horizontally 

in response to an alarm indicating an aerial predator (Suzuki, 2012). Australian magpies, 

Cracticus tibicen, on the ground responded to aerial alarms by pointing their bills more 

vertically when compared to their response to generic alarm call and mixed alarm-call 

presentations (Kaplan and Rogers, 2013). Finally, perched noisy miners, Manorina 

melanocephala, spent most time with their bill upwards after playback of aerial alarm calls, 

but horizontally after playback of mobbing alarm calls (Farrow et al., 2017). However, there 

has been no quantitative scoring of head orientation in response to alarm calls. 

 

We investigated the head orientation of wild Australian magpies in response to the 

functionally referential alarm calls of noisy miners. Magpies are vulnerable to a range of 

aerial and terrestrial predators, and are large passerines that forage predominantly on the 

ground (Higgins, Peter, & Cowling, 2006; Kaplan, Johnson, Koboroff, & Rogers, 2009), 

making them ideal for playback experiments and video recording. Within our study site, 

magpie territories overlap with those of noisy miners, which are vulnerable to many of the 
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same predators (see Methods) and which produce distinct, functionally referential aerial 

and mobbing alarm calls to appropriate predatory threats; miner aerial alarm calls signal a 

predator in flight, whereas mobbing calls signal a terrestrial or perched predator 

(Cunningham and Magrath, 2017; Farrow et al., 2017). We used two field experiments, 

combined with video analysis and blind scoring, in which we measured head orientation. 

First, to validate that magpies alter their head orientation to objects at different elevations, 

suggesting different visual search strategies, we quantified the angle of the bill relative to 

the horizontal when individuals were exposed to an object moving through the air or on the 

ground. Second, to examine the response of magpies to functionally referential 

heterospecific alarm calls, we quantified bill angle relative to the horizontal in response to 

playback of noisy miner aerial and mobbing alarm calls. If magpies can extract relevant 

information on the type of danger from these heterospecific vocalisations, we predicted 

that individuals would have higher bill angles in response to aerial compared to mobbing 

alarm calls. This prediction follows from the higher bill angle shown by both miners and 

magpies when responding to conspecific aerial compared to mobbing calls (Farrow et al., 

2017; Kaplan and Rogers, 2013). 

 

METHODS 

 

Study Site and Species 

The study took place from February to April 2016 in Canberra (-35°28’S, 149°13’E), 

Australia. We collected data from four adjacent areas where Australian magpies and noisy 

miners were sympatric and accustomed to the presence of people: the Australian National 

University campus, Black Mountain Peninsula, Acton Peninsula and parks in Turner. All areas 

include native and exotic shrubs and trees, lawn and buildings, providing a combination of 

cover and open ground. Aerial and terrestrial predators are present throughout the study 

area. Aerial predators include brown goshawks Accipiter fasciatus, collared sparrowhawks, 

A. cirrocephalus, Australian hobbies, Falco longipennis, peregrine falcons, Falco peregrinus, 

and boobook owls, Ninox novaeseelandiae (Taylor, 1992), all of which include birds in their 

diet (Higgins, 1999) and are mobbed by both miners and magpies (Higgins et al., 2001, 
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2006). Terrestrial predators include foxes, Vulpes vulpes, cats, Felis catus, dogs, Canis lupus 

familiaris, and snakes (Cunningham & Magrath, 2017).  

 

Australian magpies are large endemic passerines (ca. 220–350 g), distributed 

throughout Australia (Higgins et al., 2006). They live in groups of varying size where there is 

a mix of open areas and trees (Brown, Farabaugh, & Veltman, 1988; Robinson, 1956). Noisy 

miners are medium-sized (ca. 60–70 g) colonial honeyeaters (Meliphagidae), distributed 

throughout eastern and south-eastern Australia (Higgins et al., 2001). Colonies reside in 

distinct territories in open eucalypt woodland and urban areas (Higgins et al., 2001). Miners 

possess an extensive vocal repertoire that includes two distinct, functionally referential 

alarm calls (Cunningham & Magrath, 2017; Farrow et al., 2017; Holt, Barati, & McDonald, 

2017). A broad-frequency ‘mobbing’ call is given to ground predators such as foxes, feral 

cats and perched large birds, while a high-pitched ‘aerial’ alarm call is given to aerial 

predators in flight (Fig. 1). 

