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Person Re-Identification using Deep
Foreground Appearance Modelling

Gregory Watson & Abhir Bhalerao

Abstract

Person Re-Identification is the process of matching individuals
from images taken of them at different times, and often with dif-
ferent cameras. To perform matching, most methods extract features
from the entire image, however, this gives no consideration to the
spatial context of the information present in the image. In this pa-
per, we propose using a convolutional neural network approach based
on ResNet-50 to predict the foreground of an image: the parts with
the head, torso and limbs of a person. With this information, we
use the LOMO and Salient Colour Name feature descriptors to ex-
tract features primarily from the foreground areas. In addition, we
use a distance metric learning technique (XQDA), to calculate opti-
mally weighted distances between the relevant features. We evaluate
on the VIPeR, QMUL GRID and CUHK03 data sets, and compare
our results against a linear foreground estimation method, and show
competitive or better overall matching performance.

*Gregory Watson, g.a.watson@warwick.ac.uk

1 Introduction

Person Re-Identification (Re-ID) is the process of identifying an individual

from a gallery of images which also contains at least one image of that per-

son. It has several important applications, including but not limited to,
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Figure 1: Examples of various images from the VIPeR [1], QMUL GRID [2,
3, 4] and CUHK03 [5] data sets. Each column represents a single identity.

surveillance, biometrics and security. However, variations in illumination,

background, pose and resolution present significant challenges to Person Re-

Identification techniques (see illustrated examples in Fig 1).

Specifically, pose variation can lead to two images of the same individual

looking significantly different depending on the pose of their body, but also

of the direction from which the image is taken, e.g. from the front or be-

hind, from above or from one side. A network of CCTV cameras positioned

at different locations in a pedestrian area will inevitably exhibit large dif-

ferences in a person’s pose between the images. Matching images of people

2



with different poses is problematic as corresponding features regions do not

represent the same things. To overcome this, several techniques have been

proposed; for example, Yang, Yang et. al [6] split the image into a series of

stripes which allows for feature extraction and matching to be carried out

on an area-by-area basis, and has been shown to improve matching results.

Liu, Chunxiao and Gong [7] also divide images into stripes but then go on to

weight different feature types according to a stripe’s content. They measure

textural and non-textural (colour) content and so, for example, a person’s

patterned clothing will have higher texture weighting than that which is plain

coloured.

Other approaches use a model to identify which areas constitute the fore-

ground, such as the body as a whole, or labelling regions at the level of

limbs. Symmetry-Driven Accumulation of Local Features (SDALF) [8] di-

vides a person image into three parts - the head, torso and legs, and following

this, a vertical axis of symmetry is estimated as the axis which best separates

appearances on either side of it. STEL Component Analysis [9] attempts to

capture the structure of each image by splitting it into parts (so called stels)

which have a similar distributions of features. However, if multiple different

parts of the image have a similar feature distribution, and these lie both in
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the foreground and background, then the separation may work poorly.

Recently [10], we proposed an appearance based method for estimating

the pose of a person using a linear regression of image HOG features to

coordinates and widths of a skeleton model. A Partial Least-Squares (PLS)

regression model was calculated using supervised data and we were able to

show a significant increase in matching results when compared with other

foreground modelling methods.

Convolutional Neural Networks (CNNs) have also been used for fore-

ground modelling in person Re-ID. Cheng, Gong et al. [11] propose using a

multi-channel CNN to learn both global image features and local body-part

features defined by four stripes in each image, and so it does not give consid-

eration to which areas are foreground and which are background. Zhao, Tian

et al. [12] propose a network which locates fourteen points on a person image

locating the joints of a person’s skeleton. These points can then be used to

define the bounding boxes of limbs. GLAD [13] takes advantage of the Deep-

erCut [14] pose estimation method, which uses a 152-layer network to predict

a series of skeleton key-points. It then uses a subset of these key-points to

divide a person image into three areas - head, upper-body and lower-body.

