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Abstract—Chagas disease is a parasitic disease, endemic in
South America. As of today, there is no effective treatment
in its chronic stage. We have recently identified 134 FDA
approved drugs with potential antitrypanosomal activity. In
this paper, we propose a novel method for selecting combi-
nations of drugs (drug cocktails), to provide a more effective
treatment against Chagas disease. We define three measures to
evaluate the predicted performance of a cocktail, establishing
in this way a mathematical foundation for its analysis. This
allows us to model the drug cocktail selection as a multi-
objective optimisation problem, that we show can be solved
efficiently with state-of-the-art evolutionary algorithms. Our
analysis retrieves 57 drug cocktails containing between 2 and
6 drugs. We discuss the improvement of the cocktail selection
given by our method, and the application of this approach to
the identification of cocktails against other parasitic diseases.

Keywords—Multi-objective optimisation, Drug repurposing,
Chagas Disease, Genetic Algorithms.

1. Introduction and the Problem

Chagas Disease, caused by the protozoan parasite
Trypanosoma cruzi (T. cruzi), is endemic throughout Latin
America and has spread to other countries, making it a
worldwide issue. About 6 to 7 million people are infected
with T. cruzi [1], and around 40 million are at risk of
infection [2]. Insect vectors known as triatomine bugs are the
primary means of human infection. After biting, they leave
T. cruzi parasites (trypomastigotes) into excretion, usually
introduced into the bloodstream through the bite wound or
mucous membranes [3].

The disease goes through two different phases: the acute,
and the chronic phase. In the acute phase, symptoms are
often absent or mild; they may include fever, headache,
and enlarged lymph glands. Less than 50% cases develop
characteristic symptoms: a skin lesion or a purplish swelling

of the lids of one eye [1]. In the chronic phase, parasites
lodge mainly in the heart and digestive muscles. This can
lead to severe organ pathologies and ultimately death [3].

Two drugs are currently available for the acute phase:
Nifurtimox and Benznidazole. This phase, however, often
goes undiagnosed due to a lack of proper diagnostic meth-
ods, and the inherent absence of symptoms [4]. Clinically,
the disease is most commonly encountered in the chronic
phase [5] and in this phase treatment is highly limited due
to the low potency of the abovementioned drugs against the
parasites [6] and the lack of other effective drugs [4].

Our aim is to find drug cocktails with antitrypanosomal
effects. Drug cocktails have been found to be effective
against a number of diseases, including infective diseases
and even for the treatment of diseases caused by parasites,
such as malaria [7] (caused by Plasmodium falciparum).
However, the prediction of cocktails of drugs effective
against Chagas disease is hindered by our limited biological
knowledge of T. cruzi.

Comparative genomics attempts to harness the biological
knowledge of well studied organisms in order to make
inferences on less studied organisms; it infers molecular
function and behaviour by comparing genome sequences
from evolutionary related species [8]. In our case, although
very little is known about the biology of T. cruzi, there ex-
ists abundant knowledge about other (evolutionarily related)
model organisms and, in some cases, we even have knowl-
edge about drugs that are effective against these organisms.

We have recently developed a method that exploits
concepts from comparative genomics for the prediction of
FDA approved drugs which could be effective against T.
cruzi [9]. Briefly, we begin by predicting which metabolic
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pathways1 from model organism are present in T. cruzi.
Then, our method selects FDA approved drugs which target
enzymes in model organisms that are evolutionarily related
to enzymes in T. cruzi pathways, and could therefore be
effective at disrupting them.

This method has produced an initial set of 134 FDA
approved drugs. At this point, we need a way to define effec-
tive drug cocktails, that is, an optimal subset of these drugs
which will be effective at disrupting T. cruzi pathways. Note
that a brute force approach that would experimentally test
every possible subset of n drugs would be infeasible even
for small values of n, and therefore algorithmic methods for
selecting effective drug combinations are needed.

This paper introduces an innovative mathematical ap-
proach to quantify potential antitrypanosomal activity of
drugs in terms of three biologically motivated measures.
This allows us to formulate the drug cocktail selection
problem as a multi-objective optimisation problem for which
efficient solution methods are available.

In the following sections, we provide a formal definition
of the measures, and illustrate how to select cocktails by
combining these measures using a multi-objective optimi-
sation approach. The optimisation problem is solved using
the Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [11], a state-of-the-art genetic algorithm to solve multi-
objective problems [12]. Finally, we present the optimisation
results, and discuss the predicted drug cocktails.

