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ABSTRACT 

 

Objectives 

The aim of the current study is to investigate how to improve predictions from Gaussian 

Process models by optimising the model hyperparameters.  

 

Methods 

Optimisation methods, including Grid Search, Conjugate Gradient, Random Search, 

Evolutionary Algorithm and Hyper-prior, were evaluated and applied to previously published 

data. Data sets were also altered in a structured manner to reduce their size, which retained 

the range, or ‘chemical space’ of the key descriptors in order to assess the effect of the data 

range on model quality.  

 

Key findings 

The Smoothbox Hyper-prior kernel results in the best models for the majority of data sets 

and they exhibited significantly better performance than benchmark QSPR models. When 

the data sets were systematically reduced in size the different optimisation methods 

generally retained their statistical quality whereas benchmark QSPR models performed 

poorly.  

 

Conclusions 

The design of the data set, and possibly also the approach to validation of the model, are 

critical in the development of improved models. The size of the data set, if carefully 

controlled, was not generally a significant factor for these models and that models of 

excellent statistical quality could be produced from substantially smaller data sets.  
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INTRODUCTION 

 

Measurement of the percutaneous absorption of exogenous chemicals has become 

increasingly important over the last 25 years for a variety of reasons, including 

pharmaceutical efficacy and, in a number of fields, toxicity. The current ‘gold standard’ for 

initial assessment of in vitro percutaneous absorption is an experiment using excised human 

or porcine skin and which follows the protocol presented in OECD 428 [1].  

 

Since the publication of the Flynn data set [2] there has been considerable interest in the 

development of mathematical models that relate the percutaneous absorption of 

exogenous chemicals to the physicochemical properties of permeants. This began with the 

work of El Tayer [3] and has grown into a distinct area of research, mostly based on the use 

of a range of methods to interrogate the Flynn data set, or variations thereon. The early 

work in this field was predominately based on quantitative structure-permeability 

relationships (QSPRs) and has been comprehensively reviewed previously [4].  

 

However, in the context of percutaneous absorption many QSPR models have been shown 

to be significantly limited in their predictive ability, for example where some of the most 

commonly used QSPR models were shown to poorly correlate with experimental data which 

covered the stated range of applicability of these models [5, 6]. Despite their advantages 

QSPRs have therefore gained little widespread use or credibility in the broader field of 

percutaneous absorption.  

 

More recently, a range of novel methods has been applied to this problem domain. Such 

methods, including the use of non-linear models [55, 56], parallel artificial membrane 

permeability assay (PAMPA) methods [56] and Machine Learning methods such as Gaussian 

Process Regression [7], offer significant improvements in predictive ability over QSPR 

models. However, they are often criticised as non-linear methods are perceived to over-fit in 

many situations and Machine Learning methods are limited by their lack of transparency as 

they are predominately based on ‘black-box’ methods, which mean that they are seldom 

represented by a discrete algorithm. Despite studies which in different ways address this 

issue [8, 9] the uptake of such methods in the field of percutaneous absorption has been 

limited and is due mostly to the lack of ease of use of what can often be quite advanced 

computation techniques by non-specialists. Nevertheless, despite their more rudimentary 



nature when compared to Machine Learning methods, and previous studies highlighting 

comparatively poor performance for QSPR methods compare to Machine Learning methods 

[8, 20, 24], QSPRs are still considered by many researchers in this field to be the benchmark 

predictive method and are used in this study in that regard. 

 

Another significant limitation in using computational methods in estimating percutaneous 

absorption is the construction of the model and, implicitly, the need for a high-quality and 

consistent data set to underpin this development. The necessary amounts of reliable and 

consistent data have been discussed previously [10]. From the Machine Learning point of 

view, there is considerable difficulty in using Flynn’s original dataset and other datasets 

derived from it in that the reported value of skin permeability for the same chemical varies 

considerably. This may be due to experimental artefacts, such as the anatomical location 

from which skin was excised for each experiment, or experimental temperature, which may 

affect the accuracy of resultant models [11]. This presents a significant challenge in the 

production of a new data set from a single source, which may be expected to yield more 

accurate models with reduced variance.  

 

Nevertheless, one of the key issues in the development of improved models is the difficulty 

of developing new data sets. For example, a contract research organisation will commonly 

charge a significant sum to produce absorption data for one chemical (i.e. one data point) 

and the production of approximately 100 data points using the same method to construct a 

viable model is therefore, in purely financial terms, very costly and in all probability 

unrealistic. Thus, generation of new datasets may not reflect the needs of model 

development which sits apart from a specific study. In particular, industrially-focused studies 

may be targeted to a specific group of chemicals and this may not fit the needs of a model. 

In addition, data quality may be affected by variable methodological approaches or by the 

collation of data from a range of studies. 

 

The aims of this study are two-fold. Firstly, to investigate how model optimisation can take 

place with relatively small data sets. In particular, we investigate how the three hyper-

parameters control the Matérn kernel function involved in the Gaussian Process Regression 

methods. These include , where  is the characteristic length-scale,  is the 

signal variance, and  is the noise variance. And secondly, this study aims to investigate 

how the nature of data will affect the viability of the resulting model. Thus, this study will 



empirically demonstrate that the optimisation of hyperparameters can be used with small 

datasets to produce highly predictive models and that dataset generation is also central to 

model quality and predictivity.     



 

METHODS 

 

1. Data Sets 

 

Nine human and animal skin datasets collated from various sources have been used in this 

study. All data has been taken from previously published literature studies and does not 

require ethical approval for its subsequent use. The sizes of the datasets vary from 14 to 85 

after refining the data by, for example, removing ambiguous data or values which are listed 

as ‘greater than’ or ‘less than’ a fixed value, rather than a discrete number. Other 

refinement processes include removing all the repetitions and obtaining the mean value of 

the targets for the same chemicals with the same molecular features and different target 

values [9, 12]. The number of data records in each dataset after refinement is shown in 

Table 1. The small size is due to the fact that gathering consistent pharmaceutical data which 

is generated from the same or similar protocols is difficult, time consuming, and expensive. 

This is usually because of the inherent biological variation of such data, and that the data is 

generated for other purposes and not primarily for its inclusion in predictive models. Table 2 

shows the whole data set, originally obtained from Magnusson’s Set A (see Table 1), which is 

used for analysis of subsets. 

 

[INSERT TABLE 1 HERE] 

 

[INSERT TABLE 2 HERE] 

 

 

2 Gaussian Process Regression (GPR) 

 

Gaussian Process Regression (GPR) is a technique of increasing importance in the Machine 

Learning field, and which is finding greater utility in the physical and biological sciences [8, 

13 – 16, 22]. This technique has been reported on and reviewed extensively elsewhere and 

the reader is directed to those sources for further information [9, 15 – 24]. 

 

It is possible that inferring the hyperparameters from the data could be particularly 

problematic with small datasets. To resolve this, various optimisation methods have been 

used to obtain the hyperparameters that minimise negative log marginal likelihood values. 



The methods used include the Conjugate Gradient, Grid Search, Random Search, Hyper-Prior 

and Evolutionary Algorithm methods.  

 

3. Experimental Set-Up 

 

3.1 Software  

A range of methods were used for analysis of the data. Gaussian Process methods with a 

range of kernels, and a range of methods to vary the model hyperparameters (the Conjugate 

Gradient, Grid Search, Random Search, Hyper-Prior methods and Evolutionary Algorithms) 

were employed. The Gaussian Process modelling methods for non-linear regression used 

previously were again adopted for this study [7, 8, 19, 22]. The latest version of the Hyper 

Prior optimisation Toolbox was also used [21]. The MatLab Genetic Algorithm (GA) 

optimisation toolbox was used to carry out the Evolutionary Algorithm hyperparameter 

optimisation. Quantitative structure-permeability relationships (QSPRs) were used as 

benchmarks [25, 26]. 

 

3.2 Cross-validation 

The importance of model validation in constructing computational models has been 

discussed previously [27]. In this study, we have validated models using the cross-validation 

technique [28]. 5-fold cross-validation was performed. The datasets were shuffled and 

divided into 5 ‘folds’. Each time one of the folds was considered as the test set and the 

remaining four were considered as the training set. At this point, a validation set was 

removed from the training set. The hyperparameter optimisation methods were then 

applied to the training set and the prediction performances were gained for the validation 

set. This was then repeated for the other 3 possible validation sets. The best 

hyperparameters were chosen as those performed best over the four validation sets (the 

minimum average MSLL values, which are defined in Section 4). They were used to predict 

the permeability values of the test set.  

