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Abstract 

Long non-coding RNAs (lncRNAs) are a biological entity defined by what they are 

not, rather than by what they are. This indicates that our knowledge about them is 

sensibly limited. The aim of my PhD is to gain insights into the evolution and the 

functions of lncRNAs through computational approaches and the usage of large 

scale functional genomics dataset. I developed an annotation pipeline, which can 

effectively identify lncRNAs in entire transcriptomes. The pipeline is able to 

accurately annotate the coding genes while predicting a conservative estimate of 

the lncRNA population. It allowed me to show, for the first time, the presence of 

IncRNA transcription in a diverse range of organisms. Further, I analysed 

sequence and positional conservation of lncRNAs, demonstrating the presence of 

short segments of conserved sequence in lncRNAs and the existence of several 

syntenically conserved non-coding transcripts over large evolutionary distances. 

However, I also demonstrate that positional conservation of IncRNAs with a 

flanking coding gene is generally independent from the conservation of the 

IncRNA expression with respect to the coding gene. Finally, I have characterised 

the diversity of lncRNA transcription in specific cells and developmental stages of 

two teleost fishes. In summary, the work presented in the thesis provides novel 

findings and contributions in the field of IncRNAomics. 
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Chapter 1 

General Introduction 

1.1 The history of the "dark matter" 

1.1.1 Pervasive transcription in the eukaryotic genome 

The idea of non-coding transcription in the eukaryotic genome took seed a few 

decades ago with reports of 50% heterogeneous nuclear RNAs (hnRNAs) 

containing non-coding sequences (Holmes et aI., 1972; Pierpont and Yunis, 1977). 

The hnRNAs are transcribed from heterochromatic, repetitive and non-repetitive 

regions in the mammalian genomes. This gave an impression that the transcribed 

part of the genome is more than what is credited to protein-coding genes, 

ribosomal RNAs and transfer RNAs. The discovery of small nuclear and small 

nucleolar RNA (Reddy et aI., 1979; Rein, 1971) and their role in RNA processing 

failed to interest the scientific community into looking further in the non-coding 

genome. The late 1990's and the early 2000's witnessed the advent of microarray 

and sequencing technologies which proved to be powerful tools in measuring the 

transcriptional output of mammalian genomes. A conspicuous observation made 

with the aid of these large-scale technologies was the widespread transcription in 

the mouse (Carninci et aI., 2005; Okazaki et aI., 2002) and human genomes 

(Bertone et aI., 2004; Cawley et aI., 2004; Ota et aI., 2004; Rinn et aI., 2003). The 
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phrase "pervasive transcription of the genome" gained prevalence from these reports 

and the term "dark matter" was coined for all transcribed genomic regions not 

localized on a protein coding region Gohnson et al., 2005). To fathom the diversity 

and complexity of the human genome liThe ENCyclopedia Of DNA Elements 

(ENCODE) Project" was launched aiming to identify all functional elements in the 

human genome sequence (The ENCODE Project Consortium, 2004). The pilot 

phase of ENCODE focused on a 30 megabase region (1%) of the human genome, 

reporting such a pervasive transcription that the majority of bases in the analyzed 

regions were associated with at least one primary transcript (Birney et al., 2007). A 

question which inevitably arises on acknowledging this rife transcriptional activity 

is whether it has a biological significance. 

1.1.2 Functionality of the "dark maHer" against the "transcriptional noise" 

hypothesis 

At this point of time it was known that much of the "dark matter" (non-coding) 

transcription occurred at very low levels, thus making it difficult to detect them 

with the available technologies (Kapranov et al., 2002). Hence opponents of the 

argument termed it as II transcriptional noise" due to insufficient progress in 

demonstrating the usability of non-coding transcripts (HUttenhofer et al., 2005). 

Support for the "transcriptional noise" hypothesis came from independent reports 

which elucidated various aspects of the eukaryotic transcription. Firstly a report 

suggested that majority of the eukaryotic transcription initiation events by RNA 

polymerase II are not associated with a functional transcript and hence represent 
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"transcriptional noise" (Struhl, 2007). Another study demonstrated that a region of 

intense transcriptional activity (coding regions) in mammalian genomes may 

frequently lead to a transcriptional ripple effect marking non-specific transcription 

in the surrounding area (Ebisuya et al., 2008). Finally eukaryotic transcription 

factors were reported to have wide spread binding sites but dependent on 

clustering of binding sites for their specificity of action (Wunderlich and Mirny, 

2009). Hence Wunderlich et al proposed, that the majority of binding events by 

eukaryotic transcription factors were non-functional. Further mammalian 

intergenic unannotated transcripts were reported to show a tendency to lie near 

coding genes and predicted to be alternative exons, promoter/terminator

associated RNAs or pre-mRNA fragments of coding genes (van Bakel et al., 2010), 

thus indicating an over-estimation of bona fide intergenic transcripts reported by 

previous studies. The results by van Bakel were contested in another study, which 

stated the lack of sequencing depth and poor transcript assembly as the reason for 

non-detection of lowly expressed novel intergenic transcripts (Clark et al., 2011). 

Clark et al further argued that the sequencing by van Bakel took into account only 

polyadenylated RNA while a large proportion of the novel intergenic transcripts 

may not be polyadenylated. The choice of a complex tissue like brain was cited as 

another reason for the inability of van Bakel et al to detect lowly expressed, highly 

tissue specific intergenic transcripts. The objections raised by Clark et al have 

support from a previously published study which reported the presence of novel 

intergenic non-coding transcripts expressed in specific cell types revealing the 

dynamic nature of the cells transcriptional machinery (Guttman et al., 2010). The 
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strife on the functionality of the "dark matter" paved the way for two prominent 

schools of thought. Opponents of "pervasive transcription" believed that the "dark 

matter" might comprise of an intricate transcript population comprising of a small 

fraction of the total cellular RNA content. Thus the /I dark matter" is proposed to be 

an offshoot of cellular processes, justifying its label as "transcriptional noise" (van 

Bakel and Hughes, 2009; van Bakel et al., 2010; Struhl, 2007). A contradictory view 

proposes that a relevant fraction of the total cellular RNA might be comprised of 

the "dark matter", which makes it an essential component for organism 

development and differentiation. Further the absence of suitable technology to 

measure the relative RNA content was cited to be the principle reason for the /I dark 

matter" to be considered as "transcriptional noise" (Kapranov et al., 2007a; Mattick, 

2011; St Laurent and Wahlestedt, 2007). 

1.1.3 Estimation of the dark matter abundance with next-generation sequencing 

technologies 

A plausible answer to the suppositions came with the onset of next-generation 

sequencing technologies, specifically RNA-seq to measure the transcriptional 

output of a cell population, tissue or whole organism (Cloonan and Grimmond, 

2008; Mortazavi et al., 2008; Wang et al., 2009) at an extremely high depth. This 

technology is based on shearing of the total RNA content from a cell tissue or 

organism followed by its ligation to adapters, PCR amplification and sequencing. 

The sequencing gives a digital count of the number of reads (25-150 bases), each 

read representing a small fragment of a transcribed RNA from the initial 
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population. Thus the count of all reads belonging to a particular gene, genomic 

feature or the total "dark matter" gives its fraction in the total sampled RNA 

population. Although simplistic in approach initial reports gave a motley set of 

figures from as low as 7% (Mortazavi et al., 2008) to a maximum of 40-50% 

(Cloonan et al., 2008; Morin et al., 2008) of non-coding transcription. The study by 

van Bakel et al followed these reports to estimate that "dark matter" comprises 12% 

of total polyadenylated RNA in human and mouse cells (van Bakel et al., 2010). An 

important aspect of the above mentioned studies was the preparation of RNA for 

sequencing. The proclivity of current sequencing technologies to alter the initial 

RNA population during reverse transcription, adapter ligation, library 

amplification and PCR could be a major factor in obtaining diverse estimates of the 

"dark matter" (Aird et al., 2011; Mamanova et al., 2010; Shiroguchi et al., 2012). An 

alternative approach could be the use of a sequencing technology which does not 

rely upon cloning, amplification or ligation of RNA molecule such as single 

molecule sequencing which, in principle, uses a high fidelity DNA polymerase 

coupled with flourescence microscopy to obtain the sequences at single base pair 

resolution (Braslavsky et al., 2003; Pushkarev et al., 2009). Indeed, single RNA 

deep sequencing showed that -50% of human transcriptome is "dark matter" (non

ribosomal, non-mitochondrial unannotated transcripts of unknown function) 

(Kapranov et al., 2010). This study highlighted the inability of sequencing 

technologies to detect diverse RNA classes due to a bias towards amplifying poly A 

RNA and in turn coding transcripts which comprise of a significant fraction of 

polyA RNA (Kapranov et al., 2010). Another study involving in depth tiling arrays 
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of targeted genomic regions reported the presence of a complex repertoire of novel 

intergenic non-coding transcripts with low expression levels (Mercer et al., 2011). 

This indicates that a low signal in the tiling array may represent a complex 

transcript population of low abundance. Mercer et al proposed that such 

transcripts could emanate from a very specialized cell type hence their low levels 

of expression cannot be held as a confirmation of them being transcriptional noise. 

At this point an important issue which remained unexplored was that the 

transcription of repetitive regions are refrained from experiments like tiling arrays 

due to non-specific binding (Kapranov et al., 2007b). Although it is a work in 

progress, technologies like Cap analysis of gene expression (CAGE) (Kodzius et al., 

2006) allowed the accurate measurement of repeat transcription in multiple human 

cell lines (Faulkner et al., 2009). A significant fraction of transcribed elements were 

observed to fall in repetitive regions of the genome and there was enrichment of 

repeat expression in embryonic tissues. The era of arguments and counter

arguments in defense of pervasive transcription led to few conclusions drawn with 

unanimous acceptance: 

Much of the eurkaryotic transcription is concentrated around coding genes. 

Widespread transcription, specificity of expression and complexity in the 

population characterise the non-coding RNAs in the cell. 

Non-coding RNAs (ncRNAs) are lowly expressed as compared to coding 

genes. 
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1.1.4 The new face of dark matter: Long non coding RNAs 

Articulating on the widespread transcription of ncRNAs directs us towards their 

population subtypes. Multiple classes of ncRNAs were discovered in the past few 

decades stressing on their importance as regulators of cellular development and 

differentiation (Amaral et al., 2008). MicroRNAs, piwi-associated RNAs and 

endogenus small interfering RNAs are ncRNAs which held the attention of the 

scientific community for a long time (Castel and Martienssen, 2013; Yates et al., 

2013). Nevertheless, in the last few years, the long non-coding RNAs (lncRNAs) 

have stood out to be the most prominent class of ncRNAs, defined as non-coding 

transcripts longer than 200 nucleotides (Cabili et al., 2011; Derrien et al., 2012; 

Guttman et al., 2009; Pauli et al., 2011a; Ulitsky et al., 2011; Young et al., 2012). They 

are not a recent addition to the ncRNA repertoire, with well characterised 

members reported in the past decades like the Xist (Brockdorff et al., 1992), 

MALATI (Ii et al., 2003) and HOTAIR (Rinn et al., 2007). A database cataloging 

experimentally verified lncRNAs from different organisms (lncRNAdb) (Amaral et 

al., 2011) reports 127lncRNAs in human. Recent large-scale genome wide studies 

by the ENCODE consortium has reported -10,000 lncRNA genes (Derrien et al., 

2012; Djebali et al., 2012) in the human genome demonstrating that our current 

knowledge on lncRNAs is based upon 1% of the total estimated population. This 

indicates a requirement for more experimental validation than currently reported, 

to build a concrete hypothesis on the functionality of all the lncRNAs identified. It 

is expected that with sequencing technologies becoming more sensitive and cost

effective the number of predicted lncRNAs will increase, a recent study even 
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estimating (computationally) a total of 40,000-50,000 lncRNA genes in human and 

mouse genomes (Managadze et al., 2013). At this juncture the following aspects of 

lncRNAs biology need a better understanding: 

- The cellular machineries exploiting their functions. 

Mechanisms of action and implication in organism development and 

disease. 

- Conservation and significance with respect to evolution. 

Identification and validation. 

1.2 The need for IncRNAs: Advantages over proteins and 

small non-coding RNAs 

1.2.1 Long non-coding RNAs in the X inactivation centre 

Suppression of the phenotypic effects of an additional X chromosome in the 

mammalian females, requires silencing of the gene expression in one X 

chromosome, also known as X Chromosome Inactivation (XCI). The X inactive 

specific transcript (Xist) lncRNA occupies the X inactivation center (Xic) and is 

reported to be involved in transcriptional repression throughout the X 

chromosome (Brockdorff et al., 1992; Brown et al., 1992; Clemson et al., 1996). A 

series of lncRNA based regulatory actions are performed at the X inactivation 

centre of one allele to initiate X chromosome inactivation (XCI) (Figure 1.1) (Lee, 

2011). The evolution and mechanism of the X inactive specific transcript (Xist) is an 

ideal example to fathom the working intricacies of a IncRNA. The Xist lncRNA 
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binds to the Polycomb repressive complex 2 (PRC2) through a conserved repeat 

motif (RepA) and guides it to the Xi (inactivated X chromosome) (Zhao et al., 2008). 

The PRC2 is an epigenetic complex which trimethylates histone H3 at Lys27 

(H3K27me3) and facilitates stable maintenance of the X inactive state. The Xist 

transcript is aided in docking to the Xi by the YY1, which is a bivalent protein 

capable of binding both DNA and RNA Oeon and Lee, 2011). Allelic control of Xist 

action is maintained by two other lncRNAs. The Xist antisense RNA (Tsix) 

represses transcription of Xist in one allele by mobilising a DNA methyl transferase 

(Dnmt3a) for Xist silencing (Sado et al., 2005) while the Xist activator Jpx positively 

regulates Xist, acting in trans and antagonistic to Tsix (Tian et al., 2010). A recent 

report shows the Jpx transcript interacting with the CCCTC-Binding Factor (CTeF) 

to evict it from the Xist locus resulting in Xist transcription (Sun et al., 2013b). The 

Xist, Tsix and the Jpx IncRNAs are transcribed from the Xic locus and are involved 

in the local chromatin remodeling. It is important to note that the Xic was not 

always non-coding in nature (Duret et al., 2006a), the shift concurring with the 

evolution of eutherian mammals 150 million years ago (Lee, 2009). This transition 

from coding to non-coding is not expected to be retained unless the presence of 

lncRNA proves to be advantageous in comparison to protein coding genes for 

upkeep of regulatory processes. Thus I will discuss below the distinct advantages 

of IncRNAs over protein-coding genes in performing regulatory functions in the 

cell. 
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Figure 1.1 LncRNAs in X-chromosome inactivation. A) The Inc RNA Xist is 

transcribed from the Xic of the inactive X chromosome. Xist RNA covers the entire 

chromosome and silences gene expression through epigenetic modification of 

histones and DNA. B) The core region of the Xic and its lncRNAs. C) LncRNA-protein 

interactions at the initiation of XCI. The figure is reproduced from Lee et aI, 2011 . 
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1.2.2 Mechanisms of cis specific function of IncRNAs 

Tethering to the site of transcription and recruiting protein factors for epigenetic 

regulation are reported as a regular feature of cis-acting IncRNAs. Studies at the 

whole genome level have shown IncRNAs to be involved in RNA-protein 

interactions, specially their recruitment of the PRC complex proteins (Guil et aL, 

2012; Khalil et aL, 2009; Zhao et aL, 2010). A prior review posits that IncRNAs may 

utilise a bare 5' end for chromatin complex capture while allowing an inCipient 3' 

to act as an anchor to a locus (Lee, 2009). The Xist Inc RNA exemplifies this 

behavior where it induces the silencing of its chromosome of origin by recruiting a 

chromatin modifying complex (Wutz, 2011). Another lncRNA the HoxA distal 

transcript antisense RNA (HOTTIP) binds with a histone modifier complex to 

bring about histone Histone 3 lysine4 trimethylation (H3K4me3) at the promoter 

regions of flanking coding genes in the HoxA cluster in human fibroblasts (Wang et 

aL, 2011). The lncRNA COLD AIR is transcribed in plants from the intron of a 

coding gene (FLC) and in tum changes the epigenetic state in the FLC locus to 

control flowering time (Heo and Sung, 2011). In comparison to IncRNAs a protein

coding RNA molecule forfeits allelic and location awareness after transport to the 

cytoplasm for translation, while small non-coding RNAs are not of the ideal length 

to act as tethers. Another important aspect which assists the site specific action of 

lncRNAs is their stability. Half life of IncRNAs are on an average lower than that of 

protein-coding mRNAs and they exist in low copy-numbers (Cabili et aI., 2011; 

Clark et aL, 2012; Djebali et aI., 2012). A quick degradation of the RNA molecule 

can be a limiting factor to its half-life, avoiding its displacement to other locales in 
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the cell. The Tsix transcript has a half-life of 30-60 minutes, its quick degradation 

allowing optimal RNA concentrations to reach only at the site of action leading to 

a strict cis mechanism (Sun et al., 2006). 

1.2.3 Mechanisms of trans specific function of IncRNAs 

It is not that lncRNAs exert themselves always in cis mode. There are trans-acting 

lncRNAs which disseminate from their locus of origin and act at large distances 

including other chromosomes except for particular cases where a purely cis or 

trans mechanism cannot be distinguished. An example being the Xist, which 

remains functionally active, inducing repressive chromatin state even when 

introduced as a trans gene aeon and Lee, 2011). Trans-acting lncRNAs rarely tether 

to protein complexes for localised action or are involved in target site binding 

(Kornienko et al., 2013; Lee, 2012), an exception being a promoter associated 

ncRNA which meshes with the target site of the transcription factor TTF-l and in 

turn is recognised by a DNA methyl transferase in mouse fibroblasts (Schmitz et al., 

2010). On the contrary they usually act as molecular scaffolds or co-activators and 

co-repressors. A prime example of scaffolding is the Hox transcript antisense RNA 

(HOTAIR) lncRNA which originates from the Hoxc locus (Rinn et al., 2007) and 

scaffolds PRC2 and Lysine (K)-specific demethylase 1A (LSD1) proteins to alter the 

chromatin state of the Hoxd genes (Tsai et al., 2010). Examples of other mechanisms 

include the Steroid receptor RNA activator 9 (SRA), a IncRNA which can activate 

steroid receptor-dependent gene expression by binding with the nuclear receptor 

co-activators in human (Lanz et al., 1999) and a human Alu RNA, which interacts 
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with RNA Pol II complex at the promoter of target genes to repress gene 

expression during cellular heat shock response (Mariner et al., 2008). The 

transcription factors Octamer-Binding 4 (Oet4) and Nanog are reported to bind two 

lncRNAs to control the pluripotent state in mouse embryonic stem cells, these 

lncRNAs are not only governed by the transcription factors but they themselves act 

as co-activators to regulate the developmental state (Sheik Mohamed et al., 2010). 

In principle trans-acting IncRNAs may behave more like small RNAs or 

transcription factors, permeating large gene networks through initiation of a 

signaling cascade but bear an advantage of sequence space over other proteins and 

small ncRNAs, providing specific scaffolding and binding mechanisms for gene 

regulation. The sequence length of IncRNAs may aid in the formation of secondary 

structures giving binding specificity to particular protein complexes. Thus the 

eukaryotic cell may be imagined containing a diaspora of transcripts and proteins, 

with the concerted action of transcription factors and lncRNAs followed by 

downstream epigenetic programming. This results in multiple network specific 

combination of transcription factors, lncRNAs and epigenetic complexes to attain 

specific as well as global responses to different stimuli. Thus, the long non-coding 

RNAs are able to interact with chromatin modifying complexes, transcription 

factors as well DNA elements to regulate the expression of various genes in a 

highly specific manner. This diversity of function gives them a distinct advantage 

over coding genes and small RNAs to act as a regulatory molecule. 
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1.3 Functional diversity of IncRNAs 

Long non-coding RNAs are implicated in diverse molecular mechanisms. The 

diversity comes from ability of the lncRNAs to interact specifically with protein 

complexes as discussed before. Currently it is almost each fortnight a novel 

lncRNA is being reported. It would not be an exaggeration to say that lncRNAs 

may soon rival proteins in the range of functions they perform. In this regard it is 

important to discuss in-depth the major mechanistic traits exhibited by lncRNAs 

due to their specific expression, length and stability. 

1.3.1 Interaction with transcription factors 

Long non-coding RNAs are reported to entice transcription factors away from their 

targets or vie for their DNA-binding sites during stress response and growth. The 

transcription factor Nuclear Transcription factor Y (NF-Y) has three subunits NF

YA, NF-YB and NF-YC (Manni et aI., 2008). The NF-Yacts as a repressor (Ceribelli 

et aI., 2006) and as a co-activator (Mora chis et aI., 2010) for multiple targets of the 

pS3 gene which are involved in apoptosis. A Inc RNA, P21 Associated NcRNA DNA 

damage Activated (PANDA) sequesters NF-YA away from NF-YA/pS3 co-regulated 

promoters during DNA damage response to evade apoptotic cell death (Hung et 

aI., 2011). The growth arrest specific 5 (GASS) IncRNA docks with the DNA

binding domain of Glucocorticoid Receptor (GR) and competes with 

glucocorticoid receptor elements for binding to the GR thus regulating the cellular 

metabolism during cellular growth arrest (Kino et aI., 2010). These examples show 
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the ability of lncRNAs to play an active role in the molecular cross-talk between 

transcription factor and their target genes, providing an additional dimension for 

regulation of specific genes and pathways. 

1.3.2 Regulation of nuclear compartment and splicing 

Long non-coding RNAs are noted to be involved m nuclear compartment 

regulation. The nuclear compartment comprises of the nuclear bodies which are 

sub-nuclear organelles functioning in response to different cellular and 

environmental cues (Mao et al., 2011). The Nuclear Paraspeckle Assembly 

Transcript 1 (NEATl) and Metastasis Associated Lung Adenocarcinoma Transcript 

1 (MALATl) are two candidate lncRNAs with well documented role in functioning 

of the nuclear compartment. The NEATl helps in the formation and stability of 

nuclear paraspeckles in human cell lines (Clemson et al., 2009), the paraspeckles 

themselves are involved in nuclear retention of mRNAs (Chen and Carmichael, 

2009). In contrast the MALATI confines splicing factors to nuclear paraspeckles for 

phosphorylation (Bernard et al., 2010) and helps to localise the splicing factors to 

sites of transcription (Tripathi et al., 2010) regulating alternative splicing of mRNA 

precursors. Another splicing regulating lncRNA, the Myocardial Infarction 

Associated Transcript (MIAT IGomafu) shows a restricted expression in mouse 

neurons and has its operation space curbed to the nuclear compartment of the cell 

(Sone et al., 2007). It has a conserved tandem repeat sequence which aids in its 

binding with Splicing Factor 1 (SF1), thus proposed to be involved in regulation of 

splicing efficiency (Tsuiji et al., 2011). A recent report found a marked correlation 
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between alternative splicing events and organism complexity with maximum 

splicing events observed in primates (Barbosa-Morais et aI., 2012). The role of 

lncRNAs in regulating splicing events genome-wide might well prove to be an 

integral part of the developmental programming of an organism. However, it is yet 

inexplicable as to why the knockouts of neither NEATl and MALATl yield potent 

phenotypes (EH~mann et aI., 2012; Nakagawa et aI., 2011) suggesting that 

conventional knockout/knockdown studies correlating quantity to functionality 

might not hold strong for lncRNAs. 

1.3.3 Post-transcriptional modifications and translational regulation 

There are multiple examples of lncRNAs involved in post-transcriptional 

regulation of mRNA molecules. An antisense transcript coming from the 3'-UTR of 

inducible nitric oxide synthase (iNOS) interacts with its sense transcript as well as 

with AU-rich element-binding protein HuR to increase the stability of the iNOS in 

rat hepatocytes (Matsui et aI., 2008). The iNOS protein positively regulates the 

secretion of nitric oxide (Nathan and Xie, 1994), and nitric oxide is implicated in a 

diverse range of cellular processes from angiogenesis (Fraisl, 2013), myogenesis (De 

Palma and Clementi, 2012) to programming of cellular differentiation pathways 

(Mujoo et aI., 2011). In contrast to increasing stability, lncRNAs also aid in 

degradation of 1% mRNAs in human HeLa cell line as evident from the Staufenl 

mediated decay pathway. The Staufenl is a protein involved in degradation of 

translationally active mRNAs, which relies on imperfect base pairing between ALU 

elements on 3'UTR of a coding mRNA and lncRNAs called half-STAUl-binding site 
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RNAs for target site identification (Gong and Maquat, 2011). While lncRNAs can 

regulate the stabilisation or degradation of mRNA molecules they are also 

reported to regulate the level of protein expression, leaving the mRNA 

concentration undisturbed. The expression of a transcription factor (PUJ , 

regulating hematogenesis), is negatively affected at the protein level in human and 

mouse cell lines when its antisense non-coding transcript competes with it for 

binding to the eukaryotic translation Initiation Factor 4A1 (eIF4A) (Ebralidze et al., 

2008). A recent report showed that a B2 SINE embedded in a mouse IncRNA 

antisense to Ubiquitin carboxyl-terminal esterase L1 (Uchll) enhances the 

translation of the Uchl1 transcript (Carrieri et al., 2012). The Uchll gene is involved 

in brain specific protein degradation and is implicated in Parkinsons disease (Liu 

et al., 2002). This observation brings forth a new aspect of Inc RNA mechanism 

involving close association with overlapping transposable elements. In fact another 

study reports the presence of 361 lncRNAs in mouse with B2 SINE elements 

suggesting that the previous report may not be an exclusive event (Kapusta et al., 

2013). A lncRNA lincRNA-P-p21 associates with RNA-binding protein human 

antigen R (HuR), leading to lower lincRNA-p21 stability in a human cell line. 

During low HuR levels, lincRNA-p21 is expressed and lowers the translation 

product of JunB and Catenin (cadherin-associated protein) Beta 1 (CTNNB1) 

coding genes in collaboration with the transcriptional repressor DEAD box 

helicase (Rck) thus eliciting a complex feedback loop (Yoon et al., 2012). 
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1.3.4 Cross-talk with small non-coding RNAs 

An interesting aspect of lncRNA mechanism is its cross-talk with small ncRNAs, 

where lncRNAs compete, act as decoy or are the source for small ncRNAs. An 

antisense lncRNA originating from the ~-secretase-l (BACE1) locus augments the 

stability of the BACEl coding gene by masking its miRNA binding sites (for miR-

485-5p) in human HEK293T cells (Faghihi et al., 2010). The BACEl is reported to be 

a critical gene involved in AIzheimers disease due to its involvement in beta

amyloid (abeta) peptide secretion (Vassar et al., 2009). Thus indirectly the BACEl 

antisense transcript plays a major role in maintaining the stability of BACEl mRNA 

and accumulation of abeta peptides in the brain. There are also examples of 

IncRNAs acting as decoys or sponges for miRNAs, having miRNA binding sites in 

their 3UTRs. A long non-coding RNA HULC (Highly Upregulated in Liver Cancer) 

acts as an endogenous sponge for the miRNA, miR-372, hence setting up a self 

regulatory loop mediated by the target gene of the miRNA (CREB phosphorylating 

protein) and the CREB protein which binds to the core promoter of the Inc RNA in 

human tumorous liver tissue (Wang et al., 2010). The HULC sets an interesting 

precedent for understanding how an mRNA/RNA molecule may regulate a 

miRNA, since in the past the sole focus has been on how miRNA molecules 

regulate mRNA. An important finding in support of the endogenous sponge 

mechanism came from the IncRNA Muscle Differentiation 1 (lincRNA-MD1) which 

provides alternative binding sites for miRNAs miR-133 and miR-135 in human 

myoblasts (Figure 1.2) (Cesana et al., 2011). The miRNAs miR-133 and miR-135 

control the expression of Mastermind-like 1 (Maml1) and Myocyte Enhancer Factor 
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2C (MEF2C) respectively. The MEF2C is reported to be an important transcription 

factor involved in muscle and cardiovascular development (Lin et aI., 1997) and the 

MAMLI is reported to regulate the transcription of MEF2C (Shen et aI., 2006). Thus 

the lincRNA-MDl plays a role in muscle development and differentiation on the 

merit of its ability to block the activity of the miRNAs (miR-133 and miR-135) by 

competing with the MEF2C and Maml1 to bind with the miRNAs miR-133 and 

miR-135. This behavior of lncRNAs is proposed as a part of a large regulatory 

network where the messenger RNAs and long non-coding RNAs cross-talk with 

the miRNAs as an intermediary component leading to an increase in the number 

of feasible signaling cascades (Salmena et aI., 2011; Seitz, 2009). 
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Figure 1.2 The role of lincRNA-MDl in regulation of genes important for muscle 

development and differentiation. A) Transcription of the Mamll and MEF2C genes. 

B) The normal scenario where the miRNAs (miR-133 , miR-135) block the action of the 

Mamll and MEF2C genes . C) The alternative scenario where the lincRNA-MDl 

competes for the miRNA binding sites with Mamll and MEF2C hence preventing the 

miRNAs to block the translation of the coding genes. The mechanism depicted is 

described in Cesana et al, 2011. 

Apart from competing with small RNAs, lncRNAs are also known to play host to 

small RNA transcription. The H19 is one of the first IncRNAs reported to be 

involved in the imprinting of the coding gene Insulin-like Growth Factor 2 (IGF2) 

in mouse (Brannan et al., 1990). The H19 gene has a microRNA (miR-675) 

embedded in its first exon, which targets the IGF2 gene to control cellular growth 

(Keniry et al. , 2012). The Gas5 IncRNA gives rise to highly conserved snoRNAs 
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(Smith and Steitz, 1998) while Gtl2, anti-Rtll and Mirg lncRNAs harbour multiple 

miRNAs and snoRNAs (da Rocha et al., 2008). Interestingly complementary base 

pair regions of sense/antisense transcript pairs, consisting of mRNAs and 

pseudogenes are reported to give rise to endo-siRNAs suggesting another less 

understood mechanism by which lncRNAs may exert their function (Tam et al., 

2008; Watanabe et al., 2008). In fact a study associates the repression of Xist 

lncRNA by Tsix to a RNA-i mediated pathway, where Dicer dependent small RNAs 

originate from the complementary base pairing between the two IncRNAs (Ogawa 

et al., 2008). An important investigation on IncRNAs competing and hosting small 

RNAs could be whether it is the small RNAs which are the master switches 

regulating both lncRNAs and coding mRNAs or the IncRNAs themselves. Which 

means a better understanding of the knockdown/knockout! overexpression of the 

lncRNAs, to know whether the phenotype results from the lncRNA or its miRNA 

counterpart. 

1.3.5 Long non-coding RNAs as enhancers 

Enhancers are reported to be widely transcribed in mouse neuronal cells, giving 

rise to non-polyadenylated, non-coding transcripts, their expression levels 

correlating with that of nearby coding genes (Kim et al., 2010). Further a major 

fraction of mammalian RNA pol II initiation events in intergenic regions are 

reported to be associated with enhancers (De Santa et al., 2010). A previous study 

had shown the ability of lncRNAs to function as enhancers, inducing the 

expression of their neighboring coding genes but in a RNA-dependent fashion 
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(0rom et al., 2010a). A recent report demonstrated the presence of enhancers 

within introns of coding genes, which give rise to stable lncRNA transcripts 

(Kowalczyk et al., 2012). These lncRNAs were called enhancer RNAs (eRNAs) as 

they worked in a manner similar to classical enhancers. However it is not yet well 

understood, whether the transcribed enhancers and lncRNAs acting as enhancers 

are part of similar or different regulatory pathways. However, a recent study 

demonstrated an enhancer-like mechanism of an lncRNA involving the Mediator 

complex. Amongst metazoans the Mediator multi protein complex is reported to be 

vital in regulation of a diverse set of protein coding genes (Malik and Roeder, 

2010). The Mediator complex is comprised of multiple subunits which are 

conserved across evolution and interact with various regulatory molecules like 

transcription factors, coactivators and repressors to regulate the expression of 

various genes. A class of ncRNAs called the ncRNA-activating (ncRNA-a) were 

reported which function in an enhancer like manner by binding with the subunit 

of the Mediator protein complex (Med12), and activate their neighboring genes in 

cis (Lai et al., 2013). Interestingly chromosome conformation capture assays 

showed chromatin looping between the ncRNA-a and their target genes, the 

looping reduced on depletion of either the ncRNA-a or the mediator subunit. This 

finding provides a valuable insight into possibly one of the principal mechanisms 

employed by enhancer like IncRNAs or eRNAs to activate the transcription of their 

neighboring genes. 
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1.4 Long non-coding RNAs in development and disease 

A deeply intertwined circuitry of lncRNAs and transcription factors help maintain 

the pluripotent state of the cell (Guttman et al., 2011). This close association with 

the cell fate gives credence to lncRNAs as a major player in the developmental 

programming of the cell and suggests possible association with multiple diseases. 

Actually 43% of disease associated SNPs in human are known to lie in intergenic 

regions as compared to 45% in introns of coding genes, the rest present in exons or 

UTRs of coding genes (Hindorff et al., 2009). Numerous reports of IncRNAs with 

respect to metabolical, genetical and developmental disorders led to the creation of 

a database (LncRNADisease) exclusively for lncRNA disease associations (Chen et 

al., 2013a). The database holds information of -500 lncRNAs which have 

experimental support to be involved in a particular disease. A computational 

method, the Laplacian Regularized Least Squares for LncRNA-Disease Association 

(LRLSLDA) was published recently to associate lncRNAs with probable diseases 

based on their expression profile (Chen and Yan, 2013). 

1.4.1 Long non-coding RNAs in cancer 

Cancer of any form or type closely correlates with an altered developmental 

programming of the cell. There are numerous reports implicating long non-coding 

RNAs in cancer (Cheetham et al., 2013). The MALATl and the HOT AIR have also 

been well characterised for their implication in cancer. The MALATl interacts with 

splicing factors to regulate alternative splicing of mRNAs in the nuclear 

compartment of the cell during cell division (Tripathi et al., 2010). Apart from 
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being a splicing regulator the MALATl governs the gene expression of multiple 

target genes exclusively in lung carcinoma (Gutschner et al., 2013). Further it is 

reported to be overexpressed in multiple tumour types and associated with patient 

survival, indicating it to play a major role in cancer metastasis (Schmidt et al., 

2011). However another recent study proved that the gene regulatory feature of 

MALATl is not limited to cancerous cells, since it is linked to regulation of cell 

cycle genes required for Gl/S and mitotic progression in normal human 

fibroblasts (Tripathi et al., 2013). The HOTAIR lncRNA acts in trans by recruiting 

the PRC2 complex to silence the expression of genes in the Hoxd locus (Rinn et al., 

2007). The Hox cluster genes are master regulators of embryonic cell development 

and differentiation, whose mis-regulation leads to human disease especially cancer 

(Barber and Rastegar, 2010). The HOTAIR transcript is reported to be involved as a 

proto-oncogenic factor in pancreatic, colorectal, hepatocellular and gastrointestinal 

cancer (Geng et al., 2011; Kim et al., 2013b; Kogo et al., 2011; Niinuma et al., 2012). 

Thus the mechanisms of MALATl and HOTAIR prove to be critical paradigms to 

understand the concerted functions of lncRNAs in development and disease in 

vivo. 

1.4.2 Long non-coding RNAs in neuronal disease 

A functional aspect to which lncRNAs are often related is the development of the 

brain or neural tissues. A recent study has identified lncRNAs specific to mouse 

neural stem cells with a potential role in neurogenesis (Ramos et al., 2013). 

Previously lncRNAs transcribed specifically in the mouse brain were identified 
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from in-situ hybridization data, proposing a complex expression interplay with 

proximal coding genes, which are mainly of neurological importance (Mercer et 

al., 2008) followed by another report showing dynamic lncRNA expression pattern 

during neuronal and glial cell differentiation (Mercer et al., 2010). Two other 

studies report the presence of novel lncRNA transcripts dynamically regulated 

during development in human (Lipovich et al., 20l3) and rat cerebral cortex (Wood 

et al., 2012). A subset of lncRNAs specific to mouse central nervous system 

(Ponjavic et al., 2009) and human retinal neurons (Mustafi et al., 2013) show 

constraint of sequence amongst mammals. This suggests a small group of lncRNAs 

catering to core neural developmental functions while the rest arise from a lineage 

specific evolution. A number of lncRNAs like the HOTAIR and CRNDE were 

found to be differentially expressed during the transition of embryonic pluripotent 

cells to neurons indicating their importance in differentiation and neuropsychiatric 

diseases (Lin et al., 2011a). The ~-secretase enzyme, beta-site APP cleaving 

enzyme-l (BACEl) is functionally important during synaptic transmission and 

myelination in the brain (Vassar et al., 2009). It is implicated in the Alzheimers 

disease due to its involvement in formation of amyloid beta (A~) in diseased brains 

(Kandalepas and Vassar, 2012). The BACEI antisense transcript (BACEI-AS) masks 

miRNA binding sites (for miR-485-5p) in BACEI to increase the BACEI mRNA 

stability (Faghihi et al., 2010) and the antisense transcript shows elevated levels of 

expression in patients with Alzheimers disease (Faghihi et al., 2008). The nuclear 

enriched abundant transcript 1 (NEATl) is an important constituent for nuclear 

paraspeckle formation (Clemson et al., 2009). The NEATI transcript is reported to 
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interact directly with TAR DNA-binding Protein-43 (TDP-43) and fused in 

sarcoma/translocated in liposarcoma (FUS(TLS) in amyotrophic lateral sclerosis 

(ALS) motor neurons (Nishimoto et aI., 2013). The TDP-43 and FUS proteins are 

implicated in the Al.S diseased state. This report adds another functionality to the 

NEATl transcript where it may act as a scaffold for RNA binding proteins in the 

nuclei of Al.S motor neurons. A Inc RNA CRNDE (Colorectal Neoplasia Differentially 

Expressed) is highly expressed in multiple cancer cell types, shows a prominent 

expression pattern in human and mouse brain and promotes neuronal 

differentiation (Ellis et aI., 2012). The HOT AIR, MALAT1, CRNDE examples 

suggests that a single lncRNA may provide a regulatory stimulus to different 

pathways implicated in cellular development, differentiation or the onset of a 

diseased state. 

1.4.3 Potential of IncRNAs as therapeutic agents 

The traditional drug targets of the genome, the coding genes, represent a small 

fraction of the genome (Overington et aI., 2006) and the microRNAs inhibit 

expression at the translation level and are not known to be highly locus specific 

(Lim et aI., 2005). In comparison lncRNAs, specially those which act in cis are 

known to activate or repress transcription in a locus specific manner and their 

inhibition can lead to a natural up-regulation of their target coding genes in 

contrast to traditional enzyme replacement therapies. A recent review suggests 

that the lncRNAs (specifically natural antisense transcripts, NATs) are an ideal 

molecule to fill the dearth of therapeutic targets for human diseases since they are 
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locus specific cis-regulators of their target coding genes (Wahlestedt, 2013). The 

NATs are transcribed opposite to the sense strand of protein-coding genes which 

results in them partially overlapping the exons, promoter and regulatory binding 

sites of the protein-coding gene (Faghihi and Wahlestedt, 2009) . The NAT 

expression can be inhibited by single stranded oligonucleotides as exemplified by 

the seven fold rise in expression of the Brain-Derived Neurotrophic Factor (BDNF) 

on inhibiting its antisense counterpart (Modarresi et al., 2012) . The lncRNAs are 

hitherto an untapped potential, most of them being novel transcripts with 

unknown function. Even at low expression levels lncRNAs can direct a specific 

regulatory mechanism, hence may require a smaller dosage of inhibitory 

oligonucleotides, reducing toxicity and off-target effects thus making them ideal 

candidate for therapeutic purposes. The basic mechanism of action, known 

function and organism of origin of the lncRNAs discussed so far are summarised 

in Table 1.1. 

