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ABSTRACT

We define the notion of a hierarchically cocompact classifying space for a family of subgroups
of a group. Our main application is to show that the mapping class group Mod(S) of any
connected oriented compact surface S, possibly with punctures and boundary components and
with negative Euler characteristic has a hierarchically cocompact model for the family of virtually
cyclic subgroups of dimension at most ved Mod(S) + 1. When the surface is closed, we prove that
this bound is optimal. In particular, this answers a question of Liick for mapping class groups of
surfaces.

1. Introduction

Let G be a group and denote by § a family of subgroups of G, that is a collection of subgroups
of G closed under conjugation and finite intersection. We denote by E5G the classifying space
for the family §. A G-CW-complex X is said to be a model for EzG if X is contractible for
all H € §, and X* is empty otherwise. The minimal dimension of a model for EzG, denoted
by gdz G, is called the geometric dimension of G for the family §.

Throughout we shall consider nested families §; of subgroups of G. These are collections of
families of subgroup {§;} e such that §; < §; if and only if i < j.

DEFINITION 1.1. We say a G-CW-complex X is a hierarchically cocompact (hierarchically
finite type) model for E5G if there are nested families §; (¢ € N) such that § = | J,oy 8, and
that there are cocompact (finite type) models for E5, G for all i € N.

By the universal property for classifying spaces for families, this is equivalent to saying that
there is a model for F5G which is a mapping telescope of cocompact (finite type) models for
Ez.G. This follows from an argument analogous to Theorem 6.11].

Note that, under the additional hypothesis that for a countable collection of families {Si}(ieN)
that there is cocompact (finite type) model for Eg,~5,G for all 4,5 € N, then we can always
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ensure that we have a nested family as above, see the construction in the first paragraph of the
proof of Lemma [2.6] below.

Definition [T.I] was motivated by the following conjecture of Juan-Pineda and Leary.

CONJECTURE 1.2 Juan-Pineda—Leary, [12]. Denote by Uc the family of virtually cyclic
subgroups of a group G, and let G be a group admitting a cocompact model for EqG. Then G
is virtually cyclic.

This conjecture has been proved in many cases, such as, for example, hyperbolic groups [12],
elementary amenable groups [9], one-relator groups, CAT(0)-groups, acylindrically hyperbolic
groups, 3-manifold groups [22], and linear groups [23]. In all of these examples it was shown
that these groups cannot admit a model for Ey G with a finite type 0-skeleton, a condition
equivalent to G having a finite set of virtually cyclic subgroups {Hj, ..., H,} such that every
virtually cyclic subgroup is sub-conjugate to H; for some 1 < ¢ < n. T. von Puttkamer and
X. Wu [23] actually conjecture that any finitely presented group satisfying this condition is
already virtually cyclic. They also exhibit a finitely generated example of type F,- Note, that
non-finitely generated examples were already known, as for example |21} 6.4.6] the famous
construction of Higman-Neumann-Neumann with one conjugacy class of elements.

In line with convention, we write EG for a classifying space for proper actions and EG for
ExG. Denote the geometric dimension for proper action by gd G' and gdg;, G by gd G. We also
say that a group admitting a hierarchically cocompact model for EG is of type hE Finally, we
use the notation hgoo for a group admitting a hierarchically finite type model for EG.

In this paper we provide a method by which to construct hierarchically cocompact (hierarchically
finite-type) models for EG out of cocompact (finite-type) models for EG, provided that
commensurators of virtuglly cyclic subgroups satisfy some further finiteness conditions. This
enables us to show that many classes of finitely presented groups that do not satisfy the
hypothesis of Conjecture in particular are not of type EO, are still of type hE. Based on our
observations of groups of type hF, we ask the following question.

QUESTION 1.3. Suppose a group G is of type hE. Are commensurators of virtually cyclic
subgroups of type Fo?

The main result of the paper is the following.

THEOREM 1.4. Let S be a compact connected orientable surface of genus g, with a finite
number of boundary components and punctures, and with negative Euler characteristic. Then the
mapping class group Mod(S) has a hierarchically cocompact model for EMod(S) of dimension
ved Mod(S) + 1. Moreover, if S is closed and g = 1, then

gd Mod(S) = cd Mod(S) = ved Mod(S) + 1.
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Since gd Mod(S) = ved Mod(S) (see [1]), we note that this answers a question by Wolfgang
Liick which asks for which countable groups G the inequality

gdG-1<gdG<gdG+1

holds, see for example [15, Problem 9.51]. By Theorem the above inequality is always
satisfied for the mapping class group of any compact connected orientable surface S with a
finite number of boundary components and punctures, and and x(S) < 0.