2. Multi-objective Approach

The comparative genomics approach summarized in the
previous section [9] provided us with 146 T. cruzi metabolic
pathways and 134 drugs which have potential interactions
with 121 enzymes from 94 T. cruzi pathways. We define the
following measures:

1) Number of enzymes that are being targeted by the
cocktail.
The notion behind this measure is that if the target
protein and the enzyme are similar at molecular
level, then it is highly likely that they share similar
structure. This will allow the drug to bind to the
enzyme, preventing its function. If this is the case,
we might be blocking many enzymes and increas-
ing the likelihood of affecting the parasite.

2) Number of pathways with at least one enzyme
targeted by the cocktail.
Although we cannot say for sure that every pathway
considered in this measure will be disrupted, it is
reasonable to argue that when the drug cocktail tar-
gets more than one pathway, the chance to disrupt
essential pathways is higher. Cocktails that disrupt

1. A metabolic pathway is a coordinated sequence of chemical reac-
tions by which cells transform initial source compounds into final target
compounds [10]. Enzymes are protein catalysts in charge of the chemical
reactions occurring within the pathway. In each step of the pathway,
enzymes convert source compounds (substrates) into target compounds
(products) by attaching or detaching chemical groups from substrates.

essential pathways should be more effective against
the organism.

3) Number of pathways which have all their enzymes
“covered” by the cocktail.
Intuitively, pathways that are fully covered by a
drug cocktail are more likely to be disrupted.

The selection of a putative drug cocktail is not a trivial
problem for two main reasons. First, a measure of antitry-
panosomal activity of a drug cocktail must be established in
order to optimise the composition of the cocktail. Second,
the amount of possible drug cocktails makes the pairwise
comparison an infeasible computational problem.

The relative importance of the 3 measures described
above is not evident. Nevertheless, it is desirable to take
all of them into account, as they model different aspects
that can lead to antitrypanosomal activity. To optimise all
measures simultaneously, we decided to model the cocktail
selection problem as a multi-objective optimisation problem.

Problems modelled to optimise multi-dimensional objec-
tive functions are called Multi-Objective Problems (MOPs)
[12]. Intuitively, it is simpler to model a particular aspect
without taking into account other (possibly conflicting) fac-
tors that would make the function very complex. Without
loss of generality, the formal definition of a MOP is pre-
sented as a minimisation [12]:
Definition 1. Multi-Objective Problem: Let F be a set of

M objective functions {f1, f2, · · · , fM}, fi : Rn ⇒ R,
a Multi-Objective Problem is defined as:

Minimise y = F (x) = (f1(x), f2(x), · · · , fM (x))

x = (x1, x2, · · · , xn) ∈ X ⊆ Rn

y = (y1, y2, · · · , yM ) ∈ Y ⊆ RM
(1)

subject to

x
(L)
i ≤ xi ≤ x(U)

i ∀ i ∈ {1, 2, · · · , n} (2)

r(x) = (r1(x), r2(x), · · · , rl(x)) ≤ 0 (3)

where x is a vector with n decision variables, while y
is a M -dimensional objective vector.

Constraints (2) represent lower (x(L)i ) and upper (x(U)
i )

variable bounds that define the decision space X . The
objective functions make a multidimensional space called
“objective space”, termed Y . The r vector is made of l
constraint functions that shape the feasible region of X .
Solutions that do not satisfy the constraint functions or
variable bounds are called “infeasible solutions”, and those
that satisfy every constraint in (2) and (3) are feasible
solutions. The set of all feasible solutions Xf is known as
the feasible region. The domain of every fi is Xf . For every
solution x ∈ Xf there exists a point y in the objective space.
This defines the feasible objective space Yf

Yf = F (Xf ) =
⋃
x∈Xf

{F (x)} (4)

For two feasible solutions u, v ∈ Xf , it is said that u
dominates v (termed u � v) if it is not worst in any objective



and it is strictly better in at least one objective [12], [13].
Furthermore, given two possible solution u, v ∈ Xf , it is
said that u and v are non-comparable (denoted u ∼ v) if
neither u dominates v (u � v), nor v dominates u (v � u).