Name 

Xist 

~ .......... "".""""'""',...,...,,..,-.> 

Gomafu 

Mechanism 

Tethering chromatin 
modifying complex 

Function 

X chromosome 
inactivation 

Class Organism 

Human, 
mouse 

Binding with splicing factor Regulation of trans- Mouse, 
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HOTAIR 

CRNDE 

HOTTIP 

Molecular scaffolding of 
chromatin modifying 
complexes 

Organism 
development 

trans- Human 
acting 

~~~~~~~~~~~~--~------~------~ 

Tethering chromatin 
modifying complex 

Organism 
development and 
angiogenesis 

cis- Human 
acting 

lincRNA-TTFl Competing with Ribosomal RNA 
transcription factor binding regulation 

trans- Mouse 
acting 

site 

SINE 82 RNA Transcriptional repression Heat shock trans- Human 
acting 

GAS5 

BACEl-AS 

LincRNA-p2l 

through RNA POL II response 
binding 

Competing with DNA 
binding site of 
glucocorticoid receptor 

Regulation of 
metabolism during 
cell growth arrest 

trans- Human 
acting 

~----------------~ 

Stability of sense mRNA by Alzheimers disease cis- Human 
protection against miRNA acting 
binding 

Regulation of translation of Regulation of 
multiple target genes cellular translation 

machinery 

trans- Human 
acting 

LincRNA-MDl Competing with miRNA Myogenesis trans- Human 
acting target for miRNA binding 

-~~ 
Table 1.1 Summary of IncRNAs with known mechanism of action and function . 
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1.5 Evolution and conservation of IncRNAs 

1.5.1 Conservation of sequence in the non-coding genome 

The base pretext in case of a conservation analysis is that the sequence similarity 

between organisms of diverse taxa suggests its functional significance. In case of 

protein-coding genes the pressure to retain their amino acid composition proves to 

be a major factor in conservation of nucleotide sequence. Long non-coding RNAs 

are not bound by such a constraint and their large sequence space can possibly 

allow transcripts with no sequence conservation to perform similar functions on 

merit of the mRNA folding and vital pockets of binding sites. An understanding of 

the organisational change brought by species diversification in the non-coding 

regions is critical to gain insight into evolution and conservation of lncRNAs. 

Mouse non-coding sequences are reported to be conserved no better than a 

evolutionary neutral model, indicating them to be either non-functional or species 

specific (Wang et al., 2004). That non-coding regions lack conservation of sequence 

is not a universal truth considering the study mentioned above chose to omit 5% of 

the highly conserved non-coding part of the mouse genome. Conserved blocks of 

non genic regions between human and mouse were first identified as non-coding 

regions with a potential regulatory function (Dermitzakis et al., 2002). Further, 

genomic regions with perfect sequence identity between human, mouse and rat 

were reported as ultra conserved elements (UeEs) and contemplated to playa role 

in the ontogeny of organisms (Bejerano et al., 2004). Not all UCEs reported are 

non-coding in nature, some overlap exons and introns of coding genes. Conserved 

non-coding elements (CNEs) between human and fish were identified later 
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(Woolfe et al., 2005) along with ultra conserved non-coding genomic regions 

(UCRs) between human and mouse (Sandelin et al., 2004). Their high sequence 

identity set a precedent for their functional importance, for the sake of simplicity 

all such elements are addressed together as CNEs. A crucial observation from 

these studies was the clustering of CNEs around coding genes which have similar 

functions, particularly regulation of transcription and cellular development. There 

were already reports of short conserved non-coding enhancers regulating the 

expression of the Sox9 and the Hoxd gene clusters (Bagheri-Fam et al., 2001; Santini 

et al., 2003) prior to the detection of the CNEs. Thus was conjectured that the 

CNEs cluster near their presumptive targets, that is, coding genes important in 

early development (especially DNA binding proteins), and play an active role in 

their regulation. The position of CNEs as potential enhancers was cemented by a 

study showing 45% of such elements act as tissue specific enhancers during early 

development, a majority directing the development of the nervous system 

(Pennacchio et al., 2006). Genomic regions containing arrays of conserved elements 

between mammals and teleost fishes encompass CNEs and their target 

developmental/transcription factor (trans-dev) genes along with functionally 

unrelated "bystander" genes (Akalin et al., 2009; Kikuta et al., 2007a). These regions 

are called genome regulatory blocks (GRBs) (Figure 1.3). The regulatory structure 

of GRBs was found to be replicated in insect genomes, along with extensive 

conservation of CNEs/target genes at the microsyntenic level categorizing them as 

an ancient regulatory feature of metazoan genomes (Engstrom et al., 2007). It is but 

a small percentage « 20 %) of GRBs in human and insects which are identified as 
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ancestral associations, the rest originating in a lineage specific fashion (Irimia et al., 

2012). The same study reported the widespread loss of GRBs, every bilaterian 

ancestral GRB being lost at least once in a metazoan while each metazoan species 

having lost at least a dozen conserved GRBs. 

Genome regulatory block 

Human ------~~_I~~--t+~~--~I__I~~--_+~ .. ----_f~ .. ----

zebrafish 

Copy 2 

• • . Target gene .... Bystander gene 'Highly conserved non-coding element 

Figure 1. 3 The definition of a genome regulatory block, its retention and distribution 

after a whole genome duplication event in teleost fishes. In the case of a HCNE acting 

as a regulator of a target gene, both the HCNE and the target gene are retained in 

duplicate copies in the zebrafish while a bystander gene may be lost. Conversely the 

HCNE may be lost along with its target gene in one copy. The structure of the figure 

is borrowed from Akalin et al, 2009 . 

CNEs identified in three different taxa (insects, worms and vertebrates) do not 

show sequence similarity, but remain associated with and regulate genes involved 

in highly similar functions, specially organism development (Vavouri et al., 2007). 

However, conserved non-coding sequences in a tunicate (Ciona intestinalis) are 

reported to share short segments of conservation with vertebrate CNEs (45 bp; 

55% identity) and termed as oCNEs. These elements can act as enhancers in 
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transgenesis and cross-trans genesis experiments suggesting an evolutionary 

conservation of their cis-regulatory function. Interestingly the oCNEs are observed 

to be present in non-syntenic locations between vertebrates and urochordates, 

suggesting their co-option into novel regulatory networks due to chromosomal re

arrangements or retrotransposition (Sanges et al., 2013). Indeed, such elements 

results to also be transcribed and enriched in overlapping eRNAs suggesting again 

a functional link between noncoding transcription and regulatory functions. 

1.5.2 Transposable elements and long non-coding RNAs 

The presence of regulatory elements within IncRNAs genes can be an active driver 

of their evolution. A yet unexplored hypothesis in lncRNA evolution is the role 

played by overlapping enhancers or transposons. Not much was known about the 

effect of transposable elements (YEs) except for them playing an active role in the 

regulation and diversification of non-coding exons (van de Lagemaat et al., 2003; 

Zhang and Chasin, 2006). A recent study reported more than 80% of human 

lncRNAs containing TEs in sharp contrast to protein-coding genes (Kelley and 

Rinn, 2012). Further the TEs showed a positional bias for the transcriptional start 

site of lncRNAs, insinuating their possible role in regulation of the non-coding 

genes. Another study reported the presence of TEs in Inc RNA exons of human 

(75%), mouse (68%) and zebrafish (66%) more than that expected by chance and 

the TEs were more likely to overlap a transcriptional start site or polydenylation 

site in a lncRNA as compared to a coding gene (Kapusta et al., 2013). An 

observation which catches the attention is the fact that TE sequences within 

32 



lncRNA exons are more conserved than random genomic regions or TEs in 

intronic regions or lncRNA exonic regions without TEs. Further TEs lying 

upstream of cell-type specific lncRNAs in human were found to possess an active 

chromatin state in the particular cell-type, leading to the inference of them 

working as cis-regulatory elements for lncRNAs (Kapusta et al., 2013). Promoters 

of very long intergenic RNAs (vlincRNAs) are recognised to overlap endogenous 

retroviral elements and the expression of vlincRNAs with such promoters 

correlates strongly with the level of malignancy of a normal cell type (Laurent et 

al., 2013) . To summarise, TEs are found to be important features in modulating the 

sequence and expression of lncRNAs and potentially assigning functional 

constraints. Thus lncRNAs can be effectively classified on the basis of their location 

and overlap with other genomic features (Figure 1.4). Their genomic position can 

help in prediction of putative functional roles, considering that unlike protein-

coding genes for lncRNAs the classical approach of relying upon sequence 

conservation to predict function is not effective. 

, I codlnll Ilene ' Promoter , Enhence, ImlRMA snoRMA , conserved non-codlng _Re.,.et element ILonll IIoll-codlllll lIelle 
, element 

Figure 1.4 Classification of IncRNAs based on their genomic position and overlap 

with other non-coding RNAs, protein-coding genes and regulatory features. 
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1.5.3 Conservation of sequence in IncRNAs 

Assessment of sequence constraint is defined as the proportion of the nucleotide 

substitution rate in functional sequence, which can be categorized into neutral, 

unconstrained, and constrained. Long non-coding RNAs show a lower sequence 

constraint in comparison to coding and small non-coding RNAs, the average 

nucleotide substitution rate for intergenic non-coding RNAs being 90-95%, 

implying 5-10% of sequence conservation (Ponjavic and Ponting, 2007). There are 

sporadic reports of sequence conservation in lncRNAs, primarily in case of the 

Xist, Sox2ot, HarlF and HOTAIR lncRNA genes. The Xist lncRNA, shows sequence 

conservation in 14 vertebrate species but has no homologs in non eutherian 

vertebrates (Duret et al., 2006a). The length of the Xist transcript has small pockets 

of sequence conservation, specially in its fourth exon and in five internal repeat 

element sequences (repA-E) (Pontier and Gribnau, 2011). The repA sequence is 

known to be important for Xist functioning, forming a hairpin structure to bind the 

PRC2 protein complex (Zhao et al., 2008) while the other repeats and exon 4 

functions are not well characterised. The size and structural orientation of Xist 

conserved regions are reported to be the possible factors guiding its localisation 

and X inactivation mechanism. The Sox2 overlapping transcript (Sox2ot) and 

Human accelerated region IF (HarlF) are two other IncRNAs which have 

vertebrate conserved sequence elements spanning the transcript (Amaral et al., 

2009; Pollard et al., 2006a). The human HOTAIR lncRNA shows two conserved 

regions in comparison with the mouse genome but appears to evolve faster than 

the nearby Hoxc genes, yet shows a considerable conservation in secondary 
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structure (He et al., 2011a). An interesting observation on the human HOTAIR 

lncRNA is that, of its two functional regions conserved with mouse genome only 

one falls within the murine HOTAIR transcript and the deletion of the IncRNA in 

mouse has no visible effect on expression of the Hoxd genes (Schorderet and 

Duboule, 2011). This may either be an error because of incorrect annotation in 

mouse or more convincingly appears to be a case of rapid evolution of the gene to 

perform a vital function in primates. Forty three putative lncRNAs in chicken 

show conservation with human, rat and mouse transcripts at greater than 80% 

sequence identity (Hubbard et al., 2005). Around -600 lncRNAs were identified 

showing constraint in their nucleotide substitution rates between mouse and 

human, those expressed in brain showing higher degree of sequence and 

secondary structure conservation (Ponjavic et al., 2009). In another similar study 

brain specific mouse lncRNAs in bird and opossum were reported to be highly 

variable at the sequence level but their putative promoter regions, exon-intron 

boundaries and the pattern of expression during embryonic and early postnatal 

stages show pronounced evolutionary conservation (Chodroff et al., 2010). 

Performing a stringent sequence homology search « 0.05% false positives) of 

mouse lncRNAs against vertebrate conserved elements in the zebrafish genome 

gave me a small figure of 4-11% of sequence conservation corroborating the 

previous reports on lneRNA sequence identity (Basu et al., 2013). A recent study 

identified a small set of lncRNAs (-20) specifically expressed in human retinal 

neurons showing sequence conservation in mammals suggesting the existence of 

conserved lncRNA subsets functioning in retinal and visual maintenance of 
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mammals (Mustafi et al., 2013). In contrast to the lncRNA genes their promoters 

are reported to show sequence conservation at par with those of coding genes 

implying the need for a constrained transcription pattern (Carninci et al., 2005; 

Derrien et al., 2012; Guttman et al., 2009). The above reports of lncRNA sequence 

conservation suggest a rethink for consideration of primary sequence information 

as a perpetual measure for functional identity. Still more conclusive evidence 

maybe obtained only when making comparisons of more exhaustive lneRNA 

populations rather than relying upon genomic alignments or incomplete Inc RNA 

catalogues. It may well be the conservation of splicing/expression pattern, 

secondary structure and genomic locus of origin which help in the defacto 

retention of the lncRNA function. 

1.5.4 Positional conservation of IncRNAs with respect to their flanking coding 

genes 

There is very little information on the positional conservation of lncRNAs during 

evolution. For example, protein-coding genes lying near a lncRNA gene in 

zebra fish have a higher probability to have orthologs adjacent to lncRNA genes in 

human or mouse (Ulitsky et al., 2011). There is an obvious catch to this statement, 

which is the percentage of totallncRNAs sampled for making such an observation, 

envisaging many lncRNAs yet lie undetected resulting in a bias towards IncRNAs 

falling inside syntenic loci. Indeed a report estimates the total number of 

mammalian lncRNAs much beyond the numbers currently identified (Managadze 

et al., 2013). This study employed the use of conserved orthologous regions 
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between the mouse and human genomes to estimate around 2/3rd of lncRNAs to 

be orthologous in mammals. This estimation may be slightly far fetched since the 

authors decide to completely neglect factors like microsyntenic association and 

orientation with respect to proximal coding genes and rely upon whole genome 

alignments. Another study reported the presence of conserved microsynteny 

between coding genes separated by no more than four other coding genes across 

the metazoan lineage (Irimia et al., 2012). Such a study gives impetus to check for 

linkage of protein-coding genes and lncRNAs over large evolutionary distances. 

While singularly it is difficult to predict lncRNA conservation due to their lack of 

sequence homology, in principle the positional association with a protein-coding 

gene across multiple species may reflect a functional constraint which results in 

transcription of a IncRNA in the particular locus. The functional constraint may be 

either the coding and non-coding genes being guided by common regulatory 

programs or it may result in the identification of a lneRNA subgroup which retain 

their positional identity to perform a cis-regulatory function. Prediction of such a 

subgroup of IneRNAs will contribute immensely in understanding the putative 

functions and mechanisms which may drive the evolution of IncRNAs. 

1.6 Strategies for identification of IncRNAs 

1.6.1 Computational strategies for IncRNA identification 

Filtering by the length of transcripts, their overlap with coding genes and synteny 

amongst mammals forms the basis of a lncRNA discovery pipeline (Khachane and 
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Harrison, 2010). An alternative strategy was employed in another study relying 

upon the size of ORF and homology to a protein family database for IncRNA 

detection Gia et aI., 2010). The length of the transcript (> 200 nucleotides), size of 

ORF « 100 AA), lack of homology to an annotated protein and a low coding 

potential are the major parameters for computational prediction of Inc RNA 

transcripts used recurrently (Cabili et aI., 2011; Pauli et aI., 2011a; Ulitsky et aI., 

2011). The potential of a transcript to code for a protein is an important aspect to 

identify a lncRNA. In the past, codon substitution frequency analyses were used as 

a reliable metric to gauge the coding potential of a transcript (Lin et aI., 2008). It is 

simply meant to assess the conservation of amino acid co dons across evolution as a 

measure of the coding potential of a transcript. This method was later published as 

the program PhyloCSF but was restricted to species with complete genome 

sequence due to its need for a multi species nucleotide alignment (Lin et aI., 2011c). 

Alternative approaches considering the length of open reading frames (ORF) and 

sequence homology removed the need for whole genome sequence. The Coding 

Potential Calculator (CPC) program estimates the coding potential by comparing 

the size and integrity of a predicted ORF along with its sequence homology 

against a large protein family database (for ex. UniProt or NCBI NR) (Kong et aI., 

2007). An alternative but faster program (PORTRAIT) omitted the homology 

information and relies upon translation of sequences across all reading frames 

followed by a machine learning algorithm on the ab-initio properties of the longest 

ORF and the nucleotide composition to estimate the coding potential (Arrial et aI., 

2009). Another program CPAT, functioning on the lines of the PORTRAIT software 
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uses the metrics of ORF prediction to measure the coding potential and claims to 

outperform both CPC and the PhyloCSF in terms of prediction accuracy (Wang et 

al., 2013). The prediction of ORF brings us to the question of translation of small 

peptides embedded within long transcripts which may be predicted as non-coding 

due an oversight by the software programs. It is preliminary to appoint a 

conclusive view on the best method to classify a transcript as coding or non

coding, yet the computational measurement of coding potential appears to be a 

fast and cost-effective method to get a reasonable estimate of the ncRNA populace. 

Currently there is a lack of an easily implementable computational pipeline for 

lncRNA identification whilst there exist numerous published studies adopting a 

few core computational parameters to detect IncRNA transcripts (Figure 1.5). 
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Figure 1.5 Major strategies defining computational prediction of IncRNAs. Genomic 

location based strategies involve validating the IncRNA structure by comparing it 

against H3K4me3 chromatin modification and CAGE peaks to identify the 

transcriptional start. Further the H3K36me3 modification peaks reflect on the length 

of the transcribed element and Ribosome occupancy reflects its potential to be a 

protein-coding gene. Sequence based strategies compare the Inc RNA sequence 

against a public protein coding database followed by a filtering based on ORF size « 

1 00 amino acids) and measurement of coding potential. 

1.6.2 Experimental strategies for identification of IncRNAs 

Apart from the computational measures the single important factor which may 

define a lncRNA transcript is its inability to translate into a protein or a small 

peptide. The gold standard for measuring the translational potency of a lncRNA is 

an in-vitro translation experiment (Brannan et al., 1990; Brockdorff et al., 1992). 

However such an assay is not optimized for large scale studies and there is a 

possibility of getting a false negative result even in the case of known coding 
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genes. Recent evidence in the Drosophila melanogaster genome shows the presence 

of conserved small ORFs in transcribed intergenic regions (Ladoukakis et al., 2011), 

some of them lying within ncRNAs have the ability to code for short peptides 

(Kondo et al., 2010). A particular example is of SRA/SRAP which exhibits the dual 

nature of a ncRNA transcript, both as a regulatory ncRNA and as a translationally 

active mRNA (Chooniedass-Kothari et al., 2004; Kawashima et al., 2003), where the 

alternative splicing of an intron begets the coding and functional non-coding 

transcripts (Hube et al., 2006). Though this may not be a regular behavior in 

lncRNAs, dismissing the functionality of short peptides emanating from a Inc RNA 

molecule would mean ignoring the "pervasive translation" in a genome. However, 

an argument favoring the ncRNAs is that the amino acid component and 

physiochemical properties of peptides arising from small ORFs can be so diverse 

from the known proteome that, without direct functional evidence, it is arduous to 

imagine such an alternative peptide universe (Cruveiller et al., 2007). Ribosomal 

profiling, an experimental method, determining putative RNAs bound to 

ribosomes, is an alternative approach to identify RNAs encoding small peptides 

(Pueyo and Couso, 2011). Ribosome-profiling in mouse ES cells revealed that the 

majority of IncRNAs are in fact associated to ribosomes (Ingolia et al., 2011). 

However, in the zebrafish genome numerous IncRNAs are observed to share a 

ribosome profile similar to 5' UTRs of coding genes or coding genes themselves 

(Chew et al., 2013) and an additional study reported that the majority of IncRNAs 

share similar ribosome occupation profiles as that of classical ncRNAs and 5UTRs 

and hence the occupancy metrics alone was not deemed sufficient to classify a 
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transcript as being translated (Guttman et al., 2013). 

1.7 Large scale discovery of IncRNAs in metazoans 

In the last five years large scale computational identification of IncRNAs in 

different cells, tissues and developmental stages of an organism has seen a steep 

rise in numbers. Such an analysis is dependent on technologies like micro arrays, 

tiling arrays and RNAseq. RNAseq has now proven to be the method of choice for 

transcriptomic studies as it provides a direct quantification of the cDNA 

population, independent of the known fraction of transcriptome. Mapping of short 

reads on the genome and sequence assembly of the mapped reads into transcripts 

playa pivotal role in the accurate build of gene models specially IncRNAs from 

RNAseq data. Tophat, Bowtie, MapSplice and Star are the widely used programs 

for mapping of short reads on the genome (Dobin et al., 2013; Kim et al., 2013a; 

Langmead and Salzberg, 2012) while Cufflinks and Scripture are commonly used 

to assemble the mapped reads into transcripts (Guttman et al., 2010; Trapnell et al., 

2010). 

1.7.1 The Ensembl, FANTOM and ENCODE projects 

Before discussing specific studies identifying IncRNAs in different organisms it is 

important to discuss the Encyclopedia of DNA Elements (ENCODE), the 

Functional Annotation of the Mouse (FANTOM) and the Ensembl, projects which 

stand as premier consortiums directed towards annotation of the human and 
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mouse genomes specially the non-coding portion. The ENCODE project starts 

where the Human Genome Project finished, with an aim towards identification of 

all ''functional'' DNA sequences that may be transcribed (both coding and non

coding) as well those which may playa regulatory role without getting involved in 

the act of transcription (Maher, 2012). The project was started with a pilot phase 

where 1% of the genome was annotated using various high throughput 

technologies resulting in the identification of a complex pattern of widespread 

transcription in the selected genomic regions (Birney et al., 2007). Additionally, 

numerous intergenic regions with a potential role in regulation of gene expression 

were also identified. The technologies and the methods which were standardised 

during the pilot phase, along with the incorporation of several new technologies, 

were further applied on the entire genome, to generate -1600 datasets from 147 

different cell types, the results of which were published as 30 scientific papers. The 

principal ENCODE publication, one signed by all its members, suggested that 

more than 80% of the human genome is functional (The ENCODE Project 

Consortium, 2012) based upon evidences from multiple experimental protocols 

including RNA sequencing, binding by DNA binding proteins, DNase I 

hypersensitivity, histone modification, DNA methylation, and chromosome 

conformation capture (Cheng et al., 2012; Howald et al., 2012; Sanyal et al., 2012; 

Thurman et al., 2012; Yip et al., 2012). Further, the ENCODE results provided a 

strong evidence, accrediting vital regulatory roles to the lncRNAs predicting them 

to encompass much of the genome length (Derrien et al., 2012; Djebali et al., 2012). 

Parallel to the ENCODE the FANTOM project was initiated with the aim to 
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generate the complete map of the mouse transcriptome, based upon an extensive 

collection and annotation of full-length cDNAs. The FANTOM 1 project generated 

21,076 cDNA sequences, the single largest dataset of sequences coming from a 

given organism at its time of publication (Kawai et al., 2001). The FANTOM2 

project further improved upon the experimental methods and annotation pipelines 

of FANTOMl to generate 60,770 eDNA sequences of which 20% were predicted to 

be non-coding in nature (Okazaki et al., 2002). The publication of the FANTOM2 

results coincided with the publication of the mouse genome sequence (Mouse 

Genome Sequencing Consortium et al., 2002) and marked an important milestone 

in understanding the transcriptional diversity in mammalian genomes. Further 

continuation of cloning and sequencing identified an additional 42,031 cDNA 

sequences by the FANTOM3 project (Maeda et al., 2006). Thus in total the 

FANTOM consortium generated -100,000 mouse cDNA sequences of which only 

.... 50% were annotated to be protein-coding in nature, providing a conclusive 

evidence for wide spread non-coding transcription. Further, utilising the CAGE 

technology (Kodzius et al., 2006) to map and quantify the presence of 

transcriptional start sites (TSS), FANTOM3 generated a map of promoter usage in 

the mouse transcriptome (Carninci et al., 2006). The results demonstrated the 

presence of tissue specific alternative TSS for a majority of protein-coding genes, 

allowing for the first time a genome-wide analysis of transcription initiation events 

in relation with tissue specificity. The Ensembl project (http://wwrv.ensembl.org/) was 

launched as a database resource to store information on genes, proteins, 

conservation metrics and regulatory features of large genomes (Hubbard et al., 
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2002). The current Ensembl version (74) supports the genomic datasets of 77 

species (60 chordate, 17 non-chordate species) which include human along with 

commonly studied model organisms like mouse, zebrafish, Drosophila, C.elegans 

and yeast. The annotation and assimilation of all the data within the Ensembl 

databases is reliant on the Ensembl pipeline, based on Perl language modules, 

which retrieve data, perform analyses and submit results into the database system 

(Potter et al., 2004). Further, Ensembl provides its end users with computational 

know-how a set of software libraries written in Perl which can be used to gain 

programmatic access into the Ensembl databases (Stabenau et al., 2004). Apart 

from the software libraries Ensembl also provides a user interface to retrieve data 

for the general user known as the Ensembl BioMart (Kinsella et al., 2011). Recently 

Ensembl has also started incorporating RNAseq data in the databases, thus 

allowing the end user to compare the expression of various gene models across 

developmental stages or tissues in different organisms. An important step towards 

this direction is the generation of -25,000 gene models for zebrafish from five 

tissues and seven developmental stages, which were used to improve the structure 

and annotation of the existing Ensembl gene models (Collins et al., 2012). An 

important component of the Ensembl pipeline is the annotation of non-coding 

RNA which includes small as well as long non-coding RNAs 

(hltp:JIwww.ensembl.org/infolgenome/genebuildlncma.html). The current version of Ensembl database has 

predicted lncRNAs from the human, mouse and zebrafish genomes. While the 

human lncRNA dataset present in Ensembl is representative of the human Inc RNA 

catalog generated by GENCODE, the mouse and zebrafish datasets exist as 
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independent predictions. 

1.7.2 Large-scale identification of IncRNAs 

Apart from the ENCODE, FANTOM and the Ensembl consortiums a few other 

published reports have identified mammalian IncRNAs. More than a thousand 

IncRNAs were identified through an ab-initio sequence assembly pipeline in the 

mouse embryonic stem cells, neuronal precursor cells and lung fibroblasts 

(Guttman et al., 2010). The authors developed a program (Scripture) to reconstruct 

the transcriptome ab-initio with information of the mapped reads and the mouse 

genome sequence. An alternative algorithm which can emulate the substantial 

complexity of the eukaryotic transcriptome during the assembly of small read 

sequences is "Cufflinks" (Trapnell et al., 2010). The program identified -3,700 

previously un-annotated transcripts from mouse myoblast cell-lines and is cited in 

multiple RNAseq studies of organisms with a reference genome. A catalog of 8,000 

IncRNAs were reported using both "Cufflinks" and "Scripture" to assemble 

RNAseq data across 24 tissues and cell types in human (Cabili et al., 2011). The 

results attracted attention as they combined the available lincRNA population with 

new candidates and the dataset was claimed to be the most comprehensive set of 

IncRNAs in humans when published. Alternative approaches like that of the 

Trinity software can perform a transcriptome assembly without a reference 

genome and can possibly lead to discovery of many novel IncRNAs skipped by 

reference genome based assembly methods due to lack of proper reference, 

presence of repeats and complex splicing patterns (Grabherr et al., 2011). Though 
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there are sporadic reports of characterised lncRNAs in diverse organisms, seldom 

is reported their large scale identification beyond the dimension of mammalian 

genomes. The number of lncRNAs identified in different organisms, including 

mammals is summarised in Table 1.2. 

Organism Number of IncRNAs Reference 

Mouse 4,078 Ensembl v74 (Flicek et aI., 2013) 

Chicken 251 (Li et aI., 2012b) 
~~~--~~--~~----~ 

C.e/egans 170 (Nam and Bartel, 2012) 

Table 1.2 Number of IncRNAs identified in different organisms 

This dearth of datasets from different phyla exists as a major bottleneck in the field 

of lncRNAomics. Yet a few studies have given us insights into Inc RNA dynamics in 

other vertebrates and invertebrates. Approximately a thousand IncRNAs were 

identified in the early zebrafish developmental stages showing a low level of 

sequence conservation at par with intronic regions, lower expression levels in 

comparison to coding genes and chromatin signatures resembling genes involved 

in development (Pauli et al., 2011a). Another 500 lncRNAs were identified using a 

combined strategy of chromatin marks, poly(A)-site mapping and RNA-Seq data 

in the zebrafish genome (Ulitsky et al., 2011) . A minute fraction showed sequence 

conservation with mammalian lncRNAs while most of them showed a preference 
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to lie near trans-dev genes. Avian IncRNAs (- 250) were reported from an RNAseq 

experiment with structural features similar to their mammalian and teleost fish 

counterparts but without any sequence conservation (Li et al., 2012b). Beyond the 

vertebrate genomes lncRNAs are demonstrated to be present in nematodes and 

insects. Around 1,100 IncRNAs were identified in the Drosophila melanogaster 

genome (Young et al., 2012) from RNAseq data of the modENCODE project 

(modENCODE Consortium et al., 2010). Interestingly though the fly lncRNAs are 

smaller in size as compared to their mammalian counterparts they seem to be 

better conserved at sequence level within the Drosophila clade with sequences 

evolving faster than ORFs but slower than UTRs. A smaller population (170) of 

IncRNAs were discovered in C. elegans where the authors state the limitations of 

cell type/tissue specific transcriptomics datasets for the small limited number of 

transcripts identified (Nam and Bartel, 2012). Interestingly, many IncRNAs 

reported in the mammalian brain (Chodroff et al., 2010; Ponjavic et al., 2009) were 

found to be extensions of 3'UTRs of coding genes using an alternative 

polyadenylation mechanism which was further reported to be a common 

observation in mammalian RNAseq data (Miura et al., 2013). This report 

encourages a rethink on the current Inc RNA discovery pipelines from RNAseq 

data which may result in mis-annotation of alternative polyadenylated transcripts 

(APAs) of coding genes as lncRNAs. Hence it is with utmost concern that IncRNAs 

must be predicted considering that being non-coding and not overlapping a 

coding gene is not sufficient to annotate them as IncRNAs. However generally the 

IncRNAs which do not overlap the coding space of a genome are termed as long 
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intergenic non-coding RNAs (lincRNAs) (Cabili et al., 2011; Khalil et al., 2009; 

Ulitsky et al., 2011; Young et al., 2012) while those which are transcribed antisense 

to coding genes are called antisense transcripts (AS) (Faghihi et al., 2010; He et al., 

2008; Katayama et al., 2005). There can be also intronic lncRNAs and sense 

overlapping lncRNAs but the lincRNAs and the AS together comprise the majority 

of the population. The lincRNAs can be further divided into divergent, convergent 

and 3'/5' proximal depending on their orientation with respect to the closest 

coding gene. In a recent study it was reported that the largest fraction of IncRNAs 

in human and mouse exists in divergent pairs with a coding gene, possibly sharing 

a promoter thus showing expression correlation with the coding gene during ESCs 

differentiation (Sigova et al., 2013). It suggests that the onset of transcription for a 

majority of lncRNA transcripts is coordinated with a coding gene in mammalian 

genomes. The difference in lncRNAome size in diverse organisms demonstrate 

that they evolve rapidly as against coding genes which are almost all conserved 

amongst vertebrates and bear ancestral gene associations with invertebrates. Yet it 

must be noted that even after undergoing a rapid evolution IncRNAs possess a 

faint but detectable signature for natural selection. Hence they show a low 

sequence conservation between closely related species and a complete absence of 

homology between candidates far away in the evolutionary ladder. 

1.8 LncRNAs in the post-ENCODE era 

It is important to focus on the status of the lncRNAs in the post-ENCODE era, 

keeping in mind the current resources available and those which are lacking. A 
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recent review curtly specifies that the ENCODE project has written a eulogy for 

the concept of "junk DNA" (Pennisi, 2012). Yet a major question which remains 

unanswered is whether we possess the most comprehensive catalog of human 

IncRNAs. Recent reports based on statistical estimation (Managadze et al., 2013) 

and combinatorial analyses involving multiple RNAseq datasets (Hangauer et al., 

2013) suggest otherwise, predicting that only l/Sth (- 10,000) of the total possible 

lncRNA genes are currently reported by ENCODE. Whether or not all of these 

genes confer a functionality important during cellular development and 

differentiation is still under debate. This simply means whether IncRNAs comprise 

a much larger part of the genome than currently expected, which is important for 

the organism survival and reproduction. We are currently way behind in 

experimental validation of IncRNAs in comparison to the rate of their 

identification in different organisms. Computational methods to measure Inc RNA 

conservation may provide a valuable insight on their functionality. The hurdles on 

this path is that a few lncRNA sequences under a purifying selection are conserved 

on an evolutionary timescale. A fact highlighted in a report showing conserved 

regions in mammals with increasing diversity within humans (likely to be 

nonfunctional) and mammalian non-conserved regions with reduced within

human diversity procuring a novel function (Ward and Kellis, 2012). A recent 

review comments that the ENCODE results must help differentiate between the 

"identification of functional elements per se from the ascription of specific 

functional activities" (Stamatoyannopoulos, 2012), which elementarily suggests to 

avoid associating functionality to a molecule type by observing causative effects of 
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its sub population. The principle of gene regulation is commonly associated with 

lncRNAs in general, assumed to be the function of the majority of RNA molecules 

under this class (Barry and Mattick, 2012; Rinn and Chang, 2012). Even though 

there is a wide spread evidence supporting this argument the following statement 

effectively cautions us against extrapolation "Moreover, the word 'regulation' has 

itself degraded through use by genomicists, from designating evolved effects shown or 

likely to enhance fitness, presumably by efficient control of the use of resources, to more 

broadly denoting any measurable impact of one element or process on other elements or 

processes, regardless of fitness consequences" (Doolittle, 2013). Thus, it is imperative to 

assign functions to lncRNAs based on indirect evidences of conservation like 

synteny, expression correlation and mRNA secondary structure. It is not expected 

that such associations will cover the whole Inc RNA population considering they 

are noted to be evolved in a lineage specific fashion, yet these approaches can fill a 

void which exists in understanding their evolution and plasticity. 

1.9 Aims and strategies of my PhD 

The aim of my PhD is to gain insights into the evolution and the functions of 

lncRNAs computationally and the usage of large scale functional genomics data. 

During these years of study and work I have developed a holistic understanding of 

the various computational aspects involved in the identification of long non

coding RNAs (lncRNAs) and their conservation between different species of 

interest. This includes the development of novel pipelines and protocols for 
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identification of lncRNAs and prediction of their sequence and positional 

conservation in multiple species. Further I have used the computational tools and 

strategies developed on novel RNAseq datasets to estimate the putative IncRNA 

populations. I have developed a computational pipeline (Annocript) which is able 

to annotate the coding and non-coding genes in given sequence dataset and finally 

predict the potential lncRNAs. The development of the pipeline is the first 

approach of its kind and remains currently the only software program with the 

capability of predict both coding and lncRNAs along with other classes of non

coding RNAs in any given dataset. I have used Annocript to demonstrate an over

estimation of the number of predicted lncRNA sequences in prior publications. 

Further, I have also used the Annocript to annotate the de novo transcriptomes of an 

echinoderm, a mollusc and two diatom species. I have addressed the issue of 

sequence conservation in long non-coding RNAs through a computational 

protocol which predicted a small percentage of mouse lncRNAs to show 

conservation in the zebrafish genome. The general lack of sequence conservation 

in lncRNAs over large evolutionary distances such as that between mammals and 

fishes, led me to search for conservation of microsynteny in IncRNAs. For this, I 

developed the SynLinc pipeline to identify putative microsyntenic lincRNAs 

between any two species with a sequenced genome and annotated transcriptomes. 

Comparing previously published Inc RNA data sets in human, mouse and 

zebrafish, SynLinc was able to identify a few hundred lincRNAs, which remained 

closely linked across evolution with their flanking coding. gene. Such an 

association implicates a possible co-regulation of these IncRNAs and their coding 
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genes. Further I have identified and analysed the specific expression patterns of 

lncRNAs in two novel RNAseq datasets, representing samples from a specific cell 

type (islet cells in zebrafish) and specific developmental stages (early development 

in the spotted green pufferfish). I have relied extensively on the Annocript pipeline 

to predict lncRNAs in both the RNAseq datasets. I defined a specific strategy for 

the mapping and assembly of RNAseq data which accounts for sequencing read 

ambiguity and is effective for the downstream identification of lncRNAs with high 

sensitivity. I employed this strategy to assemble the zebrafish pancreatic islet cell 

transcriptome followed by identification of coding and IncRNA genes. A few of the 

candidate islet specific IncRNAs are currently being validated in the laboratory of 

my external supervisor. Finally I have analysed the early developmental 

transcriptome of the spotted green pufferfish (Tetraodon nigroviridis) to show the 

transcriptional dynamics of both the coding and the long non-coding transcripts 

during early development. Further I have used the SynLinc pipeline to define a 

specific subset of developmentally expressed lincRNAs which remain positionally 

conserved with predicted lincRNAs in vertebrates. The work presented in my 

thesis can be divided into i) the development of computational tools for IncRNA 

prediction and classification ii) evolutionary conservation of lncRNAs iii) 

identification of lincRNAs in a specific tissue and developmental stages and 

prediction of their association with various biological processes. Thus, I have 

focused on three diverse avenues in the field of lncRNAomics and to the best of my 

knowledge the combination of software pipelines, conservation metrics and 

predicted Inc RNA datasets presented here remain unprecedented. 
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Chapter 2 

Annocript: A computational framework for 

annotation of transcriptome datasets and 

prediction of long non-coding RNAs 

2.1 Introduction 

2.1.1 Annotation of nucleotide and protein sequences 

A primary task in the field of molecular biology is to assign a name to a gene on 

the basis of its function. The task of naming and assigning a functional property is 

more commonly termed as gene annotation. In the past annotation of a gene or a 

protein was dependent on repeated experiments which proved to be a time 

consuming process (Dearry et al., 1990; Mayo et al., 1985; Nakamura et al., 1989). 

The information on the annotated genes were gradually amassed in nucleic acid 

and protein sequence databases like the GenBank (Burks et al., 1985) and UniProt 

(Apweiler et al., 2004). The development of the Basic Local Alignment Search Tool 

(BLAST) (Altschul et al., 1990) provided a quick and reliable approach to annotate 

novel nucleotide and protein sequences based on their sequence homology with 

known genes/proteins in the sequence databases. A surge in high-throughput 

genomic technologies (Camargo et al., 2001; Okazaki et al., 2002) resulted in a data 

explosion of sequence information which requires sophisticated computational 
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pipelines for management and annotation. The Ensembl, UCSC and the FANTOM 

projects were the first to automate the annotation of a large number of sequences 

using a relational database management system and computational annotation 

pipelines (Hubbard et aI., 2002; Kawai et aI., 2001; Kent et aI., 2002). The annotation 

pipeline were designed to gather information from multiple experiment platforms, 

write the primary information content along with derived meta-information to a 

database, which is then made available to the end-user in an organised format. The 

task of annotation was further complicated by the onset of next-generation high

throughput RNAseq technology (Mortazavi et aI., 2008). Reduction in sequencing 

costs and improved detection of transcription surpassed past estimates of data 

generation and size of transcriptomes (Schuster, 2008). The majority of the data 

generated by RNAseq belong to model organisms which have the advantage of a 

sequenced genome and well annotated gene models (Grave ley et aI., 2010; Harrow 

et aI., 2012; Harvey et aI., 2013). However transcriptomes from non-model 

organisms are being reported in increasing numbers Oi et aI., 2012; Liu et aI., 2013; 

Rokyta et aI., 2012; Sadamoto et aI., 2012; Zeng et aI., 2013) which come with little 

or no a priori sequence information. The steep incline in generation of sequences 

followed by development of various annotation softwares has turned the 

annotation of a nucleotide/protein sequence into a multi modal task comprising 

the identification of sequence homology, domain signatures and functional term 

associations. The annotation process relies profoundly on comparative analysis 

with public databases like Genbank and UniprotKB (Apweiler et aI., 2004; Burks et 

aI., 1985) followed by a collation of the annotated sequences with Gene ontology 
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(GO) terms and enzyme classes (KEGG) (Ashburner et al., 2000; Kanehisa and 

Goto, 2000). In case of a large scale study consisting of thousands of transcripts, 

organizing the sequences, annotations and functional associations for each analysis 

becomes a complex task. Such tasks are more suitable to be performed by 

automated pipelines, hence reducing the time constraint and probability of human 

induced error. 

