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Abstract This paper deals with the numerical simulation of transient magnetohydrody-

namics natural convective boundary layer flow of a nanofluid over an inclined plate. In the

modeling of nanofluids, dynamic effects including the Brownian motion and thermophore-

sis are taken into account. Numerical solutions have been computed via the Galerkin-finite

element method. The effects of angle of inclination, buoyancy-ratio parameter, Brownian

motion, thermophoresis and magnetic field are taken into account and controlled by non-

dimensional parameters. To compute the rate of convergence and error of the computed

numerical solution, the double mesh principle is used. Similarity solutions are calculated and

presented graphically for non-dimensional velocity, temperature, local rate of heat and mass

transfer with pertinent parameters. The modified Nusselt number decreases with increasing

inclination angle, buoyancy-ratio parameter, Brownian motion and thermophoresis parame-

ter, whereas it increases with increasing Prandtl number. Validation of the results is achieved

with earlier results for forced convective flow and non-magnetic studies. Such problems have

several applications in engineering and petroleum industries such as electroplating, chemical

processing of heavy metals and solar water heaters. External magnetic fields play an impor-

tant role in electrical power generation, inclination/acceleration sensors, fine-tuning of the

final materials to industrial specification because of their controlling behaviour on the flow

characteristics of nanofluids.

Keywords Nanofluid · MHD · Inclined plate · Similarity solution · Convective boundary

condition · Finite element method · Double mesh principle

B Mania Goyal

goyalmania87@gmail.com

Rama Bhargava

rbharfma@iitr.ernet.in

1 Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S11WB, UK

2 Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee 247667, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40819-018-0483-0&domain=pdf


63 Page 2 of 24 Int. J. Appl. Comput. Math (2018) 4:63

List of symbols

Roman

Bo Uniform magnetic field strength

DB Brownian diffusion coefficient

DT Thermophoresis diffusion coefficient

EN Error

f Dimensionless stream function

ge Acceleration due to gravity

h Dimensionless velocity function

he Step size

h f Heat transfer coefficient

k Thermal conductivity

Ln Nanofluid Lewis number

M Dimensionless magnetic parameter

Nb Brownian motion parameter

Nc Convective heating parameter

Nr Buoyancy-ratio parameter

Nt Thermophoresis parameter

Nux Local Nusselt number

Nur Reduced Nusselt number

Pr Prandtl number

Rax Local Rayleigh number

r N Rate of convergence

Shx,n Local nanoparticle Sherwood number

Shrn Reduced nanoparticle Sherwood number

T Fluid temperature

T f Hot fluid temperature

Tw Fluid temperature at the wall

T∞ Ambient temperature

u, v Velocity components along x and y-directions

Greek symbols

αm Thermal diffusivity

β Thermal expansion coefficient

δ Acute angle of the plate to the vertical

μ Viscosity of the nanofluid

ν Kinematic viscosity of the fluid

φ Dimensionless nanoparticle volume fraction

φ̂ Nanoparticle volume fraction

φ̂w Nanoparticle volume fraction at the wall

φ̂∞ Ambient nanoparticle volume fraction

ψ Stream function

ρ f Density of the nanofluid

σn f Electrical conductivity of the nanofluid
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τ Ratio between the effective heat capacity of the nanoparticle material and heat capac-

ity of the fluid, defined by (ρcp)p/(ρcp) f

θ Dimensionless temperature

Subscripts

f Base fluid

n f Nanofluid

p Nanoparticle

w,∞ Condition at the surface and in the free stream, respectively

Introduction

Nanoparticles provide a connection between molecular structure and bulk materials. When

nanoparticles strategically deployed in the base fluids, the ensuing nanofluids have been

verified to achieve remarkable enhancement in the properties of thermal conductivity, as

introduced by Choi [8]. This has made nanofluids attractive in various areas of recent technol-

ogy incorporating heat exchangers [15], aerospace cooling systems [20], and energy systems

[17]. The two most common approaches to investigate the phenomena of heat and mass trans-

fer characteristics are either the Tiwari and Das model [26] (which only requires momentum

and energy equations and incorporates nanoparticle effects via a volume fraction parameter

only) and the Buongiorno non-homogeneous model [6] (which introduces a separate equation

for the nanoparticle concentration). Several researchers worked on these models including

Hatami et al. [14], Goyal and Bhargava [12], Hamad et al. [13].

The natural convection exerts a significant influence on the heat and mass transfer analysis

in the problems of nanofluids. In most of the fluid flow processes, transport phenomena occur

due to the combined effect of heat and mass transfer. This is because of buoyancy effects

arising from density variation, which is due to variation in temperature and/or concentration

of particles. The classical problem, which involves natural convective flow of a regular fluid

over a vertical plate, was first investigated theoretically by Pohlhausen [22]. Thereafter, Bejan

[5] incorporated the effect of Prandtl number on boundary layers in natural convective fluid

flow problems. An extension of the classical problem [22] to incorporate the effect of heat and

mass transfer was investigated by Khair and Bejan [16]. Later, Aziz and Khan [4] numerically

investigated the free convective boundary layer flow of a nanofluid over a vertical plate. Their

analysis showed that the flow pattern, heat and mass transfer analysis strongly influenced by

the pertinent parameters.

Lately, the problems of free convection fluid flow over a plate for different values of

inclination angle were frequently encountered in engineering devices such as solar water

heaters and inclination/acceleration sensors. Most of the researchers [1,3,7] observed that

fluid flow through the medium was favoured in case of an inclined plate as inclination to the

vertical reduces the drag force. A generalized formulation was explained by Ali et al. [2]

for the combined effect of chemical reaction and radiation on MHD free convective flow of

viscous fluid over an inclined plate. They found that the flow features not only depend on the

magnitude of inclination but also on the distance from the leading edge. Later, Narahari et al.

[19] has studied the effect of free convective flow of a nanofluid over an isothermal inclined

plate and observed that the thickness of the momentum boundary layer decreases with an

increase in angle of inclination whereas the temperature and nanoparticle volume fraction

increase with increasing inclination angle.
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The study of flow analysis and heat transfer under the influence of an applied magnetic

field is considered a significant research topic due to its numerous scientific, industrial and

biological applications such as crystal growth, cooling of metallic plates, production of

magnetorheostatic materials known as smart fluids, metal casting and liquid metal cooling

blankets for fusion reactors. The rate of heat transfer can be controlled by MHD flow in

electrically conducting fluid and hence desired cooling effect can be achieved. The different

types of thermal boundary conditions were used by Sathiyamoorthy and Chamkha [23] to

study steady state, laminar, 2D natural convective flow in the presence of an inclined magnetic

field in a square enclosure filled with liquid Gallium. Recently, Goyal and Bhargava [9]

numerically investigated the MHD viscoelastic nanofluid flow past a stretching sheet with

heat source/sink and partial slip. It was observed from the study that modified Nusselt number

is directly proportional to Brownian motion and thermophoretic parameters and indirectly

proportional to all other parameters.

