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Abstract 

Introduction: Respiratory Syncytial Virus is the major viral cause of lower res­

piratory tract disease in young children worldwide, with the greatest burden of 

disease in infants aged 1-3 months. Consequently, vaccine development has cen­

tered on a vaccine to directly protect the infants in this age group. The funda­

mental problem is that these young infants are poor responders to candidate RSV 

vaccines. This thesis focuses on the use of mathematical models to explore the 

merits of vaccination. 

Methods: Following development and analysis of a simple non-age-structured 

ODE model, we elaborate this to a Realistic Age Structured model (RAS) captur­

ing the key epidemiological characteristics of RSV and incorporating age-specific 

vaccination options. The compartmental ODE model was calibrated using age­

specific and time series hospitalization data from a rural coastal Kenyan popula­

tion. The determination of Who Acquires Infection From Whom (WAIFW) matrix 

was done using social contact data from 1) a synthetic mixing matrix generated 

from primarily household occupancy data and 2) a diary study that we conducted 

in the Kilifi Health and Demographic Surveillance System (KHDSS). The vaccine 

was assumed to elicit partial immunity equivalent to wild type infection and its 

impact was measured by the ratio of hospitalized RSV cases after to before in­

troduction of vaccination. Uncertainty and sensitivity analysis were undertaken 

using Latin Hypercube Sampling (LHS) and partial rank correlation respectively. 

Given the importance of households in the transmission of respiratory infections, 

an exploratory household model was developed to capture the transmission dy­

namics of RSV A and B in a population of households. 

Results: From the analytical work of the simple ODE model, we have demon­

strated that the model has the potential to exhibit a backward bifurcation curve 

within realistic parameter ranges. Both the diary and the synthetic mixing matri­

ces had similar characteristics i.e. strong assortative mixing in individuals less than 



30 years old and strong mixing between children less than 5 years and adults be­

tween 20 and 50 years old. When the two matrices were jointly linearly regressed, 

their elements were well correlated with an R2 ~ 0.6. The RAS model was capable 

of capturing the age-specific disease and the temporal epidemic nature of RSV in 

the specified location. Introduction of routine universal vaccination at ages vary­

ing from the first month of life to the 10th year of life resulted in optimal long-term 

benefit at 7 months (for the diary contact model) and 5 months (for the synthetic 

contact model). The greatest benefit arose under the assumption of age-related 

mixing with the contact diary data with no great deal of effectiveness lost when 

the vaccine is delayed between 5 and 12 months of age from birth. Vaccination 

was also shown to change the temporal dynamics of RSV hospitalizations and also 

to increase the average age at primary infection. From the sensitivity analysis, we 

identified the duration of RSV specific maternal antibodies, duration of primary 

and tertiary infections as the most important parameters in explaining the impre­

cision observed in predicting both the age specific hospitalizations and the optimal 

month at vaccination. Results from the household model have demonstrated that 

the household epidemic profile may be different from the general population with 

strong interaction of the viruses in the household that do not necessarily reflect at 

the population level. 

Conclusion: The synthetic matrix method would be a preferable alternative route 

in estimating mixing patterns in populations with the required socio-demographic 

data. Retrospectively, the synthetic mixing data can be used to reconstruct contact 

patterns in the past and therefore beneficial in assessing the effect of demographic 

transition in disease transmission. Universal infant vaccination has the potential 

to significantly reduce the burden of RSV associated disease, even with delayed 

vaccination between 5 and 12 months. This age class represents the group that is 

being targeted by vaccines that are currently under development. More accurate 

data measuring the duration of RSV specific maternal antibodies and the duration 

of infections are required to reduce the uncertainty in the model predictions. 
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Chapter 1 

Genera I i ntrod uction 

1.1 Defining the question 

Respiratory Syncytial Virus (RSV) was first recovered in 1955 from symptomatic 

chimpanzees and was known as the chimpanzee coryza agent (CCA) [135]. Soon 

after this discovery, Chanock et al [30, 31] isolated the virus in infants with severe 

lower respiratory tract infections (LRTI) and these findings revealed the magnitude 

of the role played by RSV in causing LRTI in infants and young children. Since 

its discovery, RSV has increasingly been recognized as one of the major viral 

pathogens causing extensive outbreaks in the infants and young children worldwide 

[145]. Work in the developing country setting has revealed that RSV predominates 

other respiratory viruses in the disease burden. Results from a study conducted in a 

number of developing countries show that viruses are the most common organisms 

recovered from children with LRTI, and RSV is the viral agent identified most 

frequently [185]. 

Most studies on RSV burden are based on hospital surveillance, which is use-

1 



ful in measuring the relative prevalence of different agents in severe LRTI. Some 

hospital studies also use population denominators to estimate RSV incidence but 

they likely under-estimate the true incidence because of health care access issues 

and they obviously under-estimate infection since they record only diseased indi­

viduals. Community based studies provide a clearer picture of the true incidence 

of RSV and have identified RSV incidence of severe pneumonia to be at least 

four fold higher than that based on hospital surveillance [148]. Variable rates of 

infection due to RSV associated lower respiratory tract infections in developing 

countries has been reported and values range from 4/lO00 cyo to 430/lO00 cyo 

[43, 193, 150, 15, 171]. 

RSV has also been implicated in severe lung disease in adults especially the 

elderly and the immunocompromised [52]. However, the peak of severe disease 

is observed in young infants mostly between the age of 1-3 months. A funda­

mental characteristic of RSV infection is incomplete immunity following primary 

and repeated infections [68, 3, 93] which implies that an individual will remain 

partially susceptible to re-infection throughout life. Other key features of RSV 

include its seasonally recurrent epidemics, patterns of occurrence in relation to 

strain variation, and age distribution of disease in relation to primary infections 

and re-infections. This chapter describes further the epidemiological features of 

RSV that make this a fascinating virus to study, but also which lead to difficulties 

in identifying the mechanisms that underlie the observed dynamics and in pre­

dicting the potential impact of immunization. Hence the argued need to utilize a 

modelling approach to explore the merits of different vaccination strategies. 