 

Identification of Individual Magpies 

The study population of magpies was unbanded, so we identified individuals through 

a combination of age, sex, location and plumage variation. We used only adults in this study; 

juveniles can be distinguished from adults by their brown-tinged plumage, dark bill and dark 

iris (Higgins et al., 2006). Adult males have contrasting areas of black and pure white 

plumage, while the light plumage areas of adult females show gradients from white to grey 

feathers (Higgins et al., 2006). Groups defend permanent territories, so individuals are 

usually located in predictable areas (Brown et al., 1988; Robinson, 1956). The eight 

subspecies show large variation in various characteristics, including plumage patterns 

(Schodde & Mason, 1999). Canberra lies within a hybrid zone between white-backed and 

black-backed subspecies, leading to a range of plumage containing both pure and 

intermediate colour morphs (Burton & Martin, 1976). We therefore took photographs of the 

dorsal plumage of the birds, using a DMC-TZ60 Panasonic Lumix digital camera (Osaka, 

Japan), to facilitate reliable recognition of focal individuals. 

 

We conducted two tests to assess our ability to identify correctly adult individuals of 

the same sex from their plumage. One test mimicked the field scenario of selecting a focal 
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bird for an experimental trial from a group of individuals present at the same time. The 

researcher had to select which one of four photographs of different local birds contained 

the same individual shown in a different photograph of a focal bird. The second test 

mimicked the field scenario in which a decision was made about whether a bird was the 

correct subject for an experimental trial. The researcher had to decide whether a 

photograph of a single test bird of the same sex was the same individual as shown in a 

photograph of a focal bird. Different photographs were used if the focal bird was shown in 

both photographs (10 of 24 cases). We carried out these tests on both researchers (FDP, DP) 

responsible for recognition of magpies in the field. The two researchers both scored 12/12 

(100%) in the first test, and scored 24/24 (100%) and 22/24 (91.7%) in the second test, 

indicating reliable identification of individual birds.  

 

Experimental Overview and General Methods 

In this section, we give general field and video-analysis methods applicable to both 

experiments, and then follow with methods specific to each experiment.  

 

Field methods 

We lured focal adult magpies with grated cheese to an open, flat location with no 

immediate tree cover, and recorded their subsequent behaviour at the food source with 

two video cameras (Panasonic, HC-V770, Osaka, Japan) placed perpendicular to each other 

on the ground. We set the video cameras on tripods, 6 m horizontally from the cheese, and 

levelled them using the internal electronic system. The lens height was set at 26 cm above 

ground level, which we estimated as the average adult magpie eye height when standing. 

The similar height of the lens and magpie head was to reduce parallax error when 

measuring the vertical angle of the bill from video stills (below). We set the camera shutter-

speed to 1/2000 to capture sharp images, and the lens to about 4x optical zoom (the 

camera did not permit a fixed focal length). We used two video cameras for two reasons. 

First, if the view of a bird’s bill from one camera was obscured by grass or another bird, we 

could use video from the other camera. Second, if a bird was facing away from one camera, 

its bill would be visible from the other camera. 
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Experiments were based on a matched design, in which individual magpies received 

all treatments in an experiment during a single day. We conducted experiments on dry days 

with little wind, no overt disturbances (e.g. due to territorial disputes or human activities), 

and no nearby predators or noisy miners. We used identification photographs (above) to 

identify focal birds; one individual per location was tested. After setting up the equipment 

and attracting the magpie with cheese, we exposed the focal individual to the first 

treatment after a minimum of 1 min of normal foraging behaviour. Treatments were 

presented in a balanced order within each experiment. For each trial, we recorded group 

size and juvenile presence as potential confounding variables; birds were considered 

‘present’ when within 5 m of the focal bird.  

 

Video analysis 

One researcher (CR) cut and temporarily aligned video from the cameras in Adobe 

Premier Pro CC (Adobe Systems Software, Ireland), so that each trial had its own video file 

from each camera (in H.264 format). CR then gave files code names that did not include 

information about the treatment or individual and saved the video without the audio track. 

These de-identified videos were subsequently watched (50 fps, 1920 x 1080 pixels) using 

Adobe Media encoder, and scored blind by DP for Experiment 1, and DP and FDP for 

Experiment 2. 

 

We used bill angle as a proxy of head orientation. We estimated bill angle in the 

vertical plane from measurements of bill position in multiple frames from each video. For 

each frame in the analysis, we recorded x-y coordinates (in pixels) of the position of the tip 

and base of the bill using Tracker V.4.92 software (Fig. 2). Coordinates were measured every 

200 ms to gain data on head orientation throughout the period of response. In the second 

experiment, we also measured additional frames in the first 3 s after the start of a playback, 

to gain a higher resolution of one sample each 100 ms. We calculated bill angle, measured 

as degrees above the horizontal, for each measured frame using the equation: 

 

Bill angle (degrees) = arcsin((yt-yb)/bill length), 

 

where yt and yb represent the y-coordinates for bill tip and bill base respectively. 
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We calculated bill length, in pixels, as the distance between the bill-tip and bill-base 

coordinates when the bill was side-on to the camera, where: 

 

Bill length = √((xt-xb)2+(yt-yb)2)). 

