This is the peer reviewed version of the following article: Gillard G, Harvey TN, Gjuvsland A, et al. Life-stage-associated remodelling of lipid metabolism regulation in Atlantic salmon. *Molecular Ecology* 2018;27:1200–1213, which has been published in final form at https://doi.org/10.1111/mec.14533. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

1	Life-stage associated remodeling of lipid metabolism
2	regulation in Atlantic salmon
3	Gareth Gillard ¹ *, Thomas N. Harvey ² *, Arne Gjuvsland ¹ , Yang Jin ³ , Magny Thomassen ⁴ ,
4	Sigbjørn Lien ² , Michael Leaver ⁵ , Jacob S. Torgersen ⁶ , Torgeir R. Hvidsten ¹ , Jon Olav Vik ² [†] ,
5	Simen R. Sandve ² †
6	* shared first authors
7	† shared corresponding authors
8	Affiliations:
9	¹ Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, NO-1432 Ås,
10	Norway
11	² Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of
12	Biosciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
13	³ Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
14	⁴ Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences,
15	NO-1432 Ås, Norway
16	⁵ Institute of Aquaculture, School of Natural Sciences, University of Stirling, Pathfoot Building, Stirling FK9 4LA,
17	Scotland, UK
18	⁶ AquaGen AS, NO-1432 Ås, Norway
19	
20	Keywords: transcriptomics, adaptation, fish, life-stage, metabolism
21	Corresponding authors:
22	Simen Rød Sandve, Simen.sandve@nmbu.no, +47 94870082, Jon Olav Vik, jonovik@gmail.com, +47 45882998
23	Running title: Adaptive remodeling of lipid metabolism
24	

- 1

25 Abstract

26 Atlantic salmon migrates from rivers to sea to feed, grow and develop gonads before returning to spawn in 27 freshwater. The transition to marine habitats is associated with dramatic changes in the environment, 28 including water salinity, exposure to pathogens and shift in dietary lipid availability. Many changes in 29 physiology and metabolism occur across this life-stage transition, but little is known about the molecular 30 nature of these changes. Here, we use a long-term feeding experiment to study transcriptional regulation of 31 lipid metabolism in Atlantic salmon gut and liver in both fresh- and saltwater. We find that lipid metabolism 32 becomes significantly less plastic to differences in dietary lipid composition when salmon transitions to 33 saltwater and experiences increased dietary lipid availability. Expression of genes in liver relating to 34 lipogenesis and lipid transport decreases overall and becomes less responsive to diet, while genes for lipid 35 uptake in gut become more highly expressed. Finally, analyses of evolutionary consequences of the 36 salmonid-specific whole-genome duplication on lipid metabolism reveal several pathways with 37 significantly different (p < .05) duplicate retention or duplicate regulatory conservation. We also find a 38 limited number of cases where the whole-genome duplication has resulted in an increased gene dosage. In 39 conclusion, we find variable and pathway-specific effects of the salmonid genome duplication on lipid 40 metabolism genes. A clear life-stage-associated shift in lipid metabolism regulation is evident, and we 41 hypothesize this to be, at least partly, driven by nondietary factors such as the preparatory remodelling of 42 gene regulation and physiology prior to sea migration.

44 Introduction

45 Atlantic salmon lives a 'double life'. It starts its life in rivers, before transforming its physiology and 46 behavior and migrating to sea to grow and accumulate resources for reproduction. This shift in environment 47 requires preparatory remodeling of physiology prior to sea migration (referred to as smoltification), which 48 encompasses a suite of coordinately regulated processes involving hormonal changes and large scale 49 alteration of gene expression. The resulting adaptations to a marine environment include transformation of 50 salt-tolerance, coloration, behavior, growth rate, and metabolism (reviewed in Stefansson et al., 2008).

51

52 A key difference between freshwater and sea-habitats is the dietary availability of essential long-chain 53 polyunsaturated fatty acids. Salmon in rivers mostly eat invertebrates that are low in physiologically critical 54 n-3 and n-6, 20 and 22 carbon long-chain polyunsaturated fatty acids (n-3LC-PUFA and n-6LC-PUFA), 55 arachidonic acid (20:4n-6), eicosapentaenoic acid (20:5n-3) and docosahexaenoic (22:6n-3), while marine 56 habitat food chains are high in available LC-PUFAs. Possibly as an adaptation to this (Leaver et al., 2008), 57 salmon have evolved a high capacity for endogenous production of LC-PUFAs by elongation and 58 desaturation of essential dietary 18 carbon precursor linoleic and linolenic acids (18:2n-6 and 18:3n-3; 59 Figure 4) and the ability to increase or decrease endogenous production of n-3LC-PUFA from dietary 60 18:3n-3 (linolenic acid) as a response to the dietary availability (Kennedy et al., 2006; Leaver et al., 2008; 61 Morais et al., 2011; Ruyter et al., 2000; Tocher et al., 2001; Tocher et al., 2002; Zheng et al., 2005). During 62 smoltification and after sea-migration, Atlantic salmon have been shown to undergo transformation of lipid 63 metabolism function, by decreasing lipid syntheses and increasing lipid breakdown (Sheridan, 1989). 64 However, very little is known about the molecular nature of this life-stage associated transformation 65 physiological function.

67 The evolution of novel traits in salmonids, such as increased plasticity and the ability to migrate to sea, may have been facilitated by their ancestral whole genome duplication (called Ss4R) some 80 million years ago 68 69 (Allendorf & Thorgaard, 1984; Lorgen et al., 2015; Macqueen & Johnston, 2014; Robertson et al., 2017). 70 Gene duplication can give rise to new adaptive phenotypes in different ways: through evolution of novel 71 functions or gene regulation, subdivision and/or specialization of function among duplicates, or via an 72 adaptive increase in gene dosage. The Atlantic salmon genome contains ~10,000 pairs of Ss4R gene 73 duplicates, of which ~50% have evolved some novel regulation (Lien et al., 2016; Robertson et al., 2017). 74 Indeed, in the context of lipid metabolism, it has recently been shown that a Ss4R duplicate of elov15, a key 75 enzyme in LC-PUFA syntheses, has gained expression compared to its ancestral regulation with likely 76 implications for the ability to synthesize LC-PUFAs (Carmona-Antoñanzas et al., 2016). This is believed 77 to have facilitated evolution of novel traits, including flexible phenotypes necessary for an anadromous life 78 history (Stefansson et al., 2008). However, no systematic genome wide study has vet been conducted to 79 assess the importance of the Ss4R in evolution of salmon lipid metabolism.

80

In this study, we integrate comparative genomics with transcriptomic data from a feeding trial carried out across the fresh to saltwater transition to build a functional annotation of lipid metabolism pathway genes in salmon. We use this annotation to elucidate (i) the nature of the transformation of lipid metabolism from freshwater to saltwater life-stages and (ii) the impact of whole genome duplication on evolution of the lipid gene repertoire and metabolic function. Our results indicate a programmed shift in lipid metabolism after transition to seawater, and show that lipid pathways differ with respect to selection pressure on gene duplicates from the salmonid whole genome duplication.

