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Abstract 

Ocean acidification may be one of the greatest challenges facing society over the next 50-

100 years. In the Mediterranean Sea, meadows of the seagrass Posidonia oceanica playa 

pivotal role in coastal systems, providing shelter and food for a highly diversified plant and 

animal community, and nursery for several commercial species of fish and bivalves. This 

thesis aims to provide a broad overview of the effect of acidification on P. oceanica, and 

its associated community, through observation of seagrass meadows associated with 

subtidal C02 vents off the Castello Aragonese, Ischia, Italy. Control (mean pH 8.1) and 

acidified (mean pH 7.8) stations were situated in seagrass meadows on both the north and 

south side of the Castello Aragonese. Research was concentrated into three main 

objectives; to investigate the effect of acidification on 1) plant structure and function, 2) 

invertebrate community dynamics, and 3) macroherbivore grazing pressure. Results 

suggested that P. oceanica and its associated community should be robust to levels of 

acidification projected for the end of this century. Seagrass density, invertebrate 

abundance, and P. oceanica grazing pressure all increased in response to acidification. 

Although a slight decrease in invertebrate diversity was observed in acidified stations, 

species richness was maintained. Increased grazing by the fish Sa/pa sa/pa was most 

highly correlated to a decrease in epiphytic algal cover and C:N content of the leaves, and 

an increase seagrass density. Whilst fish may select leaves with low algal cover and C:N 

content, previous research suggests that increased shoot density is a response to high 

grazing pressure. The abundance of many groups of invertebrate taxa was positively 

correlated to shoot density, whilst decapods decreased during months of reduced canopy 

height, suggesting changes in P. oceanica condition variables, in response to acidification, 

may lead to a cascade of indirect effects which have positive or negative influences on the 

abundance of the associated invertebrate community. One of the most striking findings of 

this thesis was the ability of calcifying species to persevere, and even flourish in acidified 

conditions. This may be due to the complex nature of the seagrass, and high levels of 

photosynthesis, leading to local maintenance of pH microclimates. Secondly, the high 

degree of pH variability that naturally occurs in these shallow water habitats may result in 

organisms that are be better equipped to withstand pH variation. This research suggests 

that highly productive, non-calcifying, biogenic habitats, such as seagrass beds, may 

provide a refuge from OA, and highlights the importance of their conservation. 
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one-way GLM ANOV A. 

Table 4.4 Mean abundance (± SE) of each species of decapod per sample (N = 12) at each 

station, and total abundance collected. Arrows in the final column signify significant 

increase (I) or decrease (!) in the abundance in response to acidification, obtained by a 

one-way GLM ANOV A. 

Table 4.5 Mean abundance (± SE) of each species of amphipod per sample (N = 12) at 

each station, and total abundance collected. Arrows in the final column signify significant 

increase (I) or decrease (!) in the abundance in response to acidification, obtained by a 

one-way GLM ANOV A. 

Table 4.6 Mean abundance (± SE) of each species of tanaid per sample (N = 12) at each 

station, and total abundance collected. Arrows in the final column signify significant 

increase (I) or decrease (!) in the abundance in response to acidification, obtained by a 

one-way GLM ANOV A. 

Table 4.7 Mean abundance (± SE) of each species of isopod per sample (N = 12) at each 

station, and total abundance collected. Arrows in the final column signify significant 

increase (I) or decrease (!) in the abundance in response to acidification, obtained by a 

one-way GLM ANOV A. 

Table 4.8 Mean abundance (± SE) of each polychaete OTU per sample (N = 12) at each 

station, and total abundance collected. Arrows in the final column signify significant 

increase (I) or decrease (!) in the abundance in response to acidification, obtained by a 

one-way GLM ANOYA. 

Table 4.9 Comparison of abundance, richness, diversity and evenness of the invertebrate 

community, analysed by means of a three-way GLM ANOV A with site (fixed factor), pH 
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(fixed factor) and month (fixed factor). Significant results are highlighted in red. * p < 

0.05, ** P < 0.01, *.* P < 0.001 

Table 4.10 Results of community analysis for the whole invertebrate community, collected 

by airlift sampler, pooled for all months and for each separate month. Community structure 

and community composition were analysed using a three-factor PERMANOVA with site 

(fixed factor), pH (fixed factor) and month (fixed factor) for pooled data, and each month 

was analysed using a two-factor PERMANOV A with site (fixed factor), and pH (fixed 

factor). Significant results are highlighted in red. 

Table 4.11 SIMPER analysis of the abundance of each OTU in each sample (N=48), to 

determine which OTUs, contribute> 3% similarity for each pH zone (control and 

acidified). Data has been pooled across sites and months. % SC = % similarity contribution 

Table 4.12 Analysis of abundance and proportion of each trophic group, analysed by 

means of a three-way GLM ANOV A with site (fixed factor), pH (fixed factor) and month 

(fixed factor). All abundance data was LOG (X + 1) transformed, whilst proportion data 

was arcsine transformed to conform to the assumptions of ANOVA. Significant results are 

highlighted in red. * p < 0.05, * * P < 0.01, ** * P < 0.001 

Table 4.12 Analysis of abundance and proportion of each trophic group, analysed by 

means of a three-way GLM ANOV A with site (fixed factor), pH (fixed factor) and month 

(fixed factor). All abundance data was LOG (X + 1) transformed, whilst proportion data 

was arcsine transformed to conform to the assumptions of ANOVA. Significant results are 

highlighted in red. * p < 0.05, ** P < 0.01, **. P < 0.001 

Table 4.13 Results trophic structure, analysed using a three-factor PERMANOVA with 

site (fixed factor), pH (fixed factor) and month (fixed factor). Significant results are 

highlighted in red. 

Table 4.14 Results of Spearman Rank Correlations between total abundance, richness, 

diversity, evenness and abundance of each of the taxonomic invertebrate groups, and shoot 

density of Posidonia oceanica. 
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Table 5.1 Comparison of mean (± SD) carbonate chemistry parameters between 

controVambient and acidified/low pH station in P. oceanica in 2011 and in rocky reef 

habitat in 2010 (Kroeker et a1. 201Ib). 

Table 5.2 Results of community analysis for the effects of acidification on invertebrate 

populations collected on the rocky reef and in the Posidonia oceanica at the Castello 

Aragonese. Community structure and community composition were analysed using a two

factor PERMANOVA of site (north and south: fixed factor), and pH (control and acidified: 

fixed factor). Significant results are highlighted in red. 

Table 5.3 The number and percentage (given in brackets) of families that decreased, 

showed no trend, increased or were rare (present in < 4 samples) in P. oceanica 

(November 2011) and the rocky reef (November 2008) for each taxonomic group. The 

total number of families for each taxonomic group, collected in each habitat is indicated. 

Table 6.1 Mean ± SD seawater carbonate chemistry. Temperature (13-29°C throughout 

study period, mean = 21.1 0c) was continuously recorded between March 2011 and August 

2013 using a data logger. Salinity (37) was a point measurement taken in May 2011. 10 pH 

samples were collected from each station periodically between April 20 II and August 

2013. Total alkalinity (TA) is a point measurement taken on the 04110/11. The remaining 

parameters were calculated using C02 SYS programme using the constants of Roy et a1. 

(1993) and Dickson (1990) for KS04. Total alkalinity (TA) is mmol.kg- I
; pHNBs was 

measured using an NBS scale; and pC02 is flatm. 

Table 6.2 Three-way ANOV A results of leaf length and % cover of epiphytic algae and % 

cover of epiphytic fauna between site (fixed factor), acidification (fixed factor) and year 

(fixed factor). Leaf length was LOG ex + 1) transformed, whilst percentage data was 

arcsine transformed. S = site, pH = acidification, Y = year. Significant results are 

highlighted in red. 

Table 6.3 Three-way ANOV A results of % of leaves per shoot with: Sarpa sa/pa bites, 

Paracentrotus lividus bites and mechanical damage between site (fixed factor), 

acidification (fixed factor) and year (fixed factor). All data was arcsine transformed. S = 
site, pH = acidification, Y = year. Significant results are highlighted in red. 
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Table 6.4 Three-way ANOV A results of leaf length and % cover of epiphytic algae and % 

cover of epiphytic fauna between site (fixed factor), acidification (fixed factor) and month 

(fixed factor). Leaf length was LOG (X + 1) transformed, whilst percentage data was 

arcsine transformed. S = site, pH = acidification, M = month. Significant results are 

highlighted in red. 

Table 6.S Three-way ANOV A results of % of leaves per shoot with: Sarpa sa/pa bites, 

Paracentrotus lividus bites and mechanical damage between site (fixed factor), 

acidification (fixed factor) and month (fixed factor). All data was arcsine transformed. S = 
site, pH = acidification, month = year. Significant results are highlighted in red. 

Table 6.6 Pearson correlation coefficients between P. oceanica parameters: C:N content of 

the leaves, meadow density, height of the canopy, and % epiphytic cover of animals and 

algae. 

Table 6.7 Pearson's correlation coefficients between S. sa/pa or P. lividus grazing pressure 

and P. oceanica structural or epiphytic characteristics. 
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1.1 Introduction 

Acidification of the oceans may be one of the greatest challenges facing society over the next 

50-100 years. The role of the ocean in supporting goods and services cannot be 

underestimated. In order to provide policy relevant science, we must understand how 

acidification will affect the marine environment at the ecosystem level. This thesis aims to 

provide a holistic overview of the responses of the most productive species of seagrass in the 

Mediterranean, Posidonia oceanica, and its associated community, to natural acidification 

observed at C02 vents off the island oflschia, Italy. 

1.2 Ocean chemistry 

The release of anthropogenic greenhouse gases into the atmosphere has increased steadily 

since the industrial revolution. Greenhouse gases are trace gases such as carbon dioxide (C02), 

methane (CH4) and nitrous oxide (NO). These gases are of concern as they alter the energy 

budget of the earth by changing the net balance of incoming solar radiation and outgoing 

infrared radiation between the troposphere and the stratosphere. This change is called radiative 

forcing. Greenhouse gases reduce the amount of energy leaving the atmosphere, leading to a 

wanning effect. Evidence that our planet is warming is now unequivocal (IPCC 2007; 

European Environment Agency 2012). Other climatic effects from the increase of these gases 

include; increased intensity of tropical cyclones (Krishnamurti et at. 1998) and increased 

frequency of EI Nino like conditions (Timmennann et al. 1999), alongside conditions of 

greater precipitation or drought (IPCC 2007). Climate change can be defined as 'a change of 

climate which is attributed directly or indirectly to human activity that alters the composition 

of the global atmosphere and which is in addition to natural climate variability observed over 

comparable time periods' (UNFCCC 1992). 
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Of the greenhouse gases released, C02 is of the greatest concern, due to the large quantities 

released (lPCC 2007). Anthropogenic C02 release primarily comes from two sources: I) 

emissions from fossil-fuel combustion and industrial processes and 2) the CO2 flux from land-

use changes (particularly forest clearing) (Raupach et at. 2007). Emissions from fossil-fuel 

combustion and industrial processes are of most concern as this produces more than five times 

the quantity of C02 released from land-use changes (7.9 GtC y"t versus 1.5 GtC y"t), and 

emissions are accelerating rapidly (Raupach and Canadell 2007). The concentration of CO2 in 

the atmosphere has risen from 280ppm in preindustrial times to a level of 390ppm in 20 I 0, an 

increase of approximately 40% (Fig 1.1). In 2013 levels of 400ppm were measured at Mauna 

Loa volcano for the first time in recorder history (Showstack 2013). This level is expected to 

increase to over 750ppm by the end ofthe century (fPCC 2001a; Raven et at. 2005) 

Atmospheric CO2 at Mauna Loa Observatory 
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Figure 1.1 Mean monthly atmospheric CO2 levels found at the Mauna Loa Laboratory, Hawaii. The red curve 

signifies monthly averages, whilst the black curve represents seasonally corrected data (NOAA 2011). 
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The release of C02 into the atmosphere does not only affect the earth's climate, but has 

consequences for the future of the world's oceans. Our seas have currently absorbed over 500 

billion tons of C02 since preindustrial times, which equates to over one third of anthropogenic 

carbon emissions since the industrial revolution (Sabine and Feely 2007). The rate of 

absorption is expected to increase significantly in the future (Riebesell et at. 2007), and this 

increase will drastically change ocean chemistry. When C02 is dissolved in seawater, rapid 

and reversible reactions cause it to exist in four forms; C02 (aq), carbonic acid (H2C03), 

bicarbonate (+ HCOJ1, and carbonate (COl): 

The ratio of these forms is dependent on the pH of the seawater. pH is measured on a 

logarithmic scale and determined by the quantity of H+ ions present (pH = -log(H1), hence a 

decrease of 1 unit leads to a tenfold increase/decrease in acidity. Increased absorption of C02 

by the oceans causes an increase in H+ and a decrease in pH. This has been termed 'ocean 

acidification'. At present the pH of the oceans has dropped from an average of 8.2 of 

preindustrial times to 8.1. At a pH of 8.1 approximately 90% of carbon is found in the form of 

bicarbonate ions (HCOJ1, 9% as carbonate ions (COl), and <1% as C02 (aq) and trace 

concentrations of carbonic acid (H2C03). If trajectories of proposed acidification are correct, 

under the IS92a 'business-as-usual' CO2 emissions scenario the pH will drop to -7.8 by the 

end of this century (Caldeira and Wickett 2003; IPCC 2007). This decrease in pH will cause a 

reduction in carbonate, and an increase in bicarbonate, C02 (aq) and carbonic acid (Fig. 1.2). 
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Figure 1.2 Changes in concentrations of ionic states of CO2 in relation to a pH gradient. 

This change will not only affect the acidity of the oceans but will affect the CaC03 saturation 

state. Generally marine organisms secrete two different type of CaC03: calcite and aragonite. 

The saturation state of these minerals is determined by their themodynamic potential to form 

or dissolve (Atkinson & Cuet 2008). Saturation states are dependent on the concentrations of 

carbonate and calcium ions, divided by the stoichiometric solubility product (Ksp). Ksp is the 

product of the concentrations of those ions (Ca2+ and COl-) when the mineral is at 

equilibrium (neither forming nor dissolving) at the given temperature, salinity, and pressure. 
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n= [Ca 2+][CO lllKsp 

When 0 > 1.0, the formation of the mineral is thermodynamically favorable; when 0 < 1.0, 

dissolution of the mineral is favorable (Atkinson & Cuet 2008; Fabry et at. 2008). The 

saturation states of seawater are primary governed by variations in the ratio of col" to the 

solubility product, therefore increased absoption of anthropogenic C02 leads to strong changes 

in calcite and aragonite saturation states (Feely et at. 2004). n shows a positive correlation 

with salinity (Key et at. 2004). This may also be altered by the more intensified rainfall and 

storm variability occurring through climate change, which will alter salinity of coastal areas 

during these events (lPCC 2007), leading to a further decrease in n. Under the IS92a 

'business-as-usuaJ' scenario concentrations of C032
- (and therefore the saturation state of 

calcite and aragonite) is expected to decrease by 47- 48% (Fig. 1.3). Carbonic acid (H2C03), 

which is currently only found in trace amounts and is corrosive to organisms, will increase by 

178% (Fabry et at. 2008). These changes in carbonate chemistry will not only impact 

organisms but may lead to changes in biogeochemical cycling in the oceans (Doney et at. 

2009a). The extent of changes in pH and n will vary locally, although the extent of these 

changes for the Mediterranean is generally unknown. Currently calcite and aragonite 

saturation states are generally quite high, particularly in shallow waters (Fig. 1.4) 
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Figure 1.3 The aragonite saturation state of surface waters for 1994, compared to the predicted aragonite 

saturation state for 2 100. Figure from Fabry et al. (2008). 
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Figure 1.4 Verti cal profi les of calcite and aragonite saturation states in the Mediterranean Sea (from Schneider et 

al. 2007) 

In the past 20 million years ocean surface water pH has not dropped below pH 8 (Fig 1.5), 

although organisms have experienced low pH in the past. Surface water pH may have dropped 

to as low as 7.4 - 7.5 during the Cretaceous and Jurassic period and yet many calcifying 

plankton originated and thrived during this time (Fig. 1.6) (Ridgwell and Schmidt 2010) . A 

reason for this may be that during these periods the calcite and aragonite saturation of the 

oceans are thought to have remained high due to the large input of Ca + from dissolution and 
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weathering, leading to high alkalinity (Ridgwell 2005), and a carbonate system much different 

from expected future conditions (Ridgwell and Schmidt 2010). Much of the present day 

concern over acidification relates to the speed at which the pH is changing, ocean chemistry is 

changing over 100 times faster than natural fluxes , which occurred slowly through geological 

timescales (Siegenthaler et al. 2005). 
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Figure 1.5 Past and future mean pH variability of the oceans (future values are based on IPCC 2007 mean 

scenarios) (Blackford and Gilbert 2007). 
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Figure 1.6 Surface oceans over geological timescales a) planktonic diversity on major taxa: black = calcifying, 

grey = non-calcifying (from Martin \995). b) mean surface-ocean pH; dashed black line and grey represent mean 

model reconstruction, maximum and minimum (from Ridgwell 2005), solid black line from Tyrell and Zeebe 

(2004); circles represent Earth-system model reconstructions by Ridgwel\ and Schmidt (2010). c) surface-ocean 

calcite saturation state; dashed line and grey represent mean model reconstruction and uncertainties in pe02 

respectively (Ridgwel\ 2005); circles Earth-system model reconstructions by Ridgwel\ and Schmidt (Ridgwel\ 

and Schmidt 2010); dashed vertical line represents the Palaeocene-Eocene boundary (Ridgwel\ and Schmidt 

2010). Figure taken from Ridgwell and Schmidt (2010). 
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1.2 Current knowledge of the effects of ocean acidification 

If anthropogenic C02 emissions continue to increase, there is now little doubt that marine 

organisms will be impacted (Fabry et at. 2008), which could lead to an overall reduction in 

biodiversity (Hall-Spencer et at. 2008; Fabricius et at. 2011). Research indicates that species 

responses to a reduction in pH will be species specific. For example, positive adaptations that 

may enable the survival of some calcifying organisms have been shown, whilst other species 

appear less able to adapt (Sunday et at. 2011). Effects of OA are not always deleterious, but 

may be advantageous such as: increased growth in calcifying organisms (e.g. the sea star 

Crossaster papposus, see Dupont et at. 201 Ob), or enhanced biological carbon fixation in 

phytoplankton (Riebesell et al. 2007). Due to such variability in results, it has been difficult to 

predict the effect of OA on ocean ecosystems. 

Calcification is widespread in marine organisms (Brennan et at. 2004), and is a process 

particularly susceptible to future changes in ocean carbonate chemistry (Orr et at. 2005; Fabry 

et at. 2008). Hence, a large number of studies have focused on calcification (e.g. Gazeau et al. 

2007; Brennand et al. 2010; Gutowska et at. 2010), although more recently the requirement to 

understand the effect of OA on non-calcifying organisms has been recognized (e.g. Mercado 

et al. 1999; Connell and Russell 2010; Suggett et at. 2012). 

Calcification responses of organisms have been extremely varied (Ries et al. 2009; Hikami et 

at. 2011), suggesting different sensitivities to low pH. Some species show reduced 

calcification rates (Maier et at. 2009; Ries et at. 2010), whilst other species appear to increase 

their calcification rates under low pH (McDonald et al. 2009; Gutowska et al. 2010). Gene 

expression analysis has revealed similar variability. For example calcification genes are down-

11 



regulated in the larvae of the sea-urchin Strongylocentrotus purpuratus (Stumpp et al. 2011), 

up-regulated in the larvae of the sea-urchin Paracentrotus lividus (Martin et al. 2011), and did 

not change in different life stages of the red abalone Ratiotis rufescens (Zippay and Hofmann 

2010). Variability in response has even been obtained between similar studies of the same 

species, e.g. the coccolithophore Emiliania huxleyi (Riebesell et aJ. 2000; Feng et al. 2008; 

Iglesias-Rodriguez et al. 2008). It is uncertain whether variation in these results is context 

dependent, due to strain specific variation, or whether culture procedures; e.g. temperature, 

nutrient limitation, UV radiation, exposure time, culture density, acclimation time or other 

factors were responsible. 

Calcification is not the only process that will be affected by OA, other physiological indices 

such as growth, survival, metabolism, and development may be affected (Fabry et al. 2008), 

particularly through disruption to the extracellular acid-base balance (Widdicombe and Spicer 

2008). Research shows similar variation in species responses to these other physiological 

indices as they do to calcification, although early life history stages may be more susceptible 

(Fig. 1.7). For example, under low pH larval growth was reduced in a number of sea urchin 

species (Clark et al. 2009), whilst in the sea star Crossaster papposus larval growth increased 

(Dupont et al. 2010b). A species lifestyle is likely to be important in determining whether they 

may tolerate low pH conditions (Widdicombe and Spicer 2008), and the difference in growth 

response between these echinoderms is thought to be due to the lecithotropic nature of the C. 

papposus larvae. The supply of nutrition by the egg yolk of C. papposus may confer an 

advantage to this species under low pH scenarios (Dupont et al. 201 Ob). Many different life

history strategies or growth strategies may enable organisms to withstand low pH. For 

example organisms that have tissues or organic layers which cover their shells may be less 
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susceptible to OA, as these layers may protect against corrosive seawater (Lombardi et al. 

201 1 a; Rodolfo-Metalpa et al. 2011). 
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Figure 1.7 Meta-analysis of mean effect size (± SE) on the calcification, growth and survival of different life 

hi story stages of echinoderms exposed to ocean acidification (Dupont et al. 201 Oa). 

The ability of a species to regulate the pH of extracellular fluids under a decrease in seawater 

pH, has been implicated as a key factor in OA response (Melzner et al. 2009; Ries et al. 2009) . 

Those that can ' t regulate internal pH will conform to external conditions, leading to acidosis 

and impacting pH-dependent processes. Those that can regulate internal pH may be able to 

reduce these impacts (Melzner et al. 2009), although this regulation may come at an energetic 

cost (Portner et al. 2004). Examples of this incl ude; the brittlestar Amphiura filifarmis , where 

calcification was maintained but with great muscle loss (Wood et aI, 2008), and larvae of the 

Atlantic cod Gadus morhua, where increased growth was at the cost of organ development 

and health (Frommel et al. 2011). 
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Many researchers have tried to synthesize the effects of OA through meta-analytic techniques 

(Dupont et al. 201 Oa; Hendriks et al. 2010; Kroeker et al. 2010) and review (Fabry et al. 2008; 

Doney et al. 2009b), although a consensus on the biological impact of OA has not been 

reached (e.g. Dupont et al. 2010a; Hendriks and Duarte 2010). Most authors suggest that there 

will be widespread alterations to marine ecosystems (Fabry et al. 2008; Kroeker et al. 2010), 

although the ability of species to adapt to future conditions is unknown (Doney et al. 2009b). 

In respect to proposed future acidification, species abilities to adapt or tolerate these changes 

will be important in determining survival success, but accurate predictions must take into 

consideration a complex array of both biotic and environmental interactions (Russell et al. 

2012). Whilst OA will occur simultaneously with changes in other physical variables such as 

temperature, salinity, and oxygen, the interaction between species will change as well. Food 

availability will change through altered composition of primary producers (e.g. Kuffner et at. 

2008; Wootton et at. 2008), loss of nutritional value of the prey species (e.g. Rossoll et at. 

2012), or decline of important prey species (e.g. Lischka et al. 2011), whilst predator-prey 

interactions may change through loss of sensory capabilities (e.g. Dixson et al. 2010; Ferrari et 

at. 2011 a), changes in metabolism (e.g. Gooding et at. 2009) or reductions in shell defense 

(e.g. Bibby et at. 2007; Comeau et at. 2010). Changes in competitive interactions through the 

differential responses of species in the same trophic guild will also be important for 

determining future OA scenarios (e.g. Jokie) et al. 2008; Cigliano et at. 2010). Deep sea vents 

provide an excellent example of how fitness can be a relative concept, dependant on the biotic 

interactions present. For example, bivalves found at deep sea vents with low pC02 (pH 5.36-

7.29) show a sharp reduction in calcification. Although shell defences are greatly reduced, this 

species continues to thrive due to the absence of predators (Tunnicliffe et al. 2009). A species 
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ability to simply tolerate low pH may not be enough, as other organisms that can adapt and 

thrive in low pH conditions will have the competitive advantage. Marine organisms will 

therefore face the test of coping with multiple challenges at all levels. 

1.3 Background to research 

As results show that OA will have numerous and highly varied consequences for life in the 

oceans, no method of OA research can completely fill our research requirements, and a 

multitude of scales, from single-species perturbation experiments to mUlti-species mesocosm 

and in situ observational studies should be used to investigate OA at the ecosystem level. 

1.3.1 Experimental studies 

Although perturbation experiments are the key approach, and a valuable tool in investigating 

the effects of OA, they do not mimic the complexity of the oceans. Short-term perturbation 

experiments can be useful for understanding the physiological processes which are affected by 

lowered pH such as calcification, acid-base balance and metabolic rates, alongside examining 

the success of different life history stages in terms of growth, survival and reproduction. These 

experiments are generally undertaken on single species in highly controlled environments with 

manipulation of only a single variable (Widdicombe et al. 2010), although experiments 

examining multiple stressors (e.g. Brennand et al. 2010), predator-prey relationships (Ferrari 

et al. 20 11 b) or even both (Landes and Zimmer 2012) are developing. Extrapolating these 

results to future acidification scenarios is fraught with difficulty, because (1) of uncertainty in 

future changes in biotic interactions (Russell et al. 2012), and (2) these experiments may hide 

positive adaptations (Doney et a1. 2009b), or negative impacts (Dupont et al. 2010c) that may 

occur during chronic acidification. 
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Mesocosm studies can reduce these uncertainties (Godbold et al. 2009), as they enable 

observations on the impacts of ocean acidification in more natural settings with multiple 

species over several trophic levels and include surrounding and indirect effects while allowing 

for controlled manipulation (e.g. Grossart et al. 2006; Egge et al. 2009). These studies are 

important, particularly in understanding the impact on planktonic communities, but lack the 

ability to incorporate higher trophic levels (Riebesell et al. 2010). 

1.3.2 Observational studies 

An alternative method for OA research is the study of habitats which are characterized by low 

pH, such as C02 vent sites (e.g. Italy) and areas of acidic upwelling (e.g. west coast of 

America; Feely et al. 2008). Exploiting natural pH gradients in space or time can help unravel 

the ecosystem level effects of OA by seeing how species, communities and ecosystems react 

to a decrease in pH in a natural environment (Barry et al. 2010). Ecological research at C02 

vent sites in Italy (e.g. Hall-Spencer et al. 2008; Suggett et al. 2012), Papua New Guinea (e.g. 

Fabricius et al. 2011) and Mexico (Crook et al. 2012) has flourished over recent years. 

The island of Ischia, (Gulf of Naples, Italy) has a long history of volcanism and gas venting in 

shallow submarine sites (Tedesco 1996). The C02 vents of the Castello Aragonese, Ischia 

have been present for more than 20 years, although their magnitude has increased over recent 

years (MC Buia, pers comm.), and allow for observation of the long-term consequences of 

chronic exposure to low pH on species abundance, diversity and community structure (Hall

Spencer et al. 2008). When using in situ observational measurements confounding factors such 

as temperature, nutrients, exposure and light must be taken into consideration (Barry et al. 
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20 I 0). One major confounding factor when using CO2 vents can be the release of heat and 

sulphides into the water column alongside C02. Sulphides are toxic to most organisms (Powell 

and Somero 1986), and will significantly confound experimentation. Vents found at the 

Castello Aragonese are unusual, as they do not produce heat or spew out toxic compounds. 

Vent gas consists of90.1 - 95.3% C02, 3.2 - 6.6% N2, 0.6 - 0.8% 0 2, 0.08 - 0.1 % Ar and 0.2 -

0.8% CH4 (Hall-Spencer et al. 2008) . 

Vents are found at the north and south side of the Castello Aragonese, and have been used as 

natural analogs of OA for many studies. Much of the previous research has focused on the 

rocky sublittoral (e.g. Kroeker et al. 2011b; Porzio et at. 2011), where C02 bubbles released 

by the vents are most abundant, although bubbles are also released into the seagrass habitat 

(Fig. 1.8). The C02 gradient running parallel to the rocky shore has been documented 

(Kroeker et al. 20 11 b). 

Figure 1.8 CO2 bubbles released into a) the rocky subtidal and b) Posidonia oceanica habitat at the Castello 

Aragonese. 
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1.3.4 Current research 

These vents can provide important infonnation on the long-term effects of OA on benthic 

assemblages and ecosystems, incorporating ecosystem processes such as production, 

competition, and predation (Hall-Spencer et al. 2008). Research at the CO2 vents of Ischia, 

Italy began in 2007 when Hall-Spencer et al. (2008) documented the decline of calcifying taxa 

such as sea-urchins and coralline algae along a pH gradient. Barnacles and gastropods 

appeared to be more resistant to pH, and abundances only declined in extremely low pH 

zones. Non-calcifying taxa such as the seagrass Posidonia oceanica and some species of non-

calcifying algae all appeared resistant and even flourished under reduced pH conditions. 

Research undertaken at these vents has been significant, a summary of which can is presented 

(Table 1.1). 

Table 1.1 Summary of research from the CO2 vents at the Castello Aragonese, Ischia, Italy. Findings have been 

placed in columns dependent on whether results showed a decrease «), remained the same (=) or increased (». 

< 
Benthic foraminifera (Dias et a!. 20 I 0) 
Invertebrate settlement (Cigliano et a!. 
20 J 0; Ricevuto et al. 2012) 
Macroalgal diversity (Porzio et al. 
2011) 
Coraline algal cover (Hall-Spencer et 
al. 2008; Martin et al. 2008; Porzio et 
al. 2011; Kroeker et al. 2013b) 
Sea urchin abundance (Hall-Spencer et 
al. 2008) 
Total epiphytic CaCOJ (Martin et al. 
2008) 
Diversity of benthic invertebrates 
(Kroeker et aJ. 2011b) 
Biomass of benthic invertebrates 
(Kroeker et aJ. 2011 b) 

= 
Bryozoan calcification 
rates (Rodolfo-Metalpa 
et al. 2010) 
Bryozoan cover (Martin 
et al. 2008) 
Hydrozoan cover (Martin 
et al. 2008) 
P. oceanica production 
(Hall-Spencer et al. 
2008) 

> 
Bryozoan calcification rates 
(Rodolfo-Metalpa et a!. 2010) 
Skeletal/shell dissolution (Hall
Spencer et al. 2008; Lombardi et 
al.201Ic) 
Dissolution of coralline algae 
(Hall-Spencer et al. 2008; 
Martin and Gattuso 2009) 
P.oceanica shoot density (Hall
Spencer et al. 2008) 
Bacterial diversity (Meron et al. 
2013) 
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The most notable impact reported has been the decline in diversity observed along the pH 

gradient (Cigliano et al. 2010; Dias et al. 2010; Kroeker et al. 2011b; Porzio et al. 2011). Some 

calcareous taxa appear to be particularly affected by acidified conditions. Martin et al. (2008) 

found that there was a severe decline in coralline algal cover and CaC03 biomass along a 

decreasing pH gradient, whilst Dias et al. (2010) found that the abundance and diversity of 

sediment foraminifera assemblages decreased; changing from a calcareous dominated 

assemblage to an assemblage with only non-calcareous agglutinated taxa present. At the 

intermediate pH station the number of species decreased from 23 to 6, leading to a 75% loss of 

calcareous individuals and showing that pH levels of 7.8 will have severe impacts for 

foraminifera communities in the future. Kroeker et al. (2011b) observed that many calcifying 

invertebrate species were still present in zones with a mean pH of 7.8 but absent in zones with 

a mean pH < 7.3, suggesting that invertebrates show some degree of tolerance to pH values 

predicted for the end of this century. Under extremely low pH conditions there was a severe 

decrease in the abundance of gastropods and decapods, whilst taxa such as polychaetes, 

amphipods, and tanaids appeared resistant to even extremely low pH values. Community 

richness, evenness, and biomass decreased, whilst invertebrate abundance remained the same, 

suggesting that density compensation occurs through the proliferation of taxa tolerant to low 

pH. These results suggest that, whilst calcifying sedentary taxa such as coralline algae and 

foraminifera may be severely affected, at mean pH 7.8 invertebrate taxa will not show 

significant community level effects, but that there may be a threshold pH in which a sudden 

ecological shift (tipping point) is observed (Kroeker et al. 2011 b). 

Cigl iano et al. (2010) investigated invertebrate settlement along a pH gradient using artificial 

collectors. Abundance of individuals did not differ between pH zones, consistent with the 
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findings of Kroeker et al. (201Ib), although in contrast, diversity and evenness decreased in 

both the low and extremely low pH site. This was due to the decrease in settlement of 

calcifying organisms, and further research revealed that this pattern was maintained over time 

(Ricevuto et al. 2012). Studies have shown that the juvenile stage of invertebrates may be less 

tolerant to low pH (Dupont et at. 2010a), which may lead to the differences observed between 

the studies. These studies took place in the rocky reef habitat surrounding the Castello, so the 

effects of acidification on the benthic invertebrate population within the Posidonia oceanica 

meadows are still unknown. 

Considerable effort has been focused on studying bryozoans at the C02 vents, as this taxa, 

although calcifying, appear tolerant to low pH (Martin et al. 2008). Rodolfo-Metalpa et al. 

(2010) observed that although the bryozoan, Myriapora truncata, maintained net calcification 

rates under acidified conditions, calcification was impeded during periods of high seawater 

temperatures. Lombardi et al. (201Ic) discovered that although M truncata maintained 

calcification under acidified conditions, their skeletons contained lower levels of Mg. This 

suggests that the outer levels (with higher Mg concentrations) were being corroded. Both 

studies observed that dead colonies suffered high levels of dissolution in acidified waters, 

suggesting that organic tissues provide a protective role against acidification. Further research 

found that new zooids were not produced in acidified sites but that the organic cuticle 

surrounding the skeleton increased in thickness (Lombardi et at. 201Ia). The bryozoan, 

Schizoporella errata, is able to survive under low pH conditions, although investigation 

showed a decrease in protective zoo ids and an increase in feeding zooids (Lombardi et al. 

20 II b). These results suggest bryozoans may be able to withstand future ocean conditions, but 
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that there may be an alteration in energy allocation, energetic cost or fitness associated with 

this. 

Rodolfo-Metalpa et al. (2011) used transplantation experiments along a pH gradient to show 

that molluscs and corals may continue to calcify and grow in low pH. This research revealed 

that species which have external organic layers such as the periostracum in the mussel, Mytilus 

galloprovincialis, and the organic tissue which completely covers the skeleton of the coral, 

Cladocora caespitose, may protect these organisms against dissolution. Organisms with 

exposed skeletons; such as the limpet, Patella caerulea, and the coral, Balanophyllia 

europaea, tolerated low pH by increasing net calcification rates to counteract shell/skeletal 

dissolution. Similar to the observations for the bryozoan, Myriapora truncata (Rodolfo

Metalpa et al. 2010), this study found that these species ability to calcify under low pH was 

disrupted during periods of high water temperatures. This suggests that although some species 

may be able to tolerate ocean acidification, the combined stress of ocean warming may lead to 

a collapse in these populations. 

Seagrasses and non-calcifying species of algae are expected to benefit from OA, due to the 

increased availability of CO2(aq), increasing photosynthesis and growth rates (Koch et al. 

2013). Hall-Spencer et al. (2008) documented the increase in seagrass density and non

calcareous algal cover along a pH gradient. Porzio et al. (2011) found a simplification in 

macroalgal community composition in the rocky sublittoral occurred along a pH gradient. The 

number of species decreased by 5% in at pH 7.8 and by 72% in pH 6.7, leading to a 

community characterized by only a few species. Although there was a reduction in the 

number of calcifying species, the cover of some calcifying species was greater at pH 7.8. 
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Kroeker et al. (2013b) deployed settlement tiles along the pH gradient and analysed the cover 

of different functional groups of algae for 14 months. They found that the settlement and cover 

of coralline algae did not differ between control and low (pH 7.8) zones for the initial period 

of deployment, but after 6 months there was significantly lower cover of calcifying algae at 

low pH, whilst the cover of turf algae greatly increases. Kroeker et al. (2013b) concluded that 

whilst in ambient pH conditions there is a balance between the competitive dynamics of 

calcareous and turf algae, when pH decreases it leads to an increased competitive ability of the 

turf algae which overgrows and outcompetes calcareous species. This study highlights the 

importance of being able to include species-interactions in OA research. A second 

consideration is that whilst turf algae increased in the studies by Kroeker et al. (2013b), and 

Porzio et at. (2013), a decrease in turf algae was observed in the study by Porzio et at. (2011). 

Although these studies took place at the Castello Aragonese, observations in the former 

studies were made during spring and summer, whilst the latter were made in October. This 

suggests that although some species of turf algae (such as ephemeral species present in spring 

and summer) may be resilient or respond favourably to OA, other species may not. This 

highlights the important of sampling at different times of the year and, where possible, the 

advantage of identifying taxa down to greater resolution. 

1.4 Preliminary investigation 

Since the degree of acidification in the seagrass beds was not certain, a preliminary study of 

the seawater pH at different stations was conducted in March 2011. Three stations at the north 

side and three stations at the south side of the Castello Aragonese were chosen as potential 

Posidonia oceanica study sites. These sites were in the seagrass but adjacent to the rocky reef 

sites used in other studies (Hall-Spencer et at. 2008; Kroeker et at. 2011b; Porzio et at. 2013); 
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two of each in areas where CO2 vents were active and a third station away from the vents, to 

be used as a control. Control stations were named N I and S 1, whilst proposed acidified 

stations were names S2, S3, N2, and N3 (Fig. 1.9). 

Figure 1.9 Position of transects lines along which pH samples were taken, for each station, around the Castello 

Aragonese. 

Three transects were laid out for each site, 6 m apart and extending from the shore until 

approximately 20 m into the seagrass (Fig. 1.8). The rocky subtidal extends from the shore to 

the start of the seagrass (brown sections: Fig. 1.9). Seawater samples were collected at the 

beginning of the transect, 40 cm into the start of the seagrass and then each metre until the end 

of the transect. Depths ranged from approximate ly 1.5 m at the beginning of the transect to 4 

m at the end. It must be taken into consideration that pH at the CO2 vents is variable (Kroeker 
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et at. 2011 b), and hydrodynamic forces such as water advection and wave action causes a 

dilution effect in acidified areas and an increase in pH (S. Garrard, pers. obs.). For this reason 

all transect measurements were carried out on calm days in April 20 II to ensure an accurate 

picture of acidification during periods of low mixing. These transects showed that P. oceanica 

stations N I and S 1 on both the north and south side of the Castello Aragonese were not 

affected by the C02 vents and maintained a pH of 8.1 - 8.2. N3 and S2 showed the greatest 

degree of acidification (mean pH of 7.5 and 7.6 respectively) (Fig. 1.10). 

36m 

Om 

Om 

31m 

Figure 1.1 0 Representation of the pH gradient in the seagrass along the transects of each station (N l N2, N3, Sl 

2, and S3) around the Castello Aragonese. Green areas are where seagrass occurred, whilst brown equals rocky 

sublittoral and yellow equals sand. Each block ( --~J represents pH at each meter from the shore. 
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From these results it was determined that stations N3 and S2 were suitable acidified stations, 

and N 1 and S 1 were suitable control sites. Stations N2 and S3 were excluded from further 

research for this PhD, as they only showed a trend towards marginal acidification. Once 

acidified and control sites were determined, these areas were marked by buoys to ensure that 

studies were consistently carried out in the same areas each time. A further tertiary control site 

was established at Lacco Ameno, a site with similar Posidonia oceanica meadow 

characteristics (Zupo et al. 2006), that is 6 km from (and unaffected by) submarine CO2 vents 

(Tedesco 1996). This site was selected to provide a comparison with the Castello Aragonese 

control sites to provide background on the spatial variability of seagrass structural parameters. 

Each site had an area of approximately 60m2 and was located at a depth of 2.5 - 3.5 m. 

1.5 Research aims and objectives 

Under the threat of ocean acidification, species will have three possible responses: to tolerate 

or adapt to a reduction in pH, or become locally extinct. Research suggests that a number of 

species will be lost as the oceans acidify (Hall-Spencer et al. 2008; Fabricius et al. 2011). 

Species loss could cause a loss in community stability and ecosystem function (Lehman and 

Tilman 2000; Worm et al. 2006), although if functionally similar species proliferate, this may 

buffer this impact (Tilman 1996). Species compensation dynamics may be particularly 

relevant for fast growing, species rich groups (Vinebrooke et al. 2003). 

Positive adaptations than enable the survival of calcifying organisms have been shown at the 

C02 vents ofIschia (Rodolfo-Metalpa et al. 2011), whilst other species appear unable to adapt 

(Lombardi et al. 2011c). Changes in species composition may not be solely based upon 
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species' ability to tolerate or adapt to environmental conditions. Indirect effects, such as 

changes in food availability, competition or predation, will be important in structuring 

community composition, as will the combined effects of multiple stressors (e.g temperature 

and OA). 

Posidonia oceanica is an extremely important ecosystem within the Mediterranean coastal 

zone, covering large areas of the shallow subtidal and providing an important habitat for many 

species of algae, invertebrates and fish (Mazzella et al. 1992). Very little is known of how this 

system will respond to OA, as it is not possible to experimentally acidify a whole Posidonia 

oceanica system. The subtidal C02 vents around the Castello Aragonese provide a model 

system for investigating this. Recent research has shown increased P. oceanica shoot density 

at acidified stations (Hall-Spencer et al. 2008), and the change in functional groups of seagrass 

epiphytes along a pH gradient, has been documented (Martin et al. 2008), but knowledge on 

other aspects of how a P. oceanica system responds to acidification is lacking. This PhD 

research will provide a broad overview of how plant structure and function, the invertebrate 

community and macroherbivore grazing pressure respond to acidified conditions. This 

research will help towards providing a more comprehensive understanding of the effect ofOA 

on a P. oceanica system. This response will be addressed through a number of different 

objectives: 

1. To assess the natural variation in the flora and fauna associated with Posidonia 

oceanica through analysis of previous research. 

2. To investigate how nutrient availability and P. oceanica function change under a 

decrease in pH. 
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3. To assess changes in invertebrate community dynamics between acidified and control 

conditions in a P. oceanica meadow 

4. To compare the response of benthic invertebrates to acidification in two different 

habitats: P. oceanica and the rocky subtidal. 

5. To investigate whether the dynamics of herbivory on P. oceanica differ under low pH 

conditions. 

Each of the field investigations (objectives 2, 3 and 5) will be carried out over a temporal 

timescale of months to determine how results fluctuate at different times of the year, as this 

has not been considered in previous research (e.g. Hall-Spencer et al. 2008; Cigliano et al. 

2010; Kroeker et al. 20 11 b). 
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2. The floral and faunal associated 
communities of Posidonia oceanica: over 
40 years of research 
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2.1 Introduction 

Seagrasses are marine phanerograms, of which there are approximately 60 species 

(representing <0.02% of the angiosperm flora) (Hemminga and Duarte 2000). Of the higher 

plants, they are the only group that have developed the capabilities to survive a completely 

submerged marine existence (Den Hartog 1970). Extensive beds can be found along the 

coastlines of all continents, other than Antarctica (Hemminga and Duarte 2000). They have 

sometimes been termed 'ecosystem engineers' (Jones et al. 1997; Thomas et al. 2000), as they 

physically and biologically influence ecosystem qualities by altering the local hydrodynamic 

properties of an area, and providing space and resources for a multitude of organisms 

(Mazzella et a!. 1993; Brun et a!. 2009), including many commercially important species of 

fish and invertebrates (Beck et al. 200 I; Del Pilar Ruso and Bayle-Sempere 2006). Seagrasses 

represent some of the most productive and diverse marine habitats (Guinotte and Fabry 2008). 

Seagrass swards show extremely high rates of primary production, which can be attributed to 

the epiphytic flora, plankton and sediment microbes, as well as the seagrass itself (Moncreiff 

et al. 1992). 

Macrofaunal diversity and abundance is generally greater in seagrass meadows than adjacent 

unvegetated habitat (Orth et al. 1984 and references therein; Ansari et al. 1991; Mattila et al. 

1999). Several hypotheses have been proposed to explain the increase in density and 

abundance of fauna in seagrass beds; the increased complexity of habitat provides increased 

niche space for organisms (Heck and Wetstone 1977; Ansari et al. 1991; Mazzella et al. 1992), 

seagrass canopy provides organisms protection from predation (Heck and Wetstone 1977; 

Orth et al. 1984), alteration to local hydrodynamics promotes larval settlement (Dirnberger 

1993), and the increased abundance of food items available attracts organisms into the 
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meadows to feed (Hemminga and Duarte 2000). The importance of seagrasses as structuring 

agents is supported by studies that have shown invertebrate abundance is positively correlated 

with seagrass above ground biomass (Heck and Wetstone 1977; Stoner 1980; Mattila et al. 

1999; Attrill et al. 2000). 

Alongside enhancing marine biodiversity, primary and secondary production, seagrass habitats 

are also important for a number of other beneficial ecosystem processes: 

• Sediment stabilization through binding and modification of the sediment (Fonseca 

1989), and a reduction of flow and wave velocity, (Fonseca and Fisher 1986; Gambi et 

al. 1990; Fonseca and Cahalan 1992), thereby reducing coastal erosion. 

• Improvement of water quality through dissipation of kinetic energy (Short and Short 

1984), and acquisition of nutrients from the water column (Hemminga et al. 1991; 

Hemminga and Duarte 2000). Removal of nutrients from the water column increases 

light penetration by reducing their availability for phytoplankton growth (Hemminga 

and Duarte 2000), whilst reduced kinetic energy causes enhanced particle deposition 

(Gacia et al. 2003). The combination of these processes reduces turbidity and improves 

water quality. 

• Important role in global carbon and nutrient cycling. Although seagrasses are only 

responsible for a small proportion of oceanic net primary production «1%), a large 

quantity of their biomass ends up in the sediments as refractory detritus, forming 

biogenic concretions (Hemminga and Duarte 2000; Buia et al. 2004). This detritus can 

remain in the sediments for thousands of years, acting as a sink for biogenic elements 
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(Mateo et al. 1997). It has been estimated that seagrasses are responsible for the 

storage of 15% of organic carbon in the oceans (Duarte and Chiscano 1999). 

• Production of marine resources. Seagrass beds are an important habitat for many 

juvenile stages of commercially important species of offshore fish and invertebrates 

(Watson et al. 1993; Connolly 1994; Beck et al. 2001), alongside supporting many 

subsistence fisheries (Unsworth et al. 2010). 

