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Abstract
We define the notion of a hierarchically cocompact classifying space for a family of subgroups
of a group. Our main application is to show that the mapping class group ModpSq of any
connected oriented compact surface S, possibly with punctures and boundary components and
with negative Euler characteristic has a hierarchically cocompact model for the family of virtually
cyclic subgroups of dimension at most vcd ModpSq ` 1. When the surface is closed, we prove that
this bound is optimal. In particular, this answers a question of Lück for mapping class groups of
surfaces.

1. Introduction

Let G be a group and denote by F a family of subgroups of G, that is a collection of subgroups

of G closed under conjugation and finite intersection. We denote by EFG the classifying space

for the family F. A G-CW-complex X is said to be a model for EFG if XH is contractible for

all H P F, and XH is empty otherwise. The minimal dimension of a model for EFG, denoted

by gdFG, is called the geometric dimension of G for the family F.

Throughout we shall consider nested families Fi of subgroups of G. These are collections of

families of subgroup tFiupiPNq such that Fi Ă Fj if and only if i ă j.

Definition 1.1. We say a G-CW-complex X is a hierarchically cocompact (hierarchically

finite type) model for EFG if there are nested families Fi (i P N) such that F “
Ť

iPN Fi, and

that there are cocompact (finite type) models for EFiG for all i P N.

By the universal property for classifying spaces for families, this is equivalent to saying that

there is a model for EFG which is a mapping telescope of cocompact (finite type) models for

EFiG. This follows from an argument analogous to [18, Theorem 6.11].

Note that, under the additional hypothesis that for a countable collection of families tFiupiPNq
that there is cocompact (finite type) model for EFiXFjG for all i, j P N, then we can always
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ensure that we have a nested family as above, see the construction in the first paragraph of the

proof of Lemma 2.6 below.

Definition 1.1 was motivated by the following conjecture of Juan-Pineda and Leary.

Conjecture 1.2 Juan-Pineda–Leary, [12]. Denote by Vc the family of virtually cyclic

subgroups of a group G, and let G be a group admitting a cocompact model for EVcG. Then G

is virtually cyclic.

This conjecture has been proved in many cases, such as, for example, hyperbolic groups [12],

elementary amenable groups [9], one-relator groups, CAT(0)-groups, acylindrically hyperbolic

groups, 3-manifold groups [22], and linear groups [23]. In all of these examples it was shown

that these groups cannot admit a model for EVcG with a finite type 0-skeleton, a condition

equivalent to G having a finite set of virtually cyclic subgroups tH1, ...,Hnu such that every

virtually cyclic subgroup is sub-conjugate to Hi for some 1 ď i ď n. T. von Puttkamer and

X. Wu [23] actually conjecture that any finitely presented group satisfying this condition is

already virtually cyclic. They also exhibit a finitely generated example of type F
0
. Note, that

non-finitely generated examples were already known, as for example [21, 6.4.6] the famous

construction of Higman-Neumann-Neumann with one conjugacy class of elements.

In line with convention, we write EG for a classifying space for proper actions and EG for

EVcG. Denote the geometric dimension for proper action by gdG and gdVcG by gdG. We also

say that a group admitting a hierarchically cocompact model for EG is of type hF. Finally, we

use the notation hF
8

for a group admitting a hierarchically finite type model for EG.

In this paper we provide a method by which to construct hierarchically cocompact (hierarchically

finite-type) models for EG out of cocompact (finite-type) models for EG, provided that

commensurators of virtually cyclic subgroups satisfy some further finiteness conditions. This

enables us to show that many classes of finitely presented groups that do not satisfy the

hypothesis of Conjecture 1.2, in particular are not of type F
0
, are still of type hF. Based on our

observations of groups of type hF, we ask the following question.

Question 1.3. Suppose a group G is of type hF. Are commensurators of virtually cyclic

subgroups of type F8?

The main result of the paper is the following.

Theorem 1.4. Let S be a compact connected orientable surface of genus g, with a finite

number of boundary components and punctures, and with negative Euler characteristic. Then the

mapping class group ModpSq has a hierarchically cocompact model for EModpSq of dimension

vcd ModpSq ` 1. Moreover, if S is closed and g ě 1, then

gd ModpSq “ cd ModpSq “ vcd ModpSq ` 1.
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Since gd ModpSq “ vcd ModpSq (see [1]), we note that this answers a question by Wolfgang

Lück which asks for which countable groups G the inequality

gdG´ 1 ď gdG ď gdG` 1

holds, see for example [15, Problem 9.51]. By Theorem 1.4, the above inequality is always

satisfied for the mapping class group of any compact connected orientable surface S with a

finite number of boundary components and punctures, and and χpSq ă 0.

Roughly stated, the hierarchically cocompact model for EModpSq can be obtained by attaching

certain fibred spaces to the Teichmüller space of S. These are associated to the Weyl groups

of the infinite cyclic subgroups H “ xfy ď ModpSq representing the set I of the complete

sub-conjugacy classes of infinite virtually cyclic subgroups of ModpSq. These spaces fibre over

products of a Euclidean space and a Teichmüller space corresponding to the pseudo-Anosov and

the trivial components in the canonical reduction system of f P ModpSq respectively. Since the

attaching maps are equivariant, Teichmüller spaces could be replaced by spines or the relevant

minimal models for the local subgroups to obtain the desired hierarchically cocompact model

of minimal dimension.