Roughly stated, the hierarchically cocompact model for EMod(S) can be obtained by attaching
certain fibred spaces to the Teichmiiller space of S. These are associated to the Weyl groups
of the infinite cyclic subgroups H = (f) < Mod(S) representing the set I of the complete
sub-conjugacy classes of infinite virtually cyclic subgroups of Mod(.S). These spaces fibre over
products of a Euclidean space and a Teichmiiller space corresponding to the pseudo-Anosov and
the trivial components in the canonical reduction system of f € Mod(S) respectively. Since the
attaching maps are equivariant, Teichmiiller spaces could be replaced by spines or the relevant
minimal models for the local subgroups to obtain the desired hierarchically cocompact model
of minimal dimension.

It is worth pointing out, that if one applies the above attaching construction to only a finite
subset J < I, then the resulting space will be a cocompact model for the classifying space of
Mod(.S) for the family of all virtually cyclic subgroups that are sub-conjugate to a subgroup in
J.

Finite dimensional models for EMod(S) have been exhibited by Degrijse and the second
author in [5] for closed surfaces S (the obtained bound on dimension is 9¢g —8) and
later by Juan-Pineda and Trujillo-Negrete in [13] for surfaces S that have negative Euler
characteristic with possible punctures and boundary components (the obtained bound is
[Mod(S) : Mod(S)[m]](ved Mod(S) + 1), m > 3 where Mod(S)[m] is the level m congruence
subgroup). Apart from exhibiting models that are mapping telescopes of cocompact models,
our bounds substantially improve on the bounds given there. In particular, for closed surfaces,
our bounds are optimal.

Furthermore, recently Bartels and Bestvina showed that mapping class groups of oriented
surfaces G of finite type satisfy the Farrell-Jones conjecture [2]. For example, the assembly map,
which is induced by the G-map EG — {pt},

HE(EG;Kz) = K,(ZG),

is an isomorphism, where HS(—;Ky) is the Bredon homology theory with the K-theory
functor coefficients. In particular, since homology commutes with colimits and when x(S) < 0,
G = Mod(S) is of type hE, the left-hand side of the isomorphism is a colimit of, hopefully, more
computable homological terms. For a detailed introduction into the Farrell-Jones conjecture
the reader is referred to [15].

In the next section, we give a recipe for constructing hierarchically cocompact models for
classifying spaces. We also exhibit some examples in Section 3. Since we will need some results
on Bredon cohomological dimensions later when giving lower bounds for the dimensions of our
models, we give a brief introduction into Bredon cohomology in Section 4. Section 5 is devoted
to proving our main result, Theorem
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2. Constructing hierarchically cocompact models

The following construction, due to Liick and Weiermann [17], will play a crucial role in what is
to come:

Let § and & be families of subgroups of a given group G such that § < &.

DEFINITION 2.1. |17, (2.1)] A strong equivalence relation on & \ §, denoted ~, is an
equivalence relation on & \ § satisfying:

— For HHK e &\ § with H < K we have H ~ K.

~Let HKe®~Fand ge G, then H ~ K < gHg ' ~gKg~ "

Denote by [& ~\ §] the equivalence classes of ~ and define for all [H] € [& \ F] the following
subgroup of G:

Ne[H] = {geG|[lgHg™"] = [H]}.
Now define a family of subgroups of Ng[H] by
S[H] ={K < Ng[H]| K e & \§, [K] = [H]} v (§ n Nc[H]),
where § n Ng[H] is the family of subgroups of Ng[H] that are in §.

REMARK 2.2. A typical example of a pair of families that has a strong equivalence relation
is the finite and the virtually cyclic subgroups of G. Here, the equivalence relation is the
commensurability.

We need the following theorem of Liick and Weiermann.

PROPOSITION 2.3. |17, Theorem 2.3] Let § S & be families with a strong equivalence relation
on & \ §. Denote by I a complete set of representatives of the conjugacy classes in [& \ §].
Then the G-CW-complex given by the cellular G push-out

Umer G X no() EzangmNe[H] — E5G
Utzer ide X ng [H]f[H]J/
Utrer G X netm) EspmNe[H] —— X

where either ¢ or the fiy) are inclusions, is a model for EgG.

The condition on the two maps being inclusions is not a big restriction as one can replace the
spaces by the mapping cylinders, see |17, Remark 2.5].

We also need the following transitivity principle.

PROPOSITION 2.4. |17, Proposition 5.1] Let § € & be families of subgroups of a group G.
Assume that G admits a cocompact (finite type) model Xg for E¢G and that every subgroup
H e ® admits a cocompact (finite type) model Xz~py(H) for Ez~pH. Then G admits a
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cocompact (finite type) model for EzG of dimension

dim X + sup{dim Xz~p(H) | H € &}.

