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Abstract: The conventional environment mapping solutions are computationally very expensive and cannot effectively

be used in multi-robotic environment, where small size robots with limited memory and processing resources

are used. This study provides an environment mapping solution in which a group of small size robots extract

simple distance vector features from the on-board camera images. The robots share these features between

them using a wireless communication network setup in infrastructure mode. For mapping the distance vector

features on a global map and to show a collective map building operation, the robots needed their accurate

location and heading information. The robots location and heading information is computed using two ceiling

mounted cameras, which collective localises the robots. Experimental results show that the proposed method

provides the required environmental map which can facilitate the robot navigation operation in the environ-

ment. It was observed that, using the proposed approach, the near by object boundaries can be mapped with

higher accuracy comparatively the far lying objects.

1 INTRODUCTION

Environment mapping is a process in which a robot

sense its surrounding using onboard perception sen-

sors and tries to obtain a global map. The generated

global map essentially helps the robots to navigate au-

tonomously in the environment. Environment map-

ping is a challenging problem to address and in most

cases, the robots require human assistance if they are

exploring the place first time. The main difficulty in

environment mapping is that the robots cannot know

their locations without having an environment map

and at the same time, the robots cannot build the en-

vironment map without knowing their locations. In

environment mapping problem, in the beginning, the

robots go around the environment while localising

themselves, keeps on building a map of what they

sense in the environment and this way, when they re-

visit a place, from the already generated map they get

some awareness of their surrounding. Once the full

map is obtained, then the robots can perform the path

planning efficiently, for example to determine a path

to reach some specific location. Some researchers

have worked around this problem in which the robots

keep on localising themselves and at the same time,

they also build the environment map. This is called

Simultaneous localisation And Mapping (SLAM) in

robotics field. In (Shen et al., 2008), a vision based

SLAM is presented in which the SIFT (Scale Invari-

ant Feature Transform) feature points are extracted

between the images to determine the robots’ updated

position and hence, it is used to determine the robots’

location and to map its trajectory. The use of vi-

sion based solution on one hand provides the rich

surrounding awareness to the robots but at the same

time, it increases the computational time consider-

ably. This leaves most of the vision based solutions

limited to be implemented using high performance

robots only. The current trend in robotics is shifting to

multi-robot operations in which a group of robots try

to achieve a common goal collectively (SYMBRION,

2008)(REPLICATOR, 2008). In multi-robotics oper-

ations, the robots being used have simple design to

reduce the cost of overall system. So a single robot

unit usually have limited onboard memory and pro-

cessing resources. For a single robot implementation,

researchers have used many different sensors such as

laser range finders, infrared sensors, sonar and vision

sensors. But most of the research is focused on us-

ing laser range finders. In (Wolf and Hata, 2009)

an approach to outdoor mapping is addressed using

2D laser range finder. Similarly, in (Kwon and Lee,

1999) a stochastic approach is adopted to an envi-

ronment mapping using laser range finder. From the



approaches adopted by (Wolf and Hata, 2009)(Kwon

and Lee, 1999), it can be seen that due to the phys-

ical size, high power and processing requirement of

the laser range finders, they are used with large size

robots. Moreover, a single laser range finder can cost

from £800 to £3000 which makes it unsuitable to be

used in multi-robotic environment where the objec-

tive is also to keep the cost of each robot unit low. In

(Biber et al., 2004), the information from the laser

scanner is fused with the vision sensor to provide

a more accurate map of the environment. But this

further increases the computational demands of the

approach. In (Howard, 2004)(Latecki et al., 2007)

a multi-robot environment mapping problem is ad-

dressed. But the results are limited to simulations

only. In (Leon et al., 2009), a grid based mapping

solution using multiple robots is addressed, but it also

utilised high performance systems.