Posidonia oceanica is the most dominant species of seagrass in the Mediterranean, estimated 

to cover an area of 25,000-50,000 km2 or 1-2% of the Mediterranean seafloor (Bethoux and 

Copinmontegut 1986; Pasqualini et al. 1998). Studies spanning over 4 decades have revealed 

the high diversity of floral and faunal communities associated with this species (e.g. Van der 

Ben 1971; Novak 1982b; Gambi et al. 1992; Francour 1997; Bologna and Heck 1999; Guidetti 

2000a; Balata et al. 2008). More recently studies have focused on how anthropogenic 

activities impact these communities (e.g. Dimech et al. 2002; Bongiomi et al. 2005; Ruiz et al. 

2009; Ben Brahim et al. 2010; Terlizzi et al. 2010). 

But in order for us to understand the impacts that anthropogenic activities or climate change 

have on these communities, it is important to understand the natural variability found in 

undisturbed meadows. A major objective of older marine ecological research was to 

taxonomically describe the species that occur in different habitats; therefore a wealth of 

information on the composition of P. oceanica-associated communities is available. One of 

the major drawbacks is that much of this research has been left behind in the digital era. 

Having been published in print and never transferred into electronic format, it is consigned to 
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archives and at risk of being forgotten. In terms of research on P. oceanica, a further drawback 

is that considerable amounts were published in local journals in the researcher's native 

language. Other considerations with interpreting the results of studies on P. oceanica 

associated communities is that research methodology has changed over the past few decades 

and the variance of mean values are not cited in much of the primary literature of the 1970s 

and 1980s (e.g. Eugene 1979; Buia et al. 1985a; Chessa et al. 1989; Mazzella et al. 1989). This 

means that statistical comparisons between data sets cannot be made, leaving out any 

possibility of meta-analysis. 

This does not imply that older research should be disregarded. In fact, quite the opposite. With 

the recent growth in population and tourism in coastal regions of the Mediterranean, and the 

increased coastal urban sprawl to accommodate this, anthropogenic impacts have had 

substantial effects on coastal environments and very few pristine habitats remain (European 

. Environment Agency 1999). In this sense, historic research is likely to give a more accurate 

picture of the associated communities in less disturbed meadows. 

Here we present the findings, taken from multiple studies of P. oceanica and its associated 

communities, using data and results from studies spanning more than four decades. Where 

studies incorporated comparisons of disturbed and control meadows, data was only extracted 

from results from control meadows. In order to build a picture of how seagrass architecture 

and the floral and faunal communities vary with depth we have compiled a table of data from 

numerous studies. Where numerical data was not presented in the primary literature, values 

were mined from graphs using Data Thief III (v. 1.6). 

32 



2.2 The Posidonia oceanica habitat 

Posidonia oceanica (L.) Delile is the most important species of seagrass found in the 

Mediterranean basin, and forms some of the most productive meadows globally (Pergent

Martini et al. 1994). This is due to its dominance, complexity and ability to form extensive, 

continuous meadows (Buia et al. 2004). It can be found growing from the surface down to 

depths of over 40 m, although this depth limit is only found for particularly clear waters 

(Augier and Boudouresque 1979). In areas where water transparency is reduced, the depth 

limit of P. oceanica may be 10-15 m (Bodoy et al. 1982; Avril et al. 1984). It forms dense 

mono-specific meadows, which harbour a wide variety of associated plants and animals 

(Mazzella et al. 1992), and is a 'climax' community, which shows low levels of resilience to 

anthropogenic impacts (Buia and Mazzella 2000). 

P. oceanica is the longest lived species of marine phanerogams (Duarte 1991; Duarte et al. 

1999), and its shoots are able to live for at least 30 years (Marba et al. 1996). It is 

characterized by a large number of shoots, high above ground biomass and a large leaf area 

index (LAI) (Guidetti et al. 2002). Sexual reproduction is of low importance in P. oceanica, as 

flowering is highly irregular and often has a low success rate (Piazzi et al. 1999). The growth 

of meadows is typically by vegetative propagation. This may partially explain the low genetic 

diversity found in these meadows (Raniello and Procaccini 2002). The newest leaves are 

found in the middle of the shoot and oldest leaves on the outside. This species shows intrinsic 

seasonal growth, with highest growth rates during winter and spring (Ott 1979), and a drastic 

decrease in growth during the summer months (Drew 1978). Leaf length is determined by four 
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main factors; growth, erosion, microbial decomposition and herbivory (Wittman et al. 1981 ; 

Casola et al. 1987; Alcoverro et al. 1997). Highest biomass of the prairie is found during early 

summer (Buia et al. 1992). New leaves sprout from the middle of the shoot, so the oldest 

leaves are found on the outside, whilst the newest leaves are found on the inside (Fig. 2.1). 

Leaves are ranked from the newest to the oldest (e.g leaf rank 1 is ajuvenile leaf, whilst rank 5 

would be an adult leaf). 

Leaf base 

Leaf 

Ligule 
Leaf base 

Stipules 

covered 

Figure 2.1 Detailed image of a Posidonia oceanica shoot, with rhizome covered by scales (old sheaths). Newest 

leaves are found at the middle of the shoot with oldest leaves on the outside. a) adult leaf, b) intermediate leaf, c) 

juvenile leaf. (Image from : Buia et al. 2004) 
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Above ground production positively corresponds with increasing density (Alcoverro et al. 

1995b). In dense beds biomass has been found to reach 3000-3500g DW m2 (Ott 1980; Libes 

et al. 1982), a value greater than that of mangrove forests and far greater than phytoplankton 

productivity (Thorhaug 1981). Above and below ground standing crop is higher than in other 

marine phanerogams (Mazzella et al. 1992). Large below ground standing crop is due to its 

unique ability to form biogenic 'mattes'. The 'matte' is formed by the continuous burial of 

rhizomes, roots and sheaths to form a course-fibred structure which can be centuries to 

millennia old (Mateo et at. 1997). This structure is composed of living and dead tissue mixed 

with sediment, which can be several metres thick (Romero et al. 1994). 

Seagrass architecture is important in structuring the communities found in seagrass meadows, 

and depth is an important factor. Leaf area index (LAI) decreases with depth (Mazzella and 

Jorg 1984), as does shoot density (Battiato et at. 1982b) (Table 2.1). Differentiation in 

physical factors (such as light, water movement, exposure to erosion, siltation) between 

shallow and deep stands are important in structuring the characteristics of P. oceanica beds 

and their associated biological communities (den Hartog 2003). Hydrodynamic conditions 

strongly influence meadow characteristics such as the number of leaves per shoot and mean 

leaf length (Pessani et at. 1987). 
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Table 2.1 Comparison of values of measured parameters of structural architecture and floral and faunal communities in unimpacted, shallow (:::::1 Om), 

intermediate (II-20m) and deep (2Im+) Posidonia oceanica systems. Numbers in brackets show the number of studies included. 

Parameter Maximum and Minimum References 
Values 

Shallow Intermediate DeeE 
Mean shoot 408- 78 - 535 (15) 63 -420 (Giraud et al. 1979; Bay 1984; Pire 1984; Buia et al. 1985b; Pessani et al. 1987; 
density (no.lm2) 1025 (7) (9) Pergent 1990; Pergent and Pergentmartini 1990; Pergent and Pergentmartini 1991; 

Alcoverro et al. 1995a; Barbieri et al. 1995; Mostafa and Halim 1995; Pergent et 
al. 1997; Torricelli and Peirano 1997; Tsirika et a1. 2007) 

Mean leaf area 3.27- 2.20- 0.48- (Giraud et al. 1979; Bay 1984; Pire 1984; Buia et a1. 1985b; Pessani et al. 1987; 
index (LAI) 19.8(7) 21.6 (9) 11.26 (6) Bianchi C.N 1989; Borg and Schembri 1995; Mostafa and Halim 1995; Blundo 

1999; Balestri et al. 2004; Tsirika et a1. 2007) 

Mean epiphyte 0.789- 0.967 - (Thelin and Bedhomme 1983; Romero 1988; Alcoverro et a1. 1997; Salata et al. 
biomass (gldw/sh) 0.011 (5) 0.019(2) 2008; Kruzic 2008) 

No. macroalgal 10 - 40(7) 6 - 48 (5) 1 - 50 (3) (Battiato et al. 1982a; Cinelli et a1. 1984; Buia et a1. 1985b; Mazzella et a1. 1989; 
epiphytic species Orlando and Bressan 1998; Blundo 1999; Kruzic 2008) 

% coverage of 5 - 59 (6) 0.8 - 22 (5) 0.3- (Battiato et a1. 1982a; Cinelli et a1. 1984; Buia et a1. 1985b; Mazzella et a1. 1989; 
macro algae 16.5 (\) Tsirika et al. 2007; Kruzic 2008) 

Abundance vagile 54- 200- 224- (Chessa et al. 1989; Mazzella et al. 1989; Gambi et al. 1992; Scipione et al. 1996) 
fauna (hand net 5150 (4) 2180 (3) 1641(3) 

method) 

No. species vagile 13-70(6) 35-131 (6) 44- (Chessa et al. 1989; Mazzella et a1. 1989; Gambi et a1. 1992; Sanchez-Jerez and 
fauna (all 132(4) Ramos Espla 1996; Scipione et a1. 1996; Borg et al. 2006; Apostolaki et a1. 2007; 
methods) Borg et al. 2010) 
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Meadows can be broadly divided into two sub-compartments; the leaf canopy and the root

rhizome layer, which have distinct associated assemblages (Bianchi et al. 1989; Vasapollo 

2009), although many researchers suggest that these sub-compartments should be 

considered as a single system (Mazzella et al. 1992; Buia et al. 2004). Rather than dividing 

the meadow into sub-compartments, this review will focus on the three main categories of 

communities associated with P. oceanica: 1) macroalgal and sessile animal epiphytes 

found on the leaves and rhizomes of the plant, 2) vagile fauna which are associated with 

the leaf canopy or rhizomes, and 3) large, mobile, epibenthic species which forage within 

the seagrass. 

2.3 Macroalgal and sessile epiphytes 

Epiphytes can be found on the leaves and rhizomes of seagrass. These two compartments 

of the plant differ in terms of the habitat that they provide for epiphytic assemblages. The 

leaf canopy is a smooth, exposed and short-lived substratum for epiphytes, whilst the 

rhizomes have a rough surface with microcavities and provide a more permanent habitat 

(Pansini and Pronzato 1985). The leaf canopy shows a seasonal succession of the epiphytic 

community and maximum biomass is achieved between spring and late summer (Thelin 

and Bedhomme 1983; Romero 1988). In comparison rhizome epiphytes generally show 

little variation among seasons (Piazzi et al. 2002), although Cocito et al. (2012) found that 

Bryozoa diversity increased during warm water periods, using a different approach to 

assess the rhizome epiphytic community: the use of seagrass artificial rhizomes (mimics). 

The dynamic aspect of the canopy leads to a characteristic community, whilst rhizome 

epiphytes consist of many species which are common to the rocky substratum of the infra

littoral plain (Chimenz 1989). 



P. oceanica has a diverse epiphytic community, which primarily consists of photosynthetic 

communities of cyanobacteria, diatoms, and crustose, ephemeral or filamentous algae 

(Novak 1984; Prado et al. 2008a). Primary production from epiphytes can exceed 

production of the seagrass itself (Libes 1986), and this production increases during the 

summer months with a sharp increase in ephemeral algae (Prado et al. 2008a). Many 

species of invertebrates also form part of the epiphytic community on P. oceanica leaves, 

principally coming from the classes Hydrozoa and Bryozoa (Eugene 1978; Giovannetti et 

al. 2010). These algae and invertebrate communities playa central role in the foodweb of 

seagrass ecosystems (Dauby 1989). They also increase the structural complexity of the 

seagrass habitat (Heijs 1987). The long life span of the shoots is central to the highly 

diverse community of epiphytes which settle on them (Alcoverro et al. 1997). 

Macroalgal epiphytes found on the leaves of Posidonia can be divided into three 

categories, dependent on their morphological features: calcareous, soft encrusting and erect 

algae (Mazzella et al. 1989). Published literature on species of epiphytic macroalgae found 

on the shoots of P. oceanica revealed that species composition varies vastly between 

meadows. From a total of 12 studies, 296 species of macroalgal epiphytes were identified, 

and species names checked against AlgaeBase (Guiry and Guiry 2011). Of these, 96 were 

found in 25% or more of the studies, and only 27 were found in 50% or more (Table 2.2). 

This shows the extent of macroalgal variability between meadows. Species which were 

common to all studies include the calcareous algae Hydrolithon farinosum and 

Pneophyllum fragile, and the soft encrusting algae Ascociclus orbiculare, and erect algae 

Giraudia sphacelarioides, whilst the erect algae Dictyota dichotoma, Antithamnion 

cruciatum, Sphace/aria cirrosa, Stylonema alsidii, and Erythrotrichia carnea were 

common to most studies. The Rhodophyceae were represented by the highest number of 
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species (187 or 63%), whilst the Phaeophyceae had the second highest (69 or 23%), and 

the Chlorophyceae represented by the least number of species (40 or 14%). The number of 

species varied significantly between studies, although % coverage generally decreased 

with depth (Table 2.1). 

The sessile epifaunal community is less well studied than the macroalgal component of the 

epiphytic community (Casola et al. 1987), and many studies have combined the floral and 

faunal compartments to investigate total biomass or percentage coverage (e.g. Romero 

1988; Balata et al. 2010). Other studies have kept these compartments separate (e.g. Prado 

et al. 2007a; Giovannetti et al. 2010), although community composition is unavailable. 

Some studies deal only with specific fractions of the community such as hydroids or 

bryozoans (e.g. Boero 1981b; Pansini and Pronzato 1985; Kocak 2002). After macroalgae, 

Bryozoa show the greatest leaf coverage (Eugene 1978; Dalla Via et al. 1998; Piazzi et al. 

2004; Pardi et al. 2006), and are also the most diverse group, followed by Hydrozoa (Prado 

et al. 2007a). Other groups present include Foraminifera, Cnidaria, Tunicata, Porifera, and 

Annelida, although Porifera are only found on the rhizomes (Pansini and Pronzato 1985; 

Balata et al. 2007), as the canopy is perhaps a tougher environment to colonize (Pansini 

and Pronzato 1985). Some species can be found exclusively on the shoots of P. oceanica 

such as the bryozoan Electra posidonidae or the hydroids Sertularia perpusilla, 

Campanularia asymmetrica and Aglaophoenia harpago (Boero 1981 a; Matricardi et al. 

1991; Vasapollo 2009). 
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Table 2.2 List of most common epiphytic macroalgal species found in 12 studies (>25%) (Van der Ben 1971; 

Panayotidis and Boudouresque 1981; Cinelli et al. 1984; Buia et al. 1985b; Soto Moreno 1992; Blundo 1999; 

Salata et al. 2007; Piazzi et al. 2007; Prado et al. 2007a; Jacquemart and Demoulin 2008; Kruzic 2008; 

Giovannetti et al. 2010). Species highlighted in light grey were present in 50% or more of the studies. 

Chlorophyta 

Acrochaete viridis (Reinke) R.Nielsen 

Chaetomorpha aerea (Dillwyn) Kiitzing 

Cladophora dalmatica Kiitzing 

Cladophora sp. 

Phaeophila dendroides (p.L.Crouan & H.M.Crouan) 

Batters 

Pringsheimiella scutata (ReinKe MarchewiaIika 

Phaeophyta 
7P~~~--~------~ Asperococcus bullosus J.V.I.:wnouroux 

Asperococcus sp. 

Cladosiphon cylindricus (Sauvageau) Kylin 

Cladosiphon irregularis (Sauvageau) Kylin 

Dictyota dichotoma (Hudson) J. V. Lwnouroux 

Dictyota linearis (C. Agardh) Greville 

Ectocarpus siliculosus (Dillwyn) Lyngbye 

Ectocarpus sp. 

Feldmannia irregularis (Kiitzing) G.Hamel 

Feldmannia paradoxa (Montagne) G.Hamel 

Giraudia sphacelarioides Derbes & Solier 

Halopterisjilicina (Grateloup) Kiltzing 

Halopteris scoporia (Linnaeus) Sauvageau 

Kuckuckia spinosa (KUtzing) Kommann 

Myriactula gracilis van der Ben 

Myriactula stellulata (Harvey) Levring 

Myrionema orbicularis (J .Agardh) Kjellman 

Myrionema strangulans Greville 

Sphacelaria cirrosa (Roth) C. Agardh 

Sphacelariafusca (Hudson) S.F.Gray 

Sphacelaria tribuloides Meneghini 

Sphacelaria sp. 

Rhodophyta 

Acrochaetium secundatum (Lyngbye) Niigeli 

Acrochaetium sp. 

Aerosorium ciliolatum (Harvey) Kylin 

Aglaothamnion corda tum (B0rgesen) Feldmann
Mazoyer 

Aglaothamnion tenuissimum (Bonnemaison) 

Feldmann-Mazoyer 

Aglaothamnion tripinnatum (C.Agardh) Feldmann-Mazoyer 

Anotrichium barbatum (C.Agardh) Niigeli 

Antithamnion heterocladum Funk 

Antithamnion tenuissimum (Hauck) Schiffner 

Antithamnion sp. 

Apoglossum ruscifolium (Turner) J .Agardh 

Asparagopsis armata Harvey 

Callithamnion corymbosum (Smith) Lyngbye 

Ceramium cilia tum (J .Ellis) Ducluzeau 

--------~--~~--Ceramium codii (H. Richards) Mazoyer 

Ceramium comptum B0rgesen 

Ceramium deslongchampsii Chauvin ex Duby 

Ceramium diaphanum (Lightfoot) Roth 

Ceramium siliquosum var. lophophorum (Feldman-Mazoyer) 

Serio 

Ceramium tenuissimum (Roth) Areschoug 

Champia parvtl/a (C.Agardh) Harvey 

Chondria capillaris (Hudson) M.J . Wynne 

Chondria mairei G.Feldmann 

Colaconema daviesii (Dillwyn) Stegenga 

Crouania attenuata (C.Agardh) J.Agardh 

Dasya corymbifera J.Agardh 

Dasya hutchinsiae Harvey 

Dasya ocellata (Grateloup) Harvey 

Dasya rigidu/a (Kiitzing) Ardissone 

Erythrotrichia carnea (Dillwyn) lAgardfi 

Eupogodon planus (C .Agardh)-:K~iJ~·tz~i:-n-g--------

Gayliellaflaccida (Harvey ex KUtzing) T.O.Cho & LJ.Mclvor 

Herposiphonia secunda (C.Agardh) Ambronn 

Herposiphonia secunda r. tenella (C.Agardh) MJ.Wynne 

Heterosiphonia crispella (C.Agardh) MJ .Wynne 

Hydrolithon boreale (Foslie) Y.M.Chamberlain 

Hydrolithon cruciatum (Bressan) Y.M.Chamberiain 

Hydrolithonfarinosum (J.V.Lamouroux) D.Penrose & 

Y.M.Chwnberlain 

Hypoglossum hypog/ossoides (Stackhouse) F.S.Collins & 
Hervey 

Jania rubens (Linnaeus) J.V.Lamouroux 
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Laurencia obtusa (Hudson) J.V.Lamouroux Pterothamnion crispum (Ducluzeau) Niigel i 

Laurencia sp. Pterothamnion p lumula (J.Ellis) Niigeli 

Lejolisia mediterranea Bornet Ptilothamnion pluma (Dillwyn) Thuret 

Lithophyllum pustula/um (J. V. Lamouroux) Foslie l Rhodophyllis divaricata (Stackhouse) Papenfuss 

Lomentaria chylocladiella Funk Spermothamnion jlabellatum Bornet 

Monosporus pedicellatus (Smith) Solier SpermothamnionjlabellatumJ disporum Feldmann-M azoyer 

Nitophyllum punctatum (Stackhouse) GreviIle Spermothamnionjohannis Feldmann-Mazoyer 

Pneophyllumfragile Kiitzing ] Spermothamnion repens (Dillwyn) Rosenvinge 

Polysiphoniafurcellata (C .Agardh) Harvey Spyridiajilamentosa (Wulfen) Harvey 

Polysiphonia scopulorum Harvey r Stylonema alsidii (Zanardini) K.M.Drew 

Polysiphonia subulifera (C.Agardh) Harvey Sty/onema cornu-cervi Reinsch 

Polysiphonia sp. I Womers/eyella setacea (Hollenberg) R.E.Norris 

Much research has gone into determining what causes variation in the epiphytic 

communities of P. oceanica. There is a succession of micro- and macrotlora along the leaf 

blade from basal to apical tissue (Mazzella and Russo 1989). Basal (young) tissue is 

primarily colonized by pioneer species such as bacteria and diatoms from the genus 

Cocconeis, whilst an increase in calcareous and soft encrusting algae and a greater 

diversity of diatoms are found in older portions of the leaf (Mazzella and Russo 1989; 

Giovannetti et al. 20 I 0). Diatoms are made up almost exclusively of the pennate form 

(Mazzella 1983; Novak 1984). Sessile invertebrates and erect algae are primari ly found on 

older parts of the leaves, where there is higher light and water movement (Mazzella and 

Russo 1989). This sequential colonization and increase in biomass continues up to a 

maximum of 200 days (Cebrian et al. 1999). Bryozoans show a graduated distribution 

along the leaf and tend to reach maximum biomass on the central sections of the shoots 

(Casola et al. 1987; Cebrian et al. 1999). Casola et al. (1987) found that different species of 

bryozoa dominated along the leaf length; Fenestrulina johannae is a basal species, Electra 

posidoniae a central species, and Aetea truncata an apical species. 

Although this general pattern is often found, epiphytic community composition varies 

significantly between meadows, depths and seasons (piazzi and Cinelli 2000; Vanderklift 

and Lavery 2000; Martinez-Crego et al. 2010), due to differing environmental factors such 
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as water movement, light availability and temperature (Van der Ben 1971; Chessa et al. 

1982; Vanderklift and Lavery 2000). Lower numbers of macroalgal species are found at 

exposed sites, which may be due to increased exposure to wave action and increased leaf 

shedding, which would influence algal succession and cover (Buia et al. 1985b). Canopy 

parameters such as shoot density can influence local environmental factors such as light 

availability and water movement, which in tum affect epiphytic community composition 

(Tsirika et al. 2007). Epiphytic macroalgal biomass and coverage decreases with depth 

(Table 2.1) (Cinelli et al. 1984; Mazzella and Ott 1984; Mazzella et al. 1989), and 

epifaunal biomass can reach over 50% of epiphyte biomass at deeper depths (Lepoint et al. 

1999). It is thought that grazing and competition are the main factors governing algal 

species composition of shallow meadows, whilst other factors such as environmental status 

may be more prominent in deep meadows (Martinez-Crego et al. 2010). 

Maximum epiphytic biomass is reached during late summer in shallow beds (Tsirika et al. 

2007), although this is delayed by 1-2 months in deep beds, which may be related to the 

thermocline (Mazzella and Ott 1984). Seasonal variation in epiphytes is more pronounced 

in shallow and intermediate beds than deeper beds, where the increase is negligible 

(Mazzella and Ott 1984). Some studies have shown that there is a drop in epiphytic 

biomass between spring and autumn (Thelin and Bedhomme 1983; Mazzella and Ott 1984; 

Romero 1988), although this decrease does not occur at all depths (Mazzella and Ott 1984; 

Romero 1988), or in all meadows (Alcoverro et al. 1997). P. oceanica production is at a 

minimum during the summer months (Alcoverro et al. 1995b), and grazing pressure can 

exceed production (Tomas et al. 2005c), which would explain this reduction in epiphytic 

biomass. Epiphytic bacterial and diatom abundance also shows seasonal changes with an 

increase of an order of magnitude between April and September (Novak 1982a). 
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The Rhodophyceae are the dominant epiflora throughout all seasons (Blundo 1999), and 

Corallinaceae the most abundant family (Mazzella et al. 1989). Filamentous and crustose 

forms are abundant during summer, whilst crustose forms dominate in winter (Van der Ben 

1971; Tsirika et al. 2007). The crustose red algae Hydrolithon farinosum and Pneophyllum 

fragile can be found encrusting the leaves of P. oceanica at all depths and at all times of 

the year (Jacquemart and Demoulin 2008). Brown algae such as Giraudia sphacelarioides 

and red algae such as Acrochaetium daviesii and Antithamnion cruciatum are abundant 

during the summer months (Pardi et al. 2006; Tsirika et al. 2007; Jacquemart and 

Demoulin 2008). 

2.4 Vagile fauna of the canopy and rhizomes 

A high diversity of motile macroinvertebrates can be found associated with Posidonia 

oceanica meadows, ranging from large organisms such as echinoids and cephalopods 

down to much smaller taxa such as cumaceans, copepods and mysids. When examining the 

community composition of associated macrofauna, the majority of studies focus on the 

fraction termed 'vagile fauna' (e.g. Chessa et al. 1989; Mazzella et al. 1989; Gambi et al. 

1992). Vagile fauna can be classified as a group of animals with reduced mobility, which 

are associated with the canopy and rhizomes of the seagrass. A high diversity of species 

from taxonomic groups such as decapod crustaceans, peracarid crustaceans, gastropods, 

bivalves, polychaetes and echinoderms can be found associated with P. oceanica (Gambi 

et al. 1992). Many of these species show a positive response to an increase in epiphytic 

biomass (Bologna and Heck 1999), suggesting that epiphytes may be an important source 

of food for these organisms (Fig. 2.2). 
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Figure 2.2 Illustration of the trophic energy flux in a Posidonia oceanica system (mod ified from Mazzella 

and Zupo 1995). 

The diversity and abundance of vagi le fauna associated with P. oceanica is greater than 

those associated with Cymnodocea nodosa and other seagrasses common to the 

Mediterranean (Buia et al. 2000; Como et al. 2008) . This is thought to be due to the 
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structural architecture of P. oceanica and its associated epiphytes, which gives rise to a 

greater niche availability for these animals than other Mediterranean seagrass species 

(Scipione et al. 1996). Vagile fauna can generally be divided into three categories: those 

that crawl (molluscs and annelids), those that have suckers (echinoderms) and those that 

move by using jointed appendages (crustacea) (Gadeu 1967). 

Community composition varies along a depth gradient (Chessa et al. 1989), with a strong 

zonation of superficial (0-4 m), intermediate (6-12 m) and deep (15-30 m) communities 

(Scipione et al. 1982). This has been shown for molluscs (Russo 1991), hermit crabs (lupo 

et al. 1985), polychaetes (Gambi et al. 1992) and isopods (Lorenti and Fresi 1982) and 

although temporal and spatial variation is important, this pattern of zonation remains 

unchanged (Russo 1984; Russo 1985). Idato et al. (1983) found that mollusc abundance is 

greatest at intermediate depths, whilst overall diversity was greatest in deeper prairies. 

Species may show preference for different depths, for example the shrimp Hippolyte 

inermis (lupo 1994) and the gastropod Rissoa italiensis (Gambi et al. 1992) are mainly 

found in shallow beds, and the whilst the gastropod Bittium latreillii is most abundant, and 

exclusively shows recruitment, in deeper stands (Russo et al. 2002). Some species do not 

appear to show any preference and are represented at all depths, such as the hermit crab 

Cestopagarus timidus (lupo et al. 1985). The increased diversity of motile 

macroinvertebrates at deeper stations is probably due to the more stable environment 

(Chessa et al. 1989; Mazzella et al. 1989). The abundance and diversity of vagile fauna 

found in P. oceanica at shallow, intermediate and deep depths varies considerably between 

studies (Table 2.1), suggesting that variation between meadows is high. The greatest 

number of individuals is generally found at shallow depths (Mazzella et al. 1989), although 

this appears to be dependent upon the season of sampling (Chessa et al. 1989). It must be 
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noted that some very shallow stations (l m) exhibit low abundances of vagile fauna 

(Mazzella et al. 1989). 

Trophic structure also changes with depth and herbivores are most abundant in shallow 

stations, whilst carnivores are found in their greatest numbers in deep stations, although at 

all depths organisms that feed either wholly or partly on micro- or macroalgae dominate 

(Gambi et al. 1992). Some herbivorous fauna are selective feeders, such as the polychaete 

Platynereis dumerilii, which shows preference for erect micro- and macroalgae (Gambi et 

al. 2000), whilst other species such as the isopod Idotea balthica have a more omnivorous 

diet, feeding on algae, seagrass, detritus and crustaceans (Sturaro et al. 2010). Meiofaunal 

assemblages provide an important trophic link between primary producers and higher 

trophic levels (Danovaro et al. 2002). Detritus is an important food source for many 

invertebrates such as polychaetes, isopods, amphipods and decapods (Buia et al. 2004). 

Community structure of different taxonomic groups shows high variation, with different 

species dominating in different meadows (Russo et al. 1991; Gambi et al. 1995; Scipione 

1998). Although this variation may be partially explained by differences in sampling 

methodology (Mazzella et al. 1992), it is clear that there is a huge spatial variation in the 

composition of vagiJe fauna. This spatial variability is more prominent in shallow stations 

(Gambi et al. 1995), and is thought to be primarily due to local and regional variations in 

water movement and sedimentation (Idato 1983; Russo et al. 1984). As an example of this 

variation, some studies have found polychaetes are abundant within Posidonia oceanica 

beds (e.g. Harriague et al. 2006; Como et al. 2008), whilst others have found their 

abundance to be negligible (e.g. Gambi et al. 1992; Sanchez-Jerez et al. 1999a). Seasonal 

variation in species composition is also prominent (Gambi et al. 1992), with common taxa 

such as amphipods and gastropods reaching their highest abundances between late autumn 
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and winter (Gambi et at. 1992; Scipione et at. 1996). Sanchez-Jerez et al. (1999a) suggest 

that increased abundance of vagile fauna during late autumn and winter may be because of 

the decrease in the abundance of fish; therefore predation is lowest during this time. 

Many species of mobile invertebrates undergo diel vertical migrations within the 

Posidonia system. Studies have shown that species diversity in the canopy increases at 

night, although results as to which species are variable. Russo et at. (1983) found that the 

abundance and diversity of molluscs (and particularly gastropods) increased at night, 

whilst Sanchez-Jerez et al. (1999b) found that many taxa (including decapods, polychaetes 

and amphipods) increased in abundance at night but gastropod abundance remained the 

same diurnally. Russo et al. (1983) found that the nocturnal increase in molluscs was most 

prominent at a deep site (25 m), whilst Sanchez-Jerez et at. (1999b) only conducted their 

study at a single depth (12 m). This conflict of results may be due to differences in the 

depths where the study took place and shows the strong influence that depth, and the 

environmental factors associated with this (water movement, light and sedimentation), may 

have on community composition. This pattern of diel vertical migration may be in response 

to predation pressure from predatory fish which are present during daylight hours 

(Sanchez-Jerez et at. 1999b). 

Another functional group of organisms (some species of polychaetes and isopods) bore 

into the sheaths (remains of leaves found along the rhizome) of P. oceanica. Although they 

are not strictly vagile fauna, due to their burrowing nature, they will be included in this 

section. They are detrital feeders, primarily feeding on the dead tissue of the sheaths 

(Guidetti et al. 1997; Guidetti 2000b; Gambi 2002), although some larger individuals have 

also been observed feeding on live tissue (Guidetti 2000b; Gambi 2002). Density of borers 

can be highly variable between meadows and is thought to be due to shoot density or 
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sheath toughness (Gambi et al. 2005). The isopod borer Limnoria mazzellae is mainly 

found in shallow stands and selects younger sheaths, whilst polychaete borers are found in 

shallow and deep stands but select older sheaths (Guidetti et al. 1997; Gambi et al. 2005). 

One of the major problems with compiling a review of studies of vagile fauna found in P. 

oceanica is the wide variety of sampling methods used, such as hand-towed nets (Russo et 

al. 1985), airlift samplers (Terlizzi and Russo 1996), grab-samplers (Como et al. 2007) or 

corers (Borg et al. 2002). Methods of sampling communities are rarely perfect and each of 

these techniques has advantages and drawbacks in terms of their ability to quantify 

communities, efficiency of collection, reproducibility and destructiveness. For example, 

hand-towed nets will primarily collect animals associated with the leaf canopy, whilst 

airlift samplers may show greater efficiency for collecting fauna associated with the 

rhizomes (Terlizzi and Russo 1996). Thus, as a consequence, two studies, identical in all 

other factors other than sampling method may produce very different results. 

2.5 Macrobenthos 

This section will deal with larger organisms found in Posidonia oceanica habitats such as 

echinoderms, cephalopods and fish. Very few studies have carried out an evaluation of the 

temporal, spatial and depth distribution of cephalopods. Cephalopods tend to be transient 

species which travel between habitats, and their ecology and distribution is probably best 

described through fisheries science. Species of cuttlefish (e.g. Sepia officinalis: Guerra 

1985) or octopus (e.g. Octopus vulgaris: Forcada et al. 2009) are known to forage in P. 

oceanica beds but little is understood of their distribution, their effect on the P. oceanica 

food web, or the importance of this habitat for them. 
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Several echinoderm species from the classes Asteroidea, Ophiuroidea, and Echinoidea are 

found in P. oceanica beds (Koukouras et al. 2007). Of these, the most studied is the sea 

urchin Paracentrotus lividus, as it is an important herbivore which consumes P. oceanica 

(Boudouresque and Verlaque 2001), and is commercially harvested for its gonads (Palacin 

et al. 1998). Other species of echinoderms found in P. oceanica include the sea urchin 

Psammechinus microtuberculatus, the star fish Echinaster sepositus, the brittle star 

Ophiura alb ida and the holothurian Holothuria tubulosa (Amon and Hemdl 1991; Beqiraj 

et al. 2008). Very little is known of these species spatial and temporal distribution, 

although observations have shown that H. tubulosa shows a progressive downward 

migration: small individuals are found in shallow meadows, whilst larger individuals are 

found in deep meadows (Coulon and Jangoux 1993). 

P. lividus is characteristic of P. oceanica habitats in the Mediterranean, and can be found 

in densities of between 0-18 individuals m2 (Kirkman and Young 1981; Palacin et al. 1998; 

Tomas et al. 2004; Prado et al. 2008b). These animals change their feeding habits through 

their life history, feeding primarily on algae when they are juveniles and increasing their 

intake of Posidonia as they mature (Traer 1979). Maximum consumption rates occur 

during the winter months (Nedelec et al. 1982; Tomas et al. 2005c). The fish Sarpa sa/pa 

is another important consumer of P. oceanica. In contrast to P. lividus, maximum 

consumption rates of P. oceanica for this fish occur in summer months, when grazing can 

exceed primary production in shallow waters (Tomas et al. 2005c). During the winter 

months, mainly juvenile fish remain in the shallow beds, whilst the adults migrate to 

deeper habitats (Francour 1997; Peirano et al. 2001). 

P. Iividus and S. sa/pa are the primary consumers of P. oceanica (Buia et al. 2004) and 

very few other species feed on it directly as it is nutritionally poor, with a high C:N ratio, 
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due to the high quantity of structural carbohydrates and low protein content (Lawrence et 

al. 1989). Most grazing pressure is exerted in beds <10m depth (Tomas et al. 2005c). In a 

study of the grazing pressure on P. oceanica during summer, S. sa/pa and P. lividus were 

responsible for approximately 70% and 30% of grazing respectively (Cebrian et aI. 1996), 

although these figures can be reversed during the winter months (Peirano et aI. 2001). 

These grazers are an important component of the seagrass community as they primarily 

feed on highly epiphytised leaves, increasing light availability to the seagrass and 

preventing epiphytic overgrowth of the plant (Van Montfrans et al. 1984). Although these 

animals can exert extremely high grazing pressure, which can exceed leaf primary 

production (Prado et al. 2008b), they do not appear to compete (Tomas et al. 2005a). This 

may be due to resource partitioning, allowing for co-existence. Alongside seasonal 

differences in feeding habits, P. lividus tends to feed on the lower sections of leaves, and S. 

sa/pa on the apical portions (Pinna et al. 2009). A high degree of spatial variability in 

herbivore pressure is also apparent (Cebrian et al. 1996), which has been shown to be 

important in structuring the spatial variation in epiphytic assemblages found on P. 

oceanica (Prado et aI. 2007a). 

Posidonia oceanica provides food and refuge to a number of fish species (Deudero et aI. 

2008), and is an important habitat for juveniles (Guidetti 2000a; Kalogirou et aI. 2010). 

Although S. sa/pa is the focus of much literature, many different species of fish can be 

found foraging in P. oceanica beds. Unlike tropical seagrass beds, where many species 

show ontogenic migrations (Aguilar-Perera and Appeldoorn 2007), the majority of species 

are found in P. oceanica throughout their life-cycle (Bell 1982). This is not to say that they 

do not move between adjacent habitats. The fish assemblages of rocky-algal reefs are very 

similar to those found in Posidonia meadows (Guidetti 2000a), suggesting high 

connectivity between these two habitats. Fish larvae settlement within seagrass beds is 
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patchy and larvae do not appear to select for seagass density or height (Bell et al. 1987), 

although they will generally redistribute to stands of increased density and height post

settlement (Bell and Westoby 1986b). 

Valle et al. (2001) found that diversity and abundance offish species found in P. oceanica 

increases during the night. This is comparable to data from tropical seagrass beds 

(Unsworth et al. 2008), and may suggest that some species of fish may reside in alternative 

day-time habitats and move into the Posidonia beds to forage during the night. A further 

possibility is that species that feed at night hide within the canopy during the daytime (Del 

Pilar Ruso and Bayle-Sempere 2006). This may prevent detection by some sampling 

methods. As community structure appears to vary diurnally, it is suggested that where 

possible, future studies should include diurnal sampling. 

The most diverse fish families associated with the seagrass are Labridae and Sparidae 

(Valle et al. 2001; Fernandez et al. 2005; Kalogirou et al. 2010), and these often have the 

highest abundance (Francour 1997). S. salpa is a shoaling species and during summer 

months can account for up to 70% of biomass found in shallow beds (Francour 1997). 

Other abundant species are: Chromis chromis, Coris julis, Mullus surmuletus, Diplodus 

sp., Symphodus sp. and Gobius sp. (Guidetti 2000a; Fernandez et al. 2005; Moranta et al. 

2006; Deudero et al. 2008; Kalogirou et al. 2010). Although S. sa/pa is a herbivore, the 

majority of fish found in Posidonia are carnivores, primarily feeding on the invertebrates 

found within the canopy and rhizomes (Fig. 2.1; Francour 1997). 

Fish assemblage structure shows a high degree of seasonality and abundance and diversity 

of fish generally peaks in the summer months (Francour 1997; Deudero et al. 2008). This 

increase is thought to be primarily due to the recruitment cycle and reproductive 
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aggregations (Deudero et at. 2008). as most recruitment occurs between July and 

September (Garcia-Rubies and Macpherson 1995). Some species of fish such as the two

banded seabream, Diplodus vulgaris, appear to increase in abundance during the winter 

months (Forcada et at. 2009), which is probably because recruitment in this species occurs 

during this time (Hammoud and Saad 2007). Species from the family Sparidae are unusual 

in that recruitment occurs at different times of the year (Garcia-Rubies and Macpherson 

1995). Long-lived species such as Serranus cabrilla show lower seasonal variations in 

density than short-lived species such as Symphodus ocellatus (Deudero et at. 2008). 

Differences in assemblage structure can also be seen at differing depths although these 

differences appear to vary between studies. Fernandez et at. (2005) found that diversity and 

biomass of fish is greatest in deeper meadows, whilst Francour (1997) found diversity 

greatest in sheltered, shallow beds, suggesting depth effects differ between meadows. Fish 

species such as the sea-bass Dicentrarchus labrax and the saupe Sarpa salpa show 

preference for shallow meadows (Francour 1997). 

A study of fish assemblages in the Eastern Mediterranean found a total of 88 species 

(Kalogirou et at. 2010). This is much higher than previous studies carried out in the 

western Mediterranean where between 22 and 53 species were found (Harmelin-Vivien 

and Francour 1992; Sanchez-Jerez and Ramos Espla 1996; Guidetti 2000a; Valle et at. 

2001; Fernandez et at. 2005; Moranta et al. 2006; Deudero et al. 2008). This may be 

partially explained by the migration of subtropical and tropical non-indigenous species 

through the Suez Canal (Golani et al. 2007; Kalogirou et al. 2010). This may cause 

noticeable differences in fish population dynamics between the east and the west of the 

Mediterranean. 
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It is not possible to make a comparison between studies of the number of fish found in P. 

oceanica beds as many different methods for fish enumeration have been employed. 

Studies can be undertaken by underwater visual census transect (UVC) (e.g. Francour 

1997; Fernandez et al. 2005), timed uve (e.g. Garcia-Rubies and Macpherson 1995; 

Letourneur et al. 2003), beam trawl (e.g. Deudero et al. 2008), seine nets (e.g. Kalogirou et 

al. 2010), or trammel nets (e.g. Forcada et al. 2009). Many studies either show only the 

abundance of particular species (e.g. Fernandez et al. 2005), only include abundant species 

(e.g. Francour 1997), or measured fish on an abundance scale (e.g. Guidetti 2000a; 

Letourneur et al. 2003). For example Guidetti (2000a) found that the mean abund~nce of 

fish in a shallow meadow (6.5-8m) was 223 per 40m-2 (5,575 per 1,000m-2
), whilst 

Moranta et al. (2006) found an average of 157 per 1000m-2 for three surveyed sites 

between IS-25m depth. These studies were both undertaken in summer, and although some 

of this difference may be depth related, the method of sampling may be critical. Guidetti 

(2000) surveyed a 40m transect using uve and an abundance scale, whilst Moranta et al. 

(2006) surveyed larger areas using a beam trawl and counted absolute abundance. 

Trawling has been shown to identify a greater number of species, and uve a greater 

number of individuals (HarmeIi n-Vivien and Francour 1992). 

2.6 Conclusions 

This review aimed to understand the structure of P. oceanica- associated communities in 

areas with nol low levels of anthropogenic disturbance, to attempt to characterize the 

natural variability found in this system. Findings from this research suggest that natural 

variation in species numbers and abundances can make the task of quantifying changes in 

relation to anthropogenic disturbance extremely problematic. For example the number of 

species of epiphytic macroalgae found in deep meadows (> 21 m) ranged from 1 to 50, 

whilst the abundance of vagi Ie fauna caught by the hand new method in shallow meadows 
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(~ 10m) ranged from 54 to 5,150, and the abundance of fish ranged from 157 to 5,575 per 

1000 m2
• Some trends in changes in depth could be observed. Seagrass density and LAI 

generally decreased with depth, as did the % coverage of macro algae, whilst the number of 

species of vagile fauna increased with depth. 

In a comparison of twelve studies, 296 species of epiphytic macroalgae were found on the 

leaves of P. oceanica, although only 27 species occurred in 50% or more of the studies. 

66% of species belonged to the Rhodophyceae, 23% to the Phaeophyceae and only 14% to 

the Chorophyceae. Crustose coralline algae from the genus' Hydrolithon and Pneophyllum 

were common to all studies in all seasons, and crustose algae was more abundant that soft 

encrusting or erect epiphytic macroalgae. 

The abundance of vagile fauna is generally greatest in shallow stations (~ 10m), whilst the 

number of species tends to increase with depth. Herbivore numbers are greatest at shallow 

stations, whilst carnivores are greatest in deeper stations. Whilst epiphytic microalgae, 

macroalgae and detritus are important food sources for many primary consumers, P. 

oceanica is only eaten by a small number of species, primarily the fish Sarpa sa/pa and the 

sea urchin Paracentrotus lividus. S. salpa can make up to 70% of fish biomass in shallow 

beds in the summer months (Francour 1997), although many different species of fish are 

found in this system (studies of species richness ranged identification of between 22 to 88 

species). Species diversity is often greater in the Eastern than the Western Mediterranean, 

although this is likely due to the migration of alien species through the Suez Canal 

(Kalogirou et al. 2010), and therefore due to anthropogenic disturbance, rather than natural 

variation. 
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Posidonia oceanica is an important structural and trophic resource which supports an 

abundance of associated flora and fauna (Mazzella et al. 1992). This review indicates that 

although negative interactions which provide regulatory functions, such as competition and 

predation, are present, many facilitative interactions can be observed in P. oceanica beds. 

One of the major facilitative roles is the structural habitat provision provided by Posidonia 

to its associated floral and faunal communities, providing ecological niches for a diverse 

assemblage of organisms. In return the consumption of plant epiphytes by mesograzers has 

been shown to enhance seagrass leaf survival (Jernakoff and Nielsen 1997). 

Studies show that there is a huge variation in the seagrass-associated flora and fauna 

between depths, seasons and meadows but that P. oceanica supports a community which is 

both functionally and biologically diverse. All associated communities (epiphytic, 

macro invertebrates and fish) show a strong depth zonation, although it is hard to tease out 

the effects of depth solely, as effects are confounded by the decrease in sea grass density 

(Fernandez et al. 2005). Algal epiphytes decrease with depth, due to light limitation and 

this reduces the number of herbivores accordingly. 

This review provides a synthesis of many decades of research, much of which can only be 

found in print. It provides an overview of communities associated with undisturbed 

Posidonia oceanica meadows, selecting only results of studies where no anthropogenic 

stressors were mentioned. P. oceanica is declining at an alarming rate in the Mediterranean 

(Bianchi and Morri 2000), leading to the loss of critical habitat for its associated flora and 

fauna (Hughes et al. 2009). This review indicates the value of this habitat in terms of the 

biodiversity found there, leading to high levels of both primary and secondary production, 

and therefore the importance of seagrass meadow conservation. 
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3. Ocean acidification affects nutrient 
availability and plant function in a 
temperate seagrass meadow 
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3.1 Introduction 

Anthropogenic release of C02 (primarily from burning fossil fuels) has increased global 

atmospheric concentrations from 280ppm to 390ppm since pre-industrial times, and levels 

could rise to over 750ppm by the end of this century (IPCC 200 1 b). This change in 

atmospheric levels of C02 is driving changes in ocean chemistry. Most notably, increased 

absorption of C02 in seawater leads to increased H+ concentration and a subsequent 

reduction in pH (Doney et aI. 2009b). Seawater is expected to decrease by approximately 

0.3-0.5 pH units to approximately pH 7.8 by the end of this century (Caldeira and Wickett 

2005). This is a potential threat to marine organisms and has been termed ocean 

acidification (OA) in the literature (Doney et aI. 2009b). 