 

We also used this formula to measure the ‘apparent’ bill length in every frame, as a criterion 

for video selection (below). We did not calibrate our measures to absolute lengths because 

we were interested in bill angle and not bill size. 

 

After measuring bill-position coordinates in both cameras, we excluded videos that 

did not permit calculation of bill angle, and chose the camera with the best view of the bill 

for use in analysis. Videos were discarded if: (1) there was no side-on view to measure bill 

length in any frame, as that meant we could not calculate bill angle; or (2) the bird was 

obscured or facing away from the camera for all or most of the sample period, because we 

could not measure x-y coordinates. Next, if the videos from both cameras were suitable for 

analysis, we used two criteria to choose which provided the most reliable bill angles. (1) We 

chose the camera with the fewest ‘missing’ frames in which the bill’s tip and base 

coordinates could not be measured. Missing measurements happened if a bird moved 

temporarily out of the frame or faced away from the camera, or if an object, such as grass or 

another bird, obscured either the bill’s tip or base. (2) If both cameras had clear images of 

the bill, we chose the camera that had on average the most side-on view of the bill because 

this provided the clearest image of tip and base ‘landmarks’. To do this, we chose the 

camera with the greatest mean ‘apparent’ bill length during the period of response, relative 

to the actual bill length (measured in a frame when it was side-on); apparent bill length is 

shorter if a bird faces further away from the camera. 

 

Experiment 1: Magpie Head Orientation in Response to Objects Moving at Different 

Elevations   

In this experiment, we tested if head orientation of magpies (as measured by bill 

angle) was sensitive to an object moving at different elevations. Specifically, we used an 

underarm motion to roll an orange ball (diameter: 16 cm) along flat ground or to throw it 
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into the air, so that it passed about 4 m in horizontal distance from the focal bird. The ball 

rolled smoothly about 15–20 m along the ground. The thrown ball travelled a similar 

horizontal distance and followed a trajectory with a maximum height of about 5 m, landing 

5–10 m beyond the magpie. For a magpie 4 m away, and given an eye height of 26 cm, the 

centre of the ball would be about 1 degree below the horizontal when rolling along the 

ground; when thrown, it would be a maximum of about 50 degrees above the horizontal if 

its highest point was when closest to the magpie (the angle would be lower at all other 

times). A quiet vocal cue, captured on video camera, was given to indicate the start of the 

roll or throw. We alternated the order of treatments between focal individuals, and each 

bird received both treatments, with a minimum of 30 s of normal foraging between trials.  

 

We carried out trials on 30 focal birds (15 of each sex) in different locations across 

the study area. Trials were repeated twice whenever possible (27 of 30 cases), and we used 

the first pair of trials where the bird did not run or fly away before the ball had landed or 

rolled past. In 25 cases, we were able to get clear video of responses to both treatments 

from the first or second set of trials. The measure of response was the maximum bill angle 

during each type of ball presentation. We used the maximum bill angle because the angular 

height of the thrown ball, and to a much lesser extent the rolled ball, changed over time.  

 

Experiment 2: Response to Playback of Noisy Miner Alarm Calls 

In this experiment, we tested if magpie head orientation (as measured by bill angle) 

differed when individuals were exposed to playback of aerial compared to mobbing noisy 

miner alarm calls. Such a difference in bill angle would suggest magpies are visually 

searching at different elevations for the source of threat indicated by information obtained 

from the miner alarm calls. The playback experiment had three treatments: miner aerial 

alarm calls, miner mobbing alarm calls and, as a control, the contact calls of crimson 

rosellas, Platycercus elegans (Fig. 1). Rosellas are locally abundant, harmless parrots posing 

no threat to magpies. We chose rosella calls to ensure that the control was a neutral 

stimulus that did not imply threat of any kind, but that controlled for playback of a sudden 

call of the same amplitude as the alarm calls. Playbacks to other local species have shown 

that rosella contact calls (‘bell’ or ‘piping’ calls) do not provoke anti-predator behaviour (e.g. 