Liu, Lyu et al. [15] also train a CNN using both original images and semantic
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segmentation probability maps obtained via the DeepLab [16] model. With

both of these inputs, the authors demonstrate a high performance when com-

pared to only using the original images, and are able to predict skeletons with

high accuracy. However, the method does not distinguish between different

limbs, making matching between them impossible.

Once a foreground area has been estimated, the next stage is Feature Ex-

traction. Liao, Hu et al. [17] proposed Local Maximal Occurrence (LOMO),

which splits each image into 10×10 pixel patches with a 5 pixel overlap in each

dimension. A HSV Joint Histogram and an SILTP texture histogram [18]

are extracted from each patch. For each row of patches, the highest value in

each histogram bin is taken as the value for that bin in the final descriptor.

Yang et al. [6] proposed Salient Colour Names, where sixteen colour names

are defined in the RGB colour space, and each pixel value is quantised based

on its distance to these sixteen points. This allows a descriptor to be built

where each pixel can be defined as an amount of each of the sixteen colours.

However, the authors argue that features extracted from the background ar-

eas can be important to provide context, and therefore extract features from

both whilst providing priority to the foreground features. Our proposed algo-

rithm too uses the LOMO and Salient Colour Names features, but weighting
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foreground features higher, and using a body part based partitioning of the

foreground.

The main contribution of this paper is a foreground modelling method

which uses a Deep CNN to learn a regression between the input images and

ground-truth, hand-labelled skeletons. As well as regressing to the skeleton

joint locations, the model is also trained to learn the widths of the limbs.

After predicting the skeleton of an unseen person image, we extract features

primarily from the foreground area, minimising the problem of background

information being used to build the feature descriptors. We evaluate our

methods on the VIPeR [1], QMUL GRID [2, 3, 4] and CUHK03 [5] data sets

and compare the accuracy of the skeleton fitting with linear appearance based

methods [10]. We incorporate both methods into a matching framework with

LOMO, Salient Colour Names and distance metric learning to demonstrate

improved Rank-1 matching rates. We draw some initial conclusions and

suggest how a deep skeleton fitter may be used in a fully deep neural network

matching framework.
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2 Method

In this section, we detail our Deep CNN method, which is trained to predict

the location of a person’s skeleton from Re-ID images. The output is used

to estimate foreground regions of an image and locations of the head, torso

and limbs. We used these areas to locally extract features for matching.

2.1 Deep Appearance Modelling

For a given training set of identities, we pass all images and corresponding

ground-truth, hand-labelled skeletons to our network. Given the small num-

ber of identities and images per identity in most Re-ID data sets versus the

large number required for training a CNN model, we apply data augmenta-

tion to increase the size of the training set. For all images in the training set,

we create additional images and corresponding skeletons by applying various

small rotations, translations and horizontal flips (reflection in the y-axis).

Each skeleton is defined by a set of labeled points, which represent the

position of the head, torso and limbs (arms and legs), 15 (x, y) key-points in

total; the arms and legs consist of three sections each with a width variable;

and the torso is also given a width. Widths are defined by 14 key-points at

positions perpendicular to a limb section axis, at the end of the section (see
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Figure 2: The network architecture for our proposed deep foreground mod-
elling method. Images are re-scaled to 224× 224 pixels and passed through
the convolutional layers of the ResNet-50 network [19]. We take the POOL5
Average Pooling layer as output of the ResNet-50 model, flatten the output,
and finally concatenate with two Fully Connected layers. The output layer
contains 58 units representing the (x, y) coordinates of skeleton key-points
(joints and width markers). We use the RMSProp [20] optimizer and a Mean
Squared Error Loss.

Fig 3).