Over the past few years, research into OA has grown exponentially (Kroeker et aI. 2010), 

with particular focus on calcifying species, due to their vulnerability to changes in 

carbonate chemistry (Fabry et al. 2008). Results of this research shows that there is likely 

to be significant intra- and interspecific variability in species abilities to tolerate or adapt to 

OA (Garrard et al. 2013), which may be related, not only to phylogeny, but also to life 

strategy such as feeding habits, distribution and behaviour (Widdicombe and Spicer 2008). 

Many authors have voiced their concern regarding the potential loss of biodiversity that 

may arise from gradual OA (e.g. Hall-Spencer et aI. 2008; Fabricius et aI. 2011; Hale et aI. 

2011), and impacts may be particularly severe in calcifying habitats such as coral reefs 

(Hoegh-Guldberg et al. 2007). 

Seagrasses form extensive beds that represent extremely productive and biologically 

diverse systems (Guinotte and Fabry 2008) and provide important ecosystem services such 

as supporting fisheries, sediment stabilization, nutrient cycling and carbon sequestration 

(Waycott et al. 2009). Of the seagrass species, Posidonia oceanica is one of the longest 
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lived (Duarte 1991; Marba et al. 1996) and forms dense, monospecific meadows which are 

some of the most globally-productive marine meadows (Pergent-Martini et al. 1994). P. 

oceanica is endemic, and the most abundant species of seagrass in the Mediterranean, 

occupying approximately 25% of coastal waters down to a depth of 45m (Pasqualini et al. 

1998). It supports a high abundance of flora and fauna (e.g. Van der Ben 1971; Gambi et 

al. 1992; Francour 1997) and the ecosystem formed is considered one of the climax 

communities of the Mediterranean infralittoral zone (Den Hartog 1977; Mazzella and Buia 

1986). These habitats are economically important (Blasi 2009), but have suffered from 

widespread decline, particularly in the North West Mediterranean (Marba et al. 1996). In 

response, these communities have been listed as a priority habitat in Annex I of the 

Habitats Directive (EEC 1992). 

Seagrass cover is declining at an alarming rate (7% per annum; Waycott et al. 2009) and 

this can be largely attributed to anthropogenic stressors such as coastal construction, 

eutrophication, invasive species, fishing, aquaculture and shipping (Duarte 2002). Climatic 

changes such as warming, sea level rise, increased wave action and storm frequency will 

cause added stress (Duarte 2002). However, a reduction in pH arising from OA may 

actually benefit seagrasses (Hall-Spencer et al. 2008). 

Whilst the majority of species of seagrass appear to be able to use bicarbonate (HCOn as 

an inorganic carbon source, either through active transport or the presence of external 

carbonic anhydrase (CA), their affinity for dissolved carbon dioxide (C02(aq» is greater 

(lnvers et al. 2001; Koch et at. 2013) and many species appear to rely on C02(aq) for atleast 

50% of the carbon used in photosynthesis (Palacios & Zimmerman 1997). Current 

concentrations of C02(aq), lead to a slow diffusive supply of CO2 to the leaves (Koch et at. 
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2013). At a pH of8.1-8.3 aqueous dissolved carbon dioxide (C02(aq» only represents about 

0.5-1 % of the dissolved inorganic carbon (DIC) pool, whilst bicarbonate (HCOn 

represents about 90% (Stumm and Morgan 1981). If the pH of the ocean drops to -7.8 then 

C02(aq) levels will increase by almost 200% (Fabry et al. 2008), leading to increased 

diffusion potential. In response to a decrease in pH many species of seagrass have been 

shown to increase photosynthetic rates (Thorn 1996; Invers et al. 2001; Jiang et al. 2010; 

Alexandre et al. 2012). This could increase seagrass production in the future. Previous 

studies have shown that eelgrass (Zostera marina) growth rates increase under low pH 

conditions (Thorn 1996), and the plant's light requirements are reduced (Zimmerman et al. 

1997). Further study observed that increased C02(aq) lead to greater reproductive output, 

below-ground biomass and vegetative proliferation of Z. marina (Palacios and Zimmerman 

2007). Observations at C02 vents have found that seagrass flourishes under acidified 

conditions in terms of production per square metre (Hall-Spencer et al. 2008; Fabricius et 

al. 2011), but leaf production decreases (MC Buia, unpublished data). 

A change in pH will not only lead to changes in carbonate chemistry, but may also lead to 

alterations in nutrient availability, although research on this topic remains inconclusive 

(e.g. Breitbarth et al. 2010; Shi et al. 2010). If nitrogen availability changes under OA this 

may lead to a change in C:N stoichiometry. Jiang et al. (2010) found that C:N content of 

the above ground tissue of the seagrass Thalassia hemprichii increased under low pH 

conditions, due to a decrease in nitrogen content. Phytoplankton C:N stoichiometry has 

also been shown to increase under OA conditions, although this was due to increased 

carbon assimilation rather than reduced nitrogen uptake (Riebesell et al. 2007; Bellerby et 

al. 2008). Alterations in stoichiometry will have knock-on effects for primary consumers, 

in terms of the palatability and nutritional value of seagrass. There is some early evidence 
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for this in the form of observations around the C02 vents of Ischia (Italy) where increased 

grazing pressure by the fish Sarpa sa/pa has been observed in acidified waters (Chapter 6). 

The Posidonia oceanica meadows are an extremely important and biologically diverse 

ecosystem within the Mediterranean basin and any adverse effect of OA to the plant will 

impact its associated community and the ecosystem services that it provides. Using the 

C02 vents off the island of Ischia, Italy, the effect of natural acidification on P. oceanica 

structural characteristics, sediment characteristics, nutrient availability, C:N stoichiometry, 

and photosynthetic efficiency were examined. 

3.2 Methods 

3.2.1 Site description 

The island of Ischia is located in the Bay of Naples, Italy. The island has a long history of 

volcanism and gas venting in shallow submarine sites (Tedesco 1996). The Castello 

Aragonese, on the east side of the island, has a number of vents which release C02 within 

the rocky sublittoral and Posidonia oceanica habitats on the north (N) and south (S) side of 

the Castello (Fig. 3.1). These C02 vents are unusual in that they are not heated and neither 

do they produce toxic compounds (Hall-Spencer et al. 2008), providing a natural 

laboratory for the study of the ecosystem level effects of ocean acidification. Although pH 

is highly variable (Kroeker et al. 20 II b). a pH gradient runs parallel to the shore at each 

location (N and S) (Hall-Spencer et al. 2008). 
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1 

Figure 3.1 Area of the study site of Ischia (Tyrrhenian Sea, Italy), with locations ofthe control and acidified 

sampling stations at the north and south of the Castello Aragonese. Areas where Posidonia oceanica and CO2 

vents can be found are marked. The position of the tertiary control site (Lacco Ameno) on the north east of 

Ischia can be seen. Data represents the mean pH (+SD) of each station (n = 150, apart from at Lacco Ameno 

where n = 40) sampled at various periods between March and November 20 II . 

Acidified and comparable non-acidified (control) conditions can be found within the P. 

oceanica meadows at each side (N and S) of the Castello, providing data on ocean 

acidification, whilst allowing comparison of zones with similar environmental conditions 

(e.g. exposure, temperature, substratum) other than acidification. The north side of the 

Castello is more exposed to prevailing winds, and therefore greater wave action, whilst the 

south side is set in a semi-enclosed bay and sheltered from many of the prevailing winds. 

The seagrass beds can be found growing short distances from the shore (Chapter 1, Fig. 

1.9) and acidified and control plots on the north and south of the Castello were determined 

through preliminary investigation of pH variation (see Chapter 1). Each plot was 

approximately 60 m2
, 10m parallel to the shore and 6 m perpendicular to the shore. These 

dimensions were chosen as preliminary investigation showed that acidified stations were 

sufficiently acidified (PH < 8.0) over this area. Sites were selected between depths of 2.5-

3.5 m to ensure that depth variation was not a confounding factor. A tertiary control site 

was situated in Lacco Ameno, in a seagrass bed situated far from any vents (Fig 3.1.). Each 
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station was marked by buoys. The tertiary control station at Lacco Ameno was the same 

size and located at a depth of 3 m. 

3.2.2. Carbonate chemistry 

pH measurements were taken by collection of 10 samples bi-monthly between May and 

November (N = 150), except for Lacco Ameno (N = 40). The lower number of samples 

was deemed sufficient for this site, due to the lack of vent induced variation. Samples were 

collected from 10 em above the canopy in falcon tubes. These were taken back to the 

laboratory and analysed within four hours of collection at ambient seawater temperature 

(Millero 1995). Measurements were taken using a Mettler Toledo S02 pH meter which 

measures to 0.01 units equipped with an InLab 413 electrode and calibrated regularly using 

NIST -traceable buffers. This method does not determine the total hydrogen ion 

concentration, but the relative change in pH between sites (precision within 0.05 pH units, 

Zeebe and Sanyal 2002) and was considered sufficient for this study. 10 samples were 

collected from each site on the 04/11 III for analysis of total alkalinity (TA). This was 

deemed sufficient as other studies have shown that T A shows very little variation at these 

sites (e.g. Cigliano et al. 2010; Rodolfo-Metalpa et al. 2010). Samples were filtered 

through OF/F Whatman filter paper and 0.02% mercuric chloride added. They were then 

stored in the dark and later analysed using the Apollo SciTech Alkalinity Titrator Model 

AS-ALK2 and Batch 100 certified reference materials (Dickson et al. 2007). Other 

carbonate variables were calculated using C02 SYS software (Lewis and Wallace 1998). 
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3.2.3 Meadow characteristics 

Sampling was random but sampled areas were marked to ensure that data was independent 

between visits. To describe structural characteristics of the seagrass at each station, in situ 

measurements of meadow density (shoots m'2) and height of the canopy (em) were 

performed (4 replicates per station) using a 40 x 40cm quadrat (Buia et al. 2004). Shoot 

density was measured in March, July and November. Height of the canopy was recorded 

by measuring the longest leaf within the quadrat. Measurements were taken in March, 

May, July, September and November to give a picture of temporal changes. 

Sediment samples were collected by inserting a manual metal corer (5.5cm diameter) 10cm 

into the sediment. Three sediment samples were collected from each station in May and 

September for chemical analysis, as this number is adequate for analysis of sedimentary 

features (De Falco et al. 2000). Sediments were then placed in chilled containers for 

transport back to the laboratory. Course debris was removed from the samples manually 

after visual inspection and the samples were oven dried at 60°C. Organic content of the 

sediments was determined from a sub-sample (1-2g) by loss-on-ignition in a muffle 

furnace (SOO°C for 2h) and then placed in a desiccator to cool at room temperature 

overnight. Sediments were then re-weighed and % organic content calculated. Carbonate 

content was estimated by dissolution of a subs ample (1-2g) in 10% hydrochloric acid 

overnight. Samples were then washed with distilled water, oven dried at 60oC, and placed 

in a dessicator to cool at room temperature. Sediments were then re-weighed and % 

carbonate content calculated based on weight loss. For analysis of sediment grain size 

coarse sediments were sieved, whilst fine sediments « Imm) were analysed through laser 

diffraction (Malvern Mastersizer 2000). Results were reported using phi scale (<p, the log 

base 2 scale descriptor of sediments), 
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3.2.4 Nutrient availability 

Pore and canopy water nutrient samples, leaves for C:N analysis and PAM data were 

collected in May and September. These months were chosen as they correlate to periods of 

high and low leaf growth and nitrogen concentrations respectively (Alcoverro et al. 

1995b). Pore and canopy water samples (six replicates) were collected for nutrient analysis 

in non-shaded patches of seagrass at each station. All samples were collected on sunny, 

calm days between 10.00 and 13.00 (GMT), as nutrient consumption varies dependant on 

time of day and is related to plant metabolism (Blackburn et al. 1994; Ziegler and Benner 

1999). Canopy water samples were collected approximately 20 cm from the seafloor using 

a 60 ml syringe; the first syringe of water was ejected and then refilled. Pore water samples 

were collected using a pipette tip attached to a syringe inserted 10cm into the sediment. 

The end was screened with gauze to prevent coarse sediment particles from entering. The 

first syringe was discarded and the second syringe collected. All samples were kept on ice 

until returned to the laboratory and then filtered through GF IF Whatman filter paper and 

frozen within 4 hours of sampling. Analysis of major nutrients (ammonium, nitrates, 

nitrites and orthophosphates) was performed within four weeks using a Technicon 

autoanalyzer. 

Ratios of inorganic nitrogen to phosphorous were calculated from concentrations of N03, 

N02, NH4 and P04. The molecular weights of each of the elements (N = 14, 0 = 16, P = 

31, H = 1) were used to calculate the mass of each compound, and the ratio of N:P 

calculated from the equation: 

N = «conc.N031 62)*14) + «concN021 46)*14) + ({conc.NHJ 18)*14) 

P = «conc,P04/ 95) *31) 

N: P= IOO/(P/N)*100» 
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3.2.5 C:N stoichiometry 

For analysis of C:N content of the leaves, 6 intermediate leaves (rank 2 or 3) were 

collected from 4 random plots of 1m2 within each station (N=24). Each plot sampled was 

marked with buoys to ensure samples were independent. Samples were taken back to the 

laboratory for analysis. The leaves were scraped of epiphytes, rinsed in fresh water to 

remove any saIt residue and freeze dried. Once freeze dried, samples were ground to a fine 

powder and placed in a dessicator to remove any residual moisture. Pellets of approx. 2mg 

were then weighed and analyzed with an elemental analyzer for the total content of both C 

and N (as a percentage of dry weight), using acetanilide as a standard. C:N stoichiometry 

was calculated from the equation: C:N = (% carboni 1 2) / (% nitrogenlI4). 

3.2.6 Photosynthetic performance 

Chlorophyll fluorescence was used to determine parameters of photosynthetic 

performance. The measurement of chlorophyll fluorescence provides a rapid assessment of 

PSII photochemistry in seagrasses through the calculation of the quantum yields of both 

photochemical and non-photochemical energy conversion in photosystem II (PSII). When 

photons (quanta) within the photosynthetically active radiation (PAR) region hit 

photosynthetic pigments they become excited. This excitation energy can be used for 

photochemical processes, whilst a portion is release as heat or fluorescence. The inverse 

relationship between chlorophyll fluorescence and photochemistry can help elucidate 

aspects of the photosynthetic process (Silva et al. 2009). Estimates of photosynthetic 

performance of P. oceanica plants were obtained using in situ PAM (pulse amplitude 

modulated) flourometry by means of a diving-PAM instrument (Waltz, Effeltrich, 
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Germany). Three intermediate leaves (rank 2 or 3) were chosen for each plot (three plots 

per station). All seagrass leaves measured were found at a depth of 2.5 - 3.5 m, therefore 

should be adapted to highlight conditions. PAM measurements were collected between 

10.00 and 12.00 GMT, therefore light should be high at this time of day. Prior to use of the 

PAM, ambient PAR was calculated using a portable quantameter (QSI-140, Biospherical 

Instr., USA). 

The following measurements were chosen to describe photosynthetic capacity of the 

leaves: quantum efficiency (FvlFm), electron transport rate (ETRMAx) and alpha (a.). 

Determinations of maximum quantum yields (FvlFm) were performed after submitting 

measured leaf spots to a dark acclimation period of 7 to 10 min prior to exposure to a 

saturating light pulse. FvlFm is a measure of maximum photosynthetic efficiency and an 

indicator of stress (Silva et al. 2009). It is derived from the number of electrons produced 

through absorption of a photon in PSII, taking into consideration minimal (Fo) and 

maximal (Fm) fluorescence (Kromkamp and Forster 2003). The measurement of 

chlorophyll fluorescence also allows the construction of irradiance vs ETR (electron 

transport rate past PSII) curves based on short exposures of measured leaf spots to a range 

ofirradiances produced by the fluorometer lamp (rapid light curves, RLCs) (Ralph and 

Gademann, 2005; Silva et al., 2009). In that, they are used to describe the photosynthetic 

response to irradiance, as an analogue to the P vs E curves obtained by measurements of 

oxygen evolution or carbon assimilation (Enriquez & Borowitzka, 20 I 0). Quantum yield 

ofPSII (Y) was recorded by the PAM at each light intensity and ETR was calculated from 

the equation: ETR= y* PAR*0.5*AF (Schwarz et al. 2000). An expeditive calculation of 

AF (the absorption factor of the leaves) was accomplished by measuring the 

transmittance of PAR through the leaves. Curve parameters (maximum electron transport 

rate, ETRmax; initial slope of the curve, (1; and saturating irradiance, Ek) were calculated 
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by fitting empirical data to an exponential function (Ralph & Gademann, 2005). The 

steepness of the curve in the light limiting region (a) enables us to understand the 

efficiency of light capture, whilst ETRmax provides information on the maximum 

photosynthetic capacity of the plant (Ralph and Gademann 2005). 

3.2.4 Data analysis 

Shoot density, canopy height, % organic and carbon content of the sediments, sediment 

grain size, nutrient concentrations in canopy and pore water, C:N content of the leaves and 

PAM fluorometry were analysed using a three-way GLM ANOV A to test the effects of pH 

(fixed), site (fixed) and month (fixed). Due to the incomplete design of this experiment, the 

tertiary control, Lacco Ameno, was excluded from these analyses. A secondary one-way 

ANOV A was then performed for each variable to compare control stations in the north and 

south with the tertiary control site at Lacco Ameno. Data was checked for homogeneity of 

variance using a Cochran C test. Where variances were heterogeneous, data was 

transformed; all percentage data was arcsine transformed, height of the canopy and nutrient 

concentration data were log (x+ I) transformed. For some canopy water nutrient 

concentration data (N02, P04) although transformations reduced heterogeneity of variance, 

data did not become homoscedastic. Residuals were checked and found to be normally 

distributed and therefore, as samples were balanced and large (N=6 for 8 treatments) and 

therefore robust to departures from the assumptions (Underwood 1997; McGuinness 

2002), this data was analysed with a GLM ANOV A. To investigate the relationship 

between nutrient availability and nitrogen content of the leaves, a Pearson's correlation 

coefficient was calculated. All analyses were carried out using Statistica 8.0 software. 
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3.3 Results 

3.3.1 Seawater properties 

Mean pH values at control stations at the north and south of the Castello Aragonese and 

Lacco Ameno were 8.13 and 8.12 respectively, whilst acidified sites were 7.82 and 7.78 

during the study (Fig. 3.1). These reduced pH levels found at the acidified stations are 

ecologically relevant since these are the pH values predicted for the end of this century 

(Caldeira and Wickett 2003). It must be noted that pH values were extremely variable 

within the P. oceanica acidified stations (see Table 3.1). Acidified stations fell below a pH 

of 8.0 (the value considered as being acidified) during 55% and 67% of sampling periods 

in the north and south acidified site respectively. Due to the logarithmic nature of the pH 

scale, carbonate chemistry parameters such as pC02 showed high variability (Table 3.1). 

Table 3.1 Mean ± SD seawater carbonate chemistry. Temperature (13-29°C throughout study period, mean = 

21.1 0c) was continuously recorded between March and November 2011 using a data logger. Salinity (38) 

was a point measurement taken in May 2011. 10 pH samples were collected from each station periodically 

between May and November 2011. Total alkalinity (TA) is a point measurement taken on the 04/10/11. The 

remaining parameters were calculated using CO2 SYS programme using the constants of Roy et al. (1993) 

and Dickson (1990) for KS04. Total alkalinity (T A) is mmoJ.kg·l; pHNBS was measured using an NBS scale; 

and pC02 is Ilatm. 

pHNBS TA pCOz fiCA OAR 

Control 8.13 ± 0.05 2.54 ± 0.04 509 ± 54 5.04 ± 0.32 3.30 ± 0.21 
North 

Acidified 7.82 ± 0.31 2.57 ± 0.02 2158±2508 3.37 ± 1.81 2.14 ± 1.18 

Control 8.12 ± 0.04 2.54 ± 0.01 504 ± 68 S.IS±0.44 3.37 ± 0.29 
South 

Acidified 7.78 ± 0.39 2.55 ± 0.01 1614 ± 1861 3.23 ± 1.51 2.11 ± 0.99 

Lacco Control 8.18 ± 0.03 2.55 ± 0.01 437 ± 25 5.61 ± 0.20 3.67 ± 0.13 

Ameno 
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3.3.2 Meadow parameters 

Shoot density did not vary between months, although there was a strong effect of 

acidification (p < 0.001) and site (p < 0.00]). Shoot density was greater in acidified 

stations than control stations and greater in the south than the north (Fig. 3.2a). A 

significant ' site x pH' interaction was found, as the effect of acidification on shoot density 

was much greater at the south side of the Castello Aragonese (Table 3.2). Density 

increased with acidification by 58% in the North side and 82% in the south side. Shoot 

density at Lacco Ameno (LA) was lower than the south control (Tukey HSD: p = 0.0 13) 

but equal to the north control station (N = LA < S). 
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Figure 3.2 Comparison of mean (±SE): a) shoot density between control and acidified stations, and b) height 

of the canopy between March and Novewmber. • signifies significant results. 
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Height of the canopy was strongly affected by acidification (p < 0.001), site (p = 0.002) 

and month (p < 0.001), although there was a strong ' pH x month ' interaction (p < 0.001) 

(Table 3.2), as no differences were found in canopy height in March, May and November 

(Fig. 3.2b). The canopy in the control station was taller than in the acidified station 

throughout July (49% taller) and September (75% taller) in the south side (Tukey HSD: p 

= 0.03, P < 0.00 I), whilst canopy height was greater in the north side only for September 

(56% higher) (Tukey HSD: p = 0.004). Canopy height was generally shorter in the north 

than the south, which may be because the north control station is smaller, so may exhibit 

edge effects. In control stations canopy height generally increased from March to July and 

then decreased from September to November, whilst in acidified stations canopy height 

generally decreased from May. Canopy height at Lacco Ameno was equal to the south 

control station but higher than the north control (Tukey HSD: p = 0.024, N < LA = S). 

Table 3.2 Three-way ANOYA results of shoot density and height of the canopy between site (fixed factor), 

pH (fixed factor) and month (fixed factor). A secondary one-way A OY A to compare control stations 

including Lacco Ameno. Height of the canopy data was LOG (X + I) transformed to meet the assumptions of 

A OY A. S = site, M = month. Significant results are highlighted in red. 

Shoot density Height of the canopy 
df MS F P df MS F P 

S 273763 32.089 < 0.001 0.1166 10.57 0.002 
pH 1024482 120.084 < 0.001 1 0.4715 42.74 < 0.001 
M 2 12564 1.473 0.243 4 0.5625 50.99 < 0.001 
S xpH 1 71302 8.358 0.006 1 0.2185 19.81 < 0.001 
SxM 2 15904 1.864 0.170 4 0.0158 1.43 0.236 
pHxM 2 12102 1.419 0.255 4 0.1295 11 .74 < 0.001 
S x pH x M 2 5621 0.659 0.524 4 0.0091 0.82 0.516 
Err 36 8531 60 0.0110 
Controls 2 34747 4.9 132 0.014 2 0.2104 5.093 0.009 
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Organic and carbonate content of the sediments was not affected by site, acidification or 

month, but was similar between all stations (Fig. 3.3), although there was a higher organic 

and carbonate content found at Lacco Ameno than any of the other control stations (Tukey 

HSD: p < 0.01 and p < 0.00 I, respectively) (Table 3.3). Sediment grain size was not 

affected by acidification (Fig. 3.3a), but was smaller in May than September (p = 0.032) 

and smaller in the south than the north (p = 0.037). Lacco Ameno had a larger grain size 

than the south control station (Tukey HSD: 0.006) but was no different from the north 

control station (N = LA > S). 

Table 3.3 Three-way ANOV A results of % organic and carbonate content, and grain size of the sediments 

between site (fixed factor), pH (fixed factor) and month (fixed factor). A secondary one-way A OVA to 

performed to compare control stations including Lacco Ameno. Organic and carbonate content data was 

arcsine transformed. S = site, M = month. Significant results are highlighted in red. 

% organic content % carbonate content Grain size (cp) 

df MS F P MS F P MS F P 

S 0.000075 0.265 0.614 0.002263 3.800 0.069 0.76922 5.14959 0.037 

pH 0.000893 3.163 0.094 0.002012 3.378 0.085 0.12926 0.86531 0.366 

M 0.000892 3.159 0.095 0.000860 1.444 0.247 0.82345 5.51262 0.032 

S x pH 0.000377 1.334 0.265 0.001685 2.829 0.112 1.19822 8.02150 0.012 

SxM 0.000000 0.001 0.979 0.002220 3.728 0.071 0.00038 0.00254 0.960 

pHxM 0.000907 3.214 0.092 0.003659 6.144 0.025 0.00563 0.03766 0.849 

S x pH x 0.000295 1.045 0.322 0.000473 0.794 0.386 0.03327 0.22276 0.643 

M 
Err 16 0.000282 0.000595 0.14938 

Controls 2 0.006463 10.629 0.001 0.035102 20.147 0.001 1.237837 9.48300 0.002 
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Figure 3.3 Comparison of mean (±SE) of sediment characteristics; a) sediment size (<p), b) % organic content, 

and c) % carbonate content between acidified and control stations in May and September. 

3.3.3 Nutrient availability 

Canopy water N03 concentrations were higher in acidified than control stations (p < 0.01), 

in the north than the south (p < 0.01) and in May than in September (p < 0.01) (Table 3.4). 
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Pore water N03 concentrations were higher in acidified than control stations (p < 0.05), but 

no differences were found for month or site (Table 3.4). In May, canopy and pore water 

N03 concentrations were greater in the acidified than the control station in the north 

(Tukey HSD: p < 0.01 and p < 0.005 respectively) (Fig. 3.4a). When control stations were 

compared to Lacco Ameno the north control station had higher concentrations of canopy 

water N03 (N > LA = S), but no differences were found for pore water concentrations 

(Table 3.4). 

Canopy water N02 concentrations followed the same pattern as N03 concentrations and 

were higher in acidified than control stations (p < 0.001), in the north than the south (p < 

0.01), and in September than May (p < 0.001) (Table 3.4). In May the canopy water N02 

concentration in the north was greater in the acidified than the control station (Tukey HSD: 

p < 0.01) (Fig. 3Ab). A similar pattern was found between the north acidified and control 

stations in September although this difference was not significant (Tukey HSD: p = 0.068). 

Unlike N03, no differences were found between acidification, month or site for pore water 

concentrations. No variation in N02 concentrations was found between control stations and 

Lacco Ameno. 

Canopy water NH4 was greater in May than September (p < 0.001) and greater in the north 

than the south (p < 0.05). No difference was found in concentrations between acidified and 

control stations (Table 3.4). Pore water concentrations followed the same pattern as the 

canopy water~ concentrations greater in May than September (p < 0.01) and in the north 

than the south (p < 0.01). When control sites were compared to Lacco Ameno, the north 

control site had higher concentrations ofNH4 (N) LA = S). 
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Figure 3.4 Mean (±SE) concentrations of nutrients in the canopy and pore water of Posidonia oceanica in 

May and September: a) NO), b) N02, c) ~, and d) P04. '" denotes differences between control and 

acidified stations. 
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Table 3.4 Three-way ANOV A results of nutrient contents between site (fixed factor), acidification (fixed 

factor) and month (fixed factor). A secondary one-way ANOV A to compare contro l stations includ ing Lacco 

Ameno. Data was log (X + 1) transformed to meet the assumptions of ANOV A, where data remained 

heteroscedastic residuals were checked for normality. S = site, pH = acidification, M = month. Significant 

results are highlighted in red. 

Canopy water Pore water 
df MS F P MS F P 

N03 

S 0.156981 11.149 0.002 0.003656 0.282 0.598 
pH 0.123859 8.796 0.005 0.057985 4.474 0.041 
M 0.105326 7.480 0.009 0.001088 0.084 0.774 
Sx pH 0.043124 3.062 0.088 0.010879 0.839 0.365 
SxM 0.06 1756 4.386 0.043 0.104622 8.073 0.007 
pHxM 0.046408 3.296 0.077 0.082995 6.404 0.016 
SxpH x M I 0.015507 l.l 01 0.300 0.003697 0.285 0.596 
Err 39 0.014081 0.012960 

Controls 2 0.009715 4.318 0.022 0.014323 1.430 0.254 

N02 

S 0.000677 12.242 0.001 0.000177 0.093 0.762 
pH 0.000856 15.480 < 0.001 0.003375 1.766 0.192 
M 0.003697 66.880 < 0.001 0.000759 0.397 0.532 
SxpH 0.000612 11.081 0.002 0.000574 0.301 0.587 
SxM 0.000126 2.272 0.140 0.005049 2.642 0.112 
pHxM 1 0.000048 0.873 0.356 0.000011 0.006 0.939 
Sx pH xM 1 0.000004 0.069 0.794 0.003884 2.032 0.162 

Err 39 0.000055 0.001911 

Controls 2 0.000110 0.760 0.476 0.005126 2.210 0.126 

NH4 
S 0.003662 7.187 0.011 0.88348 8.470 0.006 
pH 0.001124 2.206 0.146 0.02900 0.278 0.601 

M 0.058828 115.451 < 0.001 1.03503 9.923 0.003 

Sx pH 0.000114 0.223 0.639 0.24981 2.395 0.130 

SxM 0.001469 2.882 0.098 0.02025 0.194 0.662 

pHxM 0.002184 4.285 0.045 0.24622 2.361 0.133 
S x pHxM 0.000991 1.946 0.171 0.12439 1.193 0.282 
Err 39 0.000510 0.1043 1 

Controls 2 0.001856 0.664 0.522 0.74507 5.295 0.010 

P04 

S 0.000011 0.074 0.787 0.102207 6.205 0.017 
pH 0.000002 0.012 0.914 0.046382 2.816 0.101 
M 0.000278 1.873 0.179 0.0 18447 1.120 0.296 
SxpH 0.000234 1.574 0.217 0.036738 2.230 0.143 
SxM 1 0.000917 6.180 0.017 0.000905 0.055 0.816 
pHxM 1 0.000737 4.967 0.032 0.115675 7.022 0.012 
S x pH xM I 0.000013 0.091 0.765 0.108360 6.578 0.014 

Err 39 0.000148 0.016473 

Control 2 0.000196 1.010 0.375 0.087811 4.765 0.015 

75 



No significant difference was found for acidification for canopy or pore water P04 

concentrations, although there was a significant 'pH x month' interaction (p = 0.032 and p 

= 0.012, respectively) as P04 concentrations were greater in control than acidified sites for 

both canopy and pore water samples in May. No differences were found between month or 

site for canopy water concentrations of P04 (p < 0.05), whilst pore water values were 

greater in the north that the south of the Castello but there were no differences for month. 

When control stations were compared to Lacco Ameno the north control site had higher 

concentrations ofP04 in the pore water (N > LA = S), but no differences were found in the 

canopy (Table 3.4). 

Dissolved inorganic nitrogen to phosphorous ratios were greater in acidified than control 

stations in May and greater in the north than the south (Table 3.5). In September the N: P 

ratio was lower in the acidified than control station in the north and equal in the south. 

Table 3.5 Ratio of dissolved inorganic N:P concentrations in the canopy waters of control and acidified 

stations in May and September. 

North 
Control 50 

Acidified 205 

May 
South 

18 

42 

September 
North South 

24 17 

13 16 
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3.3.5 C:N stoichiometry 

C:N ratio of the leaves (molar) was lower in acidified than control stations (p < 0.00 I), in 

May than in September (p < 0.001) and in the south than the north (p = 0.002), although 

significant interactions suggested that this did not hold true under all combinations of 

factors (Table 3.6). In May C:N ratio of the leaves was lower in the acidified than the 

control station on the south side (Tukey HSD: p < 0.001) (Fig. 3.5a). Nitrogen content of 

the leaves showed the exact opposite pattern: it was higher in acidified than control stations 

(p < 0.00 I), in May than in September (p < 0.00 I) and in the south than the north (p = 

0.006). In May nitrogen concentration of the leaves was higher in the acidified than the 

control station on the south side (Tukey HSD: p < 0.001) (Fig. 3.6c). Carbon content did 

not vary with acidification, site or month (Table 3.6), therefore changes in C:N 

stoichiometry were solely due to an increase in nitrogen content in acidified leaves. 

Comparisons of the control stations with Lacco Ameno revealed no differences for C:N 

ratio, carbon or nitrogen content of the leaves. 

Table 3.6 Three-way ANOVA results of % nitrogen and % carbon content and C:N ratio (molar) of the 

intermediate leaves of P. oceanica between site (fixed factor), pH (fixed factor) and month (fixed factor). A 

secondary one-way ANOV A to compare control stations including Lacco Ameno. S = site, M = month. 

Significant results are highlighted in red. 

% nitrogen content 0/0 carbon content C:N ratio (molar) 
df MS F P MS F P MS F P 

S 0.7388 7.870 0.006 11 .2692 1.441 0.231 0.0269 9.6 0.002 
pH 1.5191 16.183 <0.001 6.5177 0.834 0.362 0.0584 20.7 < 0.001 
M 23.0951 246.020 <0.001 18.9778 2.427 0. 121 0.2308 81.9 < 0.001 
S x pH 1.1880 12.655 <0.001 0.0241 0.003 0.956 0.0275 9.8 0.002 
S x M 2.9936 31.889 <0.001 32.8551 4.202 0.052 0.1091 38.7 < 0.001 
pH x M 2.0763 22.118 <0.001 4.9589 0.634 0.427 0.0509 18.1 < 0.001 
S x pH x M I 2.4547 26.148 < 0.001 3.0780 0.394 0.531 0.0915 32.5 <0.001 
Err 184 0.0939 7.8195 0.0028 

Controls 2 0.5328 3.421 0.065 14.5261 2.279 0.106 19.469 1.747 0.178 
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Figure 3.5 Comparison of mean (±SE): a) C:N ratio (molar), b) carbon content, and c) nitrogen content of 

intermediate Posidonia oceanica leaves between acidified and control stations in May and September. 

A significant positive relationship was observed for the concentration ofNH4 in the canopy 

water and nitrogen concentration in the intermediate leaves (Pearson's correlation = 0.575, 

p = 0.041) (Fig 3.6). None of the other nutrient concentrations of the canopy or pore water 
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(N03, N02 or pore water NH4) showed significant correlations to the observed nitrogen 

content of the leaves. 
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Figure 3.6 Relationship between canopy water NH4 concentration and % nitrogen content of the intermediate 

Posidonia oceanica leaves at each station (N = 5) in May and September. Pearson's correlation coefficient is 

shown. 

3.3.6 Photosynthetic performance 

FyFm was not affected by acidification (Fig. 3.7a), but was higher in the north than the 

south side (p < 0.001) and higher in May than September (p < 0.001). There was a 

significant 'site x month' interaction, as the effect of month was only significant on the 

south side (p = 0.002) (Table 3.7). Comparisons of the control stations and Lacco Ameno 

revealed a significant effect, although this was due to the differences between the north and 

the south control (Tukey HSD: 0.015), as Lacco Ameno did not differ from either (N ~ LA 

~ S). 
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Maximum electron transport rate (ETRMAX) was not affected by acidification or site (Fig. 

3.7b) but showed a similar pattern to FvFm and was higher in May than September (p < 

0.001). There was a significant ' pH x month' interaction as ETRMAX was higher in the 

acidified than the control station in the north in May (Tukey HSD: p = 0.02) (Fig. 3. 7b). 

No differences in ETRMAX were found between control stations (Table 3.7). 

Table 3.7 Three-way A OVA of photosynthetic performance parameters: F vF m, ETRMAX and alpha of the 

intermediate leaves of P. oceanica between site (fixed factor) , pH (fixed factor) and month (fixed factor) . A 

secondary one-way ANOV A to compare control stations including Lacco Ameno. S = site, M = month . 

Significant results are highlighted in red. 

F.Fm ETRMAX alpha 
df MS F P MS F P MS F P 

S 8170.68 32.879 <0.001 1.897 0.697 0.407 0.00009 0.073 0.788 
pH 190.12 0.765 0.385 1.607 0.590 0.445 0.00135 1.050 0.309 
M 3960.50 15.937 < 0.001 106.842 39.243 < 0.001 0.01809 14.069 < 0.001 
S x pH 2.00 0.008 0.929 10.211 3.751 0.057 0.00002 0.017 0.896 
S x M 2580.01 10.382 0.002 114.756 42.150 < 0.001 0.00016 0.123 0.727 
pH x M 183.68 0.739 0.393 30.785 11.307 0.001 0.00610 4.746 0.033 
S x pH x M I 50.00 0.201 0.655 2.117 0.778 0.381 0.00006 0.046 0.832 
Err 64 248.51 2.723 0.00129 
Controls 2 0.00199 4.26 0.020 1.766 0.2773 0.759 0.085677 20.219 <0.001 

Light harvesting efficiency (a) was not affected by acidification or site (Fig. 3.8c) but was 

higher in May than September (p < 0.00 I). There was an 'acidification x month' 

interaction as the effect of month was only noticeable in acidified stations (Tukey HSD: 

0.037). When control stations were compared, Lacco Ameno had a significantly lower 

light harvesting efficiency than the other control stations (p < 0.001), due to the extremely 

low result obtained in May (Fig. 3.7c). 
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Figure 3.7 Comparison of mean (±SE) parameters of photosynthetic performance: a) FvFm. b)ETRMAx(f.lmol 

electrons m·1 s· \ and c) alpha of Posidonia oceanica leaves between acidified and control stations in May 

and September. 
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3.4 Discussion 

This study showed that there appeared to be a change in energy allocation of the plant 

under acidified conditions. Whilst no change in photosynthetic capacity of the leaves was 

observed, an increase in shoot density was found, whilst canopy height was generally 

lower in acidified stations. Measurements of the nitrogen and phosphorous concentrations 

of the canopy and pore water showed that, in May (a period of high plant growth), nitrate 

concentrations were higher in acidified conditions and phosphate conditions lower. In 

response to this leaf nitrogen concentrations increased. Possible explanations for these 

findings are discussed below. 

Shoot density was greater under acidified conditions, increasing by 58% on the north side 

of the Castello and by 82% in the south reaching densities of 587 and 815 shim 2 

respectively. This increase is consistent with results obtained by Hall-Spencer et al. (2008). 

In contrast, acidified stations generally had a shorter canopy height. A previous study, 

utilizing the CO2 vents of Ischia, showed that acidification reduces elongation rate of the P. 

oceanica leaf (MC Buia, unpublished data). Canopy height shows strong seasonality and 

generally increases from the beginning of the year through until late summer before a sharp 

drop in October and reaching a minimum in December due to leaf fall (Gacia and Duarte 

2001). This pattern was observed at the control stations at the south of the Castello and 

Lacco Ameno, although it was not observed at the north control station, where height 

peaked in May. It is thought that the lower canopy height in the north control station may 

be due to edge effects leading to a reduced canopy height (Bologna 2006), as the meadow 

on the north side of the Castello is smaller. This could also explain the lower density of 

shoots observed at the north side, as seagrass density is generally lower nearer the edge of 

a meadow (Bologna 2006). Canopy height in acidified stations was peaked in March-May, 

and decreased to minimal height in September-November. The reason for a decrease in 
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canopy height is most likely due to grazing pressure by the fish (Sarpa sa/pa). Extreme 

grazing by this fish has been recorded in the canopy of acidified stations in June and 

August (Chapter 6), which may account for the decrease in canopy height during these 

months. These results suggest that P. oceanica alters their energy allocation under acidified 

conditions, increasing vertical growth (shoots) whilst decreasing above ground production 

per shoot. Whether this is a stress response, an indirect effect acidification, or a positive 

response to a reduction in pH is unknown. 

Nutrient concentration data from our study must be interpreted with caution, as the C02 

vents are an open system, with water moving in and out of the vent areas, and pH is also 

more variable than values expected for the future. This said, our sampling revealed 

significant results. Canopy waters had a higher nutrient concentration (NO) and NH4) in 

May than September, which would be expected for coastal stations due to nutrient fluxes 

(low productivity and high remineralisation in winter, high productivity in summer) (e.g. 

DeCasabianca et al. 1997). During the period of high nutrient concentration (May), a 

general increase in inorganic nitrogen (Not, N02-, NJ-4 +) concentration was observed in 

canopy and pore water in acidified stations, whilst the concentration of pol decreased. 

Although it is generally thought that nitrogen is the limiting nutrient in the oceans (Tyrrell 

1999), phosphorous is the limiting nutrient in the Mediterranean (Sala et al. 2002). The 

dissolved inorganic nitrogen to phosphorous ratio is approximately 21: 1 (Bethoux et al. 

1992). We found that the ratio of canopy water dissolved inorganic N:P in May was 

extremely high in acidified stations (205: 1 in the north acidified station) in comparison to 

control stations. This is much greater than values found by Bethoux et al. (1992), due to 

the high concentrations of inorganic nitrogen and low concentrations of phosphate. There 

has been some concern that nitrification rates may be reduced under low pH conditions 
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(Behman et al. 2011), although this research suggests that, at least within P. oceanica 

meadows, concerns of nitrogen limitation will be unfounded, but under future OA 

conditions phosphorous limitation may become more severe. This should be investigated 

more thoroughly, as increased phosphate limitation will have direct impacts for all primary 

producers and knock on effects at all levels, from biogeochemistry to species and 

ecosystems. 

In May the C:N ratio (molar) of the leaves was significantly lower in the acidified than 

control station at the south (28%). At the north side, the C:N stoichiometry was 

surprisingly low at both the acidified and control station. These differences were solely due 

to an increase in nitrogen content of the leaves, as the carbon content of leaves did not 

vary. This decrease is the opposite of observations by Jiang et al. (20 I 0) for the seagrass 

Thalassia hemprichii. They found that C:N content of the leaves increased, due to a 

decrease in nitrogen content of the leaves. An increase in Ni was observed at acidified 

stations, and the north control station also had high Ni levels, therefore C:N stoichiometry 

of the seagrass appears to be related to the concentration of Ni found in the surrounding 

seawater. Jiang et al. (2010) maintained T. hemprichii in aquaria for 21 days, and therefore 

if an increase in Ni is due to other elements of the ecosystem (e.g. increase activity of 

nitrogen fixing bacteria, remineralisation of organic matter) the effect of increased Ni in 

the water column would not have been observed. 

Nitrate and phosphate uptake in higher plants is thought to be through passive uptake using 

H+ co-transporters, whilst ammonia uptake may be through active transport using H+

A TPase (Fig. 3.8) (Zhu et al. 2009). A decrease in pH would be expected to increase 

efficiency of nitrate and phosphate uptake into the plant, whilst ammonium uptake would 

be expected to decrease, as the activity of H+ -ATPase is reduced under higher 
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concentrations of H+ (Alexandre et al. 2012). An increase in canopy water concentrations 

ofNi and subsequent nitrogen content of the plant suggests that uptake is greater, although 

it is difficult to speculate on the mechanisms of uptake. Alexandre et al. (2012) found that 

nitrate uptake in Zostera marina was reduced in acidified conditions, whilst ammonium 

uptake remained the same. Similarly, these results appear to show that ammonium uptake 

is the primary path for nitrogen assimilation, as a correlation was found between NH4 + 

concentration in the canopy and nitrogen content of the leaves (% OW). It is thought that 

Z. marina uses Na+ coupled systems to mediate the uptake of nitrate and phosphate 

(Garcia-Sanchez et al. 2000, Rubio et al. 2005). We suggest that this is most likely the case 

for P. oceanica, as if H+ coupled transporters were used, a decrease in pH should lead to 

greater uptake of nitrate, possibly leading to a correlation between nitrate concentration 

and nitrogen content of the leaves, rather than the observed correlation with ammonium 

concentration. A further reason for an increase in nitrogen in the tissues of P. oceanica in 

acidified stations may be the loss of crustose coralline algae (CCA), which may compete 

with the plant for nutrients and covers a large surface area of the leaf in control stations 

(see Chapter 6), reducing surface area for nutrient uptake (Fig. 3.8). 
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Figure 3.8 Potential mechanisms for transport of nutrients across the plasma membrane. Including coupled 

Wor a+ cotransporters, and W ATPase. Competition with coralline crustose algae (CCA) for nutrients is 

shown. 

The reason for the increased concentrations of nitrogen within the canopy and pore water 

are uncertain. As a decrease in phosphate concentration occurred, an increase in 

remineralization is not expected. Ocean acidification has been shown to increase nitrogen 

fixation in some species of cyanobacteria (Levitan et al. 2007; Levitan et al. 20 I 0). 

Furthermore, ammonium (NH4 +) and ammonia (NH3) concentrations are pH dependent 

(NH3 + H+ ~ NH/ ); under current seawater conditions approximately 5% can be found as 

ammonia whilst 95% can be found as ammonium, although if the pH of the oceans drops 

to 7.8 then the concentration of ammonia will drop by approximately 50% (Beman et al. 

2011). Both of these would increase availability of NH/ to P. oceanica and may lead to 

increases in other forms of Ni (Not, N02l In order to strengthen these results more 

rigorous analysis is required, as nutrient concentrations were only collected at two points 
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in the year (N = 6 for the canopy and pore water at each station). Further investigation into 

possibilities of increased nitrification, or seepage ofNi from the vents are suggested. 

Although the decrease in calcareous epiphytes and increase in filamentous algal epiphytes 

on P. oceanica along a pH gradient has been documented (Martin et al. 2008; Gambi et al. 

2011), this is the first study to be directed at solely studying the impact of ocean 

acidification on P. oceanica. The pH values observed during this study were highly 

variable, corresponding to values found during other studies at acidified stations at the 

Castello Aragonese, Ischia (e.g. Hall-Spencer et al. 2008; Kroeker et al. 20 11 b). This is 

primarily because, whilst a pH gradient can be found in this habitat (Martin et al. 2008), 

water movements can disperse the developing gradients (Meyer et al. 2012). Although the 

north acidified station showed a greater pH range, the acidified station at the south was 

acidified for longer and therefore we would expect that any effects of acidification would 

be more pronounced at this site. It was observed that during high periods of wave 

movement the pH of the acidified sites generally increased to values similar to the control 

stations. It is thought that this effect was due to mixing of external waters, leading to a 

dilution effect. 

Parameters related to photosynthetic performance of the leaves (FvFm, ETRMAx, alpha) 

were not affected by low pH. This agrees with the study by Hall-Spencer et al. (2008) at 

these vent sites, although contrasts with expected findings if seagrass is C02 limited 

(lnvers et al. 2001). Studies of both Zostera marina (Thorn 1996; Zimmerman et al. 1997), 

Zostera noltii (Alexandre et al. 2012) and Thalassia hemprichii (Jiang et al. 2010) showed 

an increase in photosynthetic rates under low pH, although these results were collected 

from short-term studies(days to months). This species-specific response to ocean 

acidification is common, with closely related species showing very different responses 
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(Garrard et al. 2013), although our research shows that these differences do not just refer to 

marine calcifiers but that seagrasses, which would be expected to thrive under low pH 

conditions, show differential responses also. A similarly mixed response has also been 

found for macroalgae. For example under decreased pH growth rates were enhanced for 

the red macroalga Porphyra yezoensis (Gao et al. 1991) but decreased for Porphyra 

leucostica (Mercado et al. 1999) and Porphyra linearis (Israel et al. 1999). A second 

consideration is that whilst seagrasses subjected to short-term acidification (days) (e.g. 