 

3.3 Initialisation of experiments 

The experiments were initialised as follows: 

 Grid search: The hyperparameters were considered as a range [10-3, 103] with 20 

equidistant steps. Using a 5-fold cross validation the model was trained with all the 

8,000 (20 x 20 x 20) different sets of the hyperparameters and the predictions obtained 



for the test sets. On inspecting the prediction performances on the validation sets a finer 

search for better values of the hyperparameters was then performed with the search 

range limited to [0.01, 10] with 20 steps as no better results were obtained using the 

hyperparameters outside this range. The model was then trained with the new 

hyperparameters and tested on the test sets. The average values and their standard 

deviation among 5-folds were then reported. 

 Random search: 20 values for each hyperparameter were obtained randomly within the 

same range [0.01, 10] considered in the grid search. Using 5-fold cross validation the 

model was then trained and the predictions obtained. Since, in each run of this 

experiment, the hyperparameters were selected randomly the experiment was repeated 

5 times and the results were obtained by calculation of the mean and standard deviation 

of the experiment’s results.  

 Conjugate gradient: The hyperparameters were initialised to log (0.5) with the number 

of function evaluations set to 100. 

 Hyper Prior methods: The mean and variance parameters of the Gaussian and Laplacian 

priors were set to constant values of 0.1 and 0.01, respectively and were obtained as the 

best prediction performances using cross-validation in each of the data sets. For the 

Smooth Box Prior method, a, b and  values were set to 10-3, 10 and 2, respectively. 

Various values of  were evaluated and the value 2 was found to be the best value for 

the data sets used in this study. 

 Evolutionary algorithm: Following an evaluation of ratios ranging from 0.1 to 1.2, the 

heuristic crossover function with a ratio of 0.7 was used to accelerate convergence as it 

was found to have the optimum performance for the data sets used. Each of the 50 

generations has a population of 50 and the optimised hyperparameters were obtained 

from the last generation. The ‘Elite’ Children value was set to 4 and the mutation 

function was kept uniform, meaning that the children were randomly selected from a 

uniform distribution within the range of hyperparameters. The crossover fraction was 

set to 0.8 (0.8 * 50 = 40), meaning that the rest of the children in a population are 4 Elite 

children and 6 children were obtained from mutation. The population of the first 

generation was initialised randomly and was therefore similar to the Random Search. 

This experiment was repeated five times using the Genetic Algorithm Toolbox in 

MatLab. 

 

3.4 Data set analysis 



The different data sets used in this study were characterised in terms of their membership 

(data set size) and range (the range of physicochemical descriptors used). Data used are 

those published previously [29, 30] and are shown in Tables 1 and 2.  

 

3.5 The effect of the size of the data set and the range of the physicochemical descriptor 

values on prediction performance 

 

Due to their ubiquitous use in this field, and their relevance as benchmarks in this study, the 

effects of molecular weight and lipophilicity (as log P or log Ko/w) were considered [4]. The 

first experiment considered how changes to the size (membership) of the data set affected 

the statistical quality of the resultant models whilst maintaining the range, or ‘chemical 

space’, of each model. The data set reported previously by Magnusson [29] was used for this 

experiment. In separate experiments this data set was used to construct four smaller 

subsets that maintained the range of descriptors of the original data set (Table 2). To 

construct these data sets four subsets (of size 44, 33, 17 and 9) were chosen from the 

Magnusson data set. Chemicals were selected only to ensure that the maximum and 

minimum MW ranges were maintained across all the data sets. The GPR model was then 

trained with each data set, with the hyper-prior Smoothbox and conjugate gradient 

optimisation methods employed to set the best hyperparameters for the models. As a 

benchmark the QSPR reported previously [26] was used, with a concentration correction to 

adjust between kp and Jmax, as the Potts and Guy QSPR model [25] did not perform well in 

the initial analysis. This experiment was repeated with subsets of the Magnusson data set 

which maintained the range of log P values across all data sets whilst reducing the data set 

membership. Subsets in both experiments were of the same size.  

 

The final set of experiments involved creating four training sets of the Magnusson data set 

where the membership again was kept constant (at n = 40) to remove any effect associated 

with data set size.  But, in these cases, the range of the physicochemical descriptor values 

examined (MW and log P) were systematically reduced by the generation of random subsets 

from the parent data set. A fixed test set was also produced; one-fifth of the Magnusson (Set 

A) was considered to be the test set and the training sets (including 5-fold cross-validation) 

were generated from the remaining data. The range of the first training set can be obtained 

by adding and subtracting the standard deviation of MW to and from the median of all MW 

values (excluding the values in the fixed test set). To keep the size of each training set the 



same (n = 40), members of the subset were picked at random from the given range. To 

obtain the next training sets, the standard deviation is added by larger values (for example, 

40, 100 and 200, respectively), and the same process is repeated. The GPR model was then 

trained using the smoothbox hyper-prior and conjugate gradient methods, and the 

predicted log Jmax values were reported for the same test set. As data was chosen randomly 

within each data range, the experiment was repeated ten times, with the mean and 

standard deviations being reported for both the GPR models and the QSPR benchmark. The 

same methods were used to analyse changes to both MW and log P. 

 

 

4. PERFORMANCE MEASURES 

 

The correlation coefficient (r), Mean Standard Log Loss (MSLL) [22] and improvement over 

the naïve model (ION, where the naïve model always predicts the mean of the target value 

in the training set independently of the input), were used, as in previous studies, to 

determine the model performance [8, 20, 24].  

 

ION measures how much better a predictor is than the naïve predictor. ION ranges from - 

to 1, and greater positive ION values represent better performance. MSLL will be 

approximately zero for simple methods and negative for better methods [22]. The 

correlation coefficient ranges from -1 to 1 and in this study a high positive value defines 

good prediction performance [24]. 



RESULTS AND DISCUSSION 

 

 

Selection of optimum hyperparameter method 

 

The statistical measures (MSLL, ION and r) used to assess the quality of the different 

hyperparameter methods are shown in Table 3. The data sets in Table 3 are listed based on 

size, from the largest to the smallest, taken from the dataset published previously [29]. The 

best results for each data set are shown in bold text, and the worst result shown in 

underlined text. 

 

[INSERT TABLE 3 HERE] 

 

The MSLL results indicate that the smooth box hyper-prior kernel works better than the 

other methods for the majority of the datasets. It generally shows a good performance for 

all datasets irrespective of size. The ION and correlation coefficient results also show that 

this method results in better prediction performances for four of the datasets. A benchmark 

analysis using the Potts and Guy QSPR model [25], and comparing the correlation 

coefficients only, performs significantly worse than all the other methods in all the datasets. 

The results in Table 3 indicate that the hyper-prior Smoothbox method produces, 

independently of the performance measures used, the best overall performance for the 

majority of data sets. The inconsistency between ION and MSLL results may be a result of 

small data sets as the predictive variance, which is part of MSLL but not ION, is generally so 

much more variable in smaller data sets.  Using the Evolutionary Algorithm (EA) to optimise 

the hyperparameters generally works better, in terms of performance measures, for larger 

data sets than for smaller data sets. In this study, the worst performances from application 

of the EA method are found with the smallest data sets.  

 

Table 3 also shows that the outcomes from the grid search and random search 

hyperparameter optimisation methods were broadly similar in their performance measures. 

This partially mirrors previously reported findings [31]. Interestingly, in this study whilst both 

methods were generally positive they were not the best methods tested to optimise the 

hyperparameters. This may be due to the limitations of these methods in searching a space 

of three hyperparameters which are limited to a number of points in that space – in this case 



this is 20 x 20 x 20 = 8000 – and that a manual manipulation of these spaces may optimise 

model performance. It also appears that small changes in certain hyperparameter values 

exerts a significant impact on the results generated by these techniques. The implication for 

this is that, for either small data sets or sources of variable data, small differences in the 

analytical techniques used to generate outputs may have significant implications for the 

accuracy of the resultant predictions.  