As, the study of a convectively heated inclined plate plays an important role in many

processes such as manufacturing of tetrapacks, glass fibres, plastic and rubber sheets,

solidification of casting. An efficient manufacturing of such materials incorporates vari-

ous physical phenomena including the implementation of magnetohydrodynamics (MHD),

thermal and mass diffusion effects at nanoscale level. To improve the interpretation of

the inter-disciplinary transport phenomena in such type of systems, a robust approach

is provided with the help of mathematical model. Hence, motivated by this, the present

study focused to develop a mathematical model for natural convective boundary layer

flow of a nanofluid past a convectively heated inclined plate in the presence of Magnetic

field.

The Buongiorno nanofluid model approach [6] is used which emphasizes the Brown-

ian motion and thermophoresis effects. This approach also introduces a separate equation

for nano-particle species diffusion. By using the suitable similarity transformation for

velocity, temperature and nanoparticle concentration, the equations governing for flow,

heat and mass transfer were transformed to a set of ordinary differential equations. The

resulting equations subjected to the boundary conditions were solved numerically using

conventional finite element method (FEM). The numerical investigation is carried out

for different thermophysical parameters, namely: the magnetic parameter, buoyancy-ratio

parameter, convective heat parameter, Prandtl number, nanofluid Lewis number, Brown-

ian motion parameter, and thermophoresis parameter. The obtained results are validated

by comparing with work of other authors that has reported in literature. The rates of heat

and nano-mass transfer were computed and were shown in both tabular and graphical for-

mats.

Problem Formulation

Governing Equations and Boundary Conditions

The flow of fluid was assumed to be steady, incompressible, two-dimensional and laminar

with constant physical properties. The semi-infinite plate was inclined at an acute angle

δ to the vertical axis. With x-axis measured along the plate, a magnetic field of uniform

strength Bo was applied in the y-direction (normal to the flow direction). The gravitational

acceleration ge was acting downward. In addition, the buoyancy effects were included in

momentum transfer with the usual Boussinesq approximation. It was also assumed that the
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Fig. 1 Physical model and

co-ordinate system

lower side of the plate was heated by convection through a hot fluid at temperature T f and

with coefficient of heat transfer h f . It was assumed that both the nanoparticles and the base

fluid are in thermal equilibrium. In the vicinity of the plate, three different types of boundary

layers (momentum, thermal and nanoparticle volume fraction) were formed. The physical

configuration of the problem is shown in Fig. 1.

Upon incorporating the main assumptions into the conservation equations for mass,

momentum, thermal energy and nanoparticle species, the dimensional set of governing equa-

tions is written as:

∂u

∂x
+

∂v

∂y
= 0 (1)

ρ f

(

u
∂u

∂x
+ v

∂u

∂y

)

= μ
∂2u

∂y2
− σn f B2

o u + [(1 − φ̂∞)ρ f∞βge(T − T∞)

− (ρp − ρ f∞)ge(φ̂ − φ̂∞))] cos δ (2)

u
∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+ τ

[

DB

∂φ̂

∂y

∂T

∂y
+

DT

T∞

(

∂T

∂y

)2]

(3)

u
∂φ̂

∂x
+ v

∂φ̂

∂y
= DB

∂2φ̂

∂y2
+

DT

T∞

∂2T

∂y2
(4)

where u andv are the velocity components parallel and perpendicular to the plate, respectively,

Bo is uniform magnetic field strength, φ̂ is the local solid volume fraction of the nanoparticles,

β is volumetric thermal expansion coefficient of the base fluid, DB is the Brownian diffusion

coefficient, DT is the thermophoretic diffusion coefficient, and T is the local temperature.

Continuity, momentum, thermal energy, and nanoparticle species equations for nanofluid

are represented by Eqs. (1)–(4), respectively. The terms (from left to right) in the right side

of Eq. (2) represent the stress component due to viscosity, the convective acceleration and

the force due to the magnetic field. The first and second terms in the square bracket in (2)

represent the positive (upward) buoyancy term due to the thermal expansion of the base

fluid and the negative (downward) buoyancy term due to the variation in densities of the

nanoparticles and the base fluid, respectively. The terms in the left hand side of Eq. (3) are
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the convection terms due to temperature. On the other hand, the terms on right side (left to

right) represent the heat enthalpy, diffusion of thermal energy due to Brownian diffusion and

thermophoretic effect. A similar interpretation could be given to the terms on the right hand

side of Eq. (4).

The boundary conditions may be written as

u = 0, v = 0, φ̂ = φ̂w, − k
∂T

∂y
= h f (T f − T ) at y = 0 (5)

u = 0, v = 0, φ̂ = φ̂∞, T = T∞ as y → ∞ (6)

Similarity Transformations

By introducing the stream function ψ , with u = ∂ψ/∂y and v = −∂ψ/∂x , the system of

Eqs. (1)–(4) reduces to

0 = μ
∂3ψ

∂y3
− ρ f

(

∂ψ

∂y

∂2ψ

∂x∂y
−

∂ψ

∂x

∂2ψ

∂y2

)

− σn f B2
o

∂ψ

∂y
+ [(1 − φ̂∞)ρ f∞βge

(T − T∞) − (ρp − ρ f∞ ge(φ̂ − φ̂∞))] cos δ (7)

∂ψ

∂y

∂T

∂x
−

∂ψ

∂x

∂T

∂y
= αm

∂2T

∂y2
+ τ

[

DB

∂φ̂

∂y

∂T

∂y
+

DT

T∞

(

∂T

∂y

)2]

(8)

∂ψ

∂y

∂φ̂

∂x
−

∂ψ

∂x

∂φ̂

∂y
= DB

∂2φ̂

∂y2
+

DT

T∞

∂2T

∂y2
(9)

The following similarity transformation are used in order to non-dimensionlize the system

of differential Eqs. (1)–(4):