THEOREM 2.5. Let § € & be families with a strong equivalence relation on & \ §, such that
there are countably many equivalence classes of subgroups in & \ §. Suppose that for every H €
& \ §, Ng[H] admits a cocompact (finite type) model Xz nsa1(Na[H]) for EgangayNa[H].
Further assume that G admits a cocompact (finite type) model Xz for E5G and that for each
H € &, there is a cocompact (finite type) model Xz (Ng[H]) for EggyNg[H], then G admits
a hierarchically cocompact (hierarchically finite type) model for E¢G of dimension

Sup{ding,dingmNG[H](Ng[H]) + 17dIInX3[H](Ng[H]) | He® S}

Proof. Let S be a set of representatives of some finite number of conjugacy classes in [& \ F]
and denote

3[S] ={K<G|Ke®~F,3ge G, HeS,[K] =[H]} U3
Consider the G-push-out of Proposition replacing & by § [S]:

Uires G X Natm) Xzanem (NalH]) — X5
Utsies idGXNc[HJL[H]l J/

|_|[H]€S G XN eyl fim)) X

where ¢z is the natural inclusion, and fix) : Xg~ng[a)(Na[H]) — Xzia)(Ne[H]) is given by
the universal property for classifying spaces for a family. X is now a cocompact (finite type)
model for E§[S]G, as it is a G-push-out of cAocompact (finite type) complexes. The result now
follows from the fact that & = (s s/<oo S[S] and the remark after Definition O

We denote F[H] := {K < G|Ke &~ F,3ge G, [K] = [H]} UT and note that F[H] = F[S]
exactly when & = {H}. We end this section with a useful lemma.

LEMMA 2.6. Suppose § € & are families of subgroups of a group G satisfying the conditions
of Theorem Assume that for each H € & \ §, G admits cocompact (finite type) models for
both E§[H]G and Ez~pgH. Then G admits a hierarchically cocompact (finite type) model for
EsG.

Proof. For any two families §; and §3 of subgroups of G, we have unique maps (up to G-
homotopy) Fz,~5,G — Ez G and Ej, ~5,G — Ez,G. The double mapping cylinder X gives a
model for Fs, 5, G, and that if Fz, ~5,G, E5, G and E5,G are cocompact (finite type), then
so is X.

Now, let [Hy] # [H2] € I and §; = %[Hl], and §o = %[HQ] Then, obviously §1 N §2 = § and
F1uFe = (%[Hl])[Hg] =: §[H1, H,]. By assumption there are cocompact (finite type) models
for B3, G and Eg,G, and the transitivity result in Proposition yields that there is also a
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cocompact (finite type) model for Egz, ~z,G. The double mapping cylinder X gives a cocompact
(finite type) model for Ez, ,z,G.

For each i > 2, let @[Hl, vy Hy] i= @[Hl, oy H;_1][H;]. Proceed by induction, to construct
a cocompact (finite type) model for E§[Hl

E@[Hl,...,H- G and Es

"""" Hi]G from cocompact (finite type) models for

1] G as above. ]

3. Some examples

In the next examples, let § and LUc be the families of finite and virtually cyclic subgroups of
a given group G, respectively, equipped with the commensurability relation on Uc \ § (see

Remark .

3.1. Thompson groups

In 18] the authors introduced a similar condition for the family of finite subgroups, quasi-E,
which asks for a group to have, for any k € Z~(, finitely many conjugacy classes of finite
subgroups of order k, and that normalisers of all finite subgroups are of type Fo,. [19, Theorem
4.9] shows that generalised Thompson groups, which are automorphism groups of valid, bounded
and complete Cantor-algebras are quasi-F_, and hence are hF

3.2. Hyperbolic groups

Following [17], a group is said to satisfy (NMg, cwc), if every virtually cyclic subgroup is
contained in a unique maximal virtually cyclic group V, such that Ng(V) = V. Then, by
[17, Corollary 2.11], the push-out in Proposition reduces to

G xy BV ——= EG

L

GV —X,

where X is a cocompact model for E G provided there is a cocompact model for EG. Now,
apply Lemma [2.6] to conclude that any group satisfying (N Mg, cwc) that has a cocompact
model for EG is of type hE. In particular, hyperbolic groups satisfy (N Mg, cw¢) [12, Remark
7], and hence are of type EE

3.3. Polycyclic groups

Polycyclic groups are of type hE. This follows from [17, Lemma 5.15] - for every infinite virtually
cyclic group V, there exists a cyclic subgroup C' commensurate to V such that Ng[C] = Ng(C),
and hence a model for Egzpy1Ng[V] is given by E(Ng(C)/C) by pulling back the action. Now,
since G is polycyclic, we have a cocompact EG and a cocompact E(Ng(C)/C) for every C.
Now apply Theorem
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3.4. Soluble Baumslag-Solitar groups

One can also show that the soluble Baumslag-Solitar groups G = BS(1,n) are of type hE.
The group G is torsion-free and admits a cocompact 2—dimensional model for EG = EG.
Next, we show that for all cyclic subgroups H < G, we have a finite model Xg51(Ng[H]) for
Ez1a1Ne[H] and apply Theorem Recall,

BS(1,n) = Z[1] x Z.