 

It is also important to note that the hyper-prior optimisation method outperforms the 

conjugate gradient method, even though the latter is the method most commonly used to 

optimise hyperparameters in GPR [17]. This is shown in Figure 1, where the comparison of 

MSLL values is shown for a range of optimisation methods, and the Smoothbox hyper-prior 

method clearly outperforms the conjugate gradient method for the majority of data sets. A 

smaller standard deviation of MSLL is obtained when the hyper-prior method was used 

compared to the conjugate gradient method.  

 

[INSERT FIGURE 1 HERE] 

 

[INSERT FIGURE 2 HERE] 

 

The effect of the size of the data set and the range of the physicochemical descriptor 

values on prediction performance  

 

The results from altering the data set memberships are shown in Table 4. The most 

significant finding is that decreasing the size of the data set (from 85 to 9 members) but 

maintaining the maximum range of molecular weight does not significantly affect the good 

performance of the model. In all cases where the statistical measure does fall – for example, 

with the smallest data sets, the drop in the correlation coefficient, for example, is to 0.88 or 

0.83, depending on the hyperparameter optimisation method used (Table 4).  Overall, 

similar results are obtained for the different GPR hyperparameter optimisation methods.  

 

[INSERT TABLE 4 HERE] 

 

When the data set membership is decreased and the range of log P values kept constant the 

statistical quality of the models is not substantially affected. However, the outcomes of this 



study are not as clear-cut as the previous experiment. While model performance increases 

in some cases with decreasing data sets – for example, increases in ION from 0.93 to 0.94 

are observed, model performance declines in other cases. Such decreases are shown in 

Table 4 and include reduction in ION of 0.93 to 0.72, and from 0.93 to 0.80, for the 

Smoothbox and conjugate gradient methods, respectively. This illustrates not only the 

importance of a correct data set design when conducting modelling experiments [11] but 

also the importance of transparency in model construction and use [33]. This again 

highlights the importance of the range of significant physicochemical descriptors and how 

they may affect the resultant model and its predictions of skin permeability.  

 

That the data range should be as wide as possible also has an implication on the descriptor 

choice, despite previous GPR studies [8, 24] indicating that a certain degree of 

interchangeability between parameters due to covariance might be significant in flexibly 

generating models of the same statistical quality. For example, an examination of previously 

published data sets [26, 29, 33] indicates that the majority of chemicals present in those 

data sets have a small number of hydrogen bonding groups – usually from zero to three. If 

the implications of these studies are valid, it may be hypothesised that little improvement in 

GPR models would be seen even if hyperparameter optimisation is conducted.  

 

The final set of experiments involved creating subsets of the Magnusson data set where the 

membership again was kept constant (at n = 40) and the range of descriptors altered. The 

results of these experiments are shown in Table 4. They show that keeping the size of the 

data sets fixed and decreasing the range of MW is directly related to the model’s 

performance. The same effect is not observed for changes to the log P range.  These results 

imply that if the data sets that are used for training the model cover as wide a range of 

physicochemical descriptor values as possible then a good prediction performance can be 

expected [34].   

 

Conclusions 

 

Using the hyper-prior Smoothbox method to optimise the GPR hyperparameters works 

better than other hyperparameter optimisation methods and does so independently of the 

data and the performance measure methods used to characterise model quality. This 

method optimised GPR results in models with a better statistical performance than previous 



GPR models where hyperparameters are not optimised [8, 24]. Both of these approaches are 

significantly better than established QSPR models [25, 26].  

 

Whilst hyperparameter optimisation improved model quality and maintained the 

performance measures it should not be used in isolation; even in small data sets there was 

variation within the chosen method of hyperparameter optimisation, with the Smoothbox 

method producing the best outcomes in the majority of situations. Investigation of the 

physicochemical descriptors used in this data set suggests that the data set range and not 

necessarily the population should be as wide as possible. 

 

The nature of the analysis is also examined in this study. Comparison of data sets where the 

membership is kept constant whilst the range of significant chemical features is altered 

generally indicated that the range of test and training sets needs to be maintained, as it may 

be inferred that not doing so may lead to issues of variability in performance due to how the 

model is trained, and with which data the model is tested with. 

 

Thus, a consistent approach to data set design is recommended. Models should not simply 

be constructed based on the addition of all available data to a large data set, but rather 

should consider the effective and accurate range of the model and whether additional data 

actually helps the model – in this study it is clear that additional data does not add 

significantly to model quality in some cases. This may be extended into considerations of 

which physicochemical or experimental parameters are used to construct the model and 

whether any parameters limit the quality of the model. This study again shows that GPR 

models outperform QSPR models in a ‘chemical space’ in which those models should be 

effective [6]. The most significant implication is that a high quality model can be constructed 

from a relatively small data set. Such a model can cover a wide ‘chemical space’ but, given 

the improvement observed by the optimisation of the hyperparameters of the GPR model 

the construction of high quality models with significant real-world relevance is now readily 

achievable with fewer data than before. 
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Figure 1. 

Comparison of MSLL performances for the Conjugate Gradient and Hyper-prior Smoothbox 

methods for each dataset. 

 

Figure 2. Range of physicochemical descriptors in the datasets used in this study. 

 

Table 1. 

Summary of the data sets used in this study. 

 

Table 2. 

Dataset used for analysis of subsets. Data is taken from Magnusson’s study [29, 35 – 54] and 

subdivisions of this data are shown for studies where the systematic reduction of dataset 

size was undertaken whilst retaining the range of key parameters (log Kow, MW). 

Note:  Where the log Kow (log P) range is maximised, the range is from -4.67 to 4.52 for 
datasets of all sizes and MW ranges are: dataset (n = 9), 46 to 316.5; dataset (n = 
17), 18 to 434.5; dataset (n = 33), 32 to 434.5; dataset (n = 44), 32 to 476.6. 
Where the MW range is maximised, the range is from 18 to 476.6 for all sizes and 
log Kow (log P) ranges are: dataset (n = 9), -4.6 to 4.04; dataset (n = 17), -4.67 to 4.04; 
dataset (n = 33), -4.67 to 4.04; dataset (n = 44), -4.67 to 4.52. 

 

 

Table 3. 

Statistical performance measures (MSLL, correlation coefficient and ION) used to determine 

the performance of each method for the range of tests evaluated in this study. Note: for 

each optimization method or test the best performing models are shown in bold text, and 

those with the worst performance are shown in underline. Note: 1Taken from [29]; 2Taken 

from [30]. 

 

Table 4. 

Statistical performance of the test data set [29, 30] and various subsets based on altering 

the range and size of data in each subset. 

 

 
 



Table 1. 

 

Dataset 
 

Number of 
data 
points 

Number of 
descriptors 
used 

Descriptors used Target Reference 

Human A 
 

21 5 log P, MW, HA, HD, SP log kp [7, 30] 
 

Human B 
 

84 5 log P, MW, HA, HD, SP log kp [7, 30] 
 

Rat 
 

26 5 log P, MW, HA, HD, SP log kp [7, 30] 
 

Mouse 
 

46 5 log P, MW, HA, HD, SP log kp [7, 30] 
 

Pig 
 

14 5 log P, MW, HA, HD, SP log kp [7, 30] 
 

Magnusson 
Set A (t) 

85 6 log P, MPt, MW, HA, HD, Texp Jmax [29] 

Magnusson 
Set B (Vs) 

50 6 log P, MPt, MW, HA, HD, Texp Jmax [29] 

Magnusson 
Set C (Vp) 

27 6 log P, MPt, MW, HA, HD, Texp Jmax [29] 

Magnusson 
Set D (Vf) 

45 6 log P, MPt, MW, HA, HD, Texp Jmax [29] 

Where log P is the octanol-water partition coefficient; HA and HD represent the number of hydrogen bond acceptor and donor 

groups on a molecule, respectively; MW is the molecular weight; SP is the Fedor’s solubility parameter; MPt is the melting point; Texp 

is the experimental temperature. For the Magnusson datasets [29] the text in brackets at the end of each dataset is the notation 

used in the original paper, e.g. Magnusson Set A (t) is the dataset listed as ‘t’ in the original study. 



Table 2.   