2.1.2 Automated pipelines for annotation of large sequence datasets 

Several software solutions have been developed by various groups (Gotz et al., 

2008; Koski et al., 2005; Philipp et al., 2012; Schmid and Blaxter, 2008) to cater for 

this problem (annot8r, Blast2GO, autoFACT, T-ACE). These pipelines take a list of 

sequences as input and provide the end user with a tabular output of the 

annotations. The basic premise behind the annotation is a BLAST comparison 

against nucleotide and protein databases followed by search of conserved domain 

profiles and association with GO and KEGG terms. Various computational 

pipelines follow different methodologies to achieve the objective of annotating 

each query sequence. The Blast2GO and T-ACE softwares provide a user interface 

along with a remote database connection. The autoFACT and annota8r pipelines 

require the sequence databases and homology search programs to be downloaded 

and configured locally and provide results in text and HTML format. Though this 

task is performed only once, it may pose difficulties for a user/scientist lacking 

computational knowhow. The T-ACE software goes a step ahead of the other 

pipelines by integrating the RNAseq expression information of the assembled 

56 



transcripts with their annotation. The above-mentioned annotation pipelines can 

effortlessly compile results from multiple analyses but suffer from specific 

drawbacks. The Blast2GO and T-ACE pipelines rely on remote connections to 

public databases for homology searches to avert the download and configuration 

of databases and homology search programs. This is a time consuming process for 

current de novo sequencing projects exceeding 10,000 sequences and relies heavily 

on an uninterrupted network connection. However the remote connections can be 

avoided for both the programs if prior formatted BLAST results are provided 

locally which may not be a trivial task for a user without a computational 

background. The annota8r software solves this problem by installing and 

comparing against a local database. It relies only on UniprotKB to make such 

comparisons which cannot annotate sequences with distant homologies. This 

drawback is partially overcome by autoFACT, which allows a local installation of 

both protein and domain profile databases for homology search. The default run 

of the pipeline compares all query sequences against three protein sequence 

databases (Uniref90, NCBI NR, NCBI COG) followed by comparison against 

protein domain profiles (Smart, Pfam). The multiple comparisons increases the run 

time of the pipeline substantially without possibly adding to the quality of the 

annotations. Finally all the above-mentioned pipelines are focused towards 

annotating the coding part of the transcriptome and hence are unable to predict 

putative long non-coding RNAs. 
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2.1.3 Computational annotation of long non-coding RNAs 

In the past few years long non-coding RNAs have been identified from RNAseq 

studies in a diverse group of model organisms (Cabili et aI., 2011; Nam and Bartel, 

2012; Pauli et aI., 2011a; Young et aI., 2012). Recently they were even identified in 

the de novo transcriptome of an intracellular parasite (Hassan et aI., 2012). The 

interest of the scientific community in this class of RNAs along with the rise in 

number of RNAseq studies (both reference based and de novo) has led to the 

development of multiple computational solutions for their identification. The 

codon substitution frequency score (Lin et aI., 2007) and the PhyloCSF score (Lin et 

aI., 2011c) are two measures used by different groups to predict IncRNAs (Li et aI., 

2012b; Pauli et at, 2011a). Both the methods are comparative in nature and rely 

upon multiple genome alignments of known coding and non-coding regions to 

estimate a statistical phylogenetic model. Based upon the statistical model which 

best explains the alignment in a given genomic locus, specific sequences are then 

predicted as coding or non-coding. The quality of alignment is an important factor 

for such approaches (Schloss, 2010) which makes them more suited to perform a 

phylogenetic analysis on well conserved coding genes in comparison to detecting 

lineage specific lncRNAs with poor genomic alignments. Secondly the high 

computational time discourages such approaches from being integrated in an 

annotation pipeline. Finally alignment-based classifiers require a sequenced 

genome which makes them out of bounds for de novo generated transcriptomes 

lacking a sequenced genome. In contrast to the alignment based approaches, 

Support Vector Machine (SVM) classifiers are suited for large datasets because of 
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their faster computation time and partial reliance on conservation in complete 

genomes. Coding or Non-Coding (CONC) a SVM classifier was used to identify 

coding and non-coding transcripts (Liu et al., 2006) using various features like 

amino acid composition, peptide length, sequence entropy, secondary structure 

and homology to known coding sequences. This method was followed by another 

SVM classifier called the Coding Potential Calculator (CPC) (Kong et al., 2007) 

which avails the length, ORF coverage, ORF integrity and sequence homology to a 

protein as classifiers. These programs are trained to construct a multidimensional 

feature space with the classifiers on known coding and non-coding data which 

defines a margin between the two classes. Once trained the classifier can be used 

on novel uncharacterised data. The epe and CONC softwares also suffer from 

long computation time for large datasets and may predict coding sequences as 

non-coding if they lack a known homolog in the protein databases (Kong et al., 

2007). Recently published SVM based softwares iSee-RNA and Coding Potential 

Assessment Tool (CPAT) claim to circumvent the problem of computational time 

and homology accuracy by reducing the reliance on any alignment based 

parameter (Sun et al., 2013a; Wang et al., 2013). They employ a binary classifier 

between known lincRNAs (positive set) and coding transcripts (negative set) to 

establish a training dataset. The features used to classify are ORF length, 

nucleotide composition and codon usage bias. Both programs require genome 

wide phastCons conservation scores along with the other classifiers to build their 

training datasets. The phastCons program assigns a conservation score to each 

nucleotide base of a genome based on its alignment with other genomes (Pollard et 
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al., 2010). This requirement puts a limitation to their usage within non-model 

species without a well annotated genome. In contrast to the above mentioned 

programs the Portrait software (Arrial et al., 2009) requires a sequence file as the 

only input to report a probability score for a transcript to be non-coding. The 

software uses di/tri-nucleotide frequency, nucleotide sequence entropy, translated 

amino acid hydropathy, isoelectric point and finally length of predicted ORF as 

SVM classifying parameters. A major advantage of the Portrait software is that it 

uses the ANGLE package (Shimizu et al., 2006) to estimate the putative ORF size 

which is optimised to predict small ORFs. The Portrait software running time for a 

dataset of 4000 sequences is faster than CPC (SOOX) and slower than CPAT (SOX) 

with a sensitivity at par with CPAT but lower than CPC and specificity higher than 

CPC but lower than CPAT (Wang et al., 2013). Five factors result in Portrait being 

the ideal choice for classifying non-coding transcripts in the current breed of non

coding classifiers. 

- It does not need a large computation time. 

It does not require whole genome alignments to build training models like 

CPAT and iSee-RNA. 

- It can be applied on de novo and reference based transcriptomes. 

It is easily integrable in an annotation pipeline. 

- It has a balanced specificity and sensitivity of predictions. 

The current interest in IncRNAomics has led to a community agreement of the 

minimum features required to annotate a sequence as a long non-coding RNA. 
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These are 

- Sequence length greater than 200 nucleotides. 

- ORF size of less than 100 amino acids. 

- Lack of sequence homology with protein and domain databases. 

- Lack of sequence homology with known small ncRNA classes. 

- High non-coding potential (based on various properties like nucleotide 

composition, entropy, codon usage, ORF size, hydropathy). 

2.1.4 A pipeline to annotate coding and non-coding sequences: Annocript 

The currently available annotation pipelines rely on the BLAST software package 

to make homology searches with nucleotide, protein and domain signature 

databases. The homology search is the most time consuming step in an annotation 

pipeline. Yet none of the existing softwares are focused towards establishing a 

balance towards speed and accuracy of the homology search. Further, download 

and local installation of the databases to be used in the annotation is a complex 

task for an user without computational experience. An important drawback is the 

inability of a single automated pipeline to predict both coding and non-coding 

sequences in a given dataset. In light of these issues I wanted to develop a software 

pipeline which can accurately annotate large sequence datasets in a short period of 

time. Further I also wanted the pipeline to be able to predict non-coding RNAs, 

specially long non-coding RNAs in a given dataset. The final aim is to develop the 

pipeline into a community resource which can be easily downloaded and installed 

in any UNIX/LINUX based computer system. I developed the Annocript pipeline 
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for annotation of coding and non-coding sequences harnessing the combined 

capacity of parallel processing and multiple software packages for sequence 

annotation and classification. I have used Annocript extensively to predict coding 

and lncRNA transcripts in various projects, which are part of my PhD. I want to 

thank Francesco Musacchia (post-doctoral fellow in my laboratory) who took up 

the Annocript project post-version 1.0 and is credited for development of the 

pipeline to its current state. 

2.2 Material and methods 

2.2.1. General structure of the Annocript pipeline 

All components of Annocript are implemented as Perl scripts using BioPed 

modules (Stajich et al., 2002) and the Perl 5 language. Annocript runs in an 

UNIX/LINUX environment and requires requires a MySQL (> v5.l) account to 

build a database to store the source files and annotations. It needs prior installation 

of the NCBI BLAST + (> v2.2S) (Camacho et al., 2009), Portrait vl.l (Arrial et al., 

2009) and the Virtual Ribosome vl.l (Wernersson,2006) softwares. The sequence 

databases and mapping tables required by Annocript are downloaded directly by 

the pipeline. The download requires a few hours but needs to be performed only 

once. The files obtained from various resources are: 

- protein sequences in FASTA format for the Uniref90 and SwissProt 

databases along with functional associations of protein sequence identifiers 
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with gene ontology terms (UniProt Consortium, 2009). 

- protein domain profiles from the NCBI Conserved Domain Database 

(Marchler-Bauer et al., 2012) formatted for the rpstblastn program. 

- Associations of protein sequence identifiers with enzyme identifiers from 

the Expasy proteomics resource (Artimo et al., 2012). 

The pipeline compares query sequences against known proteins and domains, 

associates GO terms and enzyme IDs based on the classification of the best blast 

hits and calculates the probability of a sequence to be long-non coding followed by 

generation of text and graphical output (Figure 2.1). All the functions are 

performed by four programming modules which are involved in: 1) database 

creation (DB_CREATION), 2) program execution (PROGRAM_EXEC), 3) parsing 

of results (GFF _AND_OUTPUT) and 4) generation of statistics 

(OUTPUT_AND_STATS). The first module (DB_CREATION) downloads all the 

sequence databases and mapping tables required to perform the annotation tasks. 

This module needs to be executed only once since the files downloaded will be 

parsed and used to populate a specific database that can be used in subsequent 

analyses until there will be need for an update. 
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Figure 2.1 Schematic overview of the Annocript pipeline. i) The homology section 

creates a protein database from Uniref90 and SwissProt along with the association of 

each protein to GO terms and enzyme IDs. The database is used to quickly retrieve 

annotation information for each protein putatively assigned to a query sequence. The 

query sequences are compared against Uniref90, Swiss Prot, NCB! CDD and Rfam + 

rRNAs using the BLAST software package. ii) The sequence feature section obtains 

the longest ORF and non-coding potential score for each query sequence. iii) The 

results from the homology and sequence feature sections are parsed into GFF3 

format and uploaded in a GFF database for quick mUltiple retrievals . iv) All the 

results are combined in a single tab delimited text file along with a HTML format 

output containing the statistics of annotation. 

The PROCRAM_EXEC module performs a homology search of each query 

sequence against the downloaded databases followed by calculation of the longest 
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ORF size and non-coding potential. The results of the PROGRAM_EXEC module 

are passed to the GFF_AND_OUTPUT module which inserts the results into the 

database and generates the output files in text and tabulated format. The last 

module (OUTPUT_AND_STATS) creates an HTML document with statistics and 

plots. The four modules are discussed in detail below. 

2.2.2 Parsing of sequence database headers and their conversion into BLAST 

compatible binary format (DB_CREATION) 

This module downloads the following databases: 

Uniref90: ftp://ftp.uniprot.orglpubldatabasesluniprotl currenue1ease lunirefluniref90luniref90.fasta.gz 

SwissProt: ftp://ftp.uniprot.orglpubldatabasesluniprotlcurrenueleaselknowledgebaselcompleteluniprotsprot.fasta.gz 

CDD: ftp:l/ftp.ncbLnih.govlpublmmdblcddllittle_endianlCdd_LE.tar.gz 

RFAM: ftp:l/ftp.sanger.ac.uklpub/databasesiRfamlCURRENT/ Rfam.fasta.gz 

Uniprot ID mapping: 

ftp://ftp.uniprot.orglpub/databasesluniprotlcurrenueleaselknowledgebase/idmappinglidmapping_selected.tab.gz 

Enzyme ID mapping: ftp://ftp.expasy.orgldatabases/enzymel enzyme.dat 

The FASTA file headers of the Uniref90 and SwissProt databases are parsed to 

extract information about the protein name, description and species. Each protein 

is given a unique ID and is associated with GO terms and Enzyme IDs from the 

downloaded mapping files. All the information is uploaded into a MySQL 

database with the protein IDs as primary reference. The database creation reduces 

the time spent on parsing of data after each annotation as information can be 
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retrieved repeatedly without a time constraint. The sequence files downloaded in 

FASTA format are converted to BLAST compatible databases using the 

makeblastdb program of the BLAST + suite. 

2.2.3 Execution of the Annocript programs (PROGRAM_EXEC) 

Although Annocript is highly configurable by the user and the majority of 

parameters can be adjusted in a specific configuration file, here I give the 

parameters currently used in my analyses. These parameters are tuned to perform 

an analysis with the best sensitivity and speed. The pipeline runs two principal 

sections of annotations based on homology and sequence features. In the 

homology section putative gene names are assigned to all query sequences by 

using the BLASTx algorithm (parameters: word_size = 4 evalue = 10-5 

num_descriptions = 5 num_alignments = 5 threshold = 18) against the Swiss-Prot 

and UniRef90 databases. Protein domains are identified by running a rpstBLASTn 

search (parameters: evalue = 10-5 num_descriptions = 20 num_alignments = 20 ) 

against CDD profiles and finally a search against other non-coding RNAs (rRNA, 

tRNA, snRNA, snoRNA, miRNA) is done by performing a BLASTn search 

(parameters: evalue = 10-5 num_descriptions = 1 num_alignments = 1) against an 

integrated database of RFAM and NCBI Refseq ribosomal RNAs. The sequence 

feature section includes running the Virtual Ribosome program (dna2pep script) to 

identify the longest ORF by searching across all reading frames without explicitly 

looking for a start codon (paramaters: -0 none -r all). The final step of this section 

is the calculation of non-coding potential for all the input sequence data with the 
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Portrait software. All sequences larger than 200 nucleotides without any homology 

based annotation containing an ORF smaller than 100 amino acids and a non

coding score greater than 0.95 are predicted as IncRNAs. 

2.2.4 Parsing of the results into GFF3 and tabular format (GFF_OUTPUTi 

OUTPUT STATS) 

A GFF3 database is built by Annocript from the raw results of each analyis in the 

homology and the sequence feature sections. The results are converted into GFF3 

format and uploaded in the MySQL database using BioPer! modules. In parallel a 

Perl hash structure is built for all the results which is used to quickly extract the 

complete annotation of each sequence into a single tab delimited text file along 

with a HTML document which gives overall statistics of the annotation. The 

Annocript results are divided into three sections a) GFF, b) tabular, c) graphical. 

The GFF output includes the results of different annotations performed by 

Annocript in GFF3 format (http://gmod,orglwikilGFF3).Itis a widely used file format system 

which can be parsed as well as uploaded in a database to make quick statistics. 

The tabular output is the main output of the pipeline where a row is assigned to 

each query sequence (Table 2.1). Each row has information on the assigned 

proteins, domains, ncRNA classes, length, longest ORF size and non-coding 

potential of the sequence. This file is recommended for filtering transcripts based 

upon different parameters. An abridged summary of the annotation is given as a 

HTML formatted document (Annexure 1). This gives information on the number 

of sequences annotated as coding and long non-coding, mean length and GC 

content. It also provides a chart of the frequency distribution of organisms to 
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which all assigned proteins belong. For de novo sequencing projects this informs 

the taxonomical proximity of the query sequences with protein sequences available 

in public databases. Further statistics on GO term biological process, molecular 

function, cellular class and protein domain abundances are also given in graphical 

format. 

Name 

HSPLengthSP 

HITLengthSP 

HCoverageSP 

Enzymelds 

HSPNameUf 

HSPScoreUf 

QCoverageUf 

DescriptionUf 

BPld 

Description 
.,~~~~---~----------------------~ 

file 

by 

Length of HSP alignment 

Length of the HIT (Swiss Prot entry) with lowest e.value HSP 

The fraction of HIT sequence covered by the HSP 
:-q~~Jii 

Enzyme 10 corresponding to the HSP 

Highest scoring pair (HSP) with the least e.value given by 
BLASTx comparison against UniRef90 

~---. 

~--~------------~ 

E.value assigned to the HSP 

The fraction of query sequence covered by the HSP 
-----~ 

Description of the HIT 

GO biological processes 10 mapped to the Uniref90 HIT 
----~--~~~~ 

MFld 

CCld 

cCOesc 

CDName 

GO molecular function 10 mapped to the Uniref90 HIT 

GO cellular component 10 mapped to the Uniref90 HIT 
-~---..., 

Description of the GO cellular component 10 

Top 5 domains with lowest e.value given by tRpsBLASTn 
comparison against COO 

~~~~~~----~----------

68 



CDScore E.vaJue of the predicted domains 
~~-,--.-------------------, 

OtherNCName Highest scoring pair (HSP) with the least e.value given by 
BLASTn comparison against RFAM 

OtherNCDesc Description of the HIT (RFAM entry) with lowest e.value HSP 

LongOrfStrand Strand of the longest ORF 

ProbToBeNonCoding Non-coding potential score 
~~~~~~~~--~------~~~--~ 

Sequence The input query sequence 

Table 2.1 Names and description of each column of the Annocript tabular output 

2.2.5 Comparison against a reference coding dataset and benchmarking the time 

required for analysis 

List of refseq IDs for human protein coding genes having a single ortholog in 

mouse, zebrafish, Xenopus tropicalis, Drosophila melanogaster and C.elegans were 

obtained from Ensembl v74 using the Bioconductor (Gentleman et al., 2004) 

biomaRt (Durinck et al., 2005) package. A total of 2333 Refseq IDs were 

downloaded, whose sequences were obtained from the NCBI GenBank database 

(Burks et al., 1985) using a custom Perl script. The human single ortholog set (HSO) 

was annotated with Annocript twice, once using the default parameters followed 

by another run without using the BLASTx threshold parameter and without 

splitting the sequence file to run multiple instances of the rpstBLASTn program. 

Mapping of databases identifiers were obtained from two different sources. 

Ensembl IDs mapped to Refseq mRNA and SwissProt accessions were 

downloaded using the biomaRt software package. SwissProt accessions mapped to 
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UniRef90 accessions were downloaded from the UniProt database 

(ftp:llftp.uniprot.orglpub/databasesluniprotlcurrentreleaselknowledgebaseJidmapping). A final table of Refseq, SwissProt 

and UniRef90 accessions was prepared by merging the two mapping files. 

2.2.6 Comparison against previously published long intergenic non-coding RNA 

datasets 

The coordinates of the human and zebra fish lncRNAs were obtained from 

previously published studies (Cabili et aI., 2011; Pauli et aI., 2011a). Only the 

IncRNAs falling under the conservative set were considered in case of human. The 

coordinates of coding genes for human and zebrafish were downloaded from 

Ensembl (v73) using the bioconductor (Gentleman et aI., 2004) biomaRt software 

package (Durinck et aI., 2005). The coordinates of the lncRNAs were compared 

against coding gene coordinates of each species respectively using the 

intersect BED program of the BEDTools software package (Quinlan and Hall, 2010). 

The IncRNAs which do not overlap a coding gene are classified as lincRNAs in 

both the species. 

2.3 Results and Discussion 

2.3.1 Structure of the Annocript prediction system and comparison against a 

reference dataset 

The Annocript pipeline takes as input nucleotide sequences and classifies them by 

homology search against public coding/non-coding sequence databases and 
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associates GO terms and KEGG enzyme IDs. Further based upon the sequence 

length, longest ORF size, homology and Portrait non-coding potential the pipeline 

classifies putative lncRNAs in the dataset (Figure 2.2). 

BLASTx vs protein sequences 
(Uniref90, SwissProt) 

+ 
rpsBLAST vs domain profiles (NCBI 

COO) 

BLASTn vs ncRNA sequences (RFAM, 
ribosomal RNA) 

ORF size with Virtual Ribosome 

Non-coding potential with Portrait 

Length of sequence 

GO term Enzyme 10 
mapping against 

protein IDs 

/ 
Figure 2.2 Workflow of the annotation pipeline employed to classify transcripts into 

coding and non-coding. 

The annocript pipeline uses a combination of BLASTx search parameters (-

word_size and -threshold) to significantly improve upon the runtime of the 

BLASTx search. This parameter is not implemented by default in other annotation 

pipelines discussed before. In addition, while searching for signature domain 

profiles, Annocript has the ability to utilise multiple processors by splitting the 

query sequence files and running the rpstBLASTn program independently, in 

parallel, on each subset of sequences. The rpstBLASTn by default cannot take 

advantage of parallel processing, hence this modification by Annocript enables a 
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faster domain search of query sequences. To test the efficiency of annotation with 

respect to the improvement in speed, I ran Annocript twice with and without the 

speed improving modifications on a reference dataset. The dataset is a set of 

human coding gene sequences from the NCBI GenBank refseq database (see 

materials and methods). These sequences are well represented in nucleotide 

databases with high level of conservation across multiple species. I found a 

significant difference in runtime between the two Annocript analyses (Table 2.2). 

After making suitable changes to increase the speed of program execution 

Annocript is able to run more than lOX faster. It is important to mention that 

currently no existing annotation pipeline is employing such modifications. Yet the 

improvement in speed resulted in no difference in the annotation between the two 

separate analyses. Further I compared the output of Annocript (default run) 

against accession mapping of refseq IDs with SwissProt and UniRef90 accessions. 

Anncoript is able to correclty identify the 83% of the sequences to their exact 

Swiss Prot accession. Another 7% of sequences are identified to their exact Uniref90 

accession. The remaining 10% sequences show a mismatch between the results of 

Annocript and the mapped IDs coming from sequence databases. I manually 

inspected the Annocript results and found that all sequences are identified 

correctly at the level of protein names and symbols. The 10% sequences which 

showed a mismatch of IDs were assigned orthologs of a taxonmically close species 

or the protein product of an alternative isoform. Thus these results show the ability 

of the pipeline to maintain its sensitivity while significantly improving upon the 

speed of annotation. 
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Task performed 

Execution of BLASTx 
(vs Uniref) 

Complete execution of 
pipeline 

With modifications for 
speed improvement 

2.5 hrs 

3.8 hrs 

Without modifications for 
speed improvement ---.... 

24 hrs 

33 hrs 

Table 2.2 Difference in execution time of the Annocript pipeline after modifications in 

the BLASTx and rpstBLASTn program execution. 

2.3.2 Annotation of reference lincRNA datasets from human and zebrafish 

I wanted to test the ability of the Annocript pipeline to predict long non-coding 

RNAs. Hence I performed a default run of Annocript on previously reported long 

intergenic non-coding RNA sequences from human (Cabili et al., 2011) and 

zebrafish (Pauli et al., 2011a) . At default parameters Annocript was able to predict 

12 and 8% of the human and zebrafish lincRNA datasets as long non-coding 

(Figure 2.3). Such results reflect my choice to select, by default, only the most likely 

lincRNAs, avoiding false positives and accepting to increase the number of false 

negatives to come across several criticisms raised against the pervasiveness of non-

coding transcription (van Bakel et al., 2010; Huttenhofer et al., 2005). These results 

however suggest that there is a probable over-estimation of predicted IncRNAs in 

previously published datasets 
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• No coding annotation, small ORF « 100 AA), high non·codlng potential (> 0.95) 
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• No protein-coding annotation 
o No SwissProt annotation 

Human (n_4172) Zebralish (n_503) 

UncRNA 

Figure 2.3 Annotation of previously published lincRNAs by the Annocript pipeline. 

The x axis represents the lincRNAs assigned into different categories based on 

Anncoript prediction. The y axis represents the percentage of each category. 

2.3.2.1 Sequence and homology based strategies of Annocript 

Looking specifically at the different set of evidences resulting from the Annocript 

analysis on the selected lincRNA datasets I can produce several considerations. 

While the total number of lincRNAs longer than 200 nuc1eotides is greater than 

95%, around half of the sequences in both the datasets have a predicted ORF of 

less than 100 amino acids (47 and 58%). However, recent reports suggests that 

many non-coding transcripts are actually capable of coding for a small bio-active 

peptides in the mouse and drosophila genomes (Crappe et al., 2013; Ladoukakis et 

al., 2011). Even if a lincRNA has an ORF smaller than 100 AAs it may be classified 

as coding by Annocript based on Portrait non-coding potential (NCP) score 

threshold (15% human, 8% zebra fish lincRNAs). Apart from the ORF size the 
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Portrait software relies on a number of sequence composition and biochemical 

property based metrics to predict the non-coding potential. Thus Annocript uses 

both the ORF length and the NCP score together as its sequence based strategy to 

predict IncRNAs. Along with the sequence based features, Annocript also 

incorporates homology based features to predict IncRNAs. Approximately 40% of 

human and 16% of zebrafish line RNA transcripts are annotated as coding on merit 

of their homology against a protein sequence in SwissProt, UniRef90 or a domain 

signature in the Conserved Domain Database. While a homology based annotation 

may be biased in case of IncRNAs overlapping the exons of coding genes, the 

datasets used here are strictly intergenic in nature. Thus the observed homology 

may be due to uncharacterised, predicted or hypothetical protein sequences which 

may also code for small peptide sequences. Indeed -75% of human and -50% of 

zebrafish SwissProt identifiers assigned to a lincRNA are classified as an 

uncharacterised or predicted protein having no direct experimental evidence of its 

translation. 

2.3.2.2 Distribution of the non-coding potential scores of published lincRNA 

sequences 

At this point I decided to compare the distribution pattern of the Portrait NCP 

score for lincRNAs matching a protein by the homology search. The default 

prediction of IncRNAs by Annocript is dependent on a highly conservative NCP 

score threshold of 0.95, while the authors of Portrait suggest a score of 0.5 or above 

to be suitable for prediction of non-coding sequences (Arrial et al., 2009). I defined 
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a subset of sequences based upon Annocript results, which fulfill all criteria for 

being a lncRNA except for the threshold NCP score « 0.95). I address these 

sequences as Potential Long Non-Coding sequences (PLoNCs: Sequences> 200 nts, 

without homology to a coding gene with an ORF < 100 AA). I checked the 

distribution of NCP score for the lincRNAs predicted as coding and the PLoNCs in 

the human and zebrafish datasets by Annocript (Figure 2.4). It is interesting to 

note that the coding and PLoNCs subsets show a similar distribution of NCP 

scores for the human lincRNA dataset, while in zebrafish they show a different 

distribution pattern. An important point highlighted in Figure 2.4 is the fact that 

sequences with homology to a predicted protein may still be given a high NCP 

score. It is worth noting that a subset of lincRNAs (23% human, 11% zebrafish) 

with an assigned protein identifier have a NCP score above that suggested by 

Portrait authors but below the default Annocript threshold (> 0.5 and < 0.95). This 

observation justifies the choice of a stringent threshold for the NCP score in 

Annocript. I decided to relax the NCP threshold score to the mean score of all 

PLoNCs predicted by Annocript in a given dataset (Human: 0.87; Zebrafish: 0.75). 

My aim was to reduce the stringency of predictions for datasets representing well 

annotated genomes such as human and zebrafish where the genomic position of a 

lincRNA argues against it being coding in nature. The new NCP cut-off threshold 

resulted in a slight increase in the number of predicted IncRNAs (Human: 25%; 

Zebrafish: 28%). The results indicate that the majority of the reported lincRNAs in 

the published studies may be potentially uncharacterised coding sequences or 

coding for short peptides. Unlike coding genes the computational prediction of 
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lncRNAs is still not well defined in terms of the principles and features which 

might be used for their classification. 

Coding o Coding 
o Long non-coding o Long non-coding 

Q 

A 0.0 1.0 0.2 0.4 0.6 
Non-coding potential 

0.8 
Non·coding potential 

Figure 2.4 Distribution of non coding potential scores for coding and potential long 

non-coding sequences (PLoNCs) predicted by Annocript in A) human lincRNAs B) 

zebrafish lincRNAs. The x-axis represents the non-coding potential (NCP) score 

assigned to the lincRNAs. The y-axis represents the frequency of the the lincRNAs at 

a given NCP score. The bars in pink represent those lincRNAs which are predicted to 

be coding by Annocript, while the green bars represent the lincRNAs predicted to be 

Potential Long Non-Coding by Annocript. 

Thus the Annocript pipeline predicts long non-coding RNAs based upon 1/ what 

they are not" using homology (BLAST against protein databases) and sequence 

(sequence length, ORF size, NCP score) based strategies. Both the strategies appear 

to complement each other and an agreement between both ensures a high 

sensitivity in the prediction of lncRNAs. However the default thresholds for each 

filtering parameter can be altered by an end-user resulting in an increase or 

decrease in predicted number of IncRNA candidates. 
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2.3.3 Annotation of de novo transcriptomes using Annocript 

I evaluated the ability of Annocript in handling new transcriptomic datasets. The 

pipeline was used to annotate the de novo transcriptomes of four organisms: 

Astropecten aranciacus (Starfish), Octopus vulgaris (Octopus), Pseudo-nitzchia 

multistriata (marine diatom) and Seminavis robusta (freshwater diatom). The 

transcriptome data used are all unpublished provided by collaborators interested 

in getting molecular insights in their species of interest. A special interest was in 

the number of potential lncRNAs predicted in each species, which currently no 

existing annotation pipeline is able to estimate. The source of the RNA samples are 

i) Whole organism early development in starfish, ii) Adult neural tissue in Octopus 

iii) Different mating types in the diatoms. The sequencing was done on the 

Illumina platform and assembly of reads was performed by the Trinity suite of 

programs (Grabherr et al., 2011). The pipeline was run with the described 

parameters and it was able to annotate 35-70% of transcripts in different species. 

Specifically 20-60% of genes were annotated against the protein coding databases 

while 4-12% were predicted to be noncoding (Figure 2.5). There is a large variation 

in the number of coding and lncRNA transcripts predicted in these organisms. 

However partially the differences can be explained by the large evolutionary 

distances between the chosen species. The number of non-coding RNAs is 

suggested to be proportional to the developmental complexity of an organism 

(Mattick, 2011). Hence the Octopus and the starfish being higher in the 

evolutionary ladder are expected to show more diversity in the number of non

coding transcripts in comparison to unicellular diatoms. 
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Figure 2.5 Annotation of de novo transcriptomes by the Annocript pipeline. The x-

axis represents the different classes of transcripts predicted by Annocript in the 

assembled transcriptomes of the given species. The y-axis represents the percentage 

of each transcript class with respect to all transcripts for a given species. 

In the Octopus and starfish datasets the majority of transcripts remained 

unannotated (55, and 67%). The annotations for Octopus are consistent with a 

recent work on the Octopus brain transcriptome which reports that only around 

20% of the transcripts can be annotated (Zhang et al., 2012). In contrast, about 80% 

of transcripts were reported to be annotated in the Strongylocentrotus purpuratus 

(sea urchin) genome (Tu et al., 2012) which is the taxonomically closest species to 

the starfish with a sequenced genome. However a lack of sequence information in 

echinoderms (Kondo and Akasaka, 2012) may be responsible for the high number 

of unannotated sequences. The interesting aspect is the prediction of putative long 

non-coding RNAs in both Octopus (7%) and starfish (12%) since IncRNAs are not 

79 



reported in either molluscs or echinoderms till date. The percentage of 

unannotated genes were lower in the diatom species (P.multistriata: 31%, S.robusta: 

38%) with a small fraction of genes predicted as long non-coding (P.multistriata: 

0.42%, S.robusta: 0.82%). Although some of the transcripts may represent assembly 

artefacts we still estimate a sizable fraction to be IncRNAs.1n fact the classification 

by Annocript enhances the repertoire of lncRNAs in non-chordates. I wanted to 

find the effect of NCP scores on the annotation of the given datasets. Hence I 

compared the NCP score distribution of all coding sequences against Potential 

Long Non-Coding Sequences (PLoNCs: Sequences> 200 nts, without homology to 

a coding gene with an ORF < 100 AA) for each of species (Figure 2.6). I detected 

that a NCP score of 0.5 is optimal to separate distribution of the coding sequences 

from the PLoNCs. In fact a score of > 0.5 is also recommended by the authors of 

the Portrait software (used by Annocript to calculate NCP score) for prediction of 

non-coding sequences (Arrial et al., 2009). Still it is interesting to note that the 

maximum density of PLoNCs are near the default Annocript cut-off of 0.95. The 

results from the Annocript pipeline can be filtered on a user defined choice of NCP 

threshold. However I have chosen a stringent default cut-off (0.95) to help the user 

to focus on a limited set of high scoring putative IncRNAs. This is specifically 

useful for the analysis of de novo transcriptomes since they might contain an 

unknown number of novel uncharacterised coding sequences. The default score 

ensures a minimum number of false positives in the final predicted lncRNA 

dataset. 
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Figure 2.6 Distribution of non coding potential scores for coding and potential long 

non-coding sequences (PLoNCs) in A) Starfish B) Octopus C) P multistriata D) S. 

robusta. The x-axis represents the non-coding potential (NCP) score assigned to the 

lincRNAs. The y-axis represents the frequency of the lincRNAs at a given NCP score. 

The bars in pink represent those transcripts which are predicted to be coding by 

Annocript, while the green bars represent the transcripts predicted to be Potential 

Long Non-Coding by Annocript. 
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2.4 Conclusion 

The Annocript pipeline was developed keeping in mind two factors i) Quick and 

reliable annotation of large scale Next Generation Sequencing projects taking 

advantage of the latest softwares and computational prowess of parallel processing 

ii) Building a universal platform for prediction of non-coding RNAs, specially long 

non-coding RNAs. The pipeline takes as input nucleotide sequences and classifies 

them by homology search against public coding/non-coding sequence databases 

and associates GO terms and KEGG enzyme IDs. Further based upon the sequence 

length, longest ORF size, homology and Portrait non-coding potential the pipeline 

classifies putative lncRNAs in the dataset. The pipeline is easily configurable on a 

local machine and optimized to run quickly without bargaining on accuracy. The 

pipeline is unique in comparison to published projects of similar caliber as it can 

handle large datasets without requiring months in computation and is not reliant 

on an external server for making annotations. The prediction of lncRNAs by the 

pipeline is based upon sequence homology, longest ORF size and non-coding 

potential. It is currently the only computational pipeline capable to do so without 

the need of a sequenced genome or establishment of complex statistical training 

models. The pipeline was tested on de novo transcriptomes of various organisms 

and performed appreciably to predict of lncRNAs for the first time in these 

taxonomic groups. The results from Annocript classification of known lincRNA 

datasets reflect the fact that probably there is an overestimation of such transcripts 

in published studies. In this regard Annocript can be a potential benchmark in 

future for measuring the IncRNAome in a given trasncriptomic dataset. In 
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summary the Annocript is projected as a software pipeline built to provide a 

quick one-stop resource for annotation of the coding and non-coding sequences in 

large scale transcriptome projects. 
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Chapter 3 

Sequence conservation in long non-coding 

RNAs over large evolutionary distances 

3.1 Introduction 

3.1.1 Conservation of sequence in long non-coding RNAs 

Recently published studies have reported catalogs of long non-coding RNAs 

(lncRNAs) in a diverse range of organisms like in mammals (Aprea et al., 2013; 

Cabili et al., 2011; Derrien et al., 2012), a nematode (C.eZegans) (Nam and Bartel, 

2012), an insect (Drosophila melanogaster) (Li et al., 2009; Young et al., 2012) a fish 

(Danio rerio) (Pauli et al., 2011a; Ulitsky et al., 2011) and an amphibian (Xenopus 

tropicalis) (Paranjpe et al., 2013). A set of computational metrics are usually adopted 

to predict the IncRNAs which include lack of sequence homology against protein 

sequences, presence of small ORFs « 100 amino acids) and a non-coding potential 

score. Previously I have developed a pipeline (Annocript) for prediction of 

lncRNAs within a dataset of nucleotide sequences. I have used Annocript to 

demonstrate that there is a probable over-estimation of predicted IncRNAs in 

previously published datasets. However, experimental validation is the foremost 

requirement to establish the verity of a predicted IncRNA. Yet, the evidences 

supporting conservation of sequence, secondary structure, location or expression 
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aid in identification of bona fide candidates from a given lncRNA dataset. The 

conservation of IncRNA sequence between different species is a computational 

aspect not explored acutely in previous studies involving prediction of IncRNAs. 

The primary reason is that lncRNAs showed little or no sequence conservation 

over long evolutionary distances. In zebrafish majority of IncRNAs are reported to 

have a low sequence conservation level similar to that of coding gene introns (Pauli 

et al., 2011a) while another study predicted a few IncRNAs (5%) to contain short 

stretches of sequences conserved amongst vertebrates (Ulitsky et al., 2011). An 

exception is the case of Drosophila, where more than 90% of the IncRNAs have 

multi species conserved elements (insects only) but there is no mention of their 

conservation with other vertebrates (Young et al., 2012). The principal factor 

associated with lack of conservation in IncRNAs is their fast rate of evolution (Pang 

et al., 2006) even at a small evolutionary distance. For example, variation in human 

lncRNA sequences are reported to comprise more than 50% of the genetic 

variation between human and chimpanzee genomes (Khaitovich et al., 2006). 

Nevertheless, in specific cases lncRNAs are reported to contain terse segments of 

conservation interspersed with a long span of variable sequence. A prime example 

is of the Xist lncRNA which was first reported to mediate the X chromosome 

inactivation in human (Clemson et al., 1996). The human Xist sequence is long (17 

kb) but contains only few short regions (-60 bp), conserved in eutherian mammals 

(Duret et al., 2006b). Another example is of the Sox2 overlapping transcript (Sox2ot) 

reported to be a key regulator of pluripotency in mouse, which contains a few 

highly conserved elements (HCEs) separated by large regions of low sequence 
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similarity (Amaral et al., 2009). Four lncRNAs described in mouse appear to be a 

deviation from the common pattern of low sequence conservation with more than 

30% of their transcript length being conserved with orthologous sequences in 

chicken (Chodroff et al., 2010). The largest set of IncRNAs predicted to show 

sequence conservation are 659 transcripts in mouse which are constrained in their 

nucleotide substitution rates against the human genome in comparison to that of 

local ancestral repeats (Ponjavic et al., 2009). A fraction of these IncRNAs are 

expressed in the mouse brain (defined as eNS-specific) and are enriched to lie near 

coding genes with similar expression pattern, implicated in development and 

regulation of transcription. In line with the little supporting evidence, a lack of 

sequence conservation is generally associated with lncRNAs. 

3.1.2 Protocol for identification of sequence conservation in IncRNAs 

Majority of the studies have used whole genome alignments between multiple 

species to estimate the sequence conservation in IncRNAs (Derrien et al., 2012; 

Nam and Bartel, 2012; Pauli et al., 2011a; Ponjavic et al., 2007, 2009). A systematic 

and unbiased analysis of sequence conservation in lncRNAs is currently wanting, 

specially when the question is about conservation over large evolutionary 

distances such as between mammals and fishes. Three important factors must be 

considered for such an analysis 

- Selection of candidate IncRNAs showing sequence conservation based upon 

an unbiased choice of computational parameters. 

Ability of the parameters to separate conservation in IncRNAs from 
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background noise. 

Definition of a specific protocol using the choice set of parameters. 

I wanted to develop a pipeline for identification of sequence conservation in 

lncRNAs based upon the above mentioned criteria. The aim is to identify a subset 

of mouse IncRNAs which potentially appear to retain their function on merit of 

their sequence conservation with the zebrafish genome. Further I wanted to select 

a few exemplar mouse lncRNAs whose conserved counterparts in the zebrafish 

genome can be experimentally validated for functional similarity. This 

development of the sequence conservation pipeline and its subsequent usage to 

identify conserved IncRNAs in mouse, was an integral part of the work done by 

me in the first year of my PhD which is accepted in a peer reviewed journal (Basu 

et al., 2013). 

3.2 Materials and Methods 

3.2.1 Selection of the sequence datasets used for conservation analyses 

The mouse CNS (Central Nervous System specific) and NCNS (non Central 

Nervous System specific) constrained Inc RNA datasets were obtained from a 

previous study (Ponjavic et al., 2009). EnsembllincRNA dataset was obtained from 

BioMart (Haider et al., 2009) and is based on the Ensembl version 62 (Flicek et al., 

2011). The lncRNA sequences in each dataset were shuffled with the shuffle 

program (part of the SQUID C library by Sean Eddy, the executable can be found 

87 



in the HMMER3 program) (Eddy, 2011). The sequences in each dataset were 

shuffled 100 times resulting in three random sequence datasets rCNS, rNCNS and 

rEnsembl. PhastCons elements for zebrafish (zPHS) were obtained from the UCSC 

table browser (Dreszer et al., 2012; Pollard et al., 2010) with the "most conserved" 

option selected for sequence retrieval. The coordinates of the phastCons elements 

were mapped to the zebrafish current genome build (zv9) using the UCSC liftover 

tool (www.genome.ucsc.edulcgi.binlhgLiftOver). A total of 816,471 conserved elements were mapped 

out of 881,975 original elements. 

3.2.2 Identification of sequence homology between IncRNAs and the phastCons 

elements 

The lncRNAs (CNS, NCNS, Ensembl) and the random datasets (rCNS, rNCNS, 

rEnsembl) were compared against the zPHS using BLASTn from the BLAST + 

software package (version 2.25) (Camacho et al., 2009). The BLASTn program was 

run with default parameters except for the word size. BLASTn comparisons with 

word size from 8 to 11 were performed for the CNS specific IncRNA and rCNS 

datasets against the phastCons elements. The NCNS/rNCNS and 

Ensembl/rEnsembl datasets were compared against zPHS at word size 11. I 

selected four BLASTn result parameters for the ROC analyses: query coverage 

(fraction of a lncRNA which is aligned to a phastCons element), alignment length 

(the length of the alignment including the gaps inserted), percentage identity 

(number of identical base matches between the query and the subject sequences) 

and e-value (a score which defines the probability of an alignment not being 
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random in nature). The alignments of the IncRNAs (CNS/NCNS/Ensembl) 

against the zPHS were taken as the true positive dataset while those from the 

randomized datasets (rCNS/rNCNS/rEnsembl) were considered to be the false 

positive set. The ROCR package in R environment was used to build the receiver 

operating characteristic (ROC) curve of false positive against true positive values 

for each parameter (Sing et al., 2005). ROC curves for the e-value parameter in the 

plots show the reciprocal of the e-value (lIe-value), as plotting the e-value 

produced curves resulting skewed below the diagonal line. Each alignment 

generated from the BLASTn search of the CNS dataset against zebrafish was tested 

for structural conservation. SISSiz program (Gesell and Washietl, 2008) was used 

to randomize each alignment 100 times using a dinucleotide model (SISSIz 

-simulate -tstv -n 100) to generate a randomized alignment dataset to measure the 

structural conservation (srCNS). The alignments of the CNS and srCNS datasets 

were checked for RNA secondary structure conservation with the RNAz 2.0 

software (default parameters) (Washietl et al., 2005). To build ROC curves I used 

the following parameters from the RNAz output: ratio of pairwise identity by 

sequence conservation index, Z score and P values (lIP value). The parameters 

from the original alignments were considered to be true positive while those from 

the randomized alignments were considered to be the false positive. ROC curves of 

the false positive against the true positive were plotted for each parameter. 