The CNN takes a Re-ID image as input and outputs the key-point loca-

tions as output. To take advantage of transfer learning, we use pre-trained

weights from the ResNet-50 architecture [19] and therefore all input images

are resized to have resolutions 224 × 224 pixels. The fully connected layers

of this network are modified and we replace them with fully-connected layers

of size 1024 and then the output layer with size 58, see Fig 2.
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Figure 3: Three examples of a triplet of original images, a skeleton and an
image mask that can be produced from the skeleton. Any part of the image
within the image mask is considered foreground.

2.2 Foreground feature extraction and feature weight-

ing

Given a predicted skeleton, an image mask/silhouette of a person is generated

by taking rectangular regions for the torso and limb sections (given the joint

key-point locations and the width markers). Examples of skeletons and their

corresponding image masks can be seen in Fig 3. The predicted foreground

area is then used to localise the calculation of two types of image features:

LOMO [17] features and Salient Colour Names [6] features.

2.2.1 LOMO and Weighted LOMO

LOMO [17] features consist of joint HSV histograms and SILTP [18] his-

tograms over three scales, and are extracted from 10× 10 pixel patches with
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a 5 pixel overlap in each dimension. For each row of patches, the maximum

value in each histogram bin is taken as the final descriptor. As in our previous

work [10], we modify LOMO so that features are primarily extracted from

the foreground areas. Each patch is weighted by the percentage of predicted

foreground pixels within the patch:

fw(B) =
|F ∩B|
|B|

f(B), (1)

where B is all pixels within the patch, and F is all pixels labelled foreground.

Therefore, for each row, the maximum value for each histogram bin is more

likely to be taken from the foreground area. We concatenate these features

and the original LOMO features to create Weighted LOMO.

2.2.2 Salient Colour Names

Salient Colour Names [6] features defines sixteen coordinates in the RGB

colour space which each represent a colour, such as fuchsia, blue, aqua and

lime etc. The process is a form of vector quantisation, creating a mapping

from pixel values in the RGB colour space to a colour name distribution

amongst a set of fixed colours. We extract a sixteen-bin Salient Colour

Names histogram from each limb of our predicted person skeleton, apply a
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log transform, and normalise it to unit length. We then concatenate these

features to form our final feature descriptor. By localising to limbs, the colour

features are made approximately person-pose invariant: different parts of the

colour feature vector representing a person’s clothing, distinguishing tops

from trousers, shorts and skirts.

2.3 Distance Metric Learning

Distance Metric Learning (DML) is a way to find a subspace mapping of fea-

tures in which distances between matching identities is minimised. KISSME [21]

was the first major DML used for Person Re-Identification, and it calculates

the distance between two feature vectors as:

τ 2M(fi, fj) = (fi − fj)
T (Σ−1

I − Σ−1
E )(fi − fj). (2)

where the intra-personal, ΣI , and extra-personal, ΣE, scatter matrices are

sample estimates from training data. Several methods have since expanded

on KISSME, such as Cross-view Quadratic Discriminant Analysis (XQDA) [17].

Whereas KISSME applies PCA to the input vectors prior in estimating ΣI

and ΣE, giving no regard to the relationship between DML and dimension-
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ality reduction stages, XQDA performs DML and dimensionality reduction

stages together. If D is the original dimensionality of the data, and R the re-

duced dimensionality, XQDA learns a subspace W = (w1,w2, ...,wR) ∈ RR,

whilst simultaneously learning a distance function:

dw(fi, fj) = (fi − fj)
TW (Σ

′−1
I − Σ

′−1
E )W T (fi − fj) (3)

where Σ
′
I = W TΣIW and Σ

′
E = W TΣEW . Using the the Generalised

Rayleigh Quotient

J(w) =
wTΣEw

wTΣIw
(4)

as the objective function, it can be shown that the solution vectors w are

found by a generalised eigenvalue decomposition by maximising:

max
w

wTΣEw, s.t. w
TΣIw = 1. (5)

Here, for training the XQDA Distance Metric, we use the features extracted

from the sets of training images, using the ground-truth skeletons.
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3 Results and Discussion

We investigate the performance of our methods on three of the main Re-ID

data sets:

• VIPeR [1] consists of 632 image pairs, captured using two different

cameras. Images have a resolution of 128× 48 pixels, and exhibit large

variation in pose and illumination.