It is worth pointing out, that if one applies the above attaching construction to only a finite

subset J Ă I, then the resulting space will be a cocompact model for the classifying space of

ModpSq for the family of all virtually cyclic subgroups that are sub-conjugate to a subgroup in

J .

Finite dimensional models for EModpSq have been exhibited by Degrijse and the second

author in [5] for closed surfaces S (the obtained bound on dimension is 9g ´ 8) and

later by Juan-Pineda and Trujillo-Negrete in [13] for surfaces S that have negative Euler

characteristic with possible punctures and boundary components (the obtained bound is

rModpSq : ModpSqrmsspvcd ModpSq ` 1q, m ě 3 where ModpSqrms is the level m congruence

subgroup). Apart from exhibiting models that are mapping telescopes of cocompact models,

our bounds substantially improve on the bounds given there. In particular, for closed surfaces,

our bounds are optimal.

Furthermore, recently Bartels and Bestvina showed that mapping class groups of oriented

surfaces G of finite type satisfy the Farrell-Jones conjecture [2]. For example, the assembly map,

which is induced by the G-map EGÑ tptu,

HG
n pEG;KZq

–
ÝÑ KnpZGq,

is an isomorphism, where HG
n p´;KZq is the Bredon homology theory with the K-theory

functor coefficients. In particular, since homology commutes with colimits and when χpSq ă 0,

G “ ModpSq is of type hF, the left-hand side of the isomorphism is a colimit of, hopefully, more

computable homological terms. For a detailed introduction into the Farrell-Jones conjecture

the reader is referred to [15].

In the next section, we give a recipe for constructing hierarchically cocompact models for

classifying spaces. We also exhibit some examples in Section 3. Since we will need some results

on Bredon cohomological dimensions later when giving lower bounds for the dimensions of our

models, we give a brief introduction into Bredon cohomology in Section 4. Section 5 is devoted

to proving our main result, Theorem 1.4.
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2. Constructing hierarchically cocompact models

The following construction, due to Lück and Weiermann [17], will play a crucial role in what is

to come:

Let F and G be families of subgroups of a given group G such that F Ď G.

Definition 2.1. [17, (2.1)] A strong equivalence relation on Gr F, denoted „, is an

equivalence relation on Gr F satisfying:

– For H,K P Gr F with H ď K we have H „ K.

– Let H,K P Gr F and g P G, then H „ K ðñ gHg´1 „ gKg´1.

Denote by rGr Fs the equivalence classes of „ and define for all rHs P rGr Fs the following

subgroup of G:

NGrHs “ tg P G | rgHg
´1s “ rHsu.

Now define a family of subgroups of NGrHs by

FrHs “ tK ď NGrHs |K P Gr F , rKs “ rHsu Y pFXNGrHsq,

where FXNGrHs is the family of subgroups of NGrHs that are in F.

Remark 2.2. A typical example of a pair of families that has a strong equivalence relation

is the finite and the virtually cyclic subgroups of G. Here, the equivalence relation is the

commensurability.

We need the following theorem of Lück and Weiermann.

Proposition 2.3. [17, Theorem 2.3] Let F Ď G be families with a strong equivalence relation

on Gr F. Denote by I a complete set of representatives of the conjugacy classes in rGr Fs.

Then the G-CW-complex given by the cellular G push-out

Ů

rHsPI GˆNGrHs EFXNGrHsNGrHs
i //

Ů

rHsPI idGˆNGrHsfrHs

��

EFG

��
Ů

rHsPI GˆNGrHs EFrHsNGrHs // X

where either i or the frHs are inclusions, is a model for EGG.

The condition on the two maps being inclusions is not a big restriction as one can replace the

spaces by the mapping cylinders, see [17, Remark 2.5].

We also need the following transitivity principle.

Proposition 2.4. [17, Proposition 5.1] Let F Ď G be families of subgroups of a group G.

Assume that G admits a cocompact (finite type) model XG for EGG and that every subgroup

H P G admits a cocompact (finite type) model XFXHpHq for EFXHH. Then G admits a
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cocompact (finite type) model for EFG of dimension

dimXG ` suptdimXFXHpHq | H P Gu.

Theorem 2.5. Let F Ď G be families with a strong equivalence relation on Gr F, such that

there are countably many equivalence classes of subgroups in Gr F. Suppose that for every H P

Gr F, NGrHs admits a cocompact (finite type) model XFXNGrHspNGrHsq for EFXNGrHsNGrHs.

Further assume that G admits a cocompact (finite type) model XF for EFG and that for each

H P G, there is a cocompact (finite type) model XFrHspNGrHsq for EFrHsNGrHs, then G admits

a hierarchically cocompact (hierarchically finite type) model for EGG of dimension

suptdimXF,dimXFXNGrHspNGrHsq ` 1,dimXFrHspNGrHsq | H P Gr Fu.