3.2.3 Identification and enrichment analysis of genomic features 

The predicted conserved mouse IncRNAs were obtained using an e-value and 
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query alignment length cut-off allowing less than 0.05% false positives (as defined 

by ROC curves). The conserved lncRNAs (named cCNS, cNCNS, cEnsembl) and 

their respective zPHS elements sharing sequence similarity (named zCNS, zNCNS, 

zEnsembl) were back mapped to the mouse and zebrafish genomes (mm9 and zv9) 

respectively using BLASTn with default parameters but -cullin~limit=1. The 

mapped coordinates of the mouse lncRNAs and zebrafish conserved elements 

were used to retrieve overlapping genes, transcripts, exons, and the closest 

flanking protein coding genes in a 1 megabase window using custom perl scripts 

utilising the Ensembl core modules API (Flicek et aI., 2010) to access the Ensembl 

database (v62). DAVID gene annotation tool was used for the GO term enrichment 

and tissue expression enrichment analyses of the protein-coding genes flanking 

and overlapping the conserved elements using the whole transcriptome as 

universe (Huang et aI., 2009a). An EASE score of 0.05 (Hosack et aI., 2003) was 

used as a cut-off for the enrichment analysis. Sequences of ultraconserved 

elements (Bejerano et aI., 2004; Sakuraba et aI., 2008) were mapped on the mouse 

genome using BLASTn (-task blastn -cullin~limit 1) with default parameters. The 

coordinates of the mapped elements on the mouse genome were checked for 

overlap with conserved mouse lncRNAs using intersect Bed program from the 

BEDToois package (version 2.14.2) (Quiruan and Hall, 2010) with default 

parameters. In all the overlap analyses performed I have considered an overlap of 

at least 1 bp between the conserved element and the specific feature considered as 

sufficient. 
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3.2.4 Identification of orthologs between mouse and zebrafish and mapping of 

ESTs in the region of conservation 

Zebrafish and mouse gene orthology information was downloaded from BioMart 

(Haider et al., 2009) based on Ensembl version 62. We collected all the Ensembl 

genes mapped in intervals up to 2 Mb (1 Mb up and down-stream) around each 

conserved element of both the genomes. For each element we looked for genes 

considered evolutionary related (classified as ortholog one to one, ortholog one to 

many or ortholog many to many) in Ensembl compara (Vilella et al., 2009). 

Conserved elements were considered syntenic if showing at least one evolutionary 

related gene in the given interval for the species considered. The analysis was 

performed individually on alllncRNAs stemming from the cCNS, cNCNS and 

cEnsembl datasets. The EST coordinates for mouse and zebrafish were 

downloaded from UCSC databases on 14th September 2011. 

- Mouse: hnp:llhgdownload.cse.ucsc.edu/goldenPathlmm9/database/alLesttxt.gz 

- Zebrafish: http://hgdownload.cse.ucsc.eduigoldenPathidanRer7/database/aJLest.txtgz 

The region of sequence conservation in the mouse lncRNAs 

(cCNS/cNCNS/cEnsembl) were checked for the overlap with a reported EST on 

the mouse genome. The same process was repeated on the zPHS conserved 

fragments (zCNS/zNCNS/zEnsembl) with respect to zebrafish ESTs. The Ensembl 

genome browser was used to generate the images for the conserved zPHS regions 

(Flicek et al., 2012a) and their corresponding IncRNA in mouse. 
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3.2.5 Mapping of RNAseq data and read count on conserved regions 

The zebrafish paired end RNAseq data from 7 developmental stages and 

stickleback paired end RNAseq from 9 tissues were downloaded from the 

European Nucleotide Archive in fastq format (Accessions: SRP012923 and 

SRP009426). The raw reads were mapped to the zebrafish and stickleback genome 

using Tophat 2.0.4 (Trapnell et al., 2009) (tophat -p -0 -G) and reads overlapping 

the conserved regions were calculated using custom Perl scripts and the 

coverageBed (coverageBed -split -aBam -b) program from the BEDTools package 

(Quinlan and Hall, 2010) (version 2.14.2). Conserved zebrafish sequences were 

mapped on the stickleback genome using BLASTn (-task blastn -culling_limit 1) 

with default parameters and a minimum 70 percentage sequence identity. Random 

regions (-1,200) on the zebrafish genome were selected using the shuffle Bed 

(shuffleBed -i -g) program from the BEDTools package. Overlap associations for 

the random regions were calculated in the same way as that for conserved regions. 

3.3 Results and Discussion 

3.3.1 Selection of the mouse IncRNA datasets 

The approach of my analysis is focused upon mouse IncRNAs predicted to have 

constrained nucleotide substitution rates amongst mammals (Ponjavic et al., 2009). 

The choice of the dataset reflects the fact that such transcripts comprise a subset of 

lncRNAs manually curated and annotated and therefore will have a lower 

probability to contain unannotated coding genes. Although the analysis considers 
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published and very well annotated IncRNAs, a few candidates can potentially code 

for small peptides as reported by a few recent studies indicating a few IncRNAs to 

be bifunctional encoding both mRNAs and functional noncoding transcripts 

(Banfai et al., 2012; Dinger et al., 2011; Ingolia et aL, 2011). Hence, though biological 

validations remain a critical factor for proper classification of these elements, 

based upon the choice of dataset and stringency of the analysis I am confident of 

the verity of my results. Further I have a a set of mouse IncRNAs, representing 

transcripts from different tissues and development stages predicted by the 

Ensembl pipeline as my second dataset (Flicek et aL, 2011). I compared the mouse 

lncRNAs from both datasets against the zebrafish phastCons elements (Pollard et 

al., 2010) to predict conserved lncRNA regions in the zebra fish genome. The 

phastCons elements are genomic elements predicted by the phastCons program 

using a hidden Markov model-based method that estimates the probability of each 

nucleotide to be conserved based on multiple alignments of selected species. I used 

the phastCons6way track to select elements conserved among fishes. These are 

based on scores built on multiple alignment of the zebrafish genome with 

Tetraodon, stickleback, human, mouse and Xenopus tropicalis. These elements 

represent the best selection of conserved regions in zebrafish, at first instance, 

among fishes, but many are also conserved among vertebrates. This choice 

implicitly adds more genomes to our analyses and is based on the assumption that 

lncRNAs conserved between mouse and zebrafish are expected to be primarily 

conserved among teleosts. For this pilot study, the reduction in the dataset 

dimension, given by such choice, limited the zebrafish genomic search space to the 

93 



phastCons sequences, rather than to the full genome, making it feasible to use 

several randomizations steps (shuffling of the query sequences) to specifically 

identify the level of conservation of lncRNAs. 

3.3.2 Selection of conservation parameters to identify significantly conserved 

IncRNAs 

I developed a pipeline to identify conserved mouse lncRNA fragments in zebrafish 

using sequence identity, randomization and the identification of an unbiased 

threshold to detect significant levels of conservation (Figure 3.1). I used receiver 

operating characteristic (ROC) like analyses to select the best measures from 

BLASTn which help detect conservation of IncRNAs out of the following: 1) query 

coverage, 2) query alignment length, 3) percentage identity and 4) e-value. ROC 

like analyses were performed on the results of the following BLASTn comparisons: 

1) mouse lncRNA against zebrafish phastCons elements (true positive set), 2) 

shuffled mouse lneRNA sequences against zebrafish phastCons elements (false 

positive set). A threshold value was defined for each parameter which resulted in 

< 0.05% false discovery rate (FDR). The analysis was applied on different datasets 

which led to the identification of 4 to 11% of the sequences in the true positive 

datasets to be significantly conserved. The conserved zebra fish regions show a 

mean length of 160 nucleotides with an average percentage identity of about 80% 

with their corresponding mouse lncRNA fragments (Figure 3.1 B, C). 
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Figure 3.1 Pipeline to detect Inc RNA sequence conservation and descriptive 

statistics of the identified conserved elements. A) Schematic representation of the 

pipeline created to identify putative conserved mouse long non-coding RNAs in the 

zebrafish phastCons elements. B) Distribution of lengths of the identified conserved 

elements C) Distribution of percentage identities of the identified conserved 

elements. 

Mouse IncRNAs from two sources representing three datasets, were used to 
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determine the sequence conservation. Mammalian constrained IncRNAs from 

mouse (659 transcripts defined as CNS/NCNS dataset) (Ponjavic et al., 2009) were 

divided into Central Nervous System specific (239 CNS transcripts) and non-eNS 

specific (420 NCNS transcripts) along with IncRNAs identified in the mouse 

genome by the Ensembl lincRNA annotation pipeline (Flicek et al., 2011) (2,147 

Ensembl transcripts, Ensembl version 62, http://www.Ensembl.orgiinfo/docsigenebuildlncma.html). I 

considered the CNS lncRNAs as my primary dataset to perform an initial 

assessment of the BLASTn search sensitivity on the alignments between mouse 

lncRNAs and zebra fish conserved elements. The BLASTn word size is the 

parameter which calibrates its search sensitivity. The BLASTn program performs a 

heuristic search by locating short matches between two sequences, the length of 

the short match being the word size. The word size is inversely proportional to the 

speed of BLASTn comparisons hence a larger word size means a faster analysis. I 

executed multiple BLASTn runs with different word sizes ranging from 8 to 11 

nucleotides on the CNS dataset. ROC curves, plotting the distributions of the 

indicated measures (Figure 3.2 A) suggest that the reciprocal of the e-value (l/e

value) is the factor capable to better segregate results between the true positive and 

false positive sets (area under curve, AUC = 0.79). The reciprocal is recommended 

when a measure produces a ROC curve significantly skewed below the diagonal 

line (Fawcett, 2004). In addition to the e-value I noticed, by manual inspection of 

results, that the alignment length (AUC 0.64) is capable of filtering low complexity 

(repeated) regions that may potentially align to multiple regions on the genome 

with a small e-value (Figure 3.2 B). 
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Figure 3.2 ROC curves of CNS, NCNS and Ensembl data sets homology search 

results. The receiver operating characteristic (ROC) curve plots the true positive rate 

against the false positive rate for specific measures of the BLASTn results. The 

BLASTn search of lncRNAs against the phastCons elements represents the true 

positive data while the false positive data accounts for the BLASTn search of shuffled 

sequences against the phastCons elements. The ROC curves determine the ideal 

threshold which may separate the alignments with biological significance from the 

random occurring alignments. ROC curves for query coverage (QCoverage), 

percentage identity (Pldentity)' query alignment length (QAlength) and e-value 

(l/EValue) at word size 11 for A) CNS dataset B) NCNS dataset, C) Ensembl dataset. 

The cut-off for a parameter is defined as the point of steep incline in the true positive 

97 



rate as compared to the false positive rate. The significant cut-off defined in the 

present analysis are indicated by arrows. ROC curves for the e-value parameter in the 

plots show the reciprocal of the e-value (lIe-value) because plotting the e-value 

produced curves sensibly skewed below the diagonal line. 

It is now becoming evident that repeats are enriched in IncRNAs (Carrieri et aI., 

2012; Kelley and Rinn, 2012) but the presence of repetitive regions in the results 

reduces the specificity of predictions. Hence I decided to combine the two (e-value, 

alignment length) measures to select the significantly conserved lncRNAs. Indeed 

combining the two parameters resulted in no false positives for each dataset (FDR 

= 0.0%). Interestingly, the change in BLASTn word size does not affect the 

performance of the classifier (Figure 3.3). Therefore, word size of 11 nucleotides is 

used in all subsequent analyses. 
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Figure 3.3 ROC curves of CNS dataset at word size 8-10 . ROC curves for query 

coverage (QCoverage), percentage identity (PIdentity), query alignment length 

(QAlength) and e-value (EValue) for the CNS dataset at word size A) 8 B) 9, C) 10. 

The cut-off for a parameter is defined as the point of steep incline in the true positive 

rate as compared to the false positive rate. The significant cut-off defined in the 

present analysis are indicated by arrows. 

I defined the threshold values for each alignment measure as the value at which < 

0.05% false positives (randomized sequences) were predicted as conserved. An e-

value cutoff of 5e-05 and an alignment length cut-off of 70 nucleotides satisfied 
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this criteria resulting in lllncRNAs from the eNS dataset significantly conserved 

within the zebra fish phastCons elements (Table 3.1). 

Dataset Word Number conserved % conserved 

Size IncRNAs IncRNA 

CNS(239) 

NCNS (420) 11 23 5.40% 

% conserved 

shuffled 

0.0% 

O.eM 

eM: 
0.0% 
0.0% 

----------~~~--~--~~------------------------~ EnsembI (2.147) 11 11._ 0.0% 

Table 3.1 The number of IncRNA putatively conserved in each dataset (CNS, NCNS, 

Ensembl) after applying the query alignment length and e-value cutoffs on the 

produced alignments. 

The BLASTn search was repeated for the NCNS and the Ensembl datasets (Table 

3.1) and the resulting ROC curves (Figure 3.3 B,C) confirmed the e-value and 

query alignment length as the best parameters to identify significantly conserved 

lncRNAs (AUC NCNS: e-value 0.76, alignment length 0.66; AUC Ensembl: e-value 

0.82, alignment length 0.70). The identified cut-offs are as follows: NCNS) e-value 

le-04, alignment length 66; Ensembl) e-value 2e-04, alignment length 62. The 

results and the annotations of the homology searches for all 3 datasets can be 

found in the Additional file 2 of my publication (http /lvMw.biomedcentral.com/contentisupplementary/l471. 

210S.14-S7-S14-s2.xls) • 

Well characterised lncRNAs like the HOTAIR and the Xist are reported to contain 

short motifs which may form stem-loop structures to interact with protein 
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complexes, the retention of the structure deemed important for the lncRNA 

function (He et al., 2011b; Wutz, 2011). I wanted to test for the presence of 

structural conformations within the conserved sequences, which may lie 

undetected in a primary sequence alignment. Hence I compared the secondary 

structure of the aligned regions for the CNS and rCNS data sets, to test for RNA 

secondary structure constraint using the RNAz program (Washietl et al., 2005). The 

RNAz method detects conservation by comparing the sequence along with the 

predicted mRNA secondary structure of the aligned regions. The program frames 

two principal measures: 1) RNA secondary structure conservation and 2) 

thermodynamic stability. I have used three measures coming from the RNAz 

results to build the ROC curves: ratio of pairwise identity by sequence 

conservation index, Z score and P value (lIP value) (Figure 3.4). The sequence 

conservation index demonstrated a positive performance (AVC 0.74) in accordance 

with previous reports about structural conservation of conserved IncRNAs 

(McCutcheon and Eddy, 2003; Seemann et al., 2007). However, the performance of 

RNAz as a classifier is not as sensitive as BLAST e.value (AVC 0.74 vs 0.79) and 

RNAz alone cannot filter for low complexity regions in the alignments. Hence I 

decided to not consider the RNAz results further, in my analyses. 
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Figure 3.4 ROC curve for structural conservation of eNS IncRNAs dataset. A) 

Pairwise identity/Sequence conservation index (AUe 0.74), B) Z score (AUe 0 .47) and 

C) inverse P-value (AUe 0 .57) for the mouse eNS constrained IncRNAs against the 

zebrafish phastcons elements. 

3.3.3 Comparison of the genomic contexts of mouse Inc RNA and fish phastCons 

pairs predicted to be conserved 

The position of the conserved regions with respect to other coding genes identifies 

those regions wruch do associate with an overlapping coding gene. Thus I mapped 

and compared each conserved element in the respective genic context of both 

analyzed organisms. The 11 putatively conserved lncRNAs in the CNS dataset 

showed homology to 10 phastCons elements. The NCNS dataset had 23 IncRNAs 

showing homology to 21 phastCons and the 250 conserved Ensembl lincRNAs 

showed homology to 209 fragments from 197 phastCons elements. I compared the 
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location of the conserved regions with annotated genes from the Ensembl database 

(Table 3.2). More than 30% of the conserved fragments in mouse and 60% in 

zebrafish, from the CNS dataset, overlap non-coding regions (intergenic, intronic 

or non-coding exon). The numbers increase for the NCNS dataset (mouse: 56%, 

zebrafish: 72%) but for the conserved Ensembl dataset only a minor fraction of 

elements overlap non-coding regions (mouse: 27%, zebrafish: 18%). The CNS and 

the NCNS lncRNAs are classified strictly based on their position (mainly 

intergenic) while in the Ensembl dataset, the candidate lncRNA fragments may 

overlap an external exon of a coding gene in the same chromosomal domain more 

frequently. However, these IncRNAs must still be considered non-coding because 

the orientation of the transcripts is in antisense to the protein coding genes they 

partially overlap. A well known example is the mouse Xist IncRNA (Ensembl gene 

ID: ENSMUSG00000086503) which overlaps a protein coding gene. (exon to exon 

overlap). Antisense transcription (specially involving coding/non-coding pairs) is 

reported to occur genome-wide in unicellular organisms (Ni et al., 2010; 

Passalacqua et al., 2012), plants (Lu et al., 2012) and mammals (Conley and Jordan, 

2012; Katayama et al., 2005). The antisense transcripts of mammalian genomes have 

been linked to the regulation of neighboring or overlapping protein-coding and 

small non-coding genes (Carrieri et al., 2012; Ebralidze et al., 2008; Hawkins and 

Morris, 2010). 
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Mouse 

Dataset Total ...... 

eNS 11 7 0 3 1 

NCNS 23 10 3 5 5 
Ensembl 250 183 31 17 19 

Zebrafish 

CNS 10 0 1 5 
NCNS 21 4 2 3 12 

Ensembl 209 1 e 9 23 

Table 3.2 The genomic locations for the number of mouse Inc RNA fragments and 

zebrafish phastCons regions found to be conserved. The location is deduced with 

respect to the coding region of the mouse and zebrafish genomes in the area of 

alignment. 

A large proportion of antisense transcripts in humans belong to the class of long 

non-coding RNAs (Morris and Vogt, 2010) which can influence the expression of 

protein coding genes in cis as suggested in a previous report (Ponjavic et al., 2009). 

They are also reported to be associated with enhancers of neighboring coding 

genes in mouse neurons (Kim et al., 2010) and human (0rom et al., 2010b). I chose 

to test if the function of flanking coding genes corroborates the functional 

conservation suggested for each mouse and zebrafish conserved non-coding pair. I 

identified the coding genes flanking and overlapping the conserved aligned 

regions in zebrafish and mouse, and evaluated their homology relationships. The 

search for orthologs was performed, scanning a window of 1 megabase flanking 

the conserved elements in either direction in the 2 genomes (see methods) (Figure 

3.5). The Figure 3.5 shows the percentages of conserved mouse IncRNAs sharing 
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orthologous coding gene in the corresponding zebrafish genomic context. All the 

lncRNA conserved fragments showed at least one ortholog pair from the CNS and 

the NCNS along with 80% of the Ensembl datasets supporting the hypothesis of 

syntenic conservation. 

• CNS 
• NCNS 
o EnsEMBL 

No orthoiogs 

Orthoiogs 

20 40 60 80 100 

Percentage of conserved incRNAs (mouse) 

Figure 3.5 Orthologous protein coding genes flanking and/or overlapping conserved 

lncRNAs. The figure shows the percentage of mouse lncRNAs from CNS, NCNS and 

Ensembl datasets, conserved with a zebrafish phastCons element and sharing 

orthologous coding genes flanking or overlapping the region of conservation in 

zebrafish. The x-axis represents the percentage of conserved segments and the y-axis 

represents the group of conserved segments in different datasets, with or without 

synteny. 

3.3.4 Functional enrichment analyses of the protein coding genes proximal to the 

conserved regions 

Past reports have indicated a preference for IncRNAs to lie proximal to coding 
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genes with similar functionality, specifically genes involved in nervous system 

development and regulation of transcription (Guttman et aI., 2009; Ponjavic et aI., 

2009). Further, based upon the similarity of the transcription specificity the 

IncRNAs are also suggested to be functionally related to the coding genes in their 

vicinity (Marques and Ponting, 2009; Ponjavic et aI., 2009). Thus, in order to 

understand the potential biological role of the identified candidate lncRNA 

sequences I performed gene ontology and tissue specific expression enrichment 

analyses on the coding genes flanking the conserved fragments for the Ensembl 

dataset. The basic hypothesis behind the analysis was to check for a functional 

association between the long non-coding genes and their flanking coding genes. 

Significantly enriched GO biological process categories and tissue of expression for 

the coding genes flanking or overlapping conserved lncRNAs in zebrafish and 

mouse were considered. The analysis was performed using DAVID (Huang et aI., 

2009a, 2009b) at an EASE score cutoff of 0.05. The EASE score is a p-value 

adjustment method specifically designed for biological large-scale studies. It 

penalizes the significance of categories supported by few genes and favors more 

robust categories in respect to the Fisher exact probability. It is more conservative 

than the pure Fisher exact probability and less conservative than the Benjamini 

and Hochberg FDR (Hosack et a1., 2003). The eNS and NCNS datasets were 

combined for the enrichment analysis to generate a dataset of reasonable 

dimensions to perform enrichments discovery (Figure 3.6 A,B) while the Ensembl 

dataset was analysed independently (Figure 3.7 A,B). The enriched GO terms for 

both the analyses included development, regulation of transcription and nucleic 
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acid metabolism as the major theme of functions in agreement with previous 

reports in mouse and zebrafish (Aprea et aI., 2013; Guttman et aI., 2010; Pauli et aI., 

2011a; Ulitsky et aI., 2011). Tissue enrichment analyses were also performed to 

check if the selected genes showed an enrichment for being expressed in similar 

specific tissues. From this analysis neural and developmental related tissues 

resulted to be significantly enriched in both the species (Figure 3.6 C,Di Figure 3.7 

C,D). These results are consistent with previous studies showing that IncRNAs 

playa fundamental role in regulation, neural development and plasticity (Mercer 

et aI., 2008; Qureshi et aI., 2010). The coding genes flanking conserved IncRNAs in 

mouse show a significant enrichment to be expressed in neural tissues yet other 

tissues like the lung and liver also feature prominently. This may indicate a 

possible sub-functionalisation of lncRNAs or a better representation of diverse set 

of tissue expression data in mouse. Taken together, these analyses highlight a 

conserved pattern of functions and expression domains of coding genes associated 

with conserved IncRNA fragments. 
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Figure 3.6 Function and expression of proteins flanking the conserved elements of 

the CNS and NCNS dataset. GO biological process term (level 5) enrichment of A) 

flanking proteins of conserved elements in zebrafish B) flanking proteins of 

conserved elements in mouse for the CNS and NCNS dataset. Tissue enrichment of 

C) flanking proteins of putative conserved elements in zebrafish D) flanking proteins 

of conserved elements in mouse for the CNS and NCNS dataset. A, B, C, D: GO terms 

and tissue of expression are listed only if they are significantly over-represented 

according to the EASE score. Grey bars indicate the percentages of genes associated 

to the respective functional classes from the group of genes flanking the identified 

conserved elements. Black bars indicate the percentages from the entire 

transcriptome of the given species 
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Figure 3.7 Function and expression of proteins flanking the conserved elements of 

the Ensembl dataset. GO biological process term (level 5) enrichment of A) flanking 

proteins of conserved elements in zebrafish B) flanking proteins of conserved 

elements in mouse for the Ensembl dataset. Tissue enrichment of C) flanking proteins 

of putative conserved elements in zebrafish D) flanking proteins of conserved 

elements in mouse for the Ensembl dataset. A, B, C, D: GO terms and tissue of 

expression are listed only if they are significantly over-represented according to the 

EASE score. The 10 top-scoring classes are present into the plots . Grey bars indicate 

the percentages of genes associated to the respective functional classes from the 

group of genes flanking the identified conserved elements. Black bars indicate the 

percentages from the entire transcriptome of the given species. 
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3.3.5 Overlap of conserved IncRNA segments with Ultra conserved elements 

In the past, non-coding regions with high level of sequence conservation across 

vertebrates were reported in humans. These elements are known as Ultra 

Conserved Elements (UCEs) and show close to 100% sequence identity with mouse 

and many of them are conserved also in fishes. UCEs are greater than 200 

nucleotides in length and observed to lie proximal to coding genes related to 

development, regulation of transcription (Bejerano et al., 2004) and cancer related 

loci (Calin et al., 2007). A small fraction of them overlap protein coding exon, 

however UCEs are mainly non-coding and intergenic in nature. Although a large 

fraction seems to be transcribed and/or to function as enhancer they do not 

overlap current collections of transcripts (Calin et al., 2007; Licastro et al., 2010; 

Pennacchio et al., 2006). In order to check if the identified sequences might belong 

to the ultraconserved family of elements I measured their overlap with UCEs 

reported in two previous studies (Bejerano et al., 2004; Sakuraba et al., 2008). In 

total four DCEs were found to overlap conserved regions from IncRNAs of the 

Ensembl dataset while a single lncRNA from the NCNS dataset showed overlap 

with a single DCE. Hence I concluded that the conserved regions identified in this 

study are not enriched for and do not correspond to UCEs elements. 

3.3.6 Expression potential of conserved regions in zebrafish 

The presence of expressed sequence tags (ESTs) overlapping the region of 

conservation argues for an active transcriptional output in the given region. It is 

important to note though, that experimental validation of selected conserved 
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regions in zebrafish is necessary to provide a conclusive evidence of IncRNA 

transcription. I checked for the overlap of zebrafish ESTs in the region of 

conservation. Around 60%, 45% and 70% of the predicted CNS, NCNS and 

Ensembl conserved regions overlap at least one EST in zebrafish. Interestingly, a 

random selection of -1,200 non-repeated genomic regions, similar in size to the 

conserved regions, gave only 8% of overlap with ESTs (two sample proportion test: 

p-value: CNS 7.5e-08; NCNS 5.2e-09 and Ensembl 2.2e-50). The results suggest that 

the majority of the conserved regions fall under genomic regions being actively 

transcribed. Further, in order to support the transcriptional potential of the 

zebrafish conserved fragments I performed an overlap analysis with the recently 

published zebrafish candidate IncRNAs (1824 transcripts) resulting from RNAseq 

experiments (Pauli et al., 2011a; Ulitsky et al., 2011). The comparison of all the 

predicted conserved regions with the published lncRNAs resulted in 6% of the 

conserved regions showing overlap with at least one reported Inc RNA. It is 

important to point out that no definitive estimation of the number of IncRNAs 

expressed in an organism is currently possible. Such uncertainty arises from the 

fact that non-coding RNAs are expressed at lower levels as compared to coding 

genes (Cabili et al., 2011; Guttman et al., 2010; Pauli et al., 2011a). Computational 

identification of IncRNA transcripts from next-generation sequencing data remains 

a "work in progress" in terms of mapping reads to the genome, assembly of new 

transcripts, definition of background noise and cut-off parameters. Hence, a lack of 

overlap does not signify an absence of transcribed elements in zebrafish, but may 

reflect undetected transcripts. In order to test this hypothesis I mapped the raw 
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reads from the study (Pauli et al., 20na) (SRA accession: SRP009426) on the 

zebrafish genome and computed the overlap between the mapped reads and all 

the conserved fragments. Interestingly, more than 90% of the predicted conserved 

regions in the zebrafish genome show overlap with at least one mapped read while 

only 25% of a set of randomly chosen genomic regions overlap at least one read 

(two sample proportion test: p-value < 2.2e-50). Checking for regions with more 

than 1,000 reads overlap, we found that 20% of the conserved regions resulted 

positive while only 4% of random regions showed such an overlap (two sample 

proportion test: p-value = 1.2e-15; Figure 3.8). 

> 1 > 25 

Number of RNAseq read overlap 

o Conserved 
• Random 

> 1000 

Figure 3.8 RNAseq data overlap on conserved zebrafish elements. The figure depicts 

the percentage of conserved elements in the zebrafish genome which show overlap 

with > 1. > 25 and > 1000 short reads (coming from RNAseq of zebrafish 

development stages) as compared against a set of random elements in the fish 

genome. The x-axis represents the number of overlapping sequencing reads and the 

y-axis represents the percentage of features with an overlapping read. 
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The highly significant differences between the conserved regions and the random 

sequences indicate that the RNAseq data supports transcriptional evidences in 

zebrafish for most of the regions predicted to be conserved IncRNAs. Finally I used 

tissue specific RNAseq data from another teleost fish (Gasterosteus aculeatus: 

stickleback) to extract information on the possible tissues where the conserved 

zebrafish regions might be expressed. I mapped the conserved zebrafish regions 

on the stickleback genome and then compared mapped regions with RNAseq 

reads from multiple tissues (heart, kidney, testis, liver, muscle, skin, gill, eye and 

brain). All conserved zebrafish regions mapped on the stickleback genome and 

-85% of the regions had transcription support from the overlap of reads from at 

least one tissue (Figure 3.9A). The conserved regions in zebrafish corresponding to 

the CNS dataset show a higher expression level in the brain (Figure 3.9B), in 

concurrence with the expression pattern of the mouse eNS specific lncRNAs. In 

contrast the NCNS and Ensembl regions are expressed in different tissues at a 

more basal level (Figure 3.9 C, D). The results confirm the brain specific expression 

of the CNS conserved regions also in zebrafish while for the NCNS dataset no 

exact conclusion can be drawn due to lack of read coverage in the region of 

alignments. Yet the observation that the Ensembl and NCNS sequences show 

positive expression levels in several tissues partially accounts for the 

corresponding mouse transcript models beings assembled from multiple tissues 

(Flicek et al., 2011; Ponjavic et al., 2009). The above analysis showed the similarity 

of transcriptional domains between the conserved mouse lncRNAs and their 

corresponding zebrafish fragments in the CNS dataset. The availability of 
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sequencing datasets covering a diverse group of tissues at high resolution can 

further aid in understanding the similarity of the transcriptional outputs of the 

NCNS and Ensembl datasets. 
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Figure 3.9 Tissue specific expression of conserved zebrafish regions mapped on the 

stickleback genome. A) Fraction of conserved regions in the CNS, NCNS, Ensembl 

datasets showing overlapping RNAseq reads from specific tissues of the stickleback 

B) Boxplot representing the number of reads from each tissue mapping on each 

conserved region coming from CNS dataset C) Boxplot representing the number of 

reads from each tissue mapping on each conserved region coming from the NCNS 

dataset D) Boxplot representing the number of reads from each tissue mapping on 

each conserved region coming from Ensembl dataset. Boxplots do not show outliers. 
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3.3.7 Examples of conserved IncRNAs 

To better demonstrate the utility of my analysis I will discuss below an example 

each, of a conserved lncRNA region from the CNS, NCNS and Ensembl datsets. 

The first example is of a conserved element belonging to a cDNA sequence 

(AK020962) expressed in the mouse brain (Figure 3.10 A). The cDNA sequence 

comes from the CNS dataset and is classified as a IncRNA in a previous published 

study (Ponjavic et al., 2009). The cDNA sequence partially overlaps the UTR intron 

of the LIM Domain Only 3 (LM03) coding gene. The corresponding conserved 

region in zebrafish is intergenic but flanked by the LM03 coding gene (Figure 3.10 

B). The LM03 gene is known to be a transcriptional regulator (Hui et al., 2009) and 

is reported to be involved in cell proliferation and differentiation during 

embryonic development (Aoyama et al., 2005). It is also implicated in 

neuroblastoma through its interaction with the neuronal transcription factor HEN2 

(Aoyama et al., 2005). The zebrafish sequence shows a conservation of 96 base 

pairs with the murine lncRNA AK020962 at an e-value of 4e-21 and 88% identity. 
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-AK020962.1 

-
c~: 11§41J.!!9-1.1,672.Q39_ 37.85 kb 

• 
-

-Imo3> 

danRer7.chr4 /116 4300S-1 1643097 TGACAGGCTTACAGCGCACACCGGCGGATTAGTTTCCTGTGGAGATGAGGTTTTCCTTTG 
oryLat2.chr23 /12 B7 7 335 - 12B77426 tgacaGGCTTATAGCCCACACCGGCGGATTAGTTTCCTGTGGAGATGAGGTTTTCCTTTG 
gasAcul.chr I V/23 54B458 - 23548549 TGACAGGCTTACAGCGCACACCGGCGGATTAGTTTCCCGTGGAGATGAGGTTTTCCTTTG 
mm9.chr6/10987B0 2- 10 987B93 TGACAGGCTTACATTGCGCAGAGGTGGATTAGTTTCCCTTGGTGATGAGGTTTTCTTTTG 
hg19 . chr12/116912109-116912200 TGACAGGCTTACATTGCGCACCGGTGGATTAGTTTCCCTTGGTGATGAGGTTTTCTTTTG 

*********** * * ** ** ************ *** ************ **** 

danRer7.chr4 / 11643005- 11643097 TGCCGCCGTGTGTCTGTTTGATGGGGGTTTAAC 
oryLat2.chr23/12877335-12877426 TGCCGCTGTGTGTCTGTTTGAT - GGGCTTTAAC 
gasAcul.chr I V/235 48458 - 23 548549 TGCCGCTGTGTGTCTGTTTGAT- GGGGTTTAAC 
mm9.chr6 /1 0987802 - 10987B93 TG- CGCCGTGTGTCTGTTTGATGGAGGTTTAAC 
hg19.chr12/116912109-116912200 TG- CGCCGTGTGTCTGTTTGATGGAGGTTTAAC 

** *** *********** **** • * ****** 

Figure 3.10 Genome browser screen-shots for a predicted conserved Inc RNA A) The 

putative conserved IncRNA in the mouse genome. The red box indicates the 

conserved fragment. Green box above the conserved element mark the exons of the 

Inc RNA AK020962 . The conserved element lies inside an intron of the LM03 gene. B) 

Corresponding conserved region in the zebrafish genome indicated by the red box C) 

Section of multiz8way whole genome alignment (zebrafish as reference along with 7 

vertebrates) overlapping the conserved region in zebrafish. 

The second example comes from the NCNS dataset where the conserved region 

falls within a mouse cDNA sequence (AK054275) (Figure 3.11 A) classified as a 

IncRNA in a previous study (Ponjavic et al., 2009) . The lncRNA falls in an 

intergenic region and belongs to the NCNS dataset. The IncRNA sequence lies 

close to the Ligand Dependent Nuclear Receptor Corepressor (LCoR) coding gene. 

The corresponding conserved region in zebrafish is also flanked by the LCoR gene 

and overlaps an intergenic EST sequence (CK360979) potentially non-coding in 
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nature (Figure 3.11 B). 

c 
danRer7.chr22/37634156-37634229 CTACAGTACAAGAAAAT--- --ATTAAACTATACAATGTTTTTTGTCAAAGAGTAAACAG 
oryLat2.chrl/39358487 - 39358565 ctacaatatgagaaaat-att t tttaaattatacaa t -ttttttg tcaaactgtAAACAG 
tetNig2.chrUn_ random/79483950-79484028 ctacaaggtgagaaaatatt t t tttaaa t tata c a a t - tt t tt tg tcaaac tgtAAAC--
fr2.chrUn/225328240-225328299 CTACAATgtgagaaaat---------------- - - at - ttttttgtcaaACTGTAAAC--
mrn9.chr19/19700724-19700792 CTACAGTACAAGAGAAA----TATTAAATTATACAAT----TCCGTCAAACTGTAAACA-
hg19.chrlO/36810975-36811043 

danRer7 . chr22/37634156-37634 2 29 
oryLat2.chrl / 39358487-39358565 
tetNig2.chrUn_ random/79483950-79484028 
fr2 . chrUn/22532 8240-225328299 
mrn9.chr19/19700724-19700792 
hg19.chrlO/36810975-36811043 

CTACAGTACAAGAGAAA- ---TATTAAATTATACAAT----TCCATCAAACTGTAAACA-

TATATATTG-- - -AAATGAGGTC 
TAGATATTG--AAAAATGAGGTC 
-AGATATTGaaaaaaaTGAGGTC 
-AGATATTG-AAAAAATGAGGTC 
-GTATATTG--- -AAATGAGGTC 
-GTATATTG----AAATGAGGTC 

Figure 3.11 Genome browser screen-shots for a predicted conserved Inc RNA A) The 

putative conserved Inc RNA in the mouse genome. The red pox indicates the 

conserved fragment. Green box above the conserved element mark the exons of the 

IncRNA AK054275. The conserved element lies inside an intron of the LCoR gene. B) 

Corresponding conserved region in the zebrafish genome indicated by the red box. 

The purple box above the conserved region represents an overlapping EST sequence 

C) Section of multiz8way whole genome alignment (zebrafish as reference along with 

7 vertebrates) overlapping the conserved region in zebrafish. 

The zebrafish sequence shows a conservation of 75 base pairs with the mouse 

Inc RNA AK054275 at an e-value of 5e-09 and 84% identity. The LCaR gene is a 

transcriptional co-repressor and is expressed in diverse range of tissues (Fernandes 

et al., 2003). A recent report mentions a close coordination between the LCaR 
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protein with Kruppel-like factor 6 (Klf6) and Histone deacetylases (Hdacs) to 

regulate the expression of many target genes notably that of Cydin dependent 

kinase inhibitor (Cdknla) (Calderon et aI., 2012). The final example comes from the 

Ensembl dataset, a lncRNA predicted by the Ensembl lincRNA pipeline in the 

mouse genome (Flicek et aI., 2011). The ID of this lncRNA has been updated in the 

current Ensembl version (Current ID: Gm26672; Past ID: Gm16882) (Figure 3.12 A). 

The region of conservation falls within the last exon of the lncRNA, the exon itself 

is completely imbricated in the intron of the Protocadherin Gamma Subfamily A, 9 

(Pcdha9) gene. The corresponding conserved region in zebrafish lies in an 

intergenic region but proximal to the zebrafish Pcdh2g16 gene (Figure 3.12 B). The 

zebrafish sequence shows a conservation of 77 base pairs with the mouse lncRNA 

AK054275 at an e-value of 3e-09 and 83% identity. The protocadherins are a diverse 

group of cadherin protein expressed predominantly in the nervous system and 

implicated in cell recognition, cell signaling and development of neuronal circuits 

(Morishita and Yagi, 2007). Amongst the protocadherin family members, the 

gamma protocadherins (Pcdhg) are reported to be involved in synaptogenesis and 

apoptosis of interneurons in the developing spinal cord (Prasad and Weiner, 2011) 

as well as regulating the hypothalamic neuronal circuits to maintain energy 

homeostasis (Su et aI., 2010) in mouse. 
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A chr18: 37,743,962 - 37,753,961 10.00 kb rerw.nl 1trtftd ~ 

Coding Genes 

LncRNA 
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< Gm26672 
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B - _chr1.!.b94S~ -2,~S30 _ ~kb - - - - _"'"'-d~~ 

Coding Genes 
pcdh2g16 > 

Conserved -
C 

danRer7.chr14/2946259-2946333 GCAGATGTGGGTTATCTGGTGACTAAAGTGGTGGCTGTTGATGTGGACTCTGGACAGAAC 
oryLat2.chrlO/16538593-16538667 GCTGATGTGGGCTACCTGGTGACTAAAGTGGTGGCTGTTGATGTGGACTCTGGACAGAAC 
gasAcul.chrIV/22686069-22686143 GCAGATGTGGGCTATCTGGTCACTAAAGTGGTGGCTGTTGACGTGGACTCTGGACAGAAC 
tetNig2 . chrl /67 04580-6704654 GCAGATGTGGGCTACCTGGTGACCAAAGTGGTGGCTGTTGATGTGGACTCTGGACAGAAC 
fr2.chrUn/223485284-223485358 gcagatgtgggctacctggtgactaaagtggtggctgt tgatgtggactctggacagaat 
xenTro2 . scaffold_546/320986- 321060 TCTGAACAAGGGACTTTAGTGACTAAAGTGGTGGCAGTAGATGCTGACTCAGGCCACAAT 
mm9.chr18/37841819-37841893 GCCGAGCCCGGATACCTGGTCACCAAGGTGGTGGCTGTGGACGCAGACTCCGGACACAAT 
hg19.chr5/140725344-140725418 GCAGAGCCCGGCTACCTGGTGACCAAGGTGGTGGCGGTGGACAGAGACTCGGGCCAGAAC ... *. . ** ** ** ******.* _. ** • •• ** *. ** ** 

danRer7.chr14 /2 946259-2946333 GCCTGGCTCTCCTAT 
oryLat2.chrlO /1 6538593-16538667 GCCTGGCTCTCCTAT 
gasAcul . chrIV/22686069-22686143 GCCTGGCTCTCCTAT 
tetNig2 . chrl/6704580-6704654 GCCTGGCTCTCCTAT 
fr2.chrUn/223485284-223485358 gcctggctctcctat 
xenTro2.scaffold_ 546 / 320986-321060 GCTTGGCTCTCTTAT 
mm9.chr18/ 37841819- 37841893 GCCTGGCTGTCTTAC 
hg19 . chr5/140725344 - 140725418 GCCTGGCTGTCCTAC 

** ***.* ** ** 

Figure 3.12 Genome browser screen-shots for a predicted conserved IncRNA A) The 

putative conserved Inc RNA in the mouse genome. The red box indicates the 

conserved fragment. Grey box above the conserved element marks the exons of the 

lncRNA Gm26672 . The conserved element lies inside an intron of the Pcdhga9 gene 

B) Corresponding conserved region in the zebrafish genome indicated by the red box 

C) Section of multiz8way whole genome alignment (zebrafish as reference along with 

7 vertebrates) overlapping the conserved region in zebrafish. 