 
Chemical 

Number 

(from [29]) 

Chemical name Experimental 

temperature  

(K) 

MW  log 

Kow  

(log 

P) 

MPt 

(K) 

 HD  HA log 

Jmax 

Dataset maintaining the range of MW values but 

reducing, from subset 1 to subset 4, the size of the 

dataset. 

Dataset maintaining the range of logP values but 

reducing, from subset 1 to subset 4, the size of the 

dataset. 

References 

(source of 

data) 

Included 

in data 

subset 1 

Included 

in data 

subset 2 

Included 

in data 

subset 3 

Included 

in data 

subset 4 

Included 

in data 

subset 1 

Included 

in data 

subset 2 

Included 

in data 

subset 3 

Included 

in data 

subset 4 
  

                                    

1 Water 303 18 -1.38 273 2 1 -4.19  ✓ ✓ ✓     ✓   [37] 

2 Water 305 18 -1.38 273 2 1 -4.07 ✓               [41] 

3 Water 298 18 -1.38 273 2 1 -4.56 ✓               [49] 

4 Methanol 298 32 -0.72 175 1 1 -4.81 ✓ ✓     ✓   ✓   [49] 

5 Methanol 303 32 -0.72 175 1 1 -4.3 ✓         ✓     [52] 

6 Ethanol 298 46 -0.19 159 1 1 -4.87 ✓ ✓ ✓   ✓     ✓ [49] 

7 Propanol 303 60 0.34 147 1 1 -4.65 ✓           ✓   [38] 

8 Propanol 298 60 0.34 147 1 1 -4.8 ✓ ✓             [49] 

9 Urea 310 60.1 -2.11 406 4 3 -5.87         ✓ ✓ ✓   [37] 

10 Urea 300 60.1 -2.11 406 4 3 -5.76         ✓       [46] 

11 Urea 312 60.1 -2.11 406 4 3 -5.6   ✓ ✓ ✓ ✓       [46] 

12 2-Butanone 303 72.1 0.37 187 0 1 -4.86           ✓     [39] 

13 Ethyl ether 303 74.1 0.98 157 0 1 -4.88         ✓   ✓ ✓ [39] 

14 Butanol 303 74.1 0.88 184 1 1 -5.59                 [38] 

15 Butanol 298 74.1 0.88 184 1 1 -5.67   ✓ ✓           [49] 

16 Benzene 304 78.1 2.22 279 0 0 -5.61 ✓ ✓     ✓ ✓ ✓   [38] 

17 Pentanol 298 88.2 1.41 194 1 1 -5.82 ✓       ✓       [49] 

18 2-Ethoxy ethanol 303 90.1 -0.27 183 1 2 -5.58 ✓       ✓       [39] 

19 2,3-Butanediol 303 90.1 -0.99 298 2 2 -6.25 ✓         ✓   ✓ [39] 

20 Toluene 310 92.1 2.68 178 0 0 -5.32 ✓ ✓             [35] 

21 Phenol 310 94.1 1.48 314 1 1 -4.77   ✓ ✓ ✓     ✓   [51] 

22 Phenol 295 94.1 1.48 314 1 1 -6.88                 [52] 

23 Phenol 298 94.1 1.48 314 1 1 -5.17           ✓     [47] 



24 Hexanol 298 102.2 1.94 228 1 1 -6.13   ✓             [49] 

25 p-Cresol 298 108.1 1.94 309 1 1 -5.47 ✓ ✓ ✓     ✓     [48] 

26 Benzyl alcohol 298 108.1 1.04 258 1 1 -5.62 ✓       ✓       [47] 

27 

o-

Phenylenediamine 305 108.1 0.05 377 4 2 -6.74 ✓       ✓ ✓     [40] 

28 p-Cresol 298 108.1 1.94 285 1 1 -5.45 ✓               [48] 

29 p-Cresol 310 108.1 1.94 309 1 1 -4.62 ✓           ✓   [36] 

30 p-Cresol 298 108.1 1.94 303 1 1 -5.44 ✓               [48] 

31 

p-

Phenylenediamine 305 108.1 -0.85 419 4 2 -7.09 ✓               [40] 

32 Resorcinol 298 110.1 0.76 384 2 2 -5.81   ✓ ✓ ✓         [48] 

33 Heptanol 303 116.2 2.47 238 1 1 -6.27   ✓             [39] 

34 Heptanol 298 116.2 2.47 238 1 1 -6.34         ✓ ✓ ✓   [49] 

35 Benzoic acid 308 122.1 1.9 395 1 2 -5.9         ✓ ✓     [45] 

36 p-Ethylphenol 298 122.2 2.47 318 1 1 -5.85         ✓       [48] 

37 3,4-Xylenol 298 122.2 2.4 334 1 1 -5.83         ✓ ✓     [48] 

38 2-Phenylethanol 298 122.2 1.36 259 1 1 -5.86   ✓     ✓       [47] 

39 

4-Hydroxybenzyl 

alcohol 310 124.1 0.3 393 2 2 -6.97   ✓ ✓   ✓       [35] 

40 p-Chlorophenol 298 128.6 2.43 317 1 1 -5.17         ✓       [48] 

41 o-Chlorophenol 298 128.6 2.04 282 1 1 -5.25               ✓ [48] 

42 

5-Fluorouracil (+ - 

+ -) 305 130.1 -0.78 556 2 4 -8.57 ✓               [53] 

43 Octanol 303 130.2 3 258 1 1 -6.6 ✓       ✓ ✓     [52] 

44 Octanol 298 130.2 3 258 1 1 -6.67 ✓ ✓ ✓ ✓ ✓       [49] 

45 Nicotinate, methyl 310 137.1 0.88 316 0 3 -5.97   ✓       ✓     [42] 

46 m-Nitrophenol 298 139.1 1.93 370 1 4 -6.28         ✓ ✓     [48] 

47 p-Nitrophenol 298 139.1 1.57 387 1 4 -6.25               ✓ [48] 

48 Chlorocresol 298 142.6 2.89 340 1 1 -5.72           ✓     [48] 

49 Nonanol 298 144 3.53 268 1 1 -7.23                 [49] 

50 beta-Naphthol 298 144.2 2.71 396 1 1 -6.71                 [48] 

51 Thymol 298 150.2 3.28 325 1 1 -6.45         ✓       [48] 

52 Nicotinate, ethyl 310 151.2 1.41 282 0 3 -5.65         ✓       [42] 

53 

alfa-(4-

Hydroxyphenyl) 310 151.2 -0.29 450 3 3 -7.37         ✓ ✓     [36] 



acetamide 

54 

Methyl-4-hydroxy 

benzoate 298 152.1 1.87 401 1 3 -6.92   ✓ ✓   ✓       [48] 

55 Chloroxylenol 298 156.6 3.35 389 1 1 -6.95   ✓             [48] 

56 Decanol 298 158.3 4.06 279 1 1 -7.73         ✓       [49] 

57 

2,4-

Dichlorophenol 298 163 3 318 1 1 -5.73 ✓       ✓   ✓   [48] 

58 p-Bromophenol 298 173 2.49 337 1 1 -5.5 ✓ ✓       ✓     [48] 

59 Mannitol 303 182.2 -4.67 440 6 6 -6.93 ✓ ✓ ✓ ✓ ✓       [43] 

60 Mannitol 312 182.2 -4.67 440 6 6 -7.05 ✓       ✓ ✓     [46] 

61 Mannitol 300 182.2 -4.67 440 6 6 -7.26 ✓       ✓ ✓ ✓ ✓ [46] 

62 

2,4,6-

Trichlorophenol 298 197.5 3.58 342 1 1 -6.57 ✓ ✓       ✓   ✓ [48] 

63 Estrone 299 270.4 3.69 528 1 2 

-

10.76   ✓ ✓     ✓ ✓   [49] 

64 beta-Estradiol 310 272.4 4.13 449 2 2 -9.89         ✓       [44] 

65 beta-Estradiol 305 272.4 4.13 449 2 2 -10.2         ✓ ✓     [54] 

66 beta-Estradiol 299 272.4 4.13 449 2 2 

-

11.88         ✓       [49] 

67 Estriol 299 288.4 2.94 555 3 3 

-

11.23 ✓       ✓ ✓   ✓ [49] 

68 Testosterone 298 288.4 3.48 428 1 2 

-

10.16 ✓               [50] 