η =
y

x
Ra

1/4
x , ψ = αm Ra

1/4
x f (η), θ(η) =

T − T∞

T f − T∞
, φ(η) =

φ̂ − φ̂∞

φ̂w − φ̂∞

(10)

with the local Rayleigh number is defined as

Rax =
(1 − φ̂∞)βge(T f − T∞)x3

ναm

(11)

Now

∂η

∂x
= −

1

4

y

x2
Ra

1/4
x ,

∂η

∂y
=

1

x
Ra

1/4
x , (12)

u =
∂ψ

∂y
= αm Ra

1/4
x

∂ f

∂η

∂η

∂y
=

αm

x
Ra

1/2
x f ′(η),

v = −
∂ψ

∂x
= −αm

(

Ra
1/4
x

∂ f

∂η

∂η

∂x
+

1

4
Ra

−3/4
x

3Rax

x

)

=
y

4x2
αm Ra

1/2
x f ′(η) −

3

4x
αm Ra

1/4
x f (η),

∂u

∂x
=

1

2

αm

x2
Ra

1/2
x f ′(η) −

y

4x2

αm

x
Ra

3/4
x f ′′(η),

∂u

∂y
=

αm

x
Ra

3/4
x

∂ f ′

∂η

∂η

∂y
=

αm

x2
Ra

3/4
x f ′′(η),
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∂2u

∂y2
=

αm

x2
Ra

3/4
x

∂ f ′′

∂η

∂η

∂y
=

αm

x3
Rax f ′′′(η). (13)

Substituting (12), (13) in Eq. (1), we have

αm

x
Ra

1/2
x f ′

(

αm

2x2
Ra

1/2
x f ′ −

αm

4x

y

x2
Ra

3/4
x f ′′

)

−

(

−
y

4x2
αm Ra

1/2
x f ′ +

3

4

αm

x
Ra

1/4
x f

)

αm

x2
Ra

3/4
x f ′′

=
μ

ρ f

αm

x3
Rax f ′′′ −

σn f B2
o

ρ f

αm

x
Ra

1/2
x f ′

+
1

ρ f

(

(1 − φ̂∞)ρ f∞βge(T f − T∞)θ − (ρ f − ρ f∞)ge(φ̂w − φ̂∞)φ))

)

cos δ (14)

With simple calculations, the above equation can be written as:

αm

2x3
Rax f ′2 −

3α2
m

x3
Rax f f ′′ =

μ

ρ f

αm

x3
Rax f ′′′ +

(1 − φ̂∞)ρ f∞βge(T f − T∞)

ρ f
(

θ −
(ρ f − ρ f∞)g(ρ f − ρ f∞)

(1 − φ̂∞)ρ f∞βge(T f − T∞)

)

cos δ −
σn f B2

o

ρ f

αm

x
Ra

1/2
x f ′

⇒
α2

m

4x3

(

2 f ′2 − 3 f f ′′

)

=
μ

ρ f

αm

x3
Rax f ′′′ +

(1 − φ̂∞)ρ f∞βg(T f − T∞)

ρ f
(

θ − Nrφ

)

cos δ −
σ B2

o

ρ f

αm

x
Ra

1/2
x f ′, (15)

which implies that

f ′′′ +
αm

4μ
ρ f

(

3 f f ′′ − 2 f ′2

)

+

(

θ − Nrφ

)

cos δ −
σ B2

o x3

μRa
1/2
x

f ′ = 0

⇒ f ′′′ +
1

4Pr

(

3 f f ′′ − 2 f ′2

)

+

(

θ − Nrφ

)

cos δ − M f ′ = 0, (16)

where prime denote differentiation with respect to η and the parameters Pr (Prandtl number),

Nr (Buoyancy-ratio parameter) and M (magnetic parameter) appearing in Eq. (15) are defined

as:

Pr =
μ

αm

, Nr =
(ρp − ρ f )(φ̂w − φ̂∞)

ρ f β(1 − φ̂w)(T f − T∞)
, M =

σn f B2
o x3

μRa
1/2
x

(17)

In order to non-dimensionlize the energy equation (3), the following terms are computed as:

∂T

∂y
= (T f − T∞)

∂θ

∂η

∂η

∂y
=

(T f − T∞)

x
Ra

1/4
x θ ′(η),

∂2T

∂y2
=

∂

∂y

(

(T f − T∞)

x
Ra

1/4
x θ ′(η)

)

=
(T f − T∞)

x
Ra

1/4
x

∂2θ

∂η2

∂η

∂y

=
(T f − T∞)

x2
Ra

1/2
x θ ′′(η),

∂T

∂x
= (T f − T∞)

∂θ

∂η

∂η

∂x
= −

y

4x2
(T f − T∞)Ra

1/4
x θ ′(η), (18)
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and

∂φ̂

∂y
= (φ̂w − φ̂∞)

∂φ

∂η

∂η

∂y
=

(φ̂w − φ̂∞)

x
Ra

1/4
x φ′(η),

∂2φ̂

∂y2
=

∂

∂y

(

(φ̂w − φ̂∞)

x
Ra

1/4
x φ′(η)

)

=
(φ̂w − φ̂∞)

x
Ra

1/4
x

∂2φ

∂η2

∂η

∂y

=
(φ̂w − φ̂∞)

x2
Ra

1/2
x φ′′(η),

∂φ̂

∂x
= (φ̂w − φ̂∞)

∂φ

∂η

∂η

∂x
= −

y

4x2
(φ̂w − φ̂∞)Ra

1/4
x φ′(η). (19)

Now substituting these values from Eqs. (12), (13), (18) and (19) in (3), we obtain

−
αm

x
Ra

1/2
x f ′(η)

y

4x2
(T f − T∞)Ra

1/4
x θ ′(η)

−

(

−
y

4x2
αm Ra

1/2
x f ′(η) +

3

4x
αm f (η)Ra

1/4
x

)

×
(T f − T∞)

x
Ra

1/4
x θ ′(η) = αm

(T f − T∞)

x2
Ra

1/2
x θ ′′(η)

+ τ

(

DB

(φ̂w − φ̂∞)

x

(T f − T∞)

x
Ra

1/2
x θ ′φ′ +

DT

T∞

(T f − T∞)2

x2
θ ′2

)

, (20)