Thorn 1996, Jiang et al. 20 I 0) may show elevated rates of photosynthesis, those exposed to 

chronic acidification may adapt. 

As well as designating control stations at the north and south of the Castello Aragonese, we 

recorded data from a tertiary control (Lacco Ameno), a seagrass bed far from any vents. 

This tertiary control was designated to ensure that the control stations at the Castello were 

similar to other seagrass beds and did not exhibit any effects of acidification. For the most 

part, results from Lacco Ameno were the same as the north, south or both control stations 

(density, canopy height, nutrient concentrations, C:N ratio of the leaves, sediment grain 

size, FvFm, ETRMAx), Lacco Ameno had a significantly higher organic and carbonate 

content of the sediment. P. oceanica beds surrounding Ischia show high spatial variation in 

terms of canopy structure and the associated communities (Vasapollo 2009; Vasapollo and 

Gambi 2012). Therefore we suggest that these differences in sedimentary properties were 

due to spatial variation in environmental conditions, shoot density and the associated 

communities of these seagrass beds. A surprising observation was that a (light harvesting 

efficiency) was much lower in May at Lacco Ameno, although this is thought to be due to 

an operational error. Overall, Lacco Ameno exhibited very similar characteristics to the 

other controls, suggesting that acidification did not have an effect on our control stations. 
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P. oceanica appears to alter energy allocation under acidified conditions, leading to an 

increase in density and decrease in canopy height. Whether this is a stress response, an 

indirect effect acidification, or a positive response to a reduction in pH is unknown. 

Seagrasses evolved from terrestrial plants to live in the sea approximately 90 million years 

ago (Beer and Koch 1996), when the mean surface water of the oceans was approximately 

pH 7.7 (Ridgwell and Schmidt 2010). This suggests that perhaps they should 

physiologically be able to withstand a decrease in pH, although evidence of physiological 

evolution in this time frame can be seen. For example, whilst land plants use H+ 

transporters for nutrient uptake, there is evidence that some seagrasses may have adapted 

to using Na+ transporters (discussed above, Garcia-Sanchez et at. 2000, Rubio et at. 2005). 

Whether a stress or a positive response to acidification; an increase in shoot density may 

lead to positive outcomes for the future of P. oceanica. This species is at risk from many 

different anthropogenic and climatic stressors. Anthropogenic stressors such as fish 

farming (Cancemi et at. 2003), anchoring (Francour et at. 1999) and water degradation 

(Femandez-Torquemada and Sanchez-Lizaso 2005) have been shown to reduce shoot 

density. Warming has also been shown to increase shoot mortality and hence lead to a 

decrease in shoot density (Marba and Duarte 2010). If density increases under OA then this 

may help to ameliorate other human and climatic impacts in the future. A second 

observation is that although both the invasive Caulerpa racemosa and Asparagopsis sp. 

and the indigenous Caulerpa prolifera have been observed in low pH waters around the 

vents at the Castello (Hall-Spencer et at. 2008), they have not invaded the P. oceanica 

meadows, as has been observed at many sites in the NW Mediterranean (Montefalcone et 

al. 2010). Invasion of these macroalgal species has been linked to seagrass decline, through 

an increase in sediment sulphate reduction rates (Holmer et at. 2004) leading to increased 

sulphide pore water concentrations (Calleja et at. 2007). Research has shown that Caulerpa 
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spp. generally only invades P. oceanica meadows with low shoot density (Ceccherelli et al. 

2000), therefore OA may prevent further invasion of meadows in the future. 
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4. Ocean acidification leads to altered 
invertebrate assemblage and food web 
dynamics in a temperate seagrass 
system 
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4.1 Introduction 

Rising CO2 levels have pushed the pH of ocean surface waters from approximately 8.2 in 

pre-industrial times down to current values of 8.1 (Raven et al. 2005). A further drop of 

0.2-0.4 units is expected by the end of this century (Caldeira and Wickett 2005). A 

reduction in pH leads to a subsequent reduction in carbonate ions (COl-) and the calcite 

(neal) and aragonite (narg) saturation state of the water (Fabry et al. 2008). Research 

suggests that calcification in some invertebrates is dependent on the carbonate saturation 

state of the seawater (e.g. Marubini et al. 2001; Ohde and Hossain 2004; Langdon and 

Atkinson 2005). A reduction in calcification and increase in carbonate dissolution rates 

under enhanced C02 conditions has been observed in different calcifying invertebrate taxa 

such as corals (Hoegh-Guldberg et al. 2007), calcareous algae (Price et al. 2011), 

echinoderms (Dupont et al. 2008), and molluscs (Gazeau et al. 2007). This decline in 

calcification is not a uniform response and some species have shown no response to OA 

(Rodolfo-Metalpa et al. 2011; Comeau et al. 20 13b), whilst others have been shown to 

increase their calcification rates, such as the cephalopod Sepia officinalis (Gutowska et al. 

2010), the barnacle Amphibalanus amphitrite (McDonald et al. 2009) and the coral 

Balanophyllia europaea (Rodolfo-Metalpa et al. 2011). Ries et al. (2009) tested the 

calcification response of 18 different invertebrates to different pC02 conditions and 

associated saturation states and found that calcification was not negatively affected in 12 

species when narg was above 1. When Oarg fell below 1.0 eight of those species still 

exhibited either no response or increased calcification, whilst the rest showed negative 

calcification responses. Similarly mixed responses have been found for marine 

phytoplankton (Iglesias-Rodriguez et al. 2008). Meta-analysis revealed that calcification in 

crustaceans generally exhibited a positive response to acidification (Kroeker et al. 2010). 
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So why are responses so varied? Evidence suggests that some species may be able to 

actively control extracellular pH through ion transport, actively converting HCOJ- to cot 

at the site of calcification (Melzner et al. 2009; Ries et al. 2009; Calosi et al. 2013). Further 

evidence suggests that some marine calcifiers may be able to tolerate low pH by utilising 

HCOJ- for calcification, and therefore compensate for the decrease in cot caused by OA 

(Iglesias-Rodriguez et al. 2008; Comeau et al. 2013a). Organisms that have a protective 

external organic layer may be more tolerant to low pH (Ries et al. 2009; Lombardi et al. 

2011a; Rodolfo-Metalpa et al. 2011). However, tolerance to OA may come at a cost. For 

example the brittlestar, Amphiura fili/ormis, was demonstrated to up-regulate metabolism 

and calcification in response to OA but this response leads to muscle loss, making long-

term tolerance unsustainable (Wood et al. 2008). 

OA will not only affect calcification but can have negative effects on the survival, growth, 

reproduction, metabolic function and respiration in many marine organisms (reviewed in 

Kroeker et al. 2010; Widdicombe et al. 2010). Again, responses can be extremely varied. 

For example growth and reproduction were depressed in the shrimp, Palaemon pacific us, 

in response to long-term acidification (Kurihara et al. 2008), whilst no response in terms of 

growth and reproduction were observed in the barnacle, Amphibalanus amphitrite 

(McDonald et al. 2009). Metabolic depression was observed in the mussel, Mytilus 

chilensis (Navarro et al. 2013), whilst increased metabolism was observed in Antarctic 

krill, Euphausia superba (Saba et al. 2012). Both of these metabolic responses may be 

caused by stress: the mussel's decreased metabolic rate may be due to extracellular 

acidosis (Michaelidis et al. 2005), whilst the krill may increase metabolic function to cope 

with increased physiological costs of maintaining homeostasis (Saba et al. 2012). 

Whilst direct effects of changes in carbonate chemistry will be important in structuring 

marine communities, indirect effects will also play an important role (Russell et al. 2012). 
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These effects may include changes to the attributes of habitat-forming species (such as 

seagrasses) and other associated communities (epiphytes), thus affecting food and shelter 

availability for mesograzers (Gartner et al. 2013). Other indirect effects may occur through 

changes in biotic relationships (competition, predation etc), due to changes in species 

distribution and abundance (Hofmann et aI. 2010). This variation in species 'tolerance' or 

'sensitivity' to low pH, coupled with uncertainties in how species interactions will change, 

makes it difficult to predict the outcome for invertebrates at the community level (Garrard 

et aJ. 2013). The majority of studies on the impacts of OA have focussed on single species 

experiments, giving a good understanding of the physiological and developmental impacts 

of OA (e.g. Bibby et aI. 2008; Ellis et al. 2009; Kurihara et al. 2009; Walther et al. 2009), 

although there are now many laboratory or mesocosm studies that incorporate two or more 

species (e.g. Andersson et ai. 2009; Ferrari et al. 2011b). In order to anticipate the effects 

of OA we must understand the structure and function of biotic interactions at the 

community level (Wootton et ai. 2008). 

Although not direct analogues of OA, due to high pH variation and close proximity of 

acidified zones to areas of ambient pH, natural CO2 vents can be useful in examining the 

long-term community level response to exposure to high C02 (Kroeker et aJ. 20 11 b). 

Subtidal C02 vents on the island of Ischia (Italy) have been used for this purpose. Hall

Spencer et ai. (2008) showed that in areas of CO2 venting calcifying macrobenthic taxa 

such as sea urchins, limpets, barnacles, and corals disappear, whilst non-calcifying taxa 

such as anemones, seagrass, and fleshy algae may actually benefit from acidified 

conditions, either through direct effects (changes in carbonate chemistry) or indirect effects 

(reduced competition, predation). Kroeker et al. (201Ib) showed that in areas of rocky reef, 

increasing C02 venting (and reduced pH) lead to a reduced taxonomic richness of benthic 

invertebrates, although abundance was not affected. Trophic analysis showed a decrease in 
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the abundance of herbivores, whilst detritivores and omnivores increased. Comparisons of 

the abundance of different taxonomic groups showed that the abundance of some groups 

such as gastropods and decapods were negatively affected by acidification, whilst others 

such as polychaetes and amphipods were not. 

CO2 vents at the Castello Aragonese can be found venting into the seagrass, Posidonia 

oceanica, as well as the rocky sublittoral. P. oceanica meadows are a pivotal shallow water 

system in the Mediterranean Sea, which harbours a high biodiversity of species (reviewed 

in Chapter 2). Many calcifying species of gastropods, bivalves, decapods and echinoderms 

can be found within the shoots. These C02 vents provide an important opportunity to 

investigate how P. oceanica-associated benthic invertebrate communities respond to OA. 

Previously described studies at the Castello Aragonese were conducted at a single time 

point (June: Hall-Spencer et al. 2008; November: Kroeker et al. 20 11 b). However, P. 

oceanica-associated benthic communities show high seasonal variation (reviewed in 

Chapter 2) and results can vary at different times of the year. The importance of 

conducting temporal studies can be exemplified by algal studies: an increase in turf algae 

was observed in summer (Kroeker et al. 2013b), whilst a decrease in turf algae was 

observed in autumn (Porzio et al. 2011) in response to acidification at these C02 vents. 

This chapter will provide a temporal overview of the response of benthic invertebrates to 

acidification by sampling at three time points during the year to incorporate cold (March), 

warm (July) and intermediate (November) seawater temperatures, alongside accounting for 

temporal changes in the morphological features of the Posidonia meadow. Due to the 

increased sampling needed to provide a temporal overview of invertebrate communities, 

rather than simple comparison between control, low and extremely low pH sites (Kroeker 

et al. 2011 b; Porzio et al. 20 II; Kroeker et al. 20 I3b), the work was focussed on only two 

pH zones: control (mean pH 8.1) and acidified (mean pH 7.8). These values correspond to 
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control and low pH zones of previous studies and provide ecologically relevant data on 

current pH values and those predicted for the end of this century (Caldeira and Wickett 

2003). It is expected that l) ocean acidification will change the structure and function of 

invertebrate communities, and 2) heavily calcified species such as gastropods, bivalves, 

and decapods will be will be most negatively affected by acidification, leading to decreases 

in both abundance and richness of these groups of taxa. 

4.2 Methods 

4.2.1 Site description 

The island of Ischia, is located in the eastern Tyrrhenian Sea, off the coast of Italy. C02 

vents can be found at the north and south side of the Castello Aragonese, Ischia, between a 

depth of 0.5 and 3 m, leading to acidification of the water column in the surrounding area. 

Sampling stations were the same as those described in Chapter 3; control and acidified 

stations at both the north and south of the Castello and a tertiary control site at Lacco 

Ameno (Chapter 3, Fig. 3.1). Control and acidified stations at each location (north and 

south) were located in the same seagrass meadow at depths of 2.5 - 3.5 m. A more 

comprehensive description of sites can be found in section 3.2.1 (Chapter 3). Sampling 

took place in March, July and November of 2011. pH and carbonate chemistry are 

described in Chapter 3 (Fig. 3.1, Table 3.1). Mean shoot density in south and north control 

stations was 446 (±24) and 372 (±27), respectively, whilst mean density in the south and 

north acidified stations was 815 (±34) and 587 (±24), respectively (see Chapter 3). 

4.2.2 Sampling methods 

To investigate benthic invertebrate composition, four randomly selected plots (40 x 40 cm) 

were sampled at each station in each month. Two of the plots were located approximately 2 

m apart and 10m from the other two to take into consideration spatial variability within the 

designated plots (Vasapollo 2009). These plots were marked with buoys to ensure that 
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different plots were sampled during each sampling period. Samples were collected with an 

airlift sampler, as this is a non-destructive, quantitative and reproducible method which 

uses the discharged air from a scuba tank to dislodge and lift the macrofauna from around 

the seagrass blades, rhizomes and sediment surface into the net for collection (Brook 1978; 

Buia et al. 2004). Some studies suggest this method may show a greater efficiency for 

collection of species found within the rhizomes than those in the leaf canopy (Terlizzi and 

Russo 1996), and lacks the power to collect larger invertebrates such as some holothurians 

and sea-urchins (pers. obs.). As this is a comparative study, enhanced collection of species 

within the rhizomes was not seen as a drawback, but was recognised. Samples were 

collected from each plot using an airlift sampler attached to a 400~m collection net 

(Terlizzi et al. 2010), whilst the quadrat frame (40 x 40 cm) was attached to the airlift 

sampler by a 1 mm net to contain invertebrates within the quadrat (Fig. 5.1). Each quadrat 

was sampled continually with the airlift sampler for a period of two minutes to obtain a 

standardized procedure for faunal comparison. Once the fauna were collected, the shoot 

density and height of the canopy were measured within the sample quadrat. Samples were 

fixed in 4% formalin for preservation and subsequently stored in 70% ethanol prior to 

sorting and identification. Samples were examined under a dissecting microscope and 

organisms separated from the sediment, algae and seagrass detritus. Gastropods, bivalves, 

tanaids, isopods, amphipods, decapods and polychaetes were identified by specialized 

taxonomists (researchers at the SZN, see acknowledgements) to the lowest taxonomical 

resolution possible, whilst rarer organisms (echinoderms, pycnogonids, cumaceans, 

mysids, opistobranchs, nudibranchs and polyplacophora) were identified only to their 

taxonomic group. These are hereafter referred to as operational taxonomic unit COTU) 

(Kroeker et al. 20 11 b). 
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Figure 5.1 Demonstration of the airlift sampler collecting benthic invertebrates in P. oceanica. 

4. 2.3 Statistical analysis 

The abundance (no. individuals/0.16 m2
) , richness (no. of species/0.16 m2

) , diversity 

(N1I0.16 m2 and N2/0.16 m2
), and evenness (N21' 10.16 m2

) were calculated for each 

samples. Hill ' s numbers (N 1 and N2) were used as each metric describes a different aspect 

of community structure (Heip et al. 1998). tn response to OA, species loss (a decrease in 

the number of species) has been predicted (Hall-Spencer et al. 2008; Fabricius et al. 20 11). 

This can be calculated from this study using richness, but this does not take into 

consideration the abundance of each species. For example the ecological interactions 

present in an assemblage with 1 dominant species and 19 rare species are fewer than those 

in an assemblage of20 equally abundant species (Heip et al. 1998). The Shannon-Weiner 

diversity index (H') and the Simpsons dominance index (A.) can be converted to true 

diversity measures: Hill's N I (Exp H') and Hill's N2 (II A.) (Hill 1973), which transforms 

the indices into the effective number of species, producing stab le, sensitive and easily 

interpreted measures (lost 2006). Evenness (N21 ' ) was calculated by the equation: N21 ' = 

(N2-1) I (N 1-1), as evenness should be independent of species richness (Heip et al. 1998), 

and unlike many other evenness measures (e.g Pielou's 1') this equation is not reliant on 

species richness and gives a simply interpreted result of the equitability of abundances 
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within a community (Alatalo 1981). Richness (number of species) weighs all species 

equally, N2 gives most weight to the most abundant species and NI is in between the two, 

giving weight to common species (Heip et at. 1998). 

Comparisons for each of the taxonomic groups and the community as a whole were 

examined by means of a three-way GLM ANOV A to test the effects of pH (fixed), site 

(fixed) and month (fixed). Differences in the abundances of individual OTUs between 

control and acidified zones were tested using a one-way GLM ANOV A. Data was checked 

for homogeneity of variance using a Cochran C test (p > 0.05). Where variance was found 

to be heterogeneous, data was ..J(X + I) transformed (Underwood 1997). Although a few 

samples still tested positive in the heterogeneity test (Cochran C: p < 0.05), GLM ANOVA 

was preferred to a less powerful non-parametric approach since the Cochran C test (and 

other heterogeneity tests) are considerably more sensitive to heterogeneity of variance than 

ANOVA (McGuinness 2002), plus samples were balanced and relatively large (12 

replicates for each 4 treatments), and therefore robust to deviations from the assumptions 

of ANOV A (Underwood 1997). All univariate analyses were carried out using Statistica 

8.0 software. 

Community composition and structure were analysed for all data, and separately for each 

month of sampling, Community composition was analysed by applying a Bray-Curtis 

similarity matrix on presence/ absence data. PERMAN OVA was used to test for significant 

differences, with site, pH and month as fixed factors. Community structure was analysed 

by applying a Bray-Curtis similarity matrix to square root transformed abundance data (to 

reduce the influence of abundant OrUs). PERMANOVA was used to test for significant 

differences, with site, pH and month as fixed factors. All PERMANOVA analyses used 

Type III SS and 9,999 unrestricted permutations. Where significant differences occurred 
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between control and acidified stations, pairwise 'site x pH' tests were used to compare 

control and acidified stations in the north and south of the Castello. Non-metric 

multidimensional scaling (nMDS) ordinations of Bray-Curtis similarity matrices were 

plotted for each month. To determine the most representative species in each pH zone a 

SIMPER analysis was used. All multivariate analyses were performed using Primer v6 

with PERMANOVA+ (Plymouth Marine Laboratory). 

Invertebrates were assigned to trophic groups based on food preferences documented in the 

literature and expert judgement (by SZN researchers, see acknowledgements). The 

abundance and proportion of each trophic guild (suspension feeders, suspension 

feeders/detritivores, detritivores, herbivore/detrivores, herbivores, carnivore/detritivores, 

carnivores, omnivores, scavengers, parasites and commensals) were tested by means of a 

three-way GLM ANOV A to test the effects of pH (fixed), site (fixed) and month (fixed). 

Multivariate analysis of trophic structure was determined by applying a Bray-Curtis 

similarity matrix to square-root transformed abundance data (to reduce the influence of 

abundant trophic guilds). PERMANOVA was used to test for significant differences, with 

site, pH and month as fixed factors. 

Seagrass density was measured within the quadrat after invertebrate sampling; therefore it 

is possible to determine whether increases (or decreases) in the different taxonomic groups 

may be due to the indirect effect of a change in seagrass shoot density. Associations 

between shoot density and the different taxonomic groups, abundance, richness, diversity 

and evenness were tested by means of non-linear Spearman Rank correlations, as graphical 

representation did not rule out non-linear relationships, and, in addition, this enables 

comparison with previous data (Scipione et at. 1996). 
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4.3 Results 

Values of pH and carbonate chemistry are described in Chapter 3. Control stations in the 

north and south had a mean pH of 8.13 and 8.12, respectively, whilst acidified stations had 

a mean pH of 7.82 and 7.78 reflecting current ocean conditions and those predicted for the 

end of this century (Caldeira and Wickett 2003). From calculations of saturation states 

using the C02 SYS software it was estimated that nARAGONITE $ 1.0 in 17% and 30% of pH 

samples in the north and south respectively, whilst it was estimated that !lCALCITE $ 1.0 in 

10% and 21% of pH samples collected in the north and south. A pH of below 7.8 (expected 

average value for the end of this century, Caldeira and Wickett 2003) was observed in 38% 

of pH measurements for the north acidified station and 40% for the south acidified station. 

During sampling at the Castello Aragonese over 38,000 individual invertebrates were 

collected and identified to a total of 270 orus, from 162 families, over 80% of which 

were identified to either genus or species level. Results of analyses of the main taxonomic 

groups and the community as a whole are presented. 

4.3.1 Gastropods 

A total of 6,036 gastropods were collected from samples at the Castello Aragonese and 

identified to 51 OTUs (Table 4.1). 3,994 individuals were collected from acidified stations, 

whilst the other 2,042 were collected from control stations. 10 species increased in 

response to acidification: Rissoa italiensis (F1,46 = 7.28, P = 0.010), Rissoa guerinii (FI,46 = 

4.92, P = 0.031), Rissoa variabilis (F),46 = 4.65 P = 0.036), Columbella rustica (FI.46 = 

12.82, p < 0.001), Gibberula miliaria (F1,46 = 6.21 P = 0.016), Jujubinus striatus (FI,46 = 

5.75, p = 0.021), Mitrella scripta (F\,46 = 13.39 p < 0.001), Alvania lineata (F1,46 = 12.72, P 

< 0.001), Gibberula philipp;; (FI,46 = 6.98 P < 0.011), and Nassarius corniculum (F),46 = 

7.46, p = 0.008). Of these, three were the most abundant gastropod species collected (A. 
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lineata, R. variabilis and R. italiensis). N. corniculum was present in 42% of samples from 

acidified stations (N = 24) but was completely absent from control samples. Three of the 

four species from the genus Rissoa and both species from the genus Gibberula increased in 

abundance in response to acidification. Although Columbella rustica was more abundant in 

the acidified zones, dissolution of the shell and loss of the periostracum was noticeable 

(Fig. 4.2). 

Fig. 4.2 Columbella rustica individuals collected in control and acidified zones, showing the loss of 

periostracum and corroded shell apex that occurred in acidified zones. 

Only three species significantly decreased in abundance in response to acidification: 

Bittium latreillii (F 1,46 = 7.19, P = 0.010), Vexillium tricolor (F 1,46 = 5.66, P = 0.022), and 

Mangelia costulata (F 1,46 = 4.36, P = 0.042). B. latreillii was present in 100% of control 

samples but only occurred in 42% of acidified samples. No common species (present in 

four or more samples) disappeared completely from acidified stations. Although not 
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classified as rare, less than 10 individuals were collected for both V tricolor and M 

costulata during sampling (Table 4.1). 

Table 4.1 Mean abundance (± SE) of each species of gastropod per sample (N = 12) at each station, and total 

abundance collected. Arrows in the final column signify significant increase ( j) or decrease CD in the 

abundance in response to acidification, obtained by a one-way GLM ANOV A. 

Species South South North North Total no. of Change 
control acidified control acidified individuals 

Alvania lineala 30.50 ± 94.67 ± 14.00 ± 59.92 ± 2,389 l' (Risso, 1826) 5.30 24.70 2.83 11 .20 
Rissoa variabilis 0.50 ± 31.92 ± 0.17 ± 0.58 ± 0.40 398 l' (Von Miihlfeldt, 0.19 13.52 0.17 
1824) 
Rissoa italiensis 2.92 ± 6.82 ± 2.15 3.83 ± 17.83 ± 377 l' (Verduin, 1985) 0.79 1.73 5.69 

Biltium la/rei/Iii 5.42 ± 0.75 ± 0.30 22.17 ± 1.58 ± 0.85 359 
~ (payraudeau, 1826) 1.74 8.72 

Jujubinus striatus 4.58 ± 8.08 ± 3.38 4.08 ± 11.58 ± 340 l' (Linnaeus, 1758) 0.87 0.79 2.94 

Alvania cimex 7.42 ± 7.75 ± 1.46 7.42 ± 4.33 ± 1.46 323 
(Linnaeus, 1758) 1.29 1.83 

Gibbula umbilicaris 4.33 ± 4.25 ± 1.16 10.58 ± 5.17± 1.04 292 
(Linnaeus, 1758) 1.57 2.38 

Rissoa auriscalpium 9.75 ± 4.25 1.60 4.08± 2.33 ± 0.44 245 
(Linnaeus, 1758) 3.97 1.31 

Columbella nls/ica 1.25 ± 12.17 ± 1.42 ± 3.17±0.86 216 l' (Linnaeus, 1758) 0.57 2.84 0.50 
Gibberula philippii 0.42 ± 12.25 ± 0.17 ± 0.00 154 l' (Monterosato, 1878) 0.33 3.67 0.11 

Tricolia pullus 2.67 ± 3.17 ± 1.77 2.25± 2.25 ± 0.64 124 
(Linoaeus, 1758) 0.77 0.57 

Mitre/la scrip/a 1.00 ± 6.08 ± 1.11 0.50 ± 1.42 ± 0.48 108 l' (Linoaeus, 1758) 0.52 0.26 

GibbenJla miliaria 0.33 ± 2.67 ± 0.81 1.92± 3.33 ± 0.54 99 l' (Linnaeus, 1758) 0.14 1.l2 

Nassarius 0.58 ± 1.08 ± 0.26 3.42 ± 2.75 ± 0.65 94 
incrassatus (Str0m, 0.23 0.85 
1768) 
Clanculus cruciatus 0.92 ± 1.67 ± 0.75 3.25 ± 1.75 ± 0.71 91 
(Linoaeus, 1758) 0.50 0.92 

Rissoa guerinii 0.42 ± 3.92 ± 1.42 0.42 ± 0.50 ± 0.26 63 l' (Recluz, 1843) 0.15 0.29 

Calliostoma laugieri 0.83 ± l.00±0.51 1.75 ± l.08 ± 0.36 56 

(payraudeau, 1826) 0.24 0.49 

Chauve/ia brunnea 1.75 ± 0.17 ± 0.11 0.75 ± 0.75 ± 0.28 41 
(Donovan, 1804) 0.78 0.35 
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Species South South North North No. Change 
control acidified control acidified individuals 

Smaragdia viridis 1.50 ± 0.67 ± 0.28 0.33 ± 0.58 ± 0.29 37 
(Linnaeus, 1758) 0.67 0.19 
Marshal/ora adversa 0.50 ± 0.25 ± 0.13 0.92 ± 0.42 ± 0.26 25 
(Montagu, 1803) 0.15 0.38 
Nassarius 0.00 1.17 ± 0.55 0.00 0.58 ± 0.34 21 l' corniculum (Olivi, 
1792) 
Fusinus pulchellus 0.17 ± 0.17 ± 0.11 0.92 ± 0.42 ± 0.15 20 
(Philippi, 1844) 0.11 0.34 
Tricolia speciosa 0.33 ± 0.92 ± 0.66 0.00 0.42 ± 0.23 20 
(MUhlfeld, 1824) 0.26 
Rissoa violacea 0.50 ± 0.17 ± 0.17 0.50 ± 0.33 ± 0.19 18 
(Desmarest, 1814) 0.26 0.23 
Muricopsis cristata 0.92 ± 0.25 ± 0.13 0.00 0.17 ± 0.11 16 
(Brocchi , 1814) 0.66 
Turbonilla lactea 0.42 ± 0.42 ± 0.23 0.17 ± 0.25 ± 0.13 15 
(Linnaeus, 1758) 0.19 0.17 
Hexaplex trunculus 0.50 ± 0.00 0.42 ± 0.25 ± 0.13 14 
(Linnaeus, 1758) 0.42 0.15 
Eulimella cerullii 0.42 ± 0.17 ± 0.11 0.25 ± 0.17 ± 0.11 12 
(Cossmann, 1916) 0.34 0.25 
Vexillum tricolor 0.33 ± 0.00 0.33 ± 0.08 ± 0.08 9 

~ (Gmelin,1791) 0.19 0.14 

Cerithiopsis miealii 0.25 ± 0.17 ± 0.1l 0.25 ± 0.25 ± 1.78 9 
(Cecalupo & Villari, 0.13 0.18 
1997) 

Vexillum (Pusia) 0.17 ± 0.00 0.25 ± 0.08 ± 0.08 6 
ebenus (Lamarck, 0.11 0.18 
1811) 
Conus ventricosus 0.00 0.00 0.42 ± 0.00 5 
mediterraneus 0.19 
(Hwass in Bruguiere, 
1792) 
Haliotis tuberculata 0.17 ± 0.17 ± 0.11 0.00 0.00 4 
tubereulata 0.17 
(Linnaeus, 1758) 
Diodora gibberula 0.00 0.00 1.67 ± 1.67 ± 1.67 4 
(Lamarck, 1822) 1.67 
Oeenebra erinaeeus 0.08 ± 0.25 ± 0.18 0.00 0.00 4 
(Linnaeus, 1758) 0.08 
Enginella leueozona 0.00 0.25 ± 0.13 0.00 0.00 3 
(Philippi, 1843) 
Cerithium scabridum 0.08 ± 0.00 0.08 ± 0.00 2 
(philippi, 1848) 0.08 0.08 
Natiearius hebraeus 0.08 ± 0.00 0.00 0.08 ± 0.08 2 
(Martyn, 1786) 0.08 

Haminoea hydatis 0.00 0.17 ± 0.17 0.00 0.00 2 
(Linnaeus, 1758) 

Chrysallida 0.00 0.00 0.08 ± 0.00 1 
indistineta (Henn & 0.08 
Brazier, 1894) 
Cerithiopsis diadema 0.00 0.00 0.08 ± 0.00 1 
(Monterosato, 1874) 0.08 
Luria lurida 0.00 0.00 0.08 ± 0.00 1 
(Linnaeus, 1758) 0.08 
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Species South South North North No. Change 
control acidified control acidified individuals 

Jujubinus 0.00 0.08 ± 0.08 0.00 0.00 1 
exasperatus 
(Pennant, 1777) 
Retusa truncatula 0.00 0.00 0.00 0.08 ± 0.08 1 
(Bruguiere, 1792) 

Mitra cornicula 0.00 0.08 ± 0.08 0.00 0.00 1 
(Linnaeus, 1758) 

Erosaria spurca 0.08± 0.00 0.00 0.00 1 
(Linnaeus, 1758) 0.08 
Bulla sp. 0.00 0.00 0.00 0.08 ± 0.08 1 

Raphitoma sp. 0.08± 0.00 0.00 0.00 1 
0.08 

Cylichna cylindracea 0.00 0.00 0.00 0.08 ± 0.08 1 
(Pennant, 1777) 
Gibbula turbinoides 0.00 0.08 ± 0.08 0.00 0.00 1 
(Deshayes, 1835) 

Abundance was greater in acidified stations (F \,36 = 26.46, P < 0.001), although there was a 

significant 'site x pH' interaction (F \,36 = 7.89, P = 0.008), as this increase was only 

significant at the south side (Tukey HSD: p < 0.001). This difference was primarily driven 

by the large increase in the abundance of gastropods that occurred in November at the 

south acidified station (Fig. 4.3a). In contrast, diversity (Nl and N2) and evenness (N21 ') 

were significantly lower in acidified than control stations (NI: F\,36 = 13.74, p < 0.001, N2: 

F\,36 = 16.03, P < 0.001, and N21 ': F),36 = 9.92, p = 0.003), although there was a significant 

'site x pH' interaction for each (NI: F),36 = 7.77, P = 0.008, N2: F\,36 = 10.45, P = 0.003, 

and N21 ': F\,36 = 5.58, P = 0.023) as these increases were only significant on the north side 

(Tukey HSD: p < 0.001, p < 0.00 I, and p = 0.002, respectively) (Fig. 4.3c-e). Species 

richness was not affected by pH (F),36 = 0.35, P = 0.555). Abundance and richness were 

higher in November than March and July (abundance: Tukey HSD: p < 0.001 and p < 

0.001, M = J < N; richness: Tukey HSD: p = 0.004 and p < 0.001, M = J < N), whilst 

evenness was higher in July than March and November (Tukey HSD: p = 0.017 and p = 

0.003, N = M > 1). Diversity (Nt and N2) did not vary among months (Table 4.2). 

105 



a) 450 .,.-----------,~) 24 -r------------, 

400 ? ~ 22 
NE 350 .-4 

I 0 20 
~ 1 -d 300 I ~ 18 

- 250 I ~ 
Qj I ~ 16 
~WO u 
~ ~ ~ 
] 150 
::l 

~ 100 

50 

o +-------T-------r-----~ 
c) March July November 

12 

----* ----a 

12 

10 

8 

d) 
10 

N' 8 
E 
~ 
.-4 

o 6 -N 
Z -~ 4 
'Vi 

~ 
C 2 

March July November 

4 +-------.-------r-----~ o +-------r------.------~ 
March July November March 

e) 0.9 -r-----------, 
-N 

~ 0.8 
.-4 

o 
:--- 0.7 
.-4 
N 
Z 
;; 0.6 
III 
Qj 
c:: 
c:: 
~ 0.5 
w 

0.4 +--"""'--.----.,.---"-"1 
March July November 

July November 

Key: 

_SC 

- - SA 

-+-NC 

- - NA 

Figure 4.3 Temporal changes in a) abundance, b) richness, c) diversity (N!), d) diversity (N2), and e) 

evenness (N2! ') of gastropods at each station. SC = south control, NC = north control, SA = south acidified, 

NA = north acidified. 
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Table 4.2 Results for each taxonom ic gro up in terms of abundance, richness, diversi ty and evenness, 

analysed by means of a three-way GLM ANOV A with site (fi xed facto r), pH (fi xed facto r) and month (fixed 

factor). S ign ificant resul ts are high lighted in red. * p < 0.05, ** p < 0.0 I, *** P < 0.00 I 

Factors Interactions 

Site I pH I Month Site x I Site x I pH x I Site x pH x 
pH Month Month Month 

GASTROPODA 
Abundance 6.11 * 24.46*** 25.52*** 7.89** 3.79* 2.9 1 5.47 
Richness 2.6 1 0.35 10.34*** 0.46 0.39 3.76* 0.39 
Diversity (N 1) 0.27 13.74** * 1.32 7.77** 0.20 1.26 0. 18 
Diversity (N2) 0.1 4 [6.03**;' 3.75* 10.45** 1.1 2 0.48 0.38 
Evenness (N2 1 ' ) 1.76 9.92** 7.25** 5.58* 1.54 0.98 1.77 
BrvALVA 
Abundance 14.16*** 6.30* 5.41 ** 8.27** 1.55 2.00 2.8 1 
Richness 33.80*** 6.42* 7.02** 0.20 5.60** 2.49 1.07 
DECAPODA 
Abundance 0.39 6.30* 9.18*** 1.20 1.1 9 3.93* 0.84 
Richness 0. 16 8.75** 13.92*** 0.29 0.83 0.76 1.93 
Diversity (N I) 0.83 0.02 10.13*** 0.99 1.1 2 2.47 0.36 
Diversity (N2) 0.1 8 2.3 1 6.72 2.22 0.92 2.83 0.29 
Evenness (N2 1 ') 0.50 21.35*** 0. 18 3.63 0.34 2.60 0.20 
AMPHIPODA 
Abundance 0.07 44.87*** 15.04*** 4.21 * 0.46 8.1 0** 0. 18 
Richness 15.49*** 15.49*** 9.46*** 0.1 0 2.89 2.55 1.54 
Diversity (N 1) 44.51 *** 2.57 23.95*** 0.45 11.60*** 6.37** 11.98*** 
Diversity (N2) 24.10*** 1.37 27.83*** 0.69 10.67*** 8.95*** 7.75** 
Evenness (N2 1 ' ) 0.02 0.60 19.06*** 0.45 3.01 12.17*** 1.62 
T ANAlDACEA 
Abundance 6.94* 0.84 15.62*** 2.39 0.59 1.1 4 0.88 
Richness 1.48 1.48 7.10** 0.0 1 1.24 2.1 8 0.81 
Diversity (N 1) 0.97 0. 15 5.37** 0.03 1.1 2 1.34 0.31 
Diversity (N2) 1.49 0.97 5.43** 0. 11 1.27 0.5 8 0.2 1 
Evenness (N2 1 ') 1.62 11.84*** 8.02 ** 0. 10 0.35 0. 10 0.33 
ISOPODA 
Abundance 26.69*** 1.73 16.70*** 8.15** 2.82 0.7 1 0.77 
Richness 15.79*** 7.57** 8.76*** 1.75 4.48* 0.38 3. 16 
Di versity (N I) 3.35 10.47** 2.70 0.07 2.94 0.50 3.47* 
Diversity (N2) 0.25 9.22 ** 1.49 1.05 1.66 1.25 2.83 
Evenness (N2 1 ' ) 10.96** 0.03 10.01 *** 4.36* 0.97 10.53*** 2.99 
POLYCHAETA 
Abundance 0.20 4.98* 1.38 0.95 3.0 1 1.62 0.77 
Richness 2.3 1 1.42 3. 17 3.4 1 3.89* 0.29 0.42 
Diversity (N I) 2.9 1 0.95 2.1 3 1.34 4.62* 0.2 1 0.33 
Di versity (N2) 2.58 0.94 0.84 0.62 3.86* 0.42 0.6 1 
Evenness (N2 1 ') 0.0 1 0. 14 0.4 1 1.68 0.35 0.53 0.07 
OPHJURIODEA 
Abundance 0.21 59.15*** 7.59** 7.34* 3.41 * 3.41 * 1.96 
PYCNOGONlDAE 
Abundance 7.20* 36.54*** 0.76 7.55** 0.08 1.54 0.4 1 

CUMACEA 
Abundance 0.76 0.89 5.40** 6.50* 0.78 0.60 2.67 

MYSIDACEA 
Abundance 1.1 5 2.26 48.25*** 5.51 * 1.1 5 2.26 5.51 * 

POL YPLACOPHORA 
Abundance 4.05 5.84* 0.1 6 1.46 0.65 1.46 1.95 
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4.3.2 Bivalves 

A total of 326 bivalves were collected from stations around the Castello Aragonese and 

identified to 27 species. 16 of these species were rare (present in less than four samples) 

and more than 10 individuals were only collected for 6 species (Table 4.3). A total of liS 

individuals were collected from control stations and 211 individuals from acidified 

stations. Only two species showed a significant response to pH: the bivalves Abra alba 

(F I,46 = 7.51, P = 0.009) and Musculus subpictus (F1,46 = 15.25, P < 0.001) significantly 

increased in response to acidification. A. alba and M subpictus were the two most 

abundant species, accounting for over half of all individuals collected from the Castello 

Aragonese. Mytilus galloprovincialis was present in control stations but completely absent 

from acidified stations, although the patchy distribution of this species, primarily in the 

northern control station, meant that this difference in abundance was not significant (F 1,46 = 

2.94, p = 0.093). 

Table 4.3 Mean abundance (± SE) of each species of bivalve per sample (N = 12) at each station, and total 

abundance collected. Arrows in the final column signify significant increase (n or decrease U) in the 

abundance in response to acidification, obtained by a one-way GLM ANOV A. 

Species South South North North No. Change 
control acidified control acidified individuals 

A bra alba CW. Wood, 1.42 ± 8.12 ± 2.42 0.00 0.25 ± 0.25 118 l' 1802) 0.61 

Musculus subpictlls 0.17 ± 3.92 ± 1.45 0.17 ± 1.75 ± 0.68 72 l' (Cantraine, 1835) 0.11 0.11 
Mylilus 0.25 ± 0.00 2.33± 0.00 31 
gal/oprovincial is 0.18 1.46 
(Lamarck, 1819) 
Striarca lactea 0.50 ± 0.25 ± 0.13 0.25 ± 0.50 ± 0.23 18 
(Linnaeus, 1758) 0.15 0.13 

Acanthocardia 0.25 ± 0.17 ± 0.17 0.17 ± 0.83 ± 0.51 17 
tuberculata (Linnaeus, 0.13 0.11 
(758) 
Venus casina 0.58 ± 0.17 ± 0.11 0.25 ± 0.00 12 
(Linnaeus, 1758) 0.29 0.18 

Glans trapezia 0.67 ± 0.08 ± 0.08 0.00 0.00 9 
(Linnaeus, 1767) 0.26 
Arca noae (Linnaeus, 0.33 ± 0.08 ± 0.08 0.17 ± 0.00 7 
1758) 0.14 0.17 
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Species South South North North No. Change 
control acidified control acidified individuals 

Barbatia barbata 0.00 0.5S ± 0.29 0.00 0.00 7 
(Linnaeus, 175S) 
Parvicardium exiguum 0.42 ± 0.00 O.OS ± 0.00 6 
(Gmelin, 1791) 0.19 O.OS 
Limaria tubereulata O.OS ± O.OS ± O.OS 0.25± 0.00 5 
(Olivi, 1792) O.OS O.IS 
Psammotreta eumana 0.33 ± 0.00 0.00 0.00 4 
(Costa O.G., IS29) 0.19 
Parvicardium O.OS± 0.16± 0.11 0.00 0.00 3 
pinnulatum (Conrad, O.OS 
IS31) 
Angulus tenuis (da 0.00 O.l6±O.l6 0.00 0.00 2 
Costa, 177S) 
Hiatella rugosa 0.00 0.00 0.17 ± 0.00 2 
(Linnaeus, 1767) 0.17 

Hiatella aretiea 0.17 ± 0.00 0.00 0.00 2 
(Linnaeus, 1767) 0.11 

Mimaehlamys varia 0.00 0.00 O.OS ± 0.00 1 
(Linnaeus, 1758) 0.08 
lrus irus (Linnaeus, 0.08 ± 0.00 0.00 0.00 1 
1758) O.OS 
Venerupis eorrugata 0.00 0.00 O.OS ± 0.00 1 
(Gmelin, 1791) O.OS 
Donax semistriatus 0.00 0.00 0.08 ± 0.00 1 
(Poli, 1795) O.OS 
Lutraria oblonga 0.00 0.00 0.00 0.008 ± 1 
(Gmelin, 1791) 0.008 
Chama gryphoides 0.00 0.00 0.00 O.OOS ± 1 
(Linnaeus, 1758) 0.008 
Lima lima (Linnaeus, 0.00 0.08± 0.08 0.00 0.00 1 
1758) 
Modiolus barbatus 0.00 O.OS ± O.OS 0.00 0.00 1 
(Linnaeus, 1758) 
Areuatula perfragilis O.OS ± 0.00 0.00 0.00 1 
(Dunker, 1857) O.OS 
Moerella donaeina O.OS ± 0.00 0.00 0.00 1 
(Linnaeus, 1758) O.OS 
Timoe/ea ovata 0.00 O.OS± O.OS 0.00 0.00 1 
(Pennant, 1777) 

Species richness was significantly lower in acidified stations (F \,36 = 6.42, P = 0.016). 

Abundance was greater in acidified stations (F \,36 = 6.30, P = 0.017), although there was a 

significant 'site x pH' interaction (F\,36 = 8.27, P = 0.007), as this increase was only 

significant at the south side (Tukey HSD: p = 0.003). This is a similar pattern to that 

observed for gastropods, although this difference was driven by the large increase in the 
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abundance of bivalves that occurred in both July and November at the south acidified 

station (Fig. 4.4a). The species primarily responsible for this increase was A. alba (Table 

4.3). Both abundance and richness were significantly different between months (Table 

4.2). Abundance was lower in March than in July and November (Tukey HSD: p = 0.007 

and p < 0.00 I, M < J = N). Richness was lower in March than July and November (Tukey 

HSD: p = 0.039 and p = 0.002, M < J = N). Abundance and richness were higher in the 

south than the north side (Fig. 4.4). Diversity and evenness could not be analysed as 

bivalves were not present in all samples. All collected bivalves were suspension feeders, so 

there was no difference in trophic structure between stations. 
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Figure 4.4 Temporal changes in a) abundance, and b) richness of bivalves at each station. SC = south control, 

NC = north control , SA = south acidified, NA = north acidified. 

4.3.3 Decapods 

A total of 2,235 decapods were collected during sampling at the Castello, 1,396 in control 

stations and 839 in acidified stations. These were identified to 36 species (Table 4.4). Five 

species decreased in abundance in response to ocean acidification. Most notable was the 

decreased abundance of the hermit crab Cestopagurus timidus (F 1,46 = 19.16, P < 0.001), 

which decreased from 697 collected in control stations to 128 collected in acidified 

stations. This species accounted for over one third of all decapods collected. Other species 
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that showed a negative response to acidification were: the shrimp Eualus cranchii (F 1,46 = 

13.09, P < 0.001), the crab Galathea bolivari (F1 ,46 = 12.91, P < 0.001), the crab Calc in us 

tubularis (F1,46 = 4.73, P = 0.035), and the shrimp Processa canaliculata (F 1,46 = 5.31, P = 

0.026). G. bolivari was present in 58% of samples in control stations and only 12.5% of 

samples in acidified stations, whilst C. tubularis decreased from 38% of control samples to 

4% of acidified samples. Only one species of decapod increased in abundance in response 

to OA: the shrimp Hippolyte leptocerus (F 1,46 = 4.18, P = 0.047). 

Table 4.4 Mean abundance (± SE) of each species of decapod per sample (N = 12) at each station, 

and total abundance collected. Arrows in the final column signify significant increase ( j) or 

decrease U) in the abundance in response to acidification, obtained by a one-way GLM ANOV A. 