69 Testosterone 299 288.4 3.48 428 1 2 

-

10.46 ✓ ✓         ✓   [49] 

70 Progesterone 299 314.5 4.04 394 0 2 

-

10.37 ✓ ✓ ✓ ✓ ✓ ✓     [49] 

71 Pregnenolone 299 316.5 4.52 466 1 2 

-

10.09 ✓       ✓ ✓ ✓ ✓ [49] 

72 Cortexone 299 330.5 3.41 415 1 3 -9.87 ✓         ✓     [49] 

73 

17-alfa-

Hydroxyprogester

one 299 330.5 2.89 496 1 3 

-

10.77 ✓ ✓             [49] 

74 Sucrose 310 342.3 -3.85 459 8 11 -7.24   ✓ ✓   ✓ ✓     [35] 

75 Corticosterone 298 346.5 1.76 454 2 4 

-

10.89         ✓ 

 

✓   [50] 

76 Corticosterone 299 346.5 1.76 454 2 4 

-

10.54         ✓ ✓     [49] 

77 Corticosterone 312 346.5 1.76 454 2 4 -8.83         ✓ 

 

    [46] 

78 Corticosterone 300 346.5 1.76 454 2 4 -9.51 ✓ ✓     ✓       [46] 



79 Prednisolone 298 360.4 1.69 514 3 5 

-

10.56 ✓ ✓ ✓ ✓   ✓     [50] 

80 Cortisone 299 360.5 1.24 495 2 5 

-

11.19 ✓       ✓ ✓     [49] 

81 

Hydrocortisone 

(HC) 298 362.5 1.43 493 3 5 -11.6 ✓               [49] 

82 

Hydrocortisone 

(HC) 299 362.5 1.43 493 3 5 

-

11.64 ✓ ✓       ✓ ✓   [49] 

83 Triamcinolone 298 394.5 1.03 543 4 6 

-

12.09 ✓ ✓ ✓   ✓ ✓     [50] 

84 

Triamcinolone 

acetonide 298 434.5 2.6 566 2 6 

-

12.01 ✓ ✓       ✓ ✓   [50] 

85 

Betamethasone-

17-valerate 298 476.6 3.98 457 2 6 

-

10.65 ✓ ✓ ✓ ✓ ✓       [50] 

Note:  Where log P is the octanol-water partition coefficient, represented by log Kow in the original paper [29]; HA and HD represent the number of hydrogen bond 

acceptor and donor groups on a molecule, respectively; MW is the molecular weight; MPt is the melting point; Texp is the experimental temperature.  

Where the lipophilicity (log Kow, or log P) range is maximised, the range is from -4.67 to 4.52 for all four datasets of different sizes, and MW ranges are: 46 to 316.5 

(for dataset where n=9); 18 to 434.5 (n=17); 32 to 434.5 (n=33); 32 to 476.6 (n=44). Where the MW range is maximised, MW range is from 18 to 476.6 for datasets 

of all sizes and logKow ranges are: -4.6 to 4.04 (for dataset where n=9); -4.67 to 4.04 (n=17); -4.67 to 4.04 (n=33); -4.67 to 4.52 (n=44). 

 



 

Table 3.  

 

Dataset Grid search Random 

search 

Conjugate 

Gradient  

Hyper-prior 

(Gaussian) 

Hyper-prior 

(Laplace) 

Hyper-prior 

(Smoothbox) 

 

Evolutionary 

algorithm 

QSPR 

(correlation 

(r) only) 

 

Correlation coefficient, r 

 

Magnusson Set A1 0.96 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.96 ± 0.02 0.96 ± 0.02 0.97 ± 0.02 0.97 ± 0.02 0.10±0.14 

Human B2 0.59 ± 0.15 0.60 ± 0.15 0.60 ± 0.14 0.64 ± 0.11 0.64 ± 0.11 0.63 ± 0.11 0.64 ± 0.11 0.08±0.20 

Magnusson Set B1 0.93 ± 0.05 0.90 ± 0.05 0.94 ± 0.05 0.85 ± 0.11 0.83 ± 0.12 0.96 ± 0.03 0.95 ± 0.03 0.38±0.16 

Mouse2 0.52 ± 0.40 0.52 ± 0.40 0.50 ± 0.44 0.51 ± 0.39 0.53 ± 0.37 0.51 ± 0.35 0.50 ± 0.39 -0.38±0.37 

Magnusson Set D1 0.59 ± 0.31 0.56 ± 0.31 0.59 ± 0.31 0.60 ± 0.25 0.62 ± 0.28 0.55 ± 0.27 0.54 ± 0.25 -0.18±0.48 

Magnusson Set C1 0.83 ± 0.13 0.83 ± 0.13 0.81 ± 0.11 0.63 ± 0.24 0.65 ± 0.23 0.80 ± 0.15 0.75 ± 0.03 -0.77±0.23 

Rat2 0.15 ± 0.72 0.18 ± 0.71 0.19 ± 0.68 0.53 ± 0.56 0.56 ± 0.49 0.56 ± 0.49 0.08 ± 0.81 0.30±0.64 

Human A2 0.74 ± 0.17 0.74 ± 0.17 0.73 ± 0.19 0.77 ± 0.15 0.77 ± 0.17 0.77 ± 0.16 0.70 ± 0.16 0.37±0.45 

Pig2 0.84 ± 0.01 0.92 ± 0.18 0.87 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.87 ± 0.01 0.65 ± 0.36 0.29±0.31 

 

MSLL 

 

Magnusson Set A1 -1.33 ± 0.21 -1.32 ± 0.02 -1.35 ± 0.14 -0.97 ± 0.06 -0.99 ± 0.04 -1.35 ± 0.10 -1.10 ± 0.02 - 

Human B2 -0.22 ± 0.35 -0.15 ± 0.07 1.17 ± 2.90 -0.16 ± 0.07 -0.15 ± 0.07 -0.27 ± 0.10 -0.20 ± 0.01 - 

Magnusson Set B1 -0.95 ± 0.28 -0.98 ± 0.02 -0.98 ± 0.21 -0.56 ± 0.14 -0.62 ± 0.11 -0.99 ± 0.18 -0.80 ± 0.06 - 



Mouse2 0.07 ± 0.56 0.74 ± 0.48 0.72 ± 0.86 -0.02 ± 0.07 -0.06 ± 0.11 -0.13 ± 0.28 -0.10 ± 0.01 - 

Magnusson Set D1 -0.22 ± 0.22 -0.18 ± 0.02 -0.18 ± 0.19 -0.12 ± 0.12 -0.23 ± 0.21 -0.15 ± 0.15 -0.10 ± 0.01 - 

Magnusson Set C1 -0.20 ± 0.80 -0.17 ± 0.17 -0.20 ± 0.82 -0.15 ± 0.06 -0.12 ± 0.43 -0.40 ± 0.32 -0.30 ± 0.04 - 

Rat2 -0.04 ± 0.76 -0.10 ± 0.14 -0.31 ± 0.30 -0.11 ± 0.07 -0.37 ± 0.29 -0.43 ± 0.29 0.16 ± 0.15 - 

Human A2 -0.22 ± 0.27 -0.14 ± 0.10 -0.23 ± 0.26 -0.13 ± 0.15 -0.32 ± 0.27 -0.16 ± 0.14 -0.10 ± 0.06 - 

Pig2 -0.98 ± 0.37 -1.01 ± 0.09 -0.90 ± 0.36 -0.50 ± 0.15 -0.93 ± 0.43 -0.72 ± 0.31 -0.00 ± 0.42 - 

 

ION 

 

Magnusson Set A1 0.91 ± 0.02 0.91 ± 0.00 0.93 ± 0.02 0.89 ± 0.03 0.91 ± 0.02 0.93 ± 0.02 0.93 ± 0.00 - 

Human B2 0.34 ± 0.21 0.32 ± 0.01 0.36 ± 0.17 0.41 ± 0.13 0.41 ± 0.14 0.41 ± 0.16 0.41 ± 0.01 - 

Magnusson Set B1 0.82 ± 0.08 0.77 ± 0.02 0.84 ± 0.08 0.67 ± 0.17 0.69 ± 0.18 0.85 ± 0.07 0.82 ± 0.02 - 