Finding an unique solution that optimises every objective
is very unlikely. Therefore, the optimisation usually selects
a set of non-comparable solutions. This set is known as the
Pareto set.
Definition 2. Pareto set [12]: For a given MOP, the Pareto

set, termed P∗ is defined as the set of all non-dominated
feasible solutions:

P∗ = {x ∈ Xf |@ x′ ∈ Xf such that x′ � x} (5)

Definition 3. Pareto front [12]: For a given MOP, the Pareto
front, termed PF∗ is defined as the image in objective
space of the Pareto set P∗:

PF∗ = {y = F (x) ∈ Yf |x ∈ P∗} (6)

Note that every pair of solutions in P∗ is non-
comparable, and therefore they are all equally good from
a purely multi-objective perspective when no other criterion
is used.

2.1. The Optimisation Procedure

Optimising a multi-objective problem is not a trivial en-
deavour. In our specific case, our measures are discontinuous
and the decision space grows exponentially with the cocktail
size. Therefore, we decided to use Evolutionary Algorithms
as the optimisation procedure.

Inspired in natural evolution, these algorithms simulate
the process of natural selection in order to optimise the prob-
lem at hand. They use the concepts of selection, crossover
and mutation as tools to take a population of genes through a
simulated sequence of generations in which they will adapt
to the environment imposed by a fitness function [14].

We used NSGA-II [11], an evolutionary algorithm that
is widely used to solve MOPs [12]. It is based on the idea of
using Pareto dominance to achieve elitism, and introduces
the concept of crowding distance to preserve diversity in the
population.

2.2. Encoding of the Drug Cocktails

Every solution of the optimisation problem is a drug
cocktail. A drug cocktail x is encoded as a set of n drugs,
taken without repetition — i.e. x ∈ Dn, where D is the set
of all FDA approved drugs mapped onto T. cruzi enzymes.
Formally, the domain of the optimisation problem is:
Definition 4. Drug Search Space: the search space Xn is

defined by:
Xn = {x ∈ Dn} (7)

where a cocktail x = (x1, x2, · · · , xn) has no repeated
drugs xi 6= xj∀i 6= j.

Note that this creates a search space for every n. In-
tuitively, it defines each configuration of the optimisation

problem as “choosing the set of n-drug cocktails from D
that simultaneously optimises every measure”.

2.3. Encoding of the Biological Measures

2.3.1. Number of enzymes. This function only considers
how many enzymes are targeted by a drug cocktail. It returns
the number of distinct enzymes that are homologous with at
least one drug-targeted protein from the input set. Formally:

Ehit(x) =

∥∥∥∥∥
n⋃
1

E(xi)

∥∥∥∥∥ (8)

where E(xi) ⊆ E is the set of enzymes targeted by drug
xi, and E = {e1, e2, · · · , eα} is the set of T. cruzi enzymes.
The minimisable version of this measure is the fraction of
enzymes not hit by the cocktail:

fn1 (x) = 1− Ehit(x)

α
. (9)

This measure is optimised when fn1 (x) = 0, as
Ehit(x) = α enzymes are hit by the cocktail — i.e. all of the
enzymes are being hit. As Ehit decreases, fn1 will approach
1, effectively transforming our measure into a minimisable
function.

2.3.2. Number of pathways. This function verifies how
many pathways are being targeted by a drug cocktail. The
number increases for every distinct pathway that contains at
least one enzyme which is homologous with a drug target
from the cocktail. Formally:

Phit(x) =

∥∥∥∥∥
n⋃
1

P (xi)

∥∥∥∥∥ (10)

where P (xi) ⊆ P is the set of pathways targeted by drug
xi, P = {p1, p2, · · · , pβ} is the set of T. cruzi pathways,
and pj ⊂ E are the enzymes that conform the j-th pathway.
A pathway pj is targeted by drug xi if it contain at least
one enzyme from E(xi). The minimisable version of this
measure is the fraction of pathways not hit by the cocktail:

fn2 (x) = 1− Phit(x)

β
. (11)

Analogous to the previous case, as Phit(x) approaches
the total number of pathways β, fn2 (x) approaches 0.

2.3.3. Number of fully covered pathways. This function
retrieves the number of pathways fully covered by a drug
cocktail. A pathway is fully covered if each one of its
enzyme is targeted by a drug in the cocktail. Formally:

Pcov(x) = ‖{pj |pj = pj ∩ E(xi)}‖ 1≤i≤n
1≤j≤β

(12)

The minimisable version of this measure is the fraction of
pathways not fully covered by the cocktail:

fn3 (x) = 1− Pcov(x)

β
. (13)

Similarly to the previous 2 cases, the best case scenario
is achieved when Pcov(x) = β and fn3 (x) = 0.



