
21

Intelligent Biohazard Training Based on Real-Time Task Recognition

HELMUT PRENDINGER and NAHUM ALVAREZ, National Institute of Informatics
ANTONIO SANCHEZ-RUIZ, Universidad Complutense de Madrid
MARC CAVAZZA, School of Engineering and Digital Arts, University of Kent
JOÃO CATARINO, JOÃO OLIVEIRA, and RUI PRADA, INESC-ID and Instituto Superior
Técnico, Universidade de Lisboa
SHUJI FUJIMOTO, Faculty of Medical Sciences, Kyushu University
MIKA SHIGEMATSU, National Institute of Infectious Diseases

Virtual environments offer an ideal setting to develop intelligent training applications. Yet, their ability
to support complex procedures depends on the appropriate integration of knowledge-based techniques and
natural interaction. In this article, we describe the implementation of an intelligent rehearsal system for bio-
hazard laboratory procedures, based on the real-time instantiation of task models from the trainee’s actions.
A virtual biohazard laboratory has been recreated using the Unity3D engine, in which users interact with
laboratory objects using keyboard/mouse input or hand gestures through a Kinect device. Realistic behavior
for objects is supported by the implementation of a relevant subset of common sense and physics knowledge.
User interaction with objects leads to the recognition of specific actions, which are used to progressively
instantiate a task-based representation of biohazard procedures. The dynamics of this instantiation process
supports trainee evaluation as well as real-time assistance. This system is designed primarily as a rehearsal
system providing real-time advice and supporting user performance evaluation. We provide detailed exam-
ples illustrating error detection and recovery, and results from on-site testing with students from the Faculty
of Medical Sciences at Kyushu University. In the study, we investigate the usability aspect by comparing
interaction with mouse and Kinect devices and the effect of real-time task recognition on recovery time after
user mistakes.

Categories and Subject Descriptors: H.1.2. [User/Machine Systems]; H.5.1. [Information Interfaces and
Presentation]: Multimedia Information Systems

General Terms: Human Factors, Experimentation

Additional Key Words and Phrases: Bio-safety risk management, training application, virtual worlds

The reviewing of this article was managed by associate editor Anthony Jameson.
This work is supported by the National Institute of Infectious Diseases. This work was supported partly
by (1) the Health and Labour Science Research Grants, Research on Emerging and Reemerging Infectious
Diseases (research on development of teaching materials and methodology to evaluate performance to
strengthen bio-risk management [H20-Shinko-Ippan-009]) from the Ministry of Health, Labour and Welfare
of Japan as a contract research; (2) the “Global Lab” Grand Challenge grant from the National Institute
of Informatics; (3) Fundação para a Ciência e a Tecnologia, under project PEst-OE/EEI/LA0021/2013; and
(4) the Spanish Ministry of Economy and Competitiveness under grant TIN2009-13692-C03-03.
Authors’ addresses: H. Prendinger and N. Alvarez, National Institute of Informatics, 2-1-2 Hitotsub-
ashi, Chiyoda-ku, Tokyo 101-8430, Japan; emails: helmut@nii.ac.jp, nahum.alvarez.ayerza@gmail.com; J.
Catarino, J. Oliveira, and R. Prada, INESC-ID, Avenida Professor Cavaco Silva, Taguspark - Edif ’icio
IST, 2744-016 Porto Salvo, Portugal; emails: {jcbpc, joao.delgado.oliveira, rui.prada}@tecnico.ulisboa.pt; A.
Sanchez-Ruiz, Universidad Complutense de Madrid, 28040 Madrid, Spain; email: antonio.sanchez@fdi.ucm.
es; M. Cavazza, School of Engineering and Digital Arts University of Kent, Canterbury CT2 7NT, UK; email:
M.O.Cavazza@kent.ac.uk; S. Fujimoto, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi,
Higashi-ku, Fukuoka 812-8582, Japan; email: shuuji@hs.med.kyushu-u.ac.jp; M. Shigematsu, National In-
stitute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan; email: mikas@nih.go.jp.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
2016 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 2160-6455/2016/09-ART21 $15.00
DOI: http://dx.doi.org/10.1145/2883617

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

http://dx.doi.org/10.1145/2883617

21:2 H. Prendinger et al.

ACM Reference Format:
Helmut Prendinger, Nahum Alvarez, Antonio Sanchez-Ruiz, Marc Cavazza, João Catarino, João Oliveira,
Rui Prada, Shuji Fujimoto, and Mika Shigematsu. 2016. Intelligent biohazard training based on real-time
task recognition. ACM Trans. Interact. Intell. Syst. 6, 3, Article 21 (September 2016), 32 pages.
DOI: http://dx.doi.org/10.1145/2883617

1. INTRODUCTION

Intelligent training applications have gained considerable importance in recent years,
as they can help people to learn to handle situations in which on-site training is
dangerous or impractical. Here, 3D environments offer an ideal setting to develop
training applications because of their ability to convey a greater sense of realism than
textbooks or 2D interfaces [Stocker et al. 2011]. This sense of realism is generally
attained through accurate visual representation and physical behavior of objects.
Furthermore, the success of training applications depends on the correct integration of
knowledge-based techniques and natural interaction. Knowledge-based techniques are
used to support the training procedures that users have to execute. Natural interaction,
on the other hand, is used to support execution of those training procedures in a way
that mimics real-world execution as close as possible. However, the more complex the
training scenario is, the more effort is required in implementing both knowledge and
interaction aspects in a way that delivers an accurate and realistic training experience.

Recently, complex training scenarios involving the handling and management of
pathogens have received great attention. Medical educational institutes are considering
bio-risk training as a requirement for medical researchers to strengthen their response
capability to bio-terror crises [Gaudioso et al. 2009; Rao 2011]. However, real-world
laboratory practice is impractical because of its extremely high risk and expense. Thus,
such scenarios are good candidates to evaluate the potential of combining a knowledge-
based procedure for training and a natural interaction paradigm.

In this article, we describe the implementation of an intelligent application for bio-
hazard training. The application emulates a scenario in which users must handle a
critical biohazard situation involving the spill of a contaminated blood sample from
a broken bottle. Our work has been tested in the field, that is, with students from
the medical sciences who are the target users of the system. Our vision is to include
our training method in the official curriculum of university students. The primary
contribution of our work to intelligent interactive systems is to demonstrate the real-
time integration of a task model in a virtual environment, supporting task recognition
from user interaction with 3D objects. The secondary contribution is the integration of
gesture-based interaction and the investigation of its benefits.

The rest of the article is organized as follows. Section 2 describes related work on in-
telligent training systems, activity recognition, and gesture-based interfaces. Section 3
presents the system architecture and its components for natural gesture interaction,
common sense reasoning, and task recognition. Section 4 explains how user gestures
are interpreted within the task tree that encodes the biohazard protocol to provide real-
time feedback to the users. Section 5 reports on our study, in which medical students
used our training system. First, Kinect and mouse versions of our system are evaluated
in terms of usability. Second, a “dynamic” advice version based on real-time task recog-
nition is compared to a “static” advice version, in which users can ask for text explaining
the procedure. Section 6 summarizes the article and presents our conclusions.

2. RELATED WORK

2.1. Virtual Training Systems

There exist many works on training systems integrating interaction techniques with
knowledge-based methods. They share the goal of improving the efficiency of knowledge

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

http://dx.doi.org/10.1145/2883617

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:3

transfer in situations in which text and pictures are insufficient for training, and the
conviction of the adequacy of the approach to better learning procedural tasks. As
we do in this article, some authors present systems with intelligent object behavior
and manipulation capabilities. For instance, Angelov and Styczynski [2007] present
a virtual 3D simulator that aims to teach about the maintenance of a power plant.
However, the simulator lacks flexibility in that it allows only fixed steps to complete
the scenario. Belloc et al. [2012] present a generic system for scenario description,
intelligent objects, and protocols. Similar to our system, the application is separated
into three layers: graphics and physics, objects and behaviors, and plans. They present
two examples: the assembly of a hydroelectric generation unit and the assembly of
a combustion engine. Once the objects are described, the training scenario is fairly
simple; the user has to perform a series of correct steps and is able to proceed only
when previous steps are completed.

A style of training by doing tests appears frequently in research. For instance, van
Wyk and de Villiers [2009] show an application designed to teach accident prevention
in a mine in which users have to select the correct answers at the right moment, and
Corato et al. [2012] describe a computer vision application for detecting whether the
protocol for washing hands before an operation in an operating room is followed. It uses
augmented reality technology but does not need markers for detecting actions. Similar
to our work, the desired behavior is contained in health protocols. A limitation of the
presented work is that, even if the system recognizes the stages in the protocol, it does
not have a provision for responding to user mistakes. In other words, that approach
does not provide student monitoring or dynamic help or assistance.

There exist several works with virtual tutors, or online assistants. Johnson and
Rickel [1997] describe Steve, a virtual tutor system for teaching air compressor func-
tions. A planner is used for executing scripted exercises and for explaining the rationale
of the tutor’s actions, but the system does not provide information about user mistakes.
If the user makes a mistake, the tutor will correct the user telling the next step.

Including a virtual tutor is not incompatible with other techniques, such as story-
telling. Carpenter et al. [2006] describe a virtual training system that teaches students
how to manage the communication of crisis-related information. The system’s knowl-
edge is stored as an event tree that works as a storyboard with different choices. The
users can make decisions that have consequences in the scenario, and use 3D vision
glasses and six screens to facilitate immersion. Cavazza and Simo [2003] use a qualita-
tive simulation model to train medical students to respond to patients with circulatory
shock states. Like ours, this approach integrates knowledge-based techniques with a
3D environment in the health domain, but focused on the virtual patient rather than
interacting with the environment.

Similar to Gordon [2003], we use a graph containing the description of the training
scenario. That work describes a protocol of identifying and constructing decision
structures in virtual environment scenarios. The result of this process is a decision
graph divided into stages: training scenarios are constructed like storyboards, and
branching trees are used to simulate training decisions. While our representation
shares some similarities, training in that work is carried out by selecting text options
in a web page, rather than by interacting with a complex 3D environment. Further,
Vidani and Chittaro [2009] propose a task model (called a concur task tree) to train
emergency procedures that may assist disabled people. The model aims to be a
complete representation, including time relations between events and task difficulty
management, but it is unclear to what extent features of the system are implemented.
Also, the work does not separate difference knowledge layers, such as task definition
and common sense knowledge base, which limits extensibility.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:4 H. Prendinger et al.

There is other important work in the intelligent tutoring system community [Conati
et al. 1997; Corbett et al. 2000; Vanlehn et al. 2005]. However, there is an important
difference in that we are recognizing how a protocol is being followed rather than how a
cognitive strategy is being applied. The main differences are: (1) the task representation
is explicit, which makes the issue of partial ordering [Conati et al. 1997; Geib and
Goldman 2009] less relevant; (2) we need to recognize the level of task completion
rather than user intent or user strategy, which simplifies the recognition problem
and does not require an inflation of node types corresponding to different elements
of the strategy and its application, as in Conati et al. [1997]; and (3) the connection
between user actions and task representations is simplified because of the explicit
representation and the virtual reality context [Sukthankar et al. 2014].