Proof. Let S be a set of representatives of some finite number of conjugacy classes in rGr Fs

and denote

pFrSs :“ tK ď G |K P Gr F , Dg P G,H P S, rKgs “ rHsu Y F.

Consider the G-push-out of Proposition 2.3 replacing G by pFrSs:

Ů

rHsPS GˆNGrHs XFXNGrHspNGrHsq
i //

Ů

rHsPS idGˆNGrHsιrHs

��

XF

��
Ů

rHsPS GˆNGrHs cylpfrHsq // X

where ιrHs is the natural inclusion, and frHs : XFXNGrHspNGrHsq Ñ XFrHspNGrHsq is given by

the universal property for classifying spaces for a family. X is now a cocompact (finite type)

model for E
pFrSsG, as it is a G-push-out of cocompact (finite type) complexes. The result now

follows from the fact that G “
Ť

SĎI,|S|ă8
pFrSs and the remark after Definition 1.1.

We denote pFrHs :“ tK ď G |K P Gr F , Dg P G, rKgs “ rHsu Y F and note that pFrHs “ pFrSs
exactly when S “ tHu. We end this section with a useful lemma.

Lemma 2.6. Suppose F Ď G are families of subgroups of a group G satisfying the conditions

of Theorem 2.5. Assume that for each H P Gr F, G admits cocompact (finite type) models for

both E
pFrHsG and EFXHH. Then G admits a hierarchically cocompact (finite type) model for

EGG.

Proof. For any two families F1 and F2 of subgroups of G, we have unique maps (up to G-

homotopy) EF1XF2
GÑ EF1

G and EF1XF2
GÑ EF2

G. The double mapping cylinder X gives a

model for EF1YF2
G, and that if EF1XF2

G, EF1
G and EF2

G are cocompact (finite type), then

so is X.

Now, let rH1s ‰ rH2s P I and F1 “ pFrH1s, and F2 “ pFrH2s. Then, obviously F1 X F2 “ F and

F1 Y F2 “ ppFrH1sqrH2s “: pFrH1, H2s. By assumption there are cocompact (finite type) models

for EF1
G and EF2

G, and the transitivity result in Proposition 2.4 yields that there is also a
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cocompact (finite type) model for EF1XF2
G. The double mapping cylinder X gives a cocompact

(finite type) model for EF1YF2
G.

For each i ą 2, let pFrH1, ...,His :“ pFrH1, ...,Hi´1srHis. Proceed by induction, to construct

a cocompact (finite type) model for E
pFrH1,...,His

G from cocompact (finite type) models for

E
pFrH1,...,Hi´1s

G and E
pFrHis

G as above.

3. Some examples

In the next examples, let F and Vc be the families of finite and virtually cyclic subgroups of

a given group G, respectively, equipped with the commensurability relation on Vcr F (see

Remark 2.2).

3.1. Thompson groups

In [18] the authors introduced a similar condition for the family of finite subgroups, quasi-F8,

which asks for a group to have, for any k P Zą0, finitely many conjugacy classes of finite

subgroups of order k, and that normalisers of all finite subgroups are of type F8. [19, Theorem

4.9] shows that generalised Thompson groups, which are automorphism groups of valid, bounded

and complete Cantor-algebras are quasi-F8 and hence are hF8.

3.2. Hyperbolic groups

Following [17], a group is said to satisfy pNMFfinĎVcq, if every virtually cyclic subgroup is

contained in a unique maximal virtually cyclic group V , such that NGpV q “ V. Then, by

[17, Corollary 2.11], the push-out in Proposition 2.3 reduces to

GˆV EV //

��

EG

��
G{V // X,

where X is a cocompact model for E
zFfinrV s

G, provided there is a cocompact model for EG. Now,

apply Lemma 2.6, to conclude that any group satisfying pNMFfinĎVcq that has a cocompact

model for EG is of type hF. In particular, hyperbolic groups satisfy pNMFfinĎVcq [12, Remark

7], and hence are of type hF.

3.3. Polycyclic groups

Polycyclic groups are of type hF. This follows from [17, Lemma 5.15] - for every infinite virtually

cyclic group V , there exists a cyclic subgroup C commensurate to V such that NGrCs “ NGpCq,

and hence a model for EFrV sNGrV s is given by EpNGpCq{Cq by pulling back the action. Now,

since G is polycyclic, we have a cocompact EG and a cocompact EpNGpCq{Cq for every C.

Now apply Theorem 2.3.
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3.4. Soluble Baumslag-Solitar groups

One can also show that the soluble Baumslag-Solitar groups G “ BSp1, nq are of type hF.

The group G is torsion-free and admits a cocompact 2´dimensional model for EG “ EG.

Next, we show that for all cyclic subgroups H ď G, we have a finite model XFrHspNGrHsq for

EFrHsNGrHs and apply Theorem 2.5. Recall,

BSp1, nq – Zr 1
n s ¸ Z.

