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Abstract 

Ventricular Assist Devices (VADs) have become the standard therapy for end-stage 

heart failure. However, their use is still associated with severe adverse events 

related to the damage done to the blood by fluid dynamic stresses. This damage 

relates to both the stress magnitude and the length of time the blood is exposed to 

that stress. We created a dye washout technique which combines experimental and 

numerical approaches to measure the washout times of VADs. The technique was 

used to investigate washout characteristics of three commercially available and 

clinically used VADs: the CentriMag, HVAD and HeartMate II. The time taken to 

reach 5 % dye concentration at the outlet (T05) was used as an indicator of the total 

residence time. At a typical level of cardiac support, 5 l/min and 100 mmHg, T05 was 

0.93, 0.28 and 0.16 s for CentriMag, HVAD and HeartMate II respectively and 

increased to 5.06, 1.64, 0.96 s for reduced cardiac support of 1 l/min. Regional 

variations in washout characteristics are described in the manuscript. While the 

volume of the flow domain plays a large role in the differences in T05 between the 

VADs, after standardising for VAD volume the secondary flow path was found to 

increase T05 by 35%. The results explain quantitatively, for the first time, why the 

CentriMag, which exerts low shear stress magnitude, has still been found to cause 

acquired von Willebrand Syndrome in patients. 
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1. Introduction 

Across the world an estimated 26 million people suffer from heart failure [1]. While 

for the majority of patients the condition is controlled using medical therapy, and in 

some cases a pacemaker or implantable cardioverter defibrillator may help, those 

with end-stage heart failure really need a new heart. Ventricular Assist Devices 

(VADs) were developed to support the circulation until a suitable donor heart could 

be found (bridge-to-transplant), however, their success has also led to their use in 

patients not qualifying for a transplant (destination therapy) and are now considered 

gold standard treatment by some surgeons [2, 3]. The ultimate goal is heart recovery 

[4], although the number of patients who recover varies widely between centres, 

from close to 0 % to over 50 % [5, 6].  

Despite their success VADs still suffer from adverse events related to the damage 

done to the blood such as haemolysis, platelet activation, thrombosis, bleeding and 

infections. Indeed, over half of all adverse events experienced by patients are related 

to blood trauma [7]. These complications relate both to the magnitude of the fluid 

dynamic stress, and the length of time the blood is exposed to that stress [8]. 

Designing VADs to minimise blood residence time, in addition to reducing stress, 

should then reduce damage. Over 5,400 VADs are now implanted annually in the 

USA [9] and if safer VADs are made, with fewer adverse events, an estimated 

300,000 patients in the USA alone could benefit [10]. 

There are several methods that have the potential to be used for investigating fluid 

residence times in VADs. Optical techniques such as Particle Image Velocimetry and 

Laser Doppler Anemometry can be used to measure velocity fields [11-14]. From the 

velocity field, estimates of local residence times can be produced. To obtain the total 

residence time within a VAD it would be necessary to integrate the velocity field, for 

example using pathlines from the inlet to the outlet. A similar method, based on 

three-dimensional, three-directional, time resolved magnetic resonance phase-

contrast velocity mapping, has been used for investigating blood washout in the 

heart [15, 16]. 

The most common methods for investigating washout and residence time in blood 

contacting devices involve the use of a tracer. The washout from the hinge region of 

mechanical heart valves has been investigated by optical imaging of a dairy based 
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colloidal suspension [17] and residence times in positive displacement VADs have 

been investigated similarly using methyl blue histological dye [18]. While these 

techniques require optical access, Francischelli et al [19] used a fibre optic probe 

inserted inside the Penn State VAD to measure local residence times. Shu et al [20] 

used three different experimental techniques to investigate washing in a dual 

chamber pneumatic haemodialysis pump: tracer particle visualization to investigate 

pathlines; dye washout to look at the overall residence time and clearance of the 

blood through the entire pump; and dye erosion to investigate the surface washing 

caused by shear stress. A similar dye washout method has also been used in vivo: 

Rovai et al [21] used the washout of ultrasound contrast agent to investigate blood 

residence in the left ventricle. 

Calculating the transport of a dye through a device, by solving a scalar transport 

equation is another option. The first use of numerical calculations for investigating 

washout in blood contacting devices was by König and Clark [22] who compared 

their simulation of washout in a positive displacement VAD with an experiment. 