⇒ −
αm

4

y

x3
(T f − T∞)Ra

3/4
x f ′θ ′ +

1

4

αm

x

y

x2
(T f − T∞)Ra

3/4
x f ′θ ′

−
3

4x2
αm(T f − T∞)Ra

1/2
x f θ ′ =

αm

x2
(T f − T∞)Ra

1/2
x θ ′′

+

(

DB

x2
(φ̂w − φ̂∞)(T f − T∞)Ra

1/2
x θ ′φ′ +

DT

T∞

(T f − T∞)2

x2
θ ′2

)

(21)

Leading to:

−
3

4
αm f θ ′ = αmθ ′′ + τ

(

DB(φ̂w − φ̂∞)θ ′φ′ +
DT

T∞
(T f − T∞)θ ′2

)

, (22)

⇒ θ ′′ +
3

4
f θ ′ +

τ

αm

DB(φ̂w − φ̂∞)θ ′φ′ + τ
DT

T∞

(T f − T∞)

αm

θ ′2 = 0, (23)

⇒ θ ′′ +
3

4
f θ ′ + Nbθ ′φ′ + Ntθ ′2 = 0 (24)

where Nb (Brownian motion parameter) and Nt (thermophoresis parameter) appearing in

equation (24) are defined as:

Nb =
τ DB(φ̂w − φ̂∞)

αm

, Nt =
τ DT (T f − T∞)

T∞αm

(25)

Now substituting the values from Eqs. (12), (13), (18) and (19) in the nanoparticle concen-

tration equation (3), we get

−
αm

x
Ra

1/2
x f ′ y

4x2
Ra

1/4
x φ′ −

(

−
y

4x2
αm Ra

1/2
x f ′ +

3

4x
αm Ra

1/4
x f

)

(φ̂w − φ̂∞)

x
Ra

1/4
x φ′ =

DB(φ̂w − φ̂∞)

x2
Ra

1/2
x φ′′ +

DT

T∞

(T f − T∞)

x2
Ra

1/2
x θ ′′ (26)
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−
3

4x2
αm Ra

1/2
x (φ̂w − φ̂∞) f φ′

=
DB

x2
(φ̂w − φ̂∞)Ra

1/2
x φ′′ +

DT

T∞

(T f − T∞)

x2
Ra

1/2
x θ ′′ (27)

or

−
3

4
αm f φ′ = DBφ′′ +

DT

T|in f t y

(T f − T∞)

(φ̂w − φ̂∞)
θ ′′, (28)

⇒ φ′′ +
1

DB

DT

T|in f t y

(T f − T∞)

(φ̂w − φ̂∞)
θ ′′, (29)

⇒ φ′′ +
Nt

Nb
θ ′′ +

3

4
Ln f φ′ = 0 (30)

where Ln (nanofluid Lewis number) is defined by Ln =
αm

DB

.

Finally, the following system of non-dimensionlize is obtained as

f ′′′ +
1

4Pr
(3 f f ′′ − 2 f ′2) + (θ − Nrφ) cos δ − M f ′ = 0 (31)

θ ′′ +
3

4
f θ ′ + Nbθ ′φ′ + Ntθ ′2 = 0 (32)

φ′′ +
Nt

Nb
θ ′′ +

3

4
Ln f φ′ = 0 (33)

subject to the following boundary conditions:

f (η) = 0, f ′(η) = 0, θ ′(η) = −Nc[1 − θ(η)], φ(η) = 1, at η = 0 (34)

f ′(η) = 0, θ(η) = 0, φ(η) = 0, as η → ∞ (35)

where Nc (convective heating parameter) appearing in boundary condition (35) is defined

as:

Nc =
h f x1/4

k

[

ναm

(1 − φ̂∞)geβ(T f − T∞)

]1/4

(36)

Nusselt and Sherwood number evaluation

The understanding of heat and mass transfer at the wall plays an important role in esti-

mating the performance of several microfluidic/ nanofluidic/ thermal devices. The related

information with the variation in the properties of wall yields information which may lead to

a change in the design with an improvement in the performance and efficiency of the devices.

Thus the heat and mass transfer rates are the important characteristics that need to be com-

puted [25]. These quantities, local Nusselt number Nux and the local nanofluid Sherwood

number Shx,n , can be written as:

Nux =
xqw

k(T f − T∞)
, Shx,n =

xqnp

DB(φ̂w − φ̂∞)
, (37)

where qw and qnp are the wall heat and nano mass fluxes, respectively.

The modified Nusselt number Nur and modified nanoparticle Sherwood number Shrn

can be introduced and represented as follows:

Nur = Ra
1/4
x Nux = −θ ′(0), Shrn = Ra

1/4
x Shx,n = −φ′(0), (38)
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Numerical Solution with Finite Element Solution

In this section, the effects of important parameters on flow analysis and on heat and mass

transfer characteristics are discussed in the form of numerical solution of Eqs. (31)–(33). It’s

very difficult to find the analytical solution of Eqs. (31)–(33). Hence, the conventional finite

element method (FEM), which is a numerical approach, is used as it is the most adaptive

and popular method for solving differential equations. The basic step of FEM requires the

division of the whole domain into smaller, non-overlapping sub-domains in order to solve the

flow physics within the domain geometry. This results in the generation of a grid of elements

overlaying the whole domain geometry. It is an enormously useful method (in terms of

both resolving material nonlinearity and complex geometrical) and has received significant

attention in nonlinear problems involving heat transfer [3,10], nanofluid mechanics [11],

membrane structural mechanics [12], biological systems [13], electrical systems [19], and

many others. The non-linear coupled differential equations (31)–(33) subject to the boundary

conditions (34), (35) have been solved using Finite element method (FEM). By assuming

f ′ = h (39)

The system of Eqs. (31)-(33) can be reduced into a pair of lower order equations as follows:

h′′ +
1

4Pr
(3 f h′ − 2h2) + (θ − Nrφ) cos δ − Mh = 0 (40)

θ ′′ +
3

4
f θ ′ + Nbφ′θ ′ + Nt (θ ′)2 = 0 (41)

φ′′ +
Nt

Nb
θ ′′ +

3

4
Ln f φ′ = 0 (42)

The corresponding boundary conditions now become;

f (0) = 0, h(0) = 0, φ(0) = 1, θ ′(0) = −Nc[1 − θ(0)] as η = 0 (43)

h(∞) = 0, θ(∞) = 0, φ(∞) = 0 as η → ∞ (44)

Variational Formulation

The variational form associated with Eqs. (40)–(42) over a typical linear element (ηe, ηe+1)

is given by

∫ ηe+1

ηe

W1{ f ′ − h}dη = 0 (45)