When using a group of small size robots, it is pre-

ferred to use simple and computationally less expen-

sive algorithms such that, the task can be achieved

with limited processing resources. In this research,

a distributed vision based multi-robot environment

mapping problem is addressed in which a group of

robots collectively try to obtain a common global map

of the environment using the visual clues they ob-

tain from their surrounding. The generated map is

intended to facilitate the multi-robot mission planning

as the environmental map together with the robots po-

sition on the map will be available. The problem ad-

dressed here is different from SLAM as in this case,

the robots are provided the localisation information

from the ceiling mounted camera system. The robots

can share information through a wireless communica-

tion medium. This medium is usually prone to noise

and act as a bottle neck for information distribution.

So in this research, it is aimed that the robot relies

on simple visual features from the images such that it

does not overload the network and at the same time,

it is sufficient to map the environment collectively.

These visual features are represented in the form of

a vector which are extracted by determining the dis-

tance to the neighbouring object using vision informa-

tion. Knowing the robot camera field of view, this dis-

tance vector feature can be used to map the environ-

ment if precise robot location and orientation are pro-

vided. In the following sections, the complete multi-

robot environment mapping approach is presented.

2 METHODOLOGY

To address the multi-robot environment mapping

problem, two Surveyor SRV1 robots equipped with

the vision sensor were used. The Surveyor robot

(Surveyor-Corporation, 2012) is shown in Figure 1a.

For obtaining the robot localisation information, a

ceiling cameras based robot localisation system was

used. This system comprises of two ceiling mounted

cameras and a server system. Using the visual infor-

mation from the two ceiling mounted cameras, this

system is responsible to determine the robots’ posi-

tions, track them and pass them to the robots. Each

robot creates an environmental map in its memory.

This map is also updated by all the other robots work-

ing in the environment. For this purpose, each robot

gets its location and orientation information from the

localisation system. Once a robot knows its location

and orientation (as explained in Section 2.2), then

in the direction of its heading, it utilizes the visual

clues it obtained from its vision sensor and deter-

mines the surrounding objects boundaries. The robot

uses these detected boundary information to update

its own map. Apart from updating its own map, the

robot also broadcasts this map update information to

the other members in the environment. On receiving

this map update information, each robot in the envi-

ronment also updates their map. This way, each robot

in the environment not only knows the other robot’s

positions but at the same time, it also keeps on main-

taining a common map which is built by the contribu-

tion of all the robots in the environment. Each robot

also passes the map update information to the server,

which is running the ceiling cameras based locali-

sation system. This way, the map building process

can be seen on the server side. As the robots being

used have limited on-board memory and processing

resources, so it was decided to use a very light weight

vision algorithm to solve this problem. This problem

was divided into two parts, that is Objects’ Boundary

Detection, Robot Localisation and Mapping. These

are explained in the following sections.

2.1 Objects’ Boundary Detection

To determine the objects’ boundaries, a segmentation

based algorithm was used. A similar approach was

used by (Ahmed et al., 2012b), where it was utilized

to develop an efficient vision based obstacle avoid-

ance algorithm. The vision based obstacle avoidance

algorithm, addressed by (Ahmed et al., 2012b), also

works in parallel to help the robot control algorithm

to avoid colliding with obstacles. If the vision based

obstacle avoidance algorithm gives the ground clear-

ance signal to the robot control algorithm, then map-

ping algorithm is called which requires surrounding

objects’ boundaries information. To explain the con-

cept of segmentation based object boundary detection



algorithm, an example image in Figure 1b is consid-

ered. After performing the segmentation of this im-

age, the resultant image is shown in Figure 1c. To

determine the distance to near by obstacles or to de-

termine the boundaries of the obstacles in the field of

view, the region covering the middle bottom of the

segmented image was considered for further process-

ing. After processing this region, the distance to the

boundaries of the objects, in the robot field of view,

were determined in pixels. The boundary information

was obtained in the form of a distance vector feature.

This feature vector provided the distance (in pixels)

to all the objects in robot’s field of view and is shown

in the Red colour in Figure 1d.

Figure 1: (a) Surveyor SRV1 robot. (b) Input image. (c)
Segmented image. (d) Distance vector feature.