Mouse2 0.28 ± 0.31 0.27 ± 0.06 0.24 ± 0.38 0.29 ± 0.29 0.32 ± 0.27 0.28 ± 0.32 0.23 ± 0.01 - 

Magnusson Set D1 0.24 ± 0.27 0.20 ± 0.03 0.24 ± 0.28 0.21 ± 0.14 0.30 ± 0.22 0.22 ± 0.18 0.23 ± 0.02 - 

Magnusson Set C1 0.55 ± 0.23 0.55 ± 0.01 0.47 ± 0.22 0.30 ± 0.17 0.42 ± 0.20 0.47 ± 0.21 0.39 ± 0.02 - 

Rat2 0.10 ± 0.58 0.08 ± 0.04 0.24 ± 0.25 0.31 ± 0.21 0.29 ± 0.34 0.40 ± 0.20 0.00 ± 0.22 - 

Human A2 0.27 ± 0.30 0.24 ± 0.09 0.27 ± 0.27 0.30 ± 0.14 0.38 ± 0.24 0.29 ± 0.13 0.14 ± 0.05 - 

Pig2 0.77 ± 0.18 0.81 ± 0.06 0.82 ± 0.13 0.65 ± 0.16 0.82 ± 0.14 0.80 ± 0.13 0.45 ± 0.11 - 

1. Magnusson et al., 2004 
2. Moss and Cronin, 2002 

  



 

Table 4.  

 
Performance / 
subsets 

Original dataset and subsets which maintain a full 
range of molecular weight, based on the original 

dataset1 

 

Original dataset and subsets which maintain a full 
range of log P, based on the original dataset1 

Original dataset and subsets2 in which the range of 
molecular weight is systematically reduced, based on 

the original dataset1 

Original dataset and subsets2 in which the range of 
log P is systematically reduced, based on the original 

dataset1 

Magnuss
on 

Subset 
1 

Subset 
2 

Subset 
3 

Subset 
4 

Magnusson Subset 
1 

Subset 
2 

Subset 
3 

Subset 
4 

Magnusson Subset 
1 

Subset 
2 

Subset 
3 

Subset 
4 

Magnusson Subset 
1 

Subset 
2 

Subset 
3 

Subset 
4 

Size of dataset 85 44 33 17 9 85 44 33 17 9 85 40 40 40 40 85 40 40 40 40 

ION 
(Smoothbox 
hyper-prior) 

0.93 0.92 0.91 0.88 0.90 0.93 0.90 0.93 0.94 0.72 0.93 0.11 ± 
0.05 

0.68 ± 
0.29 

0.81 ± 
0.10 

0.91 ± 
0.03 

0.93 0.92 ± 
0.03 

0.90 ± 
0.02 

0.89 ± 
0.07 

0.91 ± 
0.04 

ION (conjugate 
gradient) 

0.93 0.89 0.90 0.87 0.88 0.93 0.89 0.92 0.94 0.80 0.93 0.10 ± 
0.05 

0.66 ± 
0.30 

0.80 ± 
0.10 

0.90 ± 
0.03 

0.91 0.90 ± 
0.03 

0.90 ± 
0.02 

0.88 ± 
0.07 

0.90 ± 
0.04 

MSLL 
(Smoothbox 
hyper-prior) 

-1.35 -1.20 -1.06 -0.88 -0.99 -1.35 -1.04 -1.1 -1.02 -0.98 -1.35 -1.18 
± 0.64 

-2.09 
± 0.73 

-1.26 
± 0.19 

-1.05 
± 0.27 

-1.35 -1.10 
± 0.43 

-1.07 
± 0.15 

-1.02 
± 0.28 

-1.15 
± 0.23 

MSLL 
(conjugate 
gradient) 

-1.35 -1.08 -1.06 -0.86 -1.06 -1.35 -1.04 -1.1 -1.02 -1.23 -1.35 -1.76 
± 0.69 

-2.10 
± 0.72 

-1.22 
± 0.23 

-1.00 
± 0.28 

-1.35 -0.66 
± 1.76 

-0.90 
± 0.62 

-0.94 
± 0.47 

-1.10 
± 0.24 

Correlation 
coefficient 
(Smoothbox 
hyper-prior) 

0.97 0.97 0.93 0.83 0.97 0.97 0.96 0.97 0.85 0.88 0.97 0.34 ± 
0.22 

0.73 ± 
0.09 

0.89 ± 
0.05 

0.95 ± 
0.01 

0.97 0.95 ± 
0.02 

0.95 ± 
0.01 

0.94 ± 
0.04 

0.95 ± 
0.03 

Correlation 
coefficient 
(conjugate 
gradient) 

0.97 0.97 0.93 0.83 0.89 0.97 0.96 0.97 0.85 0.90 0.97 0.32 ± 
0.30 

0.73 ± 
0.11 

0.88 ± 
0.05 

0.94 ± 
0.01 

0.97 0.95 ± 
0.02 

0.94 ± 
0.01 

0.94 ± 
0.05 

0.95 ± 
0.03 

Correlation 
coefficient 
(aqueous 
solubility)2 

0.56 0.60 0.60 0.49 0.27 0.56 0.50 0.66 0.68 0.41 0.56 0.59 ± 
0.16 

0.59 ± 
0.16 

0.59 ± 
0.16 

0.59 ± 
0.16 

0.56 0.59 ± 
0.16 

0.59 ± 
0.16 

0.59 ± 
0.16 

0.59 ± 
0.16 

Correlation 
coefficient 
(aqueous 
solubility, 
adjusted to 
temperature)2 

0.55 0.59 0.59 0.47 0.24 0.55 0.48 0.64 0.67 0.38 0.55 0.58 ± 
016 

0.58 ± 
0.16 

0.58 ± 
0.16 

0.58 ± 
0.16 

0.55 0.58 ± 
0.16 

0.58 ± 
0.16 

0.58 ± 
0.16 

0.58 ± 
0.16 

1. From [29] 

2. The range of values reduces from Subset 4 to Subset 1  
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1. PREAMBLE 
 
The majority of this material has been previously published in a number of our publications. It is 

collated here for both convenience and clarity. The full MatLab code for the GP method has been 

published previously [1]. 

 
 
2. THEORETICAL BACKGROUND 

 

2.1 Gaussian Process Regression (GPR) 

 

Gaussian Process Regression (GPR) is a technique of increasing importance in the Machine Learning 

field, and which is finding greater utility in the physical and biological sciences [2 – 6]. A GPR 

performs a non-linear regression optimised from the training data that consists of a number of input 

vectors (descriptor or features) with a corresponding target value. The input vectors are denoted 

as 𝑿, which includes 𝑵 input vectors 𝒙𝒊 (𝑖= 1, …, 𝑁).  The corresponding output values would be 

denoted by y and the new data point which we want to make the prediction of, y*, will be denoted 

as x*. Generally this is achieved by obtaining the weighted average of the y-values in the training set, 

with the weighting being the similarity of x* to the vectors in the training set 𝑿, e.g. the similarity of 

measured molecular weight and the number of hydrogen bonds of a chemical (x*) with the 

molecular weight and the number of hydrogen bonds of a chemical (𝒙𝒊) in the training set. Thus, the 

greater the similarity between these two chemicals gives a greater weighting. In a GPR, similarity is 

then measured using a covariance, or kernel, function; this is a function that takes two inputs and 

produces a single real value as its output. The prediction y* is given by: 

 

𝐸[𝒚∗] = 𝒌∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝒚          (1) 

 

where 𝒌∗is the vector of covariances between the test point and all the x-values in the training set. 

The term (𝐾 + 𝜎𝑛
2𝐼)−1, which is completely independent of a new data point, normalises the similarity 

vector 𝒌∗ (just as with the weighted average, it is necessary to divide by the sum of the weights). The 

normalised weights are multiplied by y-values and the prediction achieved. Further details can be 

found elsewhere [7]. 

 

A variety of kernels, or covariance functions, can be used in GPR models. In our initial studies, the 

Matérn, Polynomial and Gaussian covariance functions have been applied to the data. However, as 



the Matérn covariance function resulted in a better performance it is used as the main kernel 

function in this study [8, 9]. 