Goubergrits et al [23, 24] performed similar calculations for mechanical heart valves, 

summarizing their results as the time taken for the average dye concentration to 

reach 50 % (half dye time) and 25 % (quarter dye time) of the initial concentration. 

To date there have been no published investigations of washout in rotary VADs. 

Since VADs are not, in general, transparent, optical methods cannot be used to look 

at the washout within the VAD.  The aim of this work was to devise a technique to 

investigate both local and global washout in VADs, and use the technique to 

compare the washout properties of three, commonly used and commercially 

available, clinical VADs. Our new technique combines numerical and experimental 

approaches. The numerical method is based on those described above, in which a 

scalar transport equation is solved for the dye concentration, and therefore provides 

information about local washout characteristics. The experimental method uses 

custom optical sensors to measure dye concentration changes at the inlet and outlet 

of the VAD, and therefore provides global residence times. In addition, the 

experimental method acts as validation for the numerical calculations. The 

investigations revealed significant differences in the washout properties of the three 

VADs.  
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2. Methods 

2.1 The Ventricular Assist Devices (VADs) 

Three different commercially available VADs were investigated. 

The CentriMag, CM, (Abbott Laboratories, Abbott Park, IL, formerly Thoratec Corp, 

Pleasanton, CA) is an extracorporeal VAD intended for short term use. It is a 

centrifugal pump with a magnetically levitated impeller, large clearances, and a 

relatively large internal volume [25]. The use of a magnetically levitated impeller 

creates a gap between rotating and stationary parts, resulting in a secondary flow 

path beneath the impeller, in which blood returns from a high pressure region near 

the blade tips to the lower pressure region at the centre of the impeller. Calculation 

of the fluid dynamic stresses showed that they are relatively low [8, 26] and hence 

the CM has been suggested as a benchmark for in vitro blood damage studies [27]. 

The HVAD (Medtronic, formerly HeartWare, Miami Lakes, FL) is now one of the most 

frequently used VADs and its small size allows implantation within the pericardium 

[28]. It is a centrifugal pump with a hydrodynamically and magnetically levitated 

impeller [29]. Like in the CM, the use of a levitated impeller creates a secondary flow 

path: a gap between the rotating and stationary components in which blood returns 

from high to low pressure. Calculation of the fluid dynamic stresses by Thamsen et al 

[30] revealed a large high stress region in the small hydrodynamic gap.  

The HeartMate II, HMII,  (Abbott Laboratories, Abbott Park, IL, formerly Thoratec 

Corp, Pleasanton, CA) has been implanted more times than any other VAD with over 

20,000 implants to date [31]. It is an axial flow pump with blood washed cup-socket 

pivot bearings [32]. In clinical studies comparing the HMII and HVAD, the HMII had 

lower incidence of gastrointestinal bleeding [33], stroke [33], and fibrin-split products 

[34], however, in contrast the HMII had higher levels of lactate dehydrogenase (LDH) 

indicating higher haemolysis [34]. 

2.2 Experimental Methods 

A flow rig was built to measure the washout profiles of the selected VADs. The 

working fluid was a mixture of glycerol (34.5 % by volume) and water which gave a 

viscosity of 0.00398 Pa s, as measured using a viscometer (Cannon Fenske no. 

200). Dye (4 % red cochineal food colouring) was added to create the dyed fluid. As 
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shown in fig 1a the rig comprised: two inlet tanks, one with the dyed water-glycerol 

solution and the other the transparent solution; a three-way tap to switch between 

the inlet tanks; transparent tubing (Saint-Gobain Tygon 12.7 mm external diameter) 

and connections to the VADs; an outlet tank; and sensors. Custom sensors (fig 1b) 

were designed and built to detect the colour change in the fluid. The sensors used a 

white LED and photo diode positioned on opposite sides of the tubing. A custom 3D 

printed housing was used to hold the LED and photo diode and also to block external 

light from the tube. The voltage signal from the photo-diodes was recorded using 

LabView software at a sampling rate of 50 Hz. The voltage from the photo-diodes 

was calibrated to dye concentration using a series of water-glycerol samples with 

known dye concentration. This calibration used 3 voltage measurements at each 

concentration. The flow rate was measured using ultrasonic transit time flow probes 

(Em-tec clamp-on transducer CT3/8x1/16” A with Em-tec DIGIFLOW-EXT1) and the 

pressure difference between the inlet and outlet was measured using pressure 

transducers (Pendotech PRESS-000). The washout was first measured from dyed to 

colourless solution, and then from colourless to dyed solution. This process was 

repeated twice more to give a total of 6 individual measurements of the washout 

curve, for each operating condition. Since there was no significant difference 

between the dyed-to-colourless and colourless-to-dyed measurements the mean and 

standard deviation for all 6 repetitions were calculated. 