The pattern of RSV transmission has been shown to vary between different 

geographical regions but consistently displays a strong seasonal component [204, 

2 



149,26,32], the mechanism for which is not thoroughly understood. Meteorological 

conditions have been implicated [201] but insufficient evidence exists to support 

any such role. The availability of susceptible individuals to be infected, not only 

naive but also secondary susceptibles, is likely to play a fundamental role in RSV's 

epidemic dynamics [205]. Seasonal incidence is likely to be further complicated by 

differences in the social contact pattern relevant for the spread of an infection as it 

has previously been demonstrated for measles [12, 57]. A number of social contact 

studies have demonstrated that contact patterns are highly assortative with age 

[136, 133, 48, 110]. Given such mixing patterns between individuals, the force of 

infection (the per susceptible instantaneous rate of infection) could be subject to 

seasonal changes due to possible variation in the contact rates at different times of 

the year e.g. higher contact rates between children during school terms. However, 

this has not been quantitatively demonstrated for RSV and therefore remains an 

unknown. 

Given that the most severe RSV disease tends to occur in young infants be­

tween 1-3 months, then the necessity would be for a vaccine that confers protection 

on this group. A live attenuated vaccine has been put forward as the preferred 

strategy [161, 5] for immunizing uninfected infants because it is considered unlikely 

to cause vaccine enhanced respiratory disease that had been observed in a forma­

lin inactivated RSV vaccine recipients following subsequent natural RSV infection 

in children naive to RSV [33]. However, these early infants may fail to respond 

adequately to vaccination either because of immunologic immaturity or the sup­

pression of the immune responses by maternally derived antibodies [38]. Early 

infants are particularly susceptible to reaction from live attenuated vaccines, thus 

necessitating high vaccine attenuation with subsequent doubtful immunogenicity 

3 



[114]. Alternative vaccine strategies should therefore be evaluated that target a 

different group of individuals in the population but that offer a level of indirect 

protection to the most susceptible infants. Given the complexity of the transmis­

sion dynamics of RSV and the hindrances to effective vaccination early in life, 

the problem of RSV control lends itself to mathematical treatment. Mathematical 

models have a long history of contributing to the understanding of the impact of 

mass vaccination programmes in childhood diseases [56, 147,97,47]. Mathematical 

models are powerful tools that allow us to apply targeted measures more effectively 

as well as help in understanding some of the important underlying transmission 

processes influencing the behaviour of a system [131, 164. 186]. 

A variety of vaccine strategy options can be envisaged and since it may not 

be plausible or even ethical to try them on human subjects during clinical trials, 

their appropriateness can be explored using mathematical modelling. Modelling 

has the benefit that one can explore several options in a risk free environment. In 

order to examine the potential effects of introducing an RSV vaccine in the popu­

lation, a model is required that realistically describes the transmission dynamics of 

RSV concentrating on the characteristics that are important in RSV epidemiology. 

There have been previous attempts to model the transmission of RSV. A compar­

ison of a standard SIRS (Susceptible Infected Recovered Susceptible) model with 

a more realistic model of RSV transmission in which individuals acquire immunity 

gradually after repeated exposure has been undertaken [201]. The two models 

described the temporal dynamics equally well with the transmission parameter 

between the two models differing by a factor of 4. White at al [205] proposed a 

nested model that captured four possible host responses namely: partial suscepti­

bility, altered duration of infection, reduced infectiousness and temporal immunity 
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to infection. The best fitting model was one where an individual remained par­

tially immune during their lifetime. Neither of the two models evaluated the effect 

of introducing vaccination since they were not appropriately structured i.e. they 

did not include age-related heterogeneities that are essential for evaluating the 

benefit arising from vaccination. There has been only a single modelling study 

looking at the effect of introducing RSV vaccine into a population. Acedo et al 

[1] developed an SIRS model with two age classes, infants aged 0-1 years and the 

second age class was composed of all other individuals, and applied vaccination 

at birth. However, this model has a number of limitations: it assumes 1) no ma­

ternal antibody protection at birth; 2) that mixing between the two age classes is 

homogeneous; 3) that primary and secondary infections have got the same recov­

ery rates and level of infectivity; 4) that vaccination of infants at birth is 100% 

effective; and lastly, having just two age classes in the population is just a gross 

over simplifying assumption. These simplifying assumptions can lead to under or 

over estimation of the outcome of vaccination. All of these previous RSV mod­

els have compartmentalized the population exclusively in terms of the infection 

status and history excluding age heterogeneities. They also assume homogeneous 

mixing within the population ignoring differences in transmission potential despite 

evidence that most infections happen through a limited set of contacts [115, 136]. 

In the work presented in this thesis, I seek to address the limitations of the 

previous RSV models by developing a Realistic Age Structured (RAS) RSV model 

accounting for heterogeneity in the transmission by having age-specific rates of in­

fection, acquisition of disease and hospitalization. Further, the model will account 

for reduced susceptibility and reduction in infectiousness of individuals according 

the number of previous infections. The model construction and parametrization 
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draws heavily from data sources within a Kenyan coastal population that has been 

extensively studied [182] for RSV for over a decade. We will then use the model 

developed to explore the effect of introducing routine RSV vaccination in the pop­

ulation. Additionally, we have introduced a simple household multi-strain RSV 

model to describe the transmission of RSV both within the household and the 

general population. Transmission of RSV within the household is an important 

mechanism for spread due to the greater strength of contacts between individuals 

sharing living arrangements compared to contacts outside of the household [122]. 

1.2 Research objectives 

The overall objective of this study was to develop a mathematical model to describe 

the transmission dynamics of RSV within a developing country population, with 

which to explore the potential impact of different vaccination strategies on severe 

RSV disease in infants and young children. 

Specific objectives 

1. Develop basic understanding of the transmission dynamics of RSV through 

the use of both simple and realistic age-structured deterministic ODE (Or­

dinary Differential Equation) models. 

2. Estimate, using two different approaches, the contact rate for a rural coastal 

population in Kenya by which to define the who acquires infection from 

whom (WAIFW) matrix for a realistic age-structured model for RSV. 

3. Investigate the impact of introducing immunization into a developing country 
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population on the RSV associated number of hospitalizations. 

4. Demonstrate using the household model that more epidemiologically relevant 

parameters are potentially identifiable compared to the mean field models 

as well as form a template on to which further biological complexity can be 

added. 