Cunningham & Magrath, 2017; Leavesley & Magrath, 2005; Magrath et al., 2007, 2009). 
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We recorded all calls in or near the study sites, to avoid geographic variation 

affecting the response during playback experiments. We prompted noisy miner alarm calls 

with life-sized, gliding, model collared sparrowhawks (details in Magrath, Haff, McLachlan, & 

Igic, 2015b). Models were thrown by hand when approximately 10 m from the bird, and 

directed so they glided past the bird about 5–10 m away, before landing on the ground. 

Noisy miners produce aerial alarms to hawk models when airborne, and switch to mobbing 

calls once they have landed (Cunningham & Magrath, 2017). We collected recordings 

throughout the study sites, with each recording separated by at least 100 m, to minimise 

the risk of getting repeated recordings from individual birds. Recordings were made by a 

second person, who was 5–15 m from the bird, using a Sennheiser ME66 directional 

microphone and a Marantz 670 or 661 digital recorder, sampling wave files at 44.1 kHz and 

16 bits. We used 30 unique recordings of each alarm-call type in the playback experiment, 

with 21 of each type recorded as part of this study, and the remaining nine of each type 

recorded in 2009 within the same area and using the same equipment and techniques 

(Magrath & Bennett, 2012). Crimson rosella contact calls were recorded in previous years, 

using similar equipment, from spontaneously calling birds. 

 

We prepared audio files for playback from high-quality field recordings with no 

distinct background sounds, and filtered to remove sound below 300 Hz. The playback 

experiment was fully replicated, with each focal bird receiving a unique set of playbacks. We 

used Raven Pro 1.5 software to standardise alarm-call playbacks so that all contained five 

elements given by a single bird, removing elements from longer calls or replicating elements 

from shorter calls if necessary; five elements lies within the natural range for both alarm 

types (Cunningham & Magrath, 2017; Holt et al., 2017; Kennedy, Evans, & McDonald, 2009). 

We prepared and filtered rosella calls in a similar way, and matched them by duration to 

alarm calls (playbacks therefore contained 4–8 elements). We then adjusted all playbacks on 

computer so that they were broadcast at an amplitude of 63 ± 1 dB (mean amplitude of the 

loudest element) at 10 m, which was the distance of broadcast to magpies. To do this, 

sounds were broadcast from the equipment used in the playback experiment, re-recorded 

at 10 m using the field recording equipment set at a constant gain, and iteratively adjusted 

on computer to achieve the target amplitude. We broadcast sounds from a Roland R-05 
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digital recorder (Hamamatsu, Japan), via a Kemo Electronics integrated amplifier (20–25000 

Hz, Geestland, Germany) to a full-range speaker (Scan Speak, Discovery 10F/4424G00, 

Videbæk, Denmark). We calibrated amplitude by recording a continuous tone and 

simultaneously measuring its amplitude at 10 m with a Brüel & Kjær 2240 sound-level 

meter. Playback at 63 dB was chosen to be clearly audible, yet equivalent to the amplitude 

of miners calling from about 20–30 m away, assuming mean amplitude at 10 m of aerial 

alarm calls of 73 dB and mobbing of 69 dB (Magrath & Bennett, 2012). We used short and 

relatively low-amplitude playbacks to mimic a nearby but not imminent threat, so magpies 

would be more likely to look for danger rather than flee, allowing measurement of bill 

angle. 

 

We broadcast playbacks from the speaker at a height of 1 m, placed 10 m from the 

focal magpie. Miners can call from a variety of locations, from the ground to the treetops, 

but we kept the playback height and distance constant so that any differences in response 

must be due to playback type and not speaker location. Playback order was perfectly 

balanced, with each of the six possible orders of the three treatments presented five times 

during the experiment. Furthermore, only one individual was used as a focal individual in 

any one group. This design ensures that playback order and carry-over effects do not 

confound responses to playback within or between individuals. We left at least 1 min of 

normal feeding between each playback. Once birds returned to normal feeding, they did not 

revert to further vigilance, and by keeping the interval short we could increase the chance of 

getting matched responses from individual birds while holding environmental conditions as 

similar as possible. Long intervals are likely to reduce any order effects, but at the cost of 

carrying out playbacks under potentially different conditions, such as how recently a natural 

predator was nearby. If a bird flew away or startled to one or more of the playbacks, it was 

not possible to measure bill angle for all treatments, and so we excluded that bird. In such 

cases, another focal bird, in a different location, received that particular playback set and 

order of playback. Similarly, once playbacks were completed successfully on a focal bird, we 

moved to a different location. Overall, we carried out playbacks on 39 individuals, of which 

