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Abstract

Modern production is increasingly fragmented across countries. To
disentangle the world production system at sector level, we use the World
Input-Output Database to construct the World Input-Output Network
(WION) where the nodes are the individual sectors in different countries
and the edges are the transactions between them. In order to explore the
features and dynamics of the WION, in this paper we detect the commu-
nities in the WION and evaluate their significance using a random walk
Markov chain approach. Our results contribute to the recent stream of
literature analysing the role of global value chains in economic integration
across countries, by showing global value chains as endogenously emerging
communities in the world production system, and discussing how different
perspectives produce different results in terms of the pattern of integra-
tion.

Keywords: random walks; Markov chains; community detection; input-
output analysis; world input-output network.

1 Introduction

The global financial crisis of 2007-08 has brought into sharp focus the fact that
our economy is intricately connected across countries and sectors. In public
debate, the notion of “too big to fail” was soon complemented by the network
concepts such as “too central to fail” or “too connected to fail.” And it has
been proposed that the regulation of financial institutions should be based on
their network positions in the financial system rather than their sheer size [6, 3].
Moreover, with a broader production system where financial sectors and non-
financial ones are interconnected by input-output relationships, the network
perspective has also been used to investigate the origin of macroeconomic fluc-
tuations [1, 4] and to simulate the impact of local shocks on the whole economy
[10].

The application of network analysis to economics goes well beyond crisis
studies. In its simplest form, a network is merely a collection of actors (or nodes)
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and the relationships (or edges) between them [43]. The economic systems that
fit this description are ubiquitous. Indeed, network analysis has made novel
contributions to such diverse fields as trade and global value chains [59, 18, 12,
23, 22, 56, 5, 67, 66, 68, 60, 11], technology and innovation [53, 19, 7, 46, 41, 58],
and industrial organization [33, 55]. A common method of network analysis used
in the above literature is to calculate some node-level network measures such as
centralities [27, 43, 16] and relate them to other economic variables. Another
central topic of network analysis is community detection, i.e., finding possible
partitions of a network into communities (or clusters) with relatively strong
internal but weak external connections [20, 21]. Community detection has pro-
vided valuable insights in understanding various complex phenomena in different
realms, from the Internet to biological ecosystems, to economics. In particu-
lar, in economics, community detection is important to highlight the structural
characteristics of higher-order interconnections between economic agents (coun-
tries, sectors, firms and consumers) which are key to understand the pattern
of economic relations and the propagation of economic effects, as highlighted
by [1]. For example, community analysis has been applied to shed light on the
pattern of international economic integration [64, 24, 51, 8], to detect corporate
connections [49], or to study correlations between stocks [45, 50].

Our paper detects the communities in the World Input-Output Network
(WION) using a random walk Markov chain approach. The WION is con-
structed from the World Input-Output Database, i.e., the Global Multi-Regional
Input-Output (GMRIO) tables, covering 35 sectors for each of the 40 countries
(27 EU countries and 13 major countries in other regions) in the years from
1995 to 2011 [63]. Therefore, for each year, the nodes of the WION are the
individual sectors in each country, and the edges, directed and weighted, are
the input-output relationships between them, which is the value of intermedi-
ate goods purchased and sold by each sector in each country, representing the
connections between production structures.

The use of input-output tables to better understand trade patterns and
countries linkages has a long tradition in the economic literature, starting from
the early studies by Leontief [37]. Input-output tables have been used exten-
sively to assess the potential specialization of countries in trade and the general
equilibrium impact of trade policies (see for example [25]), and more recently
to evaluate the environmental impact of countries’ production and trade [65].
In the last years, the use of inter-country input-output tables was revived by
a new stream of literature [29, 34, 63], aimed at improving the measurement
of countries’ participation to global value chains and to highlight production
linkages between countries. But to the best of our knowledge, very few studies
applied techniques of community detection to GMRIO tables [5].

For the study of the communities in the WION, random walk based ap-
proaches are the most natural choice. Indeed, there is a close relationship be-
tween input-output systems and Markov chains. It is well known that an open
input-output system can be modeled as an absorbing Markov chain, with the
productive sectors as the transient states and the value-added contribution or
final demand as the absorbing states [31, 26, 62, 15, 30]. Standard community
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detection methods, such as max-modularity [44, 20, 5], could obviously be used,
but the above theoretical link would be lost, whereas the Markov chain approach
is the most appropriate method of conducting community detection if one wants
to bridge modern network science to input-output systems.