1.3 Approach 

A mathematical model is constructed to which an increasing level of biological and 

demographical complexity is added. The approach that we have taken of gradually 

building up the model complexity facilitates our understanding of the individual 

elements and to know to what extent they contribute to the observed patterns 

of transmission. We then introduced routine vaccination into the model explic­

itly exploring the effects of altering the age at which the vaccine is administered 

throughout infancy and early childhood. Routine vaccination was implemented as 

the continuous vaccination of a proportion of individuals at all time points passing 

a specified age gate. Sensitivity analysis of the model predictions to uncertainty in 

the input parameters is investigated using Latin Hypercube Sampling (LHS) and 

the importance of each of the parameters is explained using Partial Rank Correla­

tion Coefficient (PRCC). This kind of incremental building of the model and the 

sensitivity and uncertainty analysis not only allows for the description of the trans­

mission dynamics and the effect of introducing vaccination in the population to be 

assessed but also gives information about which model parameters require more 

precise data estimates. The model developed was based on an extensive review of 

data on the biology and epidemiology of RSV. Model parameters that could not 
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be identified from the published literature were estimated by fitting the model to 

RSV temporal and age-specific hospitalization data from the Kilifi District Hos­

pital (KDH) using the rigorous maximum likelihood method. For the household 

model, we have considered a population grouped into households where people re­

tain their random interactions within the population but suffer an additional rate 

of infection for every infectious person in the household. The model consists of a 

fairly large but simply described set of ODEs where the stochastic nature of the 

transmission is captured by modelling all the possible household configurations. 

1.4 Declaration of author's role 

The studies presented in this thesis were designed by the author together with 

supervisors, Prof. James Nokes and Prof. Graham Medley. The author of this 

thesis was responsible for the protocol development, data analysis, the development 

of the mathematical model and the running of the simulations. For the contact 

study, the author was the lead investigator for the protocol development and the 

subsequent analysis of the data arising from the work. The diary study was a 

collaborative effort with the supervisors and Moses Kiti who was responsible for 

the day-to-day field activities including task allocation to the field workers. 

1.5 Overview of the thesis 

Following this introductory chapter, I have presented two review chapters. Chap­

ter 2 gives an introduction to the biology, the characteristics of transmission, and 

the status of RSV vaccines under development. Chapter 3 presents a review of 
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some of the most important parameters for the characterizing the epidemiology 

of RSV and discusses the limitations of the data. Chapter 4 gives an account 

of a study designed to define age-specific contact rates, used in later modelling, 

through the collection of daily diary recordings from a sample of individuals from 

the Kilifi Health and Demographic Surveillance System (KHDSS). The chapter 

also introduces a novel method that we used to generate a synthetic mixing ma­

trix which is based principally on household occupancy data from the KHDSS. 

This enables comparisons in a later chapter to be made in RSV transmission and 

vaccine control based on two different formulations of age-specific contact rates. 

Chapter 5 introduces a simple RSV mathematical model by which to investigate 

some basic characteristics of RSV transmission dynamics. Useful statistics such 

as the basic reproduction number (Ho) and the invasion threshold have been pre­

sented. Multiple supercritical endemic equilibrium points have been shown to exist 

using backward bifurcation curves and may potentially influence the outcome of 

vaccination. This model has been extended in Chapter 6 to include age hetero­

geneities in transmission enabling an investigation of the potential impact of RSV 

infection and disease from age-specific universal vaccination. Sensitivity and un­

certainty analysis, of this realistic age structured model, has also been presented 

by which to assess the robustness of the model predictions and identify the most 

important epidemiological parameters contributing to the uncertainty observed in 

the model outcomes. Chapter 7 contains the household model which we have used 

to demonstrate that the household models can potentially be used to determine 

more epidemiological parameters by distinguishing infection pattern within the 

household what is possibly indistinguishable at the population leveL The final 

chapter presents a brief summary and discussion of the main findings from the 
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work in the thesis and discusses the potential directions for future research. 
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Chapter 2 

Biology and epidemiology of RSV 

2.1 Historical overview 

Morris et al [135] observed sneezing, coughing and nasal discharge from a group of 

young chimpanzees in 1955. When they cultured nasal specimen from the symp­

tomatic chimpanzees, they recovered an unrecognized virus which they named 

chimpanzee coryza agent (CCA). They further reported that human beings, partic­

ularly adolescents and young adults, have antibodies in their sera directed against 

the coryza agent suggesting that they have experienced infection with the agent 

or one that is closely related. Soon after this discovery, Chanock at al [31, 30] 

isolated CCA like virus in infants with severe lower respiratory tract infections. 

These agents were shown to be serologically related and of note was their ability to 

induce syncytia and multinucleated cells in Chang cells and therefore respiratory 

syncytial virus was suggested as a more appropriate name. Following its discov­

ery, RSV has been identified as one of the major viral pathogens causing extensive 

outbreaks in the very young [145] and vulnerable adults [53, 197]. 
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2.2 Antigenic variants of RSV 

RSV is a member of the genus Pneumovirus in the family Paramyxoviridae. It 

has a negative sense, non-segmented single-stranded RNA genome comprising of 

10 genes and encoding 11 proteins. These include genes for the attachment gly­

coprotein (G), the fusion protein (F), the small hydrophobic protein (SH), three 

matrix proteins (M1, M2-1 and M2-2), three nucleocapsid proteins (N, P and L) 

and two non-structural proteins (SH1 and SH2) [192, 23]. The two non-structural 

proteins are expressed only during cell infection and are not packaged into the vi­

ron. See Figure 2.1 for the structure of RSV. Based on serological reactivity with 

monoclonal antibodies, two antigenic groups, A and B have been identified [138, 6] 

and the data does suggest that the two sub-types may have evolved separately for 

a considerable time period. The main difference in the two subtypes was observed 

in the G protein which has also been reported to be the most variable protein [108] 

as demonstrated by glycoprotein specific assays of antibody responses induced by 

RSV infection of respiratory tract of cotton rats. It has also been shown that RSV 

A and B have 53% amino acid (AA) homology between prototype strains of the 

G protein [109] while the F protein has got 89% AA homology [107] between pro­

totype strains. In addition to group variability, it has been noted that numerous 

strains and designated genotypes exist within both groups [3, 4, 24]. 

2.3 Infection, immunity and re-infection 

RSV has a very high rate of transmission in the first few years of life. Studies 

show in excess of 50% of newborns are infected in their first year (first epidemic) 
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and the vast majority of the remainder in year two (second epidemic) [68, 93]. 