∫ ηe+1

ηe

W2

{

h′′ +
1

4Pr
(3 f h′ − 2h2) + (θ − Nrφ) cos δ − Mh

}

dη = 0 (46)

∫ ηe+1

ηe

W3

{

θ ′′ +
3

4
f θ ′ + Nbφ′θ ′ + Nt (θ ′)2

}

dη = 0 (47)

∫ ηe+1

ηe

W4

{

φ′′ +
Nt

Nb
θ ′′ +

3

4
Ln f φ′

}

dη = 0 (48)

where W1, W2, W3 and W4 are arbitrary test function and may be viewed as the variation in

f, h, θ and φ, respectively.
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Finite Element Formulation

Let the domain be divided into linear elements (�e). The finite element model can be obtained

from Eqs. (45–48) by substituting the approximations of the form

� =

2
∑

i=1

� jψ j

where, � stands for either f, h, θ, or φ. So,

f =

2
∑

j=1

f jψ j , h =

2
∑

j=1

h jψ j , θ =

2
∑

j=1

θ jψ j , φ =

2
∑

j=1

φ jψ j (49)

with W1 = W2 = W3 = W4 = ψ j , ( j = 1, 2) where ψ j are the linear interpolation func-

tions for a linear element �e.

The finite element model of the equations thus formed, is given by:

⎡

⎢

⎢

⎣

[K 11] [K 12] [K 13] [K 14]

[K 21] [K 22] [K 23] [K 24]

[K 31] [K 32] [K 33] [K 34]

[K 41] [K 42] [K 43] [K 44]

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

{ f }

{h}

{θ}

{φ}

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

{b1}

{b2}

{b3}

{b4}

⎤

⎥

⎥

⎦

where [K mn] and [bmn] (m, n = 1, 2, 3, 4) are the matrices of order 2 × 2 and 2 × 1 respec-

tively and therefore each element matrix is of order 8 × 8. These matrices are defined as

follows:

K 11
i j =

∫ ηe+1

ηe

ψi

∂ψ j

∂η
dη, K 12

i j = −

∫ ηe+1

ηe

ψiψ j dη, K 13
i j = K 14

i j = 0,

K 22
i j = −

∫ ηe+1

ηe

∂ψi

∂η

∂ψ j

∂η
dη −

1

2Pr

∫ ηe+1

ηe

ψi h̄ψ j dη − M

∫ ηe+1

ηe

ψiψ j dη,

K 21
i j =

3

4Pr

∫ ηe+1

ηe

ψi h̄′ψ j dη, K 23
i j = cos δ

∫ ηe+1

ηe

ψiψ j dη,

K 24
i j = −Nr cos δ

∫ ηe+1

ηe

ψiψ j dη, K 31
i j =

3

4

∫ ηe+1

ηe

ψi θ̄ ′ψ j dη, K 32
i j = 0,

K 33
i j = −

∫ ηe+1

ηe

∂ψi

∂η

∂ψ j

∂η
dη + Nt

∫ ηe+1

ηe

ψi θ̄ ′
∂ψi

∂η
dη,

K 34
i j = Nb

∫ ηe+1

ηe

ψi θ̄ ′
∂ψi

∂η
dη, K 42

i j = 0, K 41
i j =

3

4
Ln

∫ ηe+1

ηe

ψi φ̄′
∂ψi

∂η
dη,

K 43
i j = −

Nt

Nb

∫ ηe+1

ηe

∂ψi

∂η

∂ψ j

∂η
dη, K 44

i j = −

∫ ηe+1

ηe

∂ψi

∂η

∂ψ j

∂η
dη, (50)

where

h =

2
∑

i=1

hiψi , h′ =

2
∑

i=1

hi

∂ψi

∂η
, θ ′ =

2
∑

i=1

θi

∂ψi

∂η
, φ′ =

2
∑

i=1

φi

∂ψi

∂η
(51)

The computational domain is discretized with uniformly distributed 2000 linear elements.

The length of the boundary layer region i.e. η∞ is chosen as 14. Results were obtained even

for large values of η∞, but after η∞ = 14, no appreciable effect on results was observed.

Therefore, the boundary layer thickness is chosen as 14. At every node four functions f, f ′, θ
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Table 1 Comparison of Nur of regular fluid for various values of Pr with Ln = 10, Nb = Nt = Nr = 10−5,

M = 0

Pr Bejan [5] Kuznetsov and Nield [17] Narahari et al. [19] Present results

1 0.401 0.401 0.401 0.4014

10 0.465 0.463 0.459 0.4654

100 0.490 0.481 0.473 0.4904

1000 0.499 0.484 0.474 0.4970

and φ are to be calculated; hence after assembly of the element equations, we obtain a system

of 8004 non-linear equations.

Owing to the nonlinearity of the system an iterative scheme has been used to solve it itera-

tively. The system of equations is linearized by incorporating known functions f̄ , f̄ ′, θ̄ , φ̄

which are calculated using the approximate values of variables f, f ′, θ, φ at node i on

previous iteration, as given in Eq. (50). The whole system is solved by using a Gaussian

elimination method and the whole procedure is executed in MATLAB. This gives a new set

of values of unknowns f, f ′, θ, φ and the process continues until the required accuracy of

1 × 10−5 is achieved.

Validation of the Numerical Procedure

For validation purpose, results were compared with previously reported results in the liter-

ature. The results for the regular fluid at different values of Pr were compared with those

reported by Bejan [5], Kuznetsov and Nield [17] and Narahari et al. [19], has been captured in

Table 1. Closer correlation has been achieved as compared to results computed by [5,17,19].

On the other hand, Table 2 shows the excellent correlation between the current FEM compu-

tation and the earlier results of Aziz and Khan [4] on the modified Nusselt and nanoparticle

Sherwood number under the influence of the various parameters such as Nb, Nr, Pr .