88 Materials and methods

89 Orthogroup prediction

90 Protein sequences were obtained from seven teleost fish species; Danio rerio (zebrafish), Gasterosteus 91 aculeatus (three-spined stickleback), Oryzias latipes (medaka), Oncorhynchus mykiss (Rainbow trout), 92 Oncorhynchus kisutch (coho salmon), Salmo salar (Atlantic salmon), Thymallus thymallus (grayling), Esox 93 lucius (northern pike), and two mammalian outgroup species; Homo sapiens (human), Mus musculus (house 94 mouse). Human, mouse, zebrafish, medaka and stickleback protein fasta data were obtained from 95 ENSEMBL (release 83). Atlantic salmon (RefSeq assembly GCF_000233375.1, Annotation Release 100) 96 and northern pike (RefSeq assembly GCF 000721915.2, Annotation Release 101) proteins were obtained 97 from NCBI RefSeq. Rainbow trout proteins were obtained from an assembly and annotation of the genome 98 (Berthelot et al., 2014). Grayling proteins were obtained from an assembly and annotation of the genome 99 (Varadharajan et al., 2017). The coho salmon transcriptome (Kim, Leong, Koop, & Devlin, 2016) was 100 obtained from NCBI (GDQG0000000.1). Where transcriptome data was used, protein sequences were 101 translated using TransDecoder (v2.0.1, http://transdecoder.github.io/). Protein fasta files were filtered to 102 retrieve only the longest protein isoform per gene. Orthofinder (v0.2.8) (Emms et al., 2015) assigned groups 103 of orthologs based on protein sequence similarity. Proteins within an orthogroups were further aligned using 104 MAFFT (v7.130) (Katoh et al., 2002) and maximum likelihood trees were estimated using FastTree (v2.1.8) 105 (Price et al., 2010).

106 Annotation of salmon lipid metabolism genes

A list of zebrafish proteins obtained from 19 manually selected zebrafish KEGG pathways related to lipid
 metabolism (Table S1) were used to search for Atlantic salmon orthologs. Orthogroups that contained a
 selected zebrafish protein were identified. Salmon proteins within those orthogroups were assigned as

orthologs of the closest zebrafish protein based on the orthogroup tree distance. A lipid metabolism gene
list was created including salmon orthologs to the selected zebrafish genes. Additional salmon genes related
to lipid metabolism not included in KEGG pathways (e.g. regulators or transporters, SREBP, LXR, FABP,
etc.) were manually searched for through NCBI and added to the list.

114 Tissue expression

115 Atlantic salmon RNA-seq samples from 15 different tissues (liver, gut, pyloric caeca, heart, kidney, muscle, 116 gill, eye, skin, ovary, nose, testis, brain, head kidney, spleen) were obtained from NCBI SRA 117 (PRJNA72713) (Lien et al., 2016). Fastq files were adapter trimmed before alignment to the Atlantic 118 salmon genome (RefSeq assembly GCF 000233375.1) (Lien et al., 2016) using STAR (v2.5.2a) (Dobin et 119 al., 2013). HTSeq-count (v0.6.1p1) (Anders et al., 2015) counted the sum of uniquely aligned reads in exon 120 regions of each gene in the annotation (RefSeq Annotation Release 100). Gene FPKM values were 121 calculated based on the gene count over the samples effective library size (see TMM method from edgeR 122 (Robinson et al., 2010) user manual) and the mean gene transcript isoform length.

123 Feed trial

124 Atlantic salmon fry were obtained from AquaGen Breeding Centre, Kyrksæterøra, Norway and reared in 125 the Norwegian Institute for Water Research (NIVA), Solbergstranda, Norway in four partitioned 1000 126 liter tanks on vegetable oil (VO) or fish oil (FO) based diets continuously from first feeding (fry weight 127 <0.2 g). Daily feed amount was calculated based on total biomass in each tank and decreased as the fish 128 grew, from 3% at first feeding to 1.2% by the end of the trial. Fish were euthanized periodically 129 throughout the experiment to maintain appropriate levels of dissolved oxygen. VO based feeds contained 130 a combination of linseed oil and palm oil at a ratio of 1.8:1 and FO based feeds contained only North 131 Atlantic fish oil. All feeds were formulated and produced by EWOS innovation (Supplementary File 3). 132 Local groundwater was UV sterilized for use in the freshwater life-stage and water from the Oslofjord

133 taken from 60 meters below sea surface (~3-3.5% salinity) was UV sterilized for use in the saltwater life-134 stage. Fish were raised under constant light and water temperature (\sim 12°C) for 26 weeks. Then, 40 pre-135 smolt salmon (~50g) from each control tank (~240 fish per control tank) were switched to the contrasting 136 diet (VO to FO and vice versa) by physically moving them to the empty partition of the tank receiving the 137 appropriate feed (Figure 8a). Five fish from each of the control tanks (2 VO tanks and 2 FO tanks) were 138 sampled before switching feeds (D0), then fish from both control and feed switch conditions were 139 similarly sampled 1, 2, 5, 9, 16, and 20 days after switching feeds (5 fish x 2 replicate tanks x 4 140 conditions = 40 fish per time point, figure 8b). Two weeks after freshwater sampling (31 weeks after first 141 feeding), smoltification was triggered by 5 weeks of winter-like conditions with decreased light (12 hours 142 per day) and water temperature (~8°C), immediately followed by 5 weeks of spring-like conditions, 143 returning to normal light (24 hours per day) and water temperature ($\sim 12^{\circ}$ C). All salmon from the control 144 groups (VO or FO) were then switched to saltwater and allowed to acclimate for 3 weeks. The feed 145 switch was repeated in saltwater by transferring half (~40 fish) of the post-smolt salmon (~200 g) from 146 each control tank to the contrasting feed condition. Again, pre-switch control samples were taken (D0) 147 followed by sampling 1, 2, 6, 9, 16, and 20 days post-diet switch (Figure 8b). For both freshwater and 148 saltwater samplings, feeding was stopped in the mornings of each of the sampling days. All fish were 149 euthanized by a blow to the head and samples of liver and midgut (gut section between pyloric caeca and 150 hindgut) were flash frozen in liquid nitrogen and stored under -80 °C. A subset of the samples taken were 151 used for further RNA-seq analysis (see figure 8c for details).

152 RNA-sequencing

Total RNA was extracted from selected feed trial samples (see figure 8c for details) using the RNeasy Plus
Universal kit (QIAGEN). Quality was determined on a 2100 Bioanalyzer using the RNA 6000 nano kit
(Agilent). Concentration was determined using a Nanodrop 8000 spectrophotometer (Thermo Scientific).
cDNA libraries were prepared using the TruSeq Stranded mRNA HT Sample Prep Kit (Illumina). Library

mean length was determined by running on a 2100 Bioanalyzer using the DNA 1000 kit (Agilent) and
library concentration was determined with the Qbit BR kit (Thermo Scientific). Single end sequencing of
sample libraries was completed on an Illumina HiSeq 2500 with 100 bp reads.