For example, in a classic study from the USA in which a cohort of infants were 

intensively monitored over the first five years of life showed that 68% (95% Cl: 59.6 

- 75.7) of the children contracted primary infection in their first year of life while 

98% (95% Cl: 87.1 - 99.8) of the remaining contracted primary infection during 

the second year of life [68]. Worldwide, it is estimated that 33.8 million (95% 

Cl: 19.3 - 46.2) new episodes of RSV associated lower respiratory tract infection 

occurred in children ~ 5 years between January and December 2005 with at least 

3.4 million (95% Cl: 2.8 - 4.3) episodes requiring hospitalization [145] indicating 

that the global burden of RSV is huge. A more detailed review of the rates of RSV 

infection can be found in Chapter 3. 

RSV infection is usually symptomatic in children less than 5 years of age [150], 

almost invariably so in infancy [87] and may result in disease requiring hospital­

ization in the very young children, mostly those in their first year of life [150, 68]. 

There exists evidence from a number of studies that RSV in older children and 

adults is mostly associated with mild infection [87] but in some cases, there are 

reports of moderately severe disease [88, 52]. Hall et al [88] prospectively evalu­

ated healthy adults aged between 18 and 60 years for respiratory virus infections 

between 1975 and 1995. Of the total number of individuals, 211 individuals (7%) 

acquired RSV infection with 84% of the subjects being symptomatic. Upper respi­

ratory tract infection was observed in 74% of the individuals while 26% had lower 

respiratory tract symptoms. Overall, 40% of the subjects were febrile. These 

findings have been corroborated by a human experimental study that observed 

symptomatic infections in adults inoculated with RSV [89]. 

The risk of developing lower respiratory tract infection following primary in-
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fection has been shown to decline in community studies. This evidence for decline 

in the risk of disease has been demonstrated by Glezen et al [68] where it was 

observed that this risk decreased from 22.4/100 cyo in children less than one year 

of age to 7.7/100 cyo in children aged 37-48 months. The risk of disease was zero 

in children over 49 months. Henderson et al [93] has demonstrated that age is no 

the only important factor but history of infection as well influenced the disease 

outcome. The authors noted that the attack rate of the first infection was 98% 

while that of the second and third infections respectively declined to 75% and 

65% respectively. Half of the children who experienced second infections had less 

severe disease compared to those with primary infection while 14% had more se­

vere manifestations. When third were compared with second infections, 38% were 

less severe while only 4% had more serious disease. A more recent study quanti­

fying the effect of the history of infection on the risk of RSV disease i.e. severe 

lower respiratory tract infection, reported that the risk of disease for reinfection 

was lower relative to primary infection i.e. a reduction in the risk from 14.1% to 

4.8% [155]. It is difficult to separate and identify the independent effect of age 

and history of infection on the expression of disease since reinfection and age are 

highly correlated and therefore it is likely that the two factors interact to modify 

the disease outcome. 

More recently, pathogenicity of RSV has been demonstrated in elderly adults 

[90, 52, 88], institutionalized individuals [53] and those with compromised immune 

function [197, 52]. The importance of RSV infection in the elderly is increasingly 

being recognized. RSV associated pneumonia in individuals 65 years of age or 

more has been estimated to cause 14,000 - 62,000 hospitalizations each year in the 

United States of America. At a rate of 40 - 180 hospitalizations per 100,000 in 
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individuals older than 65 years of age, hospitalization is estimated to cost $150 -

$680 million each year in the USA [90]. 

2.3.1 Immunity to RSV 

It has been established that RSV can reinfect throughout life. In fact, in the 

family study conducted by Hall et al [87], significant attack rates were seen in all 

age groups where the attack rate in adults was reported to be 16.8% compared 

to 29.4% in infants. The study by Henderson et al [93] reports the attack rate 

for second infections in the second year of life to be 74.5% while that of third 

infections to be 65.4%. Following this, the study by Glezen et al [68] reported an 

attack rate of second infections to be 75.9/100 cyo (95% Cl: 55.6 - 100.6). These 

findings taken together point out to the fact that the immune response elicited by 

a natural infection is incomplete and hence the common occurrence of re-infections 

throughout life. 

The immune response to RSV is both humoral [36, 78] and cell mediated [159]. 

A number of studies [149,68,85,21] have observed that disease occurs during early 

infancy when maternal antibodies are universally present although some studies 

have however shown that high levels of RSV specific maternal antibodies can po­

tentially offer a protective effect against RSV infection [172, 154]. The protection 

provided however, appears to be partial and of limited duration. The high in­

cidence of infection in the very young does seem to support the hypothesis that 

maternal antibodies do not offer complete protection. Parrott et al [160] have in 

fact argued that one of the factors that seem to contribute to an impaired immune 

response is immunologic suppression produced by maternally derived antibodies 
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in serum. Another study conducted by Ogilvie et al [154] has shown that the 

severity of illness from RSV infection in the first year of life is modified by high 

levels of maternal immunity. The authors do suggest that three possible mech­

anisms of protection may have been at play 1) the mother herself is protected 

from re-infection (a potential major source of infection for the infant), 2) maternal 

immunity may be transferred through colostrum or breast milk and 3) humoral 

antibody transferred across the placenta. More recently, it has been shown that 

prophylactic administration of RSV immunoglobulin given to high risk infants and 

young children is effective in reducing severe disease [76]. 

Similar to the case of maternal antibodies, the presence of acquired antibodies 

in individuals who have had a previous infection does not seem protective against 

infection although the risk of re-infection has been associated with the number 

of previous re-infections [87] and the level of pre-existing antibody [162]. Lack of 

antibody mediated protection could be due to the fact that RSV-blocking antibod­

ies are usually elicited at very low frequencies after exposure sometimes requiring 

years of repetitive exposure to the virus for their acquisition [36]. An interesting 

observation by Cane at al [25] is that serum antibody responses are closely linked 

to the genotype of the infecting virus. This would make it possible to determine 

the genotype of the infecting strain even in individuals for whom no virus isolation 

is available but only on primary exposure when the individual in naive. Upon 

re-exposure with a different variant, there is a broadening of antibody response 

and boosting of anti bodies to previous infecting strains [183]. Sande et al [178] 

have also demonstrated that serum infant and young child neutralizing response 

to RSV is significantly group specific (but not genotype specific) with this pattern 

of homologous vs heterologous reactivity similar irrespective of whether the test 
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viruses were contemporary or historical. 