nine were excluded, leaving the final sample of 30, with 15 of each sex. 
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We calculated four response variables from the blind scoring of video frames: (1) 

whether the bird responded to the playback or not; (2) the maximum bill angle (degrees) 

during the period of response; (3) the mean bill angle (degrees) during the period of 

response; and (4) the duration of response (seconds). A bird was scored as responding if it 

stopped feeding and became vigilant, during which birds stood with their bill approximately 

horizontal or elevated; if it continued feeding, when the bill was typically pointed 

downwards to the food source, it was scored as not responding. The maximum bill angle 

was the same measure as used for Experiment 1. The mean bill angle gives an estimate of 

the overall head orientation during each treatment. As described above, mean and 

maximum angles were calculated over all video samples for the duration of response (i.e. 

each 100 ms for the first 3 s, and each 200 ms thereafter). The duration is an estimate of the 

period over which birds searched visually, and was timed from 200 ms after the initiation of 

playback until the bird ceased to be vigilant and resumed feeding or started another non-

alarm specific behaviour, such as singing. We started the sample at 200 ms because, across 

all birds and treatments, there was never any evidence of response until that frame. 

Individual videos were excluded from analysis if the bird left the field of view before the 

response had ended. Occasionally, one camera had a better side-view of the bird overall, 

and therefore was chosen for analysis (above), but had a few missing frames. In these cases, 

we substituted measures from the second camera if the missing frames happened when 

bird briefly faced away from the best camera and so was side-on for the other camera. 

 

Statistical Analysis 

In both experiments, each individual received all treatments, so we used Linear 

Mixed Models (LMMs) with focal individual as the random term. We conducted LMMs using 

the ‘lmer’ function in the ‘lme4’ package (Bates, Maechler, Bolker, & Walker, 2012) in R 

version 3.3.1 (R Development Core Team, 2016). We checked model assumptions, and 

transformed data when necessary. The maximal model included treatment, treatment order 

and their interaction, as well as the potential confounding effects of juvenile presence 

(yes/no), group size (1–4), sex and, for Experiment 2, the identity of the researcher scoring 

the video. We achieved model simplification through stepwise backwards elimination 

(Crawley, 2005); terms were removed by order of least significance and comparisons of 

models were conducted using likelihood ratio tests. We obtained significance values for 
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retained terms by comparing the minimal model with a model from which the term was 

removed. We individually returned terms removed during model selection to the minimal 

model to assess significance, and present information on terms in the final model and those 

removed. Terms were considered significant at P < 0.05.  

 

For Experiment 1, we tested specifically the effect on bill angle of ball treatment (roll 

or throw), treatment order, and their interaction. In Experiment 2, there was little response 

to control playbacks, but universal response to both aerial and mobbing alarm calls 

(Results), so we restricted LMMs to a comparison of alarm calls. We used separate LMMs 

for maximum bill angle, mean bill angle and log(response duration) to examine the effects 

of alarm-call type, playback order, and the interaction between playback type and order.  

 

Ethical note 

All work was conducted with the approval of the Australian National University 

Ethics Committee (Protocol number: A2015/67), and was designed to minimise disturbance 

and stress. We minimised sample sizes by using matched experimental designs, to control 

for individual variation, and we distributed experiments over multiple separate sites. We 

used model predators to prompt alarm calls and thus never exposed birds to real threats. 

While birds responded with antipredator behaviour to the playback of alarm calls, 

individuals returned to apparently normal behaviour quickly; most returned to feeding in 

less than 30 s, and the few birds that flew off usually returned to feed within minutes. 

 

 

RESULTS 

 

In Experiment 1, birds had a greater maximum bill angle when the ball was thrown 

through the air compared to rolled along the ground (Table 1; Fig. 3), showing that head 

orientation is affected by the elevation of objects. The mean maximum bill angle when the 

ball was thrown through the air was about 29 degrees, which was 20 degrees higher than 

the mean maximum bill angle when the ball rolled along the ground. Maximum bill angle 
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was not significantly affected by treatment order, the interaction between treatment order 

and treatment, or by juvenile presence, sex or group size (Table 1). 

 

In Experiment 2, birds rarely responded to control calls but always did so to miner 

alarm calls, and there were higher bill angles in response to aerial compared to mobbing 

alarm calls. All 30 magpies responded to the playback of both alarm calls, yet only seven did 

so to the control rosella contact calls (Cochran’s Q test: Q2 = 46.0, P < 0.0001), so we 

restricted subsequent analyses to the comparison of responses to aerial and mobbing alarm 

calls. Aerial alarm calls prompted a mean maximum bill angle of 31 degrees, which was 7 

degrees higher than that to mobbing alarm calls (LMM: X2
1 = 14.3, P < 0.001; Table 2; Fig. 