Among the several Markov chain based community detection strategies (e.g.,
[52, 57, 14]), we restrict our attention to the Lumped Markov Chain approach
[48] because it explicitly provides an assessment of the quality of each commu-
nity. That is, it returns each community along with its persistence probability, a
measure of cohesiveness that can be compared with a pre-defined cutoff value.
The results obtained can be intuitively interpreted, allowing also to assess the
specific significance of the emerging communities. Moreover, it allows the eval-
uation of the cohesiveness of any subnetworks exogenously defined. This is
especially useful in the context of the WION because we can examine the evolu-
tion of the cohesiveness of a subnetwork of interest (say, a country or a sector)
over time.

The rest of the paper is organized as follows. Section 2 presents in detail the
methodology employed in the analysis. First, the linkage between an open input-
output system and an absorbing Markov chain is reviewed. Then, we convert
the open input-output system to a regular Markov chain by either removing the
external value-added contribution and final demand, or by endogenizing them
as an extra sector. Finally, we review the community detection algorithm that
we will exploit for our analysis. In Section 3 we construct the WION from the
GMRIO tables and conduct the community detection. Results are reported and
thoroughly discussed. Section 4 provides further discussion and concludes the
paper.

2 Methods

2.1 Open Input-Output Systems as Absorbing Markov
Chains

A classical input-output system combines the internal input-output relation-
ships between sectors and the external information of value-added contribution
and final demand. It is also called an open input-output system since the system
is open to exogenous shocks from supply or demand side (i.e., changes in the ex-
ternal information). In the literature of input-output economics, the supply side
analysis is based on the Ghosh model while the demand side analysis is based
on the Leontief model [40]. The Ghosh model concerns how sectors pass on the
changes in external production costs (e.g., increase in wages) proportionally to
all the sectors in the country and to final demand. Hence, the key assumption
behind the Ghosh model is that the market share structure of outputs for each
sector is stable. On the other hand, the Leontief model concerns how sectors
satisfy the changes in external final demand by requiring fixed proportions of
inputs from all the sectors in the country and from primary value-added. Hence,
the key assumption behind the Leontief model is that the technical requirement
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structure of inputs for each sector is stable. Briefly, below we show the equiva-
lence between the Leontief model and an absorbing Markov chain. The Ghosh
model can be analyzed in a similar fashion.

An n-sector economic system can be compactly modeled by the n×n trans-
action matrix Z, together with the value-added vector v, the final demand vector
f and the total output vector, x, expressing the value of total sector production.
The entry Zij of the transaction matrix Z denotes a transaction between sector
i and sector j, and can be interpreted as the amount of material flow (inter-
mediate inputs usually measured in monetary value) supplied from sector i to
sector j or, equivalently, as the amount of monetary flow paid from sector j to
sector i. The value-added vector vT =

[
v1 · · · vn

]
includes the contribution

of primary factors required by production, such as skilled and unskilled labor,
physical production capital, etc. The final demand vector fT =

[
f1 · · · fn

]
is the output not absorbed by intermediate sector use but rather by household
consumption, government expenditure, etc. Finally, the total output vector
xT =

[
x1 · · · xn

]
is, for each entry xi, the total production of sector i, which

meets the balance xi =
∑

j Zij + fi =
∑

i Zij + vi. It is standard to assume
the non-degeneracy condition xi > 0 for all i, namely each sector has indeed
non-zero production.

The technical coefficients matrix is defined as A = Zx̂−1, where we use the
“hat” symbol over a vector to denote the diagonal matrix with the elements of
the vector on its diagonal: its entry Aij represents the share of input from sector
i out of sector j’s total output. It is easy to show that Ax + f = x, that is,
for each sector, the total output equals its provision of inputs to other sectors,
including itself, plus the final demand. Solving for x we get x = (I−A)

−1
f ,

where I is the identity matrix, and the so-called Leontief inverse is defined as

L = (I−A)
−1
, (1)

whose entry Lij measures the change of output in sector i due to a one-unit
change in final demand for sector j.

Finally, note that usually the input-output system described above assumes
the economic system to be given by single country. But the same notation can
also effectively represent a GMRIO system, a group of countries having domestic
as well as international economic transactions. The only difference is that the
latter further specifies the country for each element of the input-output matrix,
i.e., i actually refers to a sector/country pair. We refer the interested reader to
[63] for more details of the GMRIO system we use in this paper.