Species South South North North No. Change 
control acidified control acidified individuals 

Cestopagurus 30.5 ± 4.08 ± 0.81 27.58 ± 6.58 ± 1.84 825 
~ timidus (Roux, 1830) 8.99 6.10 

Athanas nitescens 14.5 ± 9.33 ± 2.88 10.08 ± 18.25 ± 626 
(Leach, 1813) 4.81 2.13 7.43 

Hippoly te /eptocerus 2.0 ± 0.89 5.58 ± 2.33 1.5 ± 0.57 3.83 ± 1.43 155 l' (Heller, 1863) 

Hippoly te inermis 1.92 ± 2.83 ± 1.33 2.42 ± 4.0 ± 1.41 134 
(Leach, 1816) 0.75 1.32 

A /pheus dentipes 1.42 ± 1.08 ± 0.66 2.92 ± 5.5 ± 1.83 131 
(Guerin, 1832) 0.77 0.73 

Euahls cranchii 1.92 ± 0.92 ± 0.23 3.75 ± 0.75 ± 0.28 88 
~ (Leach, 1817) 0.45 0.89 

Galathea bolivari 0.5 ± 0.29 0.00 3.75 ± 0.33 ± 0.19 SS 
~ (Zariquiey Alvarez, 0.80 

1950) 
Pilumnus hirtellus 3.0 ± 0.74 0.75 ± 0.28 0.33 ± 0.5 ± 0.42 SS 
(Linnaeus, 1761) 0.14 
Pisidia bluteli 0.83 ± 0.67 ± 0.19 1.17 ± 0.00 32 
(Risso, 1816) 0.58 0.42 
Xantho poressa 0.25 ± 0.33 ± 0.14 0.67 ± 1.0 ± 0.37 27 
(Olivi, 1792) 0.13 0.31 
Brachynotus 0.5 ± 0.26 0.58 ± 0.31 0.25 ± 0.75 ± 0.45 2S 
sexdentatus (Risso, 0.13 
1827) 
Calcinus tubularis 0.83 ± 0.00 0.58 ± 0.08 ± 0.08 18 

~ (Linnaeus, 1767) 0.58 0.23 
Xantho pi/ipes 0.42 ± 0.00 0.17 ± 0.5 ± 0.42 13 
(Milne-Edwards, 0.22 0.11 
1867) 
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Species South South North North No. Change 
control acidified control acidified individuals 

Achaeus gracilis 0.5 ± 0.19 0.00 0.17 ± 0.17± 0.11 10 
(Costa, 1839) 0.11 

Processa 0.00 0.00 0.5 ± 0.19 0.00 6 
~ cana/iculata (Leach, 

1815) 
Lysmata seticaudata 0.17 ± 0.25 ± 0.18 0.00 0.00 5 
(Risso, 1816) 0.11 

Acanthonyx 0.00 0.25 ± 0.18 0.00 0.08 ± 0.08 4 
/unu/atus (Risso, 
1816) 
Philocheras 0.17 ± 0.00 0.00 0.08 ± 0.08 3 
fasciatus (Risso, 0.11 
1816) 
Dromia personata 0.00 0.08 ± 0.08 0.00 0.08 ± 0.08 2 
(Linnaeus, 1758) 
Ilia nucleus 0.17 ± 0.00 0.00 0.00 2 
(Linnaeus, 1758) 0.11 

Munida sp. 0.00 0.00 0.00 0.17 ± 0.17 2 

Pisa nodipes (Leach, 0.08 ± 0.00 0.00 0.08 ± 0.08 2 
1815) 0.08 

Scyllarus sp. 0.08 ± 0.00 0.00 0.08 ± 0.08 2 
0.08 

Eriphia verrucosa 0.00 0.00 0.00 0.08 ± 0.08 1 
(Forskill,I775) 
Eua/us pusio/us 0.00 0.00 0.00 0.08 ± 0.08 1 
(Kf0yer, 1841) 
Liocarcinus 0.08 ± 0.00 0.00 0.00 1 
navigator (Herbst, 0.08 
1794) 
Microcassiope minor 0.08 ± 0.00 0.00 0.00 t 
(Dana, 1852) 0.08 
Munida curvimana 0.08 ± 0.00 0.00 0.00 1 
(Milne Edwards & 0.08 
Bouvier, 1894 ) 
Pagurus 0.08 ± 0.00 0.00 0.00 1 
anachoretus (Risso, 0.08 
1827) 
Pa/aemon serratus 0.00 0.08 ± 0.08 0.00 0.00 1 
(pennant, 1777) 
Parthenopoides 0.00 0.00 0.08 ± 0.00 1 
massena (Roux, 0.08 
1830) 
Pasiphaea 0.08 ± 0.00 0.00 0.00 1 
multidentata 0.08 
(Esmark, 1866 ) 
Pisa carinimana 0.00 0.08 ± 0.08 0.00 0.00 1 
(Miers, 1879) 

Pisa tetraodon 0.08 ± 0.00 0.00 0.00 1 
(Pennant, 1777) 0.08 
Sicyonia carinata 0.00 0.08 ± 0.08 0.00 0.00 1 
(Brilnnich, 1768) 
Upogedia deltaura O.08 ± 0.00 0.00 0.00 1 
(Leach, 1815 0.08 

112 



a) 140 b) 14 

120 
N 

12 

~ 100 
N 

E 
~ ID 10 Key: 
0 ~ 

'GJ 80 0 

" 8 _SC u 
~ c: 60 

"' ~ 
'tJ C - - SA 
c: .s::. 6 
:::J 40 u 

.D ii! -.-NC ex: 
20 4 - - NA 

0 2 

March July November March July November 

c) 7 d) 6 

6.5 - ;:"'5 N 6 E E 
~ 5.5 

ID 
~ 4 

0 5 0 

" " ~ ~ 3 ~ 4.5 
~ ~ 4 

iii 'E! 2 
~ 3.5 ~ 

;;. ;;. 

Q 3 Q 1 
2.5 

2 0 

March July November March July November 

e) 1 

i' 0.9 
ID 
~ 

00.8 

" ~ 
~ 0.7 

\/I 

~ 0.6 
c: 
c: 
~ 0.5 .... 

0.4 

March July November 

Figure 4.5 Temporal changes in a) abundance, b) richness, c) diversity (NJ), d) diversity (N2), and e) 

evenness (N2 ! ') of decapods at each station. SC = south control, NC = north control, SA = south acidified, 

NA = north acidified. 

The abundance of decapods was lower in acidified stations (F 1,36 = 6.30, P = 0.017), 

although there was a significant 'pH x month' interaction (F \,36 = 3.93, P = 0.029), as this 

decrease was only significant in July (Tukey HSD: p = 0.012) (Fig. 4.5a). In response to 

acidification, a significant decrease in species richness was observed (F 1,36 = 8.75, P = 
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0.005). Diversity (NI and N2) were not affected by pH (Table 4.2). In contrast evenness 

(N21 ') increased in acidified conditions (F],36 = 21.35, P < 0.001, Fig. 4.5e). Abundance, 

richness, and one diversity measure (Nl) were significantly affected by month (abundance: 

F],36 = 9.18, P < 0.001; richness: F],36 = 13.92, P < 0.001; NI: F],36 = 10.01, P < 0.001). 

Abundance and diversity (NI) were significantly greater in November than March, but 

equal to July (abundance: Tukey HSD: p < 0.001 and p = 0.075, N > M = J; NI: Tukey 

HSD: p < 0.001 and p = 0.065, N > M = J). Diversity (N2) and evenness (N21 ') were not 

affected by month. 

4.3.4 Amphipods 

A total of 18,880 amphipods were collected from samples at the Castello Aragonese and 

identified to 71 different OTUs. All but 5 were identified to species level (see Table 4.5). 

5,577 individuals were collected from control stations whilst 13,303 were collected from 

acidified stations. 15 species of amphipod increased under acidified conditions: 

Quadrimaera inaequipes (F ],46 = 21.80, P < 0.00 1), Aora spp. (F ],46 = 6.88, 0.0 12), 

Apolochus cf. picadurus (F],46 = 6.70, P = 0.013), Ampe/isca serraticaudata (F],46 = 14.38, 

p < 0.001), Metaphoxus simplex (F],46 = 24.72, P < 0.001), Lembos websteri (F],46 = 20.26, 

p < 0.001), Liljeborgia dellavallei (F],46 = 5.75, P = 0.021), Ericthonius punctatus (F],46 = 

7.59, p = 0.008), Maeridae sp. (F],46 = 17.12, P < 0.001), Tethylembos viguieri (F],46 = 

17.33, P < 0.001), Lysianassa pilicornis (F],46 = 8.35, P = 0.006), Ampithoe ramondi (F],46 

= 4.25, P = 0.025), Caprella acanthi/era (F],46 = 4.48, P = 0.040), Protohyale schmidt;; 

(FI,46 = 7.71, P = 0.008), Ericthonius difformis (F1,46 = 5.28, P = 0.026). The increase in 

abundance of many of these species in response to acidification was substantial (Table 

4.5). For example the number of individuals collected in control and acidified stations of 
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Q. inaequipes increased from 438 to 1,896, Aora spp. from 323 to 1,523, A. serraticaudata 

from 37 to 1,229 and M simplex from 43 to 932. Only two species of amphipods decreased 

in response to acidification: Dexamine spinosa (F 1,46 = 13.37, P < 0.001), and Ampithoe 

helleri (Fl ,46 = 6.90, P = 0.011). No common species of amp hip ods (present in> 4 samples) 

disappeared from acidified stations. 

Table 4.5 Mean abundance (± SE) of each species of amphipod per sample (N = 12) at each station, and total 

abundance collected. Arrows in the final column signify significant increase (n or decrease U) in the 

abundance in response to acidification, obtained by a one-way GLM ANOV A. 

Species South South North North No. Change 
control acidified control acidified individuals 

Quadrimaera II.O ± 95.33 ± 25.50 ± 62.67± 2,334 l' inaequipes (A. Costa, 3.78 16.79 6.57 17.62 
1857) 
Apherusa cf 48.33± 21.42± 40.67 ± 57.83 ± 2,009 
chiereghinii 9.79 7.92 12.67 24.33 
(Giordani-Soika, 
1950) 
Aora spp. 17.83 ± 108.58 ± 9.08 ± 18.33 ± 1,846 l' 4.85 33.15 1.85 4.47 

Apolochus cf 11.83 ± 41.75± 28.0 ± 32.25 ± 1,366 l' picadurus (J.L. 3.58 8.72 4.92 7.29 
Barnard, 1962) 
Ampelisca 0.42 ± 73 .50 ± 2.67 ± 28.92 ± 1,266 l' serraticaudata 0.15 21.76 2.06 12.21 
(Chevreux, \888) 
Metaphoxus simp/ex 1.50 ± 54.75 ± 2.08 ± 22.92 ± 975 l' (Bate, 1857) 0.62 12.47 0.62 5.46 

Lembos websteri 12.00 ± 39.00 ± 5.92 ± 23.33 ± 963 l' (Bate, 1857) 1.86 8.12 1.20 4.27 

Melita hergensis 3.08 ± 2.42 ± 1.03 19.33 ± 35.00 ± 718 
(Reid, 1939) 1.94 5.22 11.01 

Elasmopus 6.67 ± 8.08 ± 2.43 12.42 ± 28.25 ± 665 
pocillimanus (Bate, 2.67 1.91 7.76 
1862) 
Liljeborgia dellavallei 6.42 ± 19.25 ± 11.17 ± 14.75 ± 619 l' (Stebbing, 1906) 1.97 4.59 3.21 3.43 

Gammarella fucicola 9.00 ± 18.33 ± 5.50 ± 8.75 ± 1.57 499 
(Leach, 1814) 3.02 6.71 0.81 

Ericthonius punctatus 3.75 ± 10.42 ± 7.42 ± 18.33 ± 479 l' (Bate, 1857) 1.08 2.98 1.94 5.03 
Megamphopus 8.92 ± 11.92 ± 6.00 ± 12.58 ± 473 
cornu/us (Norman, 2.44 2.96 1.78 2.77 
1869) 
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Species South South North North No. Change 
control acidified control acidified individuals 

Maeridae sp. 0.75 ± 17.00 ± 4.42 ± 12.67 ± 41 8 l' 0.49 4.28 1.38 3.84 

Gammaropsis palmata 5.83 ± 9.50 ± 1.72 8.33 ± 9.67 ± 2.1 2 400 
(Stebbing & 1.81 2.23 
Robertson, 1891 ) 
Maera grossimana 3. 17 ± 6.25 ± 1.83 7.67 ± 12.00 ± 349 
(Montagu, 1808) 0.97 3.62 3.95 

Monoeorophium 0.00 0.92 ± 0.92 23.25 ± 3.50 ± 0.81 332 
sextonae (Crawford , 6.7 1 
1937) 
Perioeu/odes 4.00 ± 3.92 ± 1.30 8.08 ± 11.17 ± 326 
aequimanus 1.04 2.04 1.57 
(Kossmann, 1880) 
Hya/e eamptonyx 4.67 ± 2.00 ± 0.75 3.75 ± 15.67 ± 313 
(Heller, 1866) 1.60 1.09 5.40 

Orehomene humilis 1.92 ± 3.17 ± 0.66 7.67 ± 7.92 ± 4 .09 248 
(A. Costa, 1853) 0 .87 1.27 

Tethy /embos viguieri 0.75 ± 14.83 ± 0.25 ± 4 .00 ± 1.60 238 l' (Chevreux, 1911 ) 0.37 3.33 0.18 

Iphimedia minuta 5.92 ± 1.25 ± 0 .73 2.67 ± 6.50 ± 2.78 196 
(G.O. Sars, 1882) 3.75 0.91 

Isehyroeerus 0.75 ± 5.33 ± 1.85 3.67 ± 6.58 ± 2.97 196 
inexpeetallls (Ruffo, 0.51 1.91 
1959) 
Lysianassa pilieornis 0.92 ± 10.42 ± 0.58 ± 2 .08 ± 0 .8 1 168 l' (Heller, 1866) 0.29 3.34 0.23 

Mierodeutopus 0.92 ± 1.42 ± 0.68 2.75 ± 7.42 ± 1.78 150 
ehelifer (Bate, 1862) 0.67 1.88 

Leueothoe dentiell/ata 0.58 ± 1.67 ± 0 .75 3. 17 ± 6.17 ± 1.96 139 
(A. Costa, 185 I) 0.26 0.74 

Leptoeheirus 2.50 ± 1.50 ± 0.66 1.58 ± 5.75 ± 1.6 1 136 
peelinalus (Norman, 0.65 0.58 
1869) 
Ampilhoe ramondi 0.42 ± 7.58 ± 3.79 0. 17 ± 1.25 ± 0.68 113 l' (Audouin, 1826) 0.29 0.1 7 

Caprel/a aeanlhi/era 0.33 ± 2.17 ± 0.93 1.83 ± 4 .17 ± 1.55 102 l' (Leach, 1814) 0.14 0.71 

Aoridae gen.sp. 2.67 ± 0.17 ± 0. 11 1.92 ± 2.83 ± 0.59 91 
0.57 0.69 

Leploeheirus gullatus 2.83 ± 4 .17 ± 1.49 0.00 0 .08 ± 0.08 85 
(Grube, 1864) 0.7 1 

Urothoe e1egans (Bate, 0.17 ± 0.00 2.17 ± 3.42 ± 0.76 69 
1857) 0. 11 0.74 

Apoeorophium aeutum 0.25 ± 1.42 ± 0.77 2.17 ± 1.67 ± 0.64 66 
(Chevreux, 1908) 0.18 0.77 

Pe/toeoxa marioni 0.42 ± 1.25 ± 0.45 2.25 ± 0.92 ± 0.34 58 
(Catta, 1875) 0.23 0.87 

Tmetonyx nardonis 0.75 ± 0.25 ± 0.13 1.92 ± 0.50 ± 0.26 41 
(Heller, 1866) 0.28 0.9 1 

Aoridae ind .. 2.92 ± 0 .00 0.00 0.00 35 
1.64 

Gammaropsis 0.00 0.08 ± 0.08 2.58 ± 0.25 ± 0. 18 35 
erenu/ata (Krapp- 1.08 
Schickel & Myers, 
1979) 
Dexamine spiniventris 0.33± 0.83 ± 0.39 0.25 ± 1.00 ± 0.58 29 
(A. Costa, 1853) 0. 19 0.13 
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Species South South North North No. Change 
control acidified control acidified individuals 

Gitana sarsi (Boeck, 0.17 ± 0.67 ± 0.47 1.25 ± 0 .17 ± 0.17 27 
1871 ) 0. 11 0.68 

Dexamine spinosa 1.50 ± 0.00 0.67 ± 0 .08 ± 0.08 27 
~ (Montagu, 181 3) 0.47 0.28 

Protohyale schmidtii 0.00 1.83 ± 0.73 0.00 0.42 ± 0.26 27 l' (He\ler, 1866) 

Amphi poda indo 0.33 ± 0 .17 ± 0.17 ± 1.58 ± 0.71 27 
0.33 0. 17 0. 11 

Ampelisca rubella (A. 0.00 0.00 1.67 ± 0.42 ± 0.19 25 
Costa, 1864) 0.54 

Caprella cf rapax 0.00 0.00 0.00 1.75 ± 1.66 21 
(Mayer, 1890) 

Phtisica marina 0.50 ± 0.42 ± 0.26 0.25 ± 0.42 ± 0.15 19 
(Slabber, 1769) 0.23 0.18 

Caprella acanthifera 0.25 ± 0.50 ± 0.42 0.67 ± 0.08 ± 0.08 18 
cf. var. discrepans 0.1 3 0.36 
(Leach, 1814) 
Stenothoe tergestina 0.08 ± 1.00 ± 0.75 0.08 ± 0.17 ± 0.1 I 16 
(Nebeski, 1880) 0.08 0.08 

Leucothoe richiardii 0.00 0.83 ± 0.39 0.25 ± 0.17 ± 0.11 15 
(Lessona, 1865) 0. 13 

Stenothoe 0.33 ± 0.08 ± 0.08 0.33 ± 0.42 ± 0.23 14 
monocu/oides 0.14 0.1 4 
(Montagu, 181 3) 
Ampe/isca sp. 0.00 0.00 0.50 ± 0.50 ± 0.26 12 

0.19 

Ampithoe helleri (G. 0.92 ± 0.00 0.08 ± 0.00 12 
~ Karaman, 1975) 0 .34 0.08 

Ericthonius difJormis 0.00 0.83 ± 0.37 0.00 0.08 ± 0.08 11 l' (Mi lne Edwards, 
1830) 
Melit idae indo 0.00 0.00 0.00 0.75 ± 0.75 9 

Pereionotlls testudo 0.00 0.3 3 ± 0.19 0.08 ± 0 .25 ± 0.18 8 
(Montagu, 1808) 0.08 

Peltocoxa gibbosa 0.00 0.42 ± 0.19 0.17 ± 0.00 7 
(Schiecke, 1977) 0.11 

Photis longicaudata 0.00 0.42 ± 0.26 0.00 0.00 5 
(Bate & Westwood, 
1862) 
Synchelidium 0.17 ± 0.08 ± 0.08 0.00 0.17 ± 0.11 5 
longidigitatum (Ruffo, 0. 11 
1947) 
Ampe/isca diadema 0.17 ± 0.00 0.08 ± 0.00 3 
(A. Costa, 1853) 0. 11 0.08 

Cymadusa 0.17 ± 0.00 0.00 0.00 2 
crassicornis (A. Costa, 0 .17 
1857) 
A tylus vedlomensis 0.00 0.00 0.17 ± 0.00 2 
(Bate & Westwood, 0.11 
1862) 
Maera pachyte/son (G. 0.00 0.17 ± 0.17 0.00 0.00 2 
Karaman & Ruffo, 
1971) 
Deutella schieckei 0.00 0.17 ± 0. 11 0.00 0.00 2 
(Cavedini , 1982) 
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Species South South North North No. Change 
control acidified control acidified individuals 

Ampe/isca unidentata 0.00 0.00 0.08± 0.00 1 
(Schellenberg, 1936) 0.08 
Atylus gutlatus (A. 0.00 0.00 0.00 0.08 ± 0.08 1 
Costa, 1851) 
Jassa cf marmorata 0.00 0.00 0.00 0.08 ± 0.08 1 
(Holmes, 1903) 
Lysianel/a del/avallei 0.00 0.08 ± 0.08 0.00 0.00 1 
(Stebbing, 1906) 
Ceradocus 0.00 0.00 0.08± 0.00 1 
semiserratus (Bate, 0.08 
1862) 
Perioculodes 0.08 ± 0.00 0.00 0.00 1 
longimanus (Bate & 0.08 
Westwood, 1868) 
Caprella tavolarensis 0.08 ± 0.00 0.00 0.00 1 
(Sturaro & Guerra- 0.08 
Garcia, 2011) 
Caprella sp. 0.08± 0.00 0.00 0.00 1 

0.08 
Pariambus typicus 0.00 0.00 0.00 0.08 ± 0.08 1 
(Krayer, 1844) 

Amphipod richness increased in response to acidification (F),36 = 15.48, P < 0.001). Their 

abundance also increased in response to acidification (F),36 = 44.87, P < 0.001), although 

there was a 'site x month' interaction (F),36 = 8.10, P = 0.001) as this increase was only 

observed in July and November (Tukey HSD March: p = 0.988, July: p < 0.001, 

November: p < 0.00 I) (Fig. 4.6b). Diversity (N I and N2) and evenness (N21 ') were not 

affected by acidification (Fig. 4.6c-e). All variables were affected by month (Table 4.2), 

abundance and richness were lower in March than July and November (abundance: Tukey 

HSD: p < 0.001 and p < 0.001, M < J = N; richness: Tukey HSD: p = 0.001 and p = 0.003, 

M < J = N). Diversity (NI and N2) and evenness (N21 ') were higher in July than March 

and November (NI: Tukey HSO: p = 0.008 and p < 0.001, J > M > N; N2: Tukey HSO: p 

= 0.008 and p < 0.00 I, J > M > N) Diversity was lower in November than March and July 

(Tukey HSO: p < 0.001 and p < 0.001, N < M = J). Richness and diversity (N1 and N2) 

were greater at the north than the south side (Table 4.2 and Fig. 4.6b-d). 
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Figure 4.6 Temporal changes in a) abundance, b) richness, c) diversity (Nl), d) diversity (N2), and e) 

evenness (N2 1 ') of amphipods at each station. SC = south control, NC = north control, SA = south acidified, 

NA = north acidified. 

4.3.5 Tanaids 

A total of 3,748 tanaids which were identified to 7 OTUs from samples collected at the 

Castello Aragonese (Table 4.6). 1,556 individuals were collected from control stations, 

whilst 2,194 were collected from acidified stations. Of these, a significant effect of pH was 
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only observed for two species: Leptochelia savigny i (F 1,46 = 6.49, P = 0.014) and 

Pseudoleptochelia anomala (F 1,46 = 11.24, P = 0.002) which both increased in acidified 

stations. Although the decrease in abundance of Tanais sp. in acidified stations was not 

significant (F 1,46 = 3.17, P = 0.081), the occurrence of this species in samples dropped 

from 35% of samples in control areas to 13% of samples in acidified areas. No species 

disappeared completely from the acidified stations. 

Table 4.6 Mean abundance (± SE) of each species of tanaid per sample (N = 12) at each station, and total 

abundance collected. Arrows in the final column signify significant increase ( t) or decrease (!) in the 

abundance in response to acidification, obtained by a one-way GLM ANOV A. 

Species South South North North No. Change 
control acidified control acidified individuals 

Paradoxapseudes 43.83 ± 31.83 ± 52.91 ± 81.50 ± 2,521 
intermedius (Hansen, 13.19 16.81 10.21 22.01 
1895) 
Pseudoleptochel ia 5.00 ± 9.67 ± 2.23 3.42 ± 24.50 ± 511 l' anomala (Sars, 1882) 1.51 0.93 6.59 

Leptoche/ia savignyi 2.42 ± 8.25 ± 2.10 6.58 ± 11.00 ± 339 l' (Kroyer, 1842) 0.61 1.42 3.00 

Parapseudes cf. 4.5 ± 0.87 8.25 ± 2.68 3.00 ± 1.92 ± 1.09 212 
latifrons (Grube, 1864) 0.67 

Apseudopsis sp. 4.42 ± 0.08 ± 0.08 0.83 ± 1.08 ± 0.74 77 
2.74 0.32 

Tanaidomorpha indet. 0.92 ± 2.08 ± 1.18 0.82 ± 2.17 ± 1.00 72 
0.42 0.41 

Tanais sp. 0.58 ± 0.17 ± 0.11 0.42 ± 0.17 ± 0.17 16 
0.29 0.15 
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Figure 4.7 Temporal changes in a) abundance, b) richness, c) diversity (N!), d) diversity (N2), and e) 

evenness (N2! ') oftanaids at each station. SC = south control, NC = north control, SA = south acidified, NA 

= north acidified. 

The abundance, richness, and diversity (Nl and N2) of tanaids did not differ between 

acidified and control stations (Table 4.2). The only variable that was affected by pH was 

evenness (N21'), which was higher in acidified stations (F 1,36 = 11.84, P = 0.001). Tanaid 
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abundance was greater in the north than the south of the Castello (FI,36= 6.94, P = 0.026) 

(Fig. 4.7a). Month of sampling was significant for all variables (abundance: F 1,36 = 15.62, P 

< 0.001; richness: FI,36 = 7.10, P = 0.002; NI: FI,36 = 5.37, P = 0.009; N2: FI,36 = 5.43, P = 

0.009; N21': F 1,36 = 8.02, P = 0.001). Abundance was higher in November than March and 

July (Tukey HSD: p < 0.001 and p < 0.001, M = J < N), whilst richness was lowest in 

March (Tukey HSD: p = 0.028 and p = 0.002, M < J = N). Diversity was higher in July 

than March but equal to November (Tukey HSD N 1: p = 0.007 and p = 0.160, M < J = N, 

N2: p = 0.007 and p = 0.101). Evenness was greater in July than March and November 

(Tukey HSD: p = 0.016 and p = 0.001, J> M = N) (Fig. 4.7e). 

4.3.6 Isopods 

During sampling at the Castello Aragonese 668 isopods were collected and identified to 

the species or genus level leading to 27 OTUs. 363 individuals were collected from control 

stations, whilst 305 were collected from acidified stations. Carpias stebbingi was the most 

abundant species, with 258 individuals collected (Table 4.7). Of the OTUs, four showed a 

significant effect of pH. In acidified stations the abundance of Joeropsis brevicornis (F 1,46 

= 19.27, p< 0.001), Cymodoce hanseni (FI,46 = 12.15, P = 0.001), and Dynamene tubicauda 

(F1,46 = 4.96, P = 0.031) decreased, whilst the abundance of Apanthura corsica (FI,46 = 

5.78, p = 0.020) increased. Carpias stebbingi increased in acidified areas, although this 

increase was not significant (FI,46 = 3.69, P = 0.06). Not only did Joeropsis brevicornis 

show a significant decrease in overall abundance but it dropped from being present in 75% 

of samples in control stations to only 4% of samples in acidified stations. Similarly the 

presence of Cymodoce hansen; in samples dropped from 71 % in control stations to 17% in 

acidified stations. 
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Table 4.7 Mean abundance (± SE) of each species of isopod per sample (N = 12) at each station, and total 

abundance collected. Arrows in the final column signify significant increase ( j) or decrease (D in the 

abundance in response to acidification, obtained by a one-way GLM ANOV A. 

Species South South North North No. Change 
control acidified control acidified individuals 

Carpias stebbingi 2.08± 6.50 ± 2.91 5.00± 7.92 ± 2.91 258 
(Monod, 1933) 0.91 1.82 

Joeropsis 0.50± 0.08 ± 0.08 10.17 ± 0.00 129 
~ brevicornis 0.15 1.34 

(Koehler, 1885) 
Gnathia spp. 1.33 ± 1.08 ± 0.36 1.33 ± 2.08 ± 0.61 70 

0.33 0.31 

Cymodoce hanseni 2.50± 0.00 2.08± 0.67 ± 0.35 63 . ~ (Dumay, 1972) 0.91 0.58 

Jaera nordmanni 0.00 0.00 0.25 ± 1.67 ± 1.00 23 
massiliensis 0.18 
(Lemercier, 1960) 
Apanthura corsica 0.00 0.75 ± 0.27 0.17 ± 0.27 ± 0.IS 14 l' (Amar, 1953) 0.11 

Paranthura 0.08 ± 0.00 0.75 0.33 ± 0.18 14 
nigropunctata O.OS ±0.35 
(Lucas, 1846) 
Dynamene bifida 0.00 0.67 ± 0.43 0.42 ± 0.00 13 
(Torelli, 1930) 0.22 

Uromunna sp. 0.00 0.67 ± 0.35 0.33 ± 0.00 12 
0.26 

Dynamene 0.25 ± 0.08 ± 0.08 0.50 ± 0.00 11 
~ tubicauda (Holdich, 0.13 0.19 

1968) 
Paranthuridae. sp. 0.17 ± 0.00 O.OS ± 0.67 ± 0.2S 11 

0.11 0.08 

Limnoria mazzellae 0.08 ± 0.08 ± 0.08 0.58 ± 0.00 9 
(Cookson & 0.08 0.50 
Lorenti, 200 I) 
Stenosoma 0.08 ± 0.08 ± O.OS O.OS ± 0.33 ± 0.14 7 
appendiculatum 0.08 0.08 
(Risso, 1826) 
Cymodoce tnmcata 0.00 0.00 0.33 ± O.OS ± O.OS 5 
(Leach,ISI4) 0.14 

Mesanthura sp. 0.08 ± 0.00 0.16 ± O.OS ± O.OS 4 
0.08 0.11 

Cleantis prismatica 0.00 0.08 ± 0.08 0.08 ± O.OS ± 0.08 3 
(Risso, 1826) O.OS 

Kupe/lonura O.OS ± 0.00 O.OS ± 0.08 ± O.OS 3 
serrite/son (Wagele, O.OS O.OS 
1981) 
Stenosoma capito 0.00 1.17 ± 1.17 0.00 0.08 ± 0.08 3 
(Rathke, 1837) 

Dynamene torelliae 0.00 0.17 ± 0.11 0.00 O.OS ± 0.08 3 
(Holdich, 1965) 

Eurydice inermis 0.00 0.00 O.OS ± 0.08 ± 0.08 2 
(Hansen, IS90) 0.08 

Gnathia inopinata 0.00 O.OS ± O.OS 0.00 O.OS ± O.OS 2 
(Monod, 1925) 

Limnoria sp. 0.17 ± 0.00 0.00 0.00 2 
0.17 
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Species South South North North No. Change 
control acidified control acidified individuals 

Astacilla sp. 0.00 0.08 ± 0.08 0.00 0.08 ± 0.08 2 

Synischia hectica 0.17 ± 0.00 0.00 0.00 2 
(Pallas, 1772) 0.11 
Gnathia vorax 0.00 0.00 0.08± 0.00 I 
(Lucas, 1849) 0.08 
Astacilla 0.00 0.00 0.00 0.08 ± 0.08 1 
mediterranea 
(Koehler, 1911) 

The abundance and evenness (N21 ') of isopods did not differ between pH zones (Table 

4.2; Fig 4.8). Richness and diversity (NI and N2) of isopods was significantly lower in 

acidified stations (richness: F1.36 = 7.57, P = 0.009; NI: F1.36 = 10.47, P = 0.003; N2: F1.36 = 

9.22, P = 0.004). Month of sampling was significant for abundance, richness, and evenness 

(N21 ') (abundance: FI.36= 16.70, P < 0.001; richness: FI.36= 8.76, P < 0.001; N21 ': FI.36= 

10.0 I, P < 0.00 I). Abundance and richness were lower in March than July and November 

(abundance: Tukey HSD: p < 0.001 and p < 0.001, M < J = N; richness: Tukey HSD: p = 

0.004 and p = 0.001, M < J = N), whilst evenness was lowest in November (Tukey HSD: p 

= 0.017 and p < 0.001, N < J = M). Diversity (Nland N2) did not vary between months or 

stations. Abundance was greater in the north than the south side (F 1,36 = 26.67, P < 0.00 I). 
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4.3.7 Polychaetes 

During sampling at the Castello Aragonese a total of 2,731 polychaetes were collected, 

1,011 of which were collected from control stations and 1,720 collected at acidified 

stations. These were identified to 39 OTUs, primarily to the family/subfamily level, 

although 5 were identified to the genus or species level (Table 4.8). Of the 39 OTUs, six 

showed a positive response to acidification: Syllinae spp. (F),46 = 7.90, P :::;: 0.007), 

Exogoninae spp. (F),46 :::;: 6.75, p = 0.013), Amphiglena mediterranea (F),46 = 5.15, P = 

0.028), Amphicorina sp. (F),46 = 6.12, p:::;: 0.017), Pontogenia chrysocoma (F),46 = 20.82, P 

< 0.001), and Flabelligeridae spp. (F),46 = 5.38, P = 0.025). A. mediterranea was only 

present in 46% of samples and a total of 28 individuals collected in control stations but was 

found in 96% of samples giving a total of 291 individuals at acidified stations. Only 8 

individuals of P. chrysocoma were collected in control stations but 152 individuals were 

collected from acidified stations. 

Two families showed a significant decrease in response to acidification: Hesionidae spp. 

(F),46 = 4.22, P = 0.046), and Dorvilleidae spp. (F),46 = 6.62, P = 0.013). Species from the 

family Hesionidae (primarily Kefersteinia cirrata) decreased by over 50% from 165 

individuals collected in control stations to 74 in acidified stations whilst the abundance of 

species from the family Dorvilleidae decreased from 44 in control stations to 7 in acidified 

stations. There was a decrease in the abundance of species from the calcifying tubiculous 

Serpullidae (from 74 to 7) and Spirorbidae (from 66 to 11) in acidified stations, although 

their abundance was patchy and therefore these decreases were not significant. 
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Table 4.8 Mean abundance (± SE) of each polychaete OTU per sample (N = 12) at each station, and total 

abundance collected. Arrows in the final column signify significant increase ( j) or decrease (D in the 

abundance in response to acidification, obtained by a one-way GLM ANOV A. 

Species South South North North No. Change 
control acidified control acidified individuals 

Syllinae spp. 7.67 ± 14.5 ± 2.15 8.17 ± 13.17 ± 522 l' 1.55 1.07 3.20 

Exogoninae spp. 5.58 . 9.25. 7.0 ± 15 .5 ± 3.05 448 l' ±.1.28 ±.2.58 1.86 

Amphiglena 0.5 ± 9.41 ± 2.38 1.83 ± 14.83 ± 319 l' mediterranea (Leydig, 0.23 0.74 9.48 
1851) 
Hesionidae spp. 7.92 ± 4.0 ± 1.17 5.83 ± 2.17 ± 0.63 239 

~ 3.17 1.44 

Amphicorina sp. 2.0 ± 6.5 ± 1.83 0.58 ± 6.92 ± 4.0 192 l' 0.73 0.29 

Pontogenia 0.42 ± 9.58 ± 2.01 0.25 ± 3.08 ± l.10 160 l' chrysocoma (Baird, 0.19 0.13 
1865) 
Fabriciidae spp. 1.17 ± 2.5 ± 0.73 1.0 ± 7.0 ± 4.04 140 

0.39 0.32 

Paraonidae spp. 3.42 ± 2.83 ± 1.50 0.33 ± 2.08 ± 0.65 104 
1.14 0.22 

Serpulidae spp. 4.67 ± 0.08 ± 0.08 1.5 ± 0.5 ± 0.23 81 
2.99 0.66 

Spirorbidae spp. 4.92 ± 0.83 ± 0.30 0.58 ± 0.08 ± 0.08 77 
3.66 0.26 

Spionidae spp. 1.67 ± 1.92 ± 0.80 0.33 ± 1.75 ± 0.49 68 
0.56 0.26 

Dorvilleidae spp. 2.83 ± 0.25 ± 0.83 ± 0.33 ± 0.22 51 
~ 1.01 0.13 0.49 

Ctenodriliidae spp. 0.42 ± 0.42 ± 0.19 0.92± 1.92 ± 0.91 44 
0.19 0.83 

Cirratulidae spp. 0.42 ± 0.5 ± 0.19 0.42 ± 1.17 ± 0.60 42 
0.58 0.15 

Nereididae spp. 1.33 ± 0.83 ± 0.39 0.58 ± 0.75 ± 0.28 42 
0.81 0.31 

Flabell igeridae spp. 0.25 ± 1.92 ± 0.61 0.00 0.08 ± 0.08 27 l' 0.25 

Polyophthalmus pictus 1.17 ± 0.17 ± 0.11 0.25 ± 0.33 ± 0.22 23 
(Dujardin, 1839) 0.52 0.18 

Chrysopetalidae spp. 0.42 ± 0.00 0.75 ± 0.5 ± 0.23 20 
0.26 0.22 

Polynoidae spp. 0.83 ± 0.17 ± 0.ll 0.17 ± 0.5 ± 0.19 20 
0.34 0.11 

Pholoididae spp. 0.33 ± 0.58 ± 0.15 0.25 ± 0.17 ± 0.17 16 
0.14 0.13 

Capitellidae spp. 0.42 ± 0.17 ± 0.11 0.00 0.5 ± 0.11 13 
0.19 

Sabellariidae spp 0.08 ± 0.5 ± 0.42 0.00 0.42 ± 0.26 12 
0.08 

Phyllodocidae 0.33 ± 0.33 ± 0.14 0.08 ± 0.08 ± 0.08 10 
spp. 0.19 0.08 
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Species South South North North No. Change 
control acidified control acidified individuals 

Sabellidae spp. 0.5 ± 0.00 0.08± 0.08 ± 0.08 8 
0.29 0.08 

Branchiomma spp. 0.17 ± 0.17 ± 0.11 0.17 ± 0.08 ± 0.08 7 
0.11 0.11 

Lumbrineridae spp 0.08 ± 0.00 0.00 0.42 ± 0.19 6 
0.08 

Pilargidae spp. 0.08 ± 0.33 ± 0.33 0.00 0.00 S 
0.08 

Sigalionidae spp. 0.33 ± 0.00 0.00 0.00 4 
0.19 

Trichobranchiidae spp. 0.25± 0.08 ± 0.08 0.00 0.00 4 
0.13 

Sphaerodoridae spp. 0.00 0.00 0.08 ± 0.25 ± 0.25 4 
0.08 

Maldanidae spp. 0.17± 0.00 0.00 0.17 ± 0.17 4 
0.17 

Euphrosinidae spp. 0.00 0.17 ± 0.11 0.08 ± 0.00 J 
0.08 

Orbiniidae spp. 0.00 0.17±0.17 0.08± 0.00 J 
0.08 

Autolytinae spp. 0.08± 0.00 0.17 ± 0.00 J 
0.08 0.11 

Scalibregmatidae spp. 0.00 0.00 0.25 ± 0.00 J 
0.25 

Eunicidae spp. 0.00 0.00 0.08 ± 0.08 ± 0.08 2 
0.08 

Opheliidae spp. 0.00 0.00 0.08 ± 0.08 ± 0.08 2 
0.08 

Nephtyidae spp. 0.08± 0.00 0.00 0.08 ± 0.08 2 
0.08 

Terebellidae spp. 0.00 0.00 0.00 0.08 ± 0.08 1 

The abundance of polychaetes was significantly affected by pH (F 1,36 = 4.98, P = 0.032), as 

an increase in abundance was observed in acidified stations (Fig. 4.9a). Richness, diversity 

and evenness were not affected by pH (Table 4.2). Unlike other groups of taxa, time of 

year did not affect the abundance, richness or diversity of polychaetes (Table 4.2), 

although a significant 'site x month' interaction was observed for richness and diversity 

(NI and N2) (richness: FI,36 = 3.89, P = 0.030; Nl: FI,36 = 4.62, P = 0.016; N2: FI,36 = 3.86, 

p = 0.030). This interaction was observed as these variables were greater in the south than 

the north side in November (Tukey HSD: richness p = 0.044; Nl P = 0.034; N2 P = 0.046), 

whilst this pattern was not observed in other months (Fig. 4.9). 
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Figure 4.9 Temporal changes in a) abundance, b) richness, c) diversity (N!), d) diversity (N2), and e) 

evenness (N2! ') of polychaetes at each station. SC = south control, NC = north control, SA = south acidified, 

NA = north acidified . 

6.3.8 Other groups 

During sampling at the Castello a total of t ,869 echinoderms were collected, 1,841 of 

which were ophiuroids (primarily Amphipholis squamata). Only 10 echinoids and 2 
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holothurians were collected. Although these species are present, they are generally quite 

large (> 5 cm) so less likely to get collected by the suction sampler. Sixteen starfish were 

collected, II of which were found in acidified stations, although this increase was not 

significant (F 1,46 = 0.86, P = 0.376). A significant increase in the number of ophiuroids 

from control (465 individuals collected) to acidified (J ,376 individuals collected) stations 

was found (F 1,46 = 35.48, P < 0.001). Abundances were higher in March than November 

(Tukey HSD: p = 0.001). No significant difference in abundance was observed between 

sites (Table 4.2). 
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mysids at each station. SC = south control, NC = north control, SA = south acidified, NA = north acidified. 
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A total of 622 pycnogonids (sea spiders) were collected from the Castello Aragonese. 

Their abundance significantly increase from control to acidified stations (F 1,46 = 29.83, P < 

0.001) as 80% were collected from acidified stations. There was a 'site x pH' interaction 

(FI,36 = 7.55, P = 0.009), as the increase in abundance observed at acidified stations was 

more pronounced on the south side (Fig. 4.1 Ob). 

A total of 331 cumaceans were collected from the Castello Aragonese. Cumaceans were 

not significantly affected by pH (Table 4.2), but differed between months (F1,36 = 5.40, P = 

0.009). The lowest numbers of cumaceans were found in March in comparison to July and 

November (Tukey HSD: p = 0.021 and p = 0.018, M < J = N). A 'site x pH' interaction 

was observed as more cumaceans were observed in the south control site than the south 

acidified site (Tukey HSD: p = 0.049), although no difference was observed in the north 

stations. 

A total of 91 mysids collected from the Castello Aragonese. Mysids were only present in 

November samples (Fig. 4.10d). Turbellarians, opistobranchs and nudibranch numbers 

were minimal (5, 8 and 22 respectively). Although Polyplacophora (chitons) were found in 

low numbers (16), their abundance was significantly affected by pH (FI,46 = 5.38, P = 

0.025). 15 of these were found in the north control station and the other one in the north 

acidified station. No chitons were present in southern stations. 
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4.3.9 Community analysis 

A total of 13,116 invertebrates were collected at contro l stations and 24,997 at acidified 

stations whilst sampling at the Castello Aragonese. The abundance of invertebrates was 

positively affected by pH (F 1,36 = 36.67, P < 0.001), although there was a 'pH x month ' 

interaction (F 1,36 =4 .93, P = 0.013), as th is increase was only observed in July and 

November (Fig. 4.11a). Diversity (NI and N2) decreased in acid ified stations (Nl: F1,36 = 

12.04, P = 0.001 ; N2: F 1,36 = 4.16, P = 0.05) (Fig. 4.11 c-d). Acidification did not affect 

richness or evenness (Table 4.9). Abundance and richness increased from March through 

to November (abundance: Tukey HSD p = 0.024 and p < 0.00 I, M < J < N ; richness: 

Tukey HSD P = 0.024 and p < 0.00 I, M < J < N), whilst diversity (N2) and evenness 

(N21 ') were lower in November than July (NI: Tukey HSD p = 0.044, N < J = M; N2J': 

Tukey HSD p = 0.0 II , N < J = M). Diversity (N 1) was not affected by month (Table 4.9) . 

Diversity was higher on the north side (NI: FI ,36 = 9.60, P = 0.004; N2: FI ,36 = 7.08, P = 

0.012), although there was a ' site x month ' interaction (N I: F 1,36 = 8.62, P < 0.001 ; N2: 

F 1,36 = 5.40, P = 0.009), as this effect was only observed in July (Fig. 4.11 c-d). No 

difference in richness or evenness was observed between pH zones (Fig. 4.11). 

Table 4 .9 Comparison of abundance, richness, diversity and evenness of the invertebrate community, 

analysed by means of a three-way GLM ANOY A with site (fi xed factor) , pH (fixed factor) and month (fixed 

factor). Significant results are highlighted in red. * p < 0.05, ** P < 0.01 , *** P < 0.001 

Factors Interactions 
Site pH Month Site x ite x pH x Site x pH x 

pH Month Month Month 
Abundance 0.05 36.67"** 17.53*** 1.99 1.0 I 4.93* 0.20 
Richness 0.50 0.17 20.58*** 0.01 3.54* 0.30 1.66 
Diversi ty (N I) 9.60** 12.04** 2.4 1 0.69 8.62 *** 1.16 3.01 
Diversi ty (N2) 7.08* 4.16* 3,47* 0.96 5.40** 2.35 1.93 
Evenness 2.44 0.01 5.06* 0.88 1.90 4.24* 0.39 
(N2 1 ') 
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Figure 4.11 Temporal changes in a) abundance, b) richness, c) diversity (N I), d) diversity (N2), and e) 

evenness (N2 1 ') of the whole invertebrate community at each station . SC = south control, NC = north 
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Community composition (PERMANOVA: F),47 = 8.11, P = 0.001) and community 

structure (PERMANOVA: F),47= 14.1, p = 0.001) differed between pH zones (Fig. 4.12), 

although significant interactions with site and month (Table 4.10) showed that this 

difference varied between sites and times of the year. Graphical and statistical analyses of 

community structure and community composition were analysed separately for each month 

so that differences between pH zones could be observed for each sampling period. 