1
n

[8, Lemma 5], and hence Ng[H] has a point as a model for Ez(z)Ng[H], and R is a cocompact

Any infinite cyclic subgroup H not contained in Z[-], is isomorphic to its commensurator, see

1
K = () <Z[1]. K has the entire G as its commensurator. Since G is an HNN-extension with
the vertex group K, the associated Bass-Serre tree is a cocompact model for Fgx)G. Applying
Theorem [2.5, we obtain that BS(1,n) is of type hE for all n > 0.

model for EG. Infinite cyclic subgroups of Z[=], on the other hand, are all commensurate to

Note that when n > 1, the normaliser N ({1)) = Z[1] is not even finitely generated. However,
in all examples in this note, the commensurators of virtually cyclic subgroups are of type Fo, . It

is not clear whether this is just an artefact of our construction, and hence we ask, see Question

T3t

QUESTION.  Suppose a group G is of type hE. Are commensurators of virtually cyclic subgroups
of type Fu?

4. Bredon cohomology

In this section we introduce all necessary facts and results regarding Bredon cohomology needed
later on to determine lower bounds for dimensions of our classifying spaces. All results in this
section are well known; a good introduction to the subject can be found in [7].

Let § denote a family of subgroups of a given group G as before. We consider the category
OzG, which has as objects the transitive G-sets with stabilisers in §. Morphisms in OzG
are G-maps between those G-sets. Modules over the orbit category, called OzG-modules are
contravariant functors from the orbit category to the category of abelian groups. Exactness is
defined pointwise: a sequence

A—-B->C
of OzG-modules is exact at B if and only if the sequence of abelian groups
A(G/K) —» B(G/K) — C(G/K)

is exact at B(G/K) for every G/K € OzG . The trivial Oz G-module, which is denoted Z(—), is
the constant functor Z from OzG to the category of abelian groups.

The category OzG-Mod of OzG-modules has enough projectives. Hence we can consider a
projective resolution

Py(=) > Z(=) =0
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of the trivial module Z(—). The Bredon cohomology functors H3(G, —) are defined as derived
functors of Homg(Z(—), —). In particular, for each N = N(—) € O3G-Mod,

H3(G,N) = Hy(mor(Py, N)).

We can now define cohomological dimensions in the Bredon-setting with analogous properties
to ordinary cohomology. Let n > 0. We say G has Bredon-cohomological dimension cdz G < n
if there is a projective resolution of Z(—) of length n. This is equivalent to H};H(G, N) =0 for
all OzG-modules N.

Let X be a model for EzG. Then the cellular chain complex C (X)) gives rise to a free resolution
Ca(X)(=) = Z(=) — 0
by putting Cy(X)(G/K) = Cx(XX) for all K € O3G . In particular,
cdz G < gd3z G.
Furthermore, |14, Theorem 13.19], if cdg G > 3, then gd3 G = cdz G.

As before, for § the family of finite groups, we write cd G and gd GG, and for § the family
of virtually cyclic subgroups we write cd G' and gd G respectively. Note that for torsion-free
groups, cd G = cd G and gd G = gd GG and Bredon-cohomology for the family of finite subgroups
becomes ordinary cohomology over the group ring ZG.

We will quite often make use of this simple observation. When G is virtually torsion-free, then
cd G = ved G. So, if G admits a model for EG of dimension ved G, then it must necessary be
of minimal dimension, i.e. realising gd G.

5. Mapping class groups

In this section, we prove our main theorem and show that the mapping class group of any
compact orientable surface S with possibly finitely many punctures and boundary components,
and with negative Euler characteristic x(S) is of type hE with a hierarchically cocompact model
of dimension ved Mod(S) + 1. We recall some necessary background on mapping class groups
of surfaces and refer the reader to [6] and [11] for further details.

Let S be a connected compact oriented surface with finitely many punctures and x(S) < 0. The
mapping class group of S, denoted by Mod(S), is the group of isotopy classes of orientation
preserving diffeomorphisms of S pointwise fixing the boundary 05

Mod(S) = Diff" (8, 8S)/Diff (S, 65),
where Diff’(S, 85) is the subgroup of Diff (S, dS) consisting of elements that are isotopic to
the identity.