Any infinite cyclic subgroup H not contained in Zr 1
n s, is isomorphic to its commensurator, see

[8, Lemma 5], and hence NGrHs has a point as a model for EFrHsNGrHs, and R is a cocompact

model for EG. Infinite cyclic subgroups of Zr 1
n s, on the other hand, are all commensurate to

K “ x 1
ny ď Zr 1

n s. K has the entire G as its commensurator. Since G is an HNN-extension with

the vertex group K, the associated Bass-Serre tree is a cocompact model for EFrKsG. Applying

Theorem 2.5, we obtain that BSp1, nq is of type hF for all n ą 0.

Note that when n ą 1, the normaliser NGpx
1
nyq “ Zr 1

n s is not even finitely generated. However,

in all examples in this note, the commensurators of virtually cyclic subgroups are of type F8 . It

is not clear whether this is just an artefact of our construction, and hence we ask, see Question

1.3:

Question. Suppose a group G is of type hF. Are commensurators of virtually cyclic subgroups

of type F8?

4. Bredon cohomology

In this section we introduce all necessary facts and results regarding Bredon cohomology needed

later on to determine lower bounds for dimensions of our classifying spaces. All results in this

section are well known; a good introduction to the subject can be found in [7].

Let F denote a family of subgroups of a given group G as before. We consider the category

OFG, which has as objects the transitive G-sets with stabilisers in F. Morphisms in OFG

are G-maps between those G-sets. Modules over the orbit category, called OFG-modules are

contravariant functors from the orbit category to the category of abelian groups. Exactness is

defined pointwise: a sequence

AÑ B Ñ C

of OFG-modules is exact at B if and only if the sequence of abelian groups

ApG{Kq Ñ BpG{Kq Ñ CpG{Kq

is exact at BpG{Kq for every G{K P OFG . The trivial OFG-module, which is denoted Zp´q, is

the constant functor Z from OFG to the category of abelian groups.

The category OFG-Mod of OFG-modules has enough projectives. Hence we can consider a

projective resolution

P˚p´q Ñ Zp´q Ñ 0
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of the trivial module Zp´q. The Bredon cohomology functors H˚FpG,´q are defined as derived

functors of HomFpZp´q,´q. In particular, for each N “ Np´q P OFG-Mod,

H˚FpG,Nq “ H˚pmorpP˚, Nqq.

We can now define cohomological dimensions in the Bredon-setting with analogous properties

to ordinary cohomology. Let n ě 0. We say G has Bredon-cohomological dimension cdFG ď n

if there is a projective resolution of Zp´q of length n. This is equivalent to Hn`1
F pG,Nq “ 0 for

all OFG-modules N.

Let X be a model for EFG. Then the cellular chain complex C˚pXq gives rise to a free resolution

C˚pXqp´q Ñ Zp´q Ñ 0

by putting C˚pXqpG{Kq “ C˚pX
Kq for all K P OFG . In particular,

cdFG ď gdFG.

Furthermore, [14, Theorem 13.19], if cdFG ě 3, then gdFG “ cdFG.

As before, for F the family of finite groups, we write cdG and gdG, and for F the family

of virtually cyclic subgroups we write cdG and gdG respectively. Note that for torsion-free

groups, cdG “ cdG and gdG “ gdG and Bredon-cohomology for the family of finite subgroups

becomes ordinary cohomology over the group ring ZG.

We will quite often make use of this simple observation. When G is virtually torsion-free, then

cdG ě vcdG. So, if G admits a model for EG of dimension vcdG, then it must necessary be

of minimal dimension, i.e. realising gdG.

5. Mapping class groups

In this section, we prove our main theorem and show that the mapping class group of any

compact orientable surface S with possibly finitely many punctures and boundary components,

and with negative Euler characteristic χpSq is of type hF with a hierarchically cocompact model

of dimension vcd ModpSq ` 1. We recall some necessary background on mapping class groups

of surfaces and refer the reader to [6] and [11] for further details.

Let S be a connected compact oriented surface with finitely many punctures and χpSq ă 0. The

mapping class group of S, denoted by ModpSq, is the group of isotopy classes of orientation

preserving diffeomorphisms of S pointwise fixing the boundary BS

ModpSq “ Diff`pS, BSq{Diff0
pS, BSq,

where Diff0
pS, BSq is the subgroup of Diff`pS, BSq consisting of elements that are isotopic to

the identity.

Any diffeomorphism of S induces an automorphism of H1pS,Z{mZq for m ě 2. This gives a

well-defined homomorphism

ModpSq Ñ AutpH1pS,Z{mZqq

where the kernel is denoted by ModpSqrms and it is called the level m congruence subgroup of

ModpSq.
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Suppose now that S has no boundary. Let tα1, . . . , αnu be a collection of pairwise disjoint,

homotopically distinct essential simple closed curves in S. Denote by σ “ trα1s, . . . , rαnsu the

corresponding isotopy classes.

