

Gateway to the Earth

Validation of GIC in the GB High Voltage Network

Ciarán Beggan, Gemma Richardson and Alan Thomson

British Geological Survey, Edinburgh

Space weather impacts on grounded structures (SWIGS)

- NERC Highlight Topic Award
- Understand/forecast the M-I changes with solar wind parameters
- Understand solid Earth response (MT, conductivity)
- Forecast GIC in grounded structures (rail, electricity, pipelines)

Secondary induced currents flow into grounded infrastructure

Electrical currents

Conducting Earth

GIC modelling steps

- BGS use thin-sheet modelling:
 - Convert B-field → E-field
 - Use 2D conductance (coastline, geology)
 - Use 1D resistivity model (3-1000 km)
 - Use fixed period of variation (600 seconds)
- Compute geo-electric field
- Use HV model of network:
 - Derived from publically available data
 - 2016 UK model has:
 - >450 nodes
 - > 800 connection
 - Compute GIC using LP method

GIC measurements in UK

- Made at 4 sites since 2000; collected sporadically by BGS
- All in Scotland (nuclear power)
 - Torness (torn)
 - Hunterston (hunt)
 - Strathaven (stra)
 - Neilston (neil)
- Are these sites representative of the whole grid?

An aside: GIC vs Dst?

- Large GIC at mid/high latitude do not correlate well with Dst index
- Also do not correlate correlate with Kp or K (e.g. highest GIC at Kp8)

GIC models vs measurements

- 17-Mar-2015
 - 600 s period
 - Thin-sheet method used to estimate E-field
 - Lethinen-Pirjola to compute GIC
- Reasonable approximation between model and measure
 - Small GIC < 5A
 - Simpler grid model
 - Strathaven is wrong ⊗

How can we do better?

SWIGS DMM project

- Largest modelled GIC during October 2003 storm
 - 'Edge' nodes
 - Isolated nodes
 - Long lines
- There are no Hall probes so measure GIC through the differential magnetometer method
- Six sets of bespoke instrumentation
 - Visit 12 sites across the UK over ~3 years.
 - 3-6 month deployments

Top 20 GIC sites during Halloween 2003 storm

GIC measurements with DMM

- Use Differential Magnetometer Method (DMM) in GB
- Requires two variometers measure difference in B-fields
 - One under HV line
 - One > 100 m away
- Successfully used in Finland and Namibia (e.g. Matandirotya et al., 2016)

DMM Hardware

- Sensys 3-axis fluxgate magnetometer
- EarthScope Digitiser/Logger
- Solar panel/battery
- 3/4G mobile network modem.
- 1-second sampling
- Real-time data return
- Two magnetometers per site
- <1 nT accuracy over 30 minutes
- Buried for temperature stability

Various issues

UK grid is complicated!

- Well-connected topology
- Double-circuit lines
- Multiple transformers per substation
- What about pylon geometry?

Simple example:

- GIC of 10 A within a 7 m line height
 - = 158 nT (max) underline
 - = 2 nT at 100 m away
- Different heights, GIC, conductivity etc
- System be sensitive to ~0.1 A

Various other issues

- Practical:
 - Siting of instrumentation (away from roads, people etc)
 - Land owner permission
 - Sunshine (or lack of!)
 - Mobile phone connection
- Modelling more complex scenarios:
 - Non-contiguous lines
 - Errors in grid model
 - Network based on Ten Year
 Statement from National Grid UK
 - We measure line currents rather than Hall probe summation of GIC

Potential sites

Torness - Edinburgh

Torness – Edinburgh via windfarms

Which information do we believe?

Spreadsheet representation of GB network

• GIC for 1 V/km (eastwards)

TORN

BRNX4

WDOD1

Summary

- Modelling of GIC is subject to many uncertainties:
 - gross grid model errors
 - Conductivity
 - Electric field etc
- GIC measurements are sparse and presently concentrated in Scotland
- Extend GIC measurements across UK using DMM method over next 3 years

Time-lapse aurora Shetland Islands 18-Mar-2018

GIC Modelling technique

- Comparison to Horton et al. (2012) benchmark
- Development of methodology to handle HV and LV buses inc virtual nodes
- Implementation in MATLAB and Python
- Application to UK 2016 HV model

Modelling technique / code

- Comparison to Horton et al. (2012) benchmark
- Reasonable match with voltages and GIC modelled (all 3 phases summed)
- Differences in computed line length cause variation (great circle vs lat/lon diff)

Substation #	Horton (A)	BGS code (A)	Diff (A)
2	115.6	114.2	1.4
3	139.8	137.8	2
4	20.0	19.2	0.8
5	-279.1	-280.5	1.4
6	-57.3	-53.2	4.1
8	60.9	62.5	1.6

What about the other parts of the modelling chain?