The examples discussed above aptly demonstrate the presence of sequence 

conservation in a select subset of mouse lncRNAs. The presence of the 

corresponding conserved regions in zebra fish near orthologous coding genes gives 

additional support to the predicted homology of the lncRNAs. Numerous prior 

reports have associated IncRNA expression and function with the development 

and differentiation of the nervous system. Indeed in examples discussed above I 
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find that the putative conserved IncRNAs in mouse and the corresponding 

conserved region in zebrafish lie near coding genes implicated in regulation of 

transcription and proliferation of neuronal circuitory. While an in-depth 

characterisation of the putative conserved candidates is required to establish the 

lncRNA function, the current results highlight the ability of my pipeline to predict 

candidate conserved IncRNAs which may play an important role in organism 

development and differentiation. 

3.4 Conclusions 

Unlike coding genes lncRNAs are devoid of a selective pressure to retain their 

nucleotidic sequence. Numerous past studies have emphasised on sequence 

homology being a poor metric to measure IncRNA conservation amongst species. 

Nonetheless I am able to demonstrate the presence of sequence conservation in a 

select set of mouse lncRNAs by comparing it with the conserved genomic regions 

of zebrafish. I demonstrate that between 4 and 11% of mouse IncRNAs (two 

constrained and a genome wide lncRNA dataset, 2,800 IncRNAs) are significantly 

conserved in zebrafish in agreement with the results by Ulitsky et al (Ulitsky et al., 

2011) on a smaller dataset. Gene ontology analyses of protein-coding genes 

flanking the conserved elements, identified similar functional classes in both 

species to be significantly enriched, such as regulation of transcription and 

development. It is interesting to note that the coding genes, flanking the zebrafish 

homo logs for mouse eNS-specific IncRNAs, were also enriched to be expressed in 

the brain. In order to detect sequence conservation, I have developed an analysis 
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pipeline which employs a sensitive procedure to systematically measure the 

homology of lncRNA sequences. The pipeline uses the widely accepted BLASTn 

program along with robust statistical analyses to define threshold values for 

identifying conservation. My analysis has predicted 4 to 11 % of mouse IncRNAs to 

contain sequence blocks, conserved amongst vertebrates. It is important to note 

that the thresholds defined in my analysis result in a complete absence of false 

positives and majority of the predicted regions are not characterised in zebrafish as 

IncRNAs. This shows the ability of my pipeline to detect regions of conservation, 

which suggest the transcription of putative novel conserved lncRNAs. Further I 

found significant similarity between the expression domains and functional classes 

of the coding genes which beset the region of conservation in mouse and 

zebrafish. It is interesting to note that the subset of mouse lncRNAs expressed in 

the central nervous system have their corresponding zebrafish conserved regions 

and the flanking coding genes enriched to be expressed in neuronal tissues. 

Majority of predicted conserved regions in zebrafish are transcribed actively as 

evident from the overlap of ESTs and RNAseq reads. The putative conserved 

mouse lncRNAs provide a well annotated dataset to the community which is ideal 

to select interesting candidates for experimental validation. Finally I project this 

pipeline as an effective system to identify putative conserved IncRNAs in a diverse 

range of organisms. It is however important to point out that, coding genes, 

involved in functional mechanisms like organism development and regulation of 

transcription, are reported to co-localise with conserved non-coding sequences 

with a potential cis-regulatory function (Dermitzakis et al., 2002; Woolfe et al., 

122 



2005). Thus, the discovered conserved lncRNAs might be enriched for such 

conserved cis-regulatory elements independently by the function of their 

transcript. To shed light on this issue, in the following chapter, I will specifically 

test the overlap of conserved non-coding elements with conserved regions in 

lncRNAs, estimating the enrichment of conserved gene-regulatory features to lie in 

the vicinity of positionally conserved long intergenic non-coding RNAs 

(lincRNAs). 
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Chapter 4 

Conservation of microsynteny in vertebrate 

lincRNAs 

4.1 Introduction 

4.1.1 Retention of geneic order in coding and non-coding sequences 

Long non-coding RNAs are predicted in diverse organisms but an effort to predict 

the putative functionally conserved candidates genome wide is still lacking. A 

primary reason is the paucity of primary sequence conservation in lncRNAs (Basu 

et al., 2013) and little knowledge about their secondary structure conservation 

(Novikova et al., 2012). An alternative strategy is to utilise the retention of 

orthologous flanking coding gene order as a possible mechanism to identify 

orthologous lncRNAs. In principle the approach looks simple, which is to identify 

lncRNAs in genomic loci with retained local order of coding genes. In practice the 

task is not trivial since whole genome analyses in metazoan species with low 

evolutionary turnover show a retention of chromosomal scale organization 

(macrosynteny) and a lack of conservation of local gene order (microsynteny) 

(Putnam et al., 2007, 2008; Srivastava et al., 2008, 2010). However, in particular cases 

evolution is known to favor microsynteny, exemplified by highly conserved non

coding elements (HeNEs) which regulate the expression of development and 
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differentiation related genes (Pennacchio et aI., 2006; Shin et aI., 2005; Woolfe et aI., 

2005). The HeNEs lie in clusters along with their target genes and other bystander 

genes maintaining a stretch of conserved gene order known as Genome Regulatory 

Blocks (GRBs) (Kikuta et aI., 2007a), characterized by extensive microsynteny in 

metazoans (Engstrom et aI., 2007; Kikuta et aI., 2007a) as well as in plants (Baxter et 

aI., 2012). The retention of microsynteny due to functional linkage between HCNEs 

and their target coding genes is more obvious in teleost fishes which have 

undergone whole genome duplication and rediploidisation to loose many 

bystander genes while keeping the HCNE-target gene association intact (Becker 

and Lenhard, 2007; Kikuta et aI., 2007b). 

4.1.2 Conservation of microsynteny in long non-coding RNAs 

Although conserved non coding elements are associated with retention of local 

gene order due to long/short range cis-regulatory constraints there is little 

evidence to justify a similar claim for IncRNAs. A recent report detected 196 

unique orthologous pairs (4% of human lincRNAs) of conserved long intergenic 

non-coding RNAs (lincRNAs) in human and mouse based upon genomic 

alignments of lincRNA loci (Managadze et aI., 2013). I have shown previously that 

based upon conservation of sequence a similar percentage of mouse IncRNAs (4-

11%) have putative orthologs in zebrafish (Basu et aI., 2013). The results of my 

analysis were supported by another study which reported around 4% of zebrafish 

lncRNAs to show sequence conservation with their mammalian counterparts 

(Ulitsky et aI., 2011). In fact the same study predicted a higher percentage of 
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zebrafish lncRNAs (- 20%) enriched to lie near coding genes whose orthologs in 

human and mouse had an adjacent lincRNA (Ulitsky et a1., 2011). This observation 

provided an impetus to probe deeper into the positional conservation of lincRNAs 

specially within vertebrate genomes where the local gene order is better conserved 

and there exist published lncRNA datasets (Derrien et a1., 2012; Flicek et a1., 2012b; 

Pauli et al., 2011 a; Ulitsky et a1., 2011). A question of primary importance is 

whether lncRNAs may associate with their genomic neighborhood over long 

evolutionary distances, due to an existing regulatory constraint. Hence I decided to 

develop a computational pipeline which can predict candidate long intergenic 

non-coding RNAs (lincRNAs) which retain their position between a chosen pair of 

species. I wanted to use the pipeline to identify a candidate set of lincRNAs which 

are predicted to be microsyntenic in human, mouse and zebrafish. I wanted to test 

whether the predicted microsyntenic lincRNAs lie enriched in their position in 

comparison to random locations in the genome. Further I wanted to check whether 

the predicted microsyntenic lincRNAs are under the influence of known non

coding regulatory features. Finally I intended to use gene expression, sequence 

conservation, abundance of regulatory features and chromatin interaction as 

measures to indicate a cis-regulatory constraint within the microsyntenic lincRNAs 

with respect to the associated coding genes. 
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4.2 Materials and Methods 

4.2.1 Data sources 

The long non-coding RNA dataset for human was downloaded from Gencode v17 

(Harrow et al., 2012). All long non-coding RNAs predicted by the Ensembl pipeline 

(database version 72) were considered for mouse (Flicek et al., 2012b) and lncRNAs 

predicted by two prior published studies (Pauli et al., 2011a; Ulitsky et al., 2011) 

along with those classified by Ensembl (database version 72) (Flicek et al., 2012b) 

were pooled together for zebrafish. The genomic coordinates of coding genes and 

their homology relationships for each organism were downloaded from the 

Ensembl Compara database (Vilella et al., 2009) (version 72). The data retrieval 

from the Ensembl database was carried out using the Bioconductor (Gentleman et 

al., 2004) package biomaRt (Durinck et al., 2005). The chromosomal location of 

GRBs were obtained from the UCNEbase (Dimitrieva and Bucher, 2012). Histone 

monomethylation (H3K4Me1) and acetylation (H3K4Me3) marks for human and 

mouse embryonic stem cells were downloaded from the UCSC genome database 

and &om a prior published study in zebrafish (Bogdanovic et al., 2012). The data 

sources for human and mouse are indicated below 

- Human (Ram et al., 2011) 

hnp:llhgdownload.cse.ucsc.edu/goldenPathihg19/encodeDCctwgEncodeBroadHistonelwgEncodeBroadHistoneHlhescH3k4 

melStdPk.broadPeak.gz 

hnp:/lhgdownload.cse.ucsc.eduigoldenPathlhg19/encodeDCC/wgEncodeBroadHistonelwgEncodeBroadHistoneHlhescH3k2 

7acStdPk.broadPeak.gz 

- Mouse (Ram et al., 2011) 
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http://hgdownload.cse.ucsc.edu/goldenPathlmm9/encodeDCCIwgEncodeLicrHistonelwgEncodeLicrHistoneEse14H3k04melM 

E0129olaStdPk.broadPeak.gz 

http://hgdownload.cse.ucsc.eduigoldenPathlmm9/encodeDCCIwgEncodeLicrHistonelwgEncodeLicrHistoneEse14H3k27acME 

01290IaStdPk.broadPeak.gz 

http://hgdownload.cse.ucsc.edu/goldenPathlmm9/encodeDCCIwgEncodeLicrHistonelwgEncodeLicrHistoneEsb4H3k4melME 

OC57bI6StdPk.broadPeak.gz 

http://hgdownload.cse.ucsc.edu/goldenPathlmm9/encodeDCClwgEncodeLicrHistonelwgEncodeLicrHistoneEsb4H3k27acMEO 

C57bI6StdPk.broadPeak.gz 

The H3K4mel peaks which overlapped an H3K27ac peak were considered active 

enhancers. The mean phastCons conservation score for all active enhancers was 

calculated and those with the top 25% scores were considered as conserved active 

enhancers. Insulator marks or CTCF binding sites for human and mouse were 

obtained from published studies (Bao et al., 2008; Nitzsche et al., 2011). Genome 

wide phastCons sequence conservation score for all the species were downloaded 

in WIG and BigWig format from the UCSC database. The files contain the genome 

wide conservation score of each base pair of the human genome. The conservation 

score is generated by the phastCons program (Pollard et al., 2010) using a hidden 

markov model method on whole genome alignments of mutliple species. The files 

downloaded are as follows. 

Human: Contains phastCons conservation score of each base in the 

human genome aligned to 45 other vertebrate species which include 

other mammals, birds, marsupials, reptiles and amphibians 

( hnp:llhgdownload.soe. ucsc.edul goldenPathlhg19/phastCons46waylvertebratel). 

Mouse: Contains phastCons conservation score of each base in the 

mouse genome aligned to 59 other vertebrate species which include 
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other mammals, birds, marsupials, reptiles and amphibians 

( http://hgdownload.soe.ucsc.edulgoldenPathlmm101phastCons60way/mm10.6Oway.phastCons6OwayPlacentaJ.bw ). 

Zebrafish: Contains phastCons conservation score of each base in the 

zebrafish genome aligned to 7 other vertebrate species which include 

human, mouse, Xenopus tropicalis, fugu, medaka, stickleback, Tetraodon 

( http://hgdownload.soe.ucsc.edulgoldenPathldanRer7/phastConSSwaylvertebrate.phastConSSway.bw ). 

The conservation scores for each human chromosome in WIG format were 

converted to BigWig and merged using the wigToBigWig and bigWigMerge 

binaries (http:/hlgdownIoad.cse.ucsc.eduladminlexel). Transcription start sites across twelve 

developmental stages in zebrafish was obtained from a previous study (Nepal et 

al., 2013). The tissue expression data for 12 human tissues from Illumina Body Map 

was downloaded from the Ensembl database in BAM format (ltp:llftp.Ensembl.orglpub/release-

731bamn1omo_sapienslgenebuildl) and for 25 tissues in mouse from the UCSC genome database 

also in BAM format (http://hgdownload.cse.ucsc.edulgoidenpathlmm9/encodeDCClwgEncodeCshILongRnaSeq/). Hi-C and 

ChIA-PET chromatin interaction data were downloaded from previous published 

studies (DeMare et al., 2013; Li et al., 2012a). Custom Perl scripts were used to map 

the chromatin interactions between different genomic loci. 

4.2.2 SynLinc pipeline 

The SynLinc pipeline was developed in the Perl programming environment (v5.12) 

and connects to a MySQL database (> 5.1.6) to store and retrieve information. The 

pipeline is comprised of three principal scripts (Figure 4.1) i) Build DB: This script 
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takes as input coordinates of coding and long non-coding genes/transcripts in 

BED6 format and uploads them into the database. ii) Build Homology: This script 

needs a file of pairwise orthologous gene IDs between two species to upload in the 

database and build the homology maps. iii) Build Synteny: This script analyses the 

data uploaded by the previous scripts to identify putative microsyntenic lincRNAs 

and gives a tabular output. The three scripts are discussed in detail below. 

Microsynteny 
Database 

••• 
III 

Figure 4.1 Schematic overview of the SynLinc pipeline. i) The Build DB script 

accepts coding and Inc RNA gene coordinates along with gene annotation information 

of coding genes to populate various tables in the database. ii) The Build Homology 

script accepts pairs of orthologous/paralogous genes to populate a homology table . 

tii) The Build Synteny script takes as input names of two organisms whose data is 

already formatted and uploaded in the database and predicts putative microsyntenic 

lincRNAs between the two species. 

4.2.2.1 Build database: Upload coordinates of coding and long non-coding RNAs 

into the microsynteny database 

This script requires as input the genomic locations of all coding genes and long 

non-coding RNAs in BED6 format, a file containing coding gene identifier, symbol 
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and description and a file with chromosome names and sizes for a given organism. 

For each dataset the script needs an organism and data source name to be 

provided by the user (for example human and EnsembI72). The script requires 

prior installation of the BEDTools suite of programs (> v2.17) (Quinlan and Hall, 

2010). It connects to a MySQL database to store the parsed data into respective 

tables. The coordinates of intergenic regions are calculated for a given dataset 

using the complementBed binary from BEDTools. The coordinates of the coding, 

lncRNA and intergenic regions are uploaed in the genomic features table (region). 

It is followed by the association of each coding gene to its flanking intergenic 

regions up to a distance of 1MB (the default maximum distance threshold for the 

pipeline to measure microsynteny) using the window Bed and overlap binaries 

from BEDTools. Information about each intergenic region and its flanking coding 

genes along with the distance of separation are uploaded in a feature distance 

table (fdist). Finally each lncRNA of a given organism is classified according to its 

position i) Intergenic: no overlap with a coding gene ii) Overlap: partial overlap 

with a coding gene iii) Containing: completely encompassing a coding gene iv) 

Contained: completely encompassed by a coding gene. The information about 

lncRNA classes is uploaded into the IncRNA class table (lnctype). 

4.2.2.2 Build Homology: Upload pre-mapped gene identifiers predicted to be 

homologous between two species into the microsynteny database 

The build homology script takes as input a tab delimited file of orthologous 

coding gene pairs between two organisms. The script searches the genomic feature 
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table for gene identifiers of each orthologous pair. If both genes are present in the 

genomic feature table the orthology information is uploaded in the homology 

table (protmap). 

4.2.2.3 Build Synteny: Predict putative microsyntenic lincRNAs between two 

species in tabulated format 

This script is the principal script of the pipeline and predicts putative 

microsyntenic lncRNAs between two organisms. It relies on the datasets uploaded 

using the Build DB and Build Homology scripts. The script only looks for 

"intergenic" class of lncRNAs. The basic working unit of the script are intergenic 

regions which contain a lincRNA (lincIGs). When two species are chosen to be 

analyzed the pipeline identifies all the orthologs of the coding genes lying near 

lincIGs, up to a given user specified distance, for species A in species B. If one of 

the orthologs lies near a lincIG in species B too, at the same specified distance 

threshold, the lincIG is deemed to be microsyntenic. Further, information on all 

possible combinations of lincRNAs falling in the predicted microsyntenic lincIGs 

are stored in a Perl hash object. This object is designed to be optimal for storing 

microsynteny information. It provides the ability to compute complex positional 

information quickly without redundancy to generate a tabular output. For example 

lincRNA_A is upstream to proximal coding genes PI, P2, P3 and downstream to 

P4, P5. The corresponding homologs of these proteins are PI', P2', P3', P4', P5', 

LincRNA_A" is upstream to proximal coding genes PI', P5', P2' and downstream 

of P3', P4'. The script builds a data structure for IncRNA_A to map all its predicted 
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homologs (Figure 4.2). The possible associations generated in the example are: 

• UU:DD (PI:PI '-P4:P4') meaning that LincRNA_A and its putative ortholog 

lincRNA_A' lie upstream to PI and PI' and downstream to P4 and P4'. 

• DU:UD (P5:P5'-P3:P3') 

• UU:UD (PI:Pl'-P3:P3') 

• DU:DD (P5:P5'-P4:P4') 

Upstream and downstream (U and D) indicators permit to store the relative 

arrangement of the lincRNA with respect to each flanking protein coding gene 

taking into account strand information for both the elements of a coding/lincRNA 

pair. This strategy allows the script to classify the relative orientation that a 

lincRNA shares with its proximal coding genes according to the following 

orientation classes: convergent (tail to tail), divergent (head to head) or co-linear 

(same strand). 
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lincRNA AI 

Organism A 

Organism B 

Distance;P11:P1 ;Upstream-Distance 

Upstream ~ Distance; P5':P5; Downstream-Distance 

/ ~ Distance;P2':P2;Upstream-Distance 

\ /Distance;P3':P3;Upstream-Distance 

Downstream 

B ~Distance ;P41:P4;Downstream-Distance 

Figure 4.2 Structure of a Perl hash object used to store microsynteny information A) 

Organisation of orthologous coding genes flanking lincRNAs in two species. B) 

Representation of the organisation in terms of a perl hash object used to define 

microsyntenic associations in the SynLinc pipeline. 

The script outputs a tab delimited text file which can be filtered by different 

parameters relating a coding gene with a lincRNA, like orientation, distance and 

symbol of the coding gene. The pipeline was run with a distance threshold of 1 

base to identify putative microsyntenic lincRNAs between human-mouse, mouse-

zebra fish and human-zebrafish. The lincRNAs which share at least one orthologus 

proximal coding gene in all the three species were categorized as vertebrate 
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microsyntenic lincRNAs (VMLs). 

4.2.3 Computational characterisation of vertebrate microsyntenic IincRNAs 

To check the significance of microsyntenic associations the pipeline was simulated 

1000 times on each pair of organisms after random shuffling of transcript 

coordinates. During each shuffle the location of the coding and intergenic regions 

were kept constant while the coordinates of the IncRNAs were shuffled on the 

genome without any preference to overlap a coding gene or intergenic region. 

Shuffling of coordinates was done by using the shuffleBED binary from BEDTools. 

PhastCons conservation scores in biwig format were compared against genomic 

intervals between lincRNAs and their proximal coding genes using 

bigWigSummary utility from UCSC (http://hgdownload.cse,ucsc,eduladminlexel). Overlap and 

proximity of various genomic features with lincIGs and lincRNAs were calculated 

using the intersectBED and c10sestBED binaries from BEDTools. The multiBamCov 

script from BEDTools was used to obtain the count of reads for lincRNAs and 

coding genes across various tissues in human and mouse. An in-house R script 

was used to obtain overlap of CAGE peaks in the promoter regions of zebrafish 

coding genes and lincRNAs. 

4.3 Results and Discussion 

4.3.1 Association of IincRNAs with Genome Regulatory Blocks (GRBs) 

The principal aim towards identification of microsyntenic lincRNAs is to associate 

them with a potential independent constraint which allows the retention of local 
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gene order. However, maintenance of local gene order is one of the core tenets of 

GRBs. The presence of microsyntenic lincRNA within a GRB may signify the 

influence of the GRB in establishing positional conservation rather than the 

lincRNA itself. Hence prior to rurming the SynLinc pipeline I checked whether 

lincRNAs extensively share chromosomal domains with GRBs by looking for the 

overlap of intergenic regions containing lincRNAs (lincIGs) with GRBs (Figure 

4.3). I found that more than 90% of vertebrate lincIGs do not overlap GRBs, but a 

random subset of lincIGs have a higher propensity to overlap a GRB when 

compared to a random set of intergenic regions without lincRNAs (wlincIGs) in all 

the candidate species (5-10% for random lincIGs vs 2-4% for random wlincIGs; 

two sample proportion test, p-value < 2e-16). 
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Figure 4.3 Overlap of intergenic regions containing lincRNAs with those overlapping 

Genome Regulatory Blocks in A) Human B) Mouse C) Zebrafish. 

4.3.2 Prediction of Vertebrate Microsyntenic LincRNAs (VMLs) 

The results suggests that a significant number of lincRNAs overlap GRBs than 

what can be explained by random chance and the GRB elements may influence the 

localisation of a lincRNA subset. Yet this number is not very large (5-10%) hence 

many lincRNAs may function beyond the influence of a GRB and large syntenic 

blocks, this is the reason why I developed the SynLinc pipeline that mainly checks 

for short microsyntenic blocks containing lincRNAs. The pipeline identifies 
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intergenic regions with lincRNAs in a given pair of organisms. A lincRNA is 

predicted to be microsyntenic if orthologous coding genes in both the organisms of 

choice contain a flanking lincRNA (Figure 4.4). The SynLinc pipeline was run on 

the human, mouse and zebrafish genomes to predict putative vertebrate 

microsyntenic lincRNAs (VMLs). 

Organism A Organism B 

1 1 
Intergenic region Intergenic region 

1 
Intergenic region 

1. . 
Intergemc region 

with lincRNA with lincRNA 

1 1 
Intergenic regions with lincRNAs and 
orthologous flanking coding genes 

Figure 4 .4 Workflow of the SynLinc pipeline for identification of microsyntenic 

lincRNAs between two organisms. The pipeline extracts intergenic regions in a given 

pair of organisms which contain lincRNAs (lincIGs). The lincIGs flanked by coding 

genes orthologous in both organisms are further selected as microsyntenic lincIGs. 

The selection of flanking coding genes depends upon a user specified distance 

threshold, of the coding gene from the closest end of a lincIG. The lincRNAs present 

inside microsyntenic lincIGs form the initial putative microsyntenic lincRNA dataset. 

The pipeline predicted more than 200 VMLs in human, mouse and zebrafish 

(Table 4.1) based on the homology of the closest flanking coding genes for each 
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lincRNA. To consider association to only the closest flanking coding genes is a 

conservative approach which arises from the aim to reduce the number of 

predicted false negatives by solely considering coding/non-coding pairs which 

remain linked closely across evolution. 

Human Mouse Zebrafish 
3478 ---

7200 1721 2030 
~~-------- 336------~ 

Total lincIGs 3590 1244 

LncRNA data source Gencode17 Ensemb172 

1329 
209 

Ensemb172; 
Pauli et al; 

Ulitsky et al 

Table 4. 1 The number of putatively rnicrosyntenic lincRNAs and lincIGs (intergenic 

regions containing lincRNA) predicted by the SynLinc pipeline. 

Before proceeding further I define a few terms which are used frequently in the 

text of this chapter. 

- VMLs: Vertebrate microsyntenic lincRNAs. 

- VMLRs: A subset of VMLs which along with the position also retain their 

orientation with respect to a flanking coding gene. 

- CCG: The closest coding gene for a lincRNA. In case of VMLs and VMLRs it 

is the closest coding gene which is used to define the microsynteny. 

- VMLIGs: An intergenic regions which contains a VML. 

To test the significance of the results random genomic segments were selected in 

the human, mouse and zebrafish genomes (size-matched to IncRNAs in each 

species). The SynLinc pipeline was run on the random genomic segments to 

139 



calculate the percentage of segments which are intergenic and microsyntenic 

across the three species after each randomization (Figure 4.5). This process was 

repeated one thousand times, each repetition considering the same set of 

organisms (human, mouse, zebrafish) with new random genomic segment 

datasets. The aim of the randomization is to demonstrate that the presence of a 

lincRNA near a coding gene, orthologous in human, mouse and zebrafish does not 

occur by random chance. The mean percentage of microsyntenic intergenic regions 

across randomized replicates was found to be significantly lower than those of 

IncRNAs (two sample proportion test, p-value Human: lO.OSe-4S, Mouse: 2.3ge-94, 

Zebrafish: 1.72e-S7). 
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Figure 4 .5 Frequency distribution of microsyntenic percentage in 1000 data sets of 

random genomic segments (size-matched to lncRNAs), Microsyntenic percentage 

signifies the percentage of random genomic regions for each dataset predicted to be 

intergenic and microsyntenic in human, mouse and zebrafish. The percentage 

distribution of plotted separately for A) human B) mouse C) zebrafish. The red line 

indicates the percentage of vertebrate microsyntenic lincRNAs in each species , The x-

axis represents the percentage and the y-axis represent the frequency distribution. 

To check for the proximity of VMLs to GRBs, I again compared the overlap 

between intergenic regions containing VMLs (VMLIGs) and GRBs. The aim was to 
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understand if the presence of GRBs has influenced the retention of the VMLs 

across evolution. Majority of VMLIGs lie outside GRBs (> 80%) in all the three 

species but the average distance of VMLIGs from a GRB is smaller than that of all 

lincIGs (two sample t test, p-values: Human 0.03; Mouse 0.04; Zebrafish 0.01) 

(Figure 4.6). However, in contrast to human and mouse, VMLIGs are not enriched 

to lie closer to GRBs in comparison to a random integenic region in zebrafish. Thus 

the results are not able to support the hypothesis of VMLs being enriched to lie 

closer to GRBs in zebrafish. This might be explained by the fact that the zebrafish 

genome is smaller compared to human and mouse (Howe et al., 2013) (1/2 the size 

of human and mouse genomes) but contains a higher number of GRBs distributed 

across the genome (35% more than human; 30% more than mouse). Long non

coding RNAs and GRBs are both implicated to regulate the expression of genes 

involved in early development and differentiation (Akalin et al., 2009; Batista and 

Chang, 2013). Often such genes have a complex expression pattern governed by 

multiple factors such as enhancers, transcription factors and other non-coding 

RNAs. A good example is of the Insulin-like growth factor II (Igf2) gene in mouse 

which produces a growth promoting hormone during early gestation (Shen et al., 

1988). The Igf2 is reciprocally imprinted with a long non-coding RNA R19 which is 

implicated in cell proliferation and organism growth (Venkatraman et al., 2013). A 

recent report describes a complex long range interaction between the promoters of 

R19 and a novellncRNA, the Non coding transcript 1 (Nctc1) with a shared pool of 

enhancers to influence the imprinting of the Insulin-like growth factor II (Jgf2) in 

mouse (Eun et al., 2013). 
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Figure 4.6 Distribution of distance from the closest GRB for intergenic regions 

containing lincRNAs in A) Human B) Mouse C) Zebrafish. The x-axis represents the 

distance from the closest GRB and the y-axis represents the different pairs of genomic 

features . 

While experimental evidence is required to assess such associations between 

coding and non-coding loci, a subset of VMLIGs overlap GRBs which suggests a 

select set of lincRNAs are transcribed near coding genes whose expression is 

regulated by elements of a GRB leading to two potential outcomes. Either the 

GRBs exert their function through transcription of the overlapping lincRNAs or the 
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lincRNAs and the GRBs have 2 independent, possibly complementary activities. 

Unfortunately, with the analyses performed until now I have not been able to find 

a final answer. There may exist complex unknown mechanisms of VML 

functioning but an intelligible hypothesis could be their involvement in the cis

regulation of flanking coding genes. To test this hypothesis I utilised four 

computational measures to define cis-regulatory constraints for VMLs 

- Expression correlation with flanking coding genes 

- Conservation of sequence in the VML/flanking coding interval 

- Frequency of regulatory elements proximal to VMLs 

- Chromosomal interactions between VMLs and flanking coding genes 

To test for the aspects mentioned above the lincRNAs in human, mouse and 

zebrafish were divided into three categories i) All lincRNAs ii) Vertebrate 

rnicrosyntenic lincRNAs (VMLs) iii) Vertebrate microsyntenic lincRNAs with 

retained orientation (VMLRs) with respect to the flanking coding gene. In each 

dataset the closest coding gene (CCG) was chosen from the two immediate 

flanking genes of the lincRNA. The choice was defined only by distance for the 

first dataset (AlllincRNAs). For the second dataset (VMLs) the closest orthologous 

coding gene was considered and for the third dataset (VMLRs) the closest 

orthologous gene with retained orientation was chosen. 

4.3.3 Expression correlation of lincRNAs with their flanking coding genes 

Correlation of expression between a lincRNA and its closest coding gene (CCG) 
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may occur due to sharing of a common regulatory element or by cis-regulation of 

one feature over another. I compared the expression of lincRNAs and CCGs across 

multiple tissues in human and mouse. In terms of percentages, I did not find an 

enrichment for pairs of VMLs/VMLRs and their CCGs to be co-expressed across 

multiple tissues in comparison to all lincRNAs and their CCGs. However, 

comparing the expression between putative homologous lincRNA pairs in human 

and mouse across nine similar tissues, resulted in a slightly higher percentage of 

VMLR pairs showing correlation as compared to random lincRNA pairs (6% vs 

3.5%). Although the difference between these percentages is almost 2 folds, it is not 

statistically significant and cannot explain the majority of homologous pairs. The 

lack of expression data for different tissues in zebrafish led me to compare the 

expression pattern of lincRNAs and CCGs during early developmental stages in 

whole embryo, for which data are available. Again VMLs, VMLRs and their CCGs 

do not show any preference to be co-expressed across eight early developmental 

stages of zebrafish, using the RNAseq data taken from a previously published 

study (Pauli et al., 2011a). In contrast, the VMLs showed a significant enrichment 

for positive or negative correlation of expression with their CCGs when I used 

quantitative data taken from transcriptional start sites defined by CAGE 

technology (Kodzius et al., 2006) across 12 early developmental stages in zebrafish 

(Nepal et al., 2013) (Figure 4.7). I compared the expression correlation between five 

set of genomic features which lie adjacent to each other on the zebrafish genome 

(Spearman correlation score >= 0.9, p-value <= 0.05). 
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The feature pairs considered are: 

Coding gene with proximal coding. 

Coding gene with proximal coding and retained microsynteny in human, 

mouse and zebra fish. 

LincRNA with proximal coding gene. 

LincRNA with proximal coding gene, predicted to be microsyntenic in 

human, mouse and zebrafish (VMLs). 

LincRNA with proximal coding gene, predicted to be microsyntenic with 

retained orientation in human, mouse and zebrafish (VMLRs). 

All coding! 
closest coding (n=17,280) 

Microsyntenic coding! 
closest coding (n=2244) 

AlilincRNAI 
closest coding (n=2030) 

Microsyntenic lincRNAI 
closest coding (n- 336) 

Microsyntenic 
lincRNAIclosest coding 

(RO) (n=146) 

o 5 10 15 20 

Percentage with expression correlation - - - - - -

Figure 4.7 Percentage of genomic features (lincRNNcoding or coding/coding) 

showing expression correlation across twelve developmental stages of zebrafish 

(spearman correlation score >= 0.9, p-value <= 0.05). RO stands for vertebrate 

microsyntenic lincRNAs with retained orientation with respect to their closest 

flanking orthologous coding gene. The x-axis represents the percentage of correlated 

pairs and the y-axis represents the different pairs of genomic features . 
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The enrichment is significant for VMLs when compared against alllincRNAs (two 

sample proportion test: p-value < 0.001) but not when they are compared against 

microsyntenic coding/coding pairs or VMLRs. These results suggest that, 

similarly to protein coding genes, microsynteny information helps in selecting co

regulated pairs of coding/noncoding transcripts. A previous study has shown that 

pairs of coding genes which remain linked with each other (co-linear to each other 

without interruption by another coding gene) across long evolutionary distances in 

multiple taxa tend to be co-expressed (Irimia et aI., 2012). The pattern of co

expression is suggested to result from mutual interaction between the genes or 

expression of both the genes being governed by shared regulatory features, 

common transcription factors or a bidirectional promoter. The positional 

confirmation of coding and long non-coding pairs across large evolutionary 

distances can be reasoned on the basis of similar grounds. It is important to note 

that the enrichment for expression correlation between VMLs, VMLRs and their 

CCGs could be detected only by CAGE transcription start site abundance data. 

CAGE technology quantifies sequence tags representing 5' end of RNA molecules 

(core promoter region) to identify transcription initiation regions genome-wide 

(Balwierz et aI., 2009; Kodzius et aI., 2006). A major difference of CAGE from an 

RNAseq experiment is its ability to quantify the regulation of transcription 

initiation event. In fact the core promoter region is reported to provide an 

additional site for regulation of gene expression during development (FANTOM 

Consortium et aI., 2009; Nepal et aI., 2013). Further the additional developmental 

stages present in the CAGE dataset provides better sensitivity to measure variation 

147 



of gene expression across smaller time periods. The results show that a subset of 

VMLs and their CCGs are enriched to be expressed on a similar temporal scale. 

This enrichment is slightly more pronounced in case of VMLRs but the difference 

is not statistically significant in comparison to VMLs. This can be interpreted in 

two ways, firstly that the VMLs influence the expression of their CCG by a direct 

physical interaction or secondly both the VML and the CCG are share a common 

regulatory pathway during the early development in the zebrafish. However, I 

consider the expression enrichment to be a preliminary evidence which needs to 

be further resolved by experimental validation of candidate the VMLs and their 

CCGs. 

4.3.4 Conservation of sequence in the VMUfIanking coding interval 

Long non-coding RNAs appear to be more plastic and amenable to evolutionary 

change in comparison with protein coding genes (Kutter et aI., 2012). This is 

primarily due to a lack of selective pressure on them to retain amino acid codons. 

Yet for adjacent long non-coding and coding gene pairs retained across long 

evolutionary distances the sequence conservation in their intergenic interval may 

reflect a possible functional constraint for the pair to be linked together. This might 

be due to the presence of conserved transcriptional regulatory elements in the 

intergenic space shared by both transcriptional units. I used the genome wide 

phastCons conservation scores to check for sequence conservation in the intergenic 

intervals between various genomic features. The phastCons program (Pollard et 

aI., 2010) provides base wise conservation scores in the genome of a species by 

using an alignment of multiple genomes. The mean phastCons scores for the 

148 



intergenic space between VMLRs and their CCGs is higher in all the three species 

in comparison to the intergenic space between conserved coding/coding pairs 

(Figure 4.8). In addition, the VMLRs show a higher conservation in the intergenic 

space in comparison with all VMLs in human and mouse while, in zebrafish the 

level of conservation remains similar for the two datasets. Summarizing, the 

intergenic regions separating VMLRs from their CCGs in all the three species show 

an evolutionary constraint in terms of sequence conservation. This evolutionary 

constraint reflects a selection against insertions or deletions which might lead to a 

possible ablation of shared functional regulatory mechanisms between the VMLRs 

and their CCGs. 
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Figure 4.8. PhastCons conservation scores for intergenic intervals between different 

genomiC features (lincRNNcoding or coding/coding) in A) Human B) Mouse C) 

Zebrafish. The x-axis represents the phastCons conservation scores and the y-axis 

represents the different pairs of genomic features. 

4.3.5 Frequency of regulatory elements proximal to VMLs 

The vertebrate genome can be described as a transcriptional mosaic where 

regulatory features like enhancers and insulators are closely knit with their target 

genes guiding their tissue and stage specific expression. Regulatory features like 
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enhancers and insulators may aid in the retention of a local gene order by 

controlling the expression of their neighboring genes, guiding the development 

and differentiation of tissues and organ systems (Kolovos et al., 2012). I specifically 

looked for the frequency of enhancers and insulators near lincRNAs to understand 

if they show an enrichment near VMLs or VMLRs. There are previous reports 

which show the enrichment of regulatory elements in large genomic regions, 

deficient in coding genes (Bagheri-Fam et al., 2001; Montavon et al., 2011). Hence 

before looking for the enrichment of regulatory elements I checked for the length 

distribution of the intergenic intervals separating lincRNAs from their CCGs 

(Figure 4.9). The lincRNAs are separated by longer intergenic intervals from their 

CCGs in comparison to coding genes (Students t test, p-value < 2e-16 for all 

species). Within lincRNAs, the VMLs and VMLRs are separated by even longer 

intervals from their CCGs in comparison to all lincRNAs. A larger intergenic 

interval between lincRNAs and their CCGs argues for the higher probability of a 

regulatory feature to occur in the interval by chance. 
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Figure 4.9. Distribution of the intergenic interval length between different genomic 

features in A) Human B) Mouse C) Zebrafish. The x-axis represents the size of 

intergenic intervals and the y-axis represents the different pairs of genomic features. 

Long non-coding RNAs are known to be associated with enhancer elements with 

two recent reports providing a strong experimental evidence of lincRNAs acting as 

enhancers (Li et al., 2013a; Yang et al., 2013a). In the past a large scale screening 

associated numerous transcribed lncRNA regions with enhancer activity (0rom et 

al., 201Oa) . In fact a few studies have highlighted a complex interplay between 
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enhancers and long non-coding RNAs to assert a transcriptional control over 

adjacent coding genes (Berghoff et al., 2013; Eun et al., 2013; Korostowski et al., 

2011). To check for the proximity of enhancer elements with respect to VMLs and 

VMLRs I calculated the distance of each line RNA from its closest mapped 

conserved active enhancer (see Material and methods and Figure 4.10). Except for 

zebrafish, the VMLs do not show an enrichment to lie near enhancer elements in 

comparison with all coding and microsyntenic coding genes. While the results for 

zebra fish suggest an association between enhancer elements and VMLs the same 

conclusion cannot be drawn for human and mouse. I conclude that the enrichment 

of VMLs to lie near enhancer elements cannot be observed in all the three species 

of interest. Thus the hypothesis of enhancer elements influencing the retention of 

lincRNA microsynteny remains inconclusive. 
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Figure 4.10 The distance of closest conserved active enhancer mark from lincRNAs 

and coding genes in A) Human B) Mouse C) Zebrafish. The x-axis represents the 

distance from the closest enhancer mark and the y-axis represents the different 

genomic features . 

In vertebrates the word insulator has often been associated with the binding of 

CCCTC-Binding Factor (CTCF) protein on the genome which appears to be 

counterintuitive. Classically the CTCF protein is reported to bind cohesin and 
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mediate transcriptional regulation by insulating promoters from distal enhancers 

(Wendt et al., 2008). Recent evidences associate the CTCF protein with another 

mechanism, that is guiding long range chromatin interactions by formation of 

chromatin loops. A well known example of such a mechanism is the CTCF 

mediated interactions bringing regulatory sequences of the Insulin (INS) gene close 

to the Synaptotagmin VII (SYT8) gene to coordinate the expression of both the 

genes for regulation of insulin secretion (Xu et al., 2011). In fact formation of CTCF 

mediated chromatin loops is observed genome wide in mouse embryonic cells 

(Handoko et al., 2011). To inquire about a possible role of CTCF mediated 

interaction between a lincRNA and its CCG, I counted the number of CTCF 

binding sites lying in the intergenic interval of different genomic features (Figure 

4.11). Interestingly VML and VMLR intervals show an enrichment for CTCF 

binding sites when compared to all lincRNAs, coding genes and microsyntenic 

coding genes (Mann-whitney test p-value < 0.001). The results show that a 

significant percentage of VMLs and VMLRs have at least one CTCF binding site 

per megabase of intergenic interval separating them from their CCG (VML: 

Human 48%, Mouse 56%; VMLR: Human 56%, Mouse 56%) in comparison to all 

linRNAs (Human: 30%, Mouse: 33%), all coding genes (Human: 21%, Mouse: 31%) 

and microsyntenic coding genes (Human: 19%, Mouse: 33%). This points towards a 

possible implication of CTCF and its associated proteins mediating long range 

interactions between VMLs and their proximal coding genes. 
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Figure 4.11 The distribution of CTCF binding sites in intergenic intervals between 

different genomic features (long non-coding/coding, coding/coding) in A) Human B) 

Mouse. The x-axis represents the distance from the closest CTCF binding site and the 

y-axis represents the different pairs of genomic features . 