Inclusion homomorphism. ([6, Thm. 3.18]). Let Nσ be an open regular neighbourhood of Ynj“1αj
in S. Denote Sσ “ S rNσ and set Sσ “ Y

k
i“1Si where each Si is a connected subsurface. Let

tβ1, γ1u, . . . , tβk, γku denote the pairs of boundary components of Sσ that bound the annuli in

Nσ. The inclusion Sσ ãÑ S induces a homomorphism

ησ : ModpSσq “
k
ź

i“1

ModpSiq Ñ ModpSq

with kernel xTβ1
T´1
γ1 , . . . , TβkT

´1
γk
y. The restriction ηi :“ ησ|ModpSiq is the map induced by the

inclusion Si ãÑ S.

Capping homomorphism. ([6, Prop. 3.19]) Let pSσ be the surface obtained from Sσ by capping

the boundary components with once-punctured disks and write pSσ “ Y
k
i“1

pSi. The inclusion

Sσ ãÑ pSσ induces a homomorphism

θσ : ModpSσq�
k
ź

i“1

ModppSi,Ωiq Ď ModppSσq

with kernel xTβ1
, Tγ1 , . . . , Tβk , Tγky. Here Ωi denotes the set of punctures coming from the

boundary components of Si. The image of the restriction θi :“ θσ|ModpSiq, denoted ModppSi,Ωiq,

is the subgroup of ModppSiq consisting of all the elements that fix Ωi pointwise. ModppSi,Ωiq

contains the pure mapping class group and hence is finite index in ModppSiq.

Cutting homomorphism. ([6, Prop. 3.20]) Define ModpSqσ “ tg P ModpSq | gpσq “ σu. There is

a well-defined homomorphism

ρσ : ModpSqσ Ñ ModpS rYnj“1αjq “ ModppSσq

with free abelian kernel xTα1 , . . . , Tαny generated by the Dehn twists about the curves α1, . . . , αn.

Let ModpSq0σ be the finite index subgroup of ModpSqσ consisting of all the elements that fix

each curve αi with orientation. Denote the restriction ρσ,0 “ ρσ|ModpSq0σ
. Then θσ “ ρσ,0 ˝ ησ

(see the diagram on page 91 of [6]).

The canonical form. ([6, Cor. 13.3]) Let f P ModpSq and let σ “ σpfq be its canonical reduction

system (see [6, §13.2.2]). Let Sk`1, . . . , Sk`n be the pairwise disjoint annuli that are the closed

neighbourhoods of the curves α1, . . . , αn representing σ. Then there is a representative φ of

f that permutes the Sl, so that some power of φ leaves invariant each Sl, 1 ď l ď n` k. By

applying Nielsen-Thurston Classification Theorem to each Sl, one obtains that there exists

p ą 0 so that φppSlq “ Sl for all 1 ď l ď n` k and

fp “
k
ź

i“1

ηipfiq
n
ź

j“1

Tnjαj (5.1)

where each fi P ModpSiq is either pseudo-Anosov or the identity and nj P N for 1 ď i ď k,

1 ď j ď n.

Remark 5.1. By a result of Ivanov [11, Corollary 1.8], if f P ModpSqrms, m ě 3, then the

integer p in (5.1) can always be taken to be one.
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Remark 5.2 [13, 3.10]. By Theorem 1.2 in [11], ModpSqrmsσ Ď ModpSq0σ. Since θσ “ ρσ,0 ˝ ησ,

it follows that θipfiq “ f̂i for 1 ď i ď k.

For simplicity, we will often denote G “ ModpSq. Let F and Vc the families of finite and virtually

cyclic subgroups of G, respectively, equipped with the commensurabilty relation on Vcr F (see

Remark 2.2). The Teichmüller space T pSq is a CAT(0)-space on which G acts properly. So, it

gives a model for EG. [1, Corollary 1.3] of Aramayona and Mart́ınez-Pérez states that there is

a cocompact model for EG of minimal dimension gdG “ vcdG. We need the following minor

generalisation of this result.

Proposition 5.3. Let S be a compact (possibly disconnected) surface with possible punctures

and boundary components. Then there is a cocompact model for EModpSq of dimension

gd ModpSq “ vcd ModpSq.

Proof. In [1], this has been proven for connected S. Suppose S decomposes into the disjoint

union of diffeomorphic copies of its connected components

S “ \m1S1 ¨ ¨ ¨ \
mq Sq.

Subsequently, this implies that ModpSq Ď
śq
i“1 ModpSiq o Σmi and is of finite index. Combining

[10, Theorem 4.1] and the extension theorem for duality groups in [4, Thm. 3.5], gives us that

vcd ModpSq “
q
ÿ

i“1

mi ¨ vcd ModpSiq.

The next lemma shows that there exists a cocompact model for EModpSq of dimension

vcd ModpSq. Since vcd ModpSq ď gd ModpSq, the result follows.

Lemma 5.4. Let K be a group. Suppose K has a cocompact model X for EK. Then the

wreath product W “ K o Σm has a cocompact model for EW of dimension m ¨ dimX.

Proof. The wreath product W acts on Y “ X ˆ ¨ ¨ ¨ ˆX which consists of m-copies of X with

a diagonal action of Km and a permutation action of Σm. Note that W acts cocompactly on Y

and it is a model for EW of dimension m ¨ dimX.