4a). Aerial alarm calls also prompted a greater mean bill angle of 21 degrees, which was 6 

degrees greater than that to mobbing alarms (X2
1 = 10.1, P = 0.001; Table 2; Fig. 4b). There 

was no significant effect on maximum or mean bill angle of playback order, the interaction 

between playback type and order, juvenile presence, group size, sex or the identity of the 

video scorer (Table 2). 

 

The duration of response to alarm-call playback was significantly affected by the 

interaction between playback type and order of presentation (LMM: X2
1 = 5.1, P = 0.025; 

Table 2; Fig. 5). While the response duration to a mobbing call was not affected by whether 

it came before or after an aerial call, the response duration to an aerial call was greater if it 

followed a mobbing call compared to when it came before. Response duration was not 

significantly affected by juvenile presence, group size, sex or the identity of the video scorer 

(Table 2). 

 

DISCUSSION 

 

Australian magpies had higher maximum and mean bill angles, and at times longer 

responses, after playback of noisy miner aerial compared to mobbing alarm calls. Given the 

different head orientations that the birds displayed in response to these two alarms, they 

appeared to gain information about the specific type of threat indicated by those 

heterospecific alarm calls. While some studies have documented qualitatively appropriate 
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head-orientation responses of birds to different conspecific alarms (Evans et al., 1993; 

Farrow et al., 2017; Kaplan and Rogers, 2013; Suzuki, 2012), and possibly one heterospecific 

alarm (Suzuki, 2016b), our study provides the first quantitative evidence of eavesdropping 

on functionally referential heterospecific alarm calls. 

  

Our playback experiment, combined with blind scoring of bill angles, indicated that 

magpies exhibited a different visual search strategy in response to miner aerial compared to 

mobbing alarm calls, which provides strong evidence for detailed understanding of another 

species’ referential alarm calls. The differences in head orientation occurred despite the 

playback speaker being at a constant height, so call origin provided no cue about the 

elevation of the threat. Noisy miner aerial alarms indicate a threat from above, often a 

predatory bird in flight (Cunningham & Magrath, 2017; Farrow et al., 2017), so magpies 

adjusting their visual search to higher elevations may be more likely to detect the threat and 

thus make appropriate decisions about evasive action. The similar maximum bill angles 

found in response to the thrown ball (Experiment 1) and the aerial alarm-call playback 

(Experiment 2) implies that the alarm call prompts searching well above the ground, given 

that the ball was up to 50 degrees above horizontal for the bird and corvids often have an 

extensive visual field above the eye (Fernández-Juricic, O’Rourke, & Pitlik, 2010). Mobbing 

alarm calls indicate a terrestrial threat or a perched predator (Cunningham & Magrath, 

2017; Farrow et al., 2017), so that the threat will usually be at a lower elevation than that 

indicated by aerial calls. Thus, adjusting the visual search strategy to lower elevations in 

response to mobbing calls could lead to more rapid detection of the predator. The higher 

bill angle in response to the mobbing calls (Experiment 2) compared to the ball rolling on 

the ground (Experiment 1) is expected because mobbing calls could indicate a predator on 

or above the ground, whereas the ball rolling was unambiguously on the ground. 

 

The differences in head orientation following eavesdropping on heterospecific aerial 

and mobbing calls are consistent with findings on conspecific communication, in which 

individuals responded to different types of alarm calls with appropriate changes in head 

orientation (Introduction; Evans et al., 1993; Farrow et al., 2017; Kaplan & Rogers, 2013; 

Suzuki, 2012). Furthermore, changes in response to different alarm calls can increase the 

chance of detecting specific predators; Japanese great tits were more likely to detect snake-
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like objects after ‘jar’ alarm calls, given to snakes, than after ‘chicka’ alarm calls, given in 

other circumstances (Suzuki, 2018). Just as in such communication about predator type 

within species, one benefit of eavesdropping is the gain of information on how best to 

detect and avoid a specific type of threat. Our conclusions would also hold if changing bill 

angle is in part a defensive posture, with the bill directed towards the expected origin of 

danger. This seems a possibility in magpies, which are large, aggressive birds that use their 

bills in attack on other species, including humans (Higgins et al., 2006; Jones, 2002). Birds 

have also been shown to engage in gaze-following (Butler & Fernández-Juricic, 2014), so the 

orientation of the bill could be a cue to others about the source of risk. Indeed, Australian 

magpies appear to use their bills to point towards known danger (Kaplan, 2011), although 

the benefit of pointing seems limited if birds are responding solely to alarm calls and have 

not yet seen a threat. 