 

The Matérn covariance function has a positive parameter of 𝜈. This function becomes especially 

simple when 𝜈 is a half-integer: 𝜈 = 𝜌 + 1/2, where 𝜌 is a non-negative integer. The Matérn 

covariance function can be defined as a product of an exponential and a polynomial of order 𝜌. The 

most interesting cases for Machine Learning are 𝜈 = 3/2 and 𝜈 = 5/2 and they are defined [9] as: 

 

𝐾𝑣=3/2(𝑟) = (1 +
√3𝑟

𝑙
) exp (−

√3𝑟

𝑙
)       (2) 

 

and 

 

𝐾𝑣=5/2(𝑟) = (1 +
√5𝑟

𝑙
+

5𝑟2

3𝑙2 ) exp (−
√5𝑟

𝑙
)       (3) 

 

where 𝑟 = |𝒙𝑖 − 𝒙𝒋| and 𝑙 (length scale) is a positive hyperparameter. Further information on these 

functions can be found elsewhere. As mentioned earlier, the measured features may be noisy and 

this is modelled by multiplying the kernel by a signal variance parameter 𝜎𝑓
2. The observed y values 

may also be noisy and this is parameterised by the noise variance coefficient, 𝜎𝑛
2 that appears in 

Equation (1). 

 

2.2 The effect of hyperparameters on model performance 

 

The length scale (𝑙), signal variance, 𝜎𝑓
2, and noise variance, 𝜎𝑛

2, are called the hyperparameters (𝜃) of 

the model as they are parameters of a prior distribution. The length-scale, 𝑙, defines how fast a 

function sampled from the GP oscillates. For example, when the length scale is large, this represents 

a slow change and the curve is smooth; when the length scale is small, this represents a fast change 

and curve oscillates heavily. If the length scale is too small then the kernel value in, for example, a 

training set would be very small with a weighing close to zero, meaning that the test data will infer, 

or ‘learn’, nothing from the training data. Optimised values can be inferred from the data using 

either the marginal likelihood maximisation or methods of cross-validation and marginal likelihood 

can therefore be used as an appropriate cost function. More specifically, minimisation of the 

negative log marginal likelihood, ℒ, with respect to hyperparameters (𝜽) of the covariance results in 

the following expression [10]: 

 



ℒ = − log 𝑝(𝒚|𝜽)          (4) 

 

where                                                                                                                                                             

 

log 𝑝(𝒚|𝜽) = −
1

 2
log|𝐶(𝜽)| −

1

2
𝒚𝑻𝐶(𝜽)−1𝒚 −

𝑁

2
log(2𝜋)                                                             

    

where 𝑁 is the number of data, 𝒚 are the target values and 𝐶 = 𝐾𝑁 + 𝜎𝑛
2𝐼 [7]. 

 

It is possible that inferring the hyperparameters from the data could be particularly problematic with 

small datasets. To resolve this, various optimisation methods have been used to obtain the 

hyperparameters that minimise negative log marginal likelihood values. The methods used include 

the Conjugate Gradient, Grid Search, Random Search, Hyper-Prior and Evolutionary Algorithm 

methods.  

 

Conjugate Gradient method 

Essentially, the aim of any such analysis is to find the minimum of a cost function. The first-order 

method to achieving this is simply to follow the maximum gradient downwards. Usually, however, 

second-order methods are used to achieve this outcome. These include the Conjugate Gradient (CG) 

method, which is an iterative method normally used to solve a linear equation [11].  

 

Grid Search 

This method requires that the search should be conducted over a range of the parameters or 

hyperparameters used in a particular study. For a single parameter, a likely range of values is chosen, 

and the model is evaluated from values in this range. If there is more than one hyperparameter, 

then the search will take place in the Cartesian product defined by the range of each particular 

parameter (over a hyper-grid).  For example, if twenty equal steps are chosen in each parameter 

range and there are three parameters in the model, then the total number of different parameter 

combinations obtained will be 8,000 (i.e. 20 x 20 x 20).  

 

Random Search 

In this method the parameters are selected at random. When granting Random Search methods the 

same computational budget, this approach has found better models by efficiently searching a larger 

but less promising configuration space [12] although this is not a major concern in a study of this 

nature. 



 

Hyper-prior methods 

Hierarchical model specification is commonly used to gain a joint regularisation for individual 

models. The first level includes parameters that may be those used in linear or non-linear models; 

for example, the parameters of a simple linear regression model, such as weights. At the second 

level of the model hyperparameters, 𝜃, control the distribution of the first-level parameters. Finally, 

at the top-level models may feature a discrete set of possible model structures called Hyper-Priors 

(ℋ), which characterise the prior distributions of the hyperparameters. The Prior ‘over-models’ (ℋ) 

is often taken to be flat, so that one particular model is not favoured over another [7]. The ‘Prior 

Models’ in this study are the Gaussian, Laplacian, and non-linear Smoothbox Prior methods. 

Univariate smoothed-box prior distributions are defined with quadratic decay in the log domain and 

it supports the whole real axis. The model is constructed by cutting a Gaussian in two parts and 

inserting a uniform distribution from the lower bound parameter (a) to the upper bound parameter 

(b), which are the parameters of the Smoothbox Prior. The Hyper-Prior method also balances the 

probability mass between the constituents of the model; this is described by  such that 

(represents the box and  𝜂 + 1represents the Gaussian sides. Larger values of  tend 

to make the model more box-like, and Prior Smooth box distribution is given as:  

 

ℋ(𝜃) =
1

𝒲∙(
1

𝜂+1
)

∙ {

𝑁(𝜃|𝑎, 𝑠2) , 𝑡 ≤ 𝑎
1,                   𝑡 ∈ [𝑎, 𝑏]

𝑁(𝜃|𝑏, 𝑠2)            𝑏 ≤ 𝑡

      (5) 

 

and: 

 

𝒲 = |𝑏 − 𝑎|, 𝑠 =
𝒲

𝜂√2𝜋
         (6) 

 

 

 

where a is the lower-bound parameter, b is the upper-bound parameter, >0 is the slope parameter, 

t is zero by default (this can be chosen manually) and (1*N) contains query hyperparameters for Prior 

evaluation [13]. The mean and variance parameters of the Gaussian and Laplacian priors are 

normally initialised based on the nature of the data and these values can be obtained using cross-

validation in each of the data sets analysed in this study. 

 

Evolutionary Algorithms  



They are genetic population-based meta-heuristic techniques that aim to optimise the results in 

each ‘generation’ (iteration) of analysis. To evaluate the populations (e.g. possible values of 

hyperparameters) one of the Evolutionary Algorithm (EA) methods – reproduction, mutation, 

recombination or selection, or a mixture – can be applied. A ‘fitness’ function is then defined to 

determine the quality of the solution for each range of methods used. For example, the fitness 

function used in this study is the Negative Log Likelihood loss function (NLL), which should be 

minimised when compared to different combinations of hyperparameters. It is important to note 

that the fitness function results are static and only depends on the current information at a 

particular point. However, with the use of a heuristic crossover function the fitness function can be 

modified to vary dynamically based on current and previous results states. If this is the case the 

population in the first generation is initialised randomly, and the next generation’s population can 

be obtained using the following heuristic crossover function: 

 

𝑐ℎ𝑖𝑙𝑑 =  𝑝𝑎𝑟𝑒𝑛𝑡2 +  𝑟𝑎𝑡𝑖𝑜 ×  (𝑝𝑎𝑟𝑒𝑛𝑡1 −  𝑝𝑎𝑟𝑒𝑛𝑡2)      (7) 

 

The obtained child is closer to the parent with a better fitness value. To specify the amount by which 

the child is far from each parent a ratio parameter is defined. This process continues until the 

required number of populations in the current generation is achieved. 

 

Further, in each generation a number of children are obtained using mutation. In this case, this 

means that the variables (hyperparameters) are chosen randomly from the variable ranges from a 

Gaussian or uniform distribution. To keep the best results of the last generation a fixed number of 

best children from the last generation can be added to the next generation. Adding ‘Elite’ children 

guarantees that the performance of the model does not diminish over generations [14, 15]. 

 

3. EXPERIMENTAL SET-UP 

 

3.1 Software  

The Gaussian Process modelling methods for non-linear regression used previously were again 

adopted for this study [4, 7, 17, 17]. The latest version of the Hyper Prior optimisation Toolbox was 

also used [13]. The MatLab Genetic Algorithm (GA) optimisation toolbox was used to carry out the 

Evolutionary Algorithm hyperparameter optimisation. 