To establish Theorem 1.4, it remains to show, see Theorem 2.5, that for each infinite cyclic

subgroup H Ď G, there are cocompact models for EFXNGrHsNGrHs and EFrHsNGrHs where

NGrHs is the commensurator of H in G of the required dimensions.

Proposition 5.5 [13, Prop. 4.8]. Let S be an orientable closed surface with finitely many

punctures and χpSq ă 0. Suppose f P G generates an infinite cyclic subgroup H. Then for any

integer l ą 0 such that f l P ModpSqrms, m ě 3, NGrHs “ NGpf
lq holds.

We need the following slight generalisation of [13, Proposition 4.12] of Juan-Pineda and

Trujillo-Negrete.
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Proposition 5.6. Suppose S is an orientable closed surface with finitely many punctures and

χpSq ă 0. Let f P ModpSqrms, m ě 3, with the canonical reduction system σ with f̂a`1, . . . , f̂k
pseudo-Anosov and

ρσpfq :“
´

id1, . . . , ida, f̂a`1, . . . , f̂k

¯

P

k
ź

i“1

ModppSi,Ωiq,

then there is a central extension

1 Ñ Zn Ñ CModpSqpfq
0 ρσÝÑ

a
ź

i“1

ModppSi,Ωiq
k
ź

j“a`1

Vj Ñ 1. (5.2)

where Vj “ CModp pSj ,Ωjq
pf̂jq is virtually cyclic for each a` 1 ď j ď k. Also,

1 Ñ Zn Ñ NModpSqpfq
ρσ
ÝÑQÑ 1, (5.3)

such that Q Ď Modp\ai“1
pSiq ˆA, where A Ď NModp\kj“a`1

pSkq
ppf̂a`1, . . . , f̂kqq is a finite exten-

sion of
śk
j“a`1 Vj .

Proof. The extension (5.2) has already been established in [13, Proposition 4.12]. The kernel

is generated by the Dehn twists about the curves α1, . . . , αn which are fixed by CModpSqpfq
0,

and hence is central.

By Lemma 3.8 of [13], for every g P NModpSqpfq, we have gpσq “ σ. Therefore,

NModpSqpfq Ď ModpSqσ. Let Q “ ρσpNModpSqpfqq. Note that Q is a finite extension of
śa
i“1 ModppSi,Ωiq

śk
j“a`1 Vj and it is contained in NModp pSσq

pρσpfqq. So, to obtain (5.3), it

suffices to show that any g P ModppSσq that normalises ρσpfq is contained in the subgroup

Modp\ai“1
pSiq ˆModp\kj“a`1

pSkq of ModppSσq.

Suppose this is not the case, and say g maps pS1 diffeomorphically onto pSk. Then for any x P pS1,

we have ρσpfqgpxq “ gρσpfq
˘1pxq “ gpxq. This shows that pfk is the identity on pSk which is a

contradiction.

Lemma 5.7. Let 1 Ñ Zn Ñ GÑ QÑ 1 be an extension of groups whereQ is finitely generated

with vcdQ “ k ă 8. Then vcdG “ n` k.

Proof. We can assume Q is torsion-free. Now we apply a result of Fel’dman, see [3, Theorem

5.5]

We will quite often make use of the following corollary.

Corollary 5.8. Let 1 Ñ Zn Ñ GÑ QÑ 1 be an extension of groups where Q has a

cocompact model for EQ of dimension vcdQ “ k ă 8. Then G has a cocompact model for EG

of dimension gdG “ vcdG “ n` k.

Proof. Let F be the family of finite subgroup of G and G be the family of the preimages of all

the finite subgroups of Q under the projection of G onto Q. Applying Proposition 2.4 together

with the general fact that finitely generated virtually free abelian groups of rank m have the
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Euclidean space of dimension m as a cocompact model for proper actions, we obtain that G

has a cocompact model for EG of dimension n` k. Lemma 5.7 finishes the claim.

The next proposition concerns surfaces with boundary. Suppose S has b ‰ 0 boundary

components β1, . . . , βb. Note that the capping homomorphism θS : ModpSq Ñ ModppS,Ωq Ď

ModppSq where Ω is the set of punctures of pS that come from capping the boundary components.

Proposition 5.9. Let S be a compact orientable surface with nonempty boundary, finitely

many punctures and χpSq ă 0. Suppose f P ModpSq generates an infinite cyclic subgroup H.

Then there exists l P N such that f l P ModpSqrms, m ě 3, with NModpSqrHs “ NModpSqpf
lq and

1 Ñ Zb Ñ NModpSqpf
lq

θS
ÝÑ NModp pS,ΩqpθSpf

lqq Ñ 1, (5.4)

where Zb “ xTβ1 , . . . , Tβby and θSpf
lq is either trivial or of infinite order.