4.3.6 Chromatin interactions between lincRNAs and proximal coding genes 

While expression correlation, sequence conservation and regulatory feature 

proximity, to a certain extent, provide support to the hypothesis of cis-regulatory 

constraint in VMLs and their flanking coding genes, a direct evidence of lincRNA 

and coding gene interaction is still lacking. Imprinting and tethering are two 

known functions of IncRNAs, which are related to IncRNAs regulating the 

expression of proximal coding genes (Gabory et al., 2010; Jeon and Lee, 2011). 

However such mechanisms may require chromosomal looping to bring a IncRNA 

in physical proximity to its target gene. Based on chromatin interactions a recent 

report showed the presence of several cis-interacting regions flanking the Sox9 

gene which overlap lincRNA loci, thus suggesting a role of the lincRNAs in 

mediating the regulation of Sox9 gene (Smyk et al., 2013). Another example is of 
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the HOTTIP lincRNA which lies upstream of the Hoxa cluster and is dependent on 

chromosomal looping to achieve physical proximity followed by activation of its 

target Hoxa cluster genes (Wang et al., 2011). Hence I decided to compare the 

genomic coordinates of interacting chromosomal locations (mapped by cross

linking experiments) with those of lincRNAs and their proximal coding genes. To 

perform the analysis I used Hi-C and ChlA-PET data from human and mouse 

embryonic stem cells. Both Hi-C and ChIA-PET are techniques to map long range 

chromatin interactions within a genome (Fullwood et al., 2009; Lieberman-Aiden et 

al., 2009). While ChlA-PET failed to identify interactions between the VMLs and 

their closest coding genes, Hi-C data predicted that 70-90% of all pairs of genomic 

features (coding/coding and coding/long non-coding in human and mouse) are 

implicated in interactions. However I could not find any specific enrichment for 

interaction scores associated to VMLs or VMLRs. Hence I was unable to obtain a 

direct evidence of interaction between a VML and its CCG. Yet lack of interacting 

evidence only suggests an absence of direct physical contact between a lincRNA 

and a coding gene. There are many other mechanisms like binding to transcription 

factors, altering of the chromatin state and inhibition of splicing, through which a 

lincRNA can exert its regulatory potential on a neighboring coding gene 

(Kornienko et al., 2013). 

4.3.7 Specific examples of microsyntenic lincRNAs 

Manual inspection of the SynLinc pipeline results led me to identify specific 

lincRNAs reported in prior publications (Table 4.2). The interesting part was the 
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pipeline being able to identify the putative zebrafish orthologs of known 

mammalian lincRNAs. Furthermore I observed a lack of conservation of splicing 

pattern or transcript length between the predicted orthologs of the known and 

characterised lincRNAs. An interesting observation from the manual inspection 

was the failure of the pipeline to predict the mouse ortholog of the human Xist 

lincRNA. The mouse Xist overlaps a neighboring coding gene, hence is filtered by 

the pipeline, which in the actual version is focused around completely intergenic 

noncoding transcripts. Currently I am adding additional modules to the SynLinc 

pipeline which extend the detection of putative syntenic association also to the 

lncRNAs overlapping coding genes. I expect the additional modules to provide 

further insights into the conservation of IncRNAs across multiple species. 

Symbol 

CRNDE 

H19 

HARJA 

A NCR 

SNHGlS 

Tsix 

Name Function Mechanism 

DitferendaIy 
Expresaed 

Human 19 Early growth and Cis and Trans 
development regulation 

Angelman Cell proliferation Suppression 
syndrome of 
chromosome transcriptional 
region regulators 

Reference 

.2012) 

(Eun et al. , 2013; 
Venkatraman et 
aL , 2013) 

at 
) 

(Kretz et aL I 
2012) 

f 

--------~------------~---- -----------------~ 

XIST Antisense 
RNA 

X chromosome 
reactivation 

'lhrtlftlulr.. 201 

Cis-regulation (Ohhata et aL, 
of Xist gene 2011) 

Table 4.2 List of vertebrate microsyntenic lincRNAs predicted by the SynLinc 

pipeline which are reported in prior published studies . 
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Discussed below are three examples of VMLRs with known functions in at least 

one of the analyzed species. First example is represented by the human accelerated 

region (HARIA, HARIB) lincRNA (Figure 4.12) genes which are derived from 

genomic regions with conserved sequence in vertebrates but known to evolve 

rapidly since the divergence of humans from apes (Pollard et al., 2006c). These 

genes are reported to be expressed in the developing neocortex during human 

embryonic development and co-localize with Reelin, a protein implicated in 

schizophrenia and aging (Pollard et al., 2006b). Based on the orientation and 

proximity of the YT521-B homology Domain Family 1 gene (YTHDFl) the SynLinc 

pipeline has been able to predict the putative homologs of human HARIA and 

HARIB in mouse and zebrafish (Figure 4.12 H, C). The YTHDFI gene contains a 

YTH RNA-binding domain which is a RNA-binding domain involved in splicing of 

vertebrate genes (Zhang et al., 2010). In mouse the putative HARI locus contains 

five annotated lincRNA transcripts while in zebrafish there are only two annotated 

lincRNA transcripts proximal to the YTHDFI gene. An additional support for the 

retention of microsynteny comes from the presence of mir-124 family genes 

between the HAR lincRNA homologs and YTHDFI in all the analysed species. In a 

previous analysis I have detected two zebrafish lincRNAs overlapping the mir-

124a5 gene and a mouse lincRNAs overlapping the mir-124al gene hence it is 

interesting to note this close association of this miRNA gene with lncRNA 

transcripts. 
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Figure 4.12 Puta tive line-HARIA, line-HARIB orthologues predicted by the SynLinc 

pipeline in A) Human B) Mouse C) Zebrafish. 

The second example is that of the lincRNA Angelman syndrome chromosome 

region (ANCRIDANCR) (Figure 4.13) which maintains the undifferentiated state of 

human epidermal progenitor cells (Kretz et al., 2012). The DANCR lincRNA lies 

close to the Ubiquitin specific peptidase 46 (Usp46) gene which is a 

deubiquitination enzyme reported to act as a tumour suppressor by up-regulating 

the PH domain and Leucine rich repeat Protein Phosphatases gene (PHLPPl) in 

human colon cancer cell lines (Li et al., 2013b) . Additionally, this gene is also 

implicated in the regulation of glutamate receptor expression the ventral nerve 

cord in C. elegans thus modulating its synaptic strength (Kowalski et al., 2011). The 

DANCR orthologs in all the three species overlap a snoRNA (snoRNA26) which is 
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an additional indicator of conservation. This lincRNA is reported to regulate the 

differentiation of human mesenchymal stem cells into osteoblasts by binding with 

Enhancer Of Zeste Homolog 2 (EZH2) protein and inhibiting the expression of 

Roughex 2 gene (Rux2) (Zhu and Xu, 2013). While the predicted mouse lincRNA is 

already named DANCR by the Ensembl gene classification pipeline, the zebrafish 

homolog remains unannotated. 
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Figure 4.13 Putative linc-DANCR orthologues predicted by the SynLinc pipeline in 

A) Human B) Mouse C) Zebrafish. 

The final example is of the recently reported Small Nucleolar RNA Host Gene 15 

(SNHG15) lincRNA (Figure 4.14) which is expressed, with a very short half life, in 

response to chemical agents in human cell lines (Tani and Torimura, 2013). This 
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lincRNA was predicted to be microsyntenic based on the homology of its 

downstream coding gene MyolG which is reported to regulate the elasticity of 

haematopoietic cells (Olety et al., 2010) . Except for a few well studied candidate 

IncRNAs like the XIST, HOTTIP, AIR, H19 and Kncqlotl there is no conclusive 

experimental evidence for wide spread cis-regulatory mechanism of lncRNAs. The 

predicted VMLs and VMLRs are the first set of lincRNA candidates predicted to 

show conserved association with a coding gene in human, mouse and zebrafish. 

These results demonstrate the utility of the SynLinc pipeline to employ 

microsynteny as a paradigm and reduce the lincRNA search space in organisms 

with sequenced genomes. 
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Figure 4. 14 Putative linc-SNHG15 orthologues predicted by the SynLinc pipeline in 

A) Human B ) Mouse C) Zebrafish. 
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4.4. Conc1 usion 

The current scenario for computational prediction of lincRNA mechanism and 

function lies between what we already know about coding genes and how well we 

can extrapolate that knowledge to identify lincRNAs and predict their function. 

Such an approach is focused towards proving "what the IncRNAs are not" rather 

than understanding "what they are". While analyses of sequence, secondary 

structure and mRNA expression pattern have predicted conserved lncRNAs, 

weighing upon their evolutionary mobility most IncRNAs are expected to morph 

beyond recognition between phylogeneticaly distant species. The use of 

microsynteny removes the bias against confinement of a lncRNA to norms of 

sequence, size or structure and allows for position as the only criteria to predict 

homology. 

To identify putative microsyntenic lincRNAs between two species I developed a 

computational pipeline named SynLinc. The pipeline is designed to compare the 

lincRNA population in two genomes in the context of position and orientation of 

coding genes present in the genomic neighborhood at a defined distance 

threshold. I used the pipeline to identify putative vertebrate microsyntenic 

lincRNAs (VMLs) in human, mouse and zebra fish. The predicted VMLs are not 

conserved due to a random placement on the genome and a small subset show 

correlation of expression in comparison to their proximal coding genes during 

early development in zebrafish. The VMLs which retain their orientation with 

respect to a flanking coding gene (VMLRs) show a higher order of sequence 
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conservation in the intergenic interval between the coding and non-coding 

sequence. 

Examples of a few published lincRNAs predicted as VMLRs show the capability of 

the pipeline to identify unreported orthologs of mammalian lincRNAs in zebrafish 

making it a useful resource to detect lincRNA conservation in different datasets. 

While such an approach may not be ideal in many cases, it is advantageous to 

reduce the search space and then focus in-depth on a smaller predicted 

microsyntenic subset. The SynLinc pipeline is able to perform this task in a quick 

and efficient manner requiring a minimal level of user input. Manual evaluation of 

a few examples of predicted microsyntenic lincRNAs showed a lack of 

conservation of splicing pattern and length even in those cases where the 

lincRNAs remain linked in the same orientation with a coding gene. The pipeline 

is capable of predicting higher numbers of putative microsyntenic lincRNAs if run 

with a more relaxed distance threshold. Without experimental validations a strong 

conclusion cannot be drawn on the predictions, yet the current evidence suggests 

the microsynteny approach to be well suited to identify lincRNA candidates which 

may be under the influence of co-regulatory mechanism with respect to their 

proximal coding genes. 
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Chapter 5 

Identification of long non-coding RNAs in 

pancreatic islet cells of zebrafish 

5.1 Introduction 

5.1.1 Zebrafish as a model system to study human diseases 

The sequencing of the human genome led to the identification of mutations and 

polymorphisms in numerous genomic loci, implicated in various mendelian 

disorders (Begum et al., 2012; Costa et al., 2013). An underlying challenge is to 

unravel the molecular mechanism relating a genomic locus to pathophysiology. 

Precise experimental evidences from comparative genomics (Wallace et al., 2007; 

Zheng-Bradley et al., 2010) have given support to the premise of evolutionary 

conserved pathogenesis mechanisms, encouraging the use of animal models to 

study human diseases. The mouse model has caught the maximum attention of 

the scientific community, with examples of a disease mechanism being defined in 

mouse before humans (Kljuic et al., 2003) and similar phenotypes generated for 

loss-of-function mutations in genes orthologous to human (AI-Has ani et al., 2005). 

Amongst other organisms particularly Mus musculus (mouse), Danio rerio 

(zebrafish), Drosophila melanogaster (fruitfly) and Caenorhabditis elegans (worm) have 
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gained wide acceptance as model organisms. The use of zebrafish as a model 

organism to study molecular mechanisms or a disease state has risen to 

prominence recently because of the following reasons. 

Zebrafish is a vertebrate with a sequenced genome and -70% of human 

protein coding genes have a known ortholog in zebrafish (Howe et aI., 2013). 

- Several organ systems in zebrafish are notably similar to human (Goldsmith 

and Jobin, 2012). 

- Zebrafish embryos have a translucent body which aids in monitoring its 

organ systems and cellular development in vivo. 

Zebrafish are highly fecund and a pair of zebrafish can produce up to 200 

embryos per clutch. 

- Large scale forward-genetics approaches can be carried out in the organism 

(Driever et aI., 1996; Haffter et aI., 1996). 

- Large scale reverse genetics approaches like TILLING, retroviral mediated 

mutagenesis, zinc finger nuc1eases, TALENs and CRISPR and morpholino 

knockdown can be efficiently carried out in the zebrafish system (Bedell et 

aI., 2011; Blackburn et aI., 2013; Doyon et aI., 2008; Kettleborough et aI., 2013; 

Petzold et aI., 2009; Wienholds et aI., 2003). 

Finally transgenesis experiments can be easily performed in zebra fish, thus 

allowing it to effectively function as a model for various human diseases 

(Becker and Rinkwitz, 2012; Liu and Leach, 2011). 

The zebrafish has a well developed gastrointestinal system which is homologous to 
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mammals (Wallace et al., 2005). This stark similarity has led to several diseases of 

the gut being modeled in zebrafish like liver cancer (Lam and Gong, 2006), 

pancreatic cancer (Park et al., 2008) and inflammatory bowel disease (Brugman et 

al., 2009). Further, the high fecundity, transparency, and ease of imaging of the 

zebrafish embryos has encouraged genetic screening approaches to identify fish 

phenotypes for inheritable pathologies like polycystic kidney disease (Sun et al., 

2004) and dilated cardiomyopathy (Xu et al., 2002). 

5.1.2 Zebrafish as a model system to study the molecular mechanisms of type 2 

Diabetes 

The similarity in organ systems and the potential for large scale genetic screening 

makes zebrafish an ideal model organism to understand the complexities of 

human diseases associated with heredity and lifestyle such as diabetes (Seth et al., 

2013). The Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder 

associated with a high glucose level in the body caused by resistance to cellular 

uptake of insulin, and deficiency in insulin production (Taylor, 1999). It is 

predicted to be an emerging epidemic amongst the elderly (Kesavadev et al., 2003; 

Zeyfang and Bahrmann, 2013) and prevalent, also amongst the youth and children 

(Van Name and Santoro, 2013; Pettitt et al., 2013). In fact the World Health 

Organisation (WHO) estimates around 60 million people in the European 

economic region affected with the disease and the rate of deaths by T2DM to be 

doubled by the year 2030 (http://www.euro.who.int/). The primary cause of the 

disease is the resistance of body cells against the insulin hormone resulting in lack 
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of glucose regulation and dysfunction of the insulin secreting J3-cells in the 

pancreatic islets (Kahn et al., 2006). The whole mechanism of glucose regulation 

and insulin secretion is a complex process which involves the interplay of proteins 

associated with multiple disease related pathways like Alzheimer (Dash, 2013), 

obesity (Kahn et al., 2006) and atherosclerosis (Stohr and Federici, 2013). There is 

also a direct involvement of circulating hormones and nutrients (Braun et al., 2012) 

as well small non-coding RNAs like the miRNAs (McClelland and Kantharidis, 

2014). The zebrafish pancreatic islet cell organisation is similar to humans, 

comprising of J3-cells (secreting insulin) surrounded by a-cells (secreting 

glucagon), 5-cells (secreting somatostatin) and (-cells (secreting ghrelin) (Kim et 

a1., 2006). The ability of zebrafish to regenerate chemically or surgically removed 

pancreas makes it an ideal choice to study the proliferation of pancreatic cells 

especially the regeneration of J3-cells (Moss et a1., 2009). Recently reverse genetic 

studies have identified genes important in zebrafish pancreatic development 

whose mammalian orthologs have similar functions. Amongst them are 1SL LIM 

homeobox 1 (Isl1) and 1SL LIM homeobox 2 (1512) genes, which are involved in 

formation of pancreatic cells (Wilfinger et a1., 2013) and Adehyde dehydrogenase 1 

(ALDH1) gene inducing endocrine differentiation in the pancreas (Matsuda et aL, 

2013). There is also a report of specific cis-regulatory elements in zebrafish 

coordinating the distinct expression pattern of Eukaryotic Translation Termination 

Factor la (ETFla) gene which guides the expansion of pancreatic progenitor cells 

(Pashos et a1., 2013). 
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5.1.3 Role of long non-coding RNAs in pancreatic development and the islet-cell 

transcriptome in zebrafish 

Several reports in the past have indicated a role of multiple miRNAs in pancreas 

development and differentiation thus relating them to the likely prognosis of 

diabetes (Guay et al., 2012). The down-regulation of the H19 gene in mice with 

gestational diabetes mellitus compared to the wild type (Ding et al., 2012), 

probably caused by an abnormal methylation pattern in the H19 locus (Shao et al., 

2008), demonstrated, for the first time, the association of a long non-coding RNA 

(lncRNA) with the diseased state. Another study reported around 1100 lncRNA 

genes expressed in human pancreatic islet cells with possible implication in T2DM 

(Moran et al., 2012). Majority of the lncRNAs (70%) were shown to have a lncRNA 

ortholog in mouse also expressed in the islet cells and many lncRNAs mapped to 

genetic loci underlying diabetes susceptibility. Further most of the lncRNAs are 

found to lie near protein coding genes which themselves are islet specific. 

Depletion of a candidate lncRNA in the human ~-cells led to the dysregulation of 

the GLIS family zinc finger (GLIS3) which is a key regulator of insulin 

transcription (ZeRuth et al., 2013) suggesting a regulatory potential of IncRNAs in 

T2DM metastasis. These reports indicate the need for a better understanding of the 

role of non-coding RNAs in pancreatic cell development and differentiation, 

especially lncRNAs. The study of coding genes and lncRNAs in the context of 

pancreatic development and differentiation in zebrafish may provide novel 

insights into the various mechanisms influencing the pancreatic metabolism. 

Hence I have assembled and annotated the islet-cell transcriptome at 72 hours post 
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fertilisation in zebrafish. I wanted to examine the coding gene repertoire which is 

differentially up-regulated in the islet cells. Further I also wanted to identify 

differentially up-regulated lincRNAs in the islet cells of zebra fish and select 

candidate lincRNAs for further experimental validation. To achieve my objectives I 

used the Annocript pipeline previously developed by me to annotate the coding 

and long non-coding transcripts and further employed the SynLinc pipeline to 

identify potential microsyntenic lincRNAs, expressed in islets of human and 

zebrafish. 

5.2 Materials and Methods 

5.2.1 RNA extraction and sequencing 

The RNAseq data was generated in the laboratory of my external supervisor Dr. 

Ferenc Muller. All the experiments for islet cell enrichment and RNA extraction 

were performed by his doctoral student Irene Miguel-Escalada. The protocol for 

zebrafish islet enrichment has been taken from a previous article describing 

isolation of embryonic hearts in zebrafish (Burns and MacRae, 2006). A transgenic 

line expressing mCherry fluorescent protein in insulin-producing ~-cells was used 

to identify zebrafish islet cells '(Pisharath et al., 2007). Homozygous transgenic 

adult zebrafish males were outcrossed with AB*WT female fish in a 1:2 ratio. The 

embryos acquired from the cross were fragmented and Intact mCherry+ islets cells 

were identified under fluorescent light. To reduce the presence of other pancreatic 

tissues, the islets were accumulated in a clean drop of L-15 Medium (Figure 5.1). 

170 



From 800 embryos, approximately 200 islets were recovered and pelleted. Total 

RNA was extracted from whole embryos at 72 hours and islet cells with RNeasy 

Micro kit (QIAGEN, UK), following manufacturer's instructions. RNA integrity 

and yield was evaluated using Agilent RNA Pico 6000 kit. RNA sequencing was 

done on the lllumina platform (50 base reads, paired-end sequencing, two 

samples). Quantitative PCR was performed using TaqMan® Gene Expression 

Assays for insulin and glucagon (islet-specific), exocrine pancreas (trypsin) and 

liver (lfabp/fabpla), heart (myl7) and retina and diencephalon (six3b). The islet 

sample showed a significant fold enrichment for the islet specific genes (406 fold 

insulin, 374 fold glucagon) in comparison to whole embryo. However there was a 

enrichment detected for trypsin (76 fold) suggesting some contamination of 

exocrine pancreatic tissue in the islet sample. Contamination from other tissues 

was observed to be negligible. 
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a 

b 

Figure 5.1 Enrichment of pancreatic islets from zebrafish embryos. A) Lateral view 

of a 3 dpf embryo from Tg (ins-mCherry)jh2 line. B) Intact zebrafish mCherry + islets 

(white arrows) from Tg (ins-mCherry)jh2 line in suspension with embryo fragments 

after mechanical disruption (left panel). Isolated zebrafish islets after collection and 

transfer into a clean drop of medium with non-pancreatic tissue (right panel). The 

figure is taken from the doctoral thesis work of Irene Miguel-Escalada. 

5.2.2 Quality filtering, mapping and assembly of sequenced reads 

The raw sequencing reads from 72 hour post fertilization (72 hpf) whole embryos 

and i let cell were proce ed with the Trimmomatic program (Lohse et al., 2012) 
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to trim low quality bases, filter reads with low quality and filter reads smaller than 

36 bases after trimming (parameters: ILLUMINACLIP::2:30:1O LEADING:3 

TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 HEADCROP:5). Only the read 

pairs with both members passing the quality filtering test were considered further 

(reads passed: 94% in islet, 97% in embryo). The raw reads were mapped on the 

zebra fish genome (vZv9) using the Tophat2 software (v2.0.8b) (Kim et al., 2013a). A 

reference gene model file in the Gene Transfer Format (GTF) was used while 

mapping the reads. The reference GTF file comprised of pooled genomic features 

from Ensembl genes, mRNA and refgene tracks of the UCSC genome browser for 

zebrafish (Meyer et al., 2012). In order to define an optimal set of parameters to 

build the gene models I tested four different mapping strategies (common 

parameters for all strategies: --mate-inner-dist 223 -mate-std-dev 63 -library-type 

fr-unstranded -segment-length 21 segment-mismatches 1 -raw-juncs). 

- Stringent: -no-discordant -no-mixed -prefilter-multihits 

- Relaxed: --no-mixed -prefilter-multihits 

- NoFilter: -prefilter-multihits 

- NoFilterNoMulti: Including all reads mapped more than 20 times on the 

genome. 

The Cufflinks program (v2.1.1) (Trapnell et al., 2010) was used to assemble the 

reads mapped by using the choosen mapping strategy (parameters: --frag-bias

correct -library-type fr-unstranded --upper-quartile-norm --no-effective-Iength-
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correction). The transcript models generated by Cufflinks for the embryo and islet 

mappings were merged together by the Cuffcompare utility from the Cufflinks 

software package (-V -R -r -s -C). 

5.2.3 Annotation and differential expression analysis of assembled transcripts 

The Annocript pipeline was employed to predict IncRNAs from the assembled 

transcripts. The differential expression analysis of all the transcripts was 

performed separately for coding and lncRNA transcripts by a Perl script 

(run_DE_analysis.pl) from the Trinity software suite (Grabherr et al., 2011) which 

uses the edgeR (-dispersion 0.1) package (Robinson et al., 2010). Different filtering 

criteria were used to identify coding and Inc RNA transcripts overexpressed in the 

islet in comparison to whole embryo (Coding: fold change> 2, FDR <= 0.01; 

lncRNA: fold change> 2, FDR <= 0.1). 

5.2.4 Mapping of assembled transcripts with zebrafish Refseq genes and 

comparison with type 2 diabetes associated genes 

The coordinates of the zebrafish Refseq genes were obtained in GTF format from 

the UCSC database (hnp://hgdownload,soe,ucsc,eduigoldenpathidanRer7/database/refGene,txt,gz). The assembled 

transcripts were compared with the Refseq genes as reference, using the 

Cuffcompare utility from the Cufflinks software package (parameters: -r -R -V -C). 

The zebrafish transcripts which were successfully mapped to Refseq genes, were 

assigned the corresponding Refseq gene symbol. List of -500 coding genes 

implicated in T2DM were downloaded from the Type 2 Diabetes Genetic 
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Association Database (T2DGADB) (Lim et al., 2010). The T2DGADB gene symbols 

were compared with the Refseq gene symbols assigned to zebrafish transcripts by 

a custom Perl script. Further the list of T2DGADB genes mapped to a Refseq gene 

by the Perl script, were manually curated to prepare the final list of zebrafish 

transcripts associated with T2DM. 

5.2.5 Detection of sequence conservation and visualisation in the genome 

browser 

The Genome wide phastCons sequence conservation scores for zebrafish were 

downloaded in BigWig format from the UCSC genome browser database 

( http://hgdownload.soe.ucsc.eduigoldenPathldanRer7/phastConsSwaylvertebrate.phastConsBway.bw ). The mean p has tCons 

conservation scores for coding, long non-coding and random intergenic regions 

were calculated using the bigWigSummary utility from UCSC 

(http://hgdownload.cse.ucsc.eduiadminlexel). The output files from Tophat2 in BAM format were 

converted to BigWig format using the genomeCoverageBed binary from the 

BEDTools package (v2.17) (Quinlan and Hall, 2010) and the bedGraphToBigWig 

utility from the UCSC database (http://hgdownload.cse.ucsc.eduladminlexel). The visualisation of the 

RNAseq peaks and transcript models was carried out in the Integrative Genomics 

Viewer (v2.2.7) (Thorvaldsd6ttir et aI., 2012). 
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5.2.6 Identification of microsynteny, prediction of alternative polyadenylated 

transcripts and gene ontology enrichment 

The SynLinc pipeline was used to predict putative islet specific microsyntenic 

lincRNAs between human and zebra fish. The distance of lincRNAs from their 

closest coding gene was calculated by the closestBed utility from the BEDTools 

software suite (v2.l7) (Quinlan and Hall, 2010). All multiexonic lincRNAs lying 

within 10 KB of the 3' end of their closest coding gene and transcribed in the same 

strand were classified as putative alternative polyadenylated transcripts. The 

classification was repeated for all uniexonic lincRNAs lying within 10 KB of the 3' 

end of a coding gene without any preference for strand orientation. The gene 

ontology (The Gene Ontology Consortium, 2012) enrichment analysis was 

performed on the GO mapping done by the Annocript pipeline using a custom R 

script exploiting the Fisher exact text and P value FDR correction to select 

significantly enriched GO classes (minimum representative for a GO class: 5; FDR 

<= 0.05). 

5.3 Results and Discussion 

5.3.1 Standardisation of short read mapping for downstream assembly of 

lincRNAs 

5.3.1.1 Issues in mapping of short sequencing reads on the genome 

Approximately 42 million short reads from whole embryo and 37 million from 

islets were generated by sequencing of the RNA samples. More than 90% of reads 
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from both whole embryo and islet cells passed the quality filtering tests (Embryo: 

39116372; Islet: 35718979). Two factors govern the identification of lincRNAs from 

RNAseq data, the mapping of reads on the genome and the assembly of reads into 

transcript models. The mapping of raw RNAseq reads on the genome is an 

arduous task because of the short length of the reads and their extensive multi

mapping. Since many reads fall inside repetitive regions of the genome or map to 

exons of genes with multiple paralogs it is not surprising that a short read 

alignment program may place them on multiple locations within the same 

genome. Further non-coding sequences are known to originate from repeat 

elements (Smit, 1999) and a recent published report associated transposable 

elements with the evolution of mammalian IncRNAs (Kelley and Rinn, 2012). It is 

important to note that amongst all sequenced vertebrate genomes, the zebrafish 

contains the largest percentage of repeat elements (52.2%, Howe et aI., 2013). It is 

thus imperative to develop a method to map and assemble short sequencing reads 

which accounts for the repetitive sequences without compromising on lncRNA 

identification. A previous report mentions that multi mapping of short reads at a 

maximum given threshold (10 per read) helps in estimating the transcript 

abundance by allowing the inclusion of homologous sites (Odawara et aI., 2011). 

Another study describes a method to assign multi-mapping reads by distributing 

them according to the coverage ratios of uniquely mapped reads in each loci 

(Mortazavi et aI., 2008). Popular mapping algorithms like the Tophat2 (Kim et aI., 

2013a), Bowtie (Langmead and Salzberg, 2012) and Star Aligner (Dobin et aI., 2013) 

support the filtering of multi mapping-reads through various parameters. The 
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question arises about an ideal set of parameters which may be used to assign multi 

mapping reads for a lincRNA discovery pipeline. Another issue which plagues the 

reference based computational transcript assembly is to define the splice sites of 

unknown or unannotated lowly expressed transcripts (potentiallncRNAs) which 

often do not have a reference gene model and are assembled with the support of 

few aligned reads. It is important to consider the class of reads used to assemble 

such transcripts especially if we are interested in the prediction of IncRNAs. Short 

reads mapped on the genome can fall under three classes 

- Concordant: both reads of a pair are mapped in correct orientation and 

separated by expected distance on the same genomic locus. 

- Discordant: both read pairs are mapped on the same genomic locus but not 

in correct orientation or not within expected distance threshold. 

- Mixed: each read of a pair is mapped to a different genomic locus. 

The discordant and mixed class of reads can potentially identify structural variants 

in a genome (Medvedev et al., 2009) but cannot define the splicing pattern of a 

gene with confidence. This problem is magnified in case of lowly expressed 

transcript loci without a reference gene model if the majority of mapped reads 

belong to the discordant and mixed category. 

5.3.1.2 Different strategies to map sequencing reads from the islet and embryo 

samples on the zebrafish genome 

The Tophat2 software is one of the most widely used programs for mapping raw 

sequencing reads on a genome (Kim et al., 2013a) and along with its previous 
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version (Trapnell et al., 2009) has been cited in over 700 publications. It uses the 

bowtie program (Langmead and Salzberg, 2012; Langmead et al., 2009) to align the 

short reads and creates a splice junction database. The reads are then realigned to 

the splice junction database to verify the first mapping and generate an alignment 

files which can be used by downstream transcript assembly programs. I performed 

several mappings of the raw reads from islet cells and whole embryo RNAseq data 

using Tophat2. Each run was based on specific mapping parameters of the Tophat2 

program. The purpose of these mappings was to define an ideal set of Tophat2 

parameters which can help in the downstream assembly of putative lincRNA 

transcripts with high sensitivity. Before explaining the mapping approaches it is 

important to elaborate on the parameters and terms used in Tophat2 mapping. 

Tophat2 has two parameters to filter multi-mapped reads (-g and -prefilter

multihits) which work on different principles. The -g parameter allows the end

user to provide a threshold n, based upon which it allows a maximum number of 

n mappings for all reads. The prefilter-multihits parameter percolates only those 

reads which have less than n number of mappings. Hence while -g and prefilter

multihits use n as their threshold their approaches differ as -g allows all mapped 

reads considering the best alignments for each read while -prefilter-multihits 

removes reads beyond a threshold number of multi-mappings. I have used only 

the -prefilter-multihits parameter during my analysis. Further the program assigns 

a score to each genomic alignment of a multi-mapped read in a hierarchical order 

from the best to the worst alignments. If all alignments are of equal score then the 

hierarchy is assigned randomly. The best alignment of a short read on the genome 
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is considered to be the primary alignment while the rest are labeled as secondary 

alignments. Keeping into account the manner in which Tophat2 treats multi

mapped reads, four mapping approaches were defined: 

Stringent: Only concordant reads are mapped to the genome with removal 

of reads mapped more than 20 times on the genome (-prefilter-multihits 

20). 

Relaxed: Both concordant and discordant reads are mapped to the genome 

with removal of reads mapped more than 20 times on the genome (-

prefilter-multihits 20). 

- NoFilter: Concordant, discordant and mixed reads are mapped on the 

genome with removal of reads mapped more than 20 times on the genome 

(--prefilter-multihits 20). 

NoFilterNoMulti: All reads are mapped to the genome, the default Tophat2 

parameters. 

The mapped reads from whole embryo and islet cells were used separately to 

build transcript models. The transcript models generated for islet and embryo 

were merged together to generate a final transcript dataset. The Cufflinks pipeline 

encourages the use of Cuffmerge utility to merge the transcripts from different 

assemblies. Cuffmerge performs its own hard coded assembly on transcripts from 

each sample. Which basically means that Cuffmerge breaks the assembled 

transcript models into short fragments, pools them together and re-aligns them on 

the genome followed by another Cufflinks assembly to generate a merged 
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transcript dataset. I got an inflated number of transcripts on using Cuffmerge with 

almost 25% of reported loci not having a 100% read coverage. This happened 

because many transcripts were being reported just because they are present in the 

reference GTF file provided even though they do not have mapped read support. 

The inflated numbers by Cuffmerge led me to test transcript merging with 

Cuffcompare (another utility in the Cufflinks software suite). The Cuffcompare 

utility is more stringent in its approach to merge transcripts since it compares the 

splice junctions of the assembled transcripts to calculate their probability of being 

isoforms of a same gene/loci. Also while comparing against a reference transcript 

file, Cuffcompare only reports those transcript models which have support from 

mapped reads. The following example shows the difference between the 

Cuffmerge and Cuffcompare approach. There are two transcripts, A and B, each 

with a couple of exons. If A and B overlap, and they don't disagree on splicing 

structure, they could possibly belong to the same gene. Cuffcompare will only 

merge them if A is "contained" in B, or vice versa. That is, only if one of the 

transfrags is essentially redundant. Otherwise, they both get included. Cuffmerge 

on the other hand, will merge them if they overlap, and agree on splicing, and are 

in the same orientiation. This behavior by Cuffmerge may also lead to spurious 

transcript models which may mislead downstream experimental validations. 

Hence I decided to consider the merged transcript models generated by 

Cuffcompare. Maximum number of transcripts were assembled by the 

NoFilterNoMulti approach while interestingly the Relaxed approach generated the 

least number of transcripts (Table 5.1). 
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Type of mapping 

Relaxed 

NoFilterNoMulti 

Number of transcripts --.---
36502 

59747 

Number of loci 

20684 

35555 

Table 5.1 Count of transcripts generated by the different mapping approaches . 

Based on the conservativeness of mapping I expected the Stringent mapping to 

generate the minimum number of transcripts. On close inspection of a few 

transcript loci present in Stringent mapping and absent in Relaxed I found the 

presence of additional reads with secondary alignments in the Relaxed category. 

The presence of reads with secondary alignments above a threshold percentage 

(unknown hard coded parameter of Cufflinks) leads to no transcript generation in 

a genomic locus by Cufflinks. Further I compared the transcript models generated 

by each approach with the reference Ensembl coding and long non-coding gene 

models for zebrafish (Figure 5.2). There is an increase in number of reference 

IncRNAs overlapping predicted transcript models in the NoFilter and 

NoFilterNoMulti assemblies in comparison with Stringent and Relaxed (Figure 5.2 

A). The number of overlapping coding genes remains almost constant for all 

categories. Yet! in terms of accuracy, the Stringent and Relaxed mapping show the 

highest sensitivity in identifying known exon models of reference coding and 

IncRNA genes (Figure 5.2 8). Therefore, although the less stringent approaches are 

able to predict a higher number of transcripts they result less accurate. The 

difference in accuracy of the predicted exon models is more prominent in case of 

lncRNAs for the Stringent and Relaxed approaches. Since lncRNAs are reported to 
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be expressed at a lower level in comparison to coding genes (Pauli et al., 2011a; 

Ulitsky et al., 2011) this observation suggests that the change in mapping 

parameters may affect the assembly of lowly expressed non-coding transcripts. 

Often such transcripts fall in intergenic regions and overlap repetitive regions. The 

lack of proper paired reads mapping on such region produces transcript models 

based solely on unpaired or multi-mapped reads. Hence it is difficult to 

demonstrate the verity of the transcript structure and its expression. I selected two 

specific examples of a coding and a non-coding region to highlight the differences 

in transcript assembly from the different mapping outputs. 
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Figure 5.2 Accuracy of Tophat2 mapping A) Number of reference transcripts from 

Ensembl (v73) overlapping predicted gene models B) The sensitivity of exon structure 

in the predicted transcript models which overlap with the reference transcript models, 

defined as number of correctly predicted exons/total number of reference exons. 
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5.3.1.3 Example of assembled transcripts demonstrating the differences in 

different short sequencing read mapping strategies 

The first example is of an intergenic region where islet specific transcription occurs 

(Figure 5.3). This region is devoid of an annotated transcript feature (coding/non

coding) but shows the presence of transcription. The NoFilterNoMulti approach 

gives a long stretch of mapped reads which result in a long 3' exon of the transcript 

model (NFNM_OOOS4304). This exon overlaps repetitive regions on the genome 

and is comprised of multi-mapped reads. The Relaxed and the NoFilter approaches 

assemble shorter 3' exons (RELX_000330S0, NOFIL_0003904S) but they differ 

between the position of the 3' end splice junction due to presence of mixed and 

discordant mapping. Additional single exonic transcript models are also reported 

in NoFilter (NOFIL_00039247, NOFIL_00039248). Even though reads from the islet 

transcriptome are mapped, Cufflinks does not generate a transcript model for the 

Stringent approach. It must be noted that while the Stringent mapping considers 

only concordant read pairs aligned to the genome it also allows multi mapping up 

to 20 times genome-wide (default by Tophat2). Since only reads with secondary 

alignments of concordant reads define the putative splice junctions of the 

transcript model in this example, it is not considered by the Cufflinks program in 

case of Stringent mapping. 
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Figure 5.3 Genome browser screenshot of an intergenic region (chr4:18,972,103-

18,974,896) on the zebrafish genome. The Gene track represents Refseq gene models 

and has no genes overlapping the given region. The tracks above Gene are the 

coverage of reads mapped on the genome from islet (green) and 72 hpf whole embryo 

(red) using vanous Tophat2 mapping approaches. The tracks below Gene represent 

the transcripts assembled by pooling the reads from islet and embryo for each 

mapping approach. 

The second example is the coding gene Slit homolog 1 (SlitlB). The Slit family 

genes (Stitl, Stit2, Slit3) are implicated in protection of islet cells from apoptosis 

and regulation of insulin secretion (Yang et al., 2013c). They also playa role in the 

axon guidance during development of dopaminergic neurons (Cornide-Petronio 

and Barreiro-Iglesias, 2013). It is interesting to note that the SLITIB gene model as 

generated from the Stringent mapping differs from the other transcript models 

(TCONS_00024365) (Figure 5.4). The other mapping approaches show the presence 

of an additional 5' exon overlapping a repeat region (RELX_00024237, 

OFIL_0029604, NFNM_00039364) generated exclusively due to multi-mapped 
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reads. These observations indicate the importance of parameter choices which can 

inordinately alter the structure and expression abundance of predicted transcripts. 

I chose the results from the Stringent mapping as my final transcript dataset 

because of the following reasons: 

The assembled transcripts are built from properly paired reads. 

The assembly has better accuracy in defining intron/ exon boundaries. 

The estimation of expression from mutli-mapped reads is minimal. 
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Figure 5.4 Genome browser screenshot of the first three exons of the Slitl b gene 

(chr22 :37,589,891-37,591,373) on the zebrafish genome. The Gene track represents 

Refseq gene models. The tracks above Gene are the coverage of reads mapped on the 

genome from islet (green) and 72 hpf whole embryo (red) using various Tophat2 

mapping approaches. The tracks below Gene represent the transcripts assembled by 

pooling the reads from islet and embryo for each mapping approach. 

5.3.2 Annotation of the assembled transcripts and prediction of long non-coding 

RNAs 

In total -37,000 transcripts were assembled using the stringent approach which 
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were systematically annotated, categorized and manually curated to identify 

candidate lincRNAs differentially expressed in islet cells (Figure 5.5). The 

Annocript pipeline was employed to annotate and predict 35,110 coding transcripts 

and 227 IncRNAs using default parameters of IncRNA prediction. Around ,..,1500 

transcripts were classified as unknown since they were without annotation but 

could not be classified as an Inc RNA due to constraint of ORF size «= 100 AAs) 

and non-coding potential score (>= 0.95). I used the previously developed 

Annocript pipeline to predict the putative IncRNA sequences. As per a prior 

observation the pipeline relies on the Portrait Non-Coding Potential (NCP) score 

for all Potential Long Non-Coding sequences (PLoNCs: sequences with no 

annotation and ORF < 100 AAs) to predict the final set of IncRNAs (Arrial et aI., 

2009). 
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F igure 5.5 Pipeline for identification of differentially expressed lincRNAs in zebrafish 

Islet cells . 