160 Differential expression analysis between feed conditions and life-stages

161 To analyze gene expression differences between feed conditions and life-stages, samples from the feed trial 162 were selected for RNA-seq. Liver and gut tissue RNA were sequenced from fish fed each of the feeds (FO, 163 VO) at day 0 of the diet switch, both before (freshwater) and after (saltwater) smoltification (See figure 8c 164 for the number of RNA-seq replicates and sampling details). Fastq files were processed to produce gene 165 count and FPKM data using the same protocol described under the tissue expression method section. For 166 the feed comparison, changes in gene expression were tested between FO and VO feed conditions for both 167 freshwater and saltwater samples, and liver and gut tissues. For the life-stage comparison, changes in gene 168 expression were tested between freshwater and saltwater stages for both FO and VO feed conditions, and 169 liver and gut tissues. Using RNA-seq gene count data, lowly expressed genes were filtered prior to testing, 170 retaining genes with a minimum of one read count per million (CPM) in two or more samples. Differential 171 expression analysis was carried out using a standard edgeR (Robinson et al., 2010) protocol. Effective 172 library sizes were calculated using the edgeR TMM-normalisation procedure allowing effective comparison 173 of expression data between different sample types (see edgeR user manual). An exact test between 174 expression levels of a pair of conditions gave the log2 fold change, P-value and false discovery rate (FDR) 175 for each gene. Genes with FDR < 0.05 were considered differentially expressed genes (DEGs).

176 Identification of Ss4R duplicates

To identify putative gene duplicates stemming from the Ss4R, we used the same approach as in Lien et al. (2016). All-vs-all protein blast was run with e-value cutoff of 1e-10 and pident (percentage of identical matches) \geq 80 and blast hit coverage of \geq 50% of protein length. Only the best protein hits between the 98 defined synteny blocks (see Lien et al., 2016) were considered as putative Ss4R duplicates. Blast result
ranking was done using the product of pident times bitscore to avoid spurious 'best blast matches' with low
pident (<85) but high bitscore.

183 Duplicate analysis

184 Genes from the lipid metabolism gene list were paired together with their putative Ss4R duplicates 185 identified above. The retention of gene duplicates (i.e. whether both genes in a pair were retained, or just 186 one) was compared between all identified duplicates in the salmon genome annotation and the lipid 187 metabolism gene list. Pathway-level retention was explored by comparing the number of genes in each of 188 the 19 selected KEGG pathways (Table S1) in a duplicate pairing to that of the total list of lipid genes, to 189 find pathways with significantly less or more duplicate retention (Fisher's exact test, P-value < 0.05). 190 Regulatory conservation of lipid gene duplicates was explored by correlation of gene expression changes 191 between duplicates over the course of the feed trial described above. RNA-seq data was generated from 192 liver samples of salmon from 38 sampling time points (19 in freshwater and 19 in saltwater). Fastq files 193 were processed to produce gene count and FPKM data using the same protocol described under the tissue 194 expression method section. For each duplicate pair, mean FPKM values were retrieved for each time point 195 and used to calculate a freshwater and saltwater correlation value. Duplicates with Pearson correlation \geq 196 0.6 were considered correlated (P-value < 0.003 from 19 sample points). The number of duplicates with 197 correlated expression profiles was counted for each pathway and compared to all lipid genes to find 198 pathways with significantly less or more correlated duplicates (Fisher's exact test, P-value < 0.05). The 199 effect of gene duplication on gene dosage was estimated by calculating a dosage ratio between the FPKM 200 value of a salmon ortholog (sum of gene expression in duplicate pairs) over the FPKM value of the non-201 duplicated ortholog from northern pike. For salmon, the RNA-seq data from the freshwater and saltwater 202 FO feed trial was used (samples used in differential expression analysis section). For pike, RNA-seq from 203 livers of four individuals were aligned (see tissue expression section for protocol) to their respective

genomes (see genomes in ortholog prediction section). RSEM (v1.2.31) (Li & Dewey, 2011) was used to generate FPKM values for genes so that non-uniquely mapped reads between salmon duplicate genes were not ignored but instead assigned proportionately to each gene to match the proportions of uniquely mapped reads between the genes. Gene dosage levels for duplicate pairs with correlated expression (see above), non-correlated expression and single genes were compared for all lipid metabolism genes and for each pathway.

210

211 Results and discussion

212 Annotation of lipid metabolism genes

213 To identify genes involved in lipid metabolism in Atlantic salmon, we initially assembled groups of 214 orthologous genes (orthogroups) using protein sequence similarity. We included proteins from four 215 salmonid species sharing the Ss4R genome duplication, in addition to four non-salmonid fish genomes and 216 two model mammalian outgroup species (Figure 1a) to aid in distinguishing Ss4R copies from other gene 217 duplicates. Next, we aligned orthogroup proteins and constructed maximum likelihood gene trees. The 218 majority (82-98%) of proteins from each species were represented in 23,782 ortholog gene trees. The 219 salmonid species had significantly higher number of proteins included in ortholog gene trees compared to 220 non-salmonid fish (Figure S1), reflecting the salmonid specific whole genome duplication. We then used 221 the evolutionary distances in gene trees to infer the most likely salmon sequence orthologs of zebrafish 222 genes selected from 19 KEGG pathways involved in lipid metabolism (File S1). This resulted in the 223 annotation of 1421 (File S2) salmon lipid metabolism genes, of which 326 (23%) showed a 2:1 ortholog 224 ratio between salmon and zebrafish (Figure 1b). Only 87 (6%) of the zebrafish genes could not be assigned 225 a salmon ortholog.

227 To validate our ortholog annotation pipeline used to identify lipid metabolism genes, we analyzed the tissue 228 specificity of these genes using gene expression data from 15 tissues (File S3) of Atlantic salmon (Lien et 229 al., 2016). Genes in certain fatty acid metabolism related pathways ('fatty acid metabolism', 'PPAR 230 signaling pathway', 'fat digestion and absorption') had higher overall expression in tissues known to have 231 high lipid metabolism activity (i.e. pyloric caeca, liver, heart, and brain) (Glatz et al., 2010; Benedito-Palos 232 & Pérez-Sánchez, 2016; Tocher, 2003) (Figure 2). Examples include: 1) Liver was the site of highest 233 expression for all genes in the LC-PUFA biosynthesis pathway (the desaturases Δ 6FAD and Δ 5FAD, and 234 the elongases elov15, elov12 and elov14). 2) Bile acids are essential for fat digestion in the gut, but are 235 synthesized in liver. As expected, the rate limiting step for bile syntheses, cytochrome P450 7A1 236 (CYP7A1), has the highest expression in the liver. 3) Cholesterol, an essential component of cell 237 membranes and precursor to bile acids, is known to be synthesized in all tissues, but primarily in liver, 238 intestine, and brain (Brown & Sharpe, 2016). This is reflected in our annotation by high expression of the 239 key cholesterol biosynthesis genes 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), isopentenyl-240 diphosphase ∆isomerase (IDI1), squalene epoxidase (SM), and lanosterol synthase (LS) in these tissues. 4) 241 Several known regulators of lipid metabolism show high expression in liver, heart, brain and pyloric caeca, 242 as expected, including liver X receptor (LXR), peroxisome proliferator-activated receptor alpha (PPARa), 243 sterol regulatory element binding protein 1 (SREBP1), and sterol regulatory element binding protein 2 244 (SREBP2). Taken together, the tissue distribution of lipid metabolism gene expression is in line with 245 knowledge about vertebrate physiology in general, and support the validity of our annotation of lipid 246 metabolism genes in salmon. To make all data underlying our annotation easily available, and to facilitate 247 further refinement through manual community curation, we have created an interactive web-server 248 available online (goo.gl/8Ap89a).