Proof. By replacing f with a sufficiently large power, we can assume that l “ 1 and

f P ModpSqrms, m ě 3 with θSpfq either trivial or of infinite order. Restricting the capping

homomorphism to NModpSqrHs we have

1 Ñ Zb Ñ NModpSqrHs
θS
ÝÑ QÑ 1,

where Q Ď ModppS,Ωq. Note that if θSpfq is trivial, then NModpSqrHs “ NModpSqpHq “

ModpSq and Q “ ModppS,Ωq as desired. Otherwise, xθSpfqy is infinite cyclic and Q Ď

NModp pS,ΩqrxθSpfqys “ NModp pS,ΩqpθSpfqq by Proposition 5.5 applied to pS (replacing f with a

sufficiently large power if necessary). Since NModp pS,ΩqpθSpfqq Ď Q (see for example [13, eq. (25)]),

we deduce Q “ NModp pS,ΩqpθSpfqq. Hence, NModpSqrHs “ NModpSqpfq.

Proposition 5.10. Let G “ ModpSq where S is a compact orientable surface S with χpSq ă 0

possibly with finitely many punctures and boundary components. Denote by F the family of

finite subgroups of G. Let H be an infinite cyclic subgroup of G. Then the commensurator

NGrHs has cocompact models for EFXNGrHsNGrHs and EFrHsNGrHs of dimensions vcdNGrHs

and vcdNGrHs ´ 1, respectively.

Proof. By Propositions 5.5 and 5.9, we can assume NGrHs “ NGpHq where H “ xfy and

f P ModpSqrms, m ě 3.

Suppose first that the boundary of S is empty. By the Nielsen-Thurston Classification Theorem,

f is either pseudo-Anosov or reducible.

If f is pseudo-Anosov, then by [20, Theorem 1], NGpfq is virtually cyclic. So, a Euclidean line

and a point are (cocompact) models for EFXNGpfqNGpfq and EFrHsNGpfq, respectively.

If f is reducible, say with the canonical reduction system σ, then NGpfq satisfies (5.3) of

Proposition 5.6:

1 Ñ Zn Ñ NGpfq
ρσ
ÝÑQÑ 1,

such that Q is a finite index subgroup of

P :“ Modp\ai“1
pSiq ˆA
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where A Ď NModp\kj“a`1
pSkq
ppf̂a`1, . . . , f̂kqq is virtually free abelian. Let L :“ Modp\ai“1

pSiq. To

show that NGpfq has a cocompact model for EFXNGpfqNGpfq of dimension vcdNGpfq, by

Corollary 5.8, it suffices to show that Q has a cocompact model for EQ of dimension vcdQ.

Since Q is a finite index subgroup in P , it is enough to show that P has cocompact models

for EP of dimension vcdP “ vcdQ. Since A is virtually free abelian, applying Lemma 5.7, we

obtain that vcdP “ vcdL` vcdA. By Proposition 5.3, there is a cocompact model XL for EL

of dimension vcdL. Since A is finitely generated virtually free abelian, there is a cocompact

model XA for EA of dimension vcdA. Then XL ˆXA is a cocompact model for the classifying

space EP of dimension vcdP as desired.

To establish the second claim, observe that under the natural projection of NGpHq onto

WGpHq “ NGpHq{H, a classifying space EWGpHq becomes a model for a classifying space

of NGpHq for EFrHsNGpHq. Hence its suffices to show that there is a cocompact model for

EWGpHq of dimension at most vcdNGpHq ´ 1.

By Proposition 5.5, we only need to consider two cases: ρσpfq is the identity or it has infinite

order. First, suppose ρσpfq is the identity, that is H ď Zn. By Corollary 4.9 of [13], we can

assume that Zn{H – Zn´1. Then

1 Ñ Zn´1 ÑWGpfq
ρσ
ÝÑQÑ 1, (5.5)

Again, using Corollary 5.8, there is a cocompact model of dimension n´ 1` vcdQ “

vcdNGpfq ´ 1.

Now, suppose ρσpfq has infinite order. Then

1 Ñ Zn ÑWGpfq
ρσ
ÝÑQ{ZÑ 1,

where ρσpfq generates Z ď Q. By Corollary 5.8, it suffices to show then that Q{Z has a

cocompact model for EpQ{Zq of dimension at most vcdQ. Note that, from (5.3), it follows that

Z is normal in P . Therefore, it remains to show that P {Z has a cocompact model for EpP {Zq
of dimension vcdP . But P {Z – Lˆ pA{Zq and a similar argument as above gives a cocompact

model XL ˆXA{Z for EpP {Zq of dimension vcdP ´ 1.

Suppose S has nonempty boundary. The proof easily reduces to the case of empty boundary.

By (5.4) of Proposition 5.9, we have the central extension

1 Ñ Zb Ñ NModpSqpHq
θS
ÝÑ NModp pS,ΩqpθSpfqq Ñ 1. (5.6)

When θSpfq has infinite order, then the quotient of (5.6) by H, gives

1 Ñ Zb ÑWModpSqpHq ÑWModp pS,ΩqpθSpfqq Ñ 1. (5.7)

In case θSpfq is trivial, note that NModpSqpHq “ ModpSq. Replacing H “ xfy with a commen-

surable subgroup if necessary, we can assume that f P Zb such that Zb{H – Zb´1. Thus, we

obtain

1 Ñ Zb Ñ NModpSqpHq
θS
ÝÑ ModppS,Ωq Ñ 1, (5.8)

1 Ñ Zb´1 ÑWModpSqpHq Ñ ModppS,Ωq Ñ 1. (5.9)

From the empty boundary case of the proposition applied to pS and Corollary 5.8 applied to

(5.6), (5.7), (5.8), and (5.9), we obtain the desired result.