A Markov chain [31] on the other hand is a stochastic process where transi-
tions from one state to another obey the Markov property, i.e., the probability
distribution of the next state solely depends on the current state. The states
of a Markov chain can be partitioned into transient and ergodic sets. Once a
process leaves a transient set, it will never come back. And once a process enters
an ergodic set, it never leaves. If a state is the only element in an ergodic set,
the state is called absorbing. An absorbing Markov chain is such that all its
ergodic states are absorbing. A canonical form of the transition matrix of an
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absorbing Markov chain, with s transient states and r absorbing states, is

P =

[
I 0
R Q

]
, (2)

where I is an r × r identity matrix, 0 is an r × s matrix with all 0’s, R is an
s × r matrix that specifies the transition from every transient state to every
absorbing state, and Q is an s× s matrix that specifies the transition between
the transient states. Note that P is row-stochastic, because the sum of each row
is equal to 1, and πt = πt−1P, where πt is the state probability distribution
vector at period t.

An input-output system can be modeled as an absorbing Markov chain, with
the internal production stages as the transient states, and the external value-
added contribution or final demand as the absorbing states. The process can
be intuitively understood as a tour of a random walker. Depending on whether
the Leontief model or the Ghosh model is used, the random walker is assigned
the role of “purchasing agent” or “salesman.” As stated above, we restrict our
analysis to the Leontief model (i.e., the tour of a “purchasing agent” random
walker).

As already mentioned, the total output x of a given sector can be written
as the sum of the contributions of all n sectors and of the value-added v, i.e.,
1TZ + vT = xT, where 1T is a row-vector of 1’s. Accordingly, a “purchasing
agent” random walker which is in a given sector (a transient state) at period
t can possibly visit other sectors (other transient states) at period t + 1 or be
absorbed by value-added (an absorbing state). To recast this dynamics into
the canonical form (2), it is sufficient to specify R and Q. In the tour of a
“purchasing agent” random walker, the transient states are the n sectors in the
country and the absorbing states are the n value-added suppliers corresponding
to each sector. It turns out that the natural way to specify the transition matrix
is to let R = v̂ and Q = AT. Therefore, we have the following 2n×2n transition
matrix (the subscript L denotes that it is based on the Leontief model):

PL =

[
I 0
v̂ AT

]
, (3)

where each submatrix has size n× n. It is straightforward to check that PL is
row-stochastic.

Many theoretical results on absorbing Markov chains can fruitfully be ex-
ploited for input-output systems. For example, the fundamental matrix Λ of an
absorbing Markov chain [31] is defined as

Λ = (I−AT)
−1

=
[
(I−A)

−1
]T

= LT, (4)

where the last equality is based on (1). The entry Λij measures the average
number of times that the “purchasing agent” random walker spends in sector j
if the tour starts from sector i. Interestingly Λij = Lji, i.e., this quantity has a
clear economic interpretation (see above).
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2.2 Closed Input-Output Systems as Regular Markov Chains

In this paper, we model the input-output system as a regular Markov chain, i.e.,
without absorbing states. The easiest way to do that is to completely disregard
the external value-added contribution and final demand, and to restrict to inter-
industrial relationships only (see Fig. 1, left panels). This, however, implies a
partial loss of information, that must be kept into account when discussing the
results of the community analysis.

An alternative way to obtain a regular Markov chain is to endogenize the
external information by “closing” the input-output system. This can be done
by treating the final demand like another sector, called household, which buys
products to consume and supplies production factors such as labor to sectors
(i.e., from the view of a “salesman” random walker, it connects the material
flow from final demand to value-added). On the other hand, the household
receives payment for its supply of production factors, such as labor, and spends
money to pay for the products from sectors (i.e., from the view of a “purchasing
agent” random walker, it connects the monetary flow from value-added to final
demand). Note that a more accurate definition of the household should actually
be a mixture of households and governments. The latter is also an important
player in both value-added and final demand (through fiscal policy). Value
added is mostly supplied within national boundaries and the small share of
foreign value added directly supplied in production cannot be estimated in a
reliable way at the industry level, therefore we assume that value added is purely
domestic. Final demand can be satisfied by foreign goods through imports, but
it is conventional in input-output tables to treat imports as intermediates as they
need the distribution sector to reach the consumers. Therefore we introduce one
separate household sector for each country in the input-output system, linked
domestically.

Fig. 1, right panels, shows a two-country, two-sector input-output system
closed by two households, denoted by H1 and H2, respectively. Panel (c) is
based on the view of material flow, while panel (d) is based on the view of
monetary flow. Note that edges connected to the households are directed (one-
way arrow) when they are cross-country: this is due to the constraint that a
household can only supply value-added to its own country, which makes our
model more realistic.

Along with the two ways mentioned above of converting the WION into a
regular Markov chain, we therefore have four specifications of the network for
community detection:

• noH-SM: no household, “salesman” random walker perspective (Fig. 1,
panel (a)).

• noH-PA: no household, “purchasing agent” random walker perspective
(Fig. 1, panel (b)).