2.2 Robot Localisation

Once the robots have computed the distance vector,

then to use this distance vector on the global map,

robots required their accurate location and heading

(orientation) information. For this purpose, a multi-

camera based robot localisation system, comprising

of two ceiling mounted cameras, was used. For robot

localisation, the system was programmed to recognise

coloured passive markers mounted on the top of the

robots. The passive markers recognition technique

is presented in detail in (Ahmed et al., 2012a). The

template used for the markers is shown in Figure 2a.

The localisation system identifies the Cover, Tail and

Head regions of the markers as identified in Figure

2a and determines the robot location and heading in-

formation as shown in Figure 2b (Four robots using

different colour markers are identified).

To provide robot localisation over the test arena,

the use of single camera was not sufficient as it does

not cover the entire arena. For this purpose, two ceil-

ing cameras were used. The entire arena was divided

into three zones and each ceiling camera was respon-

sible to localise the robots in different zones, as shown

in Figure 2c. Camera 1 covers zone 1 and 2, whereas,

camera 2 covers zone 2 and 3. As zone 2 is visi-

ble to both the ceiling cameras, so the robot local-

isation information in zone 2 is provided by fusing

the information from both the cameras. Both ceil-

ing cameras collectively localised the robots and pro-

vided this localisation information to the robots over

a wireless communication medium setup in the in-

frastructure mode. The localisation system provided

each individual robot the location information of all

the robots identified in the arena. This way, when

the robots generated the map using the distance vec-

tor information, they created a window around the de-

tected positions of other robots and avoided generat-

ing maps in those windowed regions. This helps to

avoid erroneous mapping of the boundaries detected

in the distance vector from the surfaces of the other

robots. This way, the boundaries detected from only

obstacles and arena walls are considered for mapping.

Figure 2: (a) Markers template. (b) Robots localisation and
heading. (c) Localisation system (Ahmed et al., 2012a).

2.3 Mapping

After computing the distance vector, the robots ob-

tained their locations and heading information pro-

vided by the ceiling cameras and mapped the distance

vector feature across their field of view. The robot

heading, obtained from the ceiling cameras, is iden-

tified by White coloured line in Figure 3a and the



robot field of view (i.e. 90deg) is shown by the Red

and Yellow coloured lines. To map vector feature on

the global map, an equation is derived which trans-

lates the distance (in pixels) detected by the robot, to

the distance in image space of the ceiling cameras.

This is carried out because the robot is localised in

the image space of the ceiling cameras. To obtain this

equation, an object was placed at some distance from

the robot. Then the distances to the object, detected

by the robot and also by the ceiling camera, were

recorded. Ten experiments were performed while in-

creasing the object distance from the robot camera.

The data recorded are shown in Table 1.

Table 1: Scale factor: From robot to ceiling camera.

dr (Robot) dc (ceiling camera) Scale Factor(α)
(in pixels) (in pixels)

62 74 1.19

69 83 1.20

75 91 1.21

81 100 1.23

85 106 1.25

93 119 1.28

101 138 1.37

108 170 1.57

114 199 1.75

121 254 2.10

In Table 1, the first and the second columns show

the distance dr and dc detected by a robot and the ceil-

ing camera, respectively. The third column shows the

scale factor α between dr and dc. The scale factor is

obtained when dc is divided by dr and it is used to

translate the distance detected by the robot to the dis-

tance detected by the ceiling camera. In Figure 3b,

α is plotted against dr in Red colour and the fitting

equation (Eq 1) for this profile is obtained. The pro-

file generated using Eq 1 is also shown in the Blue

colour. From Figure 3b, it can be seen that the value

of scale factor varies depending upon the distance de-

tected by the robot. This shows that, objects detected

near the robot, will be mapped with higher accuracy

compared to far lying objects. Note that, as the vec-

tor of distance feature is generated, a vector of corre-

sponding values of αi also generated.