Any diffeomorphism of S induces an automorphism of H;(S,Z/mZ) for m > 2. This gives a
well-defined homomorphism

Mod(S) — Aut(H, (S, Z/mZ))

where the kernel is denoted by Mod(S)[m] and it is called the level m congruence subgroup of
Mod(S).
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Suppose now that S has no boundary. Let {a1,...,a,} be a collection of pairwise disjoint,
homotopically distinct essential simple closed curves in S. Denote by o = {[a1], ..., [an]} the
corresponding isotopy classes.

Inclusion homomorphism. ([6, Thm. 3.18]). Let N, be an open regular neighbourhood of Sy Y
in S. Denote S, = S . N, and set S, = uleSi where each S; is a connected subsurface. Let
{B1,71}s .-, {Br, 7k} denote the pairs of boundary components of S, that bound the annuli in
N,. The inclusion S, <— S induces a homomorphism

: Mod(S ]_[Mod ) — Mod(S)

with kernel <T51T,;1, .. Tp, T,Y’k1>. The restriction 7; := 7, |mod(s,) is the map induced by the
inclusion S; — S.

Capping homomorphism. ([6, Prop. 3.19]) Let S, be the surface obtained from S, by capping
the boundary components with once-punctured disks and write Sy = =uk 15 The inclusion
Sy — SU induces a homomorphism

05 : Mod(S,) — HMod 5:, ;) < Mod(S,)
i=1
with kernel (Tp,,T,,,...,Tp,,T,). Here Q; denotes the set of punctures coming from the
boundary components of S;i. The image of the restriction 0; := 05 |v0a(s,), denoted Mod(S;, §2;),
is the subgroup of Mod(Si) consisting of all the elements that fix €; pointwise. Mod(S;, ;)
contains the pure mapping class group and hence is finite index in Mod(.S;).

Cutting homomorphism. (|6, Prop. 3.20]) Define Mod(S), = {g € Mod(S) | g(c) = o}. There is
a well-defined homomorphism

po : Mod(S), — Mod(S \ U"_;a;) = Mod(8S,)

with free abelian kernel (T, , ..., Ta, ) generated by the Dehn twists about the curves oy, . . ., .
Let Mod(S)? be the finite index subgroup of Mod(S), consisting of all the elements that fix
each curve o; with orientation. Denote the restriction p, o = Pa|Mod(S)g~ Then 0, = po,0© Mo
(see the diagram on page 91 of [6]).

The canonical form. (|6, Cor. 13.3]) Let f € Mod(S) and let 0 = o(f) be its canonical reduction
system (see |6, §13.2.2]). Let Sky1, ..., Sk+n be the pairwise disjoint annuli that are the closed
neighbourhoods of the curves aq, ..., a, representing . Then there is a representative ¢ of
f that permutes the S;, so that some power of ¢ leaves invariant each S;, 1 <l <n+ k. By

applying Nielsen-Thurston Classification Theorem to each 5;, one obtains that there exists
p > 0 so that ¢?(S;) = S) for all 1 <l <n+k and

fr= Hm fz nTn7 (5.1)

where each f; € Mod(S;) is either pseudo-Anosov or the identity and n; e N for 1 <1 <k,
I<j<n.

REMARK 5.1. By a result of Ivanov |11}, Corollary 1.8], if f € Mod(S)[m], m > 3, then the
integer p in (5.1) can always be taken to be one.
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REMARK 5.2 (13, 3.10]. By Theorem 1.2 in [11], Mod(S)[m], S Mod(S)2. Since 5 = py.0 © N,
it follows that 6;(f;) = f; for 1 <i < k.

For simplicity, we will often denote G = Mod(.S). Let § and D¢ the families of finite and virtually
cyclic subgroups of G, respectively, equipped with the commensurabilty relation on Uc \ F (see
Remark [2.2). The Teichmiiller space T(S) is a CAT(0)-space on which G acts properly. So, it
gives a model for EG. |1, Corollary 1.3] of Aramayona and Martinez-Pérez states that there is
a cocompact model for EG of minimal dimension gd G = ved G. We need the following minor
generalisation of this result.

PROPOSITION 5.3. Let S be a compact (possibly disconnected) surface with possible punctures
and boundary components. Then there is a cocompact model for EMod(S) of dimension
gd Mod(S) = ved Mod(S).

Proof. In [1], this has been proven for connected S. Suppose S decomposes into the disjoint
union of diffeomorphic copies of its connected components

S=um™S8 .- um S,

Subsequently, this implies that Mod(S) < [{_; Mod(S;) t £, and is of finite index. Combining
[10, Theorem 4.1] and the extension theorem for duality groups in [4, Thm. 3.5], gives us that

q
ved Mod(S) = Z m; - ved Mod(.S;).
i=1
The next lemma shows that there exists a cocompact model for EMod(S) of dimension
ved Mod(S). Since ved Mod(S) < gd Mod(S), the result follows. O

LEMMA 5.4. Let K be a group. Suppose K has a cocompact model X for EK. Then the
wreath product W = K %, has a cocompact model for EW of dimension m - dim X.