2.3 Numerical Methods 

The geometries of the flow domains of the three VADs were obtained in CAD 

formats: the HMII and CentriMag models were created by Fraser et al [8] and the 

HVAD model was created by Thamsen et al [30]. The extent of the flow domain for 

each VAD matched that of the actual VAD, without representing any cannulae which 

would be present if the VAD were implanted. To ensure fully developed flow at the 

entrance to the VAD, and at the outlet of the computational flow domain, straight inlet 

and outlet tube extensions were added. 

Meshes for each of the VADs were created using a combination of ANSYS Meshing 

and TurboGrid (ANSYS Inc). The sizes of the meshes were: CM 4.86 million, HVAD 

15.73 million, and HMII 2.52 million elements. The meshes used structured 

hexahedra where possible, with tetrahedra and prism layers elsewhere, and were 
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constructed to have a minimum of 6 elements across all gaps. The design of the 

HMII makes hexahedra easier to implement and most of the domain was meshed 

using this efficient element shape, hence the mesh size is smaller than that for the 

CM and HVAD. Discretization errors were assessed by comparing the results with 

those from calculations which used both coarser and finer meshes created with a 

refinement ratio of 1.26. A refinement ratio of 1.26 results in meshes with half 

(coarse mesh) and double (fine mesh) the number of mesh elements. 

The flow equations, Navier-Stokes and scalar transport, were solved using a 

commercial, vertex-centered, finite volume solver ANSYS CFX (ANSYS Inc.) 

Transient calculations were used and the rotation of the impeller was accounted for 

by using sliding meshes. The length of the time step was equivalent to either 2.5o or 

5o of rotation (for 5 l/min flow rate: CM 0.185 ms, HVAD 0.269 ms, HMII 0.035 ms) 

based on a preliminary time step sensitivity investigation, and with uncertainties 

confirmed in the mesh study reported in this work. The same refinement ratio was 

used for the temporal and spatial discretizations in the mesh study. The 

discretization schemes were set to ‘high resolution’ which is a blended scheme 

aiming for 2nd order while avoiding overshoots.  

The inlet boundary condition was mass flow rate which was fixed to give flow rates of 

1, 3 or 5 l/min. The outlet boundary condition was a constant pressure of 0 Pa. The 

impellers were set to rotate at speeds which would give 100 mmHg pressure heads 

(see table 1). Blood was assumed to be a Newtonian fluid with 0.0036 Pa s viscosity 

(μ) and 1050 kg m-3 density. 

Reynolds numbers, Re, at the inlet were in the range 486 to 3470 which is above 

transition to turbulence (usually taken to occur around 2300) and in the low 

turbulence flow regime. However, impeller Reynolds numbers were in the range 

2.10×104 to 6.17×104 so well below transition to turbulence (which occurs around 

106). Hence it can be argued that a turbulence model either should or should not be 

used [35]. For simplicity, in this work no turbulence model was used. 

The flow calculations were run initially to establish a fully developed flow field. This 

was assessed by observing that the pressure head was oscillating periodically. A 

new scalar variable was then introduced to represent dispersion of the dye. 
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Molecular diffusivity was assumed to be zero and the marker concentration [𝐶] was 

modelled transiently as a convected scalar following the transport equation:  

𝜕[𝐶]

𝜕𝑡
+ ∇ ∙ (𝑢[𝐶]) = 0 

(1) 

The fluid domain was globally initialised with the dye concentration equal to 1 and 

the transient simulation was resumed with a concentration boundary condition of 0 at 

the inlet. The model was simulated until the dye concentration in the secondary flow 

path, or at the outlet in the HMII where there is no secondary flow path, was below 

5%. The secondary flow path concentration was chosen since this often took much 

longer to reach 5 % than the outlet. 