Community composition and community structure differed between pH zones in all 

months, although there was a 'site x pH' interaction for community structure in all months 

and community composition in July (Table 4.10). This was because differences in 

assemblage structure and composition between pH zones were generally greater at the 

southern side of the Castello (Fig. 4.12), as pairwise 'site x pH' tests revealed that 

differences between pH zones were significant at both sides of the Castello, for all months 

(p = 0.02 - 0.037). A second observation was that community composition and structure 

were generally more variable in control stations, particularly in the south control station, 

whilst acidified stations showed less variability between samples, shown by their clustered 

nature in the nMDS ordinations (Fig. 4.12). Community structure and composition of 

acidified samples (north and south) generally clustered together more closely than control 

samples, which showed much greater multivariate dispersal (Fig. 4.12). The 

PERMANOV A high pseudo-F value and nMDS ordination show that although community 

structure and composition differed in all months, the greatest difference between control 

and acidified stations occurred in November. 
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Figure 4.12 nMDS ordinations of community structure in control and acidified P. oceanica stations at the 

north and south of the Castello Aragonese in a) March, c) July and e) November and community composition 

at the control and acidified stations at the north and south of the Castello Aragonese in b) March, d) July, and 

f) November. 
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Table 4.10 Results of community analysis for the invertebrate community, collected by airlift sampler, 

pooled for all months and for each separate month. Community structure and community composition were 

analysed using a three-factor PERMA OVA with site (fixed factor), pH (fixed factor) and month (fixed 

factor) for pooled data, and each month was analysed using a two-factor PERMA OVA with site (fixed 

factor), and pH (fi xed factor). Significant results are highlighted in red. 

df 
I Community composition 

Pseudo-F Pperm 

I Community structure 
Pseudo-F Poerm 

ALL MONTHS 
Site I 6.77 0.001 7.54 0.001 
pH I 8.11 0.001 14.1 0.001 
Month 2 5.59 0.001 8.56 0.001 
Site x pH I 3.32 0.001 4.11 0.001 
Site x Month 2 1.50 0.015 1.67 0.005 
pH x Month 2 1.37 0.046 1.88 0.001 
Site x pH x Month 2 1.37 0.048 1.23 0.122 
Total 47 
MARCH 
Site I 3.26 0.001 3.36 0.001 
pH I 6.78 0.001 4.37 0.001 
Site x pH I 1.62 0.072 1.84 0.025 
Total 15 
JULY 
Site 1 3.06 0.001 3.49 0.002 
pH I 4.12 0.002 5.86 0.002 
Site x pH I 2.37 0.003 2.38 0.001 
Total 15 
NOVEMBER 
Site 1 3.51 0.001 4. 16 0.001 
pH 1 4.25 0.001 8.04 0.001 
Site x pH I 1.44 0.113 2.34 0.001 
Total 15 

SIMPER analysis showed that the most representative OTUs characterizing the control 

stations were the tanaid Paradoxapseudes intermedius, the amphipod Apherusa 

chiereghinii and the hermit crab Cestopagurus timidus, whi lst the most representative 

OTUs characterizing the acidified stations were Ophiuroidea (primarily Amphipholis 

squamata), the amphipod Quadrimaera inaequipes, and the gastropod Alvania lineata 

(Table 4.11). 
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Table 4.11 SIMPER analysis of the abundance of each OTU in each sample (N=48) to determine which 

OTUs, contribute> 3% similarity for each pH zone (control and acidified). Data has been pooled across sites 

and months. % SC = % similarity contribution 

Control 
OTU 
Paradoxapseudes intermedius 
Apherusa chiereghinii 
Cestopagurus timidus 
Ophiuroidea spp. 
Alvania lineata 
Apolochuspicadurus 

%SC 
5.12 
4.66 
4.37 
3.82 
3.69 
3.33 

Acidified 
OTU 
Ophiuroidea spp. 
Quadrimaera inaequipes 
Alvania lineata 
Apolochus picadurus 
Metaphoxus simplex 
Lembos websteri 

%SC 
5.25 
4.78 
4.42 
3.59 
3.30 
3.22 

To summarise, although there was an increase in the abundance of invertebrates, with 

almost double the number of individuals being collected from acidified stations, not all 

groups of taxa increased in response to acidification (Fig. 4.13). The abundance of 

gastropods, bivalves, po\ychaetes, and amphipods increased, whilst no difference was 

found for isopods and tanaids and the abundance of decapods decreased. There was no 

overall difference in species richness between control and acidified stations, although a 

significant a decrease in the richness of decapods, bivalves and isopods was found whilst 

the richness of amphipods increased (Fig 4.13). In comparison to species richness, 

diversity decreased in response to acidification for both diversity measures (Nl and N2), 

due to a decrease in the diversity of gastropods and isopods (Fig. 4.14). Overall evenness 

was not affected by acidification, although a significant increase in the evenness of 

decapods and tanaids was found, whilst the evenness of gastropods decreased (Fig. 4.14). 

'Site x pH' interactions were observed for the abundance of gastropods and bivalves, as an 

increase in response to acidification was only observed on the southern side, whilst 

significant 'site x pH' interactions were found for gastropod diversity and evenness, as the 

decrease in response to acidification was only observed for the northern side of the 

Castello. 
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4.3.10 Trophic structure 

Eleven trophic categories were defined for the invertebrates collected at control and 

acidified stations at the Castello Aragonese: suspension feeders, detritivore/suspension 

feeders, detritivores, herbivore/detritivores, herbivores, carnivores/detritivores, carnivores, 

scavengers, omnivores, parasites and commensals. Detritivores, detritivore/suspension 

feeders and herbivores were the most abundant categories accounting for almost 60% of all 

individuals collected, whilst over 50% of individuals at least partially fed on detritus (Fig. 

4.15). 
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Figure 4.15 Trophic structure of the invertebrate community in Posidonia oceanica pooled for control and 

acidified zones (N = 24) at the north and south of the Castello Aragonese and shown in a) proportions, and b) 

mean abundance (±SE). SF = suspension feeders, DeSF = detritivore/suspension feeders, De = detritivores, 

HeDe = herbivore/detritivores, He = herbivores, CaDe = camivore/detritivores, Ca = carnivores, Sc = 

scavengers, Om = omnivores, Pa = parasites, Co = commensals. 
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All trophic groups other than carnivores, herbivore/detritivores, and parasites increased in 

abundance in response to acidification (Table 4.12; Fig. 4.15), although there was a 'site x 

pH' interaction for the abundance of detritivore/suspension feeders (Tukey HSD: p < 0.001 

and p = 0.129, respectively), carnivore/detritivores (Tukey HSD: p < 0.001 and p = 0.918, 

respectively), and omnivores (Tukey HSD: p = 0.009 and p = 0.999), as the increase in 

abundance in response to acidification was only observed on the southern side of the 

Castello (Fig. 4.16). A 'pH x month' interaction was observed for the abundance of 

commensals, as the effect of pH was only observed in November (Tukey HSD: p = 0.012). 

The abundance of carnivores or parasites was not affected by pH (Table 4.12, Fig 4.16). 

Herbivore/detritivores were the only trophic group which decreased in abundance in 

response to acidification, although there was 'site x pH' interaction, as this effect was only 

observed on the south side (Tukey HSD: p < 0.001 and p = 0.212, Fig. 4.16). 

Even though the abundance of invertebrates almost doubled in acidified stations, the 

proportion of many of the trophic groups remained the same (Table 4.12, Fig. 4.15). The 

proportion of carnivores, herbivore/detritivores, and omnivores decreased, although there 

was a 'site x pH' interaction for the proportion of herbivore/detritivores, as this decrease 

was more prominent on the south side (Tukey HSD p < 0.001 and p = 0.002, respectively). 

Conversely a 'site x pH' interaction was observed for proportion of omnivores as their 

decrease was only significant on the north side (Tukey HSD p = 0.015 and p = 0.997, 

respectively). The abundance of detritivore/suspension feeders, and scavengers increased 

in response to acidification. Increased numbers of scavengers was solely related to the 

presence of the gastropod Nassarius incrassatus in acidified stations. 

Detritivore/suspension feeders were abundant in all stations although the increased 

proportion in acidified stations was only significant at the south side (Tukey HSD p < 
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0.00 I and p = 0.994, respectively). The proportion of scavengers, parasites and 

commensals collected during this study was minimal « 1 %, Fig. 4.15). 

Table 4.12 Analysis of abundance and proportion of each trophic group, analysed by means of a three-way 

GLM A OVA with site (fixed factor), pH (fixed factor) and month (fixed factor). All abundance data was 

LOg ex + I) transformed, whilst proportion data was arcsine transformed to conform to the assumptions of 

A OVA. Significant results are highlighted in red. * p < 0.05 , ** P < 0.0 I, *** P < 0.00 I 

Factors Interact ions 
Site pH Month Site x Site x pH x Site x pH 

pH Month Month x Month 

ABUNDANCE 
Suspension feeder 3.20 8.18** 3.83* 0.27 2.57 1.60 0.01 
Detritivore/ 0.95 46.56*** 7.05** 13.25*** 1.37 4.69* 1.09 
suspension feeder 
Detritivore 0.06 24.92*** 13.81 *** 0.29 2.08 1.10 0.05 
Herbivore/ 0.26 63.83*** 181.14*** 26.84*** 10.97** 4.81 * 19.08*** 
detritivore 
Herbivore 0.18 23.30*** 24.15*** 0.22 1.57 1.40 0.77 
Carnivore/ 2.96 6.95* 4.09* 12.55** 3.21 0.20 0.03 
detritivore 
Carnivore 1.73 3.61 1.99 0.48 2.90 0.62 1.03 
Scavenger 1.16 16.73*** 2.15 1.16 4.58* 2.15 4.14* 
Omnivore 17.05*** 6.06* 5.81 ** 5.47* 162 1.86 0.36 
Parasite 0.55 0.14 4.12 * 0.50 3.51 * 1.08 3.58* 
Commensal 19.32*** 5.12* 5.74** 0.27 2.19 3.48* 1.34 

PROPORTION 
Suspension feeder 2.58 0.07 7.43** 2.91 1.18 1.25 0.09 
Detritivore/ 3.08 18.87*** 26.87*** 22.19*** 0.22 5.09* 2.28* 
suspension feeder 
Detritivore 0.18 0.94 4.40* 0.31 1.65 1.1 2 0.60 
Herbivore/ 0.01 136.57*** 89.82*** 37.31 *** 18.60*** 3.39* 0.17 
detritivore 
Herbivore 0.28 0.55 9.27*** 0.84 2.31 11.23*** 2.4 1 
Carnivore/ 7.19* 0.21 3.52* 11.77** 3.22 0.36 0.46 
detritivore 
Carnivore 2.32 10.82** 8.41 ** 0.58 0.91 0.26 1.12 
Scavenger 0.09 13.83*** 0.87 0.09 2.74 0.87 2.74 
Omnivore 30.39*** 5.74* 1.56 4.53* 3.35* 0.56 1.58 
Parasite 0.49 0.50 4.77* 0.41 3.25 0.28 3.00 
Commensal 19.55*** 0.22 5.9.t** 0.47 1.63 1.63 1.23 
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Fig 4.16 Temporal changes in the abundance of trophic groups at each station. SC = south control, NC = 

north control, SA = south acidified, NA = north acidified. SF = suspension feeders, DeSF = 

detritivore/suspension feeders, De = detritivores, HeDe = herbivore/detritivores, He = herbivores, CaDe = 

carnivore/detritivores, Ca = carnivores, Sc = scavengers, Om = omnivores, Pa = parasites, Co = commensals. 

The trophic structure of invertebrate assemblages differed between pH zones 

(PERMANOYA: F1,47= 19.72, P = 0.001), although there was a ' pH x month' interaction 

(PERMANOY A: F 1,47 = 2.61, P = 0.026) (Table 4.13). nMDS ordination with 

superimposed cluster analysis showed that trophic structure in control and acidified zones 

grouped together at the 75% similarity level in March, whereas in July and November 

trophic structure generally clustered separately between control and acidified stations (Fig. 

4.17). 
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Table 4.13 Results trophic structure, analysed using a three-factor PERMANOVA with site (fixed factor), pH 

(fixed factor) and month (fixed factor). Significant results are highlighted in red. 

df Pseudo-F Pperm 

Site 1 3.86 0.008 
pH 1 19.72 0.001 
Month 2 14.64 0.001 
Site x pH 1 3.31 0.02 
Site x month 2 1.88 0.085 
pH x Month 2 2.61 0.026 
Site x pH x Month 2 0.71 0.667 
Total 47 
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Figure 4.17 nMDS ordinations of trophic structure in control and acidified stations at the north and 

south of the Castello Aragonese. M = March, J = June, N = November. 
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4.3.11 Relationship between the abundance of different taxonomic groups and Posidonia 

oceanica shoot density 

There is an increase in P. oceanica shoot density in response to acidification, and density 

increased by 58% in the north acidified station and 82% in the south acidified station (see 

Chapter 3). Positive correlations were found for the abundance of gastropods, bivalves, 

amphipods, pycnogonids and ophiuroids in relation to P. oceanica shoot density (Fig. 

4.18), although R values were low for gastropods and bivalves, suggesting that factors 

other than shoot density played an important role in determining the abundance of these 

groups (Table 4 .1 4). Each of these groups of taxa showed a significant increase in 

abundance in response to acidification . No relationship was found between the abundance 

of polychaetes and P. oceanica density, although this group of taxa a lso showed a 

significant increase in response to acidificat ion. A significant negative correlation was 

observed for decapods, although the R value was low (Table 4.14). 

Table 4.14 Results of Spearman Rank Correlations between total abundance, richness, diversity, evenness 

and abundance of each of the taxonomic invertebrate groups, and shoot density of Posidonia oceanica. 

Taxa R t P 
Gastropods 0.347 2.505 0.015 
Bivalves 0.289 2.044 0.047 
Decapods -0.351 -2.546 0.014 
Amphipods 0.438 3.308 0.002 
Tanaids -0.099 -0.675 0.503 
lsopods -0.231 -1.612 0.114 
Polychaetes 0.1 90 1.315 0.195 
Ophiuroids 0.430 3.228 0.002 
Pycnogonids 0.584 4.884 <0.001 
Cumaceans -0.269 -1.893 0.065 
Mysids 0.141 0.963 0.341 
Total abundance 0.357 2.595 0.013 
Richness -0.067 -0.453 0.652 
Diversity (N1) -0.449 -3 .409 0.001 
Diversity (N2) -0.433 -3 .260 0.002 
Evenness (N21 ') -0.183 -1.262 0.213 
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Figure 4.18 Relationship between a) gastropod, b) bivalve, c) amphipod, d) decapod, e) pycnogonid, and f) 

ophiuroid abundance with P. oceanica shoot density. 

A positive correlation was found for the abundance of invertebrates and P. oceanica shoot 

density (Table 4.14), although the R value was low and the abundance of invertebrates 

appeared to be unaffected by shoot density in many samples (Fig. 4.19a). Diversity (N) 

and N2, Fig. 4.19b-c) showed a negative correlation with shoot density. No relationship 

was found between shoot density and species richness or evenness (Table 4.14) 
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Figure 4.19 Relationship between a) abundance, b) richness, c) diversity (Nl), d) diversity (N2), and e) 

evenness (N21 ') with P. oceanica shoot density. 

4.4 Discussion 

These results are surprising; in that they suggest that the majority of heavily calcified P. 

oceanica-associated invertebrates will be robust and even thrive in response to ocean 

acidification. Rather than a decrease in abundance and richness, as would be expected, an 

increase in abundance was observed, whilst species richness did not differ between pH 
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zones. In fact, of the 270 OTUs identified during this study, 15 suffered a significant 

decrease in their abundance in response to acidification, whilst 36 OTUs significantly 

increased in abundance and the total abundance of invertebrates increased by over 90% in 

acidified zones. These results contrast to results from laboratory experiments, which show 

that survival decreases for many species of calcifying invertebrates in response to OA 

(Kroeker et al. 2010), and suggest that a complex interplay of direct and indirect effects 

may lead to positive responses of invertebrate communities to OA in the future. 

Multivariate analysis indicated that P. oceanica-associated communities differed between 

control and acidified stations, with changes reflected in both variations in presence and 

absence and changes in relative abundances of species, suggesting that there will be an 

ecological shift in assemblages under future ~A. Similar shifts in community structure 

have been observed for invertebrate settlement (Ricevuto et al. 2012) and algal populations 

(Kroeker et al. 20 13b) in response to acidification at the vents of the Castello Aragonese. 

In tenns of biodiversity measures, whilst some taxa experienced a decrease in species 

richness (bivalves, decapods and isopods), overall community richness was not affected by 

acidification. This may be because the decrease in richness of some groups of taxa was 

compensated by the increase in the number of amphipod species. Evenness was not 

affected by acidification, as a decrease in gastropod evenness was balanced by an increase 

in decapod and tanaid evenness. Similarly, no difference in species richness and evenness 

was observed between control and acidified (PH 7.8) stations in the rocky subtidal at the 

Castello Aragonese (Kroeker et al. 201lb). Diversity (Nl and N2) decreased in response to 

acidification. This decrease was primarily due to the decrease in gastropods and isopod 

diversity. Significance of this decrease in diversity was greater for Nl than for N2, 

suggesting that changes in diversity may be primarily due to a decrease in the number of 

common (rather than abundant) species (Heip et al. 1998). Whilst this decrease must be 
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taken into consideration, many authors suggest that species richness and evenness are the 

most important independent characteristics of biological communities that together are 

most linked to biodiversity (Heip and Engels 1974; Peet 1974; Magurran 2004). 

There is some concern with research at CO2 vents that, due to the open nature of the 

system and close proximity of habitat at ambient pH, supply of larvae from areas of 

ambient pH may lead to an underestimation of the impacts of OA. The larval/ juvenile 

phase of calcifying invertebrates may be the most susceptible stage to OA (Dupont et at. 

2010; (Ross et at. 2011»), and supply of larvae from non-acidified areas may limit the 

negative effects experienced by individuals. Secondly, reproductive output may decrease in 

acidified waters (Fitzer et al. 2013), a response that may be masked at CO2 vents. This 

must be taken into consideration when assessing the effect of vent induced acidification on 

invertebrate communities and may be why very little. However many groups of taxa 

(amphipods, tanaids, some polychaetes) are direct developers and therefore the 

reproductive success of these taxa in acidifed conditions can be seen (Kroeker et al. 2011). 

Amphipods imore than doubled in numbers in acidified stations, showing that reproductive 

output was not limited by acidified conditions. 

A previous study by Cigliano et al. (2010) placing artificial collectors (scouring pads) in 

the water column in three different pH zones (control, acidified and very acidified), looked 

at larval settlement at the CO2 vents of Ischia. Of the species common to both studies, the 

juveniles of those that increased in this study either increased (the tanaid Leptochelia 

savignyi, the amphipod Caprella acanthi/era, the polychaete Amphiglena mediterranea 

and other po)ychaetes from the subfamily Syllinae) or remained abundant (polychaetes 

from the subfamily Exogoninae, the gastropod Rissoa variabilis, and the amphipod 

Ampithoe ramondi) in acidified stations in the previous study, suggesting that the juvenile 
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stage of many species of invertebrate may be robust to future acidification. Other OTUs 

which showed a positive response to acidification in this study were not collected by 

Cigliano et al. (2010); this may be because scouring pads do not have the same spatial 

complexity of natural substrata, and in addition, they stay in the field only for a short 

period (one month); therefore they select only a subset of the potential diversity of species 

occurring in the natural community. 

Decapods were the taxonomic group most affected by acidification in this study. They 

were the only group whose abundance and taxonomic richness decreased in acidified 

zones; more species in this group exhibited a significant decrease in abundance in response 

to acidification than other taxonomic groups. This leads to a decreased number of species 

being collected in acidified stations. The carapace of decapods generally contains high 

magnesium-calcite (Ries et at. 2009), which is more soluble than low magnesium-calcite 

and aragonite, and therefore more susceptible to OA-based dissolution than the shells or 

skeletons of organisms (Andersson et al. 2008). Many species of decapods produce an 

external organic layer (Ries et at. 2009), which may protect against dissolution (Rodolfo

Metalpa et al. 2011). Ries et at. (2009) found that over a period of 60 days, three species of 

decapods which were exposed to high levels of acidification responded by increasing net 

calcification rates, suggesting some degree of tolerance to ~A. Decapod susceptibility to 

OA is not only due to their high magnesium-calcite carapace. Acidification has been 

shown to disrupt chemo-responsive behaviour in the hermit crab Pagurus bernhardus (de 

la Haye et at. 2012), and to decrease metabolic rates in the velvet swimming crab Necora 

puber (Small et al. 20 I 0). If the decrease in decapods is due to physiological intolerance to 

OA, then loss of decapods may lead to simplification of the P. oceanica food web, as they 

are the preferred prey for many species offish (Zupo and Stubbing 2010). Fish may end up 

foraging for smaller prey items, and lead to a reduction in energy transfer efficiency 
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between invertebrates and fish (Sherwood et al. 2002). A second consideration is that the 

decrease in decapods may not be due to a physiological intolerance to OA, but due to 

indirect effects. Extreme grazing by the fish, Sarpa salpa, lead to a decrease in seagrass 

canopy height in acidified stations in late spring! summer (see Chapters 3 and 6), 

corresponding to the time when decapod populations were extremely low in acidified 

stations, but high in control stations. A reduction in canopy height, through extreme 

grazing by S. salpa, has shown to intensely increase predation risk of invertebrates in P. 

oceanica (Pages et al. 2012), so loss of protection may account for the decline of decapod 

populations. 

There was a 82% decrease in the number of the hermit crab Cestopagurus timidus 

collected from control to acidified stations, although it is uncertain whether this was a 

direct result of acidification or whether it resulted from the indirect effect of a lack of 

suitable shells to occupy. The preferred shell for juvenile C. timidus is from the gastropod 

Bittium latreillii (Pessani and Premoli 1993). This species suffered a drastic decrease of 

94% from control to acidified stations; therefore it is possible that juvenile hermit crabs 

were unable to find suitable shells to occupy and were unable to survive, although they are 

also known to inhabit shells of the gastropods Jujubinus striatus, Rissoa spp. or Alvania 

spp. (Zupo et al. 1985; Pessani and Premoli 1993), which increased in response to 

acidification. The only other hermit crab found during sampling was Pagurus anachoretus, 

and only one individual was collected so it was not possible to determine whether this 

species is adversely affected by acidification. A second consideration is that some species 

of mollusc are protected from shell dissolution, in a low pH environment, through covering 

of an organic layer (Rodolfo-Metalpa et al. 2011). When the animal dies, the organic layer 

disappears. Dissolution of empty shells (of even abundant species), may lead to a lack of 

suitable shells for hermit crabs. 
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A second group of taxa that may suffer negative effects from OA are isopods. Although 

this group did not decrease in abundance in response to acidification during this study, they 

suffered a decrease in species richness and diversity. Cymodoce hanseni feeds on crustose 

coralline algae (M. Lorenti, pers. comm.), which is highly reduced at acidified stations 

(Martin et al. 2008; Chapter 5), therefore a reduction in this species may be due to a loss of 

food availability. A second consideration is that many shallow water isopods are generally 

cryptic, and camouflaged within their habitat (Poore and Bruce 2012). All species with 

reduced abundances (Joeropsis brevicornis, Cymodoce hanseni, and Dynamene tubicauda) 

are associated with the leaves, rather than the rhizomes of P. oceanica. Through loss of 

crustose coralline algae the colouration and complexity of the leaves changes under 

acidified conditions (see Chapter 5), which may lead to loss of refuge for this group of 

taxa. Similarly, a reduction in canopy height, through increased grazing, may lead to a loss 

of habitat for this group of species. A similar reduction in richness of isopods was observed 

in other studies of juvenile settlement (Cigliano et al. 2010) and the rocky subtidal 

(Kroeker et al. 20 11 b) in response to vent induced acidification at the Castello Aragonese. 

Gastropods and bivalves are heavily calcified groups of taxa, and therefore at risk of 

dissolution in low pH conditions, yet each of these groups increased in abundance in 

response to acidification. When the saturation state of calcite or aragonite (0) falls below 

1.0 calcium carbonate shell or skeleton dissolution will occur (Fabry et al. 2008), although 

evidence suggests that external organic layers can protect shells and skeletons against this 

(Rodolfo-Metalpa et al. 2011). Some species may up-regUlate calcification rates in 

response to acidification in order to offset rates of dissolution (Ries et al. 2009), although 

this may be energetically costly (Portner et at. 2004), leading to a decrease in fitness and 
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survival (Wood et at. 2008). Some species of molluscs have been observed to be tolerant to 

low pH but at the cost of loss of induced defences (Bibby et at. 2007) or immune response 

(Bibby et at. 2008). 

Although it was estimated that calcite and aragonite saturation states fell below 1.0 

between 10-30% of the time at acidified stations at the Castello Aragonese, evidence of 

dissolution was only visually apparent for one species: the gastropod Columbella rustica. 

A loss of periostracum (external organic layer) was also noticeable, although this and shell 

dissolution did not appear to negatively affect this species and the mean number of 

individuals collected in acidified stations were much greater than in control stations 

(7.7±1.9 and 1.3±0.5, respectively). All species from the genus Rissoa increased in 

abundance in response to acidification. Tolerance to OA in this species may be because 

they produce a mucous layer which may protect their shell from dissolution (F. Patti, pers. 

comm.). Increases in the abundance of these species are likely to be due to the indirect 

effects of acidification. Although abundance of molluscs increased, gastropod diversity 

and evenness decreased, whilst a reduction in the number of species of bivalves was 

observed in response to low pH suggesting that this group will suffer some detrimental 

effects in response to acidification. 

Two groups of taxa which appeared extremely robust to acidification are amphipods and 

polychaetes. Some of the species of polychaete that occur at these vents have been shown 

to be tolerant to low pH due to physiological acclimation and adaptation (Calosi et at. in 

press). Amphipod abundance and richness and polychaete abundance increased in response 

to acidification, whilst no negative effects on diversity or evenness were observed for 

either of these groups. Two OTUs from each of these groups of taxa decreased in response 

to acidification, although reasons for these decreases are uncertain. A decrease in the 
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abundance of polychaetes from the family Dorvilleidae (dominated by the species 

Protodorvillea kefersteini) is surprising, as this group is known to thrive in less favourable 

marine environments such as methane seeps (Levin et al. 2003), hydrothermal vents (Van 

Dover et al. 1988) and highly polluted sediments (Bailey-Brock et al. 2001). 

Whilst the effects of OA have been demonstrated on individuals at the physiological level 

(e.g. Bibby et al. 2008; Calosi et al. 2009; Saphorster et al. 2009; Dupont and Thorndyke 

2012; Calosi et al. inpress), impacts ofOA on marine communities will be more complex 

than direct impacts of changes in carbonate chemistry alone. Indirect effects of changes in 

biotic interactions (e.g. competition and predation) or habitat characteristics (e.g. seagrass 

density and canopy features) will be important in structuring invertebrate communities 

(Russell et al. 2012). A general pattern of community homogeneity/simplification, and 

reduced spatial variability was experimentally demonstrated recently by Kroeker et al. 

(2013a; 2013b) on the benthic rocky reef community in response to vent induced 

acidification, considering both artificial and natural substrata. Whilst species richness 

remained high in acidified stations in this study, multivariate dispersion between samples 

decreased, suggesting that invertebrate samples were more similar to each other in 

acidified than control stations. 

Invertebrate abundance showed a positive, although weak, association to seagrass density, 

similar to previous studies (Bostrom and Bonsdorff 2000; Bedini et al. 2011), and no 

relationship was found for species richness. Increases in shoot density increase habitat 

heterogeneity and niche availability (Orth et al. 1984), whilst providing an increase in 

primary production of the seagrass and associated epiphytes (Van Montfrans et al. 1984). 

Although species richness of some groups of pH tolerant taxa, such as amphipods, may 

respond to this increase in density, the loss of species susceptible to low pH, such as 
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bivalves, decapods and isopods, may cancel out any increase in species richness in 

response to shoot density. Surprisingly, diversity decreased with an increase in shoot 

density. A significant correlation between pH and shoot density exists (see Chapter 5) so it 

is suspected that this decrease in diversity is in response to a decrease in pH rather than the 

indirect effect of an increase in shoot density. Similar to results of Sanchez-Jerez (2000) 

we found that amphipod abundance showed a significant positive relationship with P. 

oceanica shoot density whilst decapod abundance was independent of density. Similarly, 

Mazzella et al. (1989) found that the abundance of amphipods and molluscs increased with 

increasing shoot density. The taxa that showed a positive relationship to shoot density 

during this study were: amphipods, gastropods, bivalves, pycnogonids and ophiuroids. 

Although polychaetes increased in response to acidification, no relationship was found 

between this group of taxa and shoot density. An increase in shoot density was not the only 

change in sea grass structure. A decrease in leaf length in acidified stations was observed in 

summer. As discussed, this may have lead to the decrease in abundance of decapods 

observed in July. Although not measured, leaf biomass is thought to be higher acidified 

than control stations in March and November (due to increased density in acidified stations 

and equal canopy height during these months) but may be equal to or lower than control 

stations in July (due to increased density in acidified stations but reduced canopy height 

during July; see Chapter 3). In acidified stations, this may lead to a decrease in habitat 

availability for species associated with the leaf in the summer months, whilst species 

associated with the rhizomes will benefit from increased habitat complexity throughout the 

year. 

Kroeker et al. (2011 b) observed a simplification of the trophic structure in response to 

acidification through a reduction in trophic groups. We did not observe this in P. oceanica, 

although, similar to the rocky subtidal (Kroeker et al. 20 11 b), there was a notable decrease 
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tn the proportion of carnivores, in comparison to other trophic groups (discussed in 

Chapter 5). Primary consumers increased dramatically, which may be due to a combination 

of both a decrease in top-down and bottom-up control. For example a reduction in species 

that regulate macrobenthic taxa could lead to sharp increases in the abundances of these 

populations. Carnivorous decapods (Nelson 1981) and polychaetes from the family 

Hesionidae (Shaffer 1979; Oug 1980) both feed on polychaetes and small crustaceans. The 

number of carnivorous decapods decreased from 766 individuals collected in control 

stations to 166 in acidified stations, whilst the number of Hesionidae polychaetes 

decreased from 165 individuals collected in control stations to 74 in acidified stations. This 

may at least partially explain the increase in primary consumers, such as many species of 

amphipods and small polychaetes. Secondly, increases in shoot density may lead may lead 

to an increase in abundance of palatable, non-calcareous epiphytic algae (Porzio et al. 

2011), or other benefits such as protection from predators. Mesograzers are important in 

controlling epiphytic algal cover in seagrass beds, allowing increased light penetration and 

enhancing leaf survival (Jernakoff and Nielsen 1997). Alsterberg et al. (2013) suggest that 

in the absence of mesograzers the effects of ocean acidification and warming could pose a 

threat to seagrasses. These results show that the majority of species of meso grazers are 

robust and even thrive in response to acidification. 

Of the primary consumers, only herbivore/detritivores decreased in abundance in response 

to acidification. As both herbivores and detritivores increased in response to acidification it 

is suggested that this decrease is due to a physiological intolerance to low pH, rather than a 

loss of food items. An increase in the abundance of omnivores is often observed in stressed 

communities (Polis and Strong 1996; Kroeker et al. 20 11 b). An increase in the number of 

omnivores was observed during this study, although proportionally there was no increase 

in comparison to other trophic groups. 
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Many variables measured during this study were dependent on the month sampled. 

Differences in community and trophic structure and abundance between pH zones were 

lowest in March, whilst differences in diversity and evenness were most prominent. 

Conversely, differences in abundance, community and trophic structure were high in 

November, whilst there was no difference in diversity or evenness between pH zones in 

this month. The temporal differences found in community dynamics, during this study, 

may be due to a number of variables such as: 1) lifecycJe of the species, 2) canopy height, 

and 3) epiphyte load. Also, during windy periods, pH in acidified zones may rise, through 

increased mixing with ambient seawater, leading to a lesser degree of acidification (and 

therefore the effects of acidification) in months with harsher weather conditions (i.e. 

March). Most studies on invertebrate populations in response to acidification at the 

Castello Aragonese have only focussed on a single sampling period (Hall-Spencer et at. 

2008; Cigliano et at. 2010; Kroeker et at. 20 11 b), although Ricevuto et al. (2012) showed 

that the larval settlement of different groups of invertebrates varied over a temporal time 

scale. This highlights the importance of temporal studies in examining the impacts of 

acidification at the community level. 

The effect of acidification on the invertebrates found in P. oceanica would be expected to 

be more negative, due to the highly calcified nature of many of them. Very few species 

appeared to exhibit negative effects, in terms of their abundance, in acidified zones. P. 

oceanica is a net autotrophic system (Barron et al. 2006), and the high levels of 

photosynthesis may provide a refuge from acidification. pH levels were measured 10 cm 

above the canopy, so further analysis of pH within the different canopy compartments is 

suggested. Seagrass diffusion boundary layers can be >2 mm thick, and pH over 1 unit 

higher within the layer, than the surrounding seawater (Jones et at. 2000). Even if pH 
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levels are only raised within the boundary layer, this may provide an advantage to species 

tightly associated to the leaf, and explain why heavily calcified organisms (such as 

gastropods), were able to persist in low pH conditions. 

These results suggest that primary consumers (that feed on either plant or detrital material) 

may be the winners in the case of ocean acidification, as their numbers more than doubled 

in response to acidification. Whilst assemblage structure changes in acidified stations, no 

ecological tipping point was observed, and negative impacts of acidification were species 

specific (Garrard et al. 2013) and only observed for a few species, whilst many thrived in 

low pH conditions. Results contrast with previous findings from in situ studies (Wootton et 

al. 2008; Cigliano et al. 2010; Kroeker et al. 20 11 b), reviews (Fabry et al. 2008; Doney et 

al. 2009b), and meta-analyses (Hendriks et al. 2010; Kroeker et al. 2010) that show that 

calcifying taxa will generally be more susceptible to OA than less/non-calcified taxa. 

Surprisingly, heavily calcified groups of taxa showed a positive response to acidification 

(gastropods and bivalves), whilst less calcified taxa (isopods) exhibited more negative 

responses. This suggests that indirect effects of OA may be important in structuring marine 

communities and highlights the fact that the indirect effects could provide advantages or 

disadvantages to marine organisms. 

Previous studies have shown that the response of calcifying species to a decrease in pH are 

varied CRies et al. 2009), and life-history strategy may play an important role in 

determining a species' ability to tolerate the associated changes to carbonate chemistry 

(Widdecombe and Spicer 2008). This study builds on previous research by suggesting that 

habitat type may in fact play an important role in determining future invertebrate 

community structures. The highly productive nature of P. oceanica may provide protection 

from some changes to carbonate chemistry, whilst indirect effects of changes to canopy 
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structure can either positively or negatively affect different taxa, highlighting the 

importance of elucidating the indirect effects of OA, if we are going to deliver information 

at the ecosystem level. These results may give some cause for relief that, at least in P. 

oceanica meadows, invertebrate communities will not collapse under future changes in 

carbonate chemistry, and suggest that this highly productive, nearshore habitat may 

provide refuge to its associated communities from future OA. 
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s. Comparison of the effect of 
acidification on benthic invertebrate 
communities between rocky reef and 
Posidonia oceanica habitats 
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5.1 Introduction 

Ocean acidification (OA) and associated changes in ocean carbonate chemistry, as a result 

of increased CO2 in the atmosphere, are going to affect marine habitats globally (Doney et 

al. 2009b), although the intensity at which acidification is experienced will vary, dependent 

on a number of different parameters (Garrard et al. 2013). Polar and sub-polar seas are 

expected to feel the effects of ocean acidification sooner, as C02 dissolves more readily in 

cold, low salinity waters, plus aragonite saturation horizons are shoaling in high latitude 

seas (Orr et al. 2005; Fabry et al. 2009). Likewise, areas of seasonal upwelling of high 

dissolved inorganic carbon (DIC) waters, such as along the western coast of the USA, will 

be more at risk, due to an increase in spatial extent and decrease in depth of upwelling, as 

the oceans continue to absorb C02 (Feely et al. 2008). Seasonal differences in pH, 

particularly in high latitude, nearshore waters (Blackford and Gilbert 2007), may 

exacerbate the impacts of OA (McNeil and Matear 2008). 

The regional effects of OA will vary with habitat type (Halpern et al. 2008). For example, 

although deep oceanic waters should experience fewer changes in pH than surface waters 

in the near future (Caldeira and Wickett 2003), deep sea organisms may be extremely 

sensitive to even mild changes in pH (Seibel and Walsh 2001). Similarly, although tropical 

waters have much higher carbonate saturation levels than high latitude seas (Orr et al. 

2005), and should be more favourable to calcification than polar seas, in the face of 

acidification (Fabry et al. 2008), coral reefs will most likely be one of the most severely 

impacted habits as the oceans acidify (Hoegh-Guldberg et al. 2007). 

This chapter provides the unique opportunity to compare the effect of acidification on 

benthic invertebrate assemblages in two different habitat types. Effects of OA will not only 

occur through the direct impact on individual species, but will be caused by indirect effects 
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of changes in environmental and biotic interactions (Russell et al. 2012). Changes in top 

down and bottom up interactions may favour some species, whilst exacerbating the effects 

of OA on others (Asnaghi et al. 20l3). Natural CO2 vents can provide useful sites to 

observe the long term, ecosystem level effects of OA (Barry et al. 2010). At the Castello 

Aragonese, Ischia, (Tyrrhenian Sea, Italy), two different habitat types, rocky reef and the 

seagrass Posidonia oceanica, can be found exposed to similar changes in pH. Data on 

invertebrate assemblages in the rocky reef (Kroeker et al. 2011 b) can be compared with 

data on invertebrate assemblages in P. oceanica (Chapter 3) in control and acidified zones 

with similar pH, to determine whether the effect of acidification is more prominent in one 

habitat than the other. 

This is the first time that a comparison of habitat types exposed to similar acidification has 

occurred, and is particularly pertinent as, due to the close proximity of acidified and 

control stations in each habitat (Figure 5.1), each habitat is subject to the same 

environmental conditions (sea temperature, hydrodynamic forces), therefore changes in 

assemblage dynamics should be solely due to direct and indirect effects of changes in pH. 

5.2 Methods 

Invertebrate samples were collected from control and acidified stations in P. oceanica at 

the north and south of the Castello Aragonese in March, July and November 2011 (Chapter 

4), whilst invertebrate samples were collected from ambient, low pH and extremely low 

pH stations at the north and south of the Castello Aragonese in the rocky reef habitat in 

November 2008 (Kroeker et al. 20 11 b). Comparisons of pH and other carbonate 

parameters observed in P. oceanica in 2011 (Chapter 3) and the rocky reef in 2008 

(Kroeker et al. 20 11 b) showed that carbonate chemistry at control stations in P. oceanica 

was equivalent to that of ambient stations in rocky reef habitat, whilst carbonate chemistry 
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at acidified stations was comparable to values observed in the low pH stations, allowing 

comparisons to be made between the effects of acidification on invertebrate community 

composition in the two different habitats (Table 5.1). 

Table 5.1 Comparison of mean (± SD) carbonate chemistry parameters between control/ambient and 

acidified/low pH station in P. oceanica in 20 II and in rocky reef habitat in 20 I 0 (Kroeker et al. 2011 b). 

Site 
North control! ambient 

TA (Jlmol/kg) 
pH 

peo2 

ncALCIl'E 

nARAGONITE 

North acidified/ low 
T A (Jlmol/kg) 

pH 
peo2 

ncALClTE 

nARAGONITE 

South control! ambient 
T A (Jlmollkg) 

pH 
peo2 

nCALCITE 

nARAGONITE 

South acidified/low 
T A (Jlmol/kg) 

pH 
peo2 

OcALCITE 

nARAGONITE 

Posidonia oceanica 

2,536 ± 15 
8.1 ± 0.1 
509 ± 54 

5.04 ± 0.32 
3.30 ± 0.21 

2,567 ± 16 
7.8 ± 0.3 

2,158 ± 2,508 
3.37 ± 1.81 
2.14 ± 1.18 

2,551 ± 8 
8.1 ± 0.04 
504 ± 68 

5.15±0.44 
3.37 ± 0.29 

2,539 ± 12 
7.8 ± 0.4 

1,614 ± 1,861 
3.23 ± 1.51 
2.11 ± 0.99 

Rocky reef 

2,563 ±3 
8.0± 0.1 

567 ± 100 
4.75 ± 0.53 
3.13 ± 0.35 

2,560 ±7 
7.8 ± 0.2 

1,075 ± 943 
3.52 ± 1.11 
2.32 ± 0.73 

2,563 ±2 
8.1 ± 0.1 

440 ± 192 
5.11 ± 0.67 

3.33 ± 0.44 

2,560 ±7 
7.8 ± 0.3 

1,581 ± 2,711 
3.00 ± 1.31 
1.95 ± 0.85 

Control/ambient stations and acidified/low pH stations will hereinafter be referred to as 

control and acidified stations. These stations were located in rocky reef and P. oceanica 

habitat at the north and south of the Castello Aragonese (Fig. 5.1). P. oceanica stations 
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were located at a depth of 2.5 - 3.5 m, whilst rocky reef stations were located at a depth of 

1 - 1.5 m. 

N 

T 

Posidonia oceanica, 

D Vents 

• Sea rass station 

• Rocky reef station 

Control 

• 

castello AralOnese 

Control 

Figure 5.1 Area of the study site (Castello Aragonese), with positions of control and acidified sampling 

stations, in seagrass and rocky reef habitat, at the north and south of the Castello. 

Invertebrate samples were collected by use of an airlift sampler in both habitats (rocky reef 

and P. oceanica), although times and methods of collection varied. In November 2008 

invertebrate samples (N = 4) were collected from each station in the rocky reef by means 

of an airlift sampler, attached to a 150llm collection net, placed over an area of 20 x 20 cm 

for - 30 seconds, and final collection of invertebrates by scraping the algae from the reef 

with a chisel and hammer (Kroeker et at. 20 II b). Invertebrate samples (N = 4) were 

collected from each station in P. oceanica in March, July and November 20 II by means of 
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an airlift sampler attached to a 400f.lm collection net, placed over an area of 40 x 40 cm for 

- 2 minutes (Chapter 4). In both studies samples were fixed in 4% formalin for 

preservation and subsequently stored in 70% ethanol prior to sorting and identification. 

Samples were examined under a dissecting microscope and organisms separated from the 

sediment, algae and detritus. Gastropods, bivalves, tanaids, isopods, amphipods, decapods 

and polychaetes were identified by the same specialized taxonomists (researchers at the 

SZN) to the lowest taxonomical resolution possible. 

Data for gastropods, bivalves, decapods, amphipods, tanaids, isopods and polychaetes were 

compared between habitats, as these were the most abundant taxonomic groups, and were 

identified to family and lower taxonomic levels. Data was aggregated to family level, as 

many families were common to both habitats. This also removed any taxonomic 

discrepancies between species identification and level of taxonomic identification. For 

example, most amphipods were identified to the species level in the seagrass, but to higher 

levels for the rocky reef, whilst the reverse was true for polychaetes. As different sampling 

methods were used, quantitative comparisons of abundances could not be made, although 

both are considered minimal representative areas for the respective habitat (Bianchi et al. 

2004; Buia et al. 2004). Relative (%) change in total abundance and abundance of each 

taxonomic group between control and acidified zones was calculated for each habitat 

(seagrass and rocky reef) for November and for seagrass data pooled across all months. 

F or multivariate analysis, only data from the rocky reef in November 2008 (N = 16) and P. 

oceanica in November 2011 (N = 16) were used, to eliminate any temporal differences. A 

non-metric multidimensional scaling (nMDS) ordination of Bray-Curtis similarity matrices 

on square root transformed family abundance data was used to compare differences in 

community structure between control and acidified stations in each habitat. Data was 
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square root transformed to reduce the influence of common families. Similarly, differences 

in community compositions were observed through an nMDS ordination of Bray-Curtis 

similarity matrices on untransformed family presence/absence data. Two-factor 

PERMANOV As were used to test for significant differences between site (fixed factor: 

north and south) and pH (fixed factor: control and acidified) for each habitat. Differences 

between habitats could not be statistically compared due to unequal sampling methods. 

PERMANOV A analyses used Bray Curtis similarity matrix applied to square root 

transformed abundance data (for community structure) and Bray Curtis similarity matrix 

applied to presence/absence data (for community structure). All PERMANOVA analyses 

used Type III SS and 9,999 unrestricted permutations. Where significant interactions 

occurred between site and pH, pairwise t-tests were run in PERMANOV A to test for 

differences in community structure/composition between pH zones at the north and south 

sides of the Castello Aragonese. 

The response of each family to acidification in November for each habitat was assessed by 

visual inspection of mean abundances between control and acidified zones using bar 

graphs. Where standard errors did not overlap, families were either classified as increasing 

or decreasing in abundance in response to acidification. Rare families were classified as 

such and excluded from inspection. Statistical significance was not tested for because of 

low power and the large number of comparisons (Kroeker et al. 20 11 b). Where families 

were not rare or absent from one of the habitats, the response in each habitat was evaluated 

to determine whether acidification lead to similar abundance responses for both habitats. 

167 



5.3 Results 

5.3.1 Relative changes 

Invertebrates from the mam benthic taxa (gastropods, bivalves, decapods, amphipods, 

tanaids, isopods and polychaetes) representing 139 different taxonomic families were 

collected from control and acidified zones in the rocky reef and Posidonia oceanica habitat 

around the Castello Aragonese in November. Of these, 67 were common to both habitats, 

IS were sole ly collected from the rocky reef and 58 collected solely from P. oceanica 

habitat. 
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Figure 5.2 Relative change in abundance (%) of each taxonomic group in response to acidification in the 

rocky reef habitat in ovember, and in P. oceanica habitat in November, and pooled for all months (March, 

July and ovember). * = significant difference between pH zones (p < 0.05), ** significant ' site x pH' 

interaction (p < 0.05) . 
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In the seagrass, the abundance of amphipods increased both for November (F 1,12 = 51.03, P 

< 0.001) and across all months (F1,36 = 44.87, P < 0.001). A similar increase was observed 

for polychaetes in November (F 1,12 = 6.67, P = 0.024) and across all months (F 1,36 = 4.98, P 

= 0.032). A 'site x pH' interaction was observed for gastropods in November (F1,I2 = 

13.07, P = 0.004) and for all months (FI,36 = 7.89, P = 0.008), as an increase in gastropod 

abundance was only observed on the south side (Tukey HSD: p = 0.009 and p < 0.001, 

respectively). A similar observation occurred for the abundance of bivalves, as a 'site x 

pH' interaction was found for November (F1,I2 = 9.18, P = 0.010), and across all months 

(FI,36 :::; 8.27, p :::; 0.007) in the seagrass (Tukey HSD: p :::; 0.016 and p = 0.007, 

respectively). The abundance of de cap ods (F1,12 = 0.14, P = 0.714), tanaids (F1,12 = 3.58, P 

= 0.083), and isopods (F 1,12 = 0.002, P = 0.970) did not differ between pH zones in the 

seagrass in November, although when data was pooled for all months, decapod abundance 

decreased in response to acidification (F1,36 = 6.30, P = 0.017). Many of the taxonomic 

groups that increased in abundance in response to acidification in the Posidonia oceanica 

showed a similar (although non-significant) increase in the rocky reef habitat (Fig. 5.2). 

Similarly, decapods abundance decreased in response to acidification in the rocky reef 

(from 271 in control stations to 102 in acidified stations), although this decrease was not 

significant. No groups of taxa showed a significant difference in abundance between mean 

pH 8.1 and 7.8 in the rocky reef. Similarly the total invertebrate abundance did not differ 

between pH zones in the rocky reef (F 1,12 = 1.63, P = 0.225), whilst a significant increase in 

the abundance of P. oceanica-associated invertebrates was observed in acidified zones 

both in November (F1,12 :::; 39.60, p < 0.001), and across all months (FI,36 = 36.67, P < 

0.001). 
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Figure 5.3 Proportion of each taxonomic group collected at control and acidified stations in Posidonia 

oceanica and rocky reef habitat at the Castello Aragonese. 