250 Life-stage dependent remodeling of lipid metabolism

251 We conducted a feeding trial to study how salmon adjusts its lipid metabolism to different levels of LC-252 PUFA in freshwater and saltwater (See figure 8 for experimental details). Groups of salmon were fed 253 contrasting diets from hatching until after transition to seawater. One feed was vegetable oil based (VO) 254 and hence low in LC-PUFA, similar to river ecosystem diets, whereas the other was based on fish oil (FO) 255 and high in LC-PUFA as expected in a marine-type diet (see Table S2 for details on feed composition). VO 256 based diets are also low in cholesterol (Ciftci, et al., 2012; Verleyen et al., 2002). In total, 32 and 23 fish 257 were sampled for RNA-seq of liver and gut, respectively, including up to eight biological replicates from 258 each diet and life-stage (freshwater and saltwater, see figure 8c for details). Fish in the different dietary 259 groups were given FO and VO feed from first feeding (<0.2 g body weight) until sampling.

260

261 In general, global gene expression levels were more affected by dietary composition in liver than in gut 262 (which was largely unresponsive), and the effect was more pronounced in freshwater than in saltwater 263 (Figure 3a). VO diets, compared to FO diets, increased lipid-metabolism related gene expression in liver. 264 In freshwater, 66 genes were differentially expressed with 57 (86%) of these upregulated, while in saltwater 265 31 genes were differentially expressed with 23 (74%) of these upregulated (Figure 3b). The increased 266 activity of liver lipid metabolism under VO diets confirm the well-known ability of salmon to regulate 267 endogenous synthesis of LC-PUFA and cholesterol in response to VO diets (Kortner et al., 2014; Leaver et 268 al., 2008; Zheng et al., 2005).

269

Fish sampled in freshwater and saltwater shared a relatively small number of differentially expressed genes (DEGs) for each pathway (Table S3). We found that most pathways had more DEGs in freshwater (*'fatty acid biosynthesis'*, *'steroid biosynthesis'*, and its precursor *'terpenoid backbone biosynthesis'*), whereas few had more DEGs in saltwater (*'fat digestion and absorption'* and *'steroid hormone biosynthesis'*) (Figure 3c). Of 87 lipid metabolism DEGs in the dietary contrast, 56 (64%) were freshwater specific, 21 275 (24%) saltwater specific, and 10 (11%) shared dietary response. For example, only two genes in the FA and 276 LC-PUFA biosynthesis pathways (D6FADa and D5FAD) shared response to diet in freshwater and 277 saltwater (Figure 4). Similarly, in the pathways responsible for cholesterol biosynthesis, there were more 278 DEGs between diets in FW (21 DEGs in FW, 4 shared and no SW-specific; Figure 5). The few genes that 279 showed diet effects specific to saltwater included bile salt-activated lipase, responsible for the hydrolysis 280 of free fatty acids from TAG obtained from the diet (Tocher, 2003). Two of these genes, carboxyl ester 281 lipase, tandem duplicate 2a (CEL2a) and b (CEL2b), are highly upregulated in saltwater in response to VO 282 diet. Taken together, our results show higher metabolic plasticity in parr stage salmon, suggesting a life-283 stage-associated remodelling of lipid metabolism in liver. This corroborates the idea of a postsmoltification 284 phenotype adapted to an environment with a surplus of n-3LCPUFA.

285

To further investigate the life-stage-associated changes in lipid metabolism, we tested for differential expression between salmon in freshwater and saltwater fed diets with identical n-3LC-PUFA profiles (Figure 6). Liver and gut showed contrasting effects of saltwater on lipid gene expression with extensive downregulation in liver and upregulation in gut (Figure 6b). The number of DEGs in each tissue was similar for the environment comparison (Figure 6a), unlike for the diet comparison (Figure 3).

291

292 Further examination of key lipid metabolism genes revealed that after life-stage transition, the system wide 293 lipid metabolism remodeling represented a concerted shift in the metabolic role of liver and gut. As the 294 salmon entered the marine stage, lipogenic gene expression in the liver was significantly decreased, as 295 evident by the markedly lower expression (2.2-3.3 fold) of the master regulator of lipid metabolism 296 SREBP1, a 5-fold decrease in expression of fatty acid synthase, and a 2-3 fold decrease in rate-limiting 297 enzymes in LC-PUFA synthesis (i.e. Δ 5FAD, Δ 6FADa) (Figure 4). Liver and gut gene expression also 298 indicated increased catabolic activity in saltwater, with upregulation of the carnitine palmitoyltransferase 1 299 and 2 genes, responsible for uptake of fatty acids into mitochondria for β-oxidation (Lehner & Quiroga, 300 2016). Finally, expression of lipid transport genes shifted from liver to gut with the transition to seawater 301 (apolipoproteins, pathway "Fat digestion and absorption" in Figure 6). Four apolipoproteins (out of 11 302 annotated) were differentially regulated in liver between different life-stages, with a 2.4-5 fold decrease in 303 saltwater compared to freshwater. In stark contrast, nine of the diet-regulated apolipoproteins in gut 304 increased their expression in saltwater between 1.8-9.7 fold. The results point to an adaptive shift in lipid 305 metabolism, with increased ability to take up lipids in the gut after Atlantic salmon migrates to sea where 306 lipid availability is higher. Remodelling of lipid metabolism across life stages is likely the result of a 307 combination of factors, including the direct regulatory effect of dietary fat itself, effect of salinity and 308 smoltification-induced physiological changes influencing gene regulation. Although the relative 309 importance of these factors is undetermined in our study, the fact that DEGs in the VO versus FO feed 310 contrast were mostly lifestage- specific (Figure 3) supports that factors other than the diet itself contribute 311 significantly to the freshwater and seawater metabolic phenotypes.

312

313 Interestingly, diet had a strong influence on the number and direction of gene expression changes between 314 freshwater and saltwater (Figure 6). In gut, about twice as many DEGs (with respect to the fresh- to 315 saltwater transition) were observed in salmon when fed FO diet than VO diet (Figure 6a). In liver, the diet 316 effect was less pronounced, with the FO group containing 46% more DEGs than the VO group (Figure 6a). 317 This diet effect pattern was reflected in the lipid metabolism genes with 89% and 16% more DEGs in the 318 FO group for gut and liver, respectively (Figure 6b). As this diet and life-stage interaction is a genome wide 319 trend, and more pronounced in gut tissue than in liver, this pattern could also be related to differences in 320 osmoregulation and adaptation to saltwater. Two studies have suggested that Atlantic salmon raised on VO 321 based feeds more closely resembling riverine diets adapt to saltwater sooner and better than salmon raised on FO based diets (Bell et al., 1997; Tocher et al., 2000). Conversely, there has been evidence that VO 322 323 based diets can reduce markers for stress response upon saltwater challenge, resulting in reduced 324 osmoregulatory capacity (Oxley et al., 2010). Regardless of the effect, it is clear that diet can modulate the 325 smoltification process and could explain the discrepancy between diets in number of life-stage related

326 DEGs. Another possibility is that the different levels of fatty acids in the diets, for example DHA, affect327 DNA-methylation and thus trigger genome wide divergence in gene regulation (Kulkarni et al., 2011).