• QMUL GRID [2, 3, 4] consists of 250 image pairs taken using eight

different cameras in an underground rail system. In addition, there are

775 additional images which do not share an identity with an individual

from the 250 image pairs. Images from the QMUL GRID data set have

various different aspect ratio and resolutions, and suffer from large

variation in pose and illumination. Additionally, occlusion and image

capture noise are common in this data set.

• CUHK03 [5] is a larger data set, consisting of 1467 people with up to

ten images per person, taken from a series of camera pairs at various

image resolutions. As the images were taken over a period of several

months, large variation in illumination is seen. This data set also suffers

from significant pose variation and occlusion.
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For all three data sets, we initially train the fully-connected layers of

our ResNet-50 based CNN using pre-trained weights, and follow by training

all layers from ResNet-50’s third stage onwards. We use the RMSProp [20]

optimizer with a learning rate of 0.001.

We split VIPeR in to 316 training/validation identities and 316 testing

identities. We randomly assign 80% of the training/validation identities as

training identities, and the remaining for validation. As deep approaches

require more data than traditional ones, so we expand the size of the training

and validation sets by taking all images from the QMUL GRID data set. For

QMUL GRID, we split the identities into two sets - those which form an image

pair and those which do not form a pair. We then take 80% of each set for

training and 20% for validation. Separating the identities in this way allows

us to have a consistent number of training and validation images between

folds. We train for fifteen epochs with a batch size of 32. After skeleton

prediction, we resize all images to the standard resolution of 128× 48 pixels,

rescaling all skeletons to the new size. Examples of the skeleton fitting on

the VIPeR data set can be seen in Fig 4. Following the skeleton fitting and

feature extraction, due to the XQDA distance metric learning stage requiring

no validation set, we combine the training and validation sets to learn the
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Distance Metric. We run our experiments ten times, averaging to produce

the final results.

From Table 1, we can see that our Deep Neural-Network Appearance

Modelling (DNAM) method performs better than other methods at Rank-

10 and Rank-20, but does not perform as well our Partial Least Squares

(PLSAM) method at Rank-1 and Rank-5. When compared to using only

the original LOMO features, we can see an increase of 5.0% in the Rank-1

rate, but a decrease of 1.0% when compared to the PLS skeleton fitting. We

believe that this is because the skeleton fitting between both PLS and Deep

CNN methods are similar, with the Deep Network method having a lower

average Root Mean Squared Error. The CMC curve can be seen in Fig 6.

For QMUL GRID, we split the data set into 125 training/validation iden-

tities and 125 testing identities, with all images of identities which do not

belong to an image pair being added to the testing gallery set. We sup-

plement the training/validation set with the entirety of the VIPeR data set,

and again assign 80% of the identities from the combined data set as training

identities, with the remaining being validation identities. Also, similar to the

experimentation on the VIPeR data set, we combine the training and vali-

dation sets when undertaking the DML step. We train for ten epochs with
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Figure 4: Examples of ground-truth, deep predicted skeletons and PLS pre-
dicted skeletons on the VIPeR [1] data set: (a) An example image with a
RMSE of 6.5 pixels when using the deep method, and 7.6 pixels when using
the PLS method; (b) The image with the minimum RMSE when using the
deep method of 1.5 pixels, with the same image having an RMSE of 2.9 pix-
els when using the PLS method; (c) The image with the maximum RMSE
when using the deep method of 17.9 pixels, with the same image having an
RMSE of 12.3 pixels when using the PLS method. The average RMSE when
using the deep method was 4.5 pixels, with the average when using the PLS
method being 5.2 pixels.

a batch size of 16. After skeleton prediction, we again resize all images to

the standard resolution of 128×48 pixels, rescaling all skeletons accordingly.