Proof. The wreath product W acts on Y = X x --- x X which consists of m-copies of X with
a diagonal action of K™ and a permutation action of ¥,,. Note that W acts cocompactly on Y
and it is a model for EW of dimension m - dim X. ]

To establish Theorem it remains to show, see Theorem that for each infinite cyclic
subgroup H < G, there are cocompact models for Egn, a1 Na[H] and Ezg1Ne[H] where
Ng[H] is the commensurator of H in G of the required dimensions.

PROPOSITION 5.5 |13 Prop. 4.8]. Let S be an orientable closed surface with finitely many
punctures and x(S) < 0. Suppose f € G generates an infinite cyclic subgroup H. Then for any
integer | > 0 such that f' € Mod(S)[m], m >3, Ng[H] = Ng(f') holds.

We need the following slight generalisation of |13, Proposition 4.12] of Juan-Pineda and
Trujillo-Negrete.
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PROPOSITION 5.6. Suppose S is an orientable closed surface with finitely many punctures and
x(S) < 0. Let f € Mod(S)[m], m = 3, with the canonical reduction system o with fo11,..., fr
pseudo-Anosov and

k
pa(f) = (idlv s 7idaa fa+17 RN fk) € HMOd(S“ Ql)a
i=1
then there is a central extension
a k
1 - Z" — Croaqs) (/)25 [ [Mod(Si, ) [ v — 1. (5.2)
=1 Jj=a+1
where V; = CMod(ﬁj Qj)(fj) is virtually cyclic for each a + 1 < j < k. Also,
1= Z" = Nyoa(s) (/) 25Q — 1, (5.3)
such that Q < Mod(w¢_,S;) x A, where A C NMOd(u?:aH
sion of TT* 1%

j=a+1 g

gk)((fa+1, ..., fr)) is a finite exten-

Proof. The extension has already been established in [13| Proposition 4.12]. The kernel
is generated by the Dehn twists about the curves ay, ..., a, which are fixed by Cyioa(s)(f )0,
and hence is central.

By Lemma 3.8 of [13], for every g€ Nyoars)(f), we have g(o)=o. Therefore,
Nuod(s)(f) € Mod(S)s. Let Q = po(Nmodacs)(f)). Note that @ is a finite extension of
15, Mod(S;, ;) H?:aﬂ V; and it is contained in NMOd(gg)(pg(f)). So, to obtain , it
suffices to show that any g € Mod(S,) that normalises p,(f) is contained in the subgroup
Mod(ulegi) X Mod(u?zaﬂgk) of Mod(gg)* ~ ~
Suppose this is not the case, and say g maps Sy diffeomorphically onto S. Then for any x € Sy,
we have p, (f)g(x) = gpo(f)E(z) = g(x). This shows that Ji is the identity on Sj which is a

contradiction. ]

~

LEMMA 5.7. Letl —» Z"™ — G — @Q — 1 be an extension of groups where @ is finitely generated
with ved Q = k < 0. Then ved G =n + k.

Proof. We can assume @ is torsion-free. Now we apply a result of Fel’dman, see [3, Theorem
5.5] O

We will quite often make use of the following corollary.

COROLLARY 5.8. Let 1 - Z" - G — @ — 1 be an extension of groups where () has a
cocompact model for EQ of dimension ved (Q = k < o0. Then G has a cocompact model for EG
of dimension gd G = ved G = n + k.

Proof. Let § be the family of finite subgroup of G and & be the family of the preimages of all
the finite subgroups of @ under the projection of G onto Q. Applying Proposition [2.4] together
with the general fact that finitely generated virtually free abelian groups of rank m have the
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Euclidean space of dimension m as a cocompact model for proper actions, we obtain that G
has a cocompact model for EG of dimension n + k. Lemma [5.7] finishes the claim. O

The next proposition concerns surfaces with boundary. Suppose S has b # 0 boundary
components i, ..., p. Note that the capping homomorphism 6g : Mod(S) — Mod(S, Q) <
Mod(SS) where 2 is the set of punctures of S that come from capping the boundary components.

PROPOSITION 5.9. Let S be a compact orientable surface with nonempty boundary, finitely
many punctures and x(S) < 0. Suppose f € Mod(S) generates an infinite cyclic subgroup H.
Then there exists | € N such that f' € Mod(S)[m], m > 3, with Nyioa(s)[H] = Nuoas) (f') and

(4
1— Zb - NMod(S)(fl) == NMod(g’Q) (HS(fl)) -1, (5'4)

where 7" = (Tg,,...,Tp,) and Og(f') is either trivial or of infinite order.