We need the following complete computation of the virtual cohomological dimension of ModpSq

for surfaces with negative Euler characteristic by Harer.
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Theorem 5.11 [10, Thm. 4.1]. Let S “ Srg,b be an oriented surface of genus g, b boundary

components and r punctures and recall χpSq “ 2´ 2g ´ b´ r. If χpSq ă 0, then

vcd ModpSq “

$

&

%

4g ` 2b` r ´ 4 g ą 0, r ` b ą 0

4g ´ 5 r ` b “ 0

2b` r ´ 3 g “ 0.

We are now ready to prove our main theorem.

Proof Proof of Theorem 1.4. Set G “ ModpSq and let F and Vc be the families of finite and

virtually cyclic subgroups of G, respectively, equipped with the commensurabilty relation on

Vcr F. By [1, Cor. 1.3], there is a cocompact model for EG of minimal dimension gdG “ vcdG.

By Proposition 5.10, for each infinite cyclic subgroup H ď G, there are cocompact models for

both EFXNGrHsNGrHs and EFrHsNGrHs of dimension vcdG.

Applying Theorem 2.5, we obtain a hierarchically cocompact model for EG of dimension

vcdG` 1.

To prove the second part of the theorem, assume we have a closed surface S. If g “ 1,

then ModpSq – SLp2,Zq. So, by [5, Lemma 5.2], cdpModpSqq ě 2. Combining this with

[12, Proposition 9] shows that gd ModpSq “ cd ModpSq “ 2.

Now, suppose that S is closed and g ě 2. Then vcd ModpSq “ 4g ´ 5. Let σ “ trαs, rβsu where

α and β are essential curves that separate S into a pair of pants and a surface of genus g ´ 1 (see

Figure 1). We will show that cd ModpSq0σ ě 4g ´ 4. This will imply that cd ModpSq ě 4g ´ 4

and by the first part of the theorem, we will obtain that gd ModpSq “ cd ModpSq “ 4g ´ 4.

Using the cutting homomorphism, there is a short exact sequence

1 Ñ Z2 Ñ ModpSq0σ
ρσ
ÝÑModpS0

0,3q ˆModpS1
g´1,0q Ñ 1,

where Kerpρσq “ xTα, Tβy. By Lemma 5.7,

vcd ModpSq0σ “ 2` vcd ModpS0
0,3q ` vcd ModpS1

g´1,0q

“ 2` 0` 4pg ´ 1q ` 1´ 4

“ 4g ´ 5.

By Proposition 5.3, it follows that there is a cocompact model of for EModpSq0σ of dimension

vcd ModpSq0σ “ 4g ´ 5 which is therefore the same as gd ModpSq0σ.

Set C “ ModpSq0σ XModpSqr3s, where ModpSqr3s is the level 3 congruence subgroup of ModpSq

which is torsion-free [6, Theorem 6.9]. Hence C is a finite index torsion-free subgroup of ModpSq0σ.

Let F and Vc be the families of finite (in this case trivial) and virtually cyclic subgroups of C,

respectively, equipped with the commensurabilty relation on Vcr F. Define

M : OVcC Ñ Z - mod : C{H Ñ pZCqH .

The long exact cohomology sequence associated to the push-out of Proposition 2.3, applied to

C, gives us
ź

rHsPI

H
p4g´5q
FrHs pNCrHs,Mq ‘H

p4g´5qpC,ZCq i˚
ÝÑ

ź

rHsPI

Hp4g´5qpNCrHs,ZCq

Ñ H
p4g´4q
Vc pC,Mq.
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By Proposition 5.10, this reduces to

Hp4g´5qpC,ZCq i˚
ÝÑ

ź

rHsPI

Hp4g´5qpNCrHs,ZCq Ñ H
p4g´4q
Vc pC,Mq.

Since C is of type F , note that Hp4g´5qpC,ZCq ‰ 0. Consider the infinite cyclic subgroups

H1 “ xTαTβy and H2 “ xT
2
αTβy. Since every element of C fixes the curves α and β, it must

commute with both H1 and H2. Thus, NCrH1s “ NCrH2s “ C and H1, H2 represent distinct

classes in I. The composition of i˚ with the projection of
ś

rHsPI H
p4g´5qpNCrHs,ZCq onto

the two factors corresponding to these subgroups is the diagonal map

∆ : Hp4g´5qpC,ZCq Ñ Hp4g´5qpC,ZCq ‘Hp4g´5qpC,ZCq

which is not surjective. Therefore, i˚ cannot be surjective and we obtain that H
p4g´4q
Vc pC,Mq ‰ 0.

This shows that cdC ě 4g ´ 4, implying cd ModpSq0σ ě 4g ´ 4 as desired.

β

α

Figure 1. The closed surface S of genus g ě 2 and the essential curves α, β separating it into

a pair of pants and a surface of genus g ´ 1.
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