 

The duration of vigilance to aerial and mobbing alarms was generally similar, except 

that response to an aerial alarm increased if it was played second. A greater response to 

aerial alarm calls might be expected given that they indicate more immediate danger (a fast-

moving predator) than mobbing calls. The longer response when an aerial alarm call 

followed a mobbing call could be because the threat appears to have escalated. Conversely, 

if a mobbing alarm follows an aerial alarm, any threat may appear to have subsided, so that 

there is no increase in vigilance, despite the call also indicating that a predator remains in 

the vicinity. Another possibility is that a lower angle of searching visually in response to 

previous mobbing calls might not detect predators in flight, whereas a greater angle of 

searching visually to previous aerial alarms might also mean detection of predators at lower 

elevation. If so, prior searching area might affect current response. Whatever the specific 

explanation for magpies, prior information about levels of risk is known to influence alarm-

call responses in other species: when information from pied babbler, Turdoides bicolor, 

sentinels suggested increased levels of risk, group members were more likely to flee to 

nearby cover in response to an alarm call compared to when a sentinel indicated lower 

levels of risk (Bell et al., 2009). In general, responses to current information are likely to be 

influenced by prior information, with that most recently acquired of most relevance. 
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Changes in avian head orientation provide an indication of general visual search 

directions, sufficient in our study when considering the signalling of threats that are most 

likely present at very different elevations. To associate changes in head orientation with 

more specific changes in gaze direction, it is necessary to know the position of the centres of 

acute vision (e.g. foveae) in the retina to project them into the visual space (Butler et al., 

2016). This is important because of large inter-specific variation in the position of the 

centres of acute vision in birds (Moore et al., 2012), even between closely related species 

(Moore, Pita, Tyrrell, & Fernández-Juricic, 2015). A recent study concluded that the centres 

of acute vision project on average to the fronto-lateral sides of the head (Moore et al., 

2017). If we assume that the projection of the Australian magpie centres of acute vision falls 

into a similar range, changes in the vertical orientation of the eye will change the projection 

of the centres of acute vision. However, detailed visual studies are needed to specify gaze 

direction in this species; various additional approaches could be adopted in the future, 

including eye-tracking technology (Tyrrell, Butler, Yorzinkski, & Fernández-Juricic, 2014), 

top-view videos of head movements in conjunction with anatomical estimates of the 

positioning of the retinal centre of acute vision (Butler, Templeton, & Fernández-Juricic, 

2018), and cognitive tests (Suzuki, 2018). 

 

Overall, we conclude that Australian magpies gain information on the type or 

location of predatory threat by eavesdropping on noisy miner alarm calls. Our quantitative 

work on head orientation therefore supports and extends previous studies finding that 

eavesdropping on heterospecific alarm calls can provide valuable information on danger 

(review: Magrath et al., 2015a). The ability to use specific information on danger by 

eavesdropping on heterospecific vocalisations is likely to be adaptive by complementing 

both personal information and information from conspecific alarm calls (Goodale, 

Beauchamp, Magrath, Nieh, & Ruxton, 2010; Magrath et al., 2015a; Schmidt, Dall, & Van 

Gils, 2010; Seppänen, Forsman, Mönkkönen, & Thomson, 2007). Gathering information 

allows animals to reduce uncertainty and to choose appropriate responses to present 

conditions (Dall, Giraldeau, Olsson, McNamara, & Stephens, 2005; Danchin, Giraldeau, 

Valone, & Wagner, 2004). Relying solely on personal information, gained through vigilance 

and other activities, is time-consuming and reduces time for other activities (Danchin et al., 

2004; Seppänen et al., 2007). Social information, that arises from the cues and signals of 
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others, including heterospecifics, can therefore be valuable (Danchin et al., 2004). Since 

heterospecifics usually constitute most of any given community and are not necessarily 

competitors, they have the potential to provide a wealth of information at little cost 

(Goodale et al., 2010; Seppänen et al., 2007). Individuals are likely to gain the greatest 

benefit when they respond to the detailed information from heterospecific alarm calls, as 

magpies do to miner alarms, rather than merely the presence or magnitude of a threat. 
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Table 1. Linear Mixed Model examining factors affecting maximum bill angle in Experiment 
1.  
 