3. Results 

3.1 Mesh Sensitivity 

The influence of the discretization was assessed with a mesh refinement study. To 

compare the velocity fields on the different meshes the velocity at points on two 

perpendicular planes through the VADs was compared. The mean percentage 

difference in the absolute velocity at points (>50,000 individual point locations for 

each VAD) on the medium and fine meshes was: CM 19 %, HVAD 15 %, and HMII 

34 %. The large differences are caused by small variations in the location of flow 

features such as a vortices, which result in relatively large differences in the 

pointwise velocity. Velocity fields for HMII (worst case) are shown in fig 2a.The 

washout curves with flow rate 5 l/min for CM, HVAD and HMII, with coarse, medium 

and fine meshes are shown in fig 2b. Comparing the time taken to reach 5 % dye 

concentration at the outlet (T05), the differences between the results from the 

medium meshes and either the coarse or fine meshes were all less than 5 % 

(mean=2.7 %). 

3.2 Calibration of the LED-Photodiode Sensors 

The calibration measurements were repeated three times and the final calibration 

used the mean of these three (fig 3). The largest standard deviation in the voltage 

occurred for the lowest dye concentration and was 0.02 V at for the inlet sensor and 

0.05 V for the outlet sensor. The variation in dye concentration as a percentage, C, 
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with voltage signal, V, from each of the LED-photodiode sensors could be described 

by eqn 2: 

𝐶 = 100 (
𝑉 − 𝑉0

𝑉100 − 𝑉0
) (

𝑉100
𝑉

)
𝑎

 (2) 

Where V0 is the voltage with 0 % dye and V100 is the voltage with 100 % dye. The 

exponent, a, was found by fitting the equation to the experimental data using Matlab 

(Mathworks). This exponent differed slightly (inlet: a=2.2, outlet: a=1.9) for the two 

sensors, due to small differences in LED-photodiode alignment (fig 3). 

3.3 Comparison of Experimental and Numerical Washout Curves 

Due to resistance in the experimental flow rig it was not possible to match all of the 

original numerical operating conditions. So, for the comparison between numerical 

and experimental results the operating conditions given in table 2 were used. For 

practical reasons, such as the size of the sensor housing (length=60 mm), the types 

of connectors between the VAD and tubing (dependent on the particular VAD), and 

the position of the pressure transducers, it was not possible to measure the dye 

washout directly at the outlet of the VADs. The location of the LED-photodiode 

sensor, measured from the outlet of each VAD was: CM 5 cm, HVAD 12 cm and 

HMII 6 cm. The dye washout curves at these locations are different from those 

directly at the VAD outlets: they are shifted later in time, but also have a shallower 

gradient as the velocity profile across the outlet tube results in an apparent 

spreading of the dyed fluid. So to compare numerical and experimental results 

washout curves, the correct downstream positions for each VAD were used. The 

experimental washout curves show the mean and standard deviation of 6 repetitions 

(fig 4). The larger standard deviations were found towards the end of the washout 

period; at the time when 5 % dye was reached at the outlet (T05), the standard 

deviation in the dye concentration was: CM 1 l/min, 2 %; CM 3 l/min, 3 %; CM 5 

l/min, 3 %; HVAD 1 l/min: 5 %; and, HMII 1 l/min, 5 %. The mean of the absolute 

differences between experimental and numerical, outlet dye concentrations (fig 4), 

taken over the washout time, were within 5 %: CM 1 l/min, 2 %; CM 3 l/min, 3 %; CM 

5 l/min, 5 %; HVAD 1 l/min, 1.2 %; and, HMII 1 l/min, 3 %. 

3.4 Numerical Washout Curves at the VAD Outlets 
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The calculated outlet washout curves for the three VADs, at 1, 3 and 5 l/min (fig 5 a, 

b and c) clearly show the CM has the slowest washout and the HMII the fastest at all 

3 flow rates. A comparison of the time taken to reach 5 % dye at the outlet (T05) (fig 

5 d) confirms this. The CM has the largest internal volume, 28 ml from inlet to outlet 

in the computational domain, while the internal volumes of the HVAD and HMII are 

12 and 7 ml respectively.  