Given that repeat infections are observed even in the presence of effective neu­

tralizing antibodies, it is likely that RSV infection is cleared by cell-mediated 

immune response which acts by directly destroying infected cells or by indirectly 

limiting inflammation in the lungs [159]. Healthy adults have been shown to dis­

play T -cell activation levels that are sufficient to mediate viral clearance from the 

lungs which promotes low levels of inflammation and hence reduced tissue pathol­

ogy [159]. From the studies discussed in this section, it seems that one of the major 

factors driving re-infection even in adulthood is the lack of a complete immune 

response. 

2.4 Characteristics of transmission 

2.4.1 Seasonality 

The transmission of RSV is characterized by a pronounced seasonal pattern in both 

the tropical [32, 168] and the temperate regions [204, 190]. Epidemics usually occur 

annually with the exceptions of some Scandinavian countries e.g Finland which 

experiences a minor peak in April followed by a major peak in December [204] on 

a biennial basis i.e. double epidemic every two years. In general, seasonality is 

characterized by a duration of high transmission followed by a period of fade out 

with the exception of some tropical countries e.g. Singapore and Hawaii, where 

RSV has been observed to be present all year round [32, 168]. The reason for these 

periodic outbreaks are not clear although a number of factors have been postulated 

[71]. In a review by Weber et al [204], RSV outbreaks were more frequently 
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associated with rainy weather than the colder season with RSV peaking one or 

two months after the onset of the rainy season. In desert climates e.g. Kuwait 

[98] and Saudi Arabia [106], it has been reported that more cases are seen in 

the colder months. However, countries with perennial high rainfall exhibit a less 

clear cut seasonality pattern for example in Singapore and Hawaii where RSV is 

reported through out the year [32, 168]. In these regions, RSV cases are observed 

to be more in one half of the year compared to the other suggesting that perhaps 

the cyclical pattern is at least partly driven by biological interactions between 

virus and host. In the temperate climates [127], RSV peaks mainly during the 

winter months and this scheme appears to be independent of the rainfall pattern 

as winter has high rainfall in places such as Santiago in Chile [11] yet low rainfall 

in places such as Johannesburg in South Africa [111]. From the findings reported 

in the studies above, it seems that neither temperature nor rainfall is the major 

determinant of the timing of the RSV epidemics observed. However, climatic 

and geographical factors do seem to play a role but not exclusively, indicating 

that there may exist other factors, e.g host or social behavioral that influence the 

timing of the epidemics. Social behavioral factors such as school vacations and 

indoor crowding have been hypothesized to play a role [156]. Studies carried out 

have suggested that infants most likely acquire infection from school going children 

within the same household [156, 134, 87] with the school year being proposed as 

a possible mechanism driving the seasonality [200]. The seasonal pattern is also 

very likely influenced by the short lived immunity to RSV [3] which may translate 

into a build up of susceptibles who are available for re-infection with the addition 

of new births creating individuals who have lost maternal antibody protection. It 

is also worth noting that from a methodological point of view, most of the studies 
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reported are passive and therefore rely on the observability of subjects seeking 

medical attention from a health facility. It is possible that even in the absence of 

cases in the health facilities, transmission within the population is on going but 

without severe cases being observed. 

2.4.2 Transmission route 

It has been observed that RSV is highly transmissible which is evidenced by the 

rapidity with which it occurs following birth with 68% (95% Cl: 59.5 - 75.7) or more 

new borns becoming infected in their first year of life [68]. It has also been shown 

that re-infections are common in older children and in adults [88]. It therefore 

seems intuitive that RSV transmission from one individual to another is highly 

effective. A number of studies have been carried out that have attempted to 

generate evidence on the route of transmission or RSV. 

Hall et al [83] did a study to test whether nosocomial spread of RSV could occur 

through contact with environmental surfaces contaminated by RSV infected nasal 

secretions. RSV could be recovered from countertops and gloves for the longest 

period, an average of 7 and 5 hours respectively. On cloth, the infectious virus was 

recovered for an average of 2 hours while on skin and paper tissue, survival was 

diminished to an average of 30 minutes. RSV was recovered from hands contacting 

surfaces (cloth and tissues paper) contaminated by fresh secretions of infected 

infants for an average of 3-10 minutes while from countertops the average duration 

was 20-25 minutes. These findings indicate that RSV may survive sufficiently long 

in the environment to allow transfer of infectious virus to hands in contact with 

contaminated surfaces suggesting that such a route of transmission is plausible. 
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Hall et al [86] carried out another study to determine the possible spread of RSV 

to young adults working in a pediatric ward. Volunteers were divided into three 

groups with each of the group exposed to at least one route of transmission. The 

routes of transmission are a) by large particles or droplets, b) by self-inoculation 

after touching contaminated surfaces and c) by small particle aerosol. Infection 

was reported in the cuddlers (volunteers who cared for the babies) and touchers 

(volunteers who were only allowed to touch surfaces contaminated with the baby's 

nasal secretions) but not in the sitters (volunteers exposed to the infant by sitting 

a distance of more than 6 feet from an infant's bed) group. Additionally, all 

the cuddlers infected developed upper respiratory tract symptoms. This finding 

suggests that the spread of RSV may occur by close contact with direct inoculation 

of large droplets or by self-inoculation after touching contaminated surfaces. The 

inoculum obtained through direct inoculation of large particles may be greater 

than that received by contact with contanlinated surfaces since the amount and 

survival of infectious virus is dependent upon the type of surface [86]. 

The feasibility of transmission by fomites has been demonstrated for rhinoviruses. 

Hendley et al [94] showed that rhinovirus would survive on environmental surfaces 

and skin for ~1 hour and that subjects could infect themselves by touching their 

nasal of conjunctiva mucosa. Since transmission by fomites has also been shown 

to be a possible transmission route for RSV, then the importance of this route of 

transmission in the natural setting will depend on a) the titre of the virus in the 

secretions b) the minimal infectious dose required to allow for virus replication in 

the human host and c) the relative sensitivity of the route of infection. However, 

the inoculum received through direct inoculation of large mucosal particles may 

be greater than received by contact with contaminated particles since the virus is 
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extremely labile when exposed to the environment and the type of surface. Di­

rect inoculation may therefore be more important as a route of transmission than 

transmission by fomites. 

2.4.3 Risk factors for severe RSV disease 

Pneumonia is a major cause of morbidity and mortality in the developing world 

and respiratory viruses make a significant contribution to this disease burden [185]. 