  Fixed effect  df Effect ± SE χ2 P 

Minimal model (Intercept)  9.221 ± 1.862   

 Treatment 1 20.442 ± 2.512 39.740 <0.001 

Dropped terms Juvenile presence 1  0.083 0.773 

 Sex 1  1.882 0.170 

 Group size 1  0.188 0.665 

 Treatment order 1  1.402 0.236 

 Treatment:Order 1  0.172 0.679 

Random term Individual ID  7.812 ± 2.795   

Significant terms are indicated in bold. Effect sizes (± SE) for fixed effects were obtained 
from the minimal model; variance (±SD) given for the random term is in italics. N = 25 focal 
birds, each receiving both treatments. 
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Table 2. Linear Mixed Models examining factors affecting maximum bill angle, mean bill 
angle and response duration (log transformed) in Experiment 2.  
 

  Fixed effect  df Effect ± SE χ2 P 

Maximum bill angle     

Minimal model (Intercept)  17.636 ± 2.937   

 Playback treatment 1 6.884 ± 1.610 14.272 0.001 

Dropped terms Juvenile presence 1  3.342 0.068 

 Sex 1  0.328 0.567 

 Group size 1  3.418 0.064 

 Playback order 1  0.624 0.430 

 Scorer 1  0.377 0.539 

 Playback treatment:Order 1  0.710 0.399 

Random term Individual ID  64.35 ± 8.022   

      

Mean bill angle     

Minimal model (Intercept)  8.816 ± 2.843   

 Playback treatment 1 5.906 ± 1.705 10.091 0.001 

Dropped terms Juvenile presence 1  0.873 0.350 

 Sex 1  0.916 0.339 

 Group size 1  0.136 0.713 

 Playback order 1  1.323 0.250 

 Scorer 1  1.123 0.289 

 Playback treatment:Order 1  0.841 0.359 

Random term Individual ID  24.340 ± 4.934   

      

Response duration     

Minimal model (Intercept)  0.828 ± 0.311   

 Playback treatment:Order 1 0.294 ± 0.125 5.050 0.025 

 Playback treatment 1  1.511 0.219 

 Playback order 1  3.025 0.082 

Dropped terms Juvenile presence 1  2.342 0.126 

 Sex 1  1.863 0.172 

 Group size 1  1.020 0.313 

 Scorer 1  0.397 0.529 

Random term Individual ID  0.002 ± 0.048   

Significant terms are indicated in bold. Effect sizes (± SE) for fixed effects were obtained 
from the minimal model; variance (±SD) for the random term is in italics. N = 30 birds, each 
receiving all treatments. 



 

29 
 

Figure Captions 

Figure 1. Spectrograms of examples of playbacks used in Experiment 2. (a) Miner aerial 

alarm call, (b) miner mobbing alarm call, and (c) rosella contact call, used as a control. Each 

magpie received a unique set of playbacks. Alarm-call playbacks always had five elements, 

while rosella playbacks varied between four and eight elements because calls naturally 

varied in element duration and tempo. Spectrograms were prepared in Raven Pro 1.5, using 

a Blackman window function, size of 23.8 ms and 3 dB filter bandwidth of 68.9 Hz. 

 

Figure 2. Measurement of bill angle. Tracker software was used to obtain x,y coordinates at 

the base (B, xbyb) and tip (T, xtyt) of the bill for every selected video frame during the 

magpie’s response. Bill length was then calculated as the distance from B to T (the 

hypotenuse), using the formula √(( xt-xb)2+( yt-yb)2)), on a frame when the bird was side-on 

to the camera. Subsequently, the angle of the bill to horizontal (degrees) was calculated as 

arcsin((yt-yb)/bill length). Image drawn by Branislav Igic. 

 

Figure 3. Maximum bill angle of a magpie when a ball was either rolled or thrown past. 

Columns show predicted means and 95% confidence limits for those means; scatterplot 

shows the difference in maximum bill angle according to treatment for each bird. N = 25 

magpies with data from both treatments. 

 

Figure 4. (a) Maximum and (b) mean bill angles of magpies in response to playback of noisy 

miner mobbing alarm calls and aerial alarm calls. Columns show predicted means and 95% 

confidence limits for those means; scatterplot shows the difference in bill angle according to 

treatment for each bird. N = 30 magpies with data from both treatments. 

 

Figure 5. Duration of response according to playback order and whether the playback was a 

noisy miner mobbing alarm call or aerial alarm call. Columns show predicted means and 

95% confidence intervals for those means; scatterplot shows the difference in bill angle 

according to treatment for each bird. N = 30 magpies in total, with 15 receiving each 

playback order. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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