In November the proportions of each group of taxa within the rocky reef and P. oceanica 

habitats were different. The rocky reef was dominated by polychaetes, whilst P. oceanica 

was dominated by amphipods (Fig. 5.3). The proportion of polychaetes decreased in both 

habitats, from 8 to 6% in P. oceanica and from 58 to 44% in rocky reef habitat. The 

proportion of amphipods increased in each habitat, from 15 to 28% in rocky reef and from 

41 to 55% in Posidonia oceanica. The proportion of decapods and isopods decreased in 

both habitats. 

5.3.2 Multivariate comparisons 

Invertebrate community structure In Posidonia oceanica differed between pH zones, 

although a significant 'site x pH' interaction was observed (Table 5.2). Pair-wise tests 

showed that differences in community structure between pH zones in P. oceanica were 

significant for both the south (Pair-wise test: t = 2.46, P = 0.023) and the north (Pair-wise 
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test: t = 2.06, P = 0.032) side of the Castello Aragonese, suggesting that this interaction 

was due to greater differences in structure occurring between control and acidified zones in 

the south (Fig. 5.4a). Acidification significantly affected invertebrate community structure 

in the rocky reef (Table 5.2). Invertebrate community composition showed significant 

differences between control and acidified zones in both Posidonia oceanica and the rocky 

reef (Table 5.2), although a 'site x pH' interaction was observed for community 

composition in the rocky reef, as significant differences between pH zones were observed 

for the south (Pair-wise test: t = 1.68, P = 0.042), but not the north (Pair-wise test: t = 1.34, 

p = 0.09). Multivariate dispersion in community structure and composition was more 

variable between rocky reef invertebrate samples than between P. oceanica invertebrate 

samples (Fig 5.4). 

Table 5.2 Results of community analysis for the effects of acidification on invertebrate populations collected 

on the rocky reef and in the Posidonia oceanica at the Castello Aragonese. Community structure and 

community composition were analysed using a two-factor PERMANOV A of site (north and south: fixed 

factor), and pH (control and acidified: fixed factor) . Significant results are highlighted in red. 

Rocky reef Posidonia oceanica 
df Pseudo-F PPERM Pseudo-F PPERM 

Community structure 
Site 3.65 0.001 3.87 0.001 
pH 2.28 0.026 8.21 0.001 
Site x pH 1.70 0.058 2.24 0.006 
Community composition 
Site 2.47 0.009 2.71 0.001 
pH 2.67 0.022 3.28 0.002 
Site x pH 1.78 0.049 1.04 0.435 
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Figure 5.4 MDS ordination of invertebrate a) community structure and b) commun ity composition of 

invertebrate assemblages in rocky reef and Posidonia oceanica habitat at diffe rent si tes (south and north) and 

pH zones (control and acidified). SC = south contro l, C = north control , SA = south ac idified, NA = north 

acidified . 

5.3.3 Compari on o/responses between habitats 

The response of diffe rent taxonomic groups to acidification was dependant on habitat type. 

A greater percentage of families decreased in response to acidification in the rocky reef, 

whilst a greater percentage of families increased in response to acidification in P. 

oceanica, although this was not observed across all taxa (Table 5.3). The abundance of 

many fami lies of decapods (23 .5 and 50%), isopods ( 18% and 71.5%) and polychaetes 

(14% and 33%) decreased in both P. oceanica and rocky reef habitat in response to 
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acidification, whilst the abundance of amphipod families increased in response to 

acidification in both habitats (53.5% and 25% respectively). 

Table 5.3 The number and percentage (given in brackets) of families that decreased, showed no trend, 

increased or were rare (present in < 4 samples) in P. oceanica (November 2011) and the rocky reef 

(November 2008) for each taxonomic group. The total number of families for each taxonomic group, 

collected in each habitat is indicated. 

Decreased No trend Increased Rare Total 

Gastropod 
P. oceanica 5 (19) 8 (31) 3 (11.5) 10 (38.5) 26 
Rocky reef 1 (8.5) 5 (41.5) 1 (8.5) 5 (41.5) 12 

Bivalve 
P. oceanica 2 (16.5) 3 (25) 1 (8.5) 6 (50) 12 
Rocky reef 1 (11) 3 (33.5) 1 (11) 4 (44.5) 9 

Decapod 
P. oceanica 4 (23.5) 3 (17.5) 1 (6) 9 (53) 17 
Rocky reef 5 (50) 1 (10) 0(0) 4 (40) 10 

Amphipod P. oceanica 0(0) 8 (28.5) 15 (53.5) 5 (18) 28 
Rocky reef 1 (5) 9 (45) 5 (25) 5 (25) 8 

Tanaid 
P. oceanica 0(0) 1 (25) 2 (50) 1 (25) 4 
Rocky reef 1 (20) 240) 1 (20) 1 (20) 5 

Isopod P. oceanica 2 (18) 4 (36.5) 2 (18) 3 (27.5) 11 
Rocky reef 5 (71.5) 2 (28.5) 0(0) 0(0) 7 

Polychaete 
P. oceanica 4(14.5) 10(35.5) 5 (18) 9 (32) 28 
Rocky reef 6 (33.5) 8 (44.5) 0(0) 4 (22) 18 

Total P. oceanica 17(13.5) 37 (29.5) 29 (23) 43 (34) 126 
Rock~ reef 20 {24.52 30 p6.52 8 {I02 24 {292 82 

Comparisons of the responses of individual families to acidification revealed that although 

a majority exhibited the same response in both habitats: 7 increased, 11 showed no trend 

and 6 decreased. Nine families increased in abundance in P. oceanica in response to 

acidification but showed no trend in reef habitat, whilst only one family increased in 

abundance on the reef but showed no trend in P. oceanica. Six families decreased in 

abundance in response to acidification on the reef but showed no trend in P. oceanica 
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whilst the opposite was observed for only two families. Four families increased in P. 

oceanica in response to acidification, but decreased in the reef habitat (Fig. 5.5). The effect 

of acidification at both habitats could not be compared for 93 families as they were either 

rare or absent in either P.oceanica or the rocky reef. 

Increase in both habitats 

Increase in seagrass . 
Increase in rocky reef 

. -
No difference 

Decrease in seagrass 
-t 

Decrease in rocky reef 

Decrease in both habitats 

Increase in seagrass/ decrease in reef 

Increase in reef/ decrease in seagrass 1 . 
0 2 

. 
4 

. 
6 8 

No. of families 

10 12 

Figure 5.5 Comparison of the individual response of each family to acidification in rocky reef and P. 

oceanica habitats. Families which were either rare or absent in either habitat (93) were excluded. 

5.4 Discussion 

Comparison of invertebrate communities between control and acidified stations show that 

acidification lead to similar responses in both rocky reef and P. oceanica habitats. The 

abundance of amphipods, gastropods, bivalves and tanaids were greater, and the abundance 

of decapods and isopods less in acidified stations in both habitats. The only taxa which 

showed a differential response between rocky reef and P. oceanica habitat was 
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polychaetes. Whilst the number of polychaetes increased in acidified stations in P. 

oceanica, a decrease was observed on the rocky reef in response to acidification. 

Though a similar trend was observed between habitats, more negative effects of 

acidification were apparent in the rocky reef than P. oceanica. The abundance of 25% of 

common families decreased in response to acidification in the rocky reef, although this 

decrease was not reflected in the number of individuals collected between pH zones (4,688 

and 4,506, respectively). This is most likely due to the increase in abundance of a few 

'acid-tolerant' taxa (10% of families increased in abundance). In comparison, only 13.5% 

of families suffered a decrease in response to ,acidification in P. oceanica, whilst 23% 

experienced an increase in abundance. This lead to more than double the number of 

invertebrates collected in acidified in comparison to control stations (5,277 and 11 ,651, 

respectively) in P. oceanica. Some families decreased in response to acidification in the 

rocky reef, whilst an increase in abundance was observed in P. oceanica, although this 

may be due to both 'tolerant' and 'sensitive' species occurring within the same families. 

The effect of short-term reduced pH experiments has shown a high degree of variation in 

species' abilities to tolerate a drop in pH (Garrard et at. 2013). Meta-analytic methods have 

provided useful in attempting to show a biological trend, although these have led to 

debates regarding the extent to which OA may impact marine organisms (Dupont et at. 

20 lOa; Hendriks and Duarte 2010; Hendriks et at. 2010; Kroeker et at. 20 I 0; Andersson 

and Mackenzie 2011; Kroeker et at. 2011 a). It is generally accepted that highly calcified 

groups of taxa, such as molluscs, more often exhibit negative responses to low pH 

(Kleypas et al. 2006; Fabry et at. 2008; Doney et at. 2009a; Kroeker et at. 2010), whilst 

less calcified (e.g. crustaceans) or non-calcified groups of taxa (e.g. anemones), are more 

resilient to, or even benefit from, a decrease in pH (Kroeker et at. 2010; Suggett et at. 
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2012). For example, in a multi-species experiment, calcification rates in seven out of nine 

species of molluscs decreased with a decrease in aragonite saturation state, whilst 

calcification in all three species of decapods increased (Ries et al. 2009). 

At pH levels predicted for the end of this century (-7.8: Caldeira and Wickett 2005), 

laboratory experiments show many invertebrate species to be negatively impacted 

(Kurihara 2008). Rather than support this, these results suggest that the majority of benthic 

invertebrates, including those that are heavily calcified, will be resilient to future levels of 

OA, at least in these shallow water, biogenic, coastal habitats. Of the 46 families which 

commonly occurred in both P. oceanica and the rocky reef, only five decreased in 

abundance in acidified zones in both habitats: hermit crabs from the families Diogenidae 

and Paguridae, isopods from the family Joeropsididae, and polychaetes from the families 

Dorvilleidae, Ophelidae and Serpulidae. Whilst hermit crabs are heavily calcified, both 

their exoskeleton, and their salvaged gastropod shell homes, isopods and polychaetes 

(except for Serpulidea) show a lesser degree, or no calcification, and yet a decrease in their 

abundance in both habitats in response to acidification, suggests a possible physiological 

intolerance to acidification. No common families of gastropod or bivalves showed a 

decrease in abundance in acidified zones in both habitats. It must be taken into 

consideration that Kroeker et al. (2011 b), investigated not only the two pH stations 

mentioned here (control: pH 8.1, acidified: pH 7.8) but an extremely low pH zone (mean 

pH 7.2 and 6.6 in the north and south respectively) in the rocky reef habitat. At the 

extremely low pH both gastropods and decapods suffered an extreme population crash. 

Nearshore habitats show strong diurnal pH variability, due to community photosynthesis 

and respiration (Hofmann et al. 2011). This variation is generally stronger in shallow than 

deeper waters (Invers et al. 1997; Silva and Santos 2003; Price et al. 2012). pH within P. 
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oceanica meadows can vary between 0.15-0.7 unit diurnaIly (Frankignoulle and Disteche 

1987; Frankignoulle and Bouquegneau 1990; Invers et al. 1997), whilst similar diurnal pH 

changes (0.1-> 1.0 unit) have been recorded in other shallow-water subtidal habitats such as 

benthic macroalgal habitats (Middelboe and Hansen 2007), other species of seagrass 

(Invers et al. 1997; Silva and Santos 2003; Marba et al. 2006; Yates et al. 2007), coral reefs 

(Ohde and van Woesik 1999; Price et al. 2012; Burdett et al. 2013), and kelp forests 

(Hofmann et al. 2011). For example, if a shallow water habitat has a mean pH of 8.1, pH 

may vary by as much as between 7.6 and 8.6 throughout a 24 hour period. This high degree 

of pH variability means that organisms may be used to dealing with low pH, therefore 

organisms living in these productive coastal habitats may be more robust to changes in pH 

than previously expected. 

pH within seagrass diffusion boundary layers can be over 1 unit higher than the 

surrounding seawater (Jones et al. 2000). A similar increase in pH has been found at the 

surface of macroalgae (Cornwall et al. 2013). Increased pH at the boundary layers of 

macroalgae and seagrass may provide relief from acidification to species of invertebrates 

which closely associate with photosynthetic material, further increasing a species' ability 

to cope with ~A. 

Many groups of taxa showed a significant, and large, increase in their abundance in 

acidified zones in P. oceanica, suggesting that not only will many associated invertebrate 

species be tolerant of future OA, but indirect effects such as a decrease in predation or an 

increase in food availability, may be beneficial to some species (discussed in Chapter 4). 

This increase in abundance was not observed in the rocky reef, showing that the indirect 

effects of OA (e.g. shoot density), that lead to facilitative interactions, may be seagrass

specific. The increase in P. oceanica shoot density observed in acidified stations (Chapter 
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3), may alter competitor or predator-prey interactions (Orth et al. 1984). Invertebrate 

abundance has been shown to increase with increasing shoot density (Homziak et al. 1982; 

Bostrom and Bonsdorff 2000). This may be due to I) reduced predation efficiency (Coen 

et al. 1981), 2) increased epiphytic trophic resources (Bologna and Heck 1999), or 3) 

invertebrate selection for denser meadows (Bell and Westoby 1986a). A second 

consideration is that the increase in abundance may be partially due to a loss of top down 

control, as there was a significant decrease in predatory decapods (Chapter 4). Whilst 

many taxa on the rocky reef showed similar changes in abundance in response to 

acidification, polychaetes showed a differential response between habitats. They decreased 

in the rocky reef and increased in P. oceanica. On the rocky reef, benthic community 

structure enters a phase-shift towards a community dominated by fleshy turf algae in 

response to OA, with a loss of calcifying seaweeds, filter feeders and sponges (Kroeker et 

al. 2012, Kroeker et al. 2013). This shift in habitat structure may lead to negative impacts 

for polychaetes. 

These results suggest that, in highly productive, shallow-water habitats the majority of 

benthic invertebrates will be robust to changes in pH expected for the end of this century, 

although this may only hold true for habitats formed by non-calcifying photoautotrophs, 

such as seagrass beds, kelp forests and algal turfs. Calcifying ecosystem engineers such as 

corals are negatively affected by acidification (Fabricius et al. 2011), which is likely to 

lead to negative impacts on the associated reef community. Tolerance to changes in pH 

may be due to their daily exposure to pH changes, as photosynthesis/respiration rates 

change, or due to localised relief from acidification through high photosynthetic activity 

(Hendriks et al. 2013). An increase in seagrass density in response to low pH may actually 

provide an advantage to many species of associated invertebrate (Orth et al. 1984). 

178 



It is suggested that loss of net autotrophic status of seagrass meadows may lead to a loss of 

the buffering capacity of seagrass against future acidification. Whilst healthy seagrass beds 

are generally net autotrophic (Murray and Wetzel 1987; Unsworth et al. 2012), they can 

become net heterotrophic through anthropogenic and climatic stresses such as fish farming 

(Apostolaki et al. 2011) or extreme sea surface temperatures (Marsh Jr et al. 1986). Rates 

of sea grass decline have accelerated to 7% globally, per annum, leading to a loss of29% of 

areal extent since seagrass records began in the 1800s (Waycott et al. 2009). Although in 

some areas seagrass extent is increasing, this increase is small in comparison to the areas 

lost globally (Waycott et al. 2009). In order to mitigate impacts of future changes in 

carbonate chemistry, it is important that highly productive coastal habitats such as seagrass 

beds are conserved. 
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6. Acidification increases grazing 
pressure of a key herbivore on 
Posidonia oceanica at natural C02 
vents 
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6.1 Introduction 

Anthropogenic release of C02 has led to the oceans acidifying at a much faster scale than 

has been recorded over the past 250 million years (Ridgwell and Schmidt 2010), posing 

possibly one of the greatest anthropogenic threats to marine ecosystems (Halpern et al. 

2008). For this reason, a great deal of research has focused on ocean acidification (OA) so 

that we may gain a comprehensive understanding of this threat. Further general 

information on OA can be found in Chapter 1. The majority of OA research focuses on the 

impacts of acidification on physiological processes such as calcification (Ries et al. 2009), 

growth (Gooding et al. 2009), metabolic rate (Ellis et al. 2009), and larval development 

(Arnold et al. 2009; Clark et al. 2009) of specific species; however the information on the 

effect of OA on species interactions, food webs and ecosystems is limited. 

There is evidence that predator-prey interactions will be altered under OA through changes 

in the abundance of predator or prey species (such as a decline in the abundance of the 

pteropod species Limacina helicina, Lischka et at. 2011), or due to changes in defensive 

ability of prey (such as the loss of induced defences in the mollusc Littorina littorea, Bibby 

et al. 2007) or reduced activity levels of predators (such as the jumbo squid Dosidicus 

gigas, Rosa and Seibel 2008). Juvenile reef fish exposed to OA conditions suffer greater 

predator-related mortality (Munday et at. 2010; Ferrari et at. 2011a). A loss of their ability 

to sense predatory olfactory cues has been shown (Munday et al. 2009; Dixson et al. 2010; 

Munday et al. 2010), which may lead to a loss of predator-avoidance measures. 

Alongside impacts on fish and invertebrates, community composition of primary producers 

will change under future OA conditions (Wootton et al. 2008; Porzio et al. 2011; Kroeker 

et al. 2013b), through a loss of calcifying species (Kuffner et al. 2008) or a change in 

competitive dynamics (Kroeker et al. 2013b). This will have knock-on effects for 
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herbivores. Furthermore, there is concern that some species of diatoms, which are an 

important food source for copepods, show a reduction in fatty acid composition, and 

therefore food quality, as pH declines (Rosso II et al. 2012). 

Posidonia oceanica is an important habitat forming species In the Mediterranean, 

delivering a number of ecosystem functions (Duarte 2000), whilst providing habitat for 

many organisms (reviewed in Chapter 2). P. oceanica is expected to benefit from 

increasing C02 (Chapter 3, Hall-Spencer et al. 2008), although leaf cover of calcareous 

epiphytes, particularly coralline algae, will decrease (Martin et al. 2008). P. oceanica is 

nutritionally poor, with a high C:N ratio, due to the large quantity of structural 

carbohydrates and low protein content (Lawrence et al. 1989). It produces a high quantity 

of phenolic compounds which deter grazing (Buia et al. 2004). Hence, relatively few 

species feed on the seagrass directly (Verlaque 1981; Mazzella et al. 1992). The primary 

consumers of the seagrass are the fish Sarpa salpa, the echinoderm Paracentrotus lividus, 

peracarid crustaceans and decapods (Buia et al. 2004). Peracarid crustaceans and decapods 

generally have a low impact in terms of grazing pressure and most studies focus on S. 

sa/pa and P. lividus (Pinna et al. 2009), which exert the greatest grazing pressure in beds 

<10m depth (Tomas et at. 2005c). 

Although the numbers of herbivores of P. oceanica are low, S. sa/pa and P. lividus can 

exert extremely high grazing pressure, in some cases exceeding leaf production (Prado et 

al. 2008b). This is particularly true for summer months when S. sa/pa migrate to shallow 

waters to feed (Tomas et al. 2005c). During these months S. sa/pa can be found in high 

abundances in shallow P. oceanica beds (Francour 1997), where they feed on the seagrass 

and build up reserves for reproduction, but return to deeper waters during the colder 

months (Peirano et al. 2001). In contrast P. lividus reaches its maximum consumption rates 
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during the winter (Peirano et at. 2001). Grazing by S. sa/pa shows high spatial variation 

and a high grazing pressure from these fish is not experienced in all meadows (Prado et at. 

2007b). 

Although these species feed on the seagrass itself, there is some speculation on the degree 

of seagrass carbon assimilation. Some research suggests that diets are primarily epiphyte

based for both S. salpa and P. lividus (Dauby 1993; Tomas 2004), although direct 

observations suggest that epiphytic consumption is less important for the fish Salpa sarpa 

(Tomas et at. 200Sb). 

In the naturally acidified waters surrounding the Castello Aragonese (Ischia, Italy) there 

appears to be exceedingly high grazing pressure, particularly in summer months (pers. 

obs.). An experiment was therefore designed to quantify grazing pressure in control and 

acidified zones to determine whether grazing pressure was enhanced; 1) annually and 2) 

over a temporal scale incorporating periods of high grazing for both species (P. lividus and 

S. salpa). 

One of the limitations to working in a naturally acidified system is that it can be difficult to 

determine whether interactions or changes in community composition are related to the 

direct or indirect effects of acidification (Barry et al. 2010). This said, it is possible to 

examine a range of explanatory variables to determine whether these variables are 

correlated to changes in grazing pressure. Although there is a possibility that increased 

grazing pressure of S. salpa is due to the fish being attracted to areas where the pH is 

reduced, a more likely explanation is that acidification-induced changes to the plant 

structural characteristics (Chapter 3) or changes to the associated epiphytic coverage 

(described in this chapter) increase the palatability of the seagrass blades. Changes in these 
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variables may act as an attractant or repellent to grazing, leading to indirect effects of 

acidification. If this is the case then significant correlations should be found between these 

variables and grazing pressure. Constructing a data matrix of grazing pressure and 

corresponding data on C:N ratio of the leaves, seagrass density, height of the canopy, the 

% cover of epiphytic algae and the % cover of epiphytic animals on the P. oceanica leaves 

would help to examine the variables that might show the greatest relationship to grazing 

pressure. 

6.2 Methods 

This study was conducted at the control and acidified stations at the north and south of the 

Castello Aragonese (Chapters 3, Fig. 3.1). Control and acidified stations are present in the 

same meadow, therefore S. sa/pa and P. lividus have equal opportunity to graze from both 

stations and increased grazing should be solely down to preference. pH was measured by 

collection of 10 samples sporadically between April 2011 and August 2013 (N = 320 for 

southern stations and 300 for northern stations), whilst 10 samples were collected for total 

alkalinity (TA) as a single point measurement on the 4/11111. This was considered 

sufficient, as T A has shown very little variation at sites at the Castello Aragonese between 

studies conducted at different times of the year (e.g. Hall-Spencer et al. 2008; Cigliano et 

al. 2010; Rodolfo-Metalpa et at. 2010). Methods of analysis of pH, T A and calculation of 

carbonate chemistry variables are described in section 3.2. 

The control and acidified stations used in this study at the north and south of the Castello 

Aragonese are reasonably small (-60 m2
). This size of station was defined during 

preliminary investigation of pH variation along the gradient (Chapter 1.4). Previous studies 

of macroherbivore grazing pressure have involved quantification of macroherbivore 

abundance and/or harvesting of shoots to examine them for herbivore bite marks (e.g. 
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Alcoverro et at. 1997; Tomas et at. 2005b; Tomas et at. 2005c; Prado et at. 2007b). If 

stations are to be left intact for future research then destructive research practices must be 

avoided. Sarpa sa/pa and Paracentrotus lividus leave conspicuous bite marks on the blade 

of P. oceanica leaves that can be quantified by visual analysis (Fig. 6.1), therefore an in 

situ observational study, using visual census to quantify grazing pressure, leaf and epiphyte 

characteristics was developed. Surveys of grazing pressure were conducted each year in 

June between 2011 and 2013 and further surveys in April and August of2013. Sampling in 

2013 was conducted at the beginning of each month, during times of cold water (early 

spring: April), mid water temperatures (late spring: June) and warm water (summer: 

August). This timing was adopted to determine if patterns observed for macro-herbivore 

grazing pressure were long-term trends or responses solely based on the current year, and 

to examine how grazing pressure changed from cold to warm water months. Abundances 

of P. lividus were also surveyed. Due to the small size of each station and schooling nature 

of S. sa/pa, it was not possible to obtain enough replication to quantify their abundance, 

although photographs were taken to show the high abundance of S. sa/pa that could be 

found grazing in stations. 

A B 

Figure 6.1 Bite marks of a) Paracentrotus lividus, and b) Sarpa sa/pa (From Buia et al. 2004). 
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Each station was located at a depth of2.5- 3.5 m. Mean density of P. oceanica was greater 

in acidified than control stations (Chapter 3, Fig. 3.3) with mean densities of 372 and 446 

for the north and south control respectively, whilst densities of 587 and 815 were found for 

the north and south acidified stations. Twenty four 40 x 40 cm quadrats were randomly 

placed at each station. In each quadrat the number of P. lividus was recorded. In four of the 

quadrats the intermediate and adult leaves of 7 shoots were sampled. Each of these four 

quadrats was located in each quarter of each station to ensure spatial variability within each 

station was taken into consideration (similar to sampling in Chapter 4). Juvenile and small 

intermediate leaves «10 cm) were not grazed (pers. obs.) and therefore excluded from the 

analysis. The length of the selected leaf was measured, and the % cover of algal and 

invertebrate epiphytes estimated for both sides of each leaf. The occurrence, on a 

presence/absence basis, of mechanical damage and bite marks (for each herbivore: S. 

salpa, P. lividus) was noted. Mechanical damage (fracture and loss of the leaf tip) occurs 

through abiotic factors, such as waves and currents (de los Santos et al. 2012). Bite marks 

from other species were not included as their presence was minimal «1 %). 

For each shoot the percentage of leaves with mechanical damage, bite marks of S. salpa, 

and P. lividus were calculated. Leaf length, % cover of algal and faunal epiphytes, and % 

of leaves with S. salpa and P. lividus bites and mechanical damage were analysed by 

means of a three-way GLM ANOYA. Firstly, data from June 2011, 2012 and 2013 were 

analysed to test the effects of site (fixed), acidification (fixed) and year (fixed). Secondly 

data from April, June and August 2013 were analysed to test the effects of site (fixed), 

acidification (fixed) and month (fixed). All percentage data was arcsine transformed, 

whilst leaf length was Log (X + 1) transformed to conform to the assumptions of ANOY A 

(Underwood 1997). The Kruskal-Wallis non-parametric test was used to analyse the 

abundance of P. lividus as data was highly skewed and variance not homogenous 

(Underwood 1997). Kruskal-Wallis tests analysed differences between stations, months 
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and years, and post-hoc comparisons were made by using the non-parametric multiple 

comparison test (MCT). 

To analyse relationships between S. sa/pa and P. lividus grazing pressure with P. oceanica 

variables, a data matrix was constructed using data collected between May and June 2011 

for this thesis. The percentage of leaves with S. sa/pa and P. lividus bites were considered 

against possible explanatory variables of P. oceanica condition: C:N ratio of the leaves, 

seagrass density, height of the canopy (Chapter 3), the % cover of epiphytic algae and the 

% cover of epiphytic animals on the P. oceanica leaves (this Chapter). Height of the 

canopy was chosen as an explanatory variable rather than leaf length, as the latter is likely 

to be, at least partially, dependent on the quantity of S. sa/pa bites since they feed from the 

leaf apex reducing the length of the leaf. Height of the canopy, on the other hand, is the 

longest leaf length within a 40 x 40cm quadrat, and therefore should be less susceptible to 

grazing pressure unless all leaves are grazed. High grazing pressure does not occur until 

the summer months (Tomas et al. 2005c), so this should not be an issue. Pearson's 

correlation coefficients of the explanatory variables showed multicollinearity between 

many of the variables, therefore multiple regression was not used, as it can lead to 

inaccurate model parameterization (Graham 2003). Graphical representation of data for 

grazing pressure against P. oceanica variables showed evidence linear correlations; 

therefore Pearson's correlation coefficients were carried out between P. oceanica variables 

and the percentage of leaves with S. sa/pa and P. lividus bites. Where multicollinearity 

exists between explanatory variables, principal components analysis (PCA) can be used to 

identify the linear combination of variables that account for the variations in the 

observations of explanatory variables (Graham 2003). To test which P. oceanica 

explanatory variables most closely correlated with S. sa/pa grazing, PCA was conducted 

on significant variables, using component loadings of individual variables. As cross-
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validation lead to only two principle components, and, as the first principle component 

captured the majority of variance we focussed our analysis on this component. To 

determine the strength of the relationship between S. salpa grazing and explanatory 

variables, linear regression of the proportion of leaves with S. sa/pa bites per shoot and 

PCI eigenvectors was conducted (Wootton et al. 2008). Variables were added and deleted 

in a stepwise fashion for PCA analysis until PC 1 linear regression reached maximal values. 

Statistical analyses were conducted using Statistica 8. 

6.3 Results 

6.3.1 Carbonate chemistry 

Mean pH values showed high degree of fluctuation at acidified stations (Fig. 6.2). Whilst 

mean pH values observed during 2011 at the southern acidified station were maintained 

through 2012 and 2013, the degree of acidification at the northern acidified station 

appeared to decrease over the three years. Mean pH at the southern acidified station was 

7.78 in 2011 and maintained a mean pH of 7.77 across the three years, whilst mean pH at 

the northern station was 7.82 in 2011 but increased to 7.88 across the three years. The 

southern acidified station fell below a pH of 8.0 (the value considered as being acidified) 

67% of sampling periods in 2011 and 71% of sampling periods in 2012-13, whilst the 

northern acidified station fell below a pH of 8.0 for 55% of sampling periods in 2011 and 

43% of sampling periods in 2012-13, leading to higher mean pH values. Carbonate 

chemistry was highly variable at acidified stations (Table 6.1). 
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Table 6.1 Mean ± SO seawater carbonate chemistry. Temperature (13-29°C throughout study period, mean = 

2 1.1 °C) was continuously recorded between March 20 II and August 2013 using a data logger. Salinity (37.5-

38) was a point measurement taken in May 2011. 10 pH samples were collected from each station 

periodically between April 2011 and August 2013. Total alkalinity (TA) is a point measurement taken on the 

04/1 0/11. The remaining parameters were calculated using CO2 SYS programme using the constants of Roy 

et al. (1993) and Dickson (1990) for KS04. Total alkalinity (T A) is mmol.kg-I
; pHNBs was measured using an 

NBS scale; and pC02 is Ilatm. 

North 

South 

8.3 

8.2 

8.1 

8 

:a 7.9 

7.8 

7.7 

7.6 

7.5 

Control 

Acidified 

Control 

Acidified 

North 

pH BS TA 

8.13 ± 0.05 2.54 ± 0.04 484 ± 69 4.45 ± 0.45 2.87 ± 0.29 

7.88 ± 0.36 2.57 ± 0.02 1509 ± 1906 3.27 ± 1.54 2.11 ± 1.00 

8.10±0.07 2.54±0.01 531±113 4.25 ± 0.53 2.74 ± 0.34 

7.77 ± 0.39 2.55 ± 0.01 2149 ± 3060 2.69 ± 1.56 1.73 ± 1.01 

South 

.Control 

CAddlfied 

Figure 6.2 Mean pH (± SO) at control and acidified stations at the north and south of the Castello Aragonese. 
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6.3.2 Comparison of grazing pressure between years. 

Epiphytic algal cover significantly decreased under acidified conditions (F 1, 1545 = 1744.83, 

p < 0.00 I), although there was a 'pH x site' interaction (Table 6.2), as although there was a 

significant decrease in epiphyte cover for both sides (Tukey HSD: p = <0.00 I); this effect 

was more pronounced on the south side (Fig. 6.3a). In control stations, the % cover of 

algae was higher in 2012 than 2011 and 2013 (Tukey HSD: p < 0.001 and p < 0.001 

respectively: 20 II < 2012 > 2013), although this difference was not observed for acidified 

stations (Fig. 6.3a). The cover of epiphytic fauna was affected by pH (F 1,1545 = 43.38, P < 

0.001), although there was a ' pH x site' interaction (Table 6.2), as the increase in epiphytic 

fauna in acidified zones was significant for southern stations but not for northern stations 

(Tukey HSD: p < 0.001 and p = 0.106 respectively; Fig. 6.3b). Leaf length was 

significantly lower in acidified stations (F 1, 1545 = 197.13, P < 0.001), although there was a 

' site x pH x year' interaction as this decrease in leaf length was not observed between the 

north control and acidified station in 2011 (Tukey HSD: p = 0.951: Fig. 6.3c). 

Table 6.2 Three-way ANOV A results of leaf length and % cover of epiphytic algae and % cover of epiphytic 

fauna between site (fixed factor), acidification (fixed factor) and year (fixed factor). Leaflength was LOG (X 

+ 1) transformed, whilst percentage data was arcsine transformed. S = site, pH = acidification, Y = year. 

Significant results are highlighted in red . 

% coverage of 
Leaf length (cm) Epiphytic algae Epiphytic fauna 

df MS F P MS F P MS F P 

S 0.01 0.17 0.678 5.04 96.33 <0.001 0.25 8.33 0.004 

pH 1 10.09 197.13 <0.001 91.21 1744.83 <0.001 1.28 43.38 <0.001 

Y 2 2.44 47.62 <0.001 2.51 48.03 <0.001 1.89 64.08 <0.001 

S xpH I 2.19 42.72 <0.001 3.40 64.99 <0.001 0.14 4.70 0.030 

SxY 2 0.44 8.50 <0.00) 0.10 1.90 0.151 0.52 17.76 <0.00) 

pHxY 2 0.45 8.79 <0.00) 1.31 25.13 <0.00] 0.07 2.49 0.083 

S x pH x Y 2 0.55 10.68 <0.00) 0.12 2.28 0.102 0.04 1.25 0.287 

Err 1,545 

190 



60 25 

a) 
50 

20 

.. 40 
(II 

> 
0 

.. 
(II 

~ 15 
OJ 

OJ 

iii 30 
bO 

iii 
E 

iii 
~20 

'210 
to 

~ 

10 
5 

0 0 

2011 2012 2013 
60 

c) 
50 

...... 
E 40 
~ 
.l: 

to 30 c 
~ .... 
to 
~ 20 -----

10 

0 

2011 2012 2013 

b) _5-C 

- 5-A 

/ , --'-N-C 
/ , 

/ , - A - N-A 
/ , 

/ , 
/ 

/ 
/ 

2011 2012 2013 

Figure 6.3 Annual changes in mean (± 

SE) a) % algal cover, b) % animal 

cover, and c) leaf length of Posidonia 

oceanica leaves in June at each station. 

SC = south control, NC = north 

control, SA = south acidified, NA = 

north acidified. 

The number of leaves with Sarpa sa/pa bites was significantly higher in acidified stations 

(F 1,324 = 291.42, P < 0.001) although there was a 'site x pH' interaction (Table 6.3) as, 

although this effect was significant for both sides (Tukey HSD: p < 0.001), the effect of 

acidification was greater on the south side of the Castello (Fig. 6.4a). In comparison, 

Paracentrotus lividus grazing did not appear to be affected by acidification (F1,324 = 0.46, P 

= 0.497; Fig. 6.4b), but was higher in the north (FI .324 = 19.30, P < 0.001) and affected by 

year (F 1•324 = 11.89, p < 0.001), with grazing higher in 2012 than 2011 and 2013 (Tukey 

HSD: p = , 0.001 and p < 0.001 , respectively; Fig. 6.4b). S. sa/pa grazing was lower in 

2013 than other years (Tukey HSD: p = 0.001 and p < 0.001 , respectively; 2011 = 20 t 2 < 
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2013; Fig. 6.4a). The proportion of leaves with mechanical damage showed the opposite 

pattern to the proportion with S. salpa bites, as mechanical damage was more prevalent in 

the control stations (F1 ,324 = 81.13, P < 0.001; Fig. 6.4c). Mechanical damage significantly 

differed between years (Table 6.3), being higher in 2013 than 2011 and 2012 (Tukey HSD: 

p<O.OOI and p<O.OOI respectively; 2011 = 2012 < 2013). 
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Figure 6.4 Annual changes in mean (± 

SE) % of Posidonia oceanica adult 

and intermediate leaves with a) Sarpa 

salpa bites, b) Paracentrotus lividus 

bites, and c) mechanical damage in 

June at each station_ SC = south 

controL NC = north control, SA = 

south acidified, NA = north acidified. 
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Table 6.3 Three-way ANOV A results of% of leaves per shoot with: Sarpa salpa bites, Paracentrotus lividus 

bites and mechanical damage between site (fi xed factor), acidification (fixed factor) and year (fixed factor). 

All data was arcsine transformed. S = site, pH = acid ification, Y = year. Significant results are highlighted in 

red. 

% leaves with 
Sarpa sa/pa bites Paracentrotus lividus bites Mechanical damage 

df MS F P MS F P MS F P 

S I 0.72 7.56 0.006 1.21 19.30 <0.001 0.42 4.53 0.034 

pH I 27.89 291.42 <0.001 0.03 0046 0.497 7049 81.1 3 <0.001 

Y 2 2.51 26.20 <0.001 0.75 11.89 <0.001 2.39 25.93 <0.001 

S x pH 1.70 17.79 <0.001 0.14 2.23 0.136 0.23 2.44 0.120 

SxY 2 0.13 1.37 0.256 0.008 0.01 0.988 0.001 0.01 0.988 

pHxY 2 0.31 3.28 0.039 0.44 7.02 0.001 0.04 0.45 0.640 

S x pH x Y 2 1.08 11 .3 1 <0.001 0.006 0.09 0.914 0.08 0.88 00417 

Err 324 

The abundance of P. lividus was different between stations (Kruskal-Wallis test: X2 = 

17.02, df = 3, p = 0.007). Abundance was significantly higher in the acidified than the 

control station in the south (Multiple comparison test: p = 0.022), but no difference was 

found between pH zones in the north (Fig. 6.5a). The abundance of P. lividus was greater 

in the north than the south stations (Kruskal-Wallis test: X2 = 17.33, df= 3, p < 0.001). 

There was a difference in the abundance of P. lividus between years (Kruskal-Wallis test: 

X2 = 28.22, df = 2, P < 0.001), as abundance was lower in 2013 than 2011 and 2012 

(Multiple comparison test: p < 0.001 and p = 0.036 respective ly: 2011 = 2012> 2013). 
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Figure 6.S Annual changes in mean (± SE) Paracentrotus lividus density/O.16 m2 at each station in June. SC 

= south control, NC = north control, SA = south acidified, NA = north acidified. 

6.3.3 Progression of grazing pressure from cold to warm water months 

Epiphytic algal cover was significantly lower in acidified stations (Table 6.4), with a more 

than 80% reduction in cover found in acidified zones (Fig. 6.6a). This reduction was 

primarily due to a loss of crustose coralline algae (Fig. 6.7). Algal cover was generally 

lowest in April and highest in August (Fig. 6.6). The cover of epiphytic fauna was 

significantly greater in acidified zones (Table 6.4), although there was a 's ite x pH x 

month' interaction, as increased abundance was only observed in certain months, 

dependent on which site was sampled. Faunal cover was generally highest in June (Fig. 

6.6a). Leaf length was highly variable between sites, pH zones and months (Table 6.4). 

Length was lower in acidified than control zones (Figure 6.6c), although there was a 'site x 

pH x month' interaction as this difference was not observed in the north side in April 

(Tukey HSD: 0.988). Leaf length generally increased from April to August in control 

stations whilst it decreased in length in acidified stations, so that acidified stations 

appeared as 'mown lawns ' in summer (Figure 6.8 - 6.9). 
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Table 6.4 Three-way ANOV A results of leaf length and % cover of epiphytic algae and % cover of epiphytic 

fauna between site (fixed factor), acidification (fixed factor) and month (fixed factor). Leaf length was LOG 

ex + I) transformed, whilst percentage data was arcsine transformed. S = site, pH = acidification, M = 

month. Significant results are highlighted in red. 

0/0 coverage of 
Leaf length (cm) Epiphytic algae Epiphytic fauna 

df MS F P MS F P MS F P 
S 0.12 4.00 0.0~7 0.77 13.68 <0.001 <0.01 0.01 0.941 
pH 8.88 289.90 <0.001 59.51 1059.05 <0.001 0.87 30.41 <0.001 
M 2 0.72 23.32 <0.001 7.10 126.36 <0.001 3.23 112.64 <0.001 
SxpH 0.60 19.48 <0.001 0.01 0.25 0.618 0.65 22.62 <0.001 
SxM 2 0.50 16.42 <0.001 1.02 18.18 <0.001 0.12 4.18 0.015 

pHxM 2 1.14 37.14 <0.001 1.27 22 .56 <0.001 0.30 10.35 <0.001 
S x pHxM 2 0.12 3.74 0.024 0.33 5.93 0.003 0.89 31.15 <0.001 
Err 1,593 
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Figure 6.7 Posidonia oceanica leaves in a) control and b) acidified stations at the north of the Castello 

Aragonese, taken the 2nd August 2013 . 

Figure 6.8 Images taken on the 14th May 2013 of control and acidified stations at the north and south of the 

Castello Aragonese. -C = north control, -A = north acidified, S-C = south control, S-A = south acidified. 
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Figure 6.9 Images taken on the 19th July 2013 of control and acidified stations at the north and south of the 

Castello Aragonese. -C = north control, -A = north acidified, S-C = south control, S-A = south acidified. 

The proportion of leaves with S. sa/pa bites was more than four times higher in acidified 

stations (Fig. 6.1 Oa). A 'pH x month' interaction was found (Table 6.5), as, although this 

difference was significant for all months (Tukey HSD: p < 0.001), the difference was 

greatest in August, as the proportion of leaves with bites increased sharply in acidified 

stations between April and August (Fig. 6.10a). The proportion of leaves with 

Paracentrotus lividus bites was generally lower in acidified stations (Fig. 6.10b), although 

no significant decrease was observed. A 'pH x month' interaction was observed (Table 

6.5), as in acidified stations the number of P. lividus bites was lower in August than April 

(Tukey HSD: p = 0.002) . This decrease was not observed in control stations. The 

proportion of leaves with mechanical damage was significantly higher in control than 
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acidified stations (Fig. 6.1 Dc). There was a ' pH x month' interaction (Table 6.5), as 

significantly higher proportions of mechanical damage in control stations were only 

observed in June and August (Tukey HSD: p < 0.001). This was due to an increase in 

mechanical damage between April and August for control stations, whilst the proportion of 

mechanical damage in acidified stations decreased. 
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Figure 6.10 Temporal progression in 

mean (± SE) % of Posidonia oceanica 

adult and intermediate leaves with a) 

Smpa sa/pa bites, b) Paracentrotus 

lividus bites, and c) mechanical 

damage at each station. SC = south 

control, NC = north control, SA = 

south acidified, NA = north acidified. 
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Table 6.5 Three-way A OVA results of% ofleaves per shoot with: Sarpa sa/pa bites, Paracentrotus /ividus 

bites and mechanical damage between site (fixed factor), acidification (fixed factor) and month (fixed factor). 

All data was arcsine transformed . S = site, pH = acidification, month = year. Significant results are 

highlighted in red . 

% leaves with 
Sarpa sa/pa bites Paracentrotus lividus bites Mechanical damage 

df MS F P MS F P MS F P 

S <0.01 0.01 0.906 0.68 10.34 0.001 0.04 0.46 0.497 

pH 3 1.77 292.08 <0.001 0.21 3.18 0.076 11.50 124.23 <0.001 

M 2 9.35 85.98 <0.001 0.65 9.84 <0.001 0.98 10.55 <0.001 

S x pH I 0.37 3.42 0.065 0.10 1.57 0.212 0.13 1.42 0.234 

S xM 2 0.22 1.98 0.140 0.07 1.04 0.356 0.27 2.92 0.056 

pHxM 2 3.26 29.94 <0.001 0.61 9.24 <0.001 2.83 30.59 <0.001 

S x pH x M 2 0.23 2. 14 0.120 <0.01 0.01 0.989 0.09 0.98 0.377 

Err 324 

The abundance of P. lividus was different between stations (Kruskal- Wallis test: X2 = 

16.60, df = 3, P = 0.009: Fig. 6.11), although comparative tests showed that this difference 

was due to differences in abundances between northern and southern stations (Multiple 

comparison test: p = 0.005), as no differences were observed between pH zones at each 

side of the Castello (Multiple comparison test: p> 0.05). No difference in the abundance of 

P. lividus was observed between months (Kruskal-Wallis test: X2 = 2.72, df = 3, P = 

0.257). 
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Figure 6. 11 Mean (± SE) abundance of Paracentrotus /ividus / 0.16 m2 at each station in April, June and 

August 2013. SC = south control, NC = north control, SA = south acidified, NA = north acidified. 
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Due to the small station sizes and the schooling behaviour of S. sa/po, statistical 

comparisons of the abundance of this species between stations was not possible, although 

during warm months (July and August) schools of S. sa/pa could be observed in both 

control and acidified stations at the Castello Aragonese, although sightings of S. sa/pa 

were infrequent in control stations (Fig. 6.12), whilst observations of S. sa/po grazing in 

acidified stations (and particularly the southern acidified station) were common (Fig. 

6.13a-b). The abundance of S. sa/pa in each school reached values of> 1 00 individuals, and 

frequently other shoaling (e.g. Mugilidae gen. sp.) and non-shoaling (e.g Diplodus sargus) 

fish species could be found alongside S. sa/pa in acidified stations, leading a high presence 

offish (Fig. 6. l3c-d). 

Figure 6.12 a) S. sa/pa school passing through a control station and b) the lack of S. sa/pa commonly 

observed in control stations. 
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Figure 6.13 a) S. sa/pa feeding in the southern acidified station, b) S. salpa feeding in the northern acidified 

station, c) a school offish from the family Mugilidae, and d) the fish Diplodus sargus, travelling with as. 

salpa school. 

6.3.4 Relationships between grazing pressure and Posidonia oceanica condition variables 

Pearson ' s correlation tests between P. oceanica variables revealed collinearity between a 

number of variables. The % cover of animal and algae on the seagrass leaves were not 

independent predictors and hence the % coverage of algal epiphytes was negatively 

correlated to the % cover of animal epiphytes (r = -0.731, P = 0.001). The increase in cover 

of animal epiphytes is related to the decrease in cover of algal epiphytes through reduced 

competition for space. Interestingly the % coverage of algal epiphytes is negatively 

correlated with meadow density (r = -0.613, p = 0.012) and significantly correlated with 

the C:N content of the leaves (r = 0.660, P = 0.005). The fact that these measures were 
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correlated is not surprising, as all variables, other than height of the canopy, were 

significantly correlated with pH (Table 6.6). 