• H-SM: with household, “salesman” random walker perspective (Fig. 1,
panel (c)).
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Figure 1: Closed input-output system without households (panels (a) and (b))
and with a household for each country (panels (c) and (d)) (all the edges related
to the households are in red). Above: modeling the tour of a “salesman” random
walker. Below: modeling the tour of a “purchasing agent” random walker.
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• H-PA: with household, “purchasing agent” random walker perspective
(Fig. 1, panel (d)).

2.3 Community Detection Based on Lumped Markov Chains

In the jargon of network analysis, a community is a subnetwork whose internal
connections are comparatively stronger than the connections with the rest of
the network [20, 21]. Finding communities in the WION, therefore, corresponds
to highlighting sets of countries/sectors which are tightly connected, i.e., related
by preferential economic relationships.

Among the plenty of community detection methods [20, 21], we use a Markov
chain based method for consistency with the modeling approach of this paper,
which is based on the equivalence between input-output models and random
walks. Several Markov chain based community detection strategies have been
proposed in the last decade (e.g., Walktrap [52], Infomap [57], Markov stability
[14], and Linkrank [32]). In this paper, we use the Lumped Markov Chain ap-
proach [48], which allows the user to select the desired level of cohesiveness and
provides a measure of the quality of each individual community. Furthermore, it
allows one to assess the cohesiveness of exogenously defined subnetworks (e.g.,
countries or sectors), a feature that we will exploit in Sec. 3.3.

As described in Sec. 2.2, the dynamics of the random walker are modeled by
a regular Markov chain. Given a network partition (i.e., a set of non-overlapping
candidate communities), we will be able to describe the random walker dynam-
ics by means of a “lumped” Markov chain, namely a simplified description where
each state corresponds now to a community, rather than a node, and the tran-
sition probabilities among lumped nodes describe the motion of the random
walker from one community to the other. Among the set of transition prob-
abilities, we will focus our attention on the Persistence Probabilities (PP’s),
i.e., the probabilities that the random walker remains in the same community
(or lumped node) where she is currently. Clearly, a large PP is the effect of a
strong internal connectivity and is therefore indicative of a significant commu-
nity. In this section, we succinctly review the methodology to make the paper
self-contained – a detailed description can be found in [48].

Given a network with n nodes and weight matrix W = [Wij ], the transition
probabilities of a random walker are standardly defined as Pij = Wij/

∑
hWih,

i.e., the random walker in node i selects one of the out-edges with probability
proportional to its weight. In our case, we use the transaction matrix Z as
weight matrix (for the specifications H-SM and H-PA we also need information
of f and v). Note that using the Pij ’s corresponds to moving from absolute
to relative trade values, since the flow i → j is now normalized by the total
flow from sector i. The consequence is that communities will not necessarily
be composed of groups of sectors related by large flows (in absolute terms)
but, instead, of sectors with privileged partnership, namely, whose flows are
important in relative terms. Let πi be the probability of visiting node i in
the long run or, equivalently, the fraction of time periods spent on node i in
an infinitely long walk. In regular Markov chains, this quantity is well defined
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and strictly positive for all i [39]. Given a subnetwork S (e.g., a candidate
community), it can be shown that its PP αS , i.e., the probability that a random
walker which is currently in any state of S remains in S at the next step, is
given by

αS =
∑
i∈S

πi
ΠS

∑
j∈S

Wij∑
hWih

, (5)

where ΠS =
∑

i∈S πi. This means that αS is a weighted average (actually a
convex combination) of the fractions of the outflows that the nodes (the coun-
try/sector pairs, in the WION case) of community S direct within the commu-
nity itself. Large values of αS are expected for significant communities, since
the weights of the internal edges are comparatively large with respect to those
pointing outside. For example, αS = 0.5 denotes that, on (weighted) average,
the nodes of S direct half of their outflow within S and half to the rest of the
network. The value α = 0.5 can be used as a baseline threshold of significance,
in line with the trade literature (see for example [13], [28], adopting the normal-
ized average of trade value per country as a threshold). Moreover, it can easily
be checked that, in the undirected/unweighed case, the constraint α ≥ 0.5 is
equivalent to the well-established definition of “community” according to Radic-
chi et al. [54]. In Sec. 3.1, we will use the cutoff α = 0.5 to show two detailed
examples of our community detection and we will test a wide range of cutoff
values in order to have robust findings.

The PP αS allows one to assess the significance of a given, a priori defined,
subnetwork S (e.g., the ensemble of sectors of a given country), to test whether
it actually forms a cohesive set of nodes (“community testing”, see Sec. 3.3
for the application to the WION case). But it is also a precious tool to detect
communities endogenously, namely to derive a network partition composed of
significant communities (“community detection”, see Sec. 3.1). For that, we
need a strategy for generating meaningful partitions, and we use with this aim
a graph clustering procedure based, once again, on random walk dynamics.