Among the viruses, RSV is one of the main contributors to community acquired 

pneumonia [149, 145]. However, RSV infection leads to generally mild illness of 

the upper respiratory tract but in a few patients, it will progress to severe disease 

requiring hospitalization. In this section, the main risk factors that influence the 

incidence of RSV-LRTI are considered and categorized into both intrinsic and 

extrinsic risk factors. 

2.4.3.1 Extrinsic risk factors 

A number of studies have identified crowding as a risk factor to RSV-LRTI . In the 

Thcson cohort study, the multivariate analysis showed a significant effect of the 

number of persons sharing a bedroom (RR (Relative Risk) , 4.0: p<0.002) on the 

development of RSV -LRI [99]. In a birth cohort intensively monitored for RSV over 

3 RSV epidemics identified that crowding (measured by the number of children in 

the home) and the number of children under six years in the home were found to 

correlate with increased risk of RSV-LRTI [157]. Another study investigating the 

risk factors for severe RSV in The Gambia identified that increased risk of RSV­

LRTI was associated with greater numbers of children in the age group 3- :-::; 5 
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years living in the same compound (OR=9.1 : 95% Cl: 3.7-28 for ~ 2 children 

in the age group 3- ~ 5 years) [202]. In a case control study examining the risk 

factors of severe RSV in Alaskan children reported that having 4 or more children 

< 12 years in a household (OR=2.13: p=O.OI) and a household crowding index 

of ~ 2 (OR=1.72: p=O.024) were significant independent risk factors to severe 

RSV disease [22J. The household crowding index is defined as the total persons 

in a household divided by the number of rooms excluding bathrooms, hallways, 

closets. The actual mechanism through which crowding increases the risk is not 

well understood but it is hypothesized crowding is related to higher viral load either 

through interpersonal transmission or through a greater possibility of exposure to 

RSV in the first year of life through multiple persons in the household [188J. 

It has been established that respiratory illnesses are increased in infants and 

children attending day care groups outside of the home [191, 103]. A study by 

Strangert et al [191] reported that 1 year olds in day care centers had more febrile 

illnesses per child and more days of rhinitis alone than matched children in home 

care (p<0.05). In a case control study done in Atlanta [7] that examined the role of 

risk factors in hospitalized children (the most common causative agent associated 

with illness was RSV) suggested that regular attendance in a day care center with 

more than six children was an important risk factor for severe disease requiring 

hospitalization (OR, 2.08: p<0.05). A study by Liese et al [120] did not find 

day care attendance of the child as a significant factor but day care attendance 

of a sibling was identified as a significant independent predictor of RSV illness 

requiring hospitalization (OR, 3.9 95% Cl, 1.9-8.3, p<O.OOI). 

Passive smoke exposure has also been identified as a risk factor to the devel­

opment of severe disease. In a case-control study carried out in Istanbul, Turkey 
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[77], the authors enrolled 28 infants with bronchiolitis and 30 in the control group. 

In this study, they demonstrated that serum cotinine levels of 10.8 mg/mL in 

the bronchiolitis cases were significantly elevated compared to controls with 3.9 

mg/mL (p<O.OOOI). There were also significantly more parents smoking in the 

households of children hospitalized with bronchiolitis compared to control sub­

jects (82% vs 70% p<0.05). In this study, no other risk factors were examined and 

therefore a multi-variate analysis was not performed. In a Spanish longitudinal 

observational cohort study carried out for two years spanning 1998 to 2000 that 

enrolled all premature infants :'S 32 weeks GA (gestational age), observed in both 

the multivariate and univariate analysis that tobacco smoke exposure was a signif­

icant risk factor for development of severe RSV disease requiring hospitalization 

[27]. A study carried out in rural costal Kenya to identify the risk factors asso­

ciated with increased risk of progression to RSV associated pneumonia identified 

that exposure to tobacco smoke was a significant risk factor [157]. However, there 

exist other studies that have not identified exposure to passive smoke a significant 

risk factor [120, 99]. The reason for the inconsistent evidence is probably because 

the amount of smoke exposure is critical. However, the correlations reported have 

been made by measuring actual exposure rather than the extent of smoke expo­

sure. In future studies, there may be merit in measure the amount of exposure 

rather that just exposure alone. 

2.4.3.2 Intrinsic risk factors 

Birth during the first half of the RSV season is a risk factor for the development of 

RSV lower respiratory tract infection. In a study consisting of infants enrolled into 

Thcson children respiratory study, the investigators reported that the incidence of 
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RSV-LRTI was higher for children born from July to December (16.2%) compared 

to those born from January to June [99]. Since most disease occurs in infants early 

in life, it is not surprising that birth during the first half of the epidemic season is 

associated with increased risk of RSV LRTI. Children born early in the epidemic 

are more likely to get infected in the epidemic, since there is a longer window for 

RSV infection, and hence get early infection when they are at the highest risk of 

developing severe disease compared to children born later in the epidemic (less time 

to get infected) who may not become infected until the second epidemic and hence 

they would be older. It is also possible that babies born early in the RSV epidemic, 

they have got low levels of RSV specific maternal antibodies since their mothers 

have not been exposed to the infection during pregnancy. Babies born in the later 

half of the RSV season may have had boosted levels of maternal antibodies since 

their mother may have had a re-infection. Boosted levels of maternal RSV specific 

maternal antibodies have got a potential of reducing the risk of infection or disease 

when one gets infected. 

It is clear from a number of studies [68, 148, 145] that severe disease is most 

likely in early infancy following infection. A prospective surveillance study of 

severe and very severe pneumonia in children aged::; 5 years admitted from 2002 

to 2007 in a rural district hospital in coastal Kenya observed that approximately 

55% of all severe and very severe cases were reported in children :s: 6 months of age 

[148]. In these infants, the absence of protective maternal antibodies [152, 153, 67], 

narrow airways [143] and an immature immune system [39] may play a significant 

role in predisposing them to more severe RSV disease. 