Proof. By replacing f with a sufficiently large power, we can assume that [ =1 and
f € Mod(S)[m], m > 3 with 0g(f) either trivial or of infinite order. Restricting the capping
homomorphism to Nyioq(s)[H] we have

0
1 - Z' - Nyoq(s)[H] = Q — 1,

where Q < Mod(g, Q). Note that if Os(f) is trivial, then Nyoacs)[H] = Nmoacs)(H) =
Mod(S) and @ = Mod(S,$?) as desired. Otherwise, (Ag(f)) is infinite cyclic and Q <
NMod(§,Q) [Os(f)] = NMod(§1S2)(03(f)) by Proposition applied to S (replacing f with a
sufficiently large power if necessary). Since Nioa(s,0) (0s(f)) < Q (see for example [13} eq. (25)]),
we deduce @ = Nytod(3,0) (0s(f)). Hence, Nyioas)[H] = Numoa(s) (f)- O

PROPOSITION 5.10. Let G = Mod(S) where S is a compact orientable surface S with x(S) < 0
possibly with finitely many punctures and boundary components. Denote by § the family of
finite subgroups of G. Let H be an infinite cyclic subgroup of G. Then the commensurator
Ng[H] has cocompact models for Exn.a1Ne[H] and Ezg)Ne|[H] of dimensions ved Ng[H]|
and ved Ng[H] — 1, respectively.

Proof. By Propositions and we can assume Ng[H]| = Ng(H) where H = (f) and
f e Mod(S)[m], m = 3.
Suppose first that the boundary of S is empty. By the Nielsen-Thurston Classification Theorem,
f is either pseudo-Anosov or reducible.
If f is pseudo-Anosov, then by [20, Theorem 1], N (f) is virtually cyclic. So, a Euclidean line
and a point are (cocompact) models for Ezn,r)Na(f) and EggNa(f), respectively.
If f is reducible, say with the canonical reduction system o, then Ng(f) satisfies (5.3) of
Proposition [5.6}

1—Z" - No(f)*-Q — 1,

such that @) is a finite index subgroup of
P := Mod(u%,5;) x A
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where A < NMOd(u?=a+1§k)((fa+1, ..., fr)) is virtually free abelian. Let L := Mod(u§:1§i). To
show that Ng(f) has a cocompact model for Ez- . Na(f) of dimension ved Ng(f), by
Corollary [5-8] it suffices to show that @ has a cocompact model for EQ of dimension ved Q.
Since @ is a finite index subgroup in P, it is enough to show that P has cocompact models
for EP of dimension ved P = ved Q. Since A is virtually free abelian, applying Lemma we
obtain that ved P = ved L + ved A. By Proposition there is a cocompact model X, for EL
of dimension ved L. Since A is finitely generated virtually free abelian, there is a cocompact
model X 4 for EA of dimension ved A. Then X x X4 is a cocompact model for the classifying
space EP of dimension ved P as desired.

To establish the second claim, observe that under the natural projection of Ng(H) onto
Wa(H) = Ng(H)/H, a classifying space EWq(H) becomes a model for a classifying space
of Ng(H) for EzgiNg(H). Hence its suffices to show that there is a cocompact model for
EWe(H) of dimension at most ved Ng(H) — 1.

By Proposition 5.5, we only need to consider two cases: p,(f) is the identity or it has infinite
order. First, suppose p,(f) is the identity, that is H < Z". By Corollary 4.9 of |13], we can
assume that Z"/H =~ Z"~!. Then

12" - Wa(f)25Q — 1, (5.5)

Again, using Corollary [5.8] there is a cocompact model of dimension n—1+ ved@ =
ved Ne(f) — 1.
Now, suppose p,(f) has infinite order. Then

1 - Z" — We(f)2oQ/Z — 1,

where 5,(f) generates Z < Q. By Corollary it suffices to show then that Q)/Z has a
cocompact model for E(Q/Z) of dimension at most ved Q. Note that, from (5.3)), it follows that
Z is normal in P. Therefore, it remains to show that P/Z has a cocompact model for E(P/Z)
of dimension ved P. But P/Z =~ L x (A/Z) and a similar argument as above gives a cocompact
model Xy, x Xz for E(P/Z) of dimension ved P — 1.