A con ervative NCP threshold may prove to be a good strategy in case of de novo 

transcriptomes with no reference genome or to compare against coding genes in 

order to limit the number of false positives, but have the drawback of producing a 

high number of false negatives. As already mentioned, the Portrait authors suggest 

that a cutoff of 0.5 can be accepted to distinguish between conding and non-coding 

transcripts with acceptable confidence. In my specific case I also have to take into 

account that the gene models were already built with high stringency, therefore I 

decided to plot the distribution of NCP scores segregating the coding sequences 

and PLoNCs based on the Annocript results (Figure 5.6). A NCP score of 0.5 or 

above i observed to be suitable for separating the coding sequences from the 
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PLoNCs. However I chose to be more stringent and considered the mean NCP of 

the PLoNCs (0.72) as my cut-off for the prediction of putative IncRNAs. 

o Annotated coding ~ 
o Unannotated (> 200bps) Wi\ ORF < 100 AA 

00 0 .2 0 4 0.6 0.6 1.0 

Non-coding potential 

Figure 5.6 The non-coding potential score distribution for coding and potential 

lncRNA sequences annotated by the Annocript pipeline. The vertical red line marks 

the mean score of non-coding potential (0 .72) for the potential lncRNA sequences 

(PLoNCs) . The x-axis represents the non-coding potential (NCP) score assigned to the 

lincRNAs. The y-axis represents the frequency of the lincRNAs at a given NCP score. 

The bars in pink represent those lincRNAs which are predicted to be coding by 

Annocript, while the green bars represent the lincRNAs predicted to be Potential 

Long Non-Coding by Annocript. 

Interestingly, this cutoff represent the point in which the slope of the distribution 

of the NCP scores start to increase suggesting a better classification capability of 

Portrait and a lower potential number of false positives and false negatives. The 

new cut-off score led to the prediction of 805 IncRNAs of which 178 are lincRNAs 

190 



(long intergenic noncoding RNAs). 

5.3.3 Identification of assembled transcripts differentially up-regulated in the 

islet cells 

The purpose of the RNAseq experiment is to find the putative lincRNA candidates 

in zebrafish which may playa role in the pancreatic metabolism, specially in the 

development and differentiation of islet cells. Such an implication may probably 

associate the transcription of a lincRNA with the prognosis of a pancreatic 

disorder like the T2DM. Hence I decided to find the assembled transcripts which 

are expressed at a higher level in the islet cells as compared to the whole embryo. I 

used the Bioconductor edgeR package (Robinson et aI., 2010) to find all 

differentially expressed transcripts in the assembled transcriptome. The edgeR 

package generates an over-dispersed Poisson model with the raw count of reads 

representing each transcript to estimate the expression variability (Robinson and 

Smyth, 2007). The edgeR program is intended to be used for data with biological 

replicates. It calculates a dispersion value for each sample from the biological 

replicates, which is a measure of the variability of expression measures within 

samples. Since the samples I worked with do not have biological replicates I used a 

dispersion value of 0.1 as suggested by the edgeR software manual 

(http'//ww,ybjocooduc!o[orglpackagesl213JbjocLyignenes/edgeRDnst/doc/edgeRusersGyide. pdf) (Robinson et aI., 2010). The 

RNAseq experiment were carried out with samples from whole embryo and islet 

cells at the same stage of development, hence the transcripts expressed in the islets 

may be also detected in the whole embryo. This situation may result in a smaller 
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variation between the expression of transcripts in both the samples. I expected the 

variation to be far less pronounced in lncRNAs as compared to coding genes they 

are lowly expressed. In fact the mean expression of coding transcripts in both 

whole embryo and islet cells is 3X the expression of lncRNA transcripts. The larger 

number and higher expression level of coding genes may influence the detection of 

small change of expression in the lncRNAs. Hence I performed the differential 

expression analysis on the coding and the IncRNAs transcripts separately using 

different cutoffs (coding: fold change> 2, FDR <= 0.01; IncRNA: fold change> 2, 

FDR <= 0.1). I identified 939 coding transcripts and 94lncRNAs to be significantly 

overexpressed in the islet cells. 

5.3.4 Gene ontology enrichment analysis of coding transcripts predicted to be 

differentially up-regulated in islet cells 

Further I wanted to check if the coding transcripts with elevated expression levels 

in islet cells could be associated with a potential function in pancreatic 

development and metabolism. Hence I performed a gene ontology enrichment 

analysis for the differentially expressed coding genes in the islet cells (Minimum 

number of genes = 5; P value corrected < 0.05) (Figure 5.7). Amongst the GO terms 

which have been significantly enriched are" cellular glucose homeostatis" and "type B 

pancreatic cell differentiation" which indicate an enrichment of genes pertaining to 

pancreatic development and metabolism. The term "proteolysis" is also amongst the 

enriched terms. Proteolysis is defined as "the hydrolysis of proteins into smaller 

polypeptides and/or amino acids by cleavage of their peptide bonds" (Ashburner et al., 
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2000). The islet cells of the pancreas are involved in the secretion of hormones like 

insulin, somatostatin and glucagon which involve several signaling and 

degradation pathways. A few recent reports have emphasised on the selective 

degradation and post-translational modification of specific proteins to aid in the 

functioning of pancreatic cells (Aston-Mourney et al., 2013; Chen et al., 2013b; 

Tiwari et al., 2013). Hence the enrichment of the term "proteolysis" is in agreement 

with the potential up-regulation of various coding genes involved in proteolytic 

activities within the islet cells. 
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Figure 5.7 Gene ontology enrichment analysis for differentially overexpressed coding 

genes in the zebrafish pancreatic islet cells. The x-axis represents the percentage of 

transcripts which are defined by a particular GO biological processs. The y-axis 

represents the gene ontology biological process terms. 

It is also interesting to find the GO terms like II neuron fate specification", II spinal cord 

and motor neuron differentiation" and "neuropeptide signaling" enriched in the 
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differentially expressed coding genes. In fact pancreatic and neuronal cells share a 

common evolutionary origin and neuronal cells of coelentrates are reported to 

evolve into neuroendocrinal cells of invertebrates which further diversify into 

neuronal and endocrine cells in higher vertebrates (Falkmer, 1993). A classic 

example of such diversification is the secretion of insulin, in the neurons of 

invertebrates, in visceral endocrine cells in chordates and a very low but detectable 

insulin secretion in mammalian neural cells (Devaskar et aI., 1994). Further the ~

cells in vertebrates are reported to communicate with the hyptohalamus through a 

signaling pathway to regulate the secretion of insulin (Gelling et aI., 2006). Also a 

recent report suggests a high level of similarity in epigenetic modifications 

marking an active chromatin state, between pancreatic beta cells and neuronal 

tissues in mouse (van Arensbergen et aI., 2010). These findings suggest the 

presence of shared or common signaling pathways between neuronal and 

pancreatic differentiating cells which are probably reflected by the enrichment of 

specific GO terms related to nervous system development. 

5.3.5 Association of differentially up-regulated coding genes with type 2 

diabetes 

In order to associate the differentially expressed coding genes with a potential role 

in diabetes I mapped the predicted coding transcripts with the reference set of 

zebrafish Refseq coding genes (with known gene function) to obtain a putative 

Refseq gene IDs and symbols for the assembled transcripts. I could assign a Refseq 

gene ID to 50.6% (10,945 genes for 17,772 transcripts) of all coding transcripts and 
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to 60% of all differentially expressed transcripts (372 genes for 504 transcripts). 

Further I compared gene symbols associated with type 2 diabetes from the 

previously published type 2 diabetes genetic association database (T2DGADB; 530 

genes) (Lim et al., 2010) to the mapped Refseq genes symbols using a custom Perl 

script. The script predicted 301 T2DGADB gene symbols to match with 489 Refseq 

gene symbols. I further curated the results manually to select 289 T2GADB genes 

mapped to 412 Refseq genes in zebrafish. I found a significantly higher number of 

Refseq genes to be diabetes associated amongst the differentially expressed subset 

(6.9%, 26 out of 372) in comparison to the whole transcriptome (3.7%, 412 out of 

10,945; two sample proportion test, P value: 0.002). This indicates that the 

transcripts expressed in zebrafish islet cells are enriched for homologs of human 

genes associated with type 2 diabetes which playa crucial role in pancreatic cell 

development and differentiation (Table 5.2) including the well known 1511 and Ins 

genes. 
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Gene Name 
symbol 

Ins 

IsIl 

CDK5 

Gel( 

Cyclin-dependent 
kinase 5 

Function 

Regulation of epidermal growth 
factor dependent insulin secretion 

Reference 

.... 
IWIR'IIII8r et .. 

2013) 
(Lee et al. , 
2008a) 
--~ .. 

('MatschinskY. 
2002) 

FoxA2 Forkhead box protein 
A2 

Maintenence of beta cell metabolic (Gao et al., 
pathways 2010) 

ABCCB 

HNFla Hepatic Nuclear Factor Early development of pancreas 
1 

(Haumaitre et 
al., 2005) ---......... 

Table 5 .2 A list of coding genes functionally important in pancreatic disease and 

development which were predicted to be differentially expressed in zebrafish islet 

cells . 

Hence the differential expression of such genes in the zebrafish islet transcrip tome 

suggests potential common pathways and regulatory mechanisms, which can be 

studied in the fish model system in an early developmental stage. 

5.3.6 Structural features of the predicted coding and long non-coding transcripts 

To understand a possible role of lncRNAs pertaining to islet cells developmen t and 

differentiation J decided to focus on the IncRNAs predicted by the transcript 

annotation. In order to understand the structural features of the predicted 
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lncRNAs, I compared them with a random sample of coding transcripts (Figure 

5.8). The lncRNAs are observed to be smaller in length with fewer but longer exons 

in comparison to the coding transcripts. The fewer and longer exons are due to 

majority of the predicted lncRNAs being monoexonic (75%) which is similar to 

previously reported human islet celllncRNAs (74%) (Moran et al., 2012). The fewer 

number of exons also explains the smaller length in comparison to coding genes. 

In fact long non-coding RNAs are known to be spliced inefficiently often leading to 

mono or bi exonic transcripts (Tilgner et al., 2012). This fact is corroborated by the 

GENCODE catalog of lncRNAs which are reported to be biased towards having a 

single canonical splice site within the transcript (Derrien et al., 2012). The lack of 

an efficient splicing mechanism may stem from two different reasons. Firstly, a 

lncRNA can influence the expression of its proximal coding gene by simply the act 

of its transcription rather than by an activity exploited by a specific transcriptional 

product as exemplified by the action of Antisense of IGF2R non-protein coding 

RNA (AIRN) (Latos et al., 2012).- Secondly, a splicing independent, locus specific 

mechanism of the lncRNA may result in the interaction of the lncRNA molecule 

with a protein to influence the expression or chromatin state of its genomic 

neighborhood. A good example is the Hoxa distal transcript antisense RNA 

(HOTTIP) (Burgess, 2011) lncRNA which lies at the tip of the Homeobox A (HoxA) 

cluster genes and by chromosomal looping influences the expression of the HoxA 

genes (Wang et al., 2011). 
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Figure 5.8 Structural features of coding and long non-coding transcripts A) Length 

of transcripts B) Number of exons C) Size of exons. 
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5.3.7 Conservation of sequence in the predicted coding and long non-coding 

transcri pts 

Between the coding and the long non-coding transcripts the lincRNAs have the 

least sequence conservation, even lower than random intergenic regions (Figure 

5.9). Thus the low level of lincRNA sequence conservation reflects the high rate of 

evolutionary turnover of these sequences. A large proportion of vertebrate 

lncRNAs co-occur with transposable elements (TEs) with significant variances in 

the class of TEs overlapping IncRNAs in different species (Kapusta et al., 2013). The 

TEs may account for the high rate of sequence diversification of lncRNAs. While a 

subset of lncRNAs overlap conserved genomic regions of coding gene exons thus 

partially retain their sequence, the lincRNAs are completely intergenic and hence 

might be under a lower selective pressure for sequence conservation. 
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Figure 5.9 Mean phastCons 8 way conservation scores of zebrafish for coding, long 

non-coding and long intergenic non-coding transcripts. The conservation scores are 

calculated by aligning the zebrafish genome with the human, mouse, X. tropicalis, 

Tetraodon, medaka, fugu and stickleback. The x-axis represents mean phastCons 

conservation scores and the y-axis represents the cumulative proportion of 

transcripts. 

5.3.8 Expression abundance of the coding and the long non-coding transcripts in 

whole embryo and islet cells 

I compared the expression pa ttern of the predicted coding and lncRNA transcripts. 

As expected, I observed that the coding transcripts are expressed at a higher level 

as compared to lncRNAs (Figure 5.10) . Interestingly, the average expression of 
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lincRNAs is higher in comparison to lncRNAs (Figure 5.10 C, D) and the 

difference is quite prominent for the islet cells. This observation points towards an 

enrichment of predicted lincRNAs expression in the islet cells. Hence, I compared 

the percentage of coding, lncRNA and lincRNA transcripts differentially expressed 

in the islet cells with total number of transcripts in each class originating from the 

islet cells (supported by the assembly of transcripts from islet cells by Cufflinks). It 

is interesting to note that a significant percentage of differentially expressed 

lncRNAs (9%; p.val: 0.006) tend to lie near a differentially expressed coding gene 

(10 kb distance threshold) as compared to all predicted IncRNAs (3%). 
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Figure 5.10 Heatmap of expression level for differentially expressed transcripts in 

both islet cells and whole embryo A) Coding B) Long non-coding. Distribution of 

transcriptional abundance of all predicted transcripts (coding, long non-coding and 

long intergenic non-coding) in C) Islet cells D) Whole embryo, at 72 hours post-

fertilization. 

In addition, I found a significantly higher number of lincRNAs are differentially 

expressed in the islet cells as compared to lncRNAs and coding transcripts (Figure 

5.11). LincRNAs are known to be lowly expressed and highly tissue and cell type 

specific (Aprea et al., 2013; Cabili et al., 2011; Mercer et al., 2010; Pang et al., 2009). 
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Therefore the sequencing of a very specific cell population, the islet, and a more 

general whole embryo sample, permitted to have enough reads support for islets 

specific lincRNAs while diluting other embryonic cell specific transcripts. 

* 

o 
Coding (n_21,837) 

* 

LncRNA (n- 486) 

Class of transcript 

* 

LincRNA (n_ 123) 

Figure 5.11 Percentage of differentially expressed transcripts in coding and long 

non-coding categories 

5.3.9 Selection of candidate lincRNAs for experimental validation 

Hence I performed a manual curation of the predicted lincRNAs to select 

candidates for experimental validation based on the following criteria 

- Differential expression of the lincRNAs in islet cells. 

- Presence of splicing. The preference for multi exonic lincRNAs was due to 

the fact that their splice sites can be easily targeted by morpholino based 

knock down studies. 
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- Low probability of the lineRNA being an alternative polyadenylation event 

of a coding gene. All multiexonic lincRNAs lying within 10 KB of 3' end of 

a flanking coding gene and transcribed in the same strand were classified as 

putative alternative polyadenylated transcripts (Miura et al., 2013). The 

classification was repeated for uniexonic lincRNAs without any preference 

for strand orientation with the same distance threshold. 

Based on the manual inspection I selected 26 multi exonic lincRNA transcripts for 

possible downstream experimental validation (Annexure 2). Within these 26 

candidates I searched for those which are the closest lincRNAs (within 1 MB 

upstream or downstream) to a coding gene implicated in type 2 diabetes (from 

T2DGADB) and differentially expressed in islet cells. I found a single lincRNA 

transcript, linc_dvl3 (TCONS_00019413) lying at a distance of 380 kb upstream from 

the insulin like 5b (lns15B) gene (Figure 5.12 A). This lincRNA lies near the 

Dishevelled segment polarity protein 3 (Dv13) gene which is an integral component 

of the Wingless-type MMTV integration site (Wnt) signalling pathway (Lee et al., 

2008b) but is not differentially expressed in the islet cells. The Ins15B gene is 

reported to be expressed in the hypothalamus and colorectum and is involved in 

the regulation of insulin secretion and ~-cell homeostatis (Burnicka-Turek et al., 

2012). The region between the lincRNA and Ins15B is interspersed by 10 coding 

genes none of which are differentially expressed in the islet cells. While the islet 

specific expression of the coding and long non-coding genes in a genomic loci can 

be the outcome of shared regulatory mechanisms or common pathways further 
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experimental evidence is required to postulate a direct influence of the lincRNA on 

the coding gene. Amongst the other candidates another promising example is the 

multiexonic lincRNA, lincsamdll (TCONS_00026726) (Figure 5.12 B). Its closest 

coding gene is the Sterile Alpha Motif Domain containing 11 (SAMDll) (distance 

35 KB) which is reported to playa role in the cell proliferation with enriched 

expression in developing retinal photoreceptors and the adult pineal gland (Inoue 

et a1., 2006). While SAMDll is not differentially expressed in the islet cells the 

linc_samdll shows a clear islet specific expression pattern. Even though associating 

lincRNAs with their closest coding genes has remained a standard practice in 

recent years (Ulitsky et al., 2011; VoIders et al., 2012) it does not necessarily imply a 

regulatory role of the lincRNA with respect to the coding genes but is a strategy 

for annotation while the function remains unknown. 
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Figure 5.12 Genome browser screen shot of zebrafish lincRNA differentially 

expressed in islet cells. A) Linc_dvl3 (TCONS_00019413) upstream of the Insl5B 

coding gene (chr2:9,502,164-9,971,242) B) Linc samdll (TCONS_00026726) 

upstream of the SAMDll coding gene (chr23 :23,272,151-23,321,834) . The Embryo 

and Islet tracks represent the coverage depth of the mapped RNAseq reads. The 

Refseq track shows the Refseq genes and the Predicted track represents the gene 

models generated from the pooled Embryo and Islet transcriptome data, The line RNA 

of interest are marked by the red box in the predicted track. 

5.3.10 Association of human and zebrafish islet celllincRNAs by microsynteny 

analysis 

I wanted to check for potential islet specific lincRNAs in zebrafish which may 

retain their function over long evolutionary distances. Hence I compared 

previously published human islet cell specific lincRNAs (Moran et al., 2012) with 

the zebrafish islet cell differentiallincRNAs to predict 6 zebrafish lincRNAs paired 

with 8 human lincRNAs based on the conserved microsynteny of their 

orthologous flanking coding genes. On manual inspection, for 3 of the 6 fish 
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lincRNAs, the putative human lincRNA orthologs are associated closely in 

divergent orientation to the flanking coding gene which was not used to predict 

the microsynteny. Another two examples involved monoexonic lincRNAs while the 

last microsyntenic pair had both the human and the zebrafish (TCONS_00021352) 

orthologs upstream the Ubiquitin Specific Peptidase 46 (USP46) gene in divergent 

orientation (Figure 5.13). The USP46 is a deubiquitinating enzyme which is 

reported to control the glutamate receptor trafficking in the ventral nerve cord of 

C.elegans (Kowalski et aL, 2011). The USP46 gene is expressed in both islet cells and 

embryo in the zebrafish and there are no published reports indicating its influence 

on the pancreatic biology. It is interesting to observe the conserved arrangement of 

a lincRNA and a coding gene between a large evolutionary distance even though 

only the lincRNA is enriched to be expressed in islet cells. Yet the few predicted 

conserved candidates suggest a lack of positional retention of the zebrafish 

lincRNAs up-regulated in the islet cells in human. 
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Figure 5.13 Putative conserved lincRNAs with enriched expression in islet cells A) 

Human (HI-LNC596:chr5 :178,362,381-178,369,686) B) Zebrafish (Linc_usp46 

(TCONS_00021352) : chr20:23,067,628-23,072,955). The lincRNAs are marked by red 

color boxes. 
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5.4 Conclusion 

The zebrafish islet cell transcriptome was generated with an aim to understand the 

possible role of lncRNAs in the context of pancreatic biology and their possible 

role in Type 2 Diabetes Mellitus (T2DM). The choice of mapping strategy for 

aligning the short reads to the genome has a major influence of the number and 

structure of lncRNA transcripts assembled downstream. I have defined a specific 

short read mapping strategy which can assemble lincRNA transcripts with high 

sensitivity using the current state of the art software programs. Further I used a 

software pipeline I have developed previously to predict coding and long non

coding transcripts in the islet cell transcriptome. In this study I compared RNAseq 

data from zebrafish whole embryos and islet cells at 72 hour post fertilization to 

identify 805 long non-coding RNAs (lncRNAs) expressed in the islet cells of which 

94 are predicted to be differentially over expressed in islet cells. The differential 

lncRNAs tend to lie near coding genes which are themselves differentially 

expressed in the islet cells. I have developed a novel pipeline for identification of 

cell type/tissue specific lncRNAs. This pipeline utilizes a specific set of parameters 

deemed suitable to map and assemble short reads on a genome with minimum 

ambiguity followed by using a sequence annotation pipeline (Annocript) to predict 

the coding and long non-coding transcripts. Many of the coding genes predicted to 

be differentially expressed in the islet cells are implicated in T2DM with well 

known function in regulation of insulin and differentiation of pancreatic f3-cells. 

The predicted lincRNAs are enriched to be expressed in the islet cells in 

comparison to all IncRNAs and the coding genes. A few promising candidate 
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lincRNAs (26 transcripts) were identified based on their differential expression in 

islet cells, distance from the closest coding gene and splicing pattern. Currently 

experimental validation of a 15 of these candidate transcripts are being carried out 

by Irene Miguel-Escalada to verify their expression specificity and observe any 

phenotypes generated by their knock-down in zebrafish embryos. Thus the current 

study highlights a strategy to assemble and predict lincRNAs from a 

transcriptomic dataset and provides the first resource of zebrafish lincRNAs with 

potential implications in development and differentiation of pancreatic islet cells. 
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Chapter 6 

The early developmental transcriptome of 

Tetraodon nigroviridis 

6.1 Introduction 

6.1.1 Tetraodon as a model to understand the vertebrate embryogenesis 

A smaller genome size (l/Sth of human genome) and an expected similarity in the 

gene repertoire were proposed as two major reasons in support of sequencing the 

fugu genome (Brenner et al., 1993). The sequencing of the fugu (Aparicio et al., 

2002) as well as the closely related Tetraodon Gaillon et al., 2004) led to the 

identification of novel genes in vertebrates as well as further asserted the role of a 

WGD event in the divergence of the teleost lineage. Compared to the other teleost 

fishes with sequenced genomes, the Tetraodon and fugu have highly compact 

genomes which proves to be an advantage for comparative genomics studies (Peer, 

2004). In fact an estimation of the number of coding genes in human was made 

based upon homology relationships between human and Tetraodon coding genes 

(Roest Crollius et al., 2000). The Tetraodon nigroviridis is a freshwater pufferfish 

occasionally found in sea water Oaillon et al., 2004). Amongst all vertebrates the 

Tetraodon has the smallest known genome, characterized by low repeat content, a 

high gene density and chromosomal stability Oaillon et al., 2004). The majority of 
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genes originating from a single chromosome in Tetraodon tend to have their 

paralogs in a single other chromosome and comparison with the human genome 

showed extensive gene duplication in Tetraodon (Jaillon et al., 2004). In the current 

era of high-throughput technologies, comparative transcriptomics studies in teleost 

fishes like the fugu and Tetraodon will extend our current understanding of 

vertebrate emrbyogenesis. However, the current genome assembly for fugu is 

highly fragmented (Jaillon et aI., 2004), which makes the Tetraodon genome a better 

resource to study embryogenesis. 

6.1.2 The role of Maternal to Zygotic transition during embryogenesis 

After the commencement of fertilisation the embryo is subjected to accelerated cell 

divisions (Newport and Kirschner, 1982) followed by protraction of the cell cycle 

leading to the initiation of zygotic transcription and degradation of transcripts of 

maternal origin (Tadros and Lipshitz, 2009). The successive events, which lead to 

the elimination of maternally encoded products and the activation of zygotic 

transcription are collectively defined as Maternal to Zygotic Transition (MZT). A 

complex profile of transcriptional abundance is observed during the maternal to 

zygotic transition in various metazoans like C.elegans (Baugh et al., 2003), 

Drosophila (Arbeitman et aI., 2002), Ciona intestinalis (Azumi et aI., 2007), Xenopus 

tropicalis (Paranjpe et al., 2013), mouse (Hamatani et aI., 2004) and human (Kocabas 

et al., 2006). Apart from coding genes, IncRNAs are also reported to be expressed 

in a stage specific fashion during MZT in Xenopus tropicalis implicating them to 

play an important role during embryogenesis (Paranjpe et al., 2013). In fact 
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lncRNAs are known to regulate various processes during vertebrate 

embryogenesis from micro RNA-induced mRNA degradation to alteration of 

chromatin state (Pauli et aL, 2011b). However little is known about the pattern of 

transcription and gene regulation during embryogeneis in teleost fishes, except for 

zebrafish (Aanes et aL, 2011; Harvey et aL, 2013; Mathavan et aL, 2005) and medaka 

(Kraeussling et al., 2011). Unraveling the molecular mechanisms underlying the 

embryogenesis in diverse teleost fishes, will provide a better understanding on the 

genetic controls governing the diversification of body forms. 

6.1.2 The early developmental transcriptome of Tetraodon nigroviridis 

Currently no study has been undertaken to map the transcriptional repertoire of 

Tetraodon during early embryonic development. The primary causal factor is the 

lack of ready availability of Tetraodon eggs and embryos for research purposes 

(Watson et al., 2009). However, Watson et al reported a technique for successful 

breeding and spawning of the fish in laboratory environment. Further, Craig 

Watson provided his expertise to breed and spawn Tetraodon in the laboratory of 

my external supervisor Dr. Ferenc Muller. The small number of embryos collected 

at various developing stages led to the extraction of total RNA without replicates 

for sequencing. I have assembled and annotated the early developmental 

transcriptome in Tetraodon to analyse the transcriptional dynamics of both coding 

and long-non-coding genes. The aim of the experiment is to identify the coding 

and the long non-coding transcripts of maternal and zygotic origin involved in 

early development. Further, I wanted to compare the expression abundance of the 
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genes reported to be involved in MZT in zebrafish with their orthologs in 

Tetraodon. Finally, the assembly and annotation of the transcriptome is proposed as 

a resource to improve the structure and annotation of the existing gene models. 

6.2 Materials and methods 

6.2.1 RNA extraction and sequencing 

Breeding, extraction of RNA and sequencing of Tetraodon eggs and embryos was 

performed in the laboratory of my external supervisor Dr. Ferenc Muller (A 

Zaucker, T Bodur, J Gehrig, Y Hadzhiev, F Loosli, H Roest Crollius, C Watson, F 

Muller, in preparation). Total RNA was extracted with Trizol (Invitrogen) 

according to the manufacturer's protocol from eggs and whole embryo at 30% 

epiboly (30 epi) and whole embryo at 24 hours post fertilisation (24 hpf). The RNA 

samples were treated with 2U Dnase I (Qiagen) per pg RNA sample at 37°C for 10 

minutes. Digested samples were then treated with 20 mg/mL proteinase K (Sigma 

Aldrich) at 37°C for 45 minutes. The quality and quantity of total RNA were 

assessed with the Bioanalyzer 2100 (Agilent) and no sign of degradation was 

detected (RIN > 9.0). Sequencing libraries were generated from total RNA samples 

following the Truseq RNA protocol (Illumina). Single end reads (1 x 50 

nudeotides) were obtained from 3 lanes on a Hiseq1000 using SBS v3 kits 

(Illumina). Cluster detection and base calling were performed using RTAv1.13 

(Illumina). Quality of reads was assessed with CASAVA vl.9. Sequencing reads 

with a mean Phred score> 37 were further considered for mapping and assembly. 
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6.2.2 Quality filtering, mapping and assembly of sequenced reads 

The raw sequencing reads from eggs, 30 epi and 24 hpf were processed with the 

Trimmomatic program (Lohse et al., 2012) to trim low quality bases, filter reads 

with low quality and filter reads smaller than 36 bases after trimming (parameters: 

ILLUMINACLIP::2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 

MINLEN:36 HEADCROP:5). The raw reads were mapped on the Tetraodon genome 

(tetNig2) using the Tophat2 software (v2.0.8b) (Kim et al., 2013a) (parameters: 

-GTF -library-type fr-unstranded -segment-length 21 segment-mismatches 1 

-raw-juncs -prefilter-multihits). A reference gene model file in the Gene Transfer 

Format (GTF) was used while mapping the reads. The reference GTF file 

comprised of pooled genomic features from Ensembl genes (Flicek et al., 2012b), 

transmap rnRNA and transmap refgene tracks of the UCSC genome browser for 

Tetraodon (Meyer et al., 2012). The Cufflinks program (v2.1.1) (Trapnell et al., 2010) 

was used to assemble the reads mapped by using the chosen mapping strategy 

(parameters: -frag-bias-correct --library-type fr-unstranded --upper-quartile-norm 

-no-effective-Iength-correction). The transcript models generated by Cufflinks for 

the egg, 30 epi and 24 hpf mappings were merged together by the Cuffcompare 

utility from the Cufflinks software package (-V -R -r -s -C). All assembled 

transcripts longer than 200 bases were considered further. 
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6.2.3 Annotation of assembled transcripts 

Reference file of gene models in GTF format was obtained from Ensembl 

(ftp:/Iftp.Ensembl.orgIpubirelease-731gtfrretraodon_"igrOviridisl). The reference GTF file from Ensembl was 

converted in refFlat format (http://genome.ucsc.edulgoldenpath/gbdDescriptionsOld.html#RefFlat) using the 

UCSC utility gtffoGenePred (http://hgdownload.cse.ucsc.edu/admin/exe/) and a custom script in the 

Perl language. The reference file in refFlat format was compared with the mapped 

reads from eggs, 30 epi and 24 hpf to extract the percentage of reads mapping to 

different genomic features using the CollectRnaSeqMetrics.jar utility from the 

picard tools software package vl.88 (http://picard.sourceforge.netl). The Annocript pipeline was 

used to annotate the assembled transcript sequences. All transcripts assigned an 

identifier from SwissProt or Uniref90 or Conserved Domain Database (CDD) 

during the BLAST sequence homology comparison are predicted to be coding. All 

transcripts which do not have an annotation from SwissProt, Uniref90, CDD and 

Rfam and contain an ORF smaller than 100 amino acids are considered as Potential 

Long Non-Coding sequences (PLoNCs). The non-coding potential (NCP) of all 

PLoNCs was predicted by Annocript using the Portrait software (Arrial et al., 

2009). A score greater than the mean NCP score of all PLoNCs (0.76) was used to 

predict the finallncRNA set from the PLoNCs. The overlap of coordinates of the 

predicted lncRNAs with the predicted coding transcripts and coding genes from 

Ensembl (v74) was checked with the intersectBed program from the BEDTools 

package. All Inc RNA transcripts not overlapping a coding loci are classified as 

long intergenic non-coding RNAs (lincRNAs). The assembled transcripts were 

mapped to the reference Ensembl GTF file (v73) using Cuffcompare (-V -R -r -s -C). 
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The results of the mapping was used to infer the number of assembled transcripts 

which are predicted to be novel isoforms of existing gene models. 

6.2.4 Generation of Circos map 

The Tetraodon genome was divided into 1 megabase bins using the windowMaker 

utility from BEDTools software package v 2.17 (Quinlan and Hall, 2010). The 

RPKM expression value for each assembled loci was obtained by calculating the 

mean RPKM for all transcripts falling in that particular loci. The intersectBED 

utility from BEDTools was used to find the intersection of assembled coding and 

long non-coding loci with the genome wide 1 MB bins. The expression intensity of 

coding and IncRNA transcripts in each genomic bin was considered as the mean 

RPKM of all coding and lncRNA loci falling inside a genomic bin. MultiZ 

(Blanchette et al., 2004) alignment of eight vertebrate genomes with the zebrafish 

as reference (other species: human, mouse, medaka, stickleback, fugu, Tetraodon, 

Xenopus tropicalis) was downloaded in the Multiple Alignment Format (MAF) from 

the UCSC database (http://hgdownload.soe.ucsc.edulgoldenpath/danRer7/mukiz8way/multiz8way.maf.gz). Genome wide 

alignment scores for Tetraodon were obtained in BED format from the MultiZ 

alignment using the mafSpeciesSubset utility from UCSC 

(http://hgdownIoad.cse.ucsc.eduladminlexe1) along with a custom perl script. The intersectBed utility 

was used to find the intersection between the genome wide 1 MB bins in Tetraodon 

and the genome wide aligned regions from the MultiZ alignments. The mean 

conservation score of all conserved regions falling within a genomic bin was 

assigned as the conservation score for that particular genomic bin. The frequency 
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of coding and long non-coding loci within each genomic bin was calculated using 

the coverageBed utility from the BEDTools software package. The conservation 

scores and expression intensity for coding and IncRNA loci in each genomic bin 

was formatted according to the instructions given in the manual of the Circos 

software vO.64 (Krzywinski et al., 2009) using custom scripts in perl language. The 

Circos perl script was run on the formatted data to generate the circular image for 

the complete transcriptome experiment. 

6.2.5 Detection of sequence conservation and visualisation in the genome 

browser 

The intersectBed utility from BEDTools package was used to find the intersection 

of the exonic coordinates of the assembled transcripts with the MultiZ alignments 

obtained in the previous section. The product of the conservation score of a 

conserved region falling within a exon, with the fraction of overlap is taken as the 

conserva tion score for the exon. The sum of scores of all exons of a transcript is 

taken as the conservation score for the transcript. The output files from Tophat2 in 

BAM format were converted to BigWig format using the genomeCoverageBed 

binary from the BEDTools package (v2.l7) (Quinlan and Hall, 2010) and the 

bedGraphToBigWig utility from the UCSC database (http://hgdownload.cse.ucsc.eduJadminJexel). The 

visualisation of the RNAseq peaks and transcript models was carried out in the 

Integrative Genomics Viewer (v2.2.7) (Thorvaldsd6ttir et al., 2012). 
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6.2.6 Differential expression analysis of the assembled transcripts 

The raw read counts for all exons of assembled transcripts were obtained with the 

multiBamCov utility from BEDTools software package (-split). The sum of read 

count for all exons of a given transcript was considered as the raw count of the 

transcript. The bioconductor edgeR package (Robinson et aI., 2010) was used to 

calculate the differential expression of transcripts across the developmental stages. 

This package measures the significance of the variation in expression levels using 

the dispersion of the expression levels among sample replicates. In the absence of 

replicates the software can infer the dispersion value using the fluctuations in the 

expression levels of selected house-keeping genes among the different samples. 

Given that the analyzed dataset was only composed by single samples for each 

stage (Le. no replicates) and there is no information about housekeeping genes in 

Tetraodon, I used the following strategy to infer an acceptable dispersion value. All 

the transcripts showing less than 1 read per million (mapped) in the sum of the 

experiments were discarded to filter lowly expressed or background-biased 

transcripts. For all the remaining transcripts I calculated the standard deviation 

among the expression levels. Transcripts were then sorted in descending order on 

the standard deviation values. Next, I filtered out all the genes that did not get any 

match against the UniRef database in the annotation step. Then, based on the 

standard deviations and the annotations, I selected the transcripts showing the 

lowest variations until I was able to collect 100 different genes (based on the 

annotations). These 100 genes, corresponding to 305 transcripts, were considered 

bona-fide house-keeping, and the dispersion value was calculated using them. In 
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addition, in order to improve the stringency of the selection and to further reduce 

the number of potential false positives in the differential expression analysis, I 

multiplied the obtained dispersion value by 10. The calculated dispersion value 

(0.5) was used for the differential expression analysis in edgeR. Transcripts with 

more than 0.5 reads per million mapped reads in at least one sample were retained 

for the analysis. The following comparison were executed using the exactTest 

function with default parameters: eggs vs 30 epiboly, eggs vs 24 hours post 

fertilisation, 30 epiboly vs 24 hours post fertilisation. According to the comparison, 

significantly up/downregulated transcripts were selected, considering all the 

transcripts with a IDR value smaller than 0.05 and a linear fold change of at least 2 

folds. The maternal specific list of transcripts was prepared selecting only those 

transcripts resulting significantly up-regulated in the eggs in both the comparisons 

involving the eggs sample. The embryonic list of transcripts was prepared 

selecting only those transcripts resulting significantly down-regulated in the eggs 

in both comparisons involving the eggs samples. 

6.2.7 Identification of microsynteny, prediction of sequence conservation and 

gene ontology enrichment 

The SynLinc pipeline was used to predict putative microsyntenic lincRNAs 

between Tetraodon and zebrafish, considering only immediate flanking coding 

genes for each lincRNA. The gene ontology (The Gene Ontology Consortium, 2012) 

enrichment analysis was performed on the GO mapping done by the Annocript 

pipeline using a custom R script exploiting the Fisher exact text and p-value FDR 
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correction to select significantly enriched GO classes (minimum representatives for 

a GO class: 5; FDR <= 0.05). 

6.2.8 Comparison of expression abundance between maternal and zygotic 

transcripts in zebrafish with their Tetraodon orthologs 

The expression of zebrafish genes in FPKM during early development and the lists 

of genes reported to be maternal, zygotic and maternal/zygotic were obtained 

from a recent published report (Harvey et al., 2013). The expression (FPKM) of the 

assembled transcripts in Tetraodon was calculated by Cuffdiff program from the 

Cufflinks software package (-frag-bias-correct --multi-read-correct --no-effective

length-correction -upper-quartile-norm -max-frag-multihits 20). The mean FPKM 

of all transcripts mapped to an Ensembl gene was considered to be the expression 

for that gene. Orthologous protein coding genes between zebrafish and Tetraodon 

was obtained with the Bioconductor (Gentleman et aL, 2004) biomaRt (Durinck et 

al., 2005) package. 

6.3 Results and Discussion 

6.3.1 Mapping, assembly and annotation of the early developmental 

transcri ptome of Tetraodon 

More than 200 million short reads were generated by sequencing of the RNA 

samples from whole embryo during three developmental stages, eggs, 30% epiboly 

(30 epi) and 24 hour post-fertilisation (24 hpf) in Tetraodon (Eggs: 229,741,278; 30 
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epi: 248,151,367; 24 hpf: 239,853,692). In excess of 90% of reads from all stages 

passed the quality filtering tests (Eggs: 215,219,078; 30 epi: 226,292,377; 24 hpf: 

224,089,479). I wanted to compare the aligned reads to various genomic features 

defined in Tetraodon by the Ensembl gene build (v73). Hence, I compared the 

positions of the short reads aligned to the genome with the existing gene models 

from Ensembl (Figure 6.1). Majority of the reads overlap coding exonic regions 

while a smaller fraction fall in intergenic locations. This confirms that a significant 

percentage of transcription occurs in the protein-coding loci during embryogenesis 

in Tetraodon. However more than 10% of mapped reads fall under intergenic loci 

suggesting the active participation of non-coding elements in processes regulating 

early development of the embryo. Past reports indicate that the cellular miRNA 

machinery governs the molecular pathways involved in degradation of maternal 

mRNAs, and controls the spatial and temporal expression of embryonic mRNAs 

(Giraldez, 2010; Svoboda and Flemr, 2010). However the RNA extraction for 

Tetraodon was not optimised to enrich for small RNA fraction, hence the intergenic 

transcription probably represents other classes of non-coding RNAs, especially 

lincRNAs. 
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Figure 6.1 Percentage of aligned short reads overlapping genomic features predicted 

for the Tetraodon genome by Ensembl (v74) in A) Eggs B) 30% Epiboly C) 24 hours 

post-fertilisation. 

The mapped reads resulted in the assembly of 61,033 transcripts from 23,838 loci 

on the Tetraodon genome. I predicted 53,543 coding transcripts from 19,414 loci and 

4026 long non-coding transcripts from 3508 loci. A subset of IncRNA transcripts 

(2994 transcripts from 2663 loci) fall in intergenic regions, hence were classified as 

long intergenic non-coding RNAs (lincRNAs). A majority of the existing Ensembl 

coding gene models (86%) are represented by the assembled coding transcripts 

while 3036 loci comprising of 5093 coding transcripts are not present in the 
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Ensembl annotation. This shows that, while the transcript assembly is able to 

account for the expression of the majority of coding genes present in genome 

databases, several novel coding loci are also reported which may provide 

supporting evidence for annotation of genomic regions currently lacking proper 

gene models. 

6.3.2 Genomic structure and conservation of the early developmental transcripts 

To characterize the structure of the generated transcript models, I compared the 

structural features of the assembled coding and IncRNA transcripts. Hence, I 

checked the distribution of length, number of exons and exon size of the IncRNAs 

with a random sample of coding transcripts (Figure 6.2). The IncRNAs are 

observed to be smaller in length with fewer but longer exons in comparison to the 

coding transcripts. Majority of the predicted IncRNAs (64%) are not spliced (2593 

transcripts). I observed a similarity of the structural properties with the IncRNA 

transcripts expressed in the zebrafish islet cell (Figure 5.8). As discussed in the 

previous Chapter 5, long non-coding RNAs tend to be less spliced than coding 

genes, hence the observation falls in agreement with a general Inc RNA property. 
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Figure 6 .2 Structural features of coding and long non-coding transcripts A) Length 

of transcripts B) Number of exons C) Size of exons. 