Double Mesh Principle

To estimate the error and compute the rate of convergence in the computed numerical

solution, the double mesh principle was used [18,21,24]. As the exact solution of the

problem was unknown, and therefore to approximate the pointwise errors |(�̃ − �)(ηi )|;

i = 0, 1, 2, . . . N , we have used variant of double mesh principle, where �(η) and �̃(η)

denote the numerical solutions of the system of ODE’s (39)–(42) at the two consecutive

different mesh. A numerical solution �(η) to �̃(η) is calculated which was given by FEM

on the mesh {η̂i } that contained the mesh points ηi of the original mesh and their midpoints

(i.e. η̂2i = ηi , i = 0, 1, . . . , N , η̂2i+1 =
ηi + ηi+1

2
, i = 0, 1, . . . , N − 1). Then at the mesh

points, ηi , i = 0, 1, . . . , N , the maximum error is computed as:

EN = max
0≤i≤N

|�(ηi ) − �̃(ηi )| (52)
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Table 2 Comparison of results for Nur and Shrn when Nt = 0.1, Nc = 10, Ln = 10, M = 0, δ = 0

Nb Nr Pr = 1 Pr = 5

Nur Shrn Nur Shrn

Aziz and Khan [4] Present results Aziz and Khan [4] Present results Aziz and Khan [4] Present results Aziz and Khan [4] Present results

0.1 0.1 0.3396 0.3395 0.9954 0.9955 0.3807 0.3807 1.0608 1.0609

0.2 0.3366 0.3364 0.9828 0.9830 0.3773 0.3770 1.0482 1.0484

0.3 0.3334 0.3331 0.9697 0.9699 0.3739 0.3737 1.0351 1.0352

0.4 0.3301 0.3297 0.9559 0.9563 0.3702 0.3699 1.0214 1.0217

0.5 0.3267 0.3266 0.9414 0.9415 0.3665 0.3663 1.0071 1.0075

0.3 0.1 0.2939 0.2938 1.0435 1.0437 0.3306 0.3301 1.1101 1.1102

0.2 0.2918 0.2917 1.0317 1.0317 0.3282 0.3280 1.0985 1.0988

0.3 0.2896 0.2896 1.0195 1.0199 0.3258 0.3255 1.0866 1.0870

0.4 0.2872 0.2869 1.0067 1.0069 0.3232 0.3231 1.0741 1.0743

0.5 0.2848 0.2844 0.9934 0.9935 0.3206 0.3202 1.0611 1.0612

0.5 0.1 0.2530 0.2525 1.0584 1.0585 0.2855 0.2852 1.1263 1.1266

0.2 0.2513 0.2512 1.0471 1.0471 0.2836 0.2835 1.1152 1.1153

0.3 0.2495 0.2492 1.0353 1.0355 0.2816 0.2818 1.1037 1.1040

0.4 0.2477 0.2475 1.0230 1.0233 0.2796 0.2794 1.0918 1.0919

0.5 0.2458 0.2456 1.0102 1.0105 0.2775 0.2771 1.0794 1.0795

1
23
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Table 3 Errors and rate of convergence for the finite element method (FEM)

he f ′ θ φ

Error Rate Error Rate Error Rate

0.128 2.0186e−2 1.1664 7.0795e−2 1.5609 4.0550e−2 1.4903

0.064 8.9935e−3 1.2898 2.3994e−2 1.6565 1.4433e−2 1.5759

0.032 3.6779e−3 1.4059 7.6112e−3 1.7482 4.8414e−3 1.6549

0.016 1.3880e−3 1.5135 2.2656e−3 1.8108 1.5374e−3 1.7238

0.008 4.8616e−4 1.5849 6.4578e−4 1.9468 4.6547e−4 1.8136

0.004 1.6206e−4 1.6328 1.6751e−4 2.0004 1.3242e−4 1.9091

0.002 5.2259e−5 – 4.1868e−5 – 3.5258e−5 –
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M = 1.0, 3.0, 5.0, 7.0
f (η)

Fig. 2 Effect of magnetic field parameter on velocity profile f ′(η)

From these estimates of the errors, the corresponding order of convergence has been obtained,

which is defined as:

r N = log2

EN

E2N

(53)

From Table 3, it is concluded that at each step, i.e after each refinement, approximate error

corresponding to each function is reducing. Hence, the approximated solution of the current

problem is approaching the exact solution. Also, an increment in the convergence rate is

observed at each step, which shows that the computed numerical solution is rapidly converg-

ing on the exact solution.

Computations and Discussion

Numerical computations have been carried out for different values of the parameters

involved, namely, M , Nr , Nc, Pr , Ln, Nb, Nt that describe the flow characteristics,

heat and mass transfer and the results are reported in terms of graphs and tables. In

Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19, we generally utilize

the following data (unless otherwise stated): Pr = 5, Nb = Nr = Nc = 0.5, Nt = 0.3,

Ln = 10, M = 1, δ = π/4.

Table 4 indicates dependency of the modified Nusselt number Nur and modified nanopar-

ticle Sherwood number Shrn over changes in the Prandtl number Pr , the Brownian motion
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Fig. 3 Effect of magnetic field parameter on temperature profile θ(η)
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Fig. 4 Effect of magnetic field parameter on nanoparticle volume fraction profile φ(η)
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Fig. 5 Effect of angle of inclination on velocity profile f ′(η)

parameter Nb and the buoyancy parameter Nr when the rest of the parameters are fixed.

The modified Nusselt and nanoparticle Sherwood numbers increase with an increase in the

Prandtl number Pr . For a fixed Pr , both Nur and Shrn decrease as Nb and Nr increase.

Table 5 shows the changes in the magnetic field parameter M , the thermophoretic parame-

ter Nt , and the angle of inclination δ affect the modified Nusselt number and the modified

nanofluid Sherwood number. It is noticed that the performance of heat and nanoparticle mass

transfer of the plate decrease as the magnetic field strength ,M , and angle of inclination ,δ, are
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Fig. 6 Effect of angle of inclination on temperature profile θ(η)
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Fig. 7 Effect of angle of inclination on nanoparticle volume fraction profile φ(η)
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Fig. 8 Effect of Brownian motion parameter on velocity profile f ′(η)

gradually enlarged. In the same table, the corresponding heat and nanoparticle mass transfer

are also represented for different values of Nt . The effect of the nanofluid Lewis number on

the the modified Nusselt number and the modified nanoparticle Sherwood number is shown

in Table 6. As the nanofluid Lewis number increases, the modified Nusselt number decreases

slightly but there is a substantial increase in the modified nanoparticle Sherwood number.