We adopt a notion of similarity/distance among nodes analogous to [52, 61].
More precisely, we describe the global behavior of a large number of walkers (a
“fleet”) started from each node i, and we propose a similarity σij between nodes
(i, j) defined by

σij = σji =
1

T

T∑
t=1

([
Pt
]
ij

+
[
Pt
]
ji

)
, (6)

where P = [Pij ] is the transition matrix of the random walker. Then the distance
dij = dji between nodes (i, j) is defined by complementing the similarity and
normalizing the results between 0 and 1:

dij = dji = 1− σij −minσij
maxσij −minσij

. (7)

The rationale underlying the definition of σij and dij is to assign nodes (i, j) a
large similarity if a numerous fleet of random walkers started in i makes a large
number of visits to j (and vice versa) within a sufficiently small time horizon T
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(see [48] for more technical details on the derivation of similarities). Nodes (i, j)
are similar, therefore, if starting from i there is a large probability of visiting
j within a few steps, and vice versa. Then a standard hierarchical, aggregative
cluster analysis [17] is used to explore the possible existence of communities.
More precisely, a binary cluster tree (dendrogram) is computed by initially
defining n groups each containing a single node, and then by iteratively linking
the two groups with minimal distance.

The community detection procedure is summarized in Fig. 2 for a 12-
node toy network (panel (a)). The aggregative cluster analysis based on the
distance (7) leads to a binary dendrogram (panel (b)). Horizontal top-down
cross-sections of the dendrogram define a sequence of partitions composed of,
respectively, 2, 3, . . . , q, . . . communities. For each partition, the PP’s (5) of the
q communities are computed (panel (c)) and, eventually, the selected partition
is the one with the largest q provided all communities are cohesive above a
given threshold, e.g., αc ≥ 0.5 for all c. In other words, we take the finest
decomposition (largest q) that guarantees a prescribed level of significance for
all communities. From Fig. 2 we understand that if one sets a different (higher)
cutoff value for α, then the number of communities reduces due to merging, since
the entire procedure is based on hierarchical clustering. Tuning the threshold,
therefore, corresponds to moving in the hierarchical tree towards finer or coarser
partitions (see [9] for an early approach to hierarchically structured partitions).

In [48] the above methodology has extensively been tested on both real-
world and benchmark networks (including different classes of LFR benchmarks
[36, 35]). It proves to be more flexible and informative than max-modularity,
as already pointed out, and it is more robust in identifying meaningful parti-
tions when max-modularity suffers from scarce sensitivity (i.e., almost the same
modularity value associated to many different partitions), notably when small
communities have to be detected.

2.4 Community Centrality

Once a partition is obtained, we are interested in classifying nodes according
to their importance within their own community, a property that we call com-
munity centrality. The economic relevance of a central position in an economic
network has already been highlighted in the literature [27, 16]. Here we exploit
the distance (7) above introduced and we straightforwardly extend the notion of
closeness centrality [43] by attributing more importance to a node when, within
a given community, it has smaller average distance to the other nodes of the
same community. Formally, if we denote by c(i) the community which node i
belongs to, and by nc(i) its number of nodes, then the average distance from i
to the nodes of c(i) is

Di =
1

nc(i) − 1

∑
j∈{c(i)\i}

dij , (8)

and then the community centrality of node i can be defined as γi = 1/Di.
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Figure 2: Summary of the community detection procedure. For the 12-node
toy network of panel (a), subsequent cross-sections of the dendrogram of panel
(b) define a set of partitions with q = 2, 3, . . . subnetworks. The finest decom-
position (largest q) such that the PP’s satisfy αc ≥ 0.5 for all c is that with
q = 3.
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3 Results

We use the GMRIO tables of the World Input-Output Database [63], covering
35 sectors for each of the 40 countries (27 EU countries and 13 major countries
in other regions) in the years from 1995 to 2011, to construct the World Input-
Output Network (WION). The database provides yearly values of inputs sold
and purchased by each sector in each country, the value added provided by
factors of production, final demand in each country, and the total value of
production. For each year, the nodes of the WION are the individual sectors
across countries and the edges are the input-output relationships between them,
which are directed and weighted. For all years and specifications, we checked
that the WION is strongly connected: this is largely expected from the absence
of source or sink nodes (no sector is self-sufficient, as it has to buy inputs and
sell outputs) and has been empirically verified. Consequently, the stationary
state distribution and the PP’s (5) are well defined.