2.2. Plan Recognition

Real-time interactive systems with semantic representation of events and plans need
to be decoupled from the internals of the simulation engine; otherwise, the semantic
layer would be a static specification working in only one domain for some concrete
cases. To achieve this goal, researchers have developed several solutions, generally
based on the idea of using different layers to represent different types of knowledge
(graphical, physical, common sense, actions and goals, and so forth) and some com-
munication mechanism among them. Although there exist several general-purpose
architectures, none of them is a standard, and each system usually defines its own.
For example, Latoschik and Fröhlich [2007] present a solid architecture for interactive
systems based on the concept of semantic reflection that uses monitors, filters, and
subscription lists for decoupling all possible systems that can participate in a virtual
environment. However, the architecture does not specify a concrete semantic module or
layer: each module can equally access the system’s knowledge base. It is generic to the
extent that implementing such a layer is possible, which is left to a future developer.
In further research, Wiebusch and Latoschik [2012] present an architecture targeting
the use of common sense knowledge and grounding, as well as using a message dis-
patching system. It includes the Web Ontology Language (OWL) ontology as a central
knowledge base to unify access to information from different modules. Our system also
decouples different types of knowledge in semantic modules. In particular, we devel-
oped a common sense database and a task recognition module, but communication is
performed module to module instead of using a centralized database. Our system is
also more focused on task representation since task recognition is a key feature in our
system.

Taking into account common sense knowledge and information on the physical state
of the environment, Schneider [2010] proposes a plan recognition approach based on the
user’s plan selection and actions that are represented as a probabilistic automaton. This
automaton is converted to a dynamic Bayesian network, allowing the plan recognition
process to occur at runtime. This approach is similar to ours because it also applies real-
time monitoring, trying to infer the intended plan by observing the user actions and the
states of the environment. It also tries to predict the user’s probable next actions so that
it can proactively provide additional instruction on how to correctly execute the chosen
plan. Our approach, on the other hand, relies on a hierarchical representation of tasks
such that complex goals can be decomposed into simpler ones. This representation is
more intuitive for the experts in our domain than a flat representation, because security
procedures are usually represented this way. It also allows the provision of feedback
to the user using abstract description of goals instead of concrete actions. Finally, we
do not use probabilities to compute the next most probable task to complete; we use a
simple heuristic based on the hierarchical nature of our plans that seems sufficient for
our purposes. The use of Dynamic Bayesian Networks to achieve intention recognition

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:5

can also be applied for different scenarios. In Tahboub [2006], the probabilistic intention
inference is achieved by modifying the intention-action-state scenario and modeling it
by Dynamic Bayesian Networks.

In general, plan-recognition algorithms require as inputs a sequence of the observed
agent’s actions and some type of model describing its acting capabilities and/or decision-
making processes. Plan library–based approaches [Kautz and Allen 1986] use a col-
lection of plans or recipes describing all possible sequences of actions that the agent
can perform to select the most probable plan at a given time. This library of plans
can be provided as Hierarchical Task Networks (HTNs) or partially ordered multiset
context-free grammars [Geib and Goldman 2009; Kabanza et al. 2013], probabilistic
grammars [Pynadath and Wellman 2000], Bayesian networks [Synnaeve and Bessière
2011], hidden Markov models [Bui et al. 2011], or Markov logic [Song et al. 2013].
Unlike plan-library–based approaches, inverse planning–based approaches [Ramirez
and Geffner 2009, 2010; Baker et al. 2009] require only a description of the actions that
the agent can execute. The intuition is that the most likely goal is the one for which
the optimal plan is most consistent with the observations so far. Unfortunately, these
approaches have a high overhead because they require invocation of a planner for each
goal and observed action.

We have chosen to represent biohazard training procedures in our simulator using
a hierarchical task model. These hierarchical representations are compact and intu-
itive, alleviating the work of the domain experts that were involved in the definition
of the laboratory procedures. This way, HTN-based approaches are very related to our
work. Geib and Goldman [2009] developed their approach to address difficulties in plan
recognition listed as “the execution of multiple interleaved root goals, partially ordered
plans, and failing to observe actions.” However, these difficulties do not apply to our con-
text due to the explicit task representation, direct connection between leaf nodes and
actions, and direct access to actions in the virtual world. We face a simplified problem,
closer to early plan-recognition methods, in which, for instance, the issue of multiple
goals likelihood [Sukthankar et al. 2014] is not salient. The primary contribution of our
work to intelligent interactive systems is to demonstrate the real-time integration of a
task model in a virtual environment, supporting task recognition from user interaction
with 3D objects. The DOPLAR algorithm [Kabanza et al. 2013] addresses the problem
of computing the probability of a goal given the observations to date without having to
enumerate all possible hypotheses. It uses a heuristic-weighted, model-counting algo-
rithm that limits the number of generated plan-execution models by computing lower-
and upper-bound likelihoods. The creation of these HTNs is, in general, a complex
and costly task; thus, some authors have proposed different methods to alleviate the
process. Bisson et al. [2015], for example, propose using a recursive neural network to
automatically learn accurate HTN decision-making models of the observed agent.

Unfortunately, the integration of these advanced plan-recognition algorithms as a
subsystem of a bigger architecture is usually problematic because either their imple-
mentation is not publicly available or it has important limitations (such as working
only with propositional plans) that prevent its use in real applications. In addition, the
inherent computational complexity of the plan-recognition problem makes it difficult
to program solutions that work in real time. For these reasons, most of the e-learning
and virtual training systems implement some ad hoc solutions to recognize the user’s
current goals, solutions limited in several aspects but enough for the purposes of the
system.

In the literature, we can also find more specific systems designed for e-learning and
training purposes and using plan-recognition techniques. Franklin et al. [2002] pro-
pose a complete system designed to assist the user in real time by recognizing activities
that are sequences of processes represented using finite state automata. The system

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:6 H. Prendinger et al.

contains features similar to ours, such as backtracking and real-time monitoring, but
it neither uses hierarchical plans nor has it been applied to a complex virtual environ-
ment. Barot et al. [2013] have described the use of activity models in virtual training
environments, enhancing them with various models of error generation. By contrast,
we are aiming at unifying task description, situation generation, and error recognition
through a single knowledge representation.

Amir and Gal [2011] present a solid validation of task recognition in virtual labo-
ratories with an interactive application that recognizes the user’s current task. Task
recognition is performed using grammar rules that represent tasks. They evaluated
this method and proved it to be effective. The main difference to our approach is how we
represent the possible hierarchical plans. We use an explicit task network decomposed
a priori instead of an implicit representation based on grammar productions. One ad-
vantage of our explicit representation is that it can be represented visually, thus easing
the procedure management. Another important difference is that our system provides
real-time assistance to the users during the simulation.

Another application of these techniques is a framework built to assist in the develop-
ment of systems for the recognition of high-level surgical tasks using analysis of videos
that were captured in an operating room [Lalys et al. 2012]. Here, the processing is
based on dynamic time warping and hidden Markov models. As processing occurred
after all the data was collected, it is not a real-time application. Also, plan recognition
was used in a domain in which users engage in exploratory and error-prone behaviors
[Gal et al. 2012]. In this work, constraint satisfaction algorithms were used as a vi-
able and practical approach for plan recognition in an educational software application
similar to our intelligent biohazard training system.

2.3. Gesture Recognition

In the literature, there is a growing body of works dedicated to natural gesture–based
interaction [Kristensson et al. 2012; Song et al. 2012]. Gutierrez et al. [2010] use a
dynamic setup of haptic devices and motion capture for training in industrial mainte-
nance and assembly tasks. The tasks that they intend to teach to users involve high
precision and coordination, which justifies their need for a more complex setup than
ours. We only need a Kinect sensor for detecting gestures, and high precision is not
required in our system. For the same reason, we did not apply a complex technique as
the one used by Oikonomidis et al. [2011], who investigated hand-articulation tracking
in near real time using only visual information. This was achieved by formulating an
optimization problem that minimizes the discrepancy between the 3D hand structure
and the appearance of the hypothesized 3D hand model. While our gesture detection
is not as precise, it is sufficient for our purpose and, most important, it is in real time.

In our case, we also did not have to adapt the recognition system to different users,
as done by Hasanuzzaman et al. [2007]. The authors try to recognize that different
gestures might have the same meaning in different cultures—for instance, the gesture
recognized as “OK” is not the same in every country—but the gestures that we are
recognizing are not attached to any culturally dependent meaning: everyone needs to
close and open the hand when grabbing and dropping objects. The only gesture that
could have a meaning is the one asking for help. We avoid this problem by giving
specific instructions to the user on what gesture they should use.

Unzueta et al. [2008] propose a way to distinguish between static and dynamic
gestures, that is, gestures that require one step and gestures that require more than
one step, respectively. In our system, there is only one case of a dynamic gesture: moving
the hand back and forth for using disinfectant. However, only one of our static gestures
might be confused with this: the help gesture. Because this is a straightforward case,
we opted for a much simpler alternative to the method described by Unzueta et al.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:7

Fig. 1. System architecture. The knowledge-based module that performs task recognition and advice gen-
eration interfaces to the virtual world via an event-based system. These events are generated using the
semantic properties of objects, and are triggered by physical interactions with these objects.

[2008]. We simply consider that the user is performing the help gesture if the user
maintains it for more than 2s.

3. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Our system recreates a biohazard laboratory (Level 2) from a user-centered perspec-
tive and supports realistic gesture-based interaction in a way that reflects real-world
procedures. The use of a 3D content development engine (Unity3D1) provides a unified
mechanism for visualization and interaction by taking advantage of the built-in mech-
anisms to define the physical behavior of objects. The knowledge-based aspects of the
system consist of a representation of biohazard training procedures as task models,
which can be instantiated in real time via the recognition of task-level events. In turn,
task-level events can be derived from gestural interactions between the user hands
and laboratory objects based on semantic properties attached to objects and common
sense reasoning. The system architecture is shown in Figure 1.

3.1. The Interaction Processor

The interaction processor provides two types of input methods:

—Keyboard and mouse device input as a traditional method
—Gesture-based interaction using Kinect as an alternative method

In training scenarios in which physical interaction is important, gesture-based inter-
action has great potential as an object manipulation mechanism. It may support nat-
ural task execution as gestural interactions accurately mimic task-level events in the
real world. Additionally, it may enhance the immersive attribute of the whole virtual

1http://unity3d.com/.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:8 H. Prendinger et al.

Fig. 2. Real-world lab work involves extensive and careful use of a person’s hands. Likewise, our system
emphasizes this fact by implementing a Natural Gestural Interaction Processor using Kinect. The virtual
hands in the system represent the user’s avatar controlled by Kinect. Lab technician picture rights provided
by the Centers for Disease Control and Prevention’s Public Health Image Library.

environment [Sridhar and Sowmya 2008; Lu et al. 2012]. Based on these considera-
tions, we implemented a gesture-recognition framework using Kinect that allows users
to interact naturally with the 3D environment. By using gestures, users would be able
to accurately mimic real-world actions, particularly in terms of “taking,” “carrying,”
and “releasing” virtual objects.