Examples of the skeleton fitting on the QMUL GRID data set can be seen

in Fig 5. We again run our experiments ten times, averaging to produce the

final results.

From Table 1, we can see that the best results are obtained from the Deep

CNN based skeleton fitter. When compared to using only the original LOMO

features, we achieve a 11.1% increase in the Rank-1 rate, and an increase of

1.7% when compared to the highest result from the PLS method. We can
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VIPeR QMUL GRID
r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

DNAM(v2) 45.3 74.8 86.4 94.2 28.4 49.2 60.0 68.8
DNAM(v1) 42.3 71.4 81.9 91.8 24.3 41.6 52.4 61.8
PLSAM(v2) [10] 46.3 75.0 85.6 93.9 26.7 47.9 59.0 68.2
PLSAM(v1) [10] 42.8 71.9 82.0 91.9 23.9 41.8 51.0 61.4
DeepDiff [22] 43.2 68.0 77.6 86.1 - - - -
Null Space [23] 42.3 71.5 82.9 92.1 - - - -
MLAPG [24] 40.7 69.9 82.3 92.4 16.6 33.1 41.2 53.0
DeepList [25] 40.5 69.2 81.0 91.2 - - - -
LOMO+XQDA [17] 40.3 68.3 80.9 91.1 17.3 36.3 44.8 55.4
SCNCD [6] 37.8 68.5 81.2 90.4 - - - -
PKFM [26] 36.8 70.4 83.7 91.7 16.3 35.8 46.0 57.6

CSBT [27] 36.6 66.2 - 88.3 - - -
DCML [28] 33.6 62.9 76.5 87.6 - - - -

Table 1: Results on the VIPeR [1] and QMUL GRID [2, 3, 4] data sets. The
best results are shown in bold. (v1) refers to the Weighted LOMO features
and XQDA, whereas (v2) refers to the Weighted LOMO features with the
Salient Colour Names features and XQDA.

see from Fig 5 that the average Root Mean Squared Error for both the Deep

and PLS methods are similar, with only 0.2 pixels between them. Generally,

the PLS method varies less from the mean skeleton when compared to the

Deep CNN method, which fits limbs in more unusual positions better. The

CMC curve is shown in Fig 6.

For CUHK03, we use the manually cropped version of the images. We

split the data set into 1160 training identities and 100 testing identities, with

only one image of each testing identity present in the testing gallery set.
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CUHK03
r=1 r=5 r=10 r=20

DNAM(v2) 62.2 88.0 94.2 97.5
DNAM(v1) 61.9 88.2 94.2 97.5
PLSAM(v2) [10] 65.2 89.8 95.0 97.9
PLSAM(v1) [10] 64.6 89.2 94.9 98.1
DeepDiff [22] 62.4 87.9 93.6 96.7
Null Space [23] 58.9 85.6 92.5 96.3
MLAPG [24] 58.0 87.1 94.7 98.0
DeepList [25] 55.9 86.3 93.7 98.0
CSBT [27] 55.5 84.3 - 98.0
LOMO+XQDA [17] 54.9 85.3 92.6 97.1
FPNN [5] 20.7 50.9 67.0 83.0

Table 2: Results on the CUHK03 [5] data set. The best results are shown
in bold. (v1) refers to the Weighted LOMO features and XQDA, whereas
(v2) refers to the Weighted LOMO features with the Salient Colour Names
features and XQDA.