αi = 4.4e−8d4
ri −7e−6d3

ri +0.00011d2
ri +0.028dri +0.0051

(1)

Where i = 1 → 320(Image width). When αi is multi-

plied with dri, then the corresponding values in ceiling

camera coordinates dci is shown in Eq 2.

dci = driαi (2)

From Figure 4a, dci can also be described (Eq3)

in terms of the robot localisation (i.e. the coordi-

Figure 3: (a) Robot field of view. (b) Fitting curve and
Profile b/w dr and α.

nates of robot position (x,y)) and the final coordi-

nates (xmi,ymi) where the object boundaries will be

mapped.

dci =
√

(xmi − x)2 +(ymi − y)2 (3)

Similarly, the slope values si (Eq4) for every dci can

be computed using (xki,yki) (i.e. coordinates spanning

the robot field of view - see Figure 4a).

si =
yki − y

xki − x
=

ymi − y

xmi − x
(4)

Now using the values of dci along with the corre-

sponding slope values si and the position coordinates

(i.e.(x,y)), the coordinates (xmi,ymi) can be computed

for mapping the object boundaries. The equation used

to compute xmi and ymi is shown in Eq5.

[

xmi ymi

]

=
[

dci√
1+s2

i

+ x
sidci√
1+s2

i

+ y
]

(5)

This way, once (xmi,ymi) are computed, the com-

plete distance vector feature is mapped to the ceiling

camera image space as shown in Figure 4b, where

the distance vector is plotted by the White coloured

line. The global map generated is also shown in Fig-

ure 4c. The image in Figure 4b is obtained from the

left ceiling camera. As two ceiling cameras are used,

the global map is obtained after using the information

from both cameras.



Figure 4: (a) Mapping process (b) Distance vector. (c) Map.

3 RESULTS

For experimentation, a test platform was designed

with obstacles placed in predefined forms and all the

robots were programmed to follow the boundaries in

the environment and map them. For robot localisa-

tion, the environment images provided by the left and

right ceiling cameras are shown in Figures 5a and 5b,

respectively. Four robots (labelled as R1, R2, R3 and

R4) were detected by the cameras. Robots R3 and R4

are not participating in the map building. They are

static, but as they are tagged with the passive mark-

ers, so they are detected as robots R3 and R4 by the

ceiling mounted cameras. Whereas, robots R1 and

R2 are working collectively to map the environment.

In these images, some blocks and boxes are placed

in the vertical direction to generate an environment.

The two robots R1 and R2 are expected to go around

in the environment and they will use the visual clues

from their vision sensor together with the information

from the ceiling cameras. This way they will map the

test arena boundary and walls made by the blocks.

The environment mapping process was a slow op-

eration because after every move, the robots needed

to wait so that the tracking system locks their current

position and provide them their location information.

This was done so that the robots are provided their

location and orientation information which precisely

represent their current position. This was important

as robots had to use this vision based location and

orientation information as the basis for mapping the

objects boundaries detected in the field of view of

their vision system. If this information corresponds

to the robot’s earlier position, then inaccuracies in the

map are expected. For example, a small error in the

orientation information can generate considerable er-

ror in the mapped boundaries. The two robots were

Figure 5: (a) Left ceiling camera image. (b) Right ceiling
camera image. (c) Map.

kept operative for 4 minutes and 21 seconds. After

the experiment finished, the generated map is shown

in Figure 5c. As mentioned before, a mapping error

caused by a small error in the detected robot orienta-

tion is also pointed out by the Blue coloured arrow in

Figure 5c. The actual location where this boundary

should be mapped is drawn in Red colour.

In another experiment, the environment was al-

tered by placing the objects in different order such

that they contribute to a different map. The place-

ment of objects for the generation of the new envi-

ronment is shown in Figures 6a and 6b. As the ob-

jective of this scenario was to demonstrate the collec-

tive vision based map building operation by a team

of robots rather than the efficient robotic control, so

the robot control algorithm performs simple vision

based boundary following operation. At the end of

the test, the robots have generated sufficient environ-

mental map as shown in Figure 6c.