328

329 Our results clearly demonstrate very different baseline lipid metabolic functions in pre- and post-smolt 330 salmon, as well as life-stage associated changes in the plasticity of lipid metabolism, e.g. the ability to 331 regulate endogenous LC-PUFA synthesis as a response to changes in diet (i.e. fatty acid composition). As 332 opportunistic carnivores, salmon tend to eat whatever the local environment provides. Thus, in freshwater, 333 insects and amphipods provide variable, mostly low amounts of essential LC-PUFA and total fat (Jonsson 334 & Jonsson, 2011; Sushchik et al., 2003), favoring a metabolic function that can efficiently regulate 335 endogenous lipid synthesis based on dietary availability (Carmona-Antonanzas et al., 2014). Conversely, 336 in marine environments, amphipods and smaller fish provide a higher, more stable source 337 of n-3LC-PUFA and total fat (Baeza-Rojano, Hachero-Cruzado, & Guerra-Garcia, 2014; Jonsson &

Jonsson, 2011), promoting a metabolic function that allocates less energy to endogenous synthesisof essential lipids.

340

341 Selection on gene duplicates after whole genome duplication

Carmona-Antonanzas et al. (2014, 2016) proposed that the salmonid whole-genome duplication may have adaptively increased the potential for endogenous lipid synthesis. We pursued this hypothesis by searching for distinct signatures of selection pressure on lipid metabolism genes in salmon. Specifically, we compared pathways in terms of their tendency to retain both duplicates of gene pairs, in terms of whether duplicates showed similar regulation (expression patterns across diets and environments), and in terms of total gene dosage (for the one or two genes retained of a pair) in salmon compared to pike, its closest unduplicated sister lineage.

To assess the level of Ss4R duplicate retention, we first defined 10,752 Ss4R duplicate pairs (21,504 genes) in the NCBI refseq annotation using the same approach as Lien et al. (2016). Of the 1,421 annotated lipid metabolism genes, 867 (61%) were retained as duplicated genes after Ss4R (Figure 7a) (in contrast to 47% of the 45,127 salmon genes assigned to ortholog groups). Moreover, our results showed large variation in the proportion of retained duplicates in each lipid metabolism pathway (Figure 7), with the most extreme case being '*fat digestion and absorption*' with 80% retained duplicates and '*steroid hormone biosynthesis*' with only 27% retained Ss4R duplicates.

357

358 The regulatory conservation of the duplicates was then estimated by calculating co-expression correlation 359 between Ss4R duplicates from RNA-seq data representing a time course of dynamic changes in gene 360 expression and lipid metabolism function in liver. Fish in the same feeding trial were switched from VO to 361 FO feed and vice versa, in both fresh and saltwater conditions (see Figure 8 for details). In total, 38 sampling 362 time points (20 in freshwater and 18 in saltwater) from the feed switch experiment were used. Pathway-363 level analyses showed that regulatory conservation was not associated with duplicate retention (Figure 7). 364 For example, the 'biosynthesis of unsaturated fatty acids' pathway had significantly fewer duplicates 365 retained than expected by chance (P-value < 0.0234), but a significant overrepresentation of duplicate pairs 366 that display highly similar regulation (P-value < 0.0142 and < 0.0361 in freshwater and saltwater, 367 respectively). Interestingly, the 'insulin signaling pathway' also showed higher than expected duplicate co-368 regulation. This pathway has been shown to be important in regulating uptake and transport of FAs in 369 adipose tissue, liver and muscle of Atlantic salmon (Sánchez-Gurmaches et al., 2011). Other pathways showing signatures of increased duplicate co-regulation were 'terpenoid backbone biosynthesis', 'steroid 370 371 biosynthesis', 'fat digestion and absorption', and 'fatty acid metabolism' (Figure 7b-c). Overall, the distinct 372 differences in duplicate retention and conservation of regulatory mechanisms across the lipid metabolism 373 pathways suggest differences in selective pressures shaping duplicate evolution following Ss4R. Moreover, 374 the pathways with highly conserved duplicate co-regulation were also those that were most responsive to 375 dietary differences in fatty acid composition (Figure 3).

377 Finally, to link duplicate retention and co-regulation to signals of increased gene dosage following Ss4R, 378 we used RNA-seq data from the Northern pike (Esox lucius), a species that belongs to the unduplicated 379 sister lineage (see methods for details). For each duplicate pair, we computed the ratio between the sum of 380 Ss4R duplicate expression and its non-duplicated ortholog in pike and compared these ratios to those 381 observed for salmon genes that had not retained two Ss4R duplicates. In total 69 duplicate pairs from 18 382 different lipid-metabolism related pathways displayed a combined dosage increase relative to single copy 383 genes, of which 26 had highly conserved regulation (i.e. correlated expression) (File S8). We saw no 384 systematic effect of gene dosage when comparing the total gene expression of duplicate pairs with that of 385 single-copy genes; nor did co-regulation of duplicates associate with increased gene dosage (Figure 7d). 386 This pattern was also true for most individual lipid pathways (Figure S4-S5), except for 'biosynthesis of 387 unsaturated fatty acids', 'fatty acid metabolism' and 'fatty acid elongation'. These three pathways showed 388 a link between co-regulation of duplicated genes and higher total gene dosage (Figure S4-S5, Figure 7d). 389 Underlying this link were three genes with co-regulated dosage effects shared between all three pathways; 390 trifunctional enzyme alpha subunit b (hadhab), elovl6, and the previously identified elovl5 (Carmona-391 Antonanzas et al., 2014; Carmona-Antoñanzas et al., 2016). Only elov15 is known to be directly involved 392 in core PUFA biosynthesis. Hadhab is involved in mitochondrial β -oxidation/elongation and elov16 is 393 involved in elongation of saturated and monounsaturated fatty acids (Bond et al., 2016). Although we do 394 not see a general trend of increased gene dosage effects on lipid metabolism genes after whole genome 395 duplication, it is likely that an increased dosage of elov15 and the 68 other duplicate pairs has affected the 396 function of lipid metabolism in salmon.

397 Conclusion

Atlantic salmon needs great plasticity of physiology and behaviour to adapt for migration betweenfreshwater and sea. By analysing transcriptomic changes through the transition from fresh- to saltwater and

400 the associated increase in dietary lipids, we identified an overall remodelling of lipid metabolism, with liver 401 reflecting higher lipid metabolic plasticity and higher capacity of endogenous synthesis of LC-PUFAs in 402 freshwater, while gut lipid uptake genes become more active in saltwater. These results indicate adaptive 403 optimization of the Atlantic salmon lipid metabolism to account for life-stage-specific dietary availability. 404 Moreover, we found signatures of pathway-specific selection pressure on gene duplicates, including a gene 405 dosage increase in three genes involved in fatty acid metabolism. This illustrates possible adaptive 406 consequences of the salmonid whole-genome duplication for the evolution of lipid metabolism. Future 407 studies should attempt to decipher how the life-stage-related metabolic reprogramming is controlled (e.g., 408 through epigenetic mechanisms). Understanding this will have important implications for understanding 409 evolution of genome regulatory processes in anadromous salmonids and potentially have economically 410 important implications for Atlantic salmon aquaculture

411

412 Acknowledgements

This work was financed by the projects DigiSal NFR 248792 and GenoSysFat NFR 244164. We also thank
anonymous reviewers for comments on the earlier version of the manuscript as well as Dominic Nanton
and Cargill Innovation Center Dirdal for producing the fish trial feeds.

416

417 Author Contributions

418 S.R.S., J.O.V., A.G., and J.S.T. conceived of the study and designed the feeding trial experiment. S.R.S.,

419 J.O.V., and A.G. carried out orthogroup prediction and lipid metabolism annotation. T.N.H., Y.J., J.S.T.,

420 and J.O.V. carried out the feeding trial. T.N.H. and Y.J. prepared the samples for RNA sequencing. M.T.,

421 S.L., and M.L. provided input on the experimental design and helped interpreting the results from the

- 422 transcriptomic and gene duplicate analysis. G.G. and T.R.H. performed the bioinformatic analyses. T.N.H.,
- 423 G.G., S.R.S., and T.R.H. wrote the manuscript. All authors reviewed the final manuscript draft.

424 References

- 425 Allendorf, F. W., & Thorgaard, G. H. (1984). Tetraploidy and the Evolution of Salmonid Fishes. In
- 426 *Evolutionary Genetics of Fishes* (pp. 1–53). Boston, MA: Springer US. http://doi.org/10.1007/978427 1-4684-4652-4_1
- Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with high-throughput
 sequencing data. *Bioinformatics*, *31*(2), 166–169. http://doi.org/10.1093/bioinformatics/btu638
- 430 Bell, J. G., Tocher, D. R., Farndale, B. M., Cox, D. I., McKinney, R. W., & Sargent, J. R. (1997). The
- 431 effect of dietary lipid on polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar)
- 432 undergoing parr-smolt transformation. *Lipids*, *32*(5), 515–525. http://doi.org/10.1007/s11745-997-
- 433 0066-4
- Berthelot, C., Brunet, F., Chalopin, D., Juanchich, A., Bernard, M., Noël, B., ... Guiguen, Y. (2014). The
 rainbow trout genome provides novel insights into evolution after whole-genome duplication in
 vertebrates. *Nature Communications*, *5*, 3657. http://doi.org/10.1038/ncomms4657
- 437 Bond, L. M., Miyazaki, M., O'Neill, L. M., Ding, F., & Ntambi, J. M. (2016). Fatty Acid Desaturation
- 438 and Elongation in Mammals. In *Biochemistry of Lipids, Lipoproteins and Membranes* (pp. 185–

439 208). Elsevier. http://doi.org/10.1016/B978-0-444-63438-2.00006-7

- Brown, A. J., & Sharpe, L. J. (2016). Cholesterol Synthesis. In *Biochemistry of Lipids, Lipoproteins and Membranes* (pp. 327–358). Elsevier. http://doi.org/10.1016/B978-0-444-63438-2.00011-0
- 442 Carmona-Antonanzas, G., Tocher, D. R., Martinez-Rubio, L., & Leaver, M. J. (2014). Conservation of
- 443 lipid metabolic gene transcriptional regulatory networks in fish and mammals. *Gene*, 534(1), 1–9.
- 444 http://doi.org/10.1016/j.gene.2013.10.040
- 445 Carmona-Antoñanzas, G., Zheng, X., Tocher, D. R., & Leaver, M. J. (2016). Regulatory divergence of
- 446 homeologous Atlantic salmon elov15 genes following the salmonid-specific whole-genome
- 447 duplication. *Gene*, 591(1), 34–42. http://doi.org/10.1016/j.gene.2016.06.056
- 448 Ciftci, O. N., Przybylski, R., & Rudzińska, M. (2012). Lipid components of flax, perilla, and chia seeds.

- 449 *European Journal of Lipid Science and Technology*, *114*(7), 794–800.
- 450 http://doi.org/10.1002/ejlt.201100207
- 451 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., ... Gingeras, T. R. (2013).
- 452 STAR: ultrafast universal RNA-seq aligner. *Bioinformatics (Oxford, England)*, 29(1), 15–21.
- 453 http://doi.org/10.1093/bioinformatics/bts635
- 454 Emms, D. M., Kelly, S., Alexeyenko, A., Tamas, I., Liu, G., Sonnhammer, E., ... Kellis, M. (2015).
- 455 OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves
- 456 orthogroup inference accuracy. *Genome Biology*, *16*(1), 157. http://doi.org/10.1186/s13059-015-
- 457 0721-2
- Glatz, J. a N. F. C., Luiken, J. J. F. P., & Bonen, A. (2010). Membrane Fatty Acid Transporters as
 Regulators of Lipid Metabolism : Implications for Metabolic Disease. *Physiological Reviews*, 90,

460 367–417. http://doi.org/10.1152/physrev.00003.2009.

- Jonsson, B., & Jonsson, N. (2011). Ecology of Atlantic Salmon and Brown Trout Habitat as a template *for life histories. Fish and Fisheries Series* (Vol. 33). http://doi.org/10.1007/978-94-007-1189-1
- 463 Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple
- 464 sequence alignment based on fast Fourier transform. *Nucleic Acids Research*, *30*(14), 3059–66.
- 465 http://doi.org/10.1093/NAR/GKF436
- 466 Kennedy, S. R., Leaver, M. J., Campbell, P. J., Zheng, X., Dick, J. R., & Tocher, D. R. (2006). Influence
- 467 of dietary oil content and conjugated linoleic acid (CLA) on lipid metabolism enzyme activities and
- 468 gene expression in tissues of Atlantic salmon (Salmo salar L.). *Lipids*, *41*(5), 423–436.
- 469 http://doi.org/10.1007/s11745-006-5116-4
- 470 Kim, J.-H., Leong, J. S., Koop, B. F., & Devlin, R. H. (2016). Multi-tissue transcriptome profiles for coho
- 471 salmon (Oncorhynchus kisutch), a species undergoing rediploidization following whole-genome
- 472 *duplication. Marine Genomics* (Vol. 25). http://doi.org/10.1016/j.margen.2015.11.008
- 473 Kortner, T. M., Björkhem, I., Krasnov, A., Timmerhaus, G., & Krogdahl, Å. (2014). Dietary cholesterol
- 474 supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and

- 475 induces bile acid production in Atlantic salmon (Salmo salar L.). British Journal of Nutrition,
- 476 *111*(12), 2089–2103. http://doi.org/10.1017/S0007114514000373
- 477 Kulkarni, A., Dangat, K., Kale, A., Sable, P., Chavan-Gautam, P., & Joshi, S. (2011). Effects of Altered
- 478 Maternal Folic Acid, Vitamin B12 and Docosahexaenoic Acid on Placental Global DNA
- 479 Methylation Patterns in Wistar Rats. *PLoS ONE*, *6*(3), e17706.
- 480 http://doi.org/10.1371/journal.pone.0017706
- 481 Leaver, M. J., Bautista, J. M., Björnsson, B. T., Jönsson, E., Krey, G., Tocher, D. R., & Torstensen, B. E.
- 482 (2008). Towards Fish Lipid Nutrigenomics: Current State and Prospects for Fin-Fish Aquaculture.
- 483 *Reviews in Fisheries Science*, *16*(April), 73–94. http://doi.org/10.1080/10641260802325278
- 484 Leaver, M. J., Villeneuve, L. A., Obach, A., Jensen, L., Bron, J. E., Tocher, D. R., & Taggart, J. B.
- 485 (2008). Functional genomics reveals increases in cholesterol biosynthetic genes and highly
- unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic
 salmon (Salmo salar). *BMC Genomics*, *9*, 299. http://doi.org/10.1186/1471-2164-9-299
- 488 Lehner, R., & Quiroga, A. D. (2016). Fatty Acid Handling in Mammalian Cells. In *Biochemistry of*
- 489 *Lipids, Lipoproteins and Membranes* (pp. 149–184). Elsevier. http://doi.org/10.1016/B978-0-444 490 63438-2.00005-5
- 491 Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or
- without a reference genome. *BMC Bioinformatics*, *12*(1), 323. http://doi.org/10.1186/1471-2105-12 323
- Lien, S., Koop, B. F., Sandve, S. R., Miller, J. R., Kent, M. P., Nome, T., ... Davidson, W. S. (2016). The
 Atlantic salmon genome provides insights into rediploidization. *Nature*, *533*(7602), 200–205.
- 496 http://doi.org/10.1038/nature17164
- 497 Lorgen, M., Casadei, E., Krol, E., Douglas, A., Birnie, M. J., Ebbesson, L. O. E., ... Martin A.m, S.
- 498 (2015). Functional divergence of type 2 deiodinase paralogs in the Atlantic salmon. *Current*
- 499 *Biology*, 25(7), 936–941. http://doi.org/10.1016/j.cub.2015.01.074
- 500 Macqueen, D. J., & Johnston, I. A. (2014). A well-constrained estimate for the timing of the salmonid

- whole genome duplication reveals major decoupling from species diversification. *Proceedings of the Royal Society of London B: Biological Sciences*, 281(1778).
- 503 Morais, S., Pratoomyot, J., Taggart, J. B., Bron, J. E., Guy, D. R., Bell, J. G., & Tocher, D. R. (2011).
- 504 Genotype-specific responses in Atlantic salmon (Salmo salar) subject to dietary fish oil replacement
- 505 by vegetable oil: a liver transcriptomic analysis. *BMC Genomics*, *12*(1), 255.
- 506 http://doi.org/10.1186/1471-2164-12-255
- 507 Oxley, A., Jolly, C., Eide, T., Jordal, A.-E. O., Svardal, A., & Olsen, R.-E. (2010). The combined impact
- 508 of plant-derived dietary ingredients and acute stress on the intestinal arachidonic acid cascade in
- 509 Atlantic salmon (Salmo salar). *The British Journal of Nutrition*, 103(6), 851–61.
- 510 http://doi.org/10.1017/S0007114509992467
- 511 Price, M. N., Dehal, P. S., Arkin, A. P., Nawrocki, E., Kolbe, D., Eddy, S., ... Meyer, F. (2010). FastTree
- 512 2 Approximately Maximum-Likelihood Trees for Large Alignments. *PLoS ONE*, 5(3), e9490.
- 513 http://doi.org/10.1371/journal.pone.0009490
- 514 Rimoldi, S., Benedito-Palos, L., Terova, G., & Pérez-Sánchez, J. (2016). Wide-targeted gene expression
- 515 infers tissue-specific molecular signatures of lipid metabolism in fed and fasted fish. *Reviews in Fish*

516 *Biology and Fisheries*, 26(1), 93–108. http://doi.org/10.1007/s11160-015-9408-8

- 517 Robertson, F. M., Gundappa, M. K., Grammes, F., Hvidsten, T. R., Redmond, A. K., Martin, S. A. M., ...
- 518 Macqueen, D. J. (2017). Lineage-specific rediploidization is a mechanism to explain time-lags
- 519 between genome duplication and evolutionary diversification. *Genome Biology*.
- 520 http://doi.org/doi:10.1101/098582
- 521 Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for
- 522 differential expression analysis of digital gene expression data. *Bioinformatics (Oxford, England)*,
- 523 26(1), 139–40. http://doi.org/10.1093/bioinformatics/btp616
- 524 Ruyter, B., Røsjø, C., Måsøval, K., Einen, O., & Thomassen, M. S. (2000). Influence of dietary n-3 fatty
- acids on the desaturation and elongation of [1-14 C] 18 : 2 n-6 and [1-14 C] 18 : 3 n-3 in Atlantic
- salmon hepatocytes, 151–158.

- 527 Sánchez-Gurmaches, J., Østbye, T.-K., Navarro, I., Torgersen, J., Hevrøy, E. M., Ruyter, B., &
- 528 Torstensen, B. E. (2011). In vivo and in vitro insulin and fasting control of the transmembrane fatty
- 529 acid transport proteins in Atlantic salmon (Salmo salar). American Journal of Physiology.
- 530 *Regulatory, Integrative and Comparative Physiology, 301*(4), R947-57.
- 531 http://doi.org/10.1152/ajpregu.00289.2011
- 532 Sheridan, M. A. (1989). Alterations in lipid metabolism accompanying smoltification and seawater
- adaptation of salmonid fish. *Aquaculture*, 82(1–4), 191–203. http://doi.org/10.1016/00448486(89)90408-0
- 535 Stefansson, S. O., Björnsson, B. T., Ebbesson, L. O., & McCormick, S. D. (2008). Smoltification. *Fish*536 *Larval Physiology*, 639–681. http://doi.org/DOI: 10.1111/j.1095-8649.2009.02440_2.x
- 537 Sushchik, N. N., Gladyshev, M. I., Moskvichova, A. V., Makhutova, O. N., & Kalachova, G. S. (2003).
- 538 Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of
- the Yenisei river. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular
- 540 *Biology*, *134*(1), 111–122. http://doi.org/10.1016/S1096-4959(02)00191-4
- 541 Tocher, D. R. (2003). Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish. *Reviews in*542 *Fisheries Science*, *11*(2), 107–184. http://doi.org/10.1080/713610925
- 543 Tocher, D. R., Bell, J. G., Dick, J. R., Henderson, R. J., McGhee, F., Michell, D., & Morris, P. C. (2000).
- 544 Polyunsaturated fatty acid metabolism in Atlantic salmon (Salmo salar) undergoing parr-smolt
- 545 transformation and the effects of dietary linseed and rapeseed oils. *Fish Physiology and*

546 *Biochemistry*, 23(1), 59–73. http://doi.org/10.1023/A:1007807201093

- 547 Tocher, D. R., Bell, J. G., MacGlaughlin, P., McGhee, F., & Dick, J. R. (2001). Hepatocyte fatty acid
- 548 desaturation and polyunsaturated fatty acid composition of liver in salmonids: effects of dietary
- 549 vegetable oil. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular*
- 550 *Biology*, *130*(2), 257–270. http://doi.org/10.1016/S1096-4959(01)00429-8
- 551 Tocher, D. R., Fonseca-Madrigal, J., Bell, J. G., Dick, J. R., Henderson, R. J., & Sargent, J. R. (2002).
- 552 Effects of diets containing linseed oil on fatty acid desaturation and oxidation in hepatocytes and

- 553 intestinal enterocytes in Atlantic salmon (Salmo salar). Fish Physiology and Biochemistry, 26(2),
- 554 157–170. http://doi.org/10.1023/A:1025416731014
- 555 Varadharajan, S., Sandve, S. R., Tørresen, O. K., Lien, S., Vollestad, L. A., Jentoft, S., Nederbragt, A.J.,
- Jakobsen, K. S. (2017). The grayling genome reveals selection on gene expression regulation after
- whole genome duplication. *bioRxiv*. https://doi.org/10.1101/153270
- 558 Verleyen, T., Forcades, M., Verhe, R., Dewettinck, K., Huyghebaert, A., & De Greyt, W. (2002).
- 559 Analysis of free and esterified sterols in vegetable oils. Journal of the American Oil Chemists'
- 560 Society, 79(2), 117–122. http://doi.org/10.1007/s11746-002-0444-3
- 561 Zheng, X., Torstensen, B. E., Tocher, D. R., Dick, J. R., Henderson, R. J., & Bell, J. G. (2005).
- 562 Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression
- 563 of fatty acyl desaturase and elongase genes in liver of Atlantic salmon (Salmo salar). Biochimica et
- Biophysica Acta (BBA) Molecular and Cell Biology of Lipids, 1734(1), 13–24.
- 565 http://doi.org/10.1016/j.bbalip.2005.01.006
- 566

567 Data Accessibility:

568	-	Supplementary files have been deposited to datadryad.org under the accession:
569		doi:10.5061/dryad.j4h65
570	-	All gene expression results can be accessed through the interactive shiny web server:
571		https://goo.gl/8Ap89a
572	-	Lipid metabolism gene annotation can be accessed from <u>https://goo.gl/VVUVWr</u>
573	-	Raw RNA-Seq data have been deposited into European Nucleotide Archive (ENA) under the
574		project Accession no. PRJEB24480

Figure 1: Ortholog annotation (a) Species used to construct ortholog groups and their evolutionary distance. Points
in the phylogenetic tree show the time of the teleost specific (Ts3R) and salmonid specific (Ss4R) whole genome
duplications. (b) The number of salmon orthologs found (1421 genes in total) per zebrafish gene in 19 selected KEGG
pathways involved in lipid metabolism.

581

583 Tissue expression profiles of our annotated lipid metabolism genes were consistent with expectations. Gene expression 584 levels are shown as the log2 fold change difference between the FPKM value of each tissue and the median FPKM 585 across all tissues. Expression profiles for selected genes in each pathway are shown (see Figure S2 and S3 for all 586 pathways and gene details).

Figure 3: Gene regulation in response to feed type. (a) Total number of significant (FDR < 0.05) differentially
expressed genes (DEGs) between fish oil (FO) and vegetable oil (VO) fed salmon in the liver and gut tissues of
freshwater and saltwater stage Atlantic salmon (see Files S4 (liver) and S5 (gut) for underlying data). (b) As above,
but for lipid-associated genes only. (c) Proportions of genes in each KEGG pathway that had significantly different
liver expression between the two feed types only in freshwater, only in saltwater, or in both stages.

Figure 4: Diet and life-stage effects on FA and LC-PUFA biosynthesis in salmon liver. Core fatty acid (FA) biosynthesis and
biosynthesis of unsaturated fatty acids pathways with Atlantic salmon genes annotated to each catalytic step (enzyme names
followed by NCBI gene numbers). Gene expression levels are shown as mean (point) and standard deviation (line) of expression
in eight samples (measured in log(FPKM + 1)) from each diet (FO, VO feeds) and life-stage (freshwater, saltwater) combination.
Genes significantly (FDR<0.05) differentially expressed (DEG) between diets in a life-stage are highlighted.

- 601 Figure 5: Diet and life-stage effects on cholesterol biosynthesis in salmon liver. Terpenoid backbone synthesis and steroid
- 602 biosynthesis pathways with Atlantic salmon genes annotated to each catalytic step (enzyme names followed by NCBI gene
- 603 numbers). Gene expression levels are shown as mean (point) and standard deviation (line) of expression in eight samples
- 604 (measured in log(FPKM + 1)) from each diet (FO, VO feeds) and life-stage (freshwater, saltwater) combination. Genes
- significantly (FDR<0.05) differentially expressed (DEG) between diets in a life-stage are highlighted.

Figure 6: Gene regulation in response to life-stage. (a) Total number of significant (FDR < 0.05) differentially expressed genes
(DEGs) between freshwater and saltwater life-stages in the liver and gut tissues of Atlantic salmon fed fish oil (FO) or vegetable
oil (VO) diets (see Files S6 and S7 for underlying data). (b) As above, but for lipid metabolism DEGs. (c) Proportion of genes in
each KEGG pathway that are DEGs in liver and (d) gut, colored by DEG significance in only FO, only VO, or both diets, and
separated into up- or down-regulation in saltwater samples.

613 Figure 7: Gene duplication in lipid metabolism pathways. For the total list of lipid metabolism genes in Atlantic salmon, and 614 sets of genes belonging to different KEGG pathways: (a) Number and percentage of genes with a duplicate homolog from the Ss4R 615 duplication. (b) Number and percentage of duplicate genes with correlated liver expression response to feed in freshwater and (c) 616 saltwater (Correlation >= 0.6, P-value < 3.306e-3, using 19 time points from feed trial for each water condition). Fisher's exact test 617 was used to detect pathways with significant enrichment compared to all gene (P-value < 0.05) (d) Log2 gene dosage ratios 618 (salmon:pike) in liver from fish in freshwater, where the ratio is computed between expression in the salmon duplicates (FPKM, 619 sum of the two duplicates) and the expression of the corresponding pike ortholog. Ratios were computed for all lipid metabolism 620 genes and genes in the pathway 'biosynthesis of unsaturated fatty acids'. For comparison, ratios were also computed for genes 621 without retained duplicates, i.e. with a 1:1 orthology between salmon and pike. Duplicates were grouped into correlated (corr.) or 622 non-correlated (non-corr.) based on saltwater correlation result in (c). Dosage ratios (points) greater than the 95% quantile of single 623 gene dosages are marked in red.

(a) Feeding tank setup

(C) Samples sequenced for total RNA

		Freshwater sampling days								Saltwater sampling days						
Feed	Tissue	0	1	2	5	9	16	20	0	1	2	6	9	16	20	
	Liver	8			8	8		8	8				8		8	
FO	Gut	4				4		4	8				8		8	
10	Liver	8			8	8		8	8				8		8	
VU	Gut	4				4		4	7				8		8	
NO	Liver		4	4	4	4	4	4		4	4	4	4	4	4	
VU→FU	Gut		4	4	4	4	4	4		4	4	4	4	4	4	
50	Liver		4	4	4	4	4	4		4	4	4	4	4	4	
ru→vu	Gut		4	4	4	4	4	4		4	4	4	4	4	4	

624

625 Figure 8: Overview of feed trial experiment.

(a) Atlantic salmon fry were reared in 4 feeding tanks containing freshwater; 2 continuously fed fish oil (FO) and 2 vegetable oil
(VO). A feed switch involved the transfer of fish from one tank to an empty partition of another tank fed the opposite diet. After
smoltification fish from FO and VO tanks were transferred to 4 new feeding tanks containing saltwater and the feed switch was
repeated. (b) Timeline of feed trial showing fish sampling and smoltification periods. Fish were sampled before (D0) and up to 20
days after the fresh- or saltwater feed switch. (c) Total RNA was sequenced from select fish tissue samples. The number of RNAseq replicates are shown for each, tissue, condition and time point.