To eliminate the effect of VAD volume on the residence time, a type of normalization 

was used. The residence time of blood in a VAD can be estimated as T=V/Q, where 

V is the internal (priming) volume and Q is the flow rate. The time taken to reach 50 

% dye at the outlet, T50, was found to be close to these T estimates: the range for all 

VADs, at all flow rates, was 0.76T to 0.94T. The ratio of time taken to reach 5 % dye 

at the outlet (T05) to T, T05/T, was around 2.0 (between 1.8 and 2.2) in the HMII, but 

was around 2.7 (2.6 to 2.8) in CM and HVAD (fig 5 e). The additional residence time 

caused by the specific flow field within the CM and HVAD is then (2.7-2.0)/2.0=0.35, 

so 35 %. This analysis shows that, while the volume of the VAD is a large factor 

accounting for the T05, after eliminating that factor the two VADs with secondary 

flows had T05 values which were 35 % longer than the VAD without the secondary 

flow. So the secondary flow significantly contributes to the residence time of the 

slowest portion of the fluid. 

3.5 Washout Patterns within the VADs 

The numerically calculated dye concentration patterns within the VADs were visually 

inspected (figs 6-8) to obtain a qualitative understanding of the regional variations in 

relative washout times. 

CM (fig 6): Fresh fluid enters in the centre of the VAD and spreads radially, firstly 

along the blades, predominantly along the high pressure side at the leading edge but 

shifting to the low pressure side by the trailing edge. Washout from the middle of the 

blade passages is slower, as shown by the higher dye concentration away from the 

blades. The dye clearly reveals the recirculation zone downstream of the cut water at 

all flow rates. The original fluid lingers longest in the secondary flow, both in the 

central hole and the gap below the rotor. This secondary flow washout is discussed 

in more detail in section 3.6. 
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HVAD (fig 7): As in the CM, fresh fluid enters in the centre and spreads radially, 

again first along the high pressure side of the blade. The narrow blade passages 

ensure they are washed out relatively quickly. The volute and cut water are better 

optimised than in the CM so the fluid exits evenly at 3 and 5 l/min, without a large 

recirculation zone, although multiple small, transient, vortical structures of low 

vorticity (100-200 /s) exist downstream of the cut water at 1 l/min. 

HMII (fig 8): Fluid enters past the straightener blades. These blades create vortices 

(strongest at 5 l/min with vorticity 6500-8500 /s) which trap the original fluid. Rotation 

of the impeller causes thorough mixing in that region. Downstream of the impeller the 

diameter of the hub reduces, with consequent increase in cross sectional area of the 

flow passage, causing flow separation. This recirculation zone traps the original fluid 

(most clearly visible at 5 l/min) leading to slow washout in this region. There is better 

mixing directly downstream of the diffuser blades. 

3.6 Secondary Flow Washouts 

The dye concentration remaining in the VADs, at T05, was integrated over the 

volume. The CM had 4.08 to 4.26 %, HVAD had 2.75 to 3.05 % and HMII had 1.90 

to 2.25 % remaining. The remaining dye was mainly in the downstream part of the 

HMII (behind the impeller) and in the secondary flow paths of the CM and HVAD (fig 

9a). Despite their very different sizes and geometries the calculated secondary flow 

rates for the CM and HVAD were found to be similar (fig 9b) which accounts for the 

similarity in their T05:T ratios. The washout of the secondary flow paths was 

investigated by plotting the variation in dye concentration with time at representative 

points within the secondary flow region (washout curves in fig 9c, locations of 

specific points shown in fig 9a). Due to the relatively high secondary flow rate at 1 

l/min the secondary flow path washed out, either at the same rate as the outlet (CM), 

or faster (HVAD). However, at 5 l/min the secondary flow rate is much lower, causing 

a slow washout from specific portions of the secondary flow path. In the CM these 

regions are located in the base, which is the downstream part of the secondary flow 

path. In the HVAD the region is also located in the base, this time at the edge of a 

recirculation region. 

4. Discussion 
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Our investigation has revealed there are a range of total washout times for the VADs 

studied. At a normal level of cardiac support, with 5 l/min flow and 100 mmHg 

pressure, the T05 values were 0.93 s, 0.28 s and 0.16 s with CM, HVAD and HMII 

respectively. For the lower flow rates, 1 and 3 l/min, which might be obtained during 

partial cardiac support, or during weaning, the T05 times were much longer, 5.06, 

1.64, 0.96 s at 1l/min, with CM, HVAD and HMII respectively. These values should 

be compared with the typical time scales required for blood trauma. 