As we do not have any ground-truth, hand-labelled skeleton data for the

CUHK03 data set, we instead train the Deep CNN based skeleton fitter on

the VIPeR and QMUL GRID data sets. We divide the entire VIPeR and

QMUL GRID data sets into training/validation/testing sets as described for

the previous two data sets. We train for fifteen epochs with a batch size of

32. However, as the source images for CUHK03 are a higher resolution as

compared to VIPeR and QMUL GRID, we instead scale to 160 × 60 pixels

for feature extraction. We run our experiments twenty times, averaging to

produce the final results. From Table 2, we can see that the PLS outperforms
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Figure 5: Examples of ground-truth, deep predicted skeletons and PLS pre-
dicted skeletons on the QMUL GRID [2, 3, 4] data set: (a) An example image
with a RMSE of 4.3 pixels when using the deep method, and 4.5 pixels when
using the PLS method; (b) The image with the minimum RMSE when using
the deep method of 2.2 pixels, with the same image having an RMSE of 3.9
pixels when using the PLS method; (c) The image with the maximum RMSE
when using the deep method of 18.3 pixels, with the same image having an
RMSE of 17.6 pixels when using the PLS method. The average RMSE when
using the deep method was 5.5 pixels, with the average when using the PLS
method being 5.3 pixels.

the deep method. We believe this is due to it generalising better when an

unseen image from an unseen data set is passed to the model. In addition,

whilst the VIPeR and QMUL GRID data sets are mainly person images of

the front or back of a person, CUHK03 is roughly half frontal or back-facing

and half side-facing. The use of a single model for the Deep CNN method

versus the two used in the PLS method lead to it fitting a frontal skeleton

more often than the PLS method. The CMC curve is plotted in Fig 6.
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Figure 6: CMC on the VIPeR data set [1], QMUL GRID data set [2, 3, 4]
and, CUHK03 data sets [5]. All of our CMC curves are single-shot results.
Results are reproduced from [5], [10], [17], [23], [24] and [29].
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4 Conclusions

In this paper, we propose a deep CNN based method to fit skeletons to Re-ID

images and estimate foreground regions, including head, torso and limbs. We

compare the results with a linear appearance based skeleton fitting which

uses Partial Least Squares and evaluate the results of both methods in a

Re-ID matching framework. For both methods, training images and cor-

responding ground-truth, hand-labeled skeleton information can be used to

build a model to predict the skeleton of a person. From this we have shown

that more accurate skeletons can be predicted by using the Deep CNN based

model, particularly on unusual person body poses. For the matching, LOMO

and Salient Colour Names features are extracted and weighted according to

their spatial position in the person image, i.e. ordered by pose information

from the foreground estimation. Once extracted, these features are further

weighted by XQDA Distance Metric Learning technique for matching. We

have demonstrated that by using foreground modelling and weighting the

features, we can achieve superior matching performance. Experiments on

the VIPeR, QMUL GRID and CUHK03 data sets, and at best our proposed

methods achieve 6%, 11.1% and 10.3% improvement respectively when com-

pared to standard approaches using the original LOMO features.
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We have also demonstrated that both of our proposed methods generalise

well between data sets. Specifically, in the case of CUHK03, we are able to

achieve good skeleton fitting results even though the models were trained

only on VIPeR and QMUL GRID. This generalisability is important since

CNN approaches require large amounts of training data to be accurate. Fur-

thermore, while the PLS method required separate models for frontal and

sideways views, the Deep CNN method because of its non-linearities, is able

to learn a single model for this task. However, the majority of images used

for training the skeleton prediction model were of people facing directly to-

wards or away from the camera, with the occasional sideways-facing image.

Future work will investigate how to re-train the model using a more balanced

variety of camera directions and skeleton poses, and whether some form of

body pose augmentation can be incorporated into the training regime.

An obvious and necessary extension of this work is to combine the deep

CNN skeleton prediction into a Deep CNN matching framework, thus pre-

cluding the need for feature extraction and distance metric learning. One

approach which seems viable is to use the limb localisations to partition the

image input into regions of interest boxes extracted and arranged in a grid,

which has the advantage that existing deep object matching networks can be
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usefully leveraged for deep feature learning.
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