Then, I compared the genomic location of the coding, lncRNA and lincRNA 

transcripts with whole genome alignments of 8 vertebrate species to extract the 

sequence conservation metric for each feature. In agreement with previous reports 

in other species (Cabili et al., 2011; Guttman et al., 2010; Pauli et al., 2011a) as well 

as the zebrafish islet celllncRNAs (Figure 5.9) the Tetraodon IncRNAs show a lower 

level of sequence conservation than coding transcripts but are marginally better 

conserved than random intergenic regions (Figure 6.3). However, contrary to the 
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observation in zebrafish islet celllncRNAs, I did not find a significant difference in 

conservation between lncRNA and lincRNA transcripts in Tetraodon. This may be 

explained by the fact that the lincRNAs are a subset of IncRNAs. Since the majority 

of Tetraodon IncRNAs belong to lincRNA class (74%) in comparison to zebrafish 

islet cell transcriptome (22%) there is no marked difference in their conservation 

levels. 
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Figure 6.3 Mean MultiZ 8 way whole genome alignment scores of Tetraodon for 

coding, long non-coding and long intergenic non-coding transcripts. The alignment 

scores are calculated by aligning the zebrafish genome with the human, mouse, X. 

tropicalis, Tetraodon, medaka, fugu and stickleback genomes. The x-axis represents 

the mean MultiZ8way alignment scores and the y-axis represents the cumulative 

proportions of the transcripts. 
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6.3.3 Inspection of expression dynamics of coding and long non-coding loci 

during Tetraodon development 

The RNAseq experiment was designed to obtain a temporal snapshot of the coding 

and the long non-coding transcripts during early development in Tetraodon. I 

decided to generate a single composite image which may illustrate the complete 

experiment and help in selecting genomic regions which show an interplay of 

expression between coding transcripts and IncRNAs. In this context I used the 

Circos (Krzywinski et al., 2009) software to generate an image depicting the 

average expression of coding and long non-coding transcripts across 1 megabase 

bins of the Tetraodon genome in the 3 developmental stages (Figure 6.4 A). The 

circos image provides a summary of the experiment and, at a glance, the coding 

loci show a more homogenous pattern of expression across the whole genome, 

while the lncRNA loci are expressed in sparse pockets. The aim was to identify 

genomic loci where the expression dynamics of coding transcripts and lncRNAs 

suggest a coherent regulatory mechanism to promote organism development. It is 

important to note though, that the intensity of colour in a genomic bin is based on 

average expression (RPKM) of all features in that bin (coding or lncRNA), hence a 

few highly expressed genes can result in the Circos image showing a higher 

expression abundance for the complete genomic bin. I inspected several genomic 

bins, where both coding and IncRNA loci are dynamically expressed during 

development. Among them, a very interesting genomic bin pair is on chromosome 

21. Here a first bin (chr21:3,000,000-4,000,OOO) shows a decrease in average 

expression intensity of the coding loci (from egg to 24 hpf), which is 
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complemented by high average expression of the lncRNA loci in both eggs and 30 

epi and low expression in 24 hpf (Figure 6.4 B). Conversely, the preceding coding 

genomic bin (chr21:2,000,000-3,000,000) shows a rise in expression of coding loci 

from egg to 24 hpf but no relevant IncRNA transcription. The genomic region at 

the bounduary between these 2 bins contains the Tetraodon Hoxa gene cluster 

(chr21:2,996,402-3,093,266), which I decided to investigate further. 
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Figure 6.4 Circos image depicting the average expression of coding transcripts and 

IncRNAs in 1 MB bins across three developmental stages in the Tetraodon genome. A) 

The outermost circle represents the Tetraodon chromosomes, divided into 1 MB bins. 

The next circle (purple) shows the average sequence conservation score of each bin 

across eight vertebrate species. The next six circles show the mean expression 
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(RPKM) of the sum of all coding transcripts (red) and IncRNAs (green) falling within 

each chromosomal bin in eggs (outer), 30 epi (middle) and 24 hpf (inner). The 

histogram above the circle showing mean expression of eggs represents the 

frequency of each transcripts class in each bin B) The magnified view of chromosome 

21 which contains the Hoxa gene cluster in between the 3rd and 4th bin (marked by 

green circle). Note: The intensity of color reflects the level of expression and 

conservation (dark to light .... high to low). The red dots mark the candidate genomic 

bin showing coordinated expression of coding and IncRNA loci. 

The vertebrate Hoxa cluster genes are involved in the development of craniofacial 

skeleton, vertebrate limb-bud and pectoral and caudal fin in jawed fishes 

(Gardiner et ai., 1995; Geraudie and Borday Birraux, 2003; Minoux et aI., 2009). The 

Tetraodon Hoxa genes show a coordinated expression at 24 hpf and few genes are 

also expressed maternally and at 30% epiboly. The role of lncRNAs during early 

embryogenesis and regulation of HoxA genes is well known in mammals. The 

IncRNA Hoxa Transcript at the distal Tip (HOITIP) is reported to lie at the 

posterior end (upstream of Hoxa13a) of the human Hoxa cluster and activates the 

transcription of several Hoxa genes by altering the chromatin state of their genomic 

loci (Wang et aI., 2011). Another lncRNA the Hox Antisense Intergenic RNA 

Myeloid 1 (HOTAIRM1) is expressed between the human Hoxal and Hoxa2 genes 

and is implicated in myelopoiesis by regulating the expression of Hoxal and Hoxa4 

genes (Zhang et aI., 2009). I did not find location specific homologs of the HOITIP 

and HOTAIRM lncRNAs in the Tetraodon Hoxa clusters. However, a IncRNA 

linc_hoxala is present at the anterior most end of the one Hoxa cluster (downstream 

to the HoxalA gene), while another IncRNA Inc_hoxa7a lies between the Hoxa7 and 
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Hoxa5a genes (Figure 6.5 A). The second Hoxa cluster (Figure 6.5 B) does not 

contain any IncRNAs in its vicinity. The zygotic expression of the Inc_hoxala 

transcript is concurrent with the zygotic expression of HoxalA and Hoxa2a during 

30 epi, while all the other members of the cluster remain untranscribed. Then, at 24 

hpf, all the genes assembled and annotated in the cluster result expressed, while 

the Inchoxala appears silent. It is intriguing to speculate whether the Inchoxala is 

implicated in the activation of the transcription of the Hoxa cluster, but a higher 

number of developmental time points, earlier than 30 epi, is required to properly 

answer this question. Nevertheless, the Hoxa cluster locus demonstrates the co

expression of long non-coding genes with proximal coding genes, which are 

known to play fundamental roles in organism development. 
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Figure 6 .5 The HO XQ cluster of genes in the Tetraodon genome. A) The first HO XQ 

cluster (chr 21 :2,996,402-3,093,266) B) The second HO XQ cluster (chr8 :6,782,441-

6,811,548 ). The tracks Eggs, 30 epi, 24 hpf show the coverage depth of mapped reads 

on the genome during d ifferent developmental stages. The Ensembl track contains 

gene models defined by the Ensembl database . The Coding and Long non-coding 

tracks contain gene models assembled from the mapped reads across the three 

developmental stages. 

6.3.4 Maternal and embryonic specific transcripts in Tetraodon 

Based on a d ifferential expression analysis of the assembled transcripts, I defined 

maternal and embryonic specific transcripts from the transcriptome assembly (see 

methods; log2FoidChange >= 2; FDR <= 0.05). I separated the maternal and 

embryonic list into coding and lncRNA transcripts based on the annotations by 

Annocript (Table 6.1). I found that the average expression of a Inc RNA is higher at 

30 epi in comparison to coding transcripts (two sample proportion test, p-value: 
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l.l35e-15) (Figure 6.6). Long non-coding RNAs are reported to show a coordinated 

pattern of expression with coding genes implicated in early organism development 

(Dinger et aL, 2008; Guttman et al., 2011). However, IncRNAs are also reported to 

be expressed in a very small time window during the early stages of 

embryogenesis in the zebrafish (Pauli et al., 2011a). Thus the higher expression 

level of the differentially expressed lncRNAs at 30 epi could result from their 

participation in a diverse set of regulatory programs important during early 

vertebrate embryogenesis. 

Class LncRNAs LincRNAs 
------------~------~~~~ Difrer'entialin iliff 

Maternal 222 11 7 ---- 152 

Table 6.1 Number of transcripts showing differential expression. 
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Figure 6.6 Expression dynamics of differentially expressed coding and long non-

coding transcripts during early development in Tetraodon. A) Heat map of expression 

abundance (RPKM) for differentially expressed coding transcripts B) Heat map of 

expression abundance (RPKM) for differentially expressed lncRNA C) Distribution of 

expression abundance (RPKM) for differentially expressed coding transcripts in 

different developmental stages D) Distribution of expression abundance (RPKM) for 

differentially expressed lncRNAs in different developmental stages. 

6.3.5 Gene ontology enrichment of maternal and zygotic coding transcripts in 

Tetraodon 

To discern the classes of coding genes being differentially expressed during early 

development in Tetraodon, I performed a gene ontology enrichment analysis. I took 
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a two pronged approach where I performed the analysis separately for all coding 

genes and for coding genes present in the the vicinity of lincRNA transcripts (10KB 

upstream or downstream). The maternal differentially expressed coding genes 

show a significant enrichment for GO classes like determination of dorsal identity, 

regulation of WNT signalling pathway, actin cytoskeleton organisation and mitosis 

(Figure 6.7). 

o All coding 
• Maternal coding 

determination of dorsal identity ~n •••••••••••••••••••••••• 
regulation of Wnt receptor signaling pathway 

regulation of canonical Wnt receptor signaling 

mitosis .0 •••••••••••• 
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microtubule-based movement 

small GTPase mediated signal transduction 

transcription. DNA-dependent 
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3 

percentage of transcripts 
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5 

Figure 6 .7 Gene ontology enrichment analysis for differentially expressed maternal 

coding genes in Tetraodon. The x-axis represents the percentage of transcripts which 

are defined by a particular GO biological process and the y-axis represents the 

significantly enriched GO classes. 

Past studies have confirmed the role of maternally introduced transcripts during 

specification of the embryonic axes in Drosophila (Grunert and St Johnston, 1996), 

Xenopus laevis (Mowry and Cote, 1999) and zebrafish (Pelegri, 2003). Particularly in 
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anamniotes, a microtubule-dependent operation displaces maternal molecular 

factors from the vegetal pole towards the zone of future dorsal side of the embryo, 

thus disrupting the initial radial symmetry of the zygote (Weaver and Kimelman, 

2004). This act of axis determination in general is dependent on maternally 

originating Wingless-Type MMTV Integration Site Family, Member l/Sa 

(WNTll/5a) complexes, under regulation of the WNT antagonist Dickkopf WNT 

signaling pathway inhibitor 1 (DKK-l) (Cha et al., 2009). A recent reports mentions 

the role of a maternal canonical WNT and not the WNT/5a complex specially in the 

case of dorsal axis determination (Lu et al., 2011). Hence the enriched GO classes 

are in agreement with past reports of important functions partaken by transcripts 

of maternal origin. 

The process of somitogenesis is predicted to be the enriched GO class with the 

maximum representatives of embryonic specific transcripts (Figure 6.8). During 

embryonic development, somitogenesis results in formation of bilaterally paired 

mesoderm tissue along the anterior-posterior axis of the developing embryo. The 

somites are differentiated into muscle, cartilage, endothelial cells, and dermis. The 

signaling cascade of the Bone Morphogenetic Protein 4 (BMP4) protein is an 

important component regulating the differentiation of somites into muscle lineage 

(Tajbakhsh and Cossu, 1997). The regulation of BMP signaling pathway is predicted to 

be one of the significantly enriched GO term in the embryonic specific transcripts. 

While enriched GO terms like calcium-dependent cell-cell adhesion, organ 

morphogeneis and regulation of transcription are commonly associated with the 
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developing embryo it is unusual for the embryonic transcripts to b enriched for 

RNA-dependent DNA replication. 
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• Embryonic coding 

somltogenesls 

fucosylation rI~~~~~:~::::::::::;-__ . positive regulation of transcription, DNA-dependent 

heart looping 

semaphorin- plexin signaling pathway p ____ _ 

paraxial mesoderm development R _____ _ 
otic placode formation R ______ _ 
organ morphogenesis 110 ________ _ 

RNA-dependent DNA replication II~ __________ _ 

mesoderm morphogenesis 119 ___ _ 

regulation of BMP signaling pathway .0 ____ _ 
poshive regulation of sequence-specillc 11° ____ _ 
DNA binding activily _ 

calciurrHlependent celi-celi adhesion iIIn ___ _ 

positive regulation ofeall migration ~R~~~~~~ _________ _ 
angiogenesis • 

0 .0 0.2 0 .4 0.6 0.8 

percentage of transcripts 

Figure 6.8 Gene ontology enrichment analysis for differentially expressed embryonic 

coding genes in Tetraodon. The x-axis represents the percentage of transcripts which 

are defined by a particular GO biological process and the y-axis represents the 

significantly enriched GO classes. 

6.3.6 Gene ontology enrichment of maternal and zygotic coding transcripts 

flanking lincRNAs in Tetraodon 

To throw further insights into the possible role of non-coding RNAs during 

development I compared the proximal coding genes of all lincRNAs (IOKS 

upstream and downstream) against the proximal coding genes of lincRNA 

predicted to be differentially expressed in both 30 epi and 24 hpf (embryonic 

lincRNAs) (Figure 6.9). I chose only the intergenic lncRNAs (lincRNA) for my 
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analysis since it reduces the probability of a GO term to be associated with a 

IncRNA due to an overlapping coding gene. The number of lincRNAs predicted to 

be differentially expressed and of maternal origin were not large enough (7 

transcripts) to perform a statistical analysis on the GO terms of proximal coding 

transcripts. The prominent GO terms significantly enriched to represent coding 

transcripts neighboring differentially expressed embryonic lincRNAs include 

protein glycosylation, embryonic viscerocranium morphogenesis and nuc1eosome assembly. 

The attachment of glycans (large carbohydrate molecules) to proteins or other 

organic molecules with the aid of enzymatiC action is known as glycosylation 

which helps in intra-cellular transport, post-translational modification of proteins 

and metabolic homeostasis. The early developmental transcriptome in zebrafish 

contains a diverse population of glycans suggesting a complex glycosylation 

pattern during embryogenesis (Chang et al., 2009; Guerardel et al., 2006). In fact, 

proteins important during embryo development like the WNT require 

glycosylation process to induce modifications in structure to perform their specific 

function (Ke et al., 2013). There might be an involvement of lincRNAs in the 

recruitment of factors which aid in the cellular glycosylation although no direct 

experimental evidence exists in favor of the argument. 

However a well studied aspect of mcRNA biology is the effect of their regulation 

over genes playing an important role in nervous system development (Qureshi and 

Mehler, 2012). The embryonic lincRNAs are enriched to lie near coding genes 

involved in embryonic viscerocranium morphogenesis a process which defines the 
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vertebrate craniofacial skeleton. Interestingly a dynamic expression pattern of 

glycoconjugates was reported to correlate with morphological modifications in the 

rat fetal viscerocranium indicating the glycosylation of proteins involved in 

establishment of the fetal brain structure (Zschabitz et al., 1999). The neural-crest 

cells are an important factor governing the formation of the vertebrate craniofacial 

skeleton (Kague et al., 2012). The neural crest cells are a transient cell population in 

the vertebrate embryo which carry the potency to differentiate further into major 

cell types like melanocytes, craniofacial cartilage/bone, smooth muscle and 

neurons (Huang and Saint-Jeannet, 2004). It is worth noting that the GO term 

neural crest cell fate specification is also predicted to be enriched in my analysis 

further insinuating the role of lincRNAs in pattering of brain tissue and skeleton 

during early development of Tetraodon. Another aspect of lincRNA functioning is 

highlighted by the enrichment of the GO term nucleosome assembly. Intergenic non

coding RNA are reported to maintain a repressed chromatin state by directing 

increased nucleosome occupancy in their genomic neighborhood in yeast (Hainer 

et al., 2011). A recent study shows the Hepatic Nuclear Factor lA antisense 1 

(HNF1A-AS1) lncRNA to be involved in regulation of genes important for 

assembly of chromatin and the nucleosome, thus indirectly modulating the cell 

cycle progression (Yang et al., 2013b). In principle lincRNAs are projected as an 

important cog of the vertebrate developmental programming due to their ability of 

acting as a host scaffolding molecule for protein complexes which can specify the 

pattern of histone modifications in target genes to achieve a specific expression 

pattern aiding cellular development and differentiation (Blelloch and Gutkind, 
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2013; Lee, 2012). Hence the current analysis shows the differentially expressed 

embryonic lincRNAs to be associa ted with coding genes principally involved in 

specification of the vertebrate brain, body patterning and regulation of chromatin 

state. 
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F igure 6 .9 Gene ontology enrichment analysis for coding genes lying proximal to 

differentially expressed embryonic lincRNAs in Tetraodon. The x-axis represents the 

percentage of transcripts which are defined by a particular GO biological process and 

the y-axis represents the significantly enriched GO classes. 

6.3.7 Expression of maternal and zygotic genes in zeb rafish and Tetraodon 

I wanted to compare the expression abundance of transcripts of maternal and 

zygotic origin between zebra fish and Tetraodon. The intent was to estimate the 

similarity or difference in the transcriptional repertoire of the teleost fishes during 

embryogenesis. I considered three lists representing maternal, maternal/zygotic 
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and zygotic genes in zebrafish and their expression in five early developmental 

stages as my starting dataset from a recently published study (Harvey et al., 2013). 

Only the coding genes were considered for this analysis (1677 maternal, 3055 

maternal zygotic, 264 zygotic). Further, I obtained the predicted Tetraodon 

orthologs for the genes of my starting dataset. I could map 80% of zebrafish genes 

from the maternal list, 82% from the maternal/zygotic list and 63% from the 

zygotic list to their corresponding ortholog in Tetraodon. It is important to note that 

the Tetraodon 24 hpf stage is comparable to the beginning of somitogenesis in 

zebrafish (10.5 hpf). The zebrafish maternal genes show maximum expression at 

the 64 cell stage followed by gradual decrease in the high, shield and 90% epiboly 

stages (Figure 6.10 A). The Tetraodon orthologs of the zebrafish maternal list follow 

a similar course with the maximum average expression level in the eggs and a 

decrease in expression abundance at 30% epiboly compared to eggs. However, 

there is a slight increase in expression at 24 hpf compared to 30 epi, which suggests 

that some of the Tetraodon orthologs might also be expressed as zygotic transcripts 

post-degradation of the maternal genes. I found that 26% of the Tetraodon 

orthologs to zebrafish maternal genes show such behavior. This is a reflection of 

the fact that the zebrafish data were selected as being maternally-expressed, but not 

necessarily maternal-specific like the ones I selected in Tetraodon. Majority of the 

genes belonging to the maternal/zygotic list in zebrafish are highly expressed in 

all the sampled staged (Figure 6.10 B). Their corresponding Tetraodon orthologs 

also show a similar pattern. The zebrafish zygotic genes show a stark correlation in 

their expression abundance with their Tetraodon orthologs. In zebrafish from close 

240 



to negligible transcription the zygotic genes show an increased expression in high, 

shield and 90% epiboly, a pattern closely emulated by their Tetraodon counterparts 

(Figure 6.10 C). Thus the Tetraodon orthologs to the zebra fish maternal and zygotic 

genes show a similar expression variation during development. 
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Figure 6.10 Expression abundance of zebrafish genes and their Tetraodon orthologs 

during development A) Maternal B) Maternal/Zygotic C) Zygotic 

Further, I wanted to compare the expression of genes predicted to be maternal and 
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embryonic specific in Tetraodon with their orthologs in zebrafish. Since these genes 

are differentially expressed between the given developmental stages in Tetraodon 

they represent a select subset of genes which may be involved in distinguished 

cellular processes during MZT. I was able to map 85% of maternal and 82% of 

zygotic coding genes of Tetraodon to their zebrafish orthologs. The Tetraodon 

maternal specific genes are predominantly expressed in the egg with almost no 

detectable expression in the 30% epiboly and 24 hpf (Figure 6.11 A). The 

expression pattern of the zebrafish orthologs further support these genes to be 

maternal in origin, since most of them appear to be expressed in the 2 cell, 64 cell 

and high stages followed by a sudden decrease in transcriptional levels in the 

shield and 90% epiboly. Similar observation is made on the Tetraodon zygotic gene 

list where the zebrafish orthologs mimic the expression dynamics during 

development (Figure 6.11 B). The Tetraodon zygotic specific genes initiate 

expression at the 30% epiboly while their zebrafish coutnerparts are observed to be 

expressed minimally in the 2 cell and 64 cell stage followed by a steep rise of 

expression abundance in high, shield and 90% epiboly. 
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Figure 6.11 Expression abundance of Tetraodon genes and their zebrafish orthologs 

during development A) Maternal B) Zygotic 

Thus the gene lists in Tetraodon derive support from the developmental expression 

of their zebrafish orthologs, to be representative of maternal and zygotic specific 

transcription. The conservation at the level of expression dynamics further 

indicates a potential functional retention of genes involved in various biological 

processes during MZT in teleost fishes. 

6.3.8 Prediction of putative microsyntenic lincRNAs between Tetraodon and 

zebrafish 

Finally, I decided to focus on identifying interesting lincRNA candidates which 

may be implicated in regulation of genes or pathways during Tetraodon 

embryogenesis. A major obstacle towards this aim is a lack of functional 

annotation for lincRNAs. The primary reason is their low level of sequence 

conservation which hinders the identification of lincRNA homologs across species 
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and hence their further association to a function by experimental validation. I have 

developed a pipeline (SynLinc) to compare the conserved microsyntenic lincRNAs 

(Figure 4.1). I have previously predicted a set of Vertebrate Microsyntenic 

LincRNAs (VMLs) with conserved microsynteny in human, mouse and zebrafish 

using the SynLinc pipeline. Here I used the pipeline to compare the lincRNAs 

predicted in the Tetraodon early developmental transcriptome with zebrafish 

lincRNAs predicted by two previously published studies and the Ensembl 

transcript annotation pipeline (Flicek et aI., 2012b; Pauli et aI., 2011a; Ulitsky et al., 

2011). The pipeline predicted close to 800 lincRNA transcripts (zebrafish: 788 

transcripts from 523 loci; Tetraodon: 796 transcripts from 667 loci) to show 

conserved microsynteny based upon the homology of a flanking coding gene. 

Further, I compared the predicted microsyntenic lincRNAs of Tetraodon with 

zebra fish VMLs to get 142 Tetraodon lincRNAs which have a predicted ortholog in 

human, mouse and zebra fish according to the SynLinc pipeline. I compared the 

proximal coding genes of alllincRNAs (10KB upstream and downstream) against 

the proximal coding genes of these 142lincRNAs predicted to be microsyntenic in 

the four vertebrates (Figure 6.12). Several classes resulted significantly enriched 

among the 142 lincRNAs. Of these, I found very interesting the GO classes histone 

lysine methylation, regulation of transcription and eye development to be significantly 

enriched in the coding genes lying proximal to the microsyntenic lincRNAs. In the 

past lncRNAs have been reported to be involved in regulation of transcription and 

chromatin modifications (Batista and Chang, 2013). Further long non-coding RNAs 

are known to be expressed near coding genes which are implicated in regulation of 
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cellular development and differentiation specially in the brain (Aprea et a1., 2013; 

Guttman et al., 2011; Laurent et a1., 2013). However a recent report has mentioned 

the presence of a select set of lincRNAs which are specifically expressed in the 

human eye and are conserved in sequence and expression pattern in other 

mammals, thus these candidate lincRNAs are expected to play an important role in 

mammalian eye development (Mustafi et aI., 2013). Thus the putative 

microsyntenic lincRNAs are observed to show an enrichment to lie near coding 

genes involved in regulation of transcription, chromatin modification and eye 

develop men t. 

o Proximal coding of 
alilincRNAs 

• Proximal coding of 
microsyntenic IincRNAs 

1.0 1.5 2.0 2.5 

Percentage of transcripts 

Figure 6.12 Gene ontology enrichment analysis for coding genes lying proximal to 

microsyntenic lincRNAs in Tetraodon. The x-axis represents the percentage of 

transcripts which are defined by a particular GO biological process and the y-axis 

represents the significantly enriched GO classes. 
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6.3.9 Comparison of the assembled transcript models with transcript models 

from Ensembl 

The predicted coding transcripts represent 86% of known Ensembl coding gene 

models but 74% of the coding transcripts which map to an Ensembl gene ID show 

the presence of at least one novel exon or an alternative splice site thus being 

classified as a novel isoform of a known gene. Indeed alternative splicing events 

are partly responsible for the vertebrate transcriptional complexity (Barbosa

Morais et aI., 2012; Braunschweig et aI., 2013) but in specific cases the presence of 

additional exons may suggest a partial gene model being present in the reference 

data. A good example is that of the zebrafish Smaug 1 (Smg1) gene (12KB, 63 

exons) whose Tetraodon ortholog is represented by a comparatively smaller gene 

(lKB, 7 exons). Manual inspection of Tetradodon Smgl genomic region led me to 

identify two transcript models (TCONS_00047347: 3KB, 22 exons, 

TCONS_00047348: 6KB, 35 exons) (Figure 6.13 A) which are co-linear to each other 

and are placed in the same transcribed locus by Cufflinks. The 3' end of 

TCONS_00047347 lies at a distance of 50 bases from the 5' end of the 

TCONS_00047348. To check whether the two transcripts are not isoforms but part 

of the same transcript representing the Smgl gene I concatenated their sequences 

and did a tBLASTx search against the zebra fish eDNA sequences in the Ensembl 

database. Indeed the concatenated sequence shows homology with 27 exons of 

zebrafish Smgl gene (Figure 6.13 B). The evidence from the assembled transcripts, 

and their homology search against the zebrafish eDNA sequences indicates that 

the EnsembI Tetraodon Smgl gene is represented by an inadequate gene model. 
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Such an example highlights the additional utility of the assembled gene models to 

improve upon the existing Tetraodon gene annotations. 

A 2U7kb - - - , .... - - - - -,._-
• I • I III I I • • ...... I •• 1 1 •• II •••• II ••• II... • II • 
TCONS_00047347 > TCONS_OOO47348 > 

B - " ... ----..... -

ForwonI __ 

-7 . ....- -

• II. • II III I 

.............. 
smgt > 

telAST._ • MM. Mil "'" I 'M I - I 1.11._. II ••• • ... II. ....1 ••• 1 1111 11111' .1 ••• 11.1 III I 

c amgt 

Figure 6.13 Ensembl genome browser screenshot of Smgl gene in A) Tetraodon B) 

zebrafish. The Ense mbl track represents the gene models from Ensembl database. 

The Coding track the assembled coding gene models. The tBLASTx hits track shows 

the aligned regions of the concatenated Tetraodon transcripts (TCONS _ 00047347, 

TONS _0004 7348 ) against the zebrafish Smgl cDNA sequence obtained by tBLASTx 

comparison. 

6.4 Conclusion 

In the current study I have tried to understand the molecular basis of the 

developmental processes during embryogeneis in Tetraodon. The transcriptome 

data produced in this study shows a high coverage and depth harnessing the 

power of high-throughput sequencing technologies. I performed extensive 

bioinformatic analyses to assemble and annotate the developmental transcriptome 

and assess the temporal variation in transcript abundance in relation to their 

functional associations. High throughput sequencing of polyadenylated RNA 

across three developmental stages of Tetraodon (fertilised egg, 30% epiboly and 24 

hours post fertilisation) resulted in the assembly of 53,543 coding transcripts from 

19,414 loci (representing 86% of annotated Ensembl Tetraodon genes) and 4026 long 
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non-coding transcripts from 3508 loci. I found about 16% (16% of coding and 16% 

of long non-coding) of all transcripts to show a decrease in transcriptional 

abundance from the egg to 24 hours post fertilisation (24 hpf), thus suggesting 

them to be of maternal origin, a few of them known to be important regulators of 

fertilisation and cell division. The added advantage comes from the identification 

of the lncRNAs expressed during development which show the cellular non

coding diaspora to be actively involved in the process of embryogenesis. The 

differentially expressed maternal and embryonic transcripts are shown to be 

representative of processes and pathways which are in agreement with their 

known functional roles during embryonic development. Further, genes reported to 

be of maternal and zygotic origin in zebrafish show a similar expression dynamics 

in Tetraodon and vice-versa. Thus, even though there is a lack of replicates for the 

RNAseq experiment, evidences from gene ontology analyses and comparison of 

expression abundances support the integrity of the mapping and assembly of the 

early developmental transcriptome in Tetraodon. I found about 800 Tetraodon 

lincRNAs with conserved position compared to published zebrafish lincRNAs and 

142 of them are predicted to be syntenic with other vertebrates, suggesting these 

candidates to be transcriptionally linked to their genomic neighborhood. Finally, 

the current study provides a well annotated assembly of early developmental 

transcripts in Tetraodon, a significant percentage representing novel isoforms of 

known genes. My analysis resulted in the identification of -3000 protein-coding 

loci previously unreported in Tetraodon. Hence the assembled transcripts are 

expected to aid in improving the existing gene models as well as documenting 
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novel isoforms of known genes. 
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Chapter 7 

General conclusion and future directions 

7.1 The conservation factor in long non-coding RNAs 

My Ph.D. project has been focused towards gaining insights into the evolution, the 

structure and the functions of lncRNAs, through computational approaches and 

the usage of large scale functional genomics data. Historically, long non-coding 

RNAs (lncRNAs) have not been associated with conservation of function or feature 

across a diverse range of species and this made my project challenging. However, 

there have been a few reports which mention presence of conserved chromatin 

signature (Guttman et al., 2009), transcription pattern (Kutter et al., 2012; 

Managadze et al., 2013) and sequence (Mustafi et al., 2013; Ponjavic et al., 2009; 

Young et al., 2012) in lncRNAs. However, majority of such studies have not 

considered species separated by long evolutionary distances, mostly remaining 

within the realm of mammalian genomes. Nevertheless IncRNAs are repeatedly 

shown to be involved in regulation of important biological processes, specially 

development of brain (Aprea et al., 2013; Lipovich et al., 2013; Mercer et al., 2008) 

and differentiation of pluripotent cells (Dinger et al., 2008; Guttman et al., 2011; Lin 

et al., 2011b; Pauli et al., 2011a). A question raised is, whether the lack of 

evolutionary conservation may be considered as an absence of function in the 
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majority of lncRNAs. The answer to this question lies within the following issues, 

which currently do not have a clear understanding 

How do we define a transcript as a lncRNA? 

What is the correct estimate of the transcribed IncRNA population in an 

organism at a given developmental stage or tissue? 

- What are the properties associated with lncRNAs, which share similar 

functions in different organisms and how can we isolate them? 

Although extensive experimental validation is necessary to arrive at a definite 

conclusion, it is also important to obtain a computational perspective to the issues 

mentioned above. During the tenure of my Ph.D. I have made an attempt to 

answer these questions by developing computational protocols for identification of 

IncRNAs and estimation of their conservation. I have further used these protocols 

to analyse large scale sequencing datasets from a specific tissue and from early 

developmental stages, to predict lncRNAs which may play an important functional 

role in a metabolic disorder or during embryogenesis. 

7.2 Computational prediction of IncRNAs 

There are numerous reports of large scale prediction of lncRNAs from next

generation sequencing data (Cabili et aI., 2011; Derrien et aI., 2012; Pauli et aI., 

2011a) but a common computational framework for lneRNA is lacking. Homology 

to coding genes, lack of a long open reading frame and a low protein coding 

potential (based on coding frequency and nucleotide composition) are the 
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principal measures used to predict lncRNAs. But none of the previously published 

reports have defined a standard protocol which can be universally applied and 

compared to predict lncRNAs in different organisms. Hence I developed a 

computational pipeline which can annotate both coding and long non-coding 

sequences in a large dataset. I developed the pipeline (Annocript) principally to 

predict IncRNAs on different RNAseq datasets I analysed during the period of my 

Ph.D. However, I also plan to make the pipeline available to the scientific 

community as a resource for annotating coding and non-coding transcriptomes in 

diverse organisms. Apart from predicting IncRNAs the principal advantage of 

Annocript is its ability to make optimal use of parallel processing to achieve a 

significant loss in annotation time. The pipeline is able to accurately identify 

known protein-coding sequences. I have tested the pipeline on previously 

published lncRNA datasets (human and zebra fish) and the results suggests that a 

sizable fraction of the reported lncRNAs might be actually coding for proteins or 

small pep tides. This fact highlights the issue of defining the optimal lncRNAome 

size in an organism. I believe that our current knowledge is limited to accurately 

predict the correct number of lncRNAs. However, a standard measure for IncRNA 

prediction may help avoid over-estimation of IncRNA population in a given RNA 

sample. Further it will aid in making comparisons between different studies which 

will employ a similar tool to predict lncRNAs. Hence a pipeline like Annocript will 

prove to be highly useful in all future studies which aim towards identification of 

IncRNAs in a given cell, tissue or organism. 
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7.3 Sequence conservation in IncRNAs: Short segments in a 

small population 

Additional measures of conservation could be used to associate a putative 

functionality to predicted lneRNA candidates. Hence, I defined a computational 

pipeline which can be effectively employed on diverse organisms to measure the 

sequence conservation of lncRNAs (Basu et aI., 2013). Specifically a combination of 

two parameters (BLAST e-value and alignment length) were deemed sufficient to 

select candidate lncRNAs which show the presence of conserved sequence motifs 

between species separated by a large evolutionary distance (mouse and zebrafish). 

However, a very small percentage of the my initial dataset could be predicted as 

conserved. Further, if I consider only those regions of conservation which lie 

exclusively in intergenic or intronic regions (with respect to protein coding genes) 

then I have a set of -50 mouse lncRNAs which show a significant level of sequence 

conservation with zebrafish. It is important to note that this small dataset is 

potentially interesting to experimentally validate and may provide novel insights 

into the mechanism of functionally conserved lncRNAs. The general lack of 

sequence conservation in lncRNAs led me consider an alternative approach to 

associate a lincRNA with a putative function. 

7.4 Microsynteny in IncRNAs 

The retention of position in lncRNAs is an approach which does not presume an 

existing conservation of sequence or secondary structure to associate putative 
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homology. I developed a pipeline to measure the positional conservation of long 

intergenic non-coding RNAs (lincRNAs) between different species (SynLinc). The 

pipeline was used to predict a set of lincRNAs which are observed to retain their 

position with respect to a flanking coding gene in human, mouse and zebrafish. I 

address these lincRNAs as Vertebrate Microsyntenic LincRNAs (VMLs). I expected 

the retention of position to be a function of a shared regulation or co-regulation 

between the lincRNAs and its nearby protein coding gene. But I failed to observe 

significant co-expression patterns between the majority of lincRNAs and their 

flanking coding genes in human and mouse. However, I found a subset (15%) of 

the conserved lincRNAs to show a significant expression correlation with their 

flanking genes during early embryonic development in zebrafish. Interestingly, the 

sequence space between a VML and its flanking orthologous coding genes shows 

an enrichment for sequence conservation thus arguing against the presence of the 

lincRNA due to a random evolutionary event. Further, I have observed an 

enrichment of the human and zebrafish VMLs to lie near an active conserved 

enhancer, while this enrichment is not observed in mouse. A recent finding has 

demonstrated that intergenic lincRNAs in mouse can be divided into classes based 

on the overlap of chromatin features (Marques et al., 2013). Further, the study 

states that lincRNAs which are associated with enhancers do not differ structurally 

from other lincRNAs, but are less conserved (sequence) and tend to be co

expressed with their proximal coding genes. The results from this finding 

illustrates the fact, that lincRNAs can be considered as dynamic molecules further 

divided into multiple classes with diverse functions. I have predicted a set of 
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lincRNAs which retain their position across evolution but I did not find any 

evidence implicating such lincRNAs to be functionally associated with their 

flanking coding genes. Yet, this is a work in progress and I started to use the 

IncRNA information from another teleost fish to further refine my results and 

identify functionally conserved lincRNAs. 

7.5 Prediction of islet cell specific lincRNAs in zebrafish 

I generated the zebrafish islet celllincRNA catalog and predicted a potential list of 

lincRNA candidates which may be involved in pancreatic development and 

differentiation of islet cells. The hypothesis is such lincRNAs may be involved in 

regulation of genes or pathways implicated in type 2 diabetes. I have been able to 

isolate two major issues during identification of lincRNAs, related to the analysis 

of the RNAseq data. The first issue is multiple mapping of short reads on the 

genome and the second issue is the assembly of reads into transcripts. I have 

demonstrated that slight parametric changes in mapping short reads on the 

genome are magnified in the downstream assembly of transcripts, often leading to 

spurious transcript models and differences in the number of transcripts assembled. 

Further, I also observed that such differences are more prominent for intergenic or 

long non-coding RNA transcripts hence again raising the previous issue of, how to 

reliably estimate a lncRNA population in a RNA sample computationally. Hence, I 

defined a mapping and assembly protocol which takes advantage of the inherent 

features of the Tophat (Kim et al., 2013a) and Cufflinks (Trapnell et al., 2012) 
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softwares to reduce transcript mis-assembly. Further I used the Annocript and 

SynLinc pipelines to define a set of lincRNAs significantly upregulated in the 

zebra fish islet cells. Currently, experimental validations are being carried out for 

these candidate lincRNAs in the laboratory of my external supervisor Dr Ferenc 

Muller in the University of Birmingham, UK. 

7.6 LncRNAs in embryogenesis 

Finally, I have analysed the early developmental transcriptome of the spotted green 

pufferfish (Tetraodon nigroviridis), to predict coding and long non-coding 

transcripts transcribedd during early embryogenesis. I mapped the expression of 

the coding and the long non-coding transcripts globally (Figure 6.4) to observe a 

dynamic expression of the IncRNAs in different genomic loci, sometimes 

concurrent with coding genes. Further, based on GO enrichment analysis and 

expression comparison with zebrafish orthologs, I demonstrated the similarity 

between the predicted maternal and embryonic specific coding transcripts in 

Tetraodon with the defined roles of such transcripts in other vertebrates. It is 

interesting to note that the early developmentallincRNAs in Tetraodon are observed 

to lie near coding genes which are implicated in development of the brain and 

chromatin modifications, two functions with which lincRNAs are widely 

associated. Further, I used the SynLinc pipeline to compare the Tetraodon lincRNAs 

with zebrafish lincRNAs as well as VMLs. The Tetraodon lincRNAs which show 

positional conservation with VMLs are enriched to lie near coding genes 
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implicated in processes like eye development and regulation of transcription. 

Previously, another study has demonstrated a dynamic population of IncRNAs 

being transcribed in zebrafish during embryogenesis (Pauli et al., 2011a). Here, I 

report a large set of lncRNAs in another teleost fish also showing a robust 

expression pattern during early development. Currently this is a work in progress 

and I will further make an in-depth comparison of the lincRNA population of 

zebra fish and Tetraodon to gain further insight into their possible duplication, 

enrichment of chromatin marks and sequence conservation. 

7.7 Future perspectives 

A major period of my PhD tenure was spent on defining sensitive protocols for the 

prediction of IncRNAs and their comparative analysis between different species. I 

have predicted lncRNAs from two different RNAseq datasets, highlighting the 

various computational hurdles which corne across during such a task. Currently I 

have a set of well defined computational protocols to predict and compare 

lncRNAs, whose merit has been demonstrated in different analyses. I aim to make 

these pipelines available to the scientific community. Further, I want to continue 

with the analysis of the Tetraodon early developmental IncRNAome. Specifically I 

plan to compare intra and inter species lincRNA microsynteny between zebrafish 

and Tetraodon and associate the results with various parameters like sequence 

conservation, presence of transposable elements, chromatin state and 

developmental expression pattern. Considering the fact that lincRNAs are 
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associated independently with the given parameters in various published reports, 

I believe that such an analysis will provide the basic framework to assign a 

function with respect to lincRNA conservation. Further comparison of the results 

with mammalian lincRNAs may provide valuable insight into the evolution 

lincRNAs and their function. 
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Annexure 1 

Annocript 2.0 - Results 

Statistics for transcriptome: 

The file of sequences is 
/home/francesco/ann_ works/jobs/astropecten2/starfish _transcriptome _2013_10 _filtered. fasta 
The total number of sequences is 64388 
The mean sequences length is 2125 
The minimum and maximum sequences length are respectively 20 I and 34228 
Mean percentage of Adenine: 28.99 ; 
Mean percentage of Guanine: 21.09; 
Mean percentage of Thymine: 29.05 ; 
Mean percentage of Cytosine: 20.86 ; 
Mean percentage ofN: 0.00; 
Mean percentage ofCG: 41.95 
Number of annotated sequences: 32783 
Sequences in agreement with strand info: 29564 
Number of non coding sequences: 3133 

(obtained with probability major than: 0.95 and maximum length of the orf: 100) 
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Annexure 2 

Candidate lincRNAs in zebrafish islet cells 

Name Locus Islet Embryo Closest Orientation Distance 

205 54 cd247 div 2728 

Name: A igned tran cript name for the IincRNAs 

Locus: Genomic location 

Islet: Number of raw equencing reads mapped on the transcript in islet cells 
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Embryo: Number of raw sequencing reads mapped on the transcript in Embryo 

cells 

Closest: Closest coding gene in the zebrafish genome-wide 

Orientation: Orientation of the lincRNA with respect to the closest coding gene 

SProx: 5' proximal; 3prox: 3' proximal; div: Divergent; cov: Convergent 

Distance: Distance from the closest coding gene 
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