Suppose S has nonempty boundary. The proof easily reduces to the case of empty boundary.
By of Proposition we have the central extension

0
1 — Z" = Natoas) (H) = Nypoas.0)(0s(f)) = 1. (5.6)
When 0g(f) has infinite order, then the quotient of (5.6) by H, gives
17— WMod(S) (H) - WMod(g"Q)(eS(f)) — L (5-7)

In case Os(f) is trivial, note that Nyioqsy(H) = Mod(S). Replacing H = (f) with a commen-
surable subgroup if necessary, we can assume that f € Zb such that Z*/H =~ Z"~!. Thus, we
obtain

1 — 7" — Nytoas) (H) 25 Mod(S, Q) — 1, (5.8)
1— 2" = Wygea(s)(H) — Mod(S, Q) — 1. (5.9)

From the empty boundary case of the proposition applied to S and Corollary applied to
(15.6), (5.7), , and (5.9)), we obtain the desired result. O

We need the following complete computation of the virtual cohomological dimension of Mod(S)
for surfaces with negative Euler characteristic by Harer.
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THEOREM 5.11 [10, Thm. 4.1]. Let S = S, be an oriented surface of genus g, b boundary
components and r punctures and recall x(S) =2 —2g—b—r. If x(S) <0, then

dg+2b+r—4 g>0,r+b>0
vedMod(S) =< 49-—5 r+b=0
2b+r—3 g=0.

We are now ready to prove our main theorem.

Proof Proof of Theorem Set G = Mod(S) and let § and Uc be the families of finite and
virtually cyclic subgroups of G, respectively, equipped with the commensurabilty relation on
e\ §. By [1}, Cor. 1.3], there is a cocompact model for EG of minimal dimension gd G = ved G.
By Proposition [5.10] for each infinite cyclic subgroup H < G, there are cocompact models for
both Eznea1Ne[H] and Ez g1 Ne[H] of dimension ved G.

Applying Theorem @, we obtain a hierarchically cocompact model for EG of dimension
ved G + 1.

To prove the second part of the theorem, assume we have a closed surface S. If g =1,
then Mod(S) = SL(2,Z). So, by [5, Lemma 5.2], cd(Mod(S)) = 2. Combining this with
[12, Proposition 9] shows that gd Mod(S) = cd Mod(S) =

Now, suppose that S is closed and g > 2. Then ved Mod(S) = 4g — 5. Let 0 = {[a], [8]} where
« and (3 are essential curves that separate S into a pair of pants and a surface of genus g — 1 (see
Figure [1)). We will show that ¢d Mod(S)% = 4g — 4. This will imply that ¢cd Mod(S) = 4g — 4
and by the first part of the theorem, we will obtain that gd Mod(S) = gMod(S) =4g —4.
Using the cutting homomorphism, there is a short exact sequence

1 — Z? - Mod(S)2£%Mod(S§ ) x Mod(S)_; o) — 1,
where Ker(p,) = (T, Tp). By Lemma [5.7]

ved Mod(5)2 = 2 + ved Mod(Sg 5) + ved Mod(Sg 1.0)
=24+0+4(¢g—1)+1—-4
=49 —5.
By Proposition it follows that there is a cocompact model of for EMod(S)? of dimension
ved Mod(S)) = 4g — 5 which is therefore the same as gd Mod(S)J2.
Set C' = Mod(S)% n Mod(S)[3], where Mod(S)[3] is the level 3 congruence subgroup of Mod(.9)
which is torsion-free |6, Theorem 6.9]. Hence C'is a finite index torsion-free subgroup of Mod(S)2.

Let § and U¢ be the families of finite (in this case trivial) and virtually cyclic subgroups of C,
respectively, equipped with the commensurabilty relation on Uc \ §. Define

M : Oy.C - Z-mod : C/H — (ZC)"

The long exact cohomology sequence associated to the push-out of Proposition [2:3] applied to

C, gives us
1—[ H(4g 5) [H],M)® H (49— 5)(C 70) 5 H 49— 5)(Nc[ 1,2C)
[Hler [H]eI

— Y Y(C, M).
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By Proposition this reduces to

¥

H49-5) (0, z0) 2, H HY99)(N¢[H],ZC) — HY™(C, M).
[H]er

Since C' is of type F, note that H(*9~5)(C,ZC) # 0. Consider the infinite cyclic subgroups
Hy = (T, Ts) and Hy = (T?Tjs). Since every element of C fixes the curves a and 3, it must
commute with both H; and Hs. Thus, No[H1] = N¢[Hz] = C and Hy, Hs represent distinct
classes in I. The composition of i* with the projection of [ [, H"975)(N¢[H],ZC) onto
the two factors corresponding to these subgroups is the diagonal map

A HY79(C,72.0) — HW9=5)(C, 2.C) @ H*97%) (C, ZC)

which is not surjective. Therefore, i* cannot be surjective and we obtain that Hg J -4 (C,M) #0.
This shows that cd C' > 4g — 4, implying QMod(S)g > 4g — 4 as desired. O

FIGURE 1. The closed surface S of genus g = 2 and the essential curves «,  separating it into

(1]
2]
(3]
(4]
[5]

[6]

(10]

a pair of pants and a surface of genus g — 1.
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