The role of breast feeding has been established in reducing the frequency and 

the duration of LRTI [123]. In the Tucson study [99], it is reported that the OR 
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for having a RSV-LRTI in those infants of mothers with a low educational level 

who were not breast fed compared to those who were breast fed was 6.8 (95% Cl: 

0.8-56.0). Although a majority of case control studies in the developed world have 

reported that breast feeding protects against RSV disease [99, 123], others studies 

exist that have not shown this protection [7]. The risk factor study in The Gambia 

by Weber et al [202] has also not shown the protective role of breast feeding in the 

development of severe RSV. One of the possible reasons for the inconsistencies in 

the studies reported is in the definition of breastfeeding. The studies showing no 

effect did not define exclusivity in breastfeeding. The criteria for determining the 

effects of breast feeding should be strictly applied e.g. definition of exclusive breast 

feeding and controlling of other risk factors in the multivariate analysis, otherwise 

the role of protective effect might seem diminished. The possible biological reason 

that would result in breast milk being protective is the presence of lactoferrin and 

anti-RSV IgA in colostrum [92, 91, 38]. It has also been proposed that breast milk 

promotes lung maturation through prolactin [91]. 

Three possible avenues have been proposed for the control of RSV: prevention 

through vaccination, case management through supportive treatment and mitiga­

tion of risk factors [202]. In an ideal situation, it would be desirable to implement 

a combination of the three methods. Which of the methods or combination of 

methods to implement in resource poor settings is subject to a number of fac­

tors. Vaccination is likely to be the most effective method but so far there are 

no licenced RSV vaccines. Supportive treatment e.g. oxygen therapy, cohorting 

to reduce the nosocomial spread of RSV or prophylactic immunization of high 

risk infants using palivizumab are beyond the ability of a resource poor setting. 

Therefore, the reduction or removal of risk factors, which we have just discussed, to 
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severe RSV disease might remain the most likely solution before a vaccine, which 

is affordable, safe and immunogenic becomes available. It would be difficult to 

mitigate or completely remove some of the risk factors e.g. having siblings in the 

household or time of birth relative to the RSV epidemic timing. However, parents 

can be sensitized about the benefits of exclusive breast feeding and reduction in 

the exposure to indoor smoke during the pre-natal period. This sensitization on 

a wide scale level e.g. country level may have significant benefits in reducing the 

number of not only RSV related severe disease but other respiratory infections. 

2.5 State of RSV vaccine development 

RSV is a high priority for vaccine development because of the high disease burden, 

community and hospitalized, that it causes in the very young children coupled with 

the fact that supportive treatment is the only alternative available to individuals 

who have developed severe disease. This supportive treatment remains very ex­

pensive in the developing world and would be far from affordable in many health 

care institutions. In the developed world, the cost associated with treatment of 

severe LRTI is significantly high [90, 145]. So if a vaccine becomes available, math­

ematical modelling has shown that vaccination of infants against RSV lnight be 

cost effective [132] and can potentially result in significant cost savings that can 

be directed to other projects. 

One of the early RSV field vaccine trials was conducted in 1966 in California, 

USA [33]. The trial involved administering a formalin inactivated RSV vaccine to 

children aged between 4 months and 9 years. The investigators reported that in the 

subsequent RSV season when children were exposed to wild type virus there was 
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a significantly greater number of RSV infections admitted to hospital among the 

vaccine recipients compared to the non-vaccinated group in infants 4 months to 18 

months. Clinically, the vaccinated group was hospitalized with more severe disease 

than the hospitalized non-vaccinated cases. However in older children, the response 

to natural infection seems unaltered by the vaccine. From the results, the vaccine 

proved to be non-protective. It appears that aside from failing to protect, the 

vaccine altered in some manner the host response to natural RSV infection. The 

exact mechanism under which the vaccine potentiated disease is not well known 

but it has been postulated that inadequate levels of serum neutralizing antibodies, 

lack of local immunity, immune complex deposition and excessive induction of a 

type 2 helper T-cell immune response [165] were responsible. 

Different vaccine target populations have been proposed but the highest priority 

target population is children greater than 6 months old. These children are more 

likely to tolerate the vaccine with fewer adverse respiratory events since their 

immune system is more mature and they have lower levels of RSV specific maternal 

antibodies. Table 2.1 shows some of the other proposed target population groups 

for a vaccine population and the primary vaccine approaches. In the remaining 

part of this section, we will present a summary of the current status of some of 

the vaccines that are under development. 
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Table 2.1: Key target populations for an RSV vaccine. Table adopted from Anderson et al [5] 

Target population 

0-6 months old 
infants 

Key considerations 

Goal: prevent serious complications from 
infection 
Rationale: highest rate of 
hospi talizations 
Challenges: presence of maternal 
antibodies, immature immune system, 
susceptibility to RSV disease, history of 
the formalin inactivated RSV enhanced 
disease 

Primary vaccine approaches 

1. Live attenuated RSV 
2. Live chimeric virus vectors 
3. Gene-based vectors 4. Potential for 
boosting sero-negative infants with sub­
unit protein or particle-based vaccine af­
ter priming with live or gene-based vector 
vaccines 

Continued through the next page ... 



~ 

Target population Key considerations 

6-24 months old 
children 

Goal: prevent serious complications from 
infection and reduce transmission to 
at-risk household contacts 
Rationale: :::::: 50% of childhood 
hospitalizations occur after 6 months of 
age, maternal antibodies has waned, less 
susceptible to severe disease and more 
mature immune system than younger 
children, potential to decrease 
transmission to others 
Challenges: clinical endpoint may be 
more difficult to achieve than in neonates, 
history of formalin inactivated RSV 
enhanced disease 

Primary vaccine approaches 

1. Gene based vectors 
2. Live-attenuated RSV 
3. Live chimeric virus vectors 
4. Potential for immunizing RSV­
seropositive children with subunit protein 
or particle-based vaccine or boosting sero­
negative children after priming with live or 
gene-based vector vaccines 

Continued through the next page ... 