Table 6.6 Pearson correlation coefficients between P. oceanica parameters: C:N content of the 

leaves, meadow density, height of the canopy, and % epiphytic cover of animals and algae 

C:N Density Height Algae Animals pH 
C:N 1.00 
Density -0.47 1.00 
Height 0.41 -0.44 1.00 
Algae 0.66** -0.61 * 0.49 1.00 
Animals -0.39 0.52'" -0.37 -0.73" 1.00 
pH 0.60* 0.87"''' 0.49 0.82"''' -0.62'" 1.00 
• p< 0.05,·· p < 0.01,·" P < 0.001 

Significant correlations were found between S. salpa grazing pressure and all described P. 

oceanica condition variables (Fig. 6.14), whilst P. lividus grazing was not correlated to any 

of the variables examined (Table 6.7). The cover of algae was most significantly correlated 

to S. sa/pa grazing, grazing increased linearly as algal cover decreased. (r = -0.91, t = -

8.34, P < 0.001). Similarly grazing increased with a decrease in the C:N content of the 

leaves (r = -0.79, t = -4.85, P < 0.001). S. salpa grazing increased linearly with an increase 

in shoot density (r= 0.75, t = 4.27, P < 0.001), although some data points were outliers 

which did not conform to this linear correlation (Fig. 6.14d). These outliers were data 

points collected from the south control station. Although density was greater in the south 

control than the north control station, the proportion of leaves with S. sa/pa bites was 

lowest in this station. This led to a lower r value, and suggests that density is less important 

in grazing site selection. If the south control is removed from the analysis then density 

becomes more significantly correlated (r = 0.86, t = 6.27, P < 0.00 I), although even with 

removal of data from this station, significance did not reach the levels found for the 

relationship between algal cover and grazing. 

202 



• S.salpa 

~ P.lividus 

20 40 

100 Epiphytic algal cover (%) 

c) 
80 + 

100 -

VI 
41 

:t:: 

80 

,Q 60 

t 
'" 40 " vi 
~ 

20 

b) 

60 0 
100 

d) 
80 

5 10 
Epiphytic animal cover (%) 

15 

~ t--f-i 
o ~~~~~~~r-~~~--. O ~~~~~~~'~+~~L-~ 

10 12 14 16 18 20 22 24 200 400 600 800 1000 
C:N content of Intermediate leaves (molar) Shoot density (mo2) 

100 

80 

40 60 80 
Height of the canopy (cm) 

100 

Figure 6.14 Percentage of leaves with S. salpa and 

p. lividus bites plotted against different P. oceanica 

condition variables: a) % epiphytic algal cover, b) 

epiphytic animal cover, c) molar C:N content of 

the intermediate leaves, d) meadow density and e) 

height of the canopy. Where a significant linear 

relationship was found a trendline was added. 

Table 6.7 Pearson's correlation coefficients between S. sa/pa or P. lividus grazing pressure and P. 

oceanica structural or epiphytic characteristics. 

r t ~ Eguation 
Sarpa sa/pa 
C:N -0.79 -4.85 < 0.001 Y = -8.9888x + 202.92 
Density 0.75 4.27 < 0.001 Y = 0.1193x - 20.585 
Height of the canopy -0.64 -3.12 0.007 Y = -1.2067x + 126 
% cover algae -0.91 -8.34 < 0.001 y = -1.5574x + 69.493 
% cover of animals 0.67 3.34 0.005 y = 6.99x - 1.7496 

Paracentrotus lividus 
C:N -0.16 -0.60 0.559 N/A 
Density 0. 12 0.44 0.663 N/A 
Height of the canopy 0.052 0.76 0.397 N/A 
% cover algae -0.39 -1.56 0.140 N/A 
% cover of animals 0.21 0.79 0.444 N/A 
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The grazing pressure of S. sa/pa showed the most significant correlation with the cover of 

epiphytic algae, the C:N content of the leaves and meadow density. These three variables 

were summarized using principal components analysis. The eigenvalues of the dominant 

principle component (PC 1) explained> 97% of the variation in S. sa/pa grazing pressure 

(Fig. 6.15), showing that S. sa/pa grazing was highest in meadows with low algal cover, 

high density and low C:N content of the leaves. 
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Figure 6.15 Relationship between the first principal component of the most significantly correlated P. 

oceanica condition variables and S. salpa grazing pressure. 

6.4 Discussion 

This is the first study to investigate changes in macroherbivore grazing pressure in 

response to ocean acidification. These results show that the fish, Sarpa sa/pa, has a strong 

preference for Posidonia oceanica growing in high C02 conditions, whilst the sea urchin, 
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Paracentrotus lividus, showed no preference for leaves growing in ambient or high C02 

conditions. Grazing pressure by S. sa/pa sharply increased between April and August in 

acidified stations, leading to a reduction in leaf length. The increase in grazing in acidified 

conditions was strongly correlated to a reduction in the cover of coralline algae, increase in 

C:N content of the leaves and an increase in shoot density. 

The difference in S. sa/pa grazing pressure between pH zones was most pronounced in 

August, when over 80% of leaves had been grazed by S. sa/pa in acidified stations, whilst 

less than 20% of leaves had been grazed by S. sa/pa in control stations. Whilst S. sa/pa has 

been shown to have a large home range (up to 200 ha), which covers multiple habitats 

including macroalgal reefs, seagrass beds and sand (Jadot et al. 2002, Jadot et al. 2006, 

Pages et al. 2012), the highest grazing pressure on shallow water P. oceanica meadows 

occurs during warm water months when S. sa/pa builds up reserves for reproduction in the 

autumn (Francour 1997; Peirano et al. 2001). The diet of juvenile S. sa/pa primarily 

consists of small invertebrates (Dobroslavic et al. 2013). As they mature they become 

herbivorous, and the contribution of P. oceanica to their diet increases (Havelange et at. 

1997). In June, across the three years, the percentage of leaves with S. sa/pa grazing scars 

ranged from between 5-42% in control stations and 50-77% in acidified stations. Values 

for control stations fit within values observed for similar studies of grazing pressure in 

shallow water P. oceanica beds, whilst the upper values for acidified stations exceeded 

previous studies. AJcoverro et al. (1997) found that the mean percentage of leaves with S. 

sa/pa bites in June varied from between 5-70% at five different locations in Spain, whilst 

Peirano et al. (2001) found that approximately 60% of leaves were grazed by S. sa/pa in La 

Spezia, Italy in June. S. sa/pa grazing pressure has been shown to be highly variable 

between locations, and in some meadows the appearance of 'mowed' patches can be 

observed in summer, where extremely high grazing occurs (Tomas et at. 2005c). Control 
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and acidified stations occur in the same meadow in the north and south sides of the 

Castello Aragonese, although the appearance of these stations, particularly in the summer, 

is very different. In the summer, control stations have a high coverage of CCA and leaves 

are long, whilst in acidified stations leaves are short and the meadow appears 'mowed', 

plus the presence of CCA is negligible if not completely absent. This difference is striking 

and can almost show exactly where acidified conditions end and ambient pH occurs. 

The cover of epiphytic algae was much lower in acidified than control stations across all 

months and years. Due to the in situ nature of this study we did not measure the cover of 

different morphological types of algae. Martin et al. (2008) discovered a severe decrease in 

the epiphytic cover of CCA on P. oceanica, leading to complete absence at pH 7.7. 

Similarly, a study of the algal cover in the rocky reef, adjacent to P. oceanica at the 

Castello Aragonese, found that CCA decreased, whilst cover of other morphological types 

remains the same or increased in acidified conditions at the Castello Aragonese (Kroeker et 

al. 20 I3b). The decrease in algal cover witnessed during this study is due to a loss of CCA, 

and, as can be seen from the images, CCA was almost completely absent from acidified 

zones. Although epiphytic algal coverage was low in acidified stations (1-10%), these 

values were directly related to the cover of non-calcareous encrusting, erect and foliose 

forms. Loss of CCA may lead to reduced competition for space and an increase in non

calcifying species. A second consideration is that Myrionema orb icu/are , a dominant 

species of non-calcifying, encrusting brown algae found on P. oceanica, is not visible to 

the naked eye (Jones 1962), and would not have been included in the visual census, 

although microscopic examination of leaves confirmed its presence in both control and 

acidified stations. This species, alongside species of coralline algae, is considered a pioneer 

species that can be found on both young and mature leaves in all seasons (Jacquemart and 

Demoulin 2008), so loss ofCCA may prompt an increase in the cover of this species. 
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The epiphytic cover of sessile organisms was not affected by acidification. These results 

correspond to a study by Martin et al. (2008), who found that the cover of epiphytic 

bryozoans and hydro ids on P. oceanica leaves did not vary along a pH gradient. Bryozoans 

were the most abundant group of taxa, primarily due to the high coverage of the 

cheilostome bryozoan, Electra posidonidae. This species was abundant in both acidified 

and control stations, suggesting that it is tolerant to low pH. Other species of cheilostome 

bryozoan have been shown to be tolerant to acidification at the CO2 vents at the Castello, 

although changes in resource allocation have been observed (Lombardi et al. 201Ia). Any 

negative impacts of living in a low pH environment may be alleviated by the loss of 

competition, leading to a similar coverage of bryozoans and hydrozoans between pH 

zones. Although not quantified during visual census, a decrease in the abundance of 

calcifying Foraminifera and polychaetes from the subfamily Spirorbinae were observed. A 

similar decrease in the abundance of Foraminifera was observed in the sediments 

surrounding the vents at the Castello Aragonese (Dias et al. 2010), and sediments 

surrounding C02 vents in Papua New Guinea (Uthicke et al. 2013) in response to 

acidification, whilst a corresponding reduction in the number of spirorbid worms were 

collected by the airlift sampler in acidified stations at the Castello (Chapter 3). Laboratory 

experiments have shown a reduction in the settlement and growth of spirorbid worms in 

response to a reduction in pH (Saderne and Wahl 2013). Although these taxa became 

scarcer in response to acidification, faunal cover was dominated by bryozoans and 

hydrozoans, so this did not lead to an overall decrease in cover. 

Leaf length did not differ between control and acidified stations in April, but in August leaf 

lengths in control stations were almost double those in acidified stations. This was because 

the length in control stations increased between April and August, whilst leaf length 
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decreased in acidified stations. Leaf elongation rates were lower in acidified stations (Buia 

M C, unpublished data), which may account for some of the difference in leaf height, 

although lengths decreased by approximately 5% between April and August in acidified 

zones, even though leaves will continue to grow during these months. Cebrian et al. (1996) 

found that herbivory only accounted for approximately 2% of P. oceanica leaf production. 

Although it is not possible to directly measure the percentage removed by herbivory in the 

current study, the decrease in mean leaf length between April and August 2013 in the 

acidified stations shows that S. sa/pa herbivory removes more plant material than is 

produced during these months, whilst this is not the case for control stations. Leaves of P. 

oceanica are the oldest during the early summer, averaging 300 days (Cebrian et al. 1994) 

and, generally, during this time they reach their maximum biomass (Buia et al. 1992). 

Maximum biomass in acidified zones was reached in spring/early summer, due to the loss 

of biomass through S. sa/pa grazing. 

Cebrian et al. (1996) examined the bite marks of S. sa/pa and P. lividus herbivory at 25 P. 

oceanica meadows along the Spanish Mediterranean coast between June and July. They 

quantified the percentage of leaf removed and found that S. sa/pa was responsible for 

approximately 70% of herbivory and P. lividus approximately 30%. This corresponded to 

data for control stations from June 2011 - June 2013; 73% of bite marks were from S. sa/pa 

and 27% P. lividus. In acidified stations the ratio was much greater; 88% of bite marks 

were from S. sa/pa and only 12% from P. lividus. Whilst quantification of bite marks does 

not lead to a direct quantification of herbivory, although a significant relationship was 

observed between the number of bite marks and shoot defoliation for both S. sa/pa and P. 

lividus (Prado et al. 2007). 
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Although P. lividus fertilization success and larval survival were not affected by 

acidification (Martin et al. 2011), the impact of low pH on adult P. lividus has been 

demonstrated. Asnaghi et al. (2013) found that test robustness decreased in acidified 

conditions, which may leave this species more vulnerable to predation. P. lividus are 

predated on by sparid and labrid fish, and starfish (Hereu et al. 2005; Bonaviri et al. 2009), 

all of which are common in the study sites (Bussotti and Guidetti 1999). Calosi et al. 

(2013) showed this species to be a poor regulator of extracellular acid-base balance in 

comparison to the co-occurring Arbacia lixula. This was further evidenced by the decrease 

in abundance of P. lividus near C02 vents in Vulcano, Italy, whilst the abundance of A. 

lixula increased (Calosi et al. 2013). In contrast to this, abundance of P. lividus and the 

proportion of leaves with P. lividus grazing scars did not differ between pH zones at the 

Castello Aragonese during this study. Calcifying groups of invertebrates, which would be 

expected to decrease in response to acidification, have been shown to maintain numbers or 

proliferate in a P. oceanica meadow (gastropods, bivalves, brittle stars: Chapter 4), 

suggesting that the negative effects of low pH may be compensated for by biotic factors 

such as reduced competition or predation. It is suggested that, within P. oceanica 

meadows, the negative effects of acidification on P. lividus may be balanced out by 

positive indirect effects such as an increase in the nutritional value or abundance of food 

items. It is thought that the diet of P. lividus is primarily epiphyte-based (Dauby 1993; 

Tomas 2004), favouring non-calcareous algae (Privitera et al. 2008; Murillo-Navarro and 

Jimenez-Guirado 2012). In P. oceanica meadows, epiphytic algae are a limiting resource 

for P. lividus (Tomas et al. 2005b), so an increase in non-calcifying algae may provide an 

advantage to this species in the future. 

The proportion of leaves with mechanical damage was significantly higher in control 

stations in all years, although no difference was observed between pH zones in April. 
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Mechanical damage decreased between April and August in acidified stations, whilst an 

increase was observed in control stations. Leaf loss occurs in autumn (Alcoverro et al. 

1995b; Gacia and Duarte 2001), although an increase in necrosis and erosion of the leaf 

tips (mechanical damage) occurs through the year. This was observed for control stations, 

with the % of leaves with mechanical damage increasing by almost 50% between April and 

June. A noticeable browning of the leaves in control stations was observed in August, as 

leaves began to decay, prior to leaf fall. The reduction in the proportion of leaves with 

mechanical damage in acidified stations was due to the exceedingly high herbivory, 

although it must be noted that leaves in acidified stations remained green in August (see 

comparison of leaf colours in Fig. 6.7). Even when herbivores are prevented from grazing 

(through caging of the canopy) a reduction in necrosis of the leaves is observed in acidified 

stations (Me Buia, unpublished data). This should be investigated further, as P. oceanica 

is primarily characterised by a detritus-based food web (Mateo and Romero 1997; Pergent 

et al. 1997; Vizzini et al. 2002). A previous study of two P. oceanica beds in Ischia, and 

Marseille (France) found 3- 10% of primary production was consumed by herbivores, 

whilst 23-34% was consumed by detritivores, 27-35% exported to other systems and 32-

36% stored in the matte (Pergent et al. 1997). This suggests that loss of plant detritus, due 

to an increase in herbivory or a reduction in the decomposition of the plant, may have 

negative implications for those animals that feed on plant detritus in the future. 

This study shows that the fish Sa/pa sarpa shows a strong preference for consuming 

Posidonia oceanica leaves grown in acidified conditions. Although it is difficult to directly 

demonstrate causality for this preference, as many of the possible explanatory variables 

(C:N content of the leaves, density, % cover of sessile invertebrates and % coverage of 

macroalgae) were all significantly correlated to pH, three of the possible explanatory 

variables showed the most significant correlations with S. sa/pa grazing. When analysed 
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against the percentage of S. sa/pa bites per shoot, the dominant principle component (PC 1) 

of these three variables gave an r2 value of over 97%. This suggests that each of these three 

variables; % algal coverage, C:N content of the leaves, and meadow density may play an 

important role in shaping the preference of S. sa/pa to feed in acidified zones. Ideas for 

why these correlations were observed is considered below. 

The algal coverage of the shoots was dominated by coralline crustose algae (CCA) in 

control zones, as can be seen clearly in the images presented. Presence of coralline algae 

was low to absent in acidified zones, similar to the findings of Martin et al. (2008). In 

tropical systems the parrotfish Sparisoma radians selects for leaves of the seagrass, 

Tha/assia testudinium, high in CCA cover. Their stomachs have a pH of 8.4 so the 

carbonate is not dissolved but may act as a tool for grinding the leaves of the seagrass and 

releasing the cell contents (Thayer et al. 1984). In contrast, the strong negative relationship 

observed between S. sa/pa grazing and algal cover suggests that this fish may actively 

select for areas where CCA cover is low. Although this species is known to feed on a 

combination of algae and P. oceanica (Tomas 2004), the tough, heavily calcified nature of 

CCA is a deterrent to many herbivores, as it is indigestible and decreases the nutritional 

value of the algae (Littler et al. 1983; Pennings and Paul 1992; Pitlik and Paul 1997) and 

often coralline algae barrens are left on rocky reefs where high herbivorous fish grazing 

occurs, as other forms of algae are removed (Ruitton et al. 2000). This study suggests that 

CCA may be a deterrent for S. sa/pa, and contrary to findings of Dauby & Coulon (1993) 

and Tomas (2004) who suggest that S. sa/pa primarily assimilate leaf epiphytes whilst P. 

oceanica plant material passes through the digestive system and is returned to the litter, the 

low epiphytic cover observed in acidified stations suggests that P. oceanica itself may play 

an important role in the diet of this species. 
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C:N content of the leaves detennines the nutritional val ue of seagrass (Thayer et al. 1984). 

C:N content was lowest in the south acidified station, intennediate in the northern control 

and acidified station and highest in the south control station in May 2011 (see Chapter 3). 

s. salpa grazing pressure in June 2011 followed the same pattern, suggesting that perhaps 

once S. salpa start feeding on plants with a low C:N content they increase feeding activity. 

Preliminary investigation showed up to a 50% decrease in phenolic content of the leaves of 

P. oceanica in the acidified station at the Castello Aragonese (MC Buia, unpublished data). 

A similar decrease in phenolic content of the leaves in response to acidification was 

observed for Cymodocea nodosa leaves in Vulcano, Sicily (Arnold et at. 2012). Although 

the results for P oceanica are preliminary and further investigation required, this effect, in 

conjunction with an increase in nitrogen content will improve the palatability of the leaves, 

providing a double advantage to the herbivores of this plant. 

Optimal foraging theory predicts that an animal will move less in areas where its food 

source is more abundant in order to maximise their energy intake per unit time (MacArthur 

and Pianka 1966), suggesting that these fish may be attracted to beds with a high density of 

shoots. It must be taken into consideration that correlation does not imply causality. There 

is evidence that increased herbivory by S. salpa leads to increased vegetative growth of P. 

oceanica (Planes et al. 2011). Rather than the fish be attracted to dense meadows, it is 

suggested that increased grazing by the fish leads to increased meadow density, as a 

response of the plant. 

Although the predators of S. salpa have not been identified in the Mediterranean, in 

Eastern Africa it is used as bait for large game fish such as the leerfish, Lichia amia, and 

other predatory finfish, sharks and rays (Otgaar 2013). The leerfish is also common to the 

Mediterranean, and local sharks and rays may feed on this species. Other possible 
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predators of this S. sa/pa in the Mediterranean include top carnivores, such as the European 

hake Merluccius merluccius, the European barracuda, Sphyraena sphyraena, the great 

amberjack, Seriola dumerili, and the common dentex, Dentex dentex. These species of fish 

are commercially important (Froese and Pauly 2006), and if increased nutritional value of 

the plant leads to positive outcomes for S. salpa, this may enhance fisheries in the future. 

Acidification appears to provide advantages to S. sa/pa, in terms of food, although the 

small size of stations, and their connectivity to areas of ambient pH, meant that S. sa/pa 

may travel in and out of the pH zones with ease. This means that we cannot determine 

whether ubiquitous acidification, to values predicted for 2100, would lead to a similar 

advantage. Reef fish have been shown to lose their ability to detect predatory cues (Dixson 

et al. 2010; Munday et al. 2010), their homing ability (Munday et al. 2009) and their 

auditory ability (Simpson et al. 2011) in response to a decrease in pH. If ubiquitous 

acidification leads to similar loss of abilities in S. sa/pa, any advantage of a preferential 

food supply may be lost. 

In conclusion, an increase in S. salpa grazing pressure in acidified stations was observed 

between cold (April) and warm (August) water months, whilst P. lividus grazing and 

abundance did not differ between pH zones or time. This phenomenom of increased S. 

salpa grazing was observed annually, strengthening the conclusion that this is due to 

preferential feeding of seagrass grown in high CO2 conditions. Increased palatability of P. 

oceanica to S. sa/pa appears primarily due to a complex mixture of changes in leaf 

nutritional content and epiphytic coverage of the leaves. In response to increased 

herbivory, the plant increases vegetative growth, leading to an increase. This increase in 

density appears to have important knock on effects of its associated invertebrate fauna 

(Chapter 4). 
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7. General Discussion 
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Whilst the number of studies on the biological effects of ocean acidification has grown 

exponentially since 2005 (Kroeker et al. 2010), our understanding of the ecosystem level 

effects of OA are still largely unknown, due to the variation in species responses to OA, 

and the difficulty in predicting changes in biotic interactions (Russell et al. 2012; Garrard 

et al. 20l3). Natural submarine vents, which discharge C02 into the water column, 

lowering the pH, can provide a natural setting in which to observe the effects of chronic 

acidification. Although there are some drawbacks to this type of study (discussed below), 

the opportunity to observe community responses within a natural setting can provide 

valuable information to help understand the effects of OA at the ecosystem level (Hall

Spencer et al. 2008). Posidonia oceanica is the most important species of seagrass found in 

the Mediterranean, forming highly productive meadows, and associated with a high 

biodiversity of species (Mazzella et al. 1992). Previous studies at the Castello Aragonese 

have only investigated a small component of the P. oceanica system: calcareous epiphytes 

(Martin et al. 2008), seagrass density, leaf production per m2, and photosynthetic 

performance (Hall-Spencer et al. 2008). The aim of this thesis was to investigate how a 

number of different components of this system change in response to acidification on a 

temporal scale: 1) the structure and function of the sea grass, 2) invertebrate community 

dynamics, and 3) the grazing dynamics of key herbivores. This discussion will bring 

together these different components in an attempt to understand how they interact, 

providing the first comprehensive overview of the impact of acidification on a P. oceanica 

meadow. It will discuss some of the problems associated with research at CO2 vents, ideas 

for future research, and how these results may be important for Mediterranean coastal 

management. It will conclude with placing these results within a global context. 

215 



7.1 The effect of high COlon a P. oceanica system 

One of the major findings of this thesis is that most species associated with P. oceanica 

were able to tolerate pH levels expected for the end of this century. Although it is thought 

that calcifying species will be particularly susceptible to OA (Fabry 2008; Fabry et al. 

2008; Doney et al. 2009b), the majority of organisms observed during this study were 

present in both control and acidified stations. Whilst many studies have revealed negative 

effects of OA on the calcification and growth of benthic invertebrates (e.g. Clark et al. 

2009; Comeau et al. 2009; Kurihara et al. 2009; Maier et al. 2009; Brennand et al. 20 I 0; 

Gazeau et al. 2010; Suwa et al. 2010; Gaylord et al. 2011; Courtney et al. 2013), none of 

these studies revealed that pH levels expected for the end of this century lead to a decrease 

in their survival. As physiological condition of the animals was not measured, rates of 

growth or calcification cannot be commented on. There is a possibility that some 

organisms, whilst able to survive in low pH conditions, may exhibit negative effects in 

terms of physiological processes such as calcification and growth, as has been 

demonstrated in laboratory studies. For example Comeau et al. (2010) found that pteropod 

larvae became shell-less at low pH (7.5), but were still viable. A second consideration is 

that many of these laboratory experiments are conducted over a short time period. Form 

and Riebesell (2012) showed that, whilst the cold water coral, Lophelia pertusa, exhibited 

negative effects to short-term acidification (1 week), it acclimatised, showing no negative 

effects when exposed to low pH for a period of months. The response of many calcifying 

species to low pH may be due to organism's ability to acclimatise to chronic acidification. 

A third and final consideration is that the high levels of photosynthesis during the day may 

increase pH within the leaf boundary layer and beyond, providing a microclimate of high 

pH and associated saturation states, giving daytime refuge from acidification for those 

organisms closely associated with it. 
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Not all groups of organisms appeared immune to the effect of increased C02. Most 

noticeable was the striking reduction/absence of epiphytic coralline crustose algae (CCA) 

in acidified zones, as was observed by Martin et al. (2008). Whilst CCA were the dominant 

epiphyte in control stations, covering as much as 90% of the leaf, it was generally absent in 

acidified stations, with the occasional occurrence of a small fragment on a leaf. Some 

species of coral are able to utilise bicarbonate to maintain calcification in low pH 

conditions (Comeau et al. 2013a). The absence of CCA in acidified stations suggests that 

no species of CCA can tolerate a reduction in pH, suggesting that this group will be one of 

the 'losers' in future carbonate conditions. Epiphytic seagrass CCA is thought to be a 

'pioneer' epiphyte on the leaves, aiding in the settlement of other epiphytes (Willcocks 

1982, Mazzella et al. 1992). The cover of sessile animals did not decrease with a loss of 

CCA, although a noticeable decrease in the abundance of foraminifera and polychaetes 

from the subfamily Spirorbinae was observed. It is thought that this is due to their 

intolerance to low pH, owing to their highly calcified nature. A high cover of bryozoans 

and hydrozoans were found in acidified stations, suggesting that at least this component 

may settle in the absence of CCA. Whilst the loss of CCA may have a negative effect on 

the isopod Cymodoce hansen;, which is known to feed on it, the majority of herbivores 

increased in abundance, suggesting that CCA is not an important food source for many 

herbivorous invertebrates. 

This research found that a decrease in CCA in conjunction with a decrease in the C:N 

content of the leaves, in response to acidification, were the most likely explanation for 

enhanced grazing pressure by S. sa/pa in acidified stations. A further possible explanatory 

variable was the increase in seagrass shoot density, although Planes et al. (2011) found that 

increased grazing by S. salpa has been shown to stimulate vertical growth in P. oceanica, 

leading to increased seagrass density. Therefore, rather than an explanatory variable, the 

217 



correlation we observed may be due to an increase in density being a response of the plant 

to enhanced grazing pressure. The abundance of many of the groups of taxa was shown to 

be positively correlated to shoot density, whilst decapod abundance decreased in summer 

months when S. salpa grazing reduced canopy height. These results suggest that a 

suggesting that a cascade of direct to indirect effects will play an important role in 

influencing the associated invertebrate community dynamics (Fig. 7.1). This shows the 

importance of whole community observations, as cascading indirect effects such as this 

would be impossible to predict from experiments based in a laboratory setting. 

Ocean acidification 

Increased nutrient availability 1 1 Physiological intolerance 

Increased C:N content of the 
leaves 
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coralline algae 

J 
Increased J 
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~ ___ R_ed_u_c_e_d_c_a_n_OP_Y __ h_e_ig_h_t __ ~1 1~ ___ ln_c_re_a_s_e_d_s_hO_o_t_d_e_n_s_it_Y __ ~ 
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Changes in invertebrate assemblage 

dynamics 

Figure 7.1 Potential cascade of direct to indirect effects of ocean acidification on a Posidonia oceanica 

system, including potential mechanisms and processes. 
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The food web linkages within a P. oceanica system have been demonstrated (Fig. 7.2: 

Mazzella and Zupo 1995). Although we cannot quantify how detritus and fish respond to a 

decrease in pH, all other compartments of the food web were investigated during this 

study. Seagrass density and the abundance of primary consumers increased in response to 

acidification, whilst the cover of epiphytes and the abundance of carnivorous decapods and 

polychaetes decreased (Fig. 7.2). 
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Fish, 
Echinoids, 

Polychaetes, 
Molluscs, 
Isopods, 
Amphipods, 
Decapods 
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Decapods 

? 
• 

TERTIARY 
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Figure 7.2 Illustration of the trophic energy flux in a Posidonia oceanica system (modified from Mazzella 

and Zupo 1995). Compartments are coloured dependent on their response to acidification. Those in red 

decreased in density/ quantity, green increased and black are unknown, as they were not measured during this 

study. 
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Whilst the consequences of the decrease in carnivorous decapods and polychaetes and the 

reduction in the cover of epiphytes are uncertain, a loss of ecosystem function was not 

apparent during this study. Results for measured components of production, suggested that 

acidified stations showed high levels of both primary (seagrass density) and secondary 

(invertebrate abundance and species richness) production. The link between species 

richness and ecosystem function is thought to be strong (Tilman 1996), and secondary 

production has been linked to fisheries yield (Valentine-Rose et al. 2011). Although the 

number of fish was not quantified, a generally higher abundance of fish (from families 

such as Sparidae, Labridae and Mugilidae) were observed foraging in acidified stations. 

There has been some suggestion that, in areas of high net productivity, characterised by 

species of macroalgae, microalgae and seagrasses, OA may be locally ameliorated by the 

drawdown of C02 from the water column leading to an increase in pH, n arg and neal 

(Manzello et al. 2012; Anthony et al. 2013). As it was not possible to quantify the amount 

of CO2 released from the vents and the proportion captured by the seagrass, this could not 

be investigated. Without taking this effect into consideration, we found that cascading 

indirect effects, leading to facilitative interactions, maintained species richness and 

evenness, whilst the abundance of invertebrates increased. These results suggest that, in the 

face of future acidification, seagrass beds may play an important role in facilitating the 

maintenance of biodiversity in shallow water ecosystems. 

7.2 The issues associated with ecological research at C02 vents 

It is important that the impacts of future acidification can be scaled up to the ecosystem 
I 

level, in order to provide policy makers with robust scientific evidence of expected 

environmental impacts. In respect to proposed future acidification, species abilities to 
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adapt or tolerate these changes will be important in determining survival success, but 

accurate predictions must take into consideration a complex array of both biotic and 

environmental interactions (Russell et al. 2012).Whilst OA will occur simultaneously with 

changes in other physical variables such as temperature, salinity and oxygen, the 

interactions between species may change as well, as the abundance of tolerant and 

sensitive species changes. Marine organisms will therefore face the challenge of coping 

with multiple changes at all levels. 

Understanding the ecosystem level effects of OA is a priority, and subtidal C02 vents can 

provide a natural laboratory in which to study whole ecosystems level effects (Hall

Spencer et al. 2008). CO2 vents/seeps can be found in Ischia, Italy (e.g. this thesis; Hall

Spencer et al. 2008), Vulcano, Italy (e.g. Johnson et al. 2011; Calosi et al. 2013), Milne 

Bay, Papua New Guinea (e.g. Fabricius et al. 2011; Russell et al. 2013), and Puerto 

Morelos, Mexico (e.g. Crook et al. 2012), providing information on the effect of 

acidification on seagrass, rocky subtidal and coral reef systems. Attempts have been made 

to characterize the C02 vents at Ischia, through the placement of stationary pH sensors 

(Kroeker et al. 20 11 b), and the analysis of gas emissions (Hall-Spencer et al. 2008), and at 

Papua New Guinea through the analysis of gas emissions (Fabricius et al. 2011). At the 

C02 vents of VuIcano geochemical surveys (Boatta et al. 2013) and analysis of metal 

concentrations (Kadar et al. 2012) have been conducted, as there was some concern that 

toxic elements or compounds may be present. Whilst toxic compounds such as H2S were 

found in low concentrations at C02 study sites (Boatta et al. 2013), there was an 

enrichment of trace metals (Kadar et al. 2012), which must be taken into consideration 

when using the Vulcano C02 vents for studies of OA. Research at C02 vents could be 

improved by collaborations with physical oceanographers and other disciplines, to gain an 

in depth of knowledge of the physical and chemical attributes of these vent sites, and also 
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their temporal and spatial variation (e.g. under different atmospheric pressures or 

hydrodynamic conditions). This would aid in determining their suitability for OA research 

and potentially allow for the minimization of confounding factors. 

Many of these vent sites show a high degree of pH variation (Kroeker et al. 2011 b; 

Johnson et al. 2012), and further effort should be placed into understanding how pH 

variation, alongside pH reduction, impacts organisms. Some organisms live in areas of 

high pH variation such as estuarine habitats and areas of upwelling, whilst those in the 

open ocean deal with very little variation (Hofmann et al. 2011). Are perturbation 

experiments, whereby pH is maintained at a constant level, truly indicative of future 

oceans or should pH variations be taken into consideration during experimental periods? 

At vent sites is it acceptable to note the mean or median value as an indicator of pH or 

should lowest values be taken into greater consideration? Laboratory experiments should 

be designed to improve methodology in this field and understand the impact of high or 

little pH variation on organisms. 

A total of between 300 to 320 pH samples were collected and analyzed for each station 

between April 2011 and August 2013. Only 40 of these were collected during 2012, whilst 

between 120 and 150 were collected from each station in 2011 and 2013. Whilst the mean 

pH in the southern acidified station remained the same across the three years (pH 7.8), the 

mean pH of the northern acidified station was higher in 2012-13 (PH 8.0), than that found 

in 2011 (pH 7.8). This decrease was because this station was acidified less often during pH 

monitoring, although it is not certain whether this is a sampling artefact, due. to a sporadic 

sampling regime, or whether acidification events decreased at this station over the three 

years. Variables affected by acidification (S. sa/pa grazing pressure, leaf length, epiphytic 

algal cover) did not appear to decline in 2012-13 in the northern stations, suggesting that 

the effects of acidification did not differ between years. This demonstrates some of the 
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problems associated with sporadic sampling of pH, and highlights the requirement for 

permanent, stationary in situ pH sensors to provide real-time data on pH variation. 

A second consideration is that the acidified stations are small, and continuous with much 

larger areas of ambient pH, allowing for the movement of larvae from control populations 

into acidified stations. This is unlikely for larvae of small invertebrates with direct 

development, such as many species of gastropod, tanaid, amphipod and sabellid and syllid 

polychaetes, which should spend their entire Iifecycle in acidified stations (Kroeker et al. 

201Ib), although species that are lecithotrophic or planktotrophic may migrate into the 

acidified zones from surrounding areas of ambient pH. It is thought that the larval stage of 

many invertebrates may be the most susceptible stage for some species (Dupont and 

Thorndyke 2009; Dupont et al. 201 Oa), therefore supply of larvae from non-acidified 

waters could lead to false positives, in terms of survival of certain species. Cigliano et al. 

(2010) investigated the effect of acidification on juvenile settlement, and many of the 

species that were found as adults in this study were present as juveniles during the previous 

study, suggesting that both juvenile and adult stages may be robust to acidification. 

Subsequent experiments examining the effect of acidification on adult fecundity and larval 

survival of species that thrived in acidified stations would help to strengthen these results. 

Highly mobile organisms, such as fish, can move easily between acidified and control 

conditions, therefore, although a high density of fish (particularly Sarpa salpa), were 

observed in the acidified stations, we cannot presume that this group of taxa are robust to 

acidification. S. salpa can have a home range extending over thousands of metres (Jadot et 

al. 2006). Whilst we have provided observations on the preference of S. salpa to grazing on 

leaves in acidified areas, leading to a potential benefit, the chronic effect of acidification on 

this species remains unknown. In comparison, the home range of the sea urchin, 
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Paracentrotus lividus, is generally less than 3 m (Hereu 2005), suggesting that post

settlement, this species remains within the respective stations throughout its whole 

lifecycle. Larvae from ambient pH can be transported to acidified stations, although P. 

lividus larvae has been shown to be robust to high levels of acidification (Martin et al. 

2011). This species can inhabit intertidal pools, which exhibit extreme changes in pH, 

suggesting that they are able to acclimatize or adapt to pH stress (Moulin et al. 2011). 

7.3 Future research into the effects of ocean acidification on a Posidonia oceanica 

system 

This thesis provides a broad overview of the effect of acidification on a Posidonia 

oceanica system, although, in order to strengthen these findings, a number of further 

studies are proposed. 

7.3.1 Investigation into P. oceanica pH microgradients 

Whilst the negative effects of acidification have been demonstrated for many calcifying 

species of invertebrates (Kroeker et al. 2010), this research found that some calcifying 

species were present, and even thrived in the acidified stations. One possible reason for this 

is that the high levels of photosynthetic activity within the meadow may produce 

microgradients in pH, close to the photosynthetic tissue or within the rhizomes, providing a 

refuge from acidification. For this thesis, pH was measured 10 cm above the canopy, so pH 

within canopy pH is unknown. To understand whether pH microgradients are present, a 

combination of field and laboratory work should be carried out. Water samples should be 

syringed from specific niches of the P. oceanica habitat (sediment, rhizomes, canopy and 

above canopy), and at different times ofthe day, to see how pH differs within the meadow. 

Laboratory experiments should use microelectrodes (see Jones et al. 2000) to investigate 

the pH microgradient surrounding the leaves. 
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7.3.2 Biological traits analysis 

Biological traits analysis is a recently developed method of providing a summary of the 

biological trait composition marine benthic assemblages (Bremner et al. 2006). The 

processes that occur, and therefore the functioning of a system, is dependent on the 

biological features of the organisms present (Oug et al. 2012). Therefore changes in 

patterns of trait expression can be used to investigate how anthropogenic/climatic impacts 

may lead to changes in ecosystem functioning (Bremner et al. 2006). Biological traits that 

can be used for marine, macrobenthic taxa include: size, larval type, relative adult 

mobility, bodyform, degree of attachment, feeding habit, and habitat (Cooper et al. 2008). 

To aid in further understanding whether ocean acidification affects ecosystem processes 

and functioning, it is suggested that a biological traits analysis is performed for data on the 

invertebrate community collected during this study. Currently, information on the 

biological traits of marine species is limited, particularly for Mediterranean species 

(Paganelli et al. 2012); therefore, collation of available biological data for species 

associated with P. oceanica would be required in order to perform this analysis. 

7.3.3 The effect of acidification on Sarpa sarpa 

Sarpa salpa showed a preference for Posidonia oceanica in acidified stations, suggesting 

that OA may provide a benefit to this species, although, due to its highly mobile nature, it 

may move from low to ambient pH areas at will. To increase our understanding of the 

effect of OA on this species, laboratory experiments examining the impact of OA on egg 

and larval stage, and on adult behaviour should be tested, as these have been shown to be 

impacted in other species of fish in response to OA (e.g. Munday et al. 2009; Frommel et 

al. 2011). 
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7.3.4 Herbivore exclusion/inclusion experiments 

This study found that macroherbivore grazing pressure increased and C:N content of the 

leaves decreased in acidified stations, and that these variables showed a correlation, 

although it is unknown whether a decrease in C:N content lead to an increase in grazing 

pressure or vice versa. Manipulative experiments could assist in understanding how 

biochemical properties of the leaves (phenol, C:N, and sugar content) change in response 

to acidification, and how these changes link to changes in grazing pressure. Whilst the 

possibility of caging S. sa/pa may be 10gisticalIy difficult, P. lividus numbers may be 

manipulated through caging experiments. Biochemical analysis of leaves in response to 

exclusion of both herbivores, S. sa/pa exclusion and no exclusion could be measured on a 

temporal scale. 

7.3.5 Paracentrotus lividus feeding choice experiments 

P. lividus abundance and grazing pressure did not vary between control and acidified 

stations, although at the CO2 vents in Vulcano, Italy, their abundance decreased in 

response to acidification, and there is evidence that P. lividus may be less tolerant to low 

pH, due to its poor ability to regulate extracelIular pH (Calosi et al. 2013). If this is the 

case, then could the equal presence of P. lividus in acidified stations be due to a preference 

for P. oceanica leaves grown in low pH? Feeding choice experiments, offering seagrass 

from control and acidified stations (± epiphytes) could assist in understanding this. 

7.3.6 Posidonia oceanica primary production, stocks and fluxes in response to 

acidification 
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P. oceanica is an important shallow-water carbon sink in the Mediterranean (Apostolaki et 

al. 2011), due to its ability to store large amounts of carbon belowground. Whilst the shoot 

density of this plant increased in response to acidification, the effect of acidification on; 

ratios of below: above ground biomass, detrital dynamics and annual primary production 

are unknown. The below:above ground biomass of seagrass at C02 vents in Papua New 

Guinea was found to increase fivefold in response to acidification, suggesting that ocean 

acidification may increase the potential of seagrasses to act as a carbon sink (Russell et al. 

2013). It is suggested that future work aims to understand how P. oceanica carbon stocks 

and fluxes change in response to acidification. 

Lepidochronological analysis is a technique that can be used to analyse: primary 

production, growth rate and production of rhizomes, detection of flowering events and leaf 

renewal cycles (Pergent-martini and Pergent 1994). Leaf litter stocks can be measured by 

collection with an airlift sampler, whilst litter bag experiments can measure decay (Pergent 

et al. 1994). These techniques, alongside measurements of above- and belowground 

biomass would give us a greater understanding of how carbon fluxes in P. oceanica may 

change in the future. 

7.4 Implications for management 

Posidonia oceanica is particularly susceptible to anthropogenic/climate change impacts, 

due to its slow growth and infrequent sexual reproduction (Marba et al. 2002). Its cover 

has declined drastically in some parts of the Mediterranean (Bianchi and Morri 2000). 

Human pressures such as boat anchoring (Montefalcone et al. 2006), bottom trawling 

(Gonzalez-Correa et al. 2005) .. fish farming (Delgado et al. 1999), and water degradation 

(Fernandez-Torquemada and Sanchez-Lizaso 2005), have been shown to negatively affect 

P. oceanica meadows, leading to a decrease in shoot density, meadow fragmentation or 
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regression. Meadows with low shoot density are then at risk from invasion of exotic 

species of Caulerpa spp. (Ceccherelli et al. 2000). The increased shoot density observed in 

acidified conditions, may help to ameliorate anthropogenic impacts. 

The results of this thesis suggest that this species of seagrass, and its associated 

community, will be robust to pH levels expected for the end of this century. When mean 

values were compared to baseline values found for shallow, undisturbed meadows 

(Chapter 2, Table 2.1), invertebrate species richness was higher in both control and 

acidified stations than values found in previous studies (Fig. 7.3a). Shoot density was 

either on the lower margin or below the baseline values in the control stations, and 

increased in the acidified stations (Fig. 7.3b). Biological indicators such as seagrass shoot 

density and invertebrate species richness can be useful indicators of the health of a seagrass 

system (Linton and Warner 2003). This is not to say that there won't be alterations to 

community structure in response to changes in carbonate chemistry, although no common 

species disappeared in low pH zones. 
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Fig. 7.3 Mean (±SE) a) invertebrate species richness, and b) shoot density at control and acidified stations at 

the north and south of the Castello Aragonese. Red areas indicate minimum and maximum values found in 

shallow undisturbed meadows in previous studies (Table 2.1). 

Manzello et al. (2012) suggest that seagrass beds have the potential to provide refugia 

against OA, through the drawdown of CO2, increasing saturation states of the surrounding 

seawater. The results of this thesis suggest that, even when pH is low (PH samples were 

collected lOcm above the canopy), facilitative interactions may play an important role in 

maintaining richness oftbe associated community, 

P. oceanica is a net autotrophic system, and an important carbon sink in the Mediterranean 

(Apostolaki et al. 2011). Net primary production (NPP) in P. oceanica ranges from 60 -

184 gC m-2 yr- I (pergent et al. 1994). Approximately a third of this production is stored 
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belowground through the burial of roots and rhizomes (Pergent et al. 1997), leading to 

millennia old biogenic 'mattes' (Mateo and Romero 1997). P. oceanica meadows are 

thought to cover 50,000 km of the Mediterranean seafloor (Bethoux and Copinmontegut 

1986). Therefore the potential total carbon storage capacity of P. oceanica is: 

= (60 or 184/3)* 5xlO IO = 1 - 3.07 Tg C y(1 

P. oceanica is protected under the EC Habitats Directive as a priority natural habitat, is 

listed in the Bern Convention as a species of flora that is strictly protected, and listed as an 

endangered species under the Barcelona Convention, although despite this there is 

evidence that cover of this species is still declining (Marba et al. 2005). An increasing 

number of marine protection areas (MPAs) have been designated in the Mediterranean; 

however their effectiveness at preventing decline of P. oceanica is inconsistent (Marba et 

al. 2002). The maintenance of associated species richness under acidified conditions, 

alongside the ability of P. oceanica to act as a substantial carbon sink, suggests that more 

intensive efforts should be placed in conserving this highly productive habitat in the face of 

future changes in carbonate chemistry. 

Whilst this thesis has used the acidification caused by the C02 vents to describe possible 

changes to a Posidonia oceanica system in response to global ocean acidification, these 

results may also be used to consider how small-scale, chronic leakages from carbon 

capture and storage (CCS) may cause changes to this shallow-water ecosystem. CCS is a 

relatively new technology, which aims to capture CO2 from power plants or other 

industrial facilities and store it in subsea geological formations such as depleted oil and gas 

reserves or saline aquifers. Leakage from these underground storage sites is a very real 

possibility (Vendrig et al. 2003), through slow or (less likely) catastrophic release of C02 

into marine and subsurface ecosystems (Turley et al. 2004). Russell et al. (2013) suggest 
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that seagrass beds may have the potential to partially mitigate this leakage. This research 

suggests that not only may the leakage be partially mitigated through an increase in 

seagrass density, but that the majority of invertyebrates associated with this system would 

be able to withstand small-scale C02 leakage. 

7.5 Conclusion 

These results give some cause for optimism, in terms of the potential effects of ocean 

acidification or chronic C02 leakage from sub-sea storage, in this temperate shallow-water 

system at the pH levels investigated. No ecological tipping point was observed in response 

to the reduction in pH observed; although alterations in community dynamics were 

apparent, suggesting that OA will lead to changes the relative abundances of different 

species. It is suggested that these changes were caused through cascades of direct and 

indirect effects. A similar lack of response to a comparable reduction in pH was found for 

measures of biodiversity (species richness, evenness) and productivity (biomass, 

abundance) of benthic invertebrates in the rocky subtidal (Kroeker et at. 2011 b). 

This is not to say that the global reduction in marine pH, expected for the end of this 

century, will not cause substantial adverse effects to other shallow-water marine habitats. 

Coral reefs systems are expected to be particularly vulnerable to OA (Hoegh-Guldberg et 

al. 2007). At similarly acidified C02 vents in Papua New Guinea, coral species richness 

decreased by 39%, and the cover of structurally complex forms decreased threefold 

(Fabricius et al. 2011). CCA play an important role in coral reefs; suppressing macroalgal 

growth (Vermeij et al. 2011), inducing coral settlement (Harrington et at. 2004) and 

providing structural integrity to the reef (Goreau 1963). Whilst loss of this group of algae 

from the leaves of P. oceanica did not appear to negatively impact the associated 

community, loss from coral reefs may further enhance vulnerability to OA in this system. 
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One of the most striking findings of this thesis was the ability of calcifying species to 

persevere, and even flourish in acidified conditions. This may be due to the complex nature 

of the seagrass, and high levels of photosynthesis, leading to possible pH microC\imates. 

Secondly, the high degree of pH variability that naturally occurs in these shallow water 

habitats (Hofmann et al. 2011), may result in organisms that are be better equipped to 

withstand pH stress (Moulin et al. 2011). This research suggests that shallow-water, highly 

productive, non-calcifying, biogenic habitats, such as seagrass beds, may provide a refuge 

from OA, and highlights the importance of their conservation. 
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