Tables 4, 5 and 6 provide information about the heat and mass transfer characteristics of the

flow in a form convenient for research and engineering calculations.
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Fig. 9 Effect of Brownian motion parameter on temperature profile θ(η)
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Fig. 10 Effect of Brownian motion parameter on nanoparticle volume fraction profile φ(η)
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Fig. 11 Effect of thermophoresis parameter on velocity profile f ′(η)

Figures 2, 3, and 4 elucidate the variations of the functions f ′(η), θ(η) and φ(η) under

the influence of the magnetic field parameter M . It is clearly observed that the velocity of

the fluid decreases, whereas the temperature increases, with increasing strength of magnetic

field. As the application of a transverse magnetic field will result a resistive/drag force,

known as Lorentz force, which tends to resist fluid flow and as a result this force prevents

the development of momentum and decelerates the flow. Against the action of magnetic

field, the additional work done in dragging the nanofluid is expressed as thermal energy. This

heats the nanofluid and increases temperature. Consequently, the presence of a magnetic field
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Fig. 12 Effect of thermophoresis parameter on temperature profile θ(η)
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Fig. 13 Effect of thermophoresis parameter on nanoparticle volume fraction profile φ(η)
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Fig. 14 Effect of buoyancy ratio parameter on velocity profile f ′(η)

attenuates the thickness of momentum boundary layer and augments the thickness of thermal

boundary layer. Moreover, the warming of the boundary layer also helps in nanoparticle

diffusion due to which a rise in nanoparticle volume fraction φ(η) can be observed, as shown

in Fig. 4.

In Figs. 5, 6 and 7, the influence of the plate inclination from the vertical, δ, ranging

from 0 to π/4, on the velocity f ′(η), temperature θ(η) and nanoparticle volume frac-

tion φ(η) profiles are depicted, respectively. It is observed from Fig. 5 that within the

hydrodynamic boundary layer, the velocity of the fluid is diminished with an augmenta-
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Fig. 15 Effect of buoyancy ratio parameter on temperature profile θ(η)
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Fig. 16 Effect of buoyancy ratio parameter on nanoparticle volume fraction profile φ(η)
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Fig. 17 Effect of convective heating parameter on velocity profile f ′(η)

tion of inclination angle. This is because to the plate’s alignment via the thermal buoyancy

term, g[−(ρp − ρ f∞)(φ̂ − φ̂∞) + (1 − φ̂∞)ρ f∞β(T − T∞)] cos δ, which is arising in the

momentum equation (2). As the value of δ increases, the corresponding value of cos δ

decreases. This causes the buoyancy effect to be vanished with increasing the plate inclina-

tion. Consequently, the driving force to the fluid attenuates, resulting in decrease of velocity

of the fluid. A similar type of trend has been found by Alam et al. [1] in case of velocity
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Fig. 18 Effect of convective heating parameter on temperature profile θ(η)
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Fig. 19 Effect of nanofluid Lewis parameter on nanoparticle volume fraction profile φ(η)

profile. On the other hand, a depletion in buoyancy effect will enhance thermal and species

(nanoparticle) diffusion, which is shown in Figs. 6 and 7.

Brownian motion is the haphazard motion of nanoparticles inside the base fluid due to of

the continuous collision of nanoparticle with the molecules of base fluid. This motion of the

particles is described by parameter Nb, known as Brownian motion coefficient. Figures 8, 9

and 10 illustrate the effect of Nb on velocity f ′(η), temperature θ(η) and concentration φ(η)

profiles. With an increase in Nb, the randomness of the nanoparticles increased and as a

result, nanoparticles move more chaotically, causing more collisions in the system and vice

versa. This increase in number of collisions and velocity result an increase in heat transfer

properties, and thus, the value of temperature increases. Simultaneously, the increase in Nb

has an adverse effect on the concentration of nanoparticles along the wall. The nanoparticles

start moving away from the boundary into the fluid by increasing the random motion of

nanoparticles which causing a decrease in the value of concentration of nanoparticles along

the wall.

The phenomenon of diffusion of particles, in the presence of temperature gradient, is

known as thermophoresis. The variation of velocity f ′(η), temperature θ(η) and nanoparticle

concentration φ(η) for various values of Nt is depicted in Figs. 11, 12 and 13. Augmentation

in the value of Nt causes temperature gradient which results in escalating the force (ther-

mophoretic) between nanoparticles. This force is responsible for more fluid being heated and

elevates the temperature. The same effect is observed in the case of nanoparticle concentration

by strengthening the effect of thermophoresis Nt , as shown in Fig. 13.
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Table 4 Variation of Nur and

Shrn for Pr, Nb and Nr for

δ = π/4, Nc = 10, Nt = 0.5,

M = 0.1, Ln = 10

Nb Nr Pr = 1 Pr = 5 Pr = 10

Nur Shrn Nur Shrn Nur Shrn

0.1 0.1 0.2120 0.7253 0.2183 0.7418 0.2191 0.7441

0.2 0.2076 0.7094 0.2136 0.7252 0.2144 0.7273

0.3 0.2030 0.6926 0.2086 0.7076 0.2094 0.7097

0.4 0.1981 0.6748 0.2034 0.6890 0.2042 0.6909

0.5 0.1929 0.6559 0.1979 0.6692 0.1986 0.6710

0.6 0.1874 0.6355 0.1921 0.6479 0.1927 0.6496

0.3 0.1 0.1840 0.8280 0.1897 0.8420 0.1905 0.8439

0.2 0.1816 0.8143 0.1871 0.8280 0.1879 0.8299

0.3 0.1791 0.8000 0.1845 0.8133 0.1852 0.8151

0.4 0.1766 0.7849 0.1817 0.7978 0.1825 0.7995

0.5 0.1739 0.7689 0.1789 0.7814 0.1796 0.7831

0.6 0.1710 0.7519 0.1758 0.7640 0.1765 0.7656

0.5 0.1 0.1581 0.8502 0.1632 0.8639 0.1639 0.8658

0.2 0.1564 0.8371 0.1614 0.8506 0.1620 0.8524

0.3 0.1546 0.8235 0.1594 0.8366 0.1601 0.8384

0.4 0.1527 0.8091 0.1574 0.8219 0.1580 0.8236

0.5 0.1507 0.7939 0.1552 0.8064 0.1559 0.8081

0.6 0.1486 0.7778 0.1530 0.7900 0.1536 0.7916

Table 5 Variation of Nur and Shrn for M , Nt and δ for Nc = 10, Pr = 5.0, Nb = Nr = 0.5, Ln = 10