Haemolysis, the process in which haemoglobin leaves the red blood cells, requires 

shear stress of around 150 Pa [36] which only occurs in relatively small regions of 

the VADs (CM 0.0067 ml, HVAD 0.029 ml, HMII 0.066 ml, in fair agreement with [8, 

30]). Sublethal changes in the mechanical properties of healthy RBCs also require 

stresses that would only be found in small regions of the VADs: for example 

repeated exposures to 64 Pa for 3 s caused reductions in RBC deformability [37]. 

However, in the presence of oxidative stress, such as that due to heightened 

inflammation and free radical production associated with severe cardiovascular 

disease, RBCs are significantly more susceptible to shear stress [38] and thus the 

time scales found in this work become relevant. 

The T05 times are also likely to be relevant to platelet function: a Hellums [39] type 

analysis of published data on platelet activation [8] shows that shear stress of around 

50 Pa applied for 0.5 s should be enough for activation. The volumes of the VADs 

with shear stress greater than 50 Pa were CM 0.22 ml, HVAD 0.27 ml, and HMII 

0.41 ml (in fair agreement with [8, 30]). 

The most relevant type of blood trauma is cleavage of the high molecular weight von 

Willebrand factor (vWf) multimers. Increased cleavage has been reported at 

relatively low shear stress and exposure time combinations: 3.7 Pa for 12 s [40] and 

6.5 Pa for under 0.2 s [41] or 9 Pa for the domain to unfold [42]. The volumes of the 

VADs with shear stress greater than 9 Pa were CM 3.1 ml, HVAD 2.0 ml, and HMII 

2.0 ml (in fair agreement with [8, 30]). Cleavage of vWf is time dependant for two 

reasons: firstly, unravelling of the vWf molecule to expose the cleavage site is a time 

dependant process, and, secondly, cleavage of the vWf by the enzyme ADAMTS13 

has a specific reaction rate [43]. All VADs studied to date, have been found to 

destroy vWf [44-49]. In VADs such as the HMII and HVAD, this can be attributed to 
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the high fluid stresses. In contrast, the long washout times for the CM likely explain 

why, although the CM, has relatively lower fluid stress magnitudes, and is 

considered a safe VAD, particularly in relation to RBCs [27], patients using the CM 

still develop acquired von Willebrand Syndrome [48]. 

4.1 Limitations 

As explained in section 2.3 the Navier-Stokes equations were solved without a 

turbulence model. This was because Re for the impeller region were all found to be 

in the laminar range, and at the inlet the majority of calculations were in the laminar 

range. For CM at 5 l/min the inlet Re was 3470 indicating transitional flow, for which 

there are no good turbulence models, hence the Navier-Stokes equations were 

solved [35]. Turbulence has the potential to increase mixing and so reduce residence 

times but the effect is likely to be small for such low Re turbulence. 

Blood is well known to be a multiphase, shear thinning fluid, however in this work it 

was treated as a single phase Newtonian fluid. The shear thinning viscosity has the 

potential to increase residence times by increasing the size of stagnation zones [50]. 

However, this effect would be small since minimal stagnation was found (section 

3.5). 

As described in section 3.3, the experimental setup meant it was not possible to 

measure dye concentration directly at the VAD outlets. This was overcome by finding 

the calculated dye concentrations at the experimental locations, for correct 

comparison. Future iterations of the rig will enable dye concentration and pressure 

sensors to be collocated. 

5. Conclusions 

A technique was devised for investigating both local and global washout of dye in 

VADs. The new technique combines a numerical method for calculating local dye 

concentration using a scalar transport equation, with an experimental method for 

determining the global washout by measuring the dye concentration at the outlet. 

The technique was used to investigate the washout properties of three different 

VADs and significant differences in the time taken to reach 5 % dye concentration at 

the outlet (T05) were found. At a typical level of cardiac support, 5 l/min and 100 

mmHg, T05 was 0.93, 0.28 and 0.16 s for CM, HVAD and HMII respectively and 
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increased to 5.06, 1.64, 0.96 s for reduced cardiac support of 1 l/min. The internal 

volume of the VAD was a significant factor in determining the time taken to reach 5 

% dye at the outlet. However, after standardising for the VAD volume the VADs with 

secondary flow paths, the CM and HVAD, had T05 times which were 35 % longer 

than the VAD without the secondary flow path, the HMII. The results explain why the 

CM, which exerts low shear stress magnitude and is recognised as having low 

haemolysis, has still been found to cause acquired von Willebrand Syndrome in 

patients. 