While gesture-based interaction is used in our setup, it is not the focus of our re-
search. Thus, we had to compromise on some aspects of the interaction. First, the
version of Kinect used was the XBox version of the device, which demonstrated some
spatial constraints for users. For instance, the tracking of the user’s body and hands
cannot be closer than 1.6m. Second, if someone other than the user entered in Kinect’s
area of effect, which expands to 2.5m, Kinect started to detect both of them and mal-
function until the other user left. Despite these issues, the device had a high degree of
robustness when used in the appropriate (albeit slightly constrained) range of detection
and environmental conditions.

3.1.1. Implemented Gestures and Corresponding User Actions. There are two main types of
gestures that needed to be defined in order to cover all operations in the biohazard
laboratory: (1) gestures to navigate inside the 3D environment, and (2) gestures to
manipulate objects, corresponding to the take object, drop object, use object, open object,
and close object user actions. Execution of these gestures is indicated by showing two
virtual hands and arms that mimic the detected gesture (see Figure 2).

Additionally, if the system detects that the user’s hand is over an object, it will high-
light it and show a hand suggesting the grab gesture (see Figure 3(a) below). The goal of
this feature is to better inform the user on the available actions at any given moment.

The design of navigation gestures was a challenge because we needed to define a
natural way for users to indicate motion in the virtual world while remaining inside a
limited area in the real world. Thus, for moving around the virtual world, we decided
to implement a control scheme based on the placement of the user within two squared
areas (see Figure 1). While the user is inside the inner area, the avatar does not move.
If wishing to move in any direction, the user simply needs to step outside of the inner
area in that same direction. The further the user moves in that direction, the faster

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:9

the avatar will move in the virtual world. The outer area is used both as a way to
measure the velocity at which the avatar should move and as a way to inform the user
of the limitations of one’s movements. If the user steps out of the outer area, the Kinect
motion detection stops being accurate. For that reason, we stop all motion detection
waiting for the user to step in the recognition area again.

Likewise, the gestures to manipulate objects were implemented trying to maximize
the naturalness of the actions themselves. We are detecting two main gestures, closing
hand and opening hand, along with a third one, moving a hand quickly back and forth.

Based on these physical hand gestures, the following types of actions were
implemented.

—A “take object” action, in which the user closes the palm over the object. The object
will remain attached to the virtual hand as long as the user keeps the hand closed.

—A “drop object” action in which the user opens the palm while holding an object.
—A “use object” action in which the user moves one’s hand back and forth for a while

over an object, for instance, when the user needs to use a disinfectant object to clean
a toxic spill.

—An “open object” action (same user hand gesture as for “take object”). Object (e.g.,
refrigerator) opens when closed.

—A “close object” action (same user hand gesture as for “take object”). Object closes
when open.

We note that in our system, hand gestures are contextual, that is, the same physical
gesture can refer to different actions in the 3D environment depending on the context
(the type or state of an object). For instance, the user may take an object by closing
one’s hand while pointing at it; similarly, the user may use this gesture to open or close
a door. The user may grab an object by maintaining a closed hand. The disinfectant (see
list) can be used by grabbing it and moving it above the area that has to be disinfected.

Informal testing demonstrated that these methods are the most user-friendly for
people operating inside the virtual environment through the exclusive use of their
hands. As the majority of actions in the system can be carried out by closing, opening,
or moving a hand, users require only a little amount of time and effort to get used to
this interface.

3.1.2. Mouse and Keyboard Interface. We also implemented a mouse and keyboard inter-
face to be able to compare it to the Kinect interface. We tried to reproduce as much of
the Kinect interface as possible so that comparing both methods would be reliable. For
this reason, all actions that the user can perform using Kinect can also be performed
using mouse and keyboard:

—Pressing the arrow keys or “WASD” moves the avatar in the virtual world.
—Moving the mouse changes the position of the avatar’s hand. In this version of the

interface, the user controls only one hand as it would be impractical to control two
hands with one mouse. As with the Kinect interface, if the hand reaches the limits
of the screen, the view rotates in that direction.

—Left-clicking the mouse is the equivalent to the close-hand gesture. Therefore, it can
have the effect of taking, opening, or closing an object, depending on the context.

—Right-clicking the mouse is the equivalent of the open-hand gesture. Therefore, it
has the effect of dropping an object if one is currently held.

—Moving the mouse back and forth when holding a disinfectant has the effect of using
the disinfectant.

3.1.3. Task-level Event Generation from User Actions. The data capture and gesture recog-
nition processes are performed by the Gesture Position and Type Detection component

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:10 H. Prendinger et al.

(see Figure 1). It was implemented as an extension of the official Microsoft Kinect
framework. Upon the recognition of a gesture, the Motion Preprocessing component
determines the appropriate task-level event based on heuristics regarding the place-
ment and intention of the user when performing the detected gesture.

A task-level event is an action that is indivisible from a task perspective and used
to perform task recognition and prediction processes on the task model. The task-level
event is then passed to the Common Sense Reasoner to analyze its effect on the virtual
environment. In the case in which a task-level event is not generated from a recognized
gesture (e.g., navigation gestures), the gesture is sent directly to the Objects’ Physics
Event Processing component as an animation procedure.

Task-level events corresponding to the actions carried out by the user are formalized
as combinations of gestures and objects in the virtual environment (that are targeted
by the gestures). This approach supports a consistent definition of a set of user actions
from primitive gestures and the classification of objects and their properties. In turn,
the recognition of a task-level event serves as the activation of physical behavior cor-
responding to the events’ consequences, or modifications to the virtual environment
state. Recognition of task-level events is based on predefined heuristics regarding

—the type of gesture;
—the target object, that is, the object that will be manipulated;
—the surface object, that is, the object over which the target object is to be manipulated;
—the object already present in the gestured hand; and
—the duration of the gesture—SHORT_DURATION (1s), LONG_DURATION (2-3s).

To determine the target and surface objects, we implemented a simple ray-casting
technique in which a target or surface object is selected if it is close enough to the user.
More advanced techniques for 3D object manipulation have been implemented, for
example, in Bowman and Hodges [1997]. However, we decided to use a simple method
because (1) we wanted to emphasize the navigational aspect by letting users approach
the objects themselves, and (2) in-hand manipulation of objects was not a necessary
feature in our environment.

The user-generated task-level events currently implemented in our system are:

—Take event: It occurs when the user closes one’s palm for a short time over an object
that can be carried away (“take object” user action). If the gestured hand is empty,
the event is generated as Take(TARGET_OBJECT). If the gestured hand is carrying
another object, the component determines if the carried object can be used to carry a
second object. If that is the case, then the event is generated as Take(TARGET_OBJECT,
MEANS_OBJECT).

—Open event: It occurs when the user closes one’s palm for a short time over an object
that can be opened (“open object” user action). If this object is not opened yet, the
event is generated as Open(TARGET_OBJECT).

—Close event: Similar to the Open event, but the object needs to be opened this time
(“close object” user action).

—Use event: It occurs when the user moves one’s hand for a long time over an object
(the surface object), having another object in the gestured hand (“use object” user
action). If the latter can be used over the former, then the event is generated as
Use(TARGET_OBJECT, SURFACE_OBJECT).

—Drop event: It occurs when the user opens one’s palm for a short time while having an
object in the gestured hand (“drop object” user action). The event generated here is
Drop(TARGET_OBJECT, SURFACE_OBJECT), with SURFACE_OBJECT being the object
over which the TARGET_OBJECT will be dropped.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:11

Fig. 3. The “Take Object” and “Use Object” Action-Event Generation Sequence: (a) when the system detects
the PALM_CLOSED gesture over the ABSORBENT_SPONGE object, the Take event is generated; and
(b) when the system detects the PALM_CLOSED gesture and is moving over the SPILL object using the
DISINFECTANT object, the Use event is generated.

For instance, when a “take object” action has been detected, the Motion Prepro-
cessing component receives the tuple 〈PALM_CLOSED, SHORT_DURATION, OB-
JECT_ID, null〉, and determines that a Take task-level event has taken place (see
Figure 3(a)). In the case of a “use object” action, it receives the tuple 〈PALM_CLOSED,
LONG_DURATION, OBJECT_ID, SURFACE_ID〉, and determines that a Use task-
level event has taken place (see Figure 3(b)).

3.2. The Common Sense Reasoner

When the Natural Gestural Interaction Processor sends a task-level event to the
Common Sense Reasoner, this module determines the physical consequences that the
aforementioned event generates inside the virtual environment. These physical con-
sequences are instantiated through the inference on semantic relational conditions
defined between the objects in the environment (see Figure 4). For instance, if a user
dropped a bottle on the floor, the Common Sense Reasoner would generate the phys-
ical consequences of such an event based on the physical characteristics of the bottle
and the substance it contains. The rationale for using a Common Sense approach is
that the actual detailed simulation of some events is not always relevant (e.g., spill
progression or actual shattering of a vial). On the contrary, it is important to maintain
an updated symbolic representation of the system (e.g., vials intact or broken, liquid
inside or outside the vial).

More advanced models for common sense reasoning rely on low-level physics engine
directives to perform the processing of physical consequences (e.g., Lugrin and Cavazza
[2007]). In our case, the Common Sense Reasoner uses task-level events as directives.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:12 H. Prendinger et al.

Fig. 4. The Common Sense Reasoner: Detailed process for the Drop(BLOODBOTTLE, FLOOR) event. The Com-
mon Sense Reasoner bypasses low-level physical simulation while updating the physical state of objects
in the knowledge base. It interfaces to the Unity3D engine to update the physical appearance of objects
following a change in state.

Since our system is focused on the achievement of realism from the perspective of
training scenarios, the implementation of a specialized physics engine was not nec-
essary. However, our Common Sense Reasoner essentially implements a Qualitative
Physics approach [Cavazza et al. 2004]. This scheme supports better reasoning on the
causal aspects and maintains an explicit representation of the action’s consequences.
As physical accuracy is of less importance in our application, the integration with
Unity’s native physics engine was not necessary.

Task-level events are processed through a series of cascading rules, which are defined
in the Common Sense Database (see Figure 1). Objects specified as parameters of
those rules are matched to the parameters of the task-level events and the semantic
properties of those objects, which are also defined in the database. Once a task-level
event is completely processed, the Common Sense Reasoner interfaces to the low-level
primitives of the Unity3D engine, which supports the interactive visualization of the
world state: in particular, the creation or deletion of objects, or changes in their visual
appearance. These commands are received by the Event Dispatcher component, which
executes the commands.

3.3. The Task Recognition Engine

The Task Recognition Engine performs task recognition and prediction procedures
based on the task-level events that were received from the Common Sense Reasoner.
These procedures are explained in the following section.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:13

Fig. 5. Part of a task tree modeling the training procedure that has to be followed for the treatment of a toxic
spill. The complete task model contains more than 250 nodes and requires at least task-level user actions to
be completed.

4. TASK-BASED REPRESENTATION OF BIOHAZARD PROCEDURES

The main purpose of the Task Recognition Engine is to provide task-related assistance
to users during the simulation. In our context, students have been studying security
procedures by reading a textbook and are now prepared to rehearse them in the vir-
tual laboratory. Thus, the purpose of the system is to provide assistance to students
when necessary by monitoring their actions. For that reason, we opted for a simple
knowledge-based representation of biohazard training procedures that supports real-
time monitoring from user actions and provides real-time assistance and guidance in
case of incorrect execution. Furthermore, our approach is compatible with postproce-
dure debriefing, by tracing the various errors and aborting the simulation when the
situation cannot be corrected.