2.3.4. Multi-objective Function. We construct the multi-
objective function such that minimising it improves the
viability of the drug cocktail. The multi-objective function
Fn(x) : Xn → [0, 1]3 combines the biological measures
(Equations 9, 11, and 13) as follows:

Fn(x) = (fn1 , f
n
2 , f

n
3 ) (14)

Therefore, the objective space is:

Yn =
⋃
x∈Xn

{Fn(x)} (15)

3. Results

The implementation of the proposed algorithm is
available at: http://dev.paccanarolab.org/code/PaccanaroLab/
chagas-mop-public. Table 1 shows the parameters of the
NSGA-II algorithm. A total of 57 cocktails were found. All
of these experiments were computed using a MacBook Pro
with a 2.5 GHz Intel Core i7 processor, 16 GB 1600 MHz
DDR3 of memory, running macOS Sierra.

Population size Cocktail size Run time Selected cocktails
100 2 4.05 s 5
100 3 8.17 s 7
500 3 19.70 s 7
100 4 23.28 s 11
500 4 158.78 s 11
100 5 130.73 s 17
500 5 202.21 s 17
100 6 112.20 s 16
500 6 181.77 s 17

TABLE 1: Parameters used to select drug cocktails. Population size is
the number of genes allowed to the genetic algorithm to use during the
search of the optimal set of cocktails. Cocktail size is the number of drugs
per cocktail. Run time is the time it takes for the evolutionary algorithm to
converge to the best solution Selected cocktails is the number of cocktails
returned by the proposed algorithm.

Figure 1 shows a comparison of the cocktail perfor-
mance using the three measures separately. Violin plots
show the distribution of scores for a random set of cocktails,
compared to the scores of the selection given by our method.
Our method outperforms the random selection in every
measure and cocktail size. Furthermore, as the cocktail size
increases, the gap between the randomly selected cocktails
and those selected by our method increases significantly.

Figure 2 shows the decision space after the algorithm
converges for cocktails of 2 drugs. The selected cocktails
are highlighted in blue and they represent the best non-
dominated drug cocktails for this particular configuration
of the problem.

All datasets used as input and the results will
be available at https://www.dei.uc.edu.py/proyectos/
proyectochagas2.

2. This work is part of the CONACyT Project “Indentificación de
Cócteles de drogas para el Tratamiendo de la Enfermedad de Chagas”.
Datasets will be released once the project concludes.

(a) Comparison of the distribution of Ehit(x)

(b) Comparison of the distribution of Phit(x)

(c) Comparison of the distribution of Pcov(x)

Figure 1: Comparison between our approach and randomly selected
cocktails. 1000 cocktails were randomly selected from X 2, X 3, X 4, X 5,
and X 6 and tested with the 3 measures. Notice that in this plot higher
values are better, since we are showing the measures in their initial form
as described in Equations 8, 10, and 12.



Figure 2: Decision space for cocktails of 2 drugs. The axes f2
1 , f2

2 , and
f2
3 represent the optimisation functions for cocktails of size 2 defined in

Equations 9, 11, and 13 respectively. The red dots represent cocktails in
Y2 from the last iteration of the evolutionary algorithm computation. The
highlighted dots are the selected cocktails — i.e. the ones that optimise
F 2(x). The grey volumes represent the space dominated by solutions in
the Pareto front, indicating that the highlighted dots outperform all the red
dots.

4. Discussion

The initial pool of drugs we found includes drugs that
were already studied for antitrypanosomal activity in the
past [15], [16], [17], [18]. This is encouraging evidence
that our comparative genomics analysis produces reasonable
candidates for drug repurposing. Additionally, the majority
of the drugs selected in the drug cocktails were never tested
against T. cruzi, confirming the novelty of our results.

Our selection of drug cocktails have a varied mecha-
nism of action that increases the likelihood of disrupting
essential pathways. Hence, we satisfy our initial objective
of establishing a sensible order for the experiments.

In a next stage, several of these cocktails will be assayed
using in vitro models of pharmacological screenings against
T. cruzi. The toxicity of the cocktails will also be evaluated
on mammalian cells.

The generality of our approach allows it to be reused in
many ways. For instance, other neglected parasitic diseases
can be targeted using the same rationale. Moreover, it is
possible to add further evidence of antitrypanosomal activ-
ity, by incorporating other measures to our multi-objective
approach.
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