3.1 Community Detection with Different Specifications

We construct the WION for all the years and for the different network specifica-
tions listed at the end of Sec. 2.2. For the sake of brevity, here we only illustrate
two cases in detail (all results are available by the authors upon request) while,
in the next section, we will compare all cases in an aggregated form.

Fig. 3 shows the result of the community detection for the WION in 2011
with no households and “salesman” perspective, i.e., noH-SM. The community
detection is conducted with the method described in Sec. 2.3 with a cutoff
α = 0.5 on PP’s. In the figure, countries are arranged by rows and sectors are
arranged by columns. Each cell represents a particular sector according to its
column, in a particular country according to its row. Each color represents a
community detected. For each community, numbers 1 to 3 denote the top three
sectors according to community centrality. Rows are arranged in such a way
that, from top to bottom, the communities decrease in size.

There are a number of interesting patterns emerging from Fig. 3. It is clear
that most communities are essentially “row-based” (i.e., most sectors within
each country belong to the same community) because of the strong domestic
linkages. But we also observe some significant “column” communities (i.e., a
significant number of countries within a specific sector belong to the same com-
munity), which indicate that these sectors are highly integrated across countries
and are strongly affected by global value chains. For example, the Transport
Equipment sector (#15) forms an inter-country cluster merged with the inter-
sector community involving Germany, while Textiles (#4) and Leather (#5)
across many countries are clustered into the community involving Italy. It is
worth mentioning that we find some large communities such as the one inte-
grating Germany with a number of Eastern Europe countries (in red) and the
Asia-Pacific community (in purple). If, for each community, we mark the top
three nodes in terms of community centrality, we find that the central sectors
mostly include Construction (#18) and Business services (#30), but primary
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Figure 3: Communities in the WION, case noH-SM, year 2011: each color
represents a community. For each community, numbers 1 to 3 denote the top
three sectors according to community centrality. Texture indicates unavailable
data.
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sectors such as Food (#3) are more likely to be central for developing countries.
A complementary case is that in Fig. 4, which shows the communities de-

tected with households and “purchasing agent” perspective, i.e., H-PA in 2011,
again with a cutoff α = 0.5 on PP’s. A number of differences stand out imme-
diately. There are more communities found in the case H-PA (32 communities)
than in the case noH-SM (16 communities). This is largely due to the inclusion
of the extra household sector (#36), which typically has strong domestic link-
ages and makes the communities more “country-based” (i.e., each row forms a
community). Moreover, the “row” and “column” communities are very different
once we switch from the “salesman” perspective to the “purchasing agent” per-
spective. For example, the large community led by Germany in Fig. 3 disappears
in Fig. 4 where Germany only integrates with Austria. Also, Italy integrates
with Romania and with Malta respectively in Fig. 3 and in Fig. 4. Regarding
the “column” communities, we only find that the Fuel sector (#8) across a few
countries is clustered into the community involving Russia. These differences
highlight the fact that the upstream relationships (“purchasing agent” perspec-
tive) are hardly symmetric with the downstream ones (“salesman” perspective).
Finally, in the H-PA case the household sector (#36) turns out to be very cen-
tral. This is not surprising since the household sector endogenizes the external
value-added and final demand, which take a large portion of the total output
for each country.

In the two cases above discussed, the standard cutoff value α = 0.5 on PP’s
has been used. In Fig. 5 we track how the number of detected communities
(averaged over the time interval spanned by our analysis) depends on the cutoff
value α. Note, first of all, that fewer and fewer communities are systematically
detected when α increases, regardless to the modeling specification, for the
reasons discussed in Sec. 2.3. The cases with households H-SM and H-PA have
more communities than those with no households noH-SM and noH-SM, for
a wide range of α values. As a matter of fact, once the external information
of value-added and final demand is kept by the households, less integration is
observed between countries because the households introduce strong linkages
within each individual country, which becomes more likely to be detected as a
single cohesive community. Recall that, by our definition, the households only
supply value-added domestically and the value-added share of a sector’s total
output is typically large.

14



Figure 4: Communities in the WION, case H-PA, year 2011: each color repre-
sents a community. For each community, numbers 1 to 3 denote the top three
sectors according to community centrality. Texture indicates unavailable data.
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Figure 5: The impact of the cutoff value α on the results of community anal-
ysis, measured by the number of detected communities for the four modeling
specifications. For each value of the cutoff α (100 data points from 0.01 to 0.9),
the average (± std) number of communities over time is plotted.