Biohazard training procedures are represented using a hierarchical task model, as
shown in Figure 5. Tasks on top of the tree represent abstract tasks that are decomposed
into simpler subtasks until reaching the leaves of the tree, which correspond to task-
level events or basic actions that the user performs in the virtual environment. In this
way, training procedures are represented as a task tree in which the internal-node group

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:14 H. Prendinger et al.

subtasks in three different ways: AND (all subtasks must be completed in any order),
OR (different ways to complete a task) and SEQ or sequences (all subtasks must be
completed in the proper order). Note that some of these procedures are quite complex:
the complete task tree that describes the protocol to treat the spill of a hazardous
substance contains more than 250 nodes and requires at least 40 task-level user actions
to be completed.

This knowledge representation is inspired from a hierarchical planning formalism
known as Hierarchical Task Networks (HTNs) [Erol et al. 1994]. Actually, the task tree
is similar to an explicit HTN in which the main task has been decomposed a priori and
entirely, down to the level of elementary actions, rather than being dynamically refined
using decomposition methods [Nau et al. 2004]. Thus, instead of representing security
protocols as a collection of refinement methods, we use an explicit task tree that can be
represented visually, facilitating knowledge elicitation. Explicit representations tend to
be common when representing protocols when a visibility over the protocol is required
both at knowledge elicitation time and during instantiation at training time [Georg
and Cavazza 2007]. By contrast, refinement methods tend to be used when abstraction
between hierarchical levels is more relevant. Explicit representations also facilitate
the inclusion of ordering constraints on actions and explicit representations of common
errors that are attached to specific situations.

Note that we do not use this task tree for plan generation and, in fact, we do not
use any planning technique. We use a hierarchical task model (1) to intuitively rep-
resent training procedures as multistep decomposable processes, and (2) to perform
task recognition, which is achieved by traversing the tree each time the user performs
an action in the virtual environment. In general, the idea of using planning-based for-
malisms to represent procedural knowledge is not unusual even in systems that do not
use planning algorithms [Bradbrook et al. 2005; Shahar et al. 1998].

There are several benefits in using an approach inspired by HTNs to model complex
procedures. First, HTNs have been shown to be an effective way to encode domain
knowledge and to restrict the order in which actions can be combined [Nau et al. 1998;
Wilkins and desJardins 2001]. Second, HTNs are intuitive enough for experts and allow
them to work at different levels of abstraction, which decreases the effort required to
model complex activities [Currie and Tate 1991; Muñoz-Avila et al. 2001]. Along the
same lines, HTNs promote reusability of abstract tasks among different protocols since
subtrees can be shared in different branches of the tree. Finally, as we will describe in
more detail later, the hierarchical structure can be exploited to detect incorrect actions
and provide real-time feedback to the user. The task trees were created during extended
sessions with the domain experts, specifically Dr. Mika Shigematsu, our coauthor from
NIID.

4.1. Recognizing Correct Actions

To monitor user activity, we need to identify the actions that the user performs as the
student progresses through the biohazard training protocol. In this section, we describe
how to identify actions that are correct according to the task model; in the following sec-
tion, we will explain how to detect and help the user when the student makes a mistake.

It is important to note that the users of our system are students that have previously
studied the laboratory procedures in textbooks. Thus, we expect only small deviations
from the correct procedure during the simulation but not random meaningless actions
or users with goals very different from the ones involved in the procedure. In this sense,
we do not require a plan-recognition algorithm to tell us the most likely goal the user
is currently pursuing, but rather some way to monitor whether the user is following
the procedure correctly or if the user has performed some mistake or skipped some
important step.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:15

In order to provide feedback to the user during the simulation, our system needs to
recognize the user actions in real time. We assume some simplifications in the task
tree representation:

—We consider variables from different leaf nodes to be independent. That is, we cannot
use a common variable to represent that the object that was used in one action is the
same one that will be used in another posterior action. Sibling trees in the structure
are independent.

—Task-level events representing the user actions are forwarded to all the subtrees in
AND and OR nodes, that is, one user action can instantiate different leaf nodes.

—We use a greedy approach in which, once a tree node has been instantiated, its status
no longer changes.

These simplifications allow us to avoid the nondeterministic choices usually involved
in plan-recognition problems; thus, we can instantiate the task tree very efficiently.
However, they also limit the type of plans that we are able to recognize or differentiate.
For example, we cannot accurately recognize plans in which the same action is executed
several times consecutively. Usually, these limitations can be overcome by carefully
designing the task-level events and the task tree. In the worst case, the task tree will
be an approximation of the laboratory procedure and the system will not be able to
detect all the user errors. Systems requiring a more precise representation can use
other types of plan-recognition algorithms based on hierarchical task trees [Geib and
Goldman 2009; Kabanza et al. 2013] at the cost of the computational complexity of
those algorithms.

Algorithm 1 describes our approach. The Task Model Reasoner receives task-level
events representing the actions that the user has performed in the virtual environment
and propagates those events tothe leaves of the task tree. When one of those events
matches the action contained in one leaf node of the tree, the reasoner instantiates the
corresponding task and, probably, other higher-level tasks depending on it. In this way,
the task tree is instantiated from the leaves to the root as the user advances in the
simulation.

There are four different types of nodes in the tree: AND, OR, SEQ, and LEAF. When
an inner node receives the task event, it propagates the event to its direct children,
then checks if it has to instantiate itself according to its type. Note that AND and
OR nodes propagate the event to all its children and that the order in which they are
traversed is not important to instantiate the current node because we consider each
subtree independently from its siblings. SEQ nodes, on the contrary, propagate the
event to their children in a specific order until one of them is not instantiated.

The matching between task-level events and leaf nodes of the tree is quite straight-
forward. Task-level events describe specific actions performed in the virtual envi-
ronment; thus, they cannot contain variables. For example, the task-level event
Take(ethanol_#1) is received when the user takes a bottle of ethanol represented
with the symbolic constant ethanol_#1. Leaf nodes of the task tree, on the other hand,
describe actions using typed variables. For example, the leaf node User takes ethanol
contains the action Take(?x1 - Ethanol) that accepts any object of type Ethanol and
therefore matches the previous user action.

This simple bottom-up instantiation of the task model from user actions supports the
analysis of the user behavior from the perspective of the task to be learned, supports a
unified mechanism to assess the user, and provides real-time feedback and assistance
during the execution of the most complex procedures.

For example, the tree in Figure 5 shows part of the training protocol that must be
followed for the treatment of a toxic spill. In this case, the original task User Treats
Spill is decomposed into five subtasks that must be performed in order: (i) Put on the

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:16 H. Prendinger et al.

ALGORITHM 1: Algorithm to Instantiate Nodes in the Procedure Task Tree from the Events
Produced as a Consequence of the Student’s Actions.
def ProcessEvent1(inout treeNode, in event):

/* treeNode: Semi-instantiated task tree */
/* event: task-level event representing some user action */

/* If the node is already instantiated there is nothing to do */
if treeNode.instantiated return

if treeNode is AND node
/* Pass event to subtrees */
for stn in treeNode.subtrees()

ProcessEvent1(stn, event)
treeNode.instantiated ← AllInstantiated(treeNode.subtrees())

elif treeNode is OR node
/* Pass event to subtrees */
for stn in treeNode.subtrees()

ProcessEvent1(stn, event)
treeNode.instantiated ← AnyInstantiated(treeNode.subtrees())

elif treeNode is SEQ node
/* Pass event to subtrees in order. If some subtree is not instantiated then

leave */
for stn in treeNode.subtrees()

ProcessEvent1(stn, event)
if not stn.instantiated return

treeNode.instantiated ← T rue
elif treeNode is LEAF node

/* Matching between the event and the node action */
tree.instantiated ← Match(treeNode.action, event)

Gloves, (ii) Border the Spill, (iii) Cover the Spill, (iv) Disinfect the Spill, and (v) Remove
Spill. Figure 5 shows the current state in which the user has successfully completed
the first three subtasks, and now, the student has to disinfect the spill.

On the other hand, Figure 6 shows an example of the interaction with the system and
the task instantiation process that the reasoner performs. At this stage of the proce-
dure, the user has to disinfect the spill that was previously covered and choose among
different chemicals depending on the nature of the spill. In Step 1, the user chooses to
take a bottle of ethanol (represented as the formal object ethanol_#1 of type Ethanol),
an appropriate disinfectant, so that the task reasoner receives a Take(ethanol_#1)
event. The reasoner traverses the current task tree looking for leaf nodes accessible
in the current state that contains a compatible task. In this case, the reasoner finds
several leaf nodes with the task Take(?x1 - Ethanol) that matches the user action.
The reasoner instantiates the tasks and sends back an event indicating that the action
was recognized.

Next, in Step 2, the user utilizes the same bottle with ethanol to disinfect the left
side of the spill. In this case, three different task nodes are instantiated as a result of
the action (see Figures 5 and 6), because this action completes two other higher tasks
in the task tree. Note that one action might trigger the recognition of several tasks at
different levels in the tree.

4.2. Providing Assistance

Deciding when and how to help the user is a very complex problem that is beyond the
scope of this paper. However, the logical structure of the task representation provides a

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:17

Fig. 6. Example of task instantiation as the user progresses in the procedure (Part 1). In Step 1, the user
performs an action that is recognized as correct because it matches the task contained in a leaf node. In
Step 2, the user performs another correct action that triggers the instantiation of several tasks at different
levels in the tree.

basic mechanism to reason on the user progression that can be used to detect incorrect
actions and provide useful hints. In this sense, our system can be called a training or
rehearsal system.

Basically, we can detect two different types of incorrect actions:

—Actions that are explicitly represented in the task model as incorrect choices, and
—Actions that are part of the correct procedure but should not be executed yet.

The first type corresponds to those errors that have been anticipated by the experts:
for example, to use a wrong object like dropping an absorbent pad over the spill, or to
use the wrong instance of the correct object like using a disinfectant that is not suitable
for the kind of spill being treated. These errors are instances of task events received
from the Common Sense Reasoner and are represented explicitly in the task tree as
error nodes. These error nodes can contain specific messages to explain why the user
action is not adequate. For example, if the user tries to use an inadequate disinfectant,
the system can provide a warning and explain why the student should not use that
chemical in this situation.

Algorithm 2 shows a more elaborated version of the task instantiation algorithm
from previous section, to take into account the existence of these error nodes. The
errorTask parameter in the algorithm is used to mark when one of these error nodes
is instantiated as a result of some user error. When one of these errors is detected,
the process of instantiation is interrupted, the Task Recognition module informs of
the error and then removes the error node from the instantiated tree. The newTasks
parameter returns the new correct tasks that have been instantiated as a result of
processing the task-level event.

The second type of mistake comprises those actions that should not be executed
at present, because they are part of a SEQ node with some previous subtask that is

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:18 H. Prendinger et al.

ALGORITHM 2: Algorithm to Instantiate Nodes in the Procedure Task Tree from the Events
Produced as a Consequence of the Student’s Actions
def ProcessEvent2(inout treeNode, in event, out errorTask, inout newTasks):

/* treeNode: Semi-instantiated task tree */
/* event: task-level event representing some user action */
/* errorTask: new instantiated error task node */
/* newTasks: new instantiated correct task nodes */

/* If the node is already instantiated there is nothing to do */
if treeNode.instantiated return

if treeNode is AND node
/* Pass event to subtrees. If some error node is instantiated then leave */
for stn in treeNode.subtrees()

ProcessEvent2(stn, event, errorT ask, newT asks)
if errorTask != null return

treeNode.instantiated ← AllInstantiated(treeNode.subtrees())
elif treeNode is OR node

/* Pass event to subtrees. If some error node is instantiated then leave */
for stn in treeNode.subtrees()

ProcessEvent2(stn, event, errorT ask, newT asks)
if errorTask != null return

treeNode.instantiated ← AnyInstantiated(treeNode.subtrees())
elif treeNode is SEQ node

/* Pass event to subtrees in order. If some error node is instantiated or
some correct node is not instantiated then leave */

for stn in treeNode.subtrees()
ProcessEvent2(stn, event, errorT ask, newT asks)
if errorTask �= null or not stn.instantiated return

treeNode.instantiated ← T rue
elif treeNode is LEAF node

/* Matching between the event and the node action */
tree.instantiated ← Match(treeNode.action, event)

if treeNode.instantiated
if treeNode.isError

errorT ask ← treeNode
else

errorT ask ← null
newT asks ← newT asks ∪ {treeNode}

not achieved yet. For example, according to the Spill Disinfection procedure, the user
should not try to disinfect the center of the spill until the borders have already been
disinfected.

Algorithm 3 explains how to detect those errors. Note that this algorithm is used
only when the task-level event did not instantiate any task node in Algorithm 2; thus,
we know that the user action is not correct and it does not correspond to any error
anticipated by the experts. First, we look for semi-completed SEQ nodes in the tree,
that is, not instantiated sequential nodes with some descendants instantiated. They
represent sequential steps in the procedure that have been started but are not finished.
Those nodes are retrieved using a depth-first search; thus, they are sorted by depth.
Then, we determine if some of its descendants are instantiated as a result of processing
the task-level event; but, in this case, we check all the subtrees of the SEQ nodes. If

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:19

ALGORITHM 3: Finding High-Level Tasks that the User is Incorrectly Trying to Complete
Because Some Previous Step in the Protocol has not been Completed Yet
def orderError(in treeNode, in event, out incorrectTask):

/* treeNode: Semi-instantiated task tree */
/* event: task-level event representing some user action */
/* incorrectTask: incorrect task that the user is trying to complete */

/* Semicomplete SEQ nodes in the tree sorted by depth (the deepest first) */
SEQnodes = semicompleteSEQnodes(treeNode)

for node in SEQnodes
for st in node.subtrees()

newT asks ← ∅
processEvent2(st, event, errorT ask, newT asks)
if errorTask = null and newTasks �= ∅

incorrectT ask ← st
return

incorrectT ask ← null

def semicompleteSEQnodes(in treeNode):
if treeNode.isError or treeNode.instantiated or treeNode.type == LEAF

return []

SEQnodes ← []
for stn in treeNode.subtrees()

SEQNodes = append(SEQnodes, semicompleteSEQnodes(stn))

/* We say that a SEQ node is semicomplete if it is not instantiated but has some
descendants instantiated */

if semicompleteSEQ(treeNode)
SEQNodes = append(SEQnodes, treeNode)

return SEQnodes

some descendant node is instantiated, then we assume that the user is probably trying
to do something that should not be done yet. Once we know which high-level task the
user is trying to complete, we can use that information to interact with the user without
having to make references to specific actions. Note that we iterate over the SEQ nodes
sorted by depth so that the interaction with the user will be based on the more specific
SEQ node in which we detect the problem.

Let us take into consideration Step 3 in Figure 7, in which the user decides to
use ethanol on the center of the spill immediately after disinfecting the left border.
In this case, the reasoner traverses the task tree, detecting that the action does not
match any leaf node compatible with the current state, but rather a leaf node in a
branch that should not be executed yet. In this way, the system may notify the user
that the first thing to complete is Disinfect Spill Borders, which corresponds to the
left not-instantiated sibling of the Disinfect Spill Center task. Note how the system
takes advantage of the hierarchical task model to describe what parts of the training
procedure the user should complete first without describing the specific actions to take.

Apart from the two types of errors that we have explained (anticipated by experts
and skipped steps), the users can make other mistakes that we are not able to detect.
In order to detect them, we would require a richer semantic description of the domain.
However, it is relatively easy to add new error nodes to the task tree so that we
can incorporate specific messages to deal with those new common mistakes when the
experts detect them.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:20 H. Prendinger et al.

Fig. 7. Example of task instantiation as the user progresses in the procedure (Part 2). In Step 3, the user
performs an (incorrect) action that should not be executed yet according to the procedure. In Step 4, the user
asks for help; then, the reasoner computes the possible next actions, and selects which one to show using a
heuristic approach based on distances in the task tree.

Finally, it may happen that the user does not know how to proceed next to deal with
the remaining three border covers. In Figure 7, Step 4 shows what happens when the
user asks for help. In this case, the task reasoner traverses the task tree looking for all
the actions that can be executed next. Usually, there will be several different possible
actions because the AND and OR nodes allow different execution paths.

In our example, users could either use the bottle with ethanol that they are holding
in their hand with any of the three remaining borders, or they could take another
disinfectant. Although all these actions are correct, some are more intuitive than others.
In this case, the user is holding a bottle with ethanol that has already been used to
disinfect a border; thus, we can presume that the user will want to use it again instead
of taking another disinfectant.

In our system, we take advantage of the hierarchical structure of the task model to
prioritize those possible actions in the tree that are closer to a task that has already
been completed. We measure the distance of two nodes in the tree as the minimum
number of edges between them. The intuition beneath this heuristic is dual: (1) the task
hierarchy groups tasks that are part of a whole, that is, the task/subtask relation is a
strong semantic constraint; and (2) if the user has performed a subtask, the user will
probably try to complete the sibling subtasks in order to complete the higher-level task.

In the example, when the system computes the distances of the five leaf nodes that
contain the possible actions closer to the completed task (User takes ethanol), it decides
to prioritize the User places ethanol on upper/right/lower cover tasks because they are
siblings (distance 2 in the tree). Thus, the system will advise the user to perform one
of them.

4.3. Common Mistakes and Real-Time Feedback

The training system collects information about the errors committed by each of the
students during the simulation. By analyzing this information, we can determine both
specific weaknesses of each student and common mistakes made by most of them. The
system also stores the times used to complete each task, which makes it easy to detect

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:21

the most complex tasks or those that most students have not assimilated properly.
Section 5 reports on the details.

As explained earlier, the hierarchical task model that we use to represent the biohaz-
ard training procedures allows us to detect two types of errors in real time: (1) errors
that are labeled as incorrect (by the domain expert) and (2) errors that result from the
execution of actions at the wrong time. In both cases, the system is able to instruct the
student by showing descriptive help messages, but using different approaches.

—First case: Both errors and their associated help messages are part of the domain
model; therefore, they have been anticipated by experts.

—Second case: The system displays a generic message compelling the user to complete
another task before executing the current action.

It is important to remark that, although the help message is generic, the task to
complete usually corresponds to an internal node of the tree, that is, an abstract goal.
In this way, the system is able to describe abstract goals that the user must achieve
without indicating the specific actions to perform.

Regarding the first type of errors, the task model is able to detect when the user is
placed in the wrong position, for example, between the spill and the air vent; when a
wrong product is used to delimit or cover the spill, for example, absorbent pads; when
the user chooses a disinfectant not suitable for the type of substance being treated; or
when a product is handled with the wrong tool, for example, taking the waste with the
gloves instead of the tweezers; among other incorrect actions. All of these errors are
nodes in the task tree that are identified with a triggerable task-level event and each
one is associated with a specific help message, as shown in Figure 12.

Regarding the second type of error, when the student performs an action that should
not be executed yet, the system can detect several mistakes (an example is shown in
Figure 7). In the following, we describe some of them and, in parentheses, the type of
assistance message that the system produces:

—The student attempts to interact with some object in the laboratory, for example, to
take the absorbent paper, before putting the gloves on (You should Put the Gloves On
before attempting to Border the Spill).

—The student attempts to cover the center of the spill before covering all the borders
(You should Cover the Spill Borders before attempting to Cover the Spill Center).

—The student covers the left border, then attempts to disinfect it without covering the
rest of the spill first (You should Cover the Spill before attempting to Disinfect the
Spill).

—The student attempts to dispose of the covers and then the borders in two different
steps (You should Merge the Waste before attempting to Dispose The Waste).

In summary, the hierarchical-task model chosen to represent bio-safety lab protocols
provides the following benefits:

—It is an intuitive and explicit representation that can be used and revised by domain
experts.

—It enables real-time detection of two types of mistakes: (1) mistakes that have been
anticipated by the experts and included explicitly in the model and (2) mistakes that
arise when the student forgets some step of the protocol.

—It supports interaction with the student using abstract concepts represented by the
internal nodes of the network. Thus, the system can inform the student about the
next to-be-completed high-level task without referring to the contained basic actions.

—It can anticipate the most likely next action that the student will perform using a
heuristic based on the hierarchical structure of the domain.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:22 H. Prendinger et al.

To the best of our knowledge, the combined use of these ideas in such interactive
virtual training systems has not yet been investigated.

4.4. Complexity of Solution Space

In order to understand the intrinsic complexity of the procedure to manage a toxic spill
used in the previous examples as well as the number of trainee errors that our model
can detect, we performed additional experiments in which we automatically generated
random sequences of user actions. In particular, because our objective was to analyze
the complexity of search, we focused on the number of actions that our model is able to
identify as correct or incorrect and the number of internal nodes in the task tree that
must be traversed in order to identify each action.

These experiments are not meant to replace a staged user evaluation of the system
as a whole: such an evaluation will be described in the next section. Instead, they
contribute important information on system complexity, which not only provides a
justification for the use of AI techniques but also gives indications on the scalability of
the approach, both aspects differentiating it from scripted methods.

First, the graph in Figure 8 depicts the solution space of the simulation and indicates
how nodes are instantiated.

Users can perform a full set of relevant actions in the virtual environment: move,
take, drop, use, open, close (see Section 3.1). These types of actions are similar to plan-
ning operators that can be parameterized with different domain entities, resulting in
about 2000 different ground actions when considering potential objects in the environ-
ment. From all of these, only around 25, can be really executed at a given time (i.e., their
preconditions are satisfied in the current simulation state). If we take into account that
in order to complete the toxic spill procedure, at least 46 ground actions are needed,
it is easy to realize that the number of executable plans is just too large to try to find
solution plans by generating random actions. Instead, we use the following approach:
(1) we compute which ground actions are executable in each simulation state and how
many of them are recognized as correct/incorrect by our task-recognition engine; (2) we
select one of the correct actions and append it to the solution plan; (3) we execute the
selected action, thus the simulation state changes, and repeat the process again until
we find a solution plan. In other words, in this experiment, we use a greedy approach
that does not consider nonmeaningful actions (actions that do not impact the goal task
in any way) in the solution plans.

Figure 9 shows the number of executable actions in each simulation step. The chart
shows average numbers obtained from 10000 different solution plans. The x-axis repre-
sents the current simulation step (an optimal solution plan consists of 46 actions), and
the height of each bar indicates the number of executable actions in that step. We use
3 colors to represent how many of those executable actions are recognized as correct
(blue), incorrect (red), and nonmeaningful (green). Note that although we compute all
the executable actions in each step, only one of the correct actions will be executed
in the virtual environment to reach the next simulation step. As can be observed in
the figure, the number of correct actions always amounts to a small percentage of the
executable actions. Regarding incorrect actions, the number of mistakes that we are
able to recognize as such depends largely on the number of nodes explicitly asserted as
incorrect in the task tree and the number of internal SEQ nodes. As a result, the task
recognizer is able to detect several mistakes in some simulation steps and very few or
none in other simulation steps.

Another interesting question for a real-time recognition engine is to measure the
number of nodes in the task tree that need to be visited in order to detect a correct user
action and instantiate a new tree task. Figure 10 shows that the percentage of visited
nodes in each simulation step represents a small part of the tree (usually between

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:23

Fig. 8. Solution space of the simulation. Green nodes and lines represent correct user actions and red lines
represent user mistakes. Black lines show solutions that cannot currently be explored due to constraints of
the top-down search. Dashed lines represent nodes that are not (yet) instantiated, thus are future candidate
actions for the user.

5%–20% of the total). This number depends basically on the types of internal nodes
and the number of tasks already recognized. For example, an OR node implies that we
need to search for the user action in each subtree while a SEQ node constraints the
search to the next subtree. We also observe that the number of visited nodes tends to
decrease as the solution plan evolves. Hence the number of nodes to be visited depends
both on the structure of the task and the progression stage of the plan.

In our final experiment, we generated 1000 executable plans, each one with 100
random actions, and we counted the number of nodes in the task tree that were marked
as completed after executing each plan. Figure 11 shows the percentage of plans that
were able to complete at least n tasks (the number of completed tasks is in the x-axis).
All the plans successfully completed the first task (User puts the gloves on), but less
than 20% of the plans were able to complete 14 nodes in the task tree. There are 255

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:24 H. Prendinger et al.

Fig. 9. Average number of correct/incorrect actions per step in each solution plan.

Fig. 10. Average number of nodes visited per step in a solution plan.

Fig. 11. Percentage of the plans completing at least n nodes.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:25

nodes in the original task tree; thus, none of the random plans reached a significant
stage. However, that is reasonable given the complexity of the domain.

By analyzing these results, we can confirm that the toxic spill protocol used in
our experiments describes a very complex scenario in which the user can perform
many different actions at every moment, but only a few lead to a successful solution.
Therefore, the probability of completing the protocol by performing random actions is
very low. We also confirm that the task-tree model presented in this article is able to
represent complex protocols intuitively, and meets the requirements of a real-time task
recognition system since only a small part of the tree needs to be visited to determine
whether the user actions are correct or not. Finally, the results of our experiments
in Kyushu University with real users, presented in the following section, will confirm
that the task recognition system effectively helps the users to complete the protocol,
tutoring them and correcting their errors throughout the simulation.

5. FIELD STUDY

We have conducted a field study with students from the medical campus of Kyushu
University to answer three questions. First, we wanted to investigate whether real-time
(dynamic) feedback allows for faster recovery from mistakes than (static) feedback.
In the latter case, users open a screen that presents the protocol in text form. When
opened, users cannot perform other actions until they close this screen. We hypothesize
that dynamic feedback is more effective than static feedback.2 Second, we wanted to
assess whether a Kinect device or mouse device is more intuitive and easy to use by this
user group. Third, we wanted to know whether dynamic feedback or static feedback is
better regarding the recall of bio-safety lab protocols.

5.1. Method

5.1.1. Subjects and Design. The study had twenty-eight subjects, who were senior stu-
dents of the medical laboratory technologist course, and a few freshmen from the
graduate course. They were recruited since all had completed the clinical microbiology
lecture and practice. We assumed that they understand the basic facility of a laboratory
and “good microbial practice” in general. None had experience using 3D virtual-world
technology or motion capture applications such as Kinect. In the study, we had twenty
females and eight males between 19 and 22 (age average of 21.6). Subjects were paid
an equivalent of USD 10 for participation. We prepared four conditions:

(1) “Kinect” condition: subjects use the Kinect device to perform predefined tasks in
the 3D environment, such as grabbing an object and bringing it to another loca-
tion, opening the door of a container, and so on. Those simple tasks are aimed at
practicing the operation of the interaction device and are not related to resolving
an accident in the bio-safety lab.

(2) “Mouse” condition: Subjects use the mouse device (and keyboard) to perform pre-
defined tasks in the 3D environment.

(3) “Dynamic Feedback” condition: Subjects use Kinect and receive real-time feedback
when making a mistake in the application regarding the bio-safety protocol.

(4) “Static Feedback” condition: Subjects use Kinect and can access a text manual upon
request when getting stuck.

Note that we use a within-subject design when comparing Kinect to the mouse
interface, and a between-subject design when comparing dynamic and static feedback
conditions. Four subjects did the experiment in parallel. They are assigned to groups A,

2While we use textual feedback only, other types of feedback might be considered depending on the target
group [Bouchard et al. 2012].

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:26 H. Prendinger et al.

Table I. Group Distribution

A B C D
Kinect Kinect Mouse Mouse
Mouse Mouse Kinect Kinect

Dynamic Static Dynamic Static

B, C, and D, and encounter the conditions as shown in Table I. Our study well exceeds
the number of required subjects for a usability study [Hwang and Salvendy 2010].

Subjects were told to perform a simple routine called “Isolation of infectious bacteria
in human blood sample” in the virtual environment. While the subject was carrying out
this task, the system automatically created a hazardous spill accident when the user
opened the incubator, which was a mandatory action for the initial task. In accordance
with the protocol, the “User Treats Spill” task was triggered.

5.1.2. Materials and Apparatus. When interacting with Kinect, subjects were standing
1.6m from a 42in monitor. When interacting with the mouse device, subjects were
seated at a table in front of the monitor. Regarding subjects’ subjective experience
about usability, we prepared questions with answers in a Likert scale (from “1: Strongly
disagree” to “5: Strongly agree”). The list of questions is composed of the following:

(1) Nine questions about the degree of usability of the application, employing a very
extensively used questionnaire created by Brooke [1996] and two additional ques-
tions. The questions are shown in Table V.

(2) Three questions to obtain a measure of the usability of the gestural interface, and
an additional two comparative questions. The questions are shown in Table VI.

(3) Seven application-specific questions about users’ experience. The questions are
shown in Table VII.

Subjects were also tested on their recall of the correct order of actions to be carried out
of the spill treatment. There were seven multiple-choice questions with three multiple-
choice options, such as “What is the correct spill treatment order?”, “Which is the
correct spill disposal procedure?”, etc.

5.1.3. Procedure. The study was assisted by four nontechnical assistants, three tech-
nical assistants, and two experimenters, and was divided into four main parts:

(1) Welcome: Subjects are welcomed and receive a general introduction (7min)
(2) Tutorial and Usability Assessment: Subjects learn how to control the environment

with Kinect (13min) and mouse and keyboard (10min) in tutorial style, followed by
filling out usability questionnaires (Tables V and VI, 5min).

(3) Protocol Reading: Subjects are presented a protocol (standard guidelines) about
the treatment of a toxic spill (5min).

(4) Spill Treatment and Knowledge Acquisition: Subjects solve the spill accident with
the Kinect interface (20min). Afterwards, they first do the knowledge acquisition
test (seven multiple-choice questions), then answer the questions from Table VII
about the application experience (5min). Finally, they receive the reward.

The experiment lasted for 75min with a 5min break after 35min.

5.2. Results

5.2.1. Mistakes and System Feedback. The “Spill Treatment” task given to the subjects
is subdivided into five ordered steps, or subtasks: (i) Bordering the spill, (ii) covering
the spill, (iii) disinfecting the spill, (iv) merging the waste, and (v) disposing the waste.
A sample error message shown to the user is seen in Figure 12.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:27

Fig. 12. Error message delivered by the system when the user attempts to cover the spill with an absorbent
pad. Here, the user has already dropped a pad over the spill and is trying to drop a second one. The system
promptly detected the intention of the user and displayed a warning message regarding the insufficiency
of such action. The message in Japanese says: It (the spill) cannot be sufficiently absorbed with an
absorbent pad.

Table II. Average Time (in Seconds) Consumed to Complete Each of the Five Steps

Condition Step 1 Step 2 Step 3 Step 4 Step 5
Dynamic Feedback 197.3 308.8 218.7 135.4 52.6
Static Feedback 231.2 449.5 257.4 139.7 47.7

Table III. Average Time Consumed for Correcting Mistakes and Standard Deviation
(In Seconds) in Dynamic and Static Feedback Groups

Dynamic feedback Static feedback
Type of mistake Average Std.dev Average Std.dev
Interposing between spill and air vent 5.66 8.65 11.75 19.97
Cover spill with sponge 91.99 63.55 188.92 208.53
Cover spill with pad 43.44 45.23 271.20 199.20
Cover center of spill before outsides 22.34 24.97 54.30 61.31
Disinfect center of spill before outsides 0.35 0.07 NM NM
Throw waste without merging 97.18 58.74 116.00 30.61
Throw waste in wrong bin 49.00 N/A 22.00 N/A
Note: “NM” abbreviates “no mistake” and N/A means that there was only one mis-
take; thus, standard deviation is not computed.

In the dynamic feedback version, subjects could complete 4.6 steps, on average,
during the allotted 20min, with ten subjects completing all five steps. In the static
feedback version, subjects could complete 3.3 steps, on average, with four subjects
completing all five steps. This shows that, in the dynamic feedback version, more users
were able to complete the spill treatment, and in general they completed more steps of
the task. The average duration for the tasks is shown in Table II.

We now turn to the general analysis of user mistakes that occurred during the in-
teraction with the system. Table III reports on the average time taken by subjects to
correct one instance of a mistake in the dynamic-feedback version and static-feedback
version, respectively, and Table VIII (see Online Appendix) shows the t-test results
for comparing the two groups. The results indicate that dynamic feedback is signifi-
cantly more effective than static feedback, that is, users receiving real-time assistance
could recover from errors significantly faster. This finding supports our claim of the
importance of real-time task recognition.

5.2.2. Usability and Usefulness. Figure 13 and Table IX (in Online Appendix) present the
results of the usability of Kinect and mouse/keyboard. The usability results, specifically

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:28 H. Prendinger et al.

Fig. 13. Averages and standard deviation for usability questionnaire, as in Table V. “1: Strongly disagree”;
“5: Strongly agree”.

Table IV. Additional Questions on Kinect and Comparative Questions

Question stub Average Std.dev
(K-Q1) Moving across scenario intuitive 3.29 1.01
(K-Q2) Controlling camera viewpoint intuitive 3.04 1.07
(K-Q3) Taking and releasing objects intuitive 3.00 0.98
(C-Q1) Kinect more usable than mouse/keyboard 2.39 0.83
(C-Q2) Mouse/keyboard more usable than Kinect 4.11 0.63

Fig. 14. Averages and standard deviation for application-specific experience questionnaire, comparing dy-
namic feedback to static feedback.

U-Q3 and U-Q10, indicate that the subjects preferred the mouse interface over the
Kinect interface with statistical significance.

Table IV shows the results for the questions specific to Kinect and the comparative
questions. Judging from the numbers, the perception of operating Kinect is neutral.
Informal comments on usability of Kinect also provide some valuable insights. The
advantage of Kinect is felt only after some practice time. Still, Kinect is seen as more
tiring than the mouse interface in the free-format feedback as well; the mouse/keyboard
device is seen as more usable than the Kinect interface.

Figure 14 presents the results on the application experience questions in both dy-
namic and static feedback groups. Table X (in Online Appendix) shows the t-test results
for the two feedback groups.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:29

It is important to note that the medical students considered the application as very
useful for laboratory training procedures (Question A-Q7).

5.2.3. Knowledge Acquisition. The final question was whether dynamic feedback or static
feedback is superior as to the recall of bio-safety lab protocols. Regarding the seven
multiple-choice questions, in the dynamic version (14 subjects), there were 13.3 cor-
rect answers, on average; in the static version (14 subjects), there were 13.4 correct
answers, on average. This indicates that the type of feedback has no specific impact on
knowledge acquisition of the protocol. We speculate that the subjects remembered the
protocol, which they read just before the spill-cleaning task, equally well. It is interest-
ing to note that the students using the dynamic-feedback version had the impression
of better recall of the session and better understanding of spill handling and mistakes
(Questions A-Q1 to A-Q6).

6. CONCLUSIONS

In this article, we describe the implementation of an intelligent training or rehearsal
system for biohazard laboratory procedures, based on the real-time instantiation of task
models and mouse/keyboard input or gestural interaction. The primary contribution
of the article is an integration of real-time task recognition, error-recognition strate-
gies and error-message generation. This is achieved by providing adequate feedback
messages when users make a mistake or do not know how to proceed. The secondary
contribution is the integration of real-time task recognition with gestural interaction.

A field study demonstrated the robustness of the system and the usefulness of correc-
tive feedback messages for fast recovery. Users would easily understand and heed the
message when performing incorrect actions. It is important to note that errors are more
easily described as part of a dynamic task representations than in a manual, as they
are instanced only once in the task tree, whereas a manual would require repeating
error descriptions in every context in which they can occur, increasing the amount of
text for the user to read. For instance, subjects confused the absorbent paper with the
absorbent pad because of their similar look. One subject (in the static-feedback condi-
tion) even completed the first and second stages of the spill handling with this wrong
tool without noticing. In this way, we hope that users can enhance their knowledge of
the training procedure by getting acquainted with the experience of “how not to do it.”

A new finding from the research was that, quantitatively, the mouse and keyboard
interface was clearly superior to the Kinect interface for our target user group, as judged
from usability indicators. Still, the Kinect interface did not have negative ratings, and
received some supportive comments in the free-text part of the questionnaire. We
expect to improve the usability of the Kinect interface by some minor improvements of
the application, such as preventing the undoing of some successful tasks. Gestures are
convenient for use in virtual-reality environments such as a CAVE [Cabral et al. 2005].
Furthermore, a gesture-based immersive environment has also been shown to increase
children’s engagement with learning materials [Scarlatos and Friedman 2007].

In addition to the implementation of more scenarios, we want to extend the capa-
bilities of the system by including a decision component (or scenario director) that
may modify the environment to test and enhance users’ understanding of the training
scenario. For instance, the decision component could trigger a specific change in the en-
vironment (e.g., trigger another accident at a specific moment) to challenge users into
dealing with two (or more) scenarios at the same time. Integrating our task recognition
capabilities with a scenario director would allow us to create unexpected situations
in which users might learn to apply their biohazard training knowledge in new and
creative ways.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

21:30 H. Prendinger et al.

ACKNOWLEDGMENTS

The authors would like to thank A. Nakasone, F. Fonseca, and A. Rickett for their help with system develop-
ment, and E. Gray for his help with the graphical assets.

REFERENCES

Ofra Amir and Ya’akov (Kobi) Gal. 2011. Plan recognition in virtual laboratories. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence (IJCAI’11). 2392–2397.

A. N. Angelov and Z. A. Styczynski. 2007. Computer-aided 3D virtual training in power system education.
In IEEE General Meeting of the Power Engineering Society. IEEE, 1–4.

Chris L. Baker, Rebecca Saxe, and Joshua B. Tenenbaum. 2009. Action understanding as inverse planning.
Cognition 113, 3, 329–349.

C. Barot, D. Lourdeaux, J. M. Burkhardt, K. Amokrane, and D. Lenne. 2013. V3s: A virtual environment
for risk-management training based on human-activity models. Presence: Teleoperators and Virtual
Environments 22, 1, 1–19. DOI:http://dx.doi.org/10.1162/PRES_a_00134

Olavo Da Rosa Belloc, Rodrigo B. D. Ferraz, Marcio Calixto Cabral, Roseli de Deus Lopes, and Marcelo
Knörich Zuffo. 2012. Virtual reality procedure training simulators in X3D. In Web3D, Christophe Mou-
ton, Jorge Posada, Yvonne Jung, and Marcio Cabral (Eds.). ACM, 153–160.

Francis Bisson, Hugo Larochelle, and Froduald Kabanza. 2015. Using a recursive neural network to
learn an agent’s decision model for plan recognition. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI’15), Buenos Aires, Argentina, July 25–31, 2015. 918–924.
http://ijcai.org/papers15/Abstracts/IJCAI15-134.html.

B. Bouchard, F. Imbeault, A. Bouzouane, and B.-A. Menelas. 2012. Developing serious games specifically
adapted to people suffering from Alzheimer. In Proceedings of Serious Games Development and Appli-
cations. Lecture Notes in Computer Science, Vol. 7528, Springer, Berlin, 243–254.

Doug A. Bowman and Larry F. Hodges. 1997. An evaluation of techniques for grabbing and manipulating
remote objects in immersive virtual environments. In Proceedings of the 1997 Symposium on Interactive
3D Graphics (I3D’97). ACM, New York, NY, 35–38. DOI:http://dx.doi.org/10.1145/253284.253301

Kirsty Bradbrook, Graham Winstanley, David Glasspool, John Fox, and Richard Griffiths. 2005. AI
planning technology as a component of computerised clinical practice guidelines. In Proceedings
of the 10th Conference on Artificial Intelligence in Medicine (AIME’05). Springer, Berlin, 171–180.
DOI:http://dx.doi.org/10.1007/11527770_26

J. Brooke. 1996. SUS: A quick and dirty usability scale. In Usability Evaluation in Industry, P. W. Jordan,
B. Weerdmeester, A. Thomas, and I. L. Mclelland (Eds.). Taylor and Francis, Abingdon, Oxford, UK.

Hung Hai Bui, Svetha Venkatesh, and Geoff A. W. West. 2011. Policy recognition in the abstract hidden
Markov model. CoRR abs/1106.0672 (2011). http://arxiv.org/abs/1106.0672

M. C. Cabral, C. H. Morimoto, and M. K. Zuffo. 2005. On the usability of gesture interfaces in virtual
environments. In Proceedings of the 2005 Latin American Conference on Human-Computer Interaction
(CLIHC’05). ACM Press, 100–108.

Edward Carpenter, Induk Kim, Laura L. Arns, Mohan J. Dutta-Berman, and Krishna P. C. Madhavan.
2006. Developing a 3D simulated bio-terror crises communication training module. In VRST, Mel
Slater, Yoshifumi Kitamura, Ayellet Tal, Angelos Amditis, and Yiorgos Chrysanthou (Eds.). ACM,
342–345.

Marc Cavazza, Simon Hartley, Lugrin, Jean-Luc, Bras, and Mikael Le. 2004. Qualitative physics in virtual
environments. In Proceedings of the 2004 International Conference on Intelligent User Interfaces (Virtual
Environments & Stories). 54–61. http://doi.acm.org/10.1145/964442.964454

Marc Cavazza and Altion Simo. 2003. A virtual patient based on qualitative simulation. In IUI’03. ACM,
19–25. http://doi.acm.org/10.1145/604045.604053

Cristina Conati, Abigail S. Gertner, Kurt Vanlehn, and Marek J. Druzdzel. 1997. On-line student modeling for
coached problem solving using Bayesian networks. In User Modeling, Proceedings of the 6th International
Conference (UM’97), Chia Laguna, Sardinia, Italy, June 2–5, 1997. Springer, 231–242.

Francesco Corato, Maria Frucci, and Gabriella Sanniti di Baja. 2012. Virtual training of surgery staff for
hand washing procedure. In AVI, Genny Tortora, Stefano Levialdi, and Maurizio Tucci (Eds.). ACM,
274–277.

Albert Corbett, Megan McLaughlin, and K. Christine Scarpinatto. 2000. Modeling student knowledge: Cog-
nitive tutors in high school and college. User Modeling and User-Adapted Interaction 10, 2–3, 81–108.
DOI:http://dx.doi.org/10.1023/A:1026505626690

Ken Currie and Austin Tate. 1991. O-plan: The open planning architecture. Artificial Intelligence 52, 1,
49–86.

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

http://dx.doi.org/10.1162/PRES_a_00134
http://ijcai.org/papers15/Abstracts/IJCAI15-134.html
http://dx.doi.org/10.1145/253284.253301
http://dx.doi.org/10.1007/11527770_26
http://arxiv.org/abs/1106.0672
http://doi.acm.org/10.1145/964442.964454
http://doi.acm.org/10.1145/604045.604053
http://dx.doi.org/10.1023/A:1026505626690

Intelligent Biohazard Training Based on Real-Time Task Recognition 21:31

Kutluhan Erol, James A. Hendler, and Dana S. Nau. 1994. UMCP: A sound and complete procedure
for hierarchical task-network planning. In AIPS. 249–254. http://www.informatik.uni-trier.de/∼ley/
db/conf/aips/aips1994.html#ErolHN94.

David Franklin, Jay Budzik, and Kristian J. Hammond. 2002. Plan-based interfaces: Keeping track of user
tasks and acting to cooperate. In IUI. 79–86.

Ya’akov Gal, Swapna Reddy, Stuart M. Shieber, Andee Rubin, and Barbara J. Grosz. 2012. Plan recognition
in exploratory domains. Artificial Intelligence 176, 1, 2270–2290.

Jennifer Gaudioso, Lisa Astuto Gribble, and Reynolds M. Salerno. 2009. Biosecurity: Progress and challenges.
Journal of the Association for Laboratory Automation 14, 3, 141–147.