Nt δ M = 1.0 M = 3.0 M = 5.0

Nur Shrn Nur Shrn Nur Shrn

0.1 0 0.1979 0.8541 0.1500 0.6858 0.1266 0.5903

π/12 0.1956 0.8446 0.1480 0.6768 0.1249 0.5819

π/6 0.1885 0.8156 0.1418 0.6490 0.1198 0.5561

π/4 0.1759 0.7636 0.1312 0.5997 0.1111 0.5105

0.3 0 0.1829 0.8692 0.1387 0.6958 0.1169 0.5986

π/12 0.1808 0.8596 0.1368 0.6867 0.1153 0.5901

π/6 0.1743 0.8300 0.1310 0.6585 0.1105 0.5642

π/4 0.1626 0.7769 0.1211 0.6086 0.1024 0.5186

0.5 0 0.1696 0.8886 0.1284 0.7089 0.1081 0.6097

π/12 0.1676 0.8787 0.1267 0.6996 0.1067 0.6012

π/6 0.1615 0.8483 0.1213 0.6709 0.1022 0.5751

π/4 0.1507 0.7939 0.1121 0.6204 0.0946 0.5294

The buoyancy-ratio parameter Nr is defined as the ratio of the variation of the fluid density

(due to the variation of the concentration) to the variation of the density of the nanofluid (due

to the variation of temperature). Figures 14, 15 and 16 present the behavior of buoyancy ratio

parameter Nr on the velocity f ′(η), temperature θ(η) and nanoparticle volume fraction φ(η)

profiles. It is observed from these figures that an increase in the Buoyancy-ratio parameter
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Table 6 Variation of Nur and

Shrn for Ln, Nt and Nr for

δ = π/4, Nc = 10, Nb = 0.5,

M = 0.1, Pr = 5.0

Nt Nr Ln = 1 Ln = 5 Ln = 10

Nur Shrn Nur Shrn Nur Shrn

0.1 0.1 0.2105 0.2710 0.1897 0.6148 0.1839 0.8201

0.2 0.2025 0.2607 0.1868 0.6025 0.1821 0.8071

0.3 0.1938 0.2495 0.1837 0.5895 0.1801 0.7934

0.4 0.1842 0.2374 0.1805 0.5757 0.1781 0.7789

0.5 0.1736 0.2241 0.1770 0.5608 0.1759 0.7636

0.6 0.1617 0.2095 0.1733 0.5447 0.1736 0.7472

0.3 0.1 0.1986 0.2437 0.1763 0.6191 0.1704 0.8333

0.2 0.1902 0.2336 0.1734 0.6067 0.1686 0.8203

0.3 0.1810 0.2228 0.1704 0.5937 0.1667 0.8066

0.4 0.1709 0.2116 0.1672 0.5798 0.1647 0.7922

0.5 0.1598 0.1999 0.1638 0.5649 0.1626 0.7769

0.6 0.1477 0.1879 0.1601 0.5488 0.1604 0.7607

0.5 0.1 0.1875 0.2235 0.1641 0.6283 0.1581 0.8502

0.2 0.1788 0.2133 0.1613 0.6159 0.1564 0.8371

0.3 0.1693 0.2031 0.1583 0.6027 0.1546 0.8235

0.4 0.1589 0.1930 0.1552 0.5888 0.1527 0.8091

0.5 0.1477 0.1836 0.1519 0.5738 0.1507 0.7939

0.6 0.1358 0.1754 0.1484 0.5577 0.1486 0.7778

increases the magnitude of the dimensionless temperature and nanoparticle concentration

while decreases the magnitude of the dimensionless velocity of the nanofluid.

Figures 17 and 18 display the effect of the convective heating parameter Nc on velocity

f ′(η) and temperature θ(η) profiles. It is noted that velocity and the temperature of the

fluid increase with an increase in Nc. Figure 19 depicts that the nanofluid Lewis number

significantly affects the concentration of nanoparticlesφ(η). For a base fluid of certain thermal

diffusivity αm , a higher Lewis implies a lower Brownian diffusion coefficient DB (as Ln =

αm/DB ) which must result in a shorter penetration depth for the concentration boundary

layer. This is exactly what Fig. 19 represents.

Conclusion

A combined similarity-numerical approach is used to study the natural convective boundary

layer flow of a nanofluid past a convectively heated inclined plate in the presence of mag-

netic field, using a model in which Brownian motion and thermophoresis are accounted for.

By use of appropriate similarity transformation, the essential partial differential equations

with the corresponding boundary conditions are numerically tackled using Galerkin-finite

element method (FEM). The impact of the pertinent parameters upon the flow, temperature,

nanoparticle-concentration, modified Nusselt and Sherwood numbers are represented in tab-

ular as well as in graphical form. The use of a convective boundary condition instead of a

constant temperature or a constant heat flux makes this approach novel. The computational

analysis leads to the following conclusions:
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1. Amplifying the strength of magnetic field M attenuates the thickness of the momentum

boundary layer and expands the thermal and nano-volume fraction boundary layer. The

application of an external magnetic field produces Lorentz drag force which retards the

fluid motion. By customizing the external magnetic field, the transfer of heat can be

controlled. In the field of ’smart’ cooling devices, widespread growth is based on this

idea.

2. With an augmentation in the magnetic parameter M , the magnitude of heat and nano-mass

transfer rates decrease as a consequence of intensified Lorentz drag force.

3. Strengthening the thermophoresis Nt and Brownian motion Nb parameters, the rate of

heat and nano-mass transfer decrease for an increase in the value of magnetic field param-

eter M . The heat and mass transfer rates can be altered by taking different combinations

of base fluid and nanoparticles. This idea can be implemented for numerous industrial

applications involving inclined/vertical plates (production of glass fibres, plastic prod-

ucts, tetrapacks etc.) in adjusting the heat transfer rates.

4. With the mounting values of an angle of inclination δ, the width of the momentum

boundary layer decays whereas the reverse effect occurs for temperature and concentra-

tion boundary layers.

5. The use of a convective boundary condition instead of a constant temperature or a constant

heat flux makes this approach novel. As, the convective heating parameter Nc enhances

the rate of heat transfer at the surface of the plate. This effect finds application in case

of heat exchangers where the convection in the fluid past the solid surface influenced the

conduction in the solid surface.

6. The excellent accuracy of the computed FEM results was shown with the help of double

mesh principle.

However, the present study has been focused on the steady-state situation, time-dependent

flow of nanofluid over the plate will be addressed in the future investigations. Also the present

two-phase model might be extended for turbulent nanofluid flow problem with the inclusion

of other slip mechanism viz. diffusiophoresis, inertia and drag force.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-

tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.
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