~ 
I-' 

Target population 

Pregnant women or 
women of child 
bearing age 

Key considerations 

Goal: increase passive antibody 
protection to foetus and prevent disease 
at most vulnerable age, block mother to 
infant transmission 
Rationale: high titre neutralizing 
antibody protects, can delay vaccination 
to older less vulnerable child with more 
mature immune system 
Challenges: having experienced multiple 
previous infections may limit response to 
vaccination, need for substantial increase 
in antibody levels to protect the infant, 
quantify the relationship between 
neutralizing antibody level and degree of 
protection 

Primary vaccine approaches 

1. Subunit protein with standard adju­
vants 
2. Particle including virus-like particles 
(VLP) with standard adjuvants. 

Continued through the next page ... 
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Target population Key considerations 

Adults ~ 65 years Goal: protect from serious complications 
of infection 
Rationale: substantial RSV -associated 
disease in elderly population 
Challenges: having experienced multiple 
previous infections may limit response to 
vaccination, need to improve on 
protection provided by natural infection, 
difficult to diagnose and lack of clear 
indicators of the severity of RSV disease 

Primary vaccine approaches 

1. Subunit protein with novel adjuvant 
2. Particle include VLP with novel adju­
vant 
3. Gene-based vector with subunit protein 
or particle boost 



TA2cp248/404/1030~SH is a cold-passaged, genetically engineered by reverse 

genetics live attenuated vaccine [114]. It predecessor cpts248/404 was adminis­

tered in infants and caused significant nasal congestion that interfered with feeding 

and sleeping. Karron et al [114] have reported on afield study of rA2cp248/404/1030~SH 

and only 44% of infants who received two doses of of the vaccine had detectable 

levels of antibody responses. The magnitude of vaccine virus shed was lower after 

the second dose than after the first indicating that an immune response capable of 

restricting viral replication had been induced. This surrogate for vaccine efficacy 

has further being supported by Wright et al [208]. Unlike the field vaccine of a 

live attenuated RSV vaccine in 1966 [33], enhanced disease was not observed when 

children and infants initially infected with vaccine virus were naturally infected 

with RSV [208, 114]. 

A phase 1/2a, randomized, double blind, placebo-controlled study to evaluate 

the safety, tolerability, immunogenicity of viral shedding of MEDI-559 (developed 

by MedImmune LLC and is a continuation of rA2cp248/404/1030f}.SH) , a live 

attenuated intranasal vaccine against RSV in healthy RSV seronegative children 1-

<24 months of age is currently underway [35]. The study comprises of two cohorts 

with the first cohort including RSV seronegative children between 5-<24 months 

while the second cohort is of infants 1-<3 months regardless of their baseline 

serostatus. The vaccine is given at a dosage of 0, 2 and 4 months. The primary 

outcome is the incidence of solicited symptoms after each dose through day 28 

after each dose. The secondary outcome measure is the incidence and magnitude 

of MEDI-559 shedding at 7, 12 and 28 days after each dose. The study begun in 

October 2008 and the expected date of completion was January 2012. 

b/hPIV3/RSVF2 is a bovine PIV3 (parainftuenza virus) chimeric construct 
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that expresses the human PIV3 fusion (F), PIV3 hemagglutinin-neuraminidase 

and RSV-F proteins from the bovine PIV3 viral genome [194]. A phase 1j2a 

randomized, double-blind, placebo-controlled, dose-escalation clinical trial of the 

vaccine to evaluate the safety, tolerability immunogenicity and vaccine-like shed­

ding against RSV in healthy 6-<24 months old and seronegative children and in 2 

months old RSV immunity unscreened infants is currently ongoing. Doses of vac­

cine and placebo are given at 2, 4 and 6 months. The primary outcome measure 

is incidence of solicited symptoms from administration of study vaccine through 

28 days following each dose while the secondary outcome is the incidence and 

magnitude of vaccine-like viral shedding at 7, 12 and 28 days after each dose [34]. 

However, in a double-blind placebo controlled trial involving 120 healthy adults 

aged between 18-40 years, the vaccine demonstrated that it was safe (produced 

no medically significant vaccine-related adverse events), did not boost RSV anti­

body titres from their baseline levels and was highly restricted in replication in 

seropositive adults. 

Munoz et al [139] performed a randomized, double blind, placebo controlled 

study to determine the safety and immunogenicity of an RSV purified fusion pro­

tein (PFP-2) in women in the third trimester of pregnancy and their offspring. 

The vaccine was administered intramuscularly. The vaccine was safe, well toler­

ated and immunogenic in women in the third trimester of pregnancy. Seventy five 

percent of vaccine recipients had a response to PFP-2 by Western blot and 95% 

had a ~4 fold rise in IgG ELlS A Ab after immunization versus none in the placebo 

group. Transplacental transfer of anti-F IgG antibody was efficient and geometric 

mean concentrations of anti-F IgG antibody by ELISA were four fold higher in 

infants of vaccine recipients at birth, 2 and 6 months after delivery than in infants 
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of placebo (p<O.OI). Unfortunately, neutralizing response was generally quite low 

with ~ 10% of the vaccinated mothers showing a ~ 4 fold rise in titre of neutral­

izing antibodies. Though potentially useful in adult popuiations, subunit vaccines 

such as PFP-2 may theoretically predispose RSV-naive recipients for enhanced 

disease since they stimulate a bias toward a Th2 response [181]. Additionally, a 

subunit vaccine given to infants must be able to overcome any immunosuppressive 

effects of RSV specific maternally acquired antibodies. It is worth mentioning 

that a novel delivery method of RSV fusion protein vaccine in pregnant mothers 

is being developed by Novavax [64] using nanoparticies [105]. Nanoparticle deliv­

ery has the advantage of specifically binding to target cells and delivering high 

doses of the therapeutic contents. Target delivery is achieved by functionalizing 

the surface of the nanoparticles with proteins or small molecules that will bind to 

specific molecules on target cells while avoiding non-specific binding to other cells 

or tissues. 

2.5.1 Challenges to RSV vaccine development 

Young age at vaccination. The highest risk group for severe disease is in 

children less than six months of age [149, 150, 68, 82]. Thus an RSV vaccine 

would ideally be administered as soon as possible after birth. Healthy infants at 

this early stage of life have detectable levels of RSV specific maternal antibodies 

from their mothers [78, 152]. Therefore an RSV vaccine given in infancy would have 

to stimulate an acquired immune response in the presence of maternal antibodies. 

RSV vaccination will likely be delivered in the first six months of life at a time 

when other vaccines are given and therefore it will be of utmost important to 
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ensure that an RSV vaccine given at this age will not interfere with the safety and 

efficacy of routine childhood vaccines. In the event that the administration of an 

RSV vaccine through the standard inununizations schedule is not possible, then 

vaccination outside of the highest risk age group for severe disease would have to 

be investigated. 

Possibility of severe disease. In the 1960's, a formalin inactivated RSV 

vaccine administered to infants and young children increased the risk of developing 

more severe disease following infection with the wild type virus [33] compared to 

children who did not receive the vaccine. This unfortunate clinical experience 

has led to heightened safