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Abstract 

Most trials of vitamin D supplementation have shown no benefits on bone density 

(BMD), though severe vitamin D deficiency causes osteomalacia which is associated 

with profound BMD deficits. Recently, the ViDA-BMD study from New Zealand 

demonstrated a threshold of baseline 25-hydroxyvitamin D (30 nmol/L) below which 

vitamin D supplementation did benefit BMD. We have now re-examined data from a 

similar trial in Aberdeen to determine whether a baseline 25-hydroxyvitamin D 

threshold of 30 nmol/L is also observed in that database. The Aberdeen study 

recruited 305 postmenopausal women in late winter and randomized them to receive 

placebo, vitamin D 400 IU/day or vitamin D 1000 IU/day over one year. As previously 

reported, BMD loss at the hip was reduced by vitamin D 1000 IU/day only, and there 

was no significant treatment effect of either dose at the lumbar spine. In the present 

analysis, when the trial participants were grouped according to whether their 

baseline 25-hydroxyvitamin D was ≤30 nmol/L or above this threshold, significant 

treatment effects were apparent at both the spine and hip in those with baseline 25-

hydroxyvitamin D ≤30 nmol/L, but no significant effects were apparent in those with 

baseline 25-hydroxyvitamin D above this level. There was evidence of a similar 

threshold for effects on parathyroid hormone, but no groups showed changes in 

bone turnover markers during the study.  

It is concluded that vitamin D supplements only increase bone density in adults with 

nadir 25-hydroxyvitamin D ≤30 nmol/L. This moves us further towards a trial-based 

definition of vitamin D deficiency in adults with adequate calcium intakes, and 

suggests that supplement use should be targeted accordingly. Future trials of vitamin 

D supplementation should focus on individuals with 25-hydroxyvitamin D 

concentrations in this range. This article is protected by copyright. All rights reserved 
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Introduction 

Vitamin D supplementation is widely recommended and used in the prevention and 

treatment of osteoporosis.(1) However, meta-analyses have failed to demonstrate 

effects of these supplements used alone on bone mineral density (BMD) or 

fracture.(2-5) In contrast, vitamin D treatment of patients with severe vitamin D 

deficiency resulting in osteomalacia, produces increases in absolute BMD of as 

much as 50% in 12 months.(6) This suggests that trials to-date have not been carried 

out in sufficiently D-deficient individuals. This possibility is supported by the finding 

that when BMD trials are categorized according to baseline 25-hydroxyvitamin D 

(25OHD) concentrations above or below 50 nmol/L, a significant treatment effect is 

found in studies below this threshold, but not in the equal number of studies above 

this level.(2) That division of studies at 50 nmol/L in that analysis was determined a 

priori, but a post hoc examination of the trial results in that meta-analysis indicated 

that benefit was only found in trials with baseline 25OHD <40 nmol/L.(2)  

 

The possibility that baseline 25OHD influences treatment response to vitamin D has 

recently been assessed in detail in the bone density sub-study of the Vitamin D 

Assessment (ViDA) Study.(7) In that Auckland, New Zealand study, 452 older adults 

with a mean baseline 25OHD concentration of 56 nmol/L were randomized to vitamin 

D or placebo for 2 years. In the whole cohort, there was no significant treatment 

effect in the lumbar spine or total body, but BMD loss at both hip sites was 

attenuated by ~0.5% over 2 years. There was a significant interaction between 

baseline 25OHD and treatment effect. With baseline 25OHD ≤30 nmol/L (n=46), 

there were between-groups BMD changes at the spine and femoral sites of ~2%, 

significant in the spine and femoral neck. When baseline 25OHD was >30 nmol/L, 
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differences were ~0.5% and significant only at the total hip. When the cohort was 

divided at 40 or 50 nmol/L, the contrast in treatment effects above and below the 

thresholds was less marked, with between-groups differences for change in 

BMD being very similar at >30, >40 or >50 nmol/L. 

 

Macdonald et al have carried out a similar trial over one year in 305 postmenopausal 

women in Aberdeen.(8) Like the ViDA-BMD study, all participants were enrolled at the 

end of winter and 25OHD was measured using liquid chromatography–tandem mass 

spectrometry. In the Aberdeen study, baseline 25OHD concentrations were lower, at 

34 (SD 15) nmol/L.  Mean BMD loss at the hip was reduced by vitamin D 1000 

IU/day only. There was no significant treatment effect of either dose at the lumbar 

spine. No analysis of the effect of baseline 25OHD on treatment response was 

carried out.  

 

The present report presents a re-analysis of the Aberdeen trial to determine whether 

the 30 nmol/L threshold of baseline 25OHD for a vitamin D treatment effect on BMD 

found in the ViDA-BMD study, can be confirmed in this independent trial cohort 

which shared important design elements. In other words, we are using the Aberdeen 

trial as a validation cohort for the results found in the ViDA study.   
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Methods 

The details of the Aberdeen study have already been described.(8) In brief, this was a 

1‐year, double‐blind, placebo-controlled trial to determine the effects of daily oral 

vitamin D3 in doses of 400 IU or 1000 IU, compared with placebo, on BMD in 305 

non-smoking women from the northeast of Scotland, aged 60 – 70 years.(8) All 

participants started the trial between January and March 2009. BMD was measured 

using a Lunar iDXA, (GE Medical, Madison, WI), and 25OHD by tandem mass 

spectrometry using the US National Institute of Standards and Technology 

standard,(9) in a laboratory which takes part in the DEQAS quality‐control scheme for 

vitamin D and has full certification via this scheme.  Inter-assay coefficients of 

variation were <10% for both 25OHD2 and 25OHD3, and the sum of these analytes is 

reported here. The 25OHD metabolite, 24,25-dihydroxyvitamin D was also measured 

by tandem mass spectrometry using a prior de-lipidation procedure to maximise 

recovery.(10) Overnight fasted blood samples collected at each visit were stored at -

80°C, and each participant’s complete set batched together before analysis. Details 

of analysis techniques have already been reported.(8)  

 

Since this was a reanalysis of an existing study no power analyses were performed.  

The primary comparison of the effects of treatment on BMD in those with baseline 

25OHD levels above and below 30 nmol/L was pre-specified. Time-course data were 

analyzed using a mixed models approach to repeated measures with an 

unstructured covariance matrix.  Significant main and or interaction effects were 

further explored using the method of Tukey.   
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Changes in BMD across treatment groups have been assessed separately for those 

with baseline 25OHD concentrations above or below 30 nmol/L by two-way analysis 

of covariance with baseline BMD included as covariate, using the programs of SAS 

(version 9.4 SAS Institute Inc., Cary NC). Analyses are by intention-to-treat. Since all 

comparisons were pre-planned no adjustment to the overall critical significance level 

(P<0.05) was employed.    



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

8 
This article is protected by copyright. All rights reserved 

Results 

Baseline characteristics of the study participants, divided according to baseline 

25OHD are shown in Table 1. BMI and PTH were higher in those with 25OHD ≤ 30 

nmol/L, and 24,25-dihydroxyvitamin D was lower.  

 

Biochemistry 

Changes in 25OHD according to its baseline levels are shown in Figure 1. The 

placebo group showed the expected seasonal variation in 25OHD, with a peak-to 

nadir difference of about 20 nmol/L in those starting at ≤ 30 nmol/L but of about half 

this magnitude in those whose 25OHD was > 30 nmol/L at baseline. In the ≤ 30 

nmol/L participants, the effects of the two vitamin D doses on 25OHD were almost 

comparable, whereas in participants with baseline 25OHD > 30 nmol/L a dose-

response was apparent.  

 

Baseline concentrations of the 25OHD metabolite, 24,25-dihydroxyvitamin D, were 

~50% lower in those with 25OHD ≤ 30 nmol/L compared with those with 25OHD > 

30 nmol/L, but after supplementation similar concentrations of this metabolite were 

reached in participants starting either above or below this 25OHD cut-point. Ratios of 

25OHD to 24,25-dihydroxyvitamin D were comparable in the low and high 25OHD 

groups at baseline (Table 1), and declined following supplementation, slightly more 

so in those given 1000 IU/day (ratios at 12 months in those with low baseline 

25OHD: placebo 12.0 [95%CI 10.84,13.22], 400 IU/day 11.1 [10.1,12.2], 1000 IU/day 

10.2 [9.1,11.2]; ratios at 12 months in those with high baseline 25OHD: placebo 13.1 

[11.8,14.3], 400 IU/day 10.5 [9.3,11.6], 1000 IU/day 10.0 [9.4,10.6]). 
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Baseline concentrations of 1,25-dihydroxyvitamin D were comparable in those with 

25OHD below or above 30 nmol/L (Table 1) and there were no changes in this 

metabolite with treatment,  irrespective of baseline 25OHD status (change from 

baseline at 12 months in those with low baseline 25OHD: placebo -2 [-17, 13] 

pmol/L; 400 IU/day 1 [-11, 14] pmol/L; 1000 IU/day 4 [-9, 18] pmol/L; change from 

baseline at 12 months in those with high baseline 25OHD placebo -8 [-18, 2] pmol/L; 

400 IU/day 0 [-10, 10] pmol/L; 1000 IU/day -2 [-13, 9] pmol/L; P > 0.4).  

 

At baseline, mean PTH was 5.5 (SD 1.3) pmol/L in those with 25OHD ≤ 30 nmol/L, 

and 4.8 (1.2) pmol/L in those with 25OHD > 30 nmol/L (P = <0.0001, Table 1). 

Changes in PTH during the study are shown in Figure 2. PTH concentrations 

decreased in all groups during the first 6 months associated with the transition from 

winter to summer. In participants with baseline 25OHD ≤ 30 nmol/L, PTH was 

decreased at 12 months by both doses of vitamin D (∆PTH: -0.2, -0.7, and -1.0 

pmol/L in placebo, 400 IU and 1000 IU groups, respectively, P = 0.0003). In those 

with baseline 25OHD >30 nmol/L, PTH was only decreased at 12 months by vitamin 

D 1000 IU/day and the changes were smaller (∆PTH: -0.2, -0.3, -0.6 pmol/L, 

respectively, P = 0.05).  

 

Baseline concentrations of C-telopeptide (CTX) were comparable in those with 

25OHD below or above 30 nmol/L ( 381 ± 160 ng/L [mean ± SD] and 389 ± 163 ng/L, 

respectively, P = 0.70) and there were no changes in this marker after 

supplementation (change from baseline at 12 months in those with low baseline 

25OHD: placebo  -5 [-38, 27] ng/L, 400 IU/day -4 [-39, 31] ng/L, 1000 IU/day 18 [-13, 

49] ng/L; change from baseline at 12 months in those with high baseline 25OHD 
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placebo 11 [-26, 47] ng/L, 400 IU/day 12 [-23, 47] ng/L, 1000 IU/day -1 [-27, 26] ng/L; 

P > 0.5). 

 

Baseline concentrations of the N-terminal propeptide of type I procollagen (PINP) 

were comparable in those with 25OHD below or above 30 nmol/L ( 44.4 ± 20.7 μg/L 

and 45.2 ± 20.7 μg/L, respectively, P = 0.75) and there were no changes in this 

marker after supplementation (change from baseline at 12 months in those with low 

baseline 25OHD: placebo  0.4 (-4.9, 5.7) μg/L, 400 IU/day -1.2 (-4.7, 2.3) μg/L, 1000 

IU/day 0.6 (-2.3, 3.5) μg/L; change from baseline at 12 months in those with high 

baseline 25OHD placebo 1.1 (-2.6, 4.9) μg/L, 400 IU/day 0.1 (-3.6, 3.8) μg/L, 1000 

IU/day -3.2 (-6.5, 0.06) μg/L; P > 0.2). 

  

There were no changes in serum concentrations of calcium or phosphate between 

baseline and 12 months in any participant groups.  

 

Bone Mineral Density 

Changes in BMD at the hip and spine by treatment group and by baseline 25OHD 

level are shown in the Figure 3. When baseline 25OHD was ≤30 nmol/L, the placebo 

group showed significant bone loss at both sites, and this loss was prevented by 

vitamin D 1000 IU/day. The results with vitamin D 400 IU/day are comparable to the 

higher dose at the spine but not at the total hip. In those starting with 25OHD >30 

nmol/L, there was no loss of spine BMD in the placebo group and no significant 

treatment effect at either site.  
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While this study set out to validate the 30 nmol/L threshold for 25OHD identified in 

the ViDA study, exploratory analyses of other thresholds have also been undertaken. 

Dividing the cohort at 25 nmol/L tended to produce even more marked contrasts: a 

>2% treatment effect at the spine (1000 IU/day compared with placebo, P = 0.002) 

and ~1% at the hip, in those with 25OHD ≤ 25 nmol/L, compared with no treatment 

effects in those starting above this level (P 0.14 – 0.44). The distribution of 25OHD 

concentrations in this cohort made it difficult to rigorously assess 50 nmol/L and 75 

nmol/L thresholds, since numbers per treatment group above these levels were 9-17 

and 0-3, respectively. No treatment effects were seen at the hip above these higher 

thresholds. In the spine in subjects >50 nmol/L, the 400 IU vitamin D dose tended to 

reduce BMD and the 1000 IU dose to increase it; with only 9 in each treatment 

group, these findings are not reliable.  

  

An exploratory analysis was conducted to determine whether the baseline ratio of 

25OHD: 24,25-dihydroxyvitamin D predicted the BMD response to vitamin D 

supplementation. Grouping participants by quartiles of this ratio showed no 

interaction with BMD response in either the spine (P = 0.51) or hip (P = 0.40).  
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Discussion 

The present analysis confirms that a 25OHD concentration of 30 nmol/L represents a 

threshold for the beneficial effects of vitamin D supplements on BMD. 

Supplementation of individuals below this level results in gains in BMD, but above 

this level there is no significant change. This finding relates to late winter levels of 

25OHD using an appropriately calibrated assay in a fair-skinned population, and 

should be applied to other contexts with these caveats in mind. The mechanism of 

this effect is likely to be the correction of secondary hyperparathyroidism, since the 

present analyses also show differential changes in PTH according to baseline 

25OHD status. This agrees with previous studies suggesting a threshold for PTH 

suppression by vitamin D in the region of 40 – 50 nmol/L.(11,12) However, this does 

not prove that the change in PTH causes the changes in BMD. In individuals with the 

lowest 25OHD concentrations, healing of osteomalacia may also be a mechanism 

contributing to the increase in BMD. 

 

Interestingly, there was no evidence of changes in markers of bone turnover in the 

D-deficient participants in the present study, nor of suppression of markers following 

vitamin D supplementation. We have previously observed reductions in PINP in 

individuals with 25OHD < 30 nmol/L given a 500,000 IU bolus of vitamin D,(11) but 

daily dosing in deficient individuals seems to produce no change in alkaline 

phosphatase (13) nor in osteocalcin, pyridinoline or deoxypyridinoline,(14) the latter two 

markers actually appearing to rise in some groups. These mixed results might reflect 

the complexity of vitamin D action on bone: the correction of secondary 

hyperparathyroidism tends to reduce turnover, but direct effects of vitamin D on bone 

cells can have the opposite effect, as seen is osteomalacia treatment where marker 
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levels rise substantially.  BMD changes following vitamin D supplementation might 

also result from changes in bone mineralization occurring independently of bone 

turnover. There is evidence that 1,25-dihydroxyvitamin D directly regulates 

pyrophosphate concentrations in bone thus influencing mineralization, which might 

mediate such an effect.(15)  

 

Several factors are likely to have contributed to the congruence between the ViDA-

BMD and the Aberdeen results. Both studies recruited participants in late winter or 

early spring, when 25OHD levels are at their nadir. In most other trials of vitamin D 

supplementation, participants have been recruited over the whole year so changing 

seasons will have added to variability of 25OHD concentrations by 20 nmol/L or 

more.(16,17) Thus, an individual whose 25OHD is 30 nmol/L at its nadir, may be 50 

nmol/L or more following the summer peak, as seen in the placebo group in Figure 1. 

In trials with this extent of variation in baseline 25OHD, identifying a threshold for 

effect is much more difficult.  

 

A second factor influencing the apparent 25OHD threshold for the effect of vitamin D 

supplements is the calibration of the 25OHD assay. The fact that both the ViDA and 

Aberdeen studies used state-of-the-art tandem mass spectrometry assays is likely to 

have contributed to the congruence of the findings between the studies, since 

variations in calibration between different 25OHD assays of up to 80% have been 

reported in the past.(18) It is of interest to note that the Fraser laboratory, which 

carried out the present 25OHD measurements, has now added a delipidation step to 

their assay, with a resultant increase in measured values of approximately 10 

nmol/L, both versions of this assay still sitting within acceptable DEQAS limits. (The 
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data used here did not use the delipidation step). Similar variations will exist between 

laboratories even if they are involved in external quality control programs. Allowance 

for this variability is necessary when setting recommended target levels for 25OHD. 