In order to further assess the sensitivity to the cutoff value α, we compare
our results, in aggregated form, to those obtained by max-modularity, the most
popular community detection approach [20, 21]. To compare two partitions of
the same network, we use the Normalized Variation of Information (NVI) [38],
which is defined as

NV I = − 1

log n

∑
c

∑
c′

ncc′

n
log

(ncc′)
2

ncnc′
, (9)

where c, c′ iterate, respectively, through the set of communities of the two par-
titions, ncc′ is the number of common nodes in communities c and c′, nc is the
number of nodes in community c, and n is the total number of nodes of the
network (conventionally we set 0 log 0 = 0). The quantity NVI varies between 0
and 1, the lower bound 0 being attained when the two partitions are identical,
and the upper bound 1 when they are maximally different (i.e., one partition
has n clusters and the other only 1).

Fig. 6 shows the results of the comparison, for the four modeling specifica-
tions described in Sec. 2.2. The two methods do produce different results, with
an average NVI value around 0.3. However, the magnitude of the NVI appears
to be independent from α except for very high values. This implies that the
information captured by our method is partially different from that captured by
max-modularity (we refer to [48] for a thorough discussion on this point) and,
most important, that the difference is robust against a wide range of α.
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Figure 6: The impact of the cutoff value α on the results of community anal-
ysis, measured by the Normalized Variation of Information (NVI) between the
partition resulting from our community detection and that obtained via max-
modularity, for the four modeling specifications. For each value of the cutoff α
(100 data points from 0.01 to 0.9), the average (± std) NVI over time is plotted.

3.2 Community Dynamics

We perform a preliminary analysis, in aggregated form, of the time evolution
of the communities detected with the method above described. We note that
a thorough analysis of the mesoscale dynamics requires the use of systematic
methods (e.g., [42, 2, 47]) which, however, would imply to enter into theoretical
and methodological aspects that cannot be included in this work, and will in-
stead be considered in a future research. Here we simply highlight some evidence
emerging when comparing the different modeling specifications.

For each cutoff value α, we first compute the NVI between the partitions
obtained in two consecutive years (16 pairs, from 1995-1996 to 2010-2011) for
any given modeling specification, and then compute the average NVI over time.
The results are in Fig. 7, which shows that the NVI values are weakly sensitive
to the cutoff value α.

Overall, the general low value of the NVI index suggests that emerging com-
munities are quite stable over time, confirming that the economic structure and
the production linkages are not changing quickly, due to factors such as tech-
nological constraints and trade policy arrangements. Within this narrow range,
the partitions including households (H-PA and H-SM ) are generally even more
stable than the others, suggesting that final demand and use of factors of pro-
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duction have especially persistent links, while production links (noH partitions)
display more changes, as firms look for better opportunities in terms of markets
where to sell and where to purchase inputs. This is consistent with our pre-
vious finding that the inclusion of households creates strong domestic linkages
and makes the communities more “country-based” and more robust over time.
We also observe that the “salesman” perspective shows more volatility than the
“purchasing agent” perspective, and this is true with or without households.
As a matter of fact, downstream relationships are more open (i.e., internation-
ally distributed) than upstream ones. Therefore, the former is more exposed
to uncertainty and risk and is more volatile than the latter. As showcased in
Figs. 3 and 4, the “salesman” perspective has more economic integration across
country borders than the “purchasing agent” perspective.

Figure 7: Community dynamics: for each cutoff value α (100 data points from
0.01 to 0.9), we plot the average (± std) NVI value over the 16 pairs of consec-
utive years (from 1995-1996 to 2010-2011), for the four modeling specifications.

3.3 Evaluation of Exogenously Defined Communities

The methodology for community analysis adopted in this work [48] enables one,
as already pointed out, to assess the cohesiveness of any predefined subnet-
work communities. This is especially useful in the WION context because, for
instance, we can track the PP over time for a predefined set of nodes corre-
sponding to all sectors in a given country or, dually, to all countries for a given
sector. Moreover, since the PP relates to the fraction of trade internally directed
by the nodes of the subnetwork (see Sec. 2.3), for a sector community, unless its
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Figure 8: The evolution in time of the persistence probabilities of predefined
country communities (panel (a)) and sector communities (panel (b)), case noH-
SM. For both panels, the average PP (±std) and the top and bottom three
communities in terms of their average PP over time are shown. Note that the
health sector in panel (b) is shown with a dashed line because its high PP value
is not due to high “openness” but rather to strong self-loops.

nodes are characterized by strong self-loops (i.e., a significant amount of inputs
going from one sector to itself), we can interpret its PP as a direct measure of
the “openness,” i.e., tendency to globalization, because a more cohesive sector
community indicates stronger edges between countries. On the other hand, for
a country community, we can interpret its PP’s complement to one (i.e., one mi-
nus the PP value) as a measure of “openness” because a more cohesive country
community indicates weaker edges between countries.