The washout calculations showed how effectively a dye can be used to highlight 

critical areas of the VADs with longer local residence times. The secondary flow 

paths are examples of such critical regions but these simulations revealed other 

such regions which were less intuitive and included recirculation regions in the outlet 

of the CM and the downstream cone-diffuser of the HMII. Our combination 

experimental-numerical dye washout technique will be useful in evaluating design 

iterations of future VADs. 
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Tables 

Table 1 

VAD operating conditions for the numerical calculations of dye washout (used for all 

sections excluding 3.3) 

VAD flow rate (l/min) rotational speed 

(rpm) 

CentriMag (CM) 1 2150 

3 2200 

5 2250 

HVAD 1 2800 

3 2900 

5 3100 

HeartMate II 

(HMII) 

1 9550 

3 10700 

5 12000 
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Table 2 

VAD operating conditions for comparison of numerical and experimental washout 

results. Numerical pressure head is the mean and standard deviation of the last 10 

impeller rotations. Experimental pressure head and flow rate are the mean and 

standard deviation of the 6 repetitions. (Used for section 3.3). 

VAD rotational 

speed 

(rpm) 

Numerical Experimental 

flow rate 

(l/min) 

pressure 

(mmHg) 

flow rate 

(l/min) 

pressure 

(mmHg) 

CentriMag 

(CM) 

2150 1 101 +/- 1 1.02 +/- 

0.002 

101 +/- 1 

2200 3 100 +/- 1 2.81 +/- 

0.22 

99.7 +/- 5 

3150 5 212 +/- 2 4.58 +/- 

0.14 

176 +/- 8 

HVAD 2800 1 103 +/- 4 0.98 +/- 

0.11 

102 +/- 2 

HeartMate II 

(HMII) 

6240 1 39 +/- 1 0.96 +/- 

0.04 

43.4 +/- 6 
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Figure captions 

Figure 1: (a) Experimental flow rig consisting of two inlet tanks with clear and dyed 

glycerol-water, a three-way tap, VAD, outlet tank, pressure transducers, flow meter 

and custom made LED-photo diode sensors. (b) Detailed view of the custom made 

LED-photo diode sensors. The LED is located at position ‘a’ and photo-diode at 

positon ‘b’. The 3D printed housing holds the components on opposing sides of the 

transparent tubing and blocks external light. 

Figure 2: (a) Velocity fields in the HMII with coarse, medium and fine meshes, as an 

example of the influence of the mesh on the local velocity. (b) Comparison of the 

numerical dye washout curves at the outlets of the three VADs at 5 l/min, using 

coarse (- - -) medium (-----) and fine (. . . .) meshes. 

Figure 3: The calibration curves for the inlet and outlet LED-photo diode sensors. 

Experimental mean of 3 repeats, error bars show standard deviation. 

Figure 4: Comparison of numerical (-----) and experimental mean (- - -)  +/- standard 

deviation (. . . .) dye washout curves for the (a) CM, (b) HVAD and (c) HMII. 

Operating conditions are given in table 2. Experimental mean and standard deviation 

of 6 repeats. 

Figure 5: Numerical dye washout curves at the outlets of the three VADs at (a) 1 

l/min, (b) 3 l/min and (c) 5 l/min. (d) Time taken to reach 5 % dye concentration at the 

VAD outlet (T05). 

Figure 6: Variation in dye concentration within the CM for 1, 3, and 5 l/min, at 80 % 

and 40 % dye concentration at the outlet. Velocity vectors (relative to the moving 

frame) are also shown. 

Figure 7: Variation in dye concentration within the HVAD for 1, 3, and 5 l/min, at 80 

% and 40 % dye concentration at the outlet. Velocity vectors (relative to the moving 

frame) are also shown. 

Figure 8: Variation in dye concentration within the HMII for 1, 3, and 5 l/min, at 80 % 

and 40 % dye concentration at the outlet. Velocity vectors (relative to the moving 

frame) are also shown. 
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Figure 9: Washout of the secondary flow paths. (a) Dye concentration in the 

secondary flow paths of the CM and HVAD at 1 and 5 l/min at the time 

corresponding to 20 % dye concentration at the outlet. The cross section is identical 

to that in the lower half of figures (7) and (8) but focussed in on the secondary flow 

path. (b) Secondary flow rates for the CM and HVAD. (c) Dye washout curves at 

specific locations within the secondary flow paths. Location points are shown in (a).  
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