 

The present study is unusual in having measurements of 24,25-dihydroxyvitamin D 

during vitamin D supplementation. These parallel those of 25OHD, reflecting the fact 

that 24,25-dihydroxyvitamin D is a metabolite of 25OHD. While it has been 

speculated that this metabolite, or the ratio of 25OHD to it, might be more useful in 

prediction of BMD responses to vitamin D supplementation, the present analyses 

offer no support for this possibility. It is of interest that there is no change in 1,25-

dihydroxyvitamin D as a result of supplementation, yet changes in BMD are present 

in the D-deficient group. This highlights that moderate deficiency of vitamin D does 

not impact on total concentrations of 1,25-dihydroxyvitamin D, though it might reduce 

free 1,25-dihydroxyvitamin D since there is less 25OHD to displace it from their 

common carrier protein. Those cells that produce 1,25-dihydroxyvitamin D as an 

autocrine factor are likely to produce less when 25OHD is low. 

 

In conclusion, the present analysis suggests that beneficial effects of vitamin D 

supplements on BMD are only evident in adults whose nadir 25OHD concentrations 

are below 30 nmol/L. This moves us further towards a trial-based definition of vitamin 

D deficiency in adults with adequate calcium intakes, and suggests that supplement 

use should be targeted to those with nadir 25OHD levels of < 30 nmol/L. An 

important corollary of this is that any future studies of the benefits of vitamin D on 

bone should focus on individuals with 25OHD concentrations in this range, since 
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there is virtually no trial evidence of benefit to BMD from supplementation given to 

individuals starting above this level.  
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Figure Legends 

Figure 1 

Serum levels of 25OHD throughout the study period by treatment group and by 

baseline 25OHD level. Data are mean with 95% confidence intervals. 

 

Figure 2 

Changes in serum levels of parathyroid hormone (∆PTH) throughout the study period 

by treatment group and by baseline 25OHD level. Data are mean with 95% 

confidence intervals. 

 

Figure 3 

Changes in BMD at the spine and hip by treatment group and by baseline 25OHD 

level. P1 values are for a treatment effect across the 3 groups at each site. P2 values 

are for the comparison of the placebo and 1000 IU/day groups only. Data are mean 

with 95% confidence intervals. 
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Table 1: Baseline Characteristics of Study Participants 

 

Characteristic Baseline 25OHD P 

≤ 30 nmol/L >30 nmol/L 

N 126 137  

Age (y) 64.6 (2.1) 64.5 (2.2) 0.61 

BMI (kg/m2) 27.3 (4.6) 26.2 (3.6) 0.034 

Physical activity (MET h/week) 73.4 (35.1) 74.1 (32.1) 0.88 

Sunlight exposure (SED/week) 0.46 (0.24, 1.04) 0.52 (0.24, 1.21) 0.40 

Calcium intake (mg/d) 1265 (511) 1298 (518) 0.61 

Dietary vitamin D (ug/d) 4.9 (2.7) 5.4 (3.0) 0.20 

Energy intake (MJ/d) 9.2  (3.0) 9.3 (2.8) 0.71 

25OHD (nmol/L) 22.7 (5.4) 44.7 (12.1) <0.0001 

1,25-dihydroxyvitamin D (pmol/L) 138 (45) 142 (40) 0.4 

24,25-dihydroxyvitamin D (nmol/L) 1.9 (0.8) 3.9 (1.7) <0.0001 

25OHD:24,25-dihydroxyvitamin D ratio 13.2 (5.0) 12.8 (5.9) 0.61 

PTH (pmol/L) 5.5 (1.3) 4.8 (1.2) <0.0001 

C-telopeptide (ng/L) 381 (160) 389 (163) 0.7 

PINP (μg/L) 44.4 (20.7) 45.2 (20.7) 0.8 

Bone mineral density (g/cm2)    

   Lumbar spine 1.08 (0.16) 1.12 (0.16) 0.058 

   Total hip 0.91 (0.11) 0.93 (0.13) 0.33 

Data are mean (SD), except for sunlight exposure which is median (interquartile 

range) 

PINP = N-terminal propeptide of type I procollagen *Wilcoxon test 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

22 
This article is protected by copyright. All rights reserved 

SED = standard erythemal dose 

25OHD = 25-hydroxyvitamin D 
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Figure 1 
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Figure 2 
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Figure 3 