We focus on the specification noH-SM and track the PP for the predefined
country and sector communities for all the years from 1995-2011. The evolution
of the PP’s for the predefined country communities is shown in panel (a) of
Fig. 8. In particular, we show the average PP across all countries (with its
one-standard-deviation range) and the top and bottom three countries in terms
of their average PP over time. The average PP stays around 0.8 over time.
Therefore, its complement to one is only about 0.2 and indicates that countries
are relatively closed. This is actually expected, and proves that most of input-
output transactions still happen within country borders: this is confirmed by
the dominating “row” communities detected in Fig. 3. However, there is het-
erogeneity behind this average pattern: small countries such as Luxembourg,
Malta, and Belgium tend to have relatively high openness, while big countries
such as the USA, China, and Japan tend to have very low openness. This
again fits the economic intuition very well, because small countries are more
dependent on international resources and markets than big ones.

Panel (b) of Fig. 8 shows the PP’s of the predefined sector communities over
time. The average PP is stable over time with its value slightly above 0.2 and
indicates that sectors are also relatively closed and the cross-country linkages
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within the same sector are typically weak. However, the sector communities ex-
hibit greater heterogeneity than the country ones in panel (a). First, compared
with the situation in panel (a), the values of PP’s are more dispersed for the
sector communities as the one-standard-deviation range is much wider. Second,
sectors like health, transport equipment, and textiles appear to be “outliers”,
being more than two standard deviations away from the average. Nevertheless,
as stated above, whether the high PP values imply more globalization requires
further investigation. We find out that the high value of the health sector is
driven by strong self-loops. That is, the health sector in each country typically
takes a dominant amount of inputs from itself. As an important service sec-
tor, it is in fact very closed (therefore a dashed line is used to differentiate it
from others). In contrast, the sectors of transport equipment and textiles are
indeed globalized as they are revealed in Fig. 3 as the significant “column”
communities.

4 Conclusions

In this paper we use the GMRIO tables from the World Input-Output Database
[63] to construct the World Input-Output Network (WION), where the nodes
are the individual sectors across countries and the edges are the input-output re-
lationships between them. We first convert the open world input-output system
(an absorbing Markov chain) to a regular Markov chain by either removing the
external value-added contribution and final demand, or by endogenizing them.
Then we determine the meaningful partitions of the WION by transforming
the regular Markov chain to a lumped Markov chain and evaluating the persis-
tence probabilities of each lumped community. The random walks on the WION
can be implemented either from the perspective of “salesman” random walker
(supply side) or from the perspective of a “purchasing agent” random walker
(demand side). Along with the above two ways of converting the WION to a
regular Markov chain, we have in total four specifications to conduct community
detection.

The main contribution of this paper is precisely the application of techniques
of community detection to GMRIO tables, allowing to highlight the deep inter-
national connections existing between production systems of different countries.
This procedure also suggests a different method to measure countries partici-
pation in global value chains. In addition, by determining which nodes (which
sectors in which countries) are most central in the resulting communities, it
underscores the industries playing an important role in the world economic
structure.

There exist many community detection methods and the choice is always
context-dependent. The random walk approach proves more suitable in the con-
text of the WION when compared to traditional community detection methods
such as max-modularity. First, it can naturally be applied to both national
and international input-output systems, because the latter can be shown to be
closely related to Markov chains. Second, rather than providing only a partition
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and a global network measure, as max-modularity does, it quantifies the signifi-
cance of each detected community via persistence probabilities. Third, it allows
the evaluation of the cohesiveness of any subnetwork exogenously defined.

Many interesting economic interpretations can be drawn from the empirical
results. First, the two specifications without household show richer dynamics
than the two with household. This is the footprint of a strongly connected and
constantly evolving world production system. The difference obtained when in-
cluding or excluding the household sector also underscores the key role played
by final demand and factors of production in an economic system. Second, al-
though both noH-SM and noH-PA show higher integration level than the other
specifications, the community structure with noH-SM is more volatile over time
than that with noH-PA. This difference is in line with the suggestion of the
economic literature that it matters whether participation to international pro-
duction processes is observed in terms of upstream or downstream linkages [34],
as the choice of suppliers and destination markets of firms might follow different
criteria. Finally, by evaluating the quality of predefined country and sector com-
munities, we find evidence of heterogeneous globalization levels among countries
and sectors.

For future work, we plan to examine the impact of the position of a given
sector in the WION on its macroeconomic performance, and to test whether
the comovement (synchronization) between sectors in terms of macroeconomic
dynamics can be explained by their proximity in the WION. Another topic
worth exploring is to simulate the introduction in the WION of some policy
changes (such as trade tariffs and business taxes) and analyze how the system
evolves to a new equilibrium structure.
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