Christopher W. Geib and Robert P. Goldman. 2009. A probabilistic plan recognition algorithm based on
plan tree grammars. Artificial Intelligence 173, 11, 1101–1132. DOI:http://dx.doi.org/10.1016/j.artint.
2009.01.003

Gersende Georg and Marc Cavazza. 2007. Integrating document-based and knowledge-based models for
clinical guidelines analysis. Artificial Intelligence in Medicine 421–430.

Andrew S. Gordon. 2003. Authoring branching storylines for training applications. In Proceedings of the 6th
International Conference on Learning Sciences (ICLS’04). 230–237.

Teresa Gutierrez, Jorge Rodriguez, Yaiza Velaz, Sara Casado, Angel Suescun Cruces, and Emilio J. Sanchez.
2010. IMA-VR: A multimodal virtual training system for skills transfer in industrial maintenance and
assembly tasks. In RO-MAN, Carlo Alberto Avizzano and Emanuele Ruffaldi (Eds.). IEEE, 428–433.
http://dblp.uni-trier.de/db/conf/ro-man/ro-man2010.html#GutierrezRVCCS10.

M. Hasanuzzaman, T. Zhang, V. Ampornaramveth, H. Gotoda, Y. Shirai, and H. Ueno. 2007. Adaptive visual
gesture recognition for human-robot interaction using a knowledge-based software platform. Robotics
and Autonomous Systems 55, 8, 643–657.

W. Hwang and G. Salvendy. 2010. Number of people required for usability evaluation: The 10 ± 2 rule.
Communications of the ACM 53, 5, 130–133.

W. Lewis Johnson and Jeff Rickel. 1997. Steve: An animated pedagogical agent for procedural training in
virtual environments. SIGART Bulletin 8, 1–4, 16–21.

Froduald Kabanza, Julien Filion, Abder Rezak Benaskeur, and Hengameh Irandoust. 2013. Controlling
the hypothesis space in probabilistic plan recognition. In IJCAI, Francesca Rossi (Ed.). IJCAI/AAAI.
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2013.html#KabanzaFBI13.

H. A. Kautz and J. F. Allen. 1986. Generalized plan recognition. In Proceedings of AAAI’86. Philadelphia,
PA, 32–37.

Per Ola Kristensson, Thomas Nicholson, and Aaron Quigley. 2012. Continuous recognition of one-handed
and two-handed gestures using 3D full-body motion tracking sensors. In Proceedings of the 2012 ACM
International Conference on Intelligent User Interfaces (IUI’12). ACM, New York, NY, 89–92.

Florent Lalys, Laurent Riffaud, David Bouget, and Pierre Jannin. 2012. A framework for the recognition
of high-level surgical tasks from video images for cataract surgeries. IEEE Transactions on Biomedical
Engineering 59, 4, 966–976.

Marc Erich Latoschik and Christian Fröhlich. 2007. Towards intelligent VR - multi-layered semantic reflec-
tion for intelligent virtual environments. In GRAPP (AS/IE). 249–260.

Gan Lu, Lik-Kwan Shark, Geoff Hall, and Ulrike Zeshan. 2012. Immersive manipulation of virtual objects
through glove-based hand gesture interaction. Virtual Reality 16, 3, 243–252. DOI:http://dx.doi.org/
10.1007/s10055-011-0195-9

Jean-Luc Lugrin and Marc Cavazza. 2007. Making sense of virtual environments: Action representation,
grounding and common sense. In IUI, David N. Chin, Michelle X. Zhou, Tessa A. Lau, and Angel R.
Puerta (Eds.). ACM, 225–234.

Héctor Muñoz-Avila, David W. Aha, Dana S. Nau, Rosina Weber, Len Breslow, and Fusun Yaman. 2001. SiN:
Integrating case-based reasoning with task decomposition. In IJCAI. 999–1004.

Dana Nau, Malik Ghallab, and Paolo Traverso. 2004. Automated Planning: Theory & Practice. Morgan
Kaufmann Publishers Inc., San Francisco, CA.

Dana S. Nau, Stephen J. J. Smith, and Kutluhan Erol. 1998. Control strategies in HTN planning: Theory
versus practice. In AAAI/IAAI. 1127–1133.

Iason Oikonomidis, Nikolaos Kyriazis, and Antonis Argyros. 2011. Efficient model-based 3D tracking of
hand articulations using Kinect. In Proceedings of the British Machine Vision Conference. BMVA Press,
101.1–101.11.

David V. Pynadath and Michael P. Wellman. 2000. Probabilistic state-dependent grammars for
plan recognition. In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence
(UAI’00). Morgan Kaufmann Publishers Inc., San Francisco, CA, 507–514. http://dl.acm.org/citation.
cfm?id=2073946.2074005

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

http://www.informatik.uni-trier.de/sim;ley/db/conf/aips/aips1994.htmlErolHN94
http://www.informatik.uni-trier.de/sim;ley/db/conf/aips/aips1994.htmlErolHN94
http://dx.doi.org/10.1016/j.artint.2009.01.003
http://dx.doi.org/10.1016/j.artint.2009.01.003
http://dblp.uni-trier.de/db/conf/ro-man/ro-man2010.html#GutierrezRVCCS10
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2013.html#KabanzaFBI13
http://dx.doi.org/10.1007/s10055-011-0195-9
http://dx.doi.org/10.1007/s10055-011-0195-9
http://dl.acm.org/citation.cfm?id=2073946.2074005
http://dl.acm.org/citation.cfm?id=2073946.2074005

21:32 H. Prendinger et al.

M. Ramirez and H. Geffner. 2009. Plan recognition as planning. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI’09).

M. Ramirez and H. Geffner. 2010. Probabilistic plan recognition using off-the-shelf classical planners. In
Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI’10).

Jason E. Rao. 2011. United States Department of State’s biosecurity engagement program: Bio threat reduc-
tion through international partnerships. In Encyclopedia of Bioterrorism Defense, Washington, DC.

L. Scarlatos and R. Friedman. 2007. On Developing User Interfaces for Children in Educational Virtual
Reality Systems. Technical Report. CUNY Graduate Center Technical Report TR-2007001, New York,
NY.

Michael Schneider. 2010. Resource-aware Plan Recognition in Instrumented Environments. Ph.D.
Dissertation. Saarland University, Saarbruecken.

Yuval Shahar, Silvia Miksch, and Peter D. Johnson. 1998. The Asgaard project: A task-specific framework
for the application and critiquing of time-oriented clinical guidelines. Artificial Intelligence in Medicine
14, 1–2, 29–51.

Yale Song, David Demirdjian, and Randall Davis. 2012. Continuous body and hand gesture recognition
for natural human-computer interaction. ACM Transactions on Interactive Intelligent Systems 2, 1,
1–28.

Young Chol Song, Henry Kautz, James Allen, Mary Swift, Yuncheng Li, Jiebo Luo, and Ce Zhang. 2013.
A Markov logic framework for recognizing complex events from multimodal data. In Proceedings of
the 15th ACM on International Conference on Multimodal Interaction (ICMI’13). ACM, New York, NY,
141–148. DOI:http://dx.doi.org/10.1145/2522848.2522883

Anuraag Sridhar and Arcot Sowmya. 2008. Multiple camera, multiple person tracking with pointing gesture
recognition in immersive environments. In Advances in Visual Computing, George Bebis, Richard Boyle,
Bahram Parvin, Darko Koracin, Paolo Remagnino, Fatih Porikli, Jrg Peters, James Klosowski, Laura
Arns, YuKa Chun, Theresa-Marie Rhyne, and Laura Monroe (Eds.). Lecture Notes in Computer Science,
Vol. 5358. Springer, Berlin, 508–519. DOI:http://dx.doi.org/10.1007/978-3-540-89639-5_49

Catherine Stocker, Benjamin Sunshine-Hill, John Drake, Ian Perera, Jr. Joseph T. Kider, and Norman I.
Badler. 2011. CRAM it! A comparison of virtual, live-action and written training systems for preparing
personnel to work in hazardous environments. 95–102.

Gita Sukthankar, Robert P. Goldman, Christopher Geib, David V. Pynadath, and Hung Hai Bui. 2014. An
introduction to plan, activity, and intent recognition. In Plan, Activity, and Intent Recognition: Theory and
Practice, Gita Sukthankar, Christopher Geib, Hung Hai Bui, David Pynadath, and Robert P. Goldman
(Eds.). Morgan Kaufmann, Burlington, MA.

Gabriel Synnaeve and Pierre Bessière. 2011. A Bayesian model for plan recognition in RTS games applied
to Starcraft. CoRR abs/1111.3735 (2011). http://arxiv.org/abs/1111.3735

Karim A. Tahboub. 2006. Intelligent human-machine interaction based on dynamic Bayesian networks
probabilistic intention recognition. Journal of Intelligent and Robotic Systems 45, 1, 31–52.

Luis Unzueta, Oscar Mena, Basilio Sierra, and Angel Suescun. 2008. Kinetic pseudo-energy history for
human dynamic gestures recognition. In AMDO’08, Lecture Notes in Computer Science, Francisco
J. Perales Lopez and Robert B. Fisher (Eds.), Vol. 5098. Springer, Berlin, 390–399. http://dblp.uni-
trier.de/db/conf/amdo/amdo2008.html#UnzuetaMSS08.

Etienne van Wyk and Ruth de Villiers. 2009. Virtual reality training applications for the mining industry. In
Afrigraph, Alexandre Hardy, Patrick Marais, Stephen N. Spencer, James E. Gain, and Wolfgang Straßer
(Eds.). ACM, 53–63.

Kurt Vanlehn, Collin Lynch, Kay Schulze, Joel A. Shapiro, Robert Shelby, Linwood Taylor, Don Treacy,
Anders Weinstein, and Mary Wintersgill. 2005. The Andes physics tutoring system: Lessons learned.
International Journal of Artificial Intelligence in Education 15, 3, 147–204. http://dl.acm.org/citation.
cfm?id=1434930.1434932

Alberto Cabas Vidani and Luca Chittaro. 2009. Using a task modeling formalism in the design of serious
games for emergency medical procedures. In Conference in Games and Virtual Worlds for Serious Appli-
cations, VS-GAMES’09, Coventry, UK, March 23–24, 2009, Genaro Rebolledo-Mendez, Fotis Liarokapis,
and Sara de Freitas (Eds.). IEEE Computer Society, 95–102.

Dennis Wiebusch and Marc Erich Latoschik. 2012. Enhanced decoupling of components in intelligent real-
time interactive systems using ontologies. In SEARIS. 43–51.

David Wilkins and Marie desJardins. 2001. A call for knowledge-based planning. AI Magazine 22, 1, 99–115.

Received June 2015; revised March 2016; accepted May 2016

ACM Transactions on Interactive Intelligent Systems, Vol. 6, No. 3, Article 21, Publication date: September 2016.

http://dx.doi.org/10.1145/2522848.2522883
http://dx.doi.org/10.1007/978-3-540-89639-5_49
http://arxiv.org/abs/1111.3735
http://dblp.uni-trier.de/db/conf/amdo/amdo2008.htmlUnzuetaMSS08
http://dblp.uni-trier.de/db/conf/amdo/amdo2008.htmlUnzuetaMSS08
http://dl.acm.org/citation.cfm?id=1434930.1434932
http://dl.acm.org/citation.cfm?id=1434930.1434932