In both the experiments 1 and 2, it was found that,

even after giving the location information of all the

robots to each individual robot, some of the bound-

aries resulted from the surfaces of static robots R3

and R4 were erroneously mapped (see Figure 5 & 6).

This happened because a square window region was

defined around the detected positions of the robots (as

discussed in Section 2.2) where as, the actual robots



used does not have a square shape (i.e., their length

and width is not same). As it was difficult to recognise

the pose of the robots (i.e., the robots detected in the

distance vector), so some of the boundaries detected

from their surfaces, got mapped erroneously. It was

also observed that, in both the experiments, some of

the regions remained un-mapped. This was expected

as the robots were not using any strategy to determine

which regions of the arena are mapped. To overcome

this, a path planning strategy can be used which in-

forms robots about the regions which needed to be

explored and mapped. This will also reduce the time

taken by the robots to map the environment.

Figure 6: (a) Left ceiling camera image. (b) Right ceiling
camera image. (c) Map.

4 CONCLUSION

We have proposed a method in which a simple vi-

sion based distance feature vector is computed and is

shared between the small size robots to generate en-

vironment map collectively. The accurate generation

of the map also depends on the precise robot location

and orientation information which is provided by the

ceiling mounted cameras. However, the use of simple

distance vector features not only facilitates the multi-

robot map building process, but it also does not over-

load the communication network between the robots.

The generated map can facilitate the robots to navi-

gate and solve the mission planning task in which the

detail environmental map is required.

ACKNOWLEDGEMENTS

Funded by EU-FP7 research project REPLICATOR.

REFERENCES

Ahmed, M., Saatchi, R., and Caparrelli, F. (2012a). Vision
based object recognition and localisation by a wire-
less connected distributed robotic systems. In Elec-
tronic Letters on Computer Vision and Image Analy-
sis, Vol.11, No.1, Pages 54-67.

Ahmed, M., Saatchi, R., and Caparrelli, F. (2012b). Vision
based obstacle avoidance and odometery for swarms
of small size robots. In Proceedings of 2nd Interna-
tional Conference on Pervasive and Embedded Com-
puting and Communication Systems, Pages 115-122.

Biber, P., Andreasson, H., Duckett, T., and Schilling, A.
(2004). 3d modeling of indoor environments by a mo-
bile robot with a laser scanner and panoramic camera.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Vol.4, Pages 3430-3435.

Howard, A. (2004). Multi-robot mapping using manifold
representations. In IEEE International Conference on
Robotics and Automation(ICRA), Vol.4, Pages 4198-
4203.

Kwon, Y. and Lee, J. (1999). A stochastic map building
method for mobile robot using 2-d laser range finder.
In Journal of Autonomous Robots, Vol.7 No.2, Pages
187-200.

Latecki, L., Lakaemper, R., and Adluru, N. (2007). Multi
robot mapping using force field simulation. In Journal
of Field Robotics, Vol.24, Pages 747-762.

Leon, A., Barea, R., Bergasa, L., Lopez, E., Ocana, E.,
and Schleicher, D. (2009). Multi-robot slam and map
merging. In Journal of Phyical Agents, Vol.3, Pages
171-176.

REPLICATOR (2008). Robotic evolutionary self-
programming and self-assembling organisms. In
EU-FP7 Research Project REPLICATOR. URL:
http://symbrion.org/.

Shen, Y., Liu, J., and Xin, D. (2008). Environment map
building and localization for robot navigation based
on image sequences. In Journal of Zhejiang Univer-
sity ScienceA, Vol.9, No.4, Pages 489-499.

Surveyor-Corporation (2012). Surveyor srv-1 open source
mobile robot. In www.surveyor.com/.

SYMBRION (2008). Symbiotic evolutionary robot or-
ganisms. In European Communities 7th Framework
Programme Project No FP7-ICT-2007.8.2. URL:
http://symbrion.org/.

Wolf, D. and Hata, A. (2009). Outdoor mapping using mo-
bile robots and laser range finders. In Conference
of Electronics, Robotics and Automotive Mechanics,
Pages 209-214.