 

3.2 Cross-validation 



The importance of model validation in constructing computational models has been discussed 

previously [17]. In this study, we have validated models mainly using the cross-validation technique 

[8]. 5-fold cross-validation was performed. The datasets were shuffled and divided into 5 ‘folds’. 

Each time one of the folds was considered as the test set and the remaining four were considered as 

the training set. At this point, a validation set was removed from the training set. The 

hyperparameter optimisation methods were then applied to the training set and the prediction 

performances were gained for the validation set. This was then repeated for the other 3 possible 

validation sets. The best hyperparameters were chosen as those performed best over the four 

validation sets (the minimum average of negative log probability loss (NLL) values, which are defined 

in section 4). They were used to predict the permeability values of the test set.  

 

3.3 Initialisation of experiments 

The experiments were initialised as follows: 

 Grid search: To conduct the manual search through the hyperparameter space, the 

hyperparameters were considered as a range [10-3, 103] with 20 equidistant steps. Using a 5-fold 

cross validation the model was trained with all the 8,000 (20 x 20 x 20) different sets of the 

hyperparameters and the predictions obtained for the test sets. On inspecting the prediction 

performances on the validation sets a finer search for better values of the hyperparameters was 

then performed with the search range limited to [0.01, 10] with 20 steps as no better results 

were obtained using the hyperparameters out of this range. The model was then trained with 

the new hyperparameters and tested on the test sets. The average values and their standard 

deviation among 5-folds were then reported. 

 Random search: 20 values for each hyperparameter were obtained randomly within the same 

range [0.01, 10] considered in the grid search. Using 5-fold cross validation the model was then 

trained and the predictions obtained. Since, in each run of this experiment, the hyperparameters 

were selected randomly the experiment was repeated 5 times and the results were obtained by 

calculation of the mean and standard deviation of the experiment’s results.  

 Conjugate gradient: The hyperparameters were initialised to log(0.5) with the number of 

function evaluations set to 100. 

 Hyper Prior methods: The mean and variance parameters of the Gaussian and Laplacian priors 

were set to constant values of 0.1 and 0.01, respectively and were obtained as the best 

prediction performances using cross-validation in each of the data sets. For the Smooth Box 

Prior method, a, b and  values are set to 10-3, 10 and 2, respectively. Various values of  were 

evaluated and the value 2 was found to be the best value for the data sets used in this study. 



 Evolutionary algorithm: Following an evaluation of ratios ranging from 0.1 to 1.2, the heuristic 

crossover function with a ratio of 0.7 was used to accelerate convergence as it was found to 

have the optimum performance for the data sets used. Each of the 50 generations has a 

population of 50 and the optimised hyperparameters were obtained from the last generation. 

The ‘Elite’ Children value was set to 4 and the mutation function was kept uniform, meaning that 

the children were randomly selected from a uniform distribution within the range of 

hyperparameters. The crossover fraction was set to 0.8 (0.8 * 50 = 40), meaning that the rest of 

the children in a population are 4 Elite children and 6 children were obtained from mutation. 

The population of the first generation was initialised randomly and was therefore similar to the 

Random Search. This experiment was repeated five times using the Genetic Algorithm Toolbox in 

MatLab. 

 

3.4 Data set analysis 

The different data sets used in this study were characterised in terms of their membership (data set 

size) and range (the range of physicochemical descriptors used). Data used are those published 

previously [18, 19] and are shown or described in Tables 1 and 2 (Main paper).  

 

3.5 The effect of the size of the data set and the range of the physicochemical descriptor values on 

prediction performance 

 

The effect of datasets sizes and molecular features ranges on the prediction performances was 

examined. Due to their ubiquitous use in this field, and their relevance as benchmarks in this study, 

the effects of molecular weight and lipophilicity (as log P or log Ko/w) were considered [20 - 22]. 

 

The first experiment considered how changes to the size (membership) of the data set affected the 

statistical quality of the resultant models whilst maintaining the range, or ‘chemical space’, of each 

model. The data set reported by Magnusson and co-workers [18] was used for this experiment. In 

separate experiments this data set was used to construct four smaller subsets that maintained the 

range of descriptors of the original data set (Table 2, main paper). To construct these data sets four 

subsets were chosen from the Magnusson data set – the data set sizes were 44, 33, 17 and 9. 

Chemicals were selected only to ensure that the maximum and minimum MW ranges were 

maintained across all the data sets. The GPR model described above was then trained with each data 

set with the hyper-prior Smoothbox and conjugate gradient optimisation methods used to set the 

best hyperparameters for the models. As a benchmark the QSAR reported previously [21] was used, 



with a concentration correction to adjust between kp and Jmax, as the Potts and Guy QSAR model [20] 

did not perform well in the initial analysis. This experiment was repeated with subsets of the 

Magnusson data set which maintained the range of log P values across all data sets whilst reducing 

the data set membership. Subsets in both experiments were of the same size.  

 

The final set of experiments involved creating four training sets of the Magnusson data set where 

the membership again was kept constant (at 𝑛 = 40) to remove any effect associated with data set 

size.  But, in these cases, the range of the physicochemical descriptor values examined (MW and log 

P) were systematically reduced by the generation of random subsets from the parent data set. We 

produced a fixed test set. One-fifth of the Magnusson (set A) was considered to be the test set and 

the training sets (including 5-fold cross-validation) were generated from the remaining data. The 

range of the first training set can be obtained by adding and subtracting the standard deviation of 

MW to and from the median of all MW values (excluding the values in the fixed test set). To keep the 

size of each training set the same (n = 40), members of the subset were picked at random from the 

given range. To obtain the next training sets, the standard deviation is added by larger values (for 

example, 40, 100 and 200, respectively), and the same process is repeated. The GPR model was then 

trained using the smoothbox hyper-prior and conjugate gradient methods, and the predicted log Jmax 

values were reported for the same test set. As data was chosen randomly within each data range, 

the experiment was repeated ten times, with the mean and standard deviations being reported for 

both the GPR models and the QSAR benchmark. The same methods were used to analyse changes to 

both MW and log P. 

 

 

4. PERFORMANCE MEASURES 

 

The correlation coefficient (r), Negative Log Likelihood (NLL) and improvement over the naïve model 

(ION, where the naïve model always predicts the mean of the target value in the training set 

independently of the input), were used to determine the model performance [23].  

 

If a predictive distribution is produced at each test input, 𝒙∗, in the chosen dataset (𝒟), the NLL of 

the target under the model can be evaluated; if  is considered as the mean prediction where the 

GPR produces a Gaussian predictive density, the NLL can be defined as: 

 

𝑁𝐿𝐿 = − log 𝑝(𝑦∗|𝒟, 𝑥∗) =
1

2
log(2𝜋𝜎∗

2) +
(𝑦∗−μ)2

2𝜎∗
2       (8) 



 

where the predictive variance, 𝜎∗
2 for GPR is determined to be 𝜎∗

2 = 𝑉(𝑓∗) + 𝜎𝑛
2, where 

𝑉(f∗)=𝑘(𝐱∗, 𝐱∗)-𝐤∗
T(K + σn

2I)−1𝐤∗As the noisy target, 𝑦∗, is being produced, the noise variance, 𝜎𝑛
2 

must be added. This loss may be standardised by subtracting it from the obtained NLL using 

Equation (8) and considering the mean and variance of the training data; this is characterised as the 

standardised log loss (SLL) or, as reported previously, the MSLL [7].  

 

By contrast, ION measures how much better a predictor is than the naïve predictor, and is given by: 

 

𝐼𝑂𝑁 =
𝑀𝑆𝐸𝑁𝑎𝑖𝑣𝑒−𝑀𝑆𝐸𝐺𝑃

𝑀𝑆𝐸𝑁𝑎𝑖𝑣𝑒
,          (9) 

 

where MSE denotes the mean squared error. 

 

The MSLL will be approximately zero for simple methods and negative for better methods. ION 

ranges from - to 1, and greater positive ION values represent better performance. The correlation 

coefficient ranges from -1 to 1 and in this study a high positive value defines good prediction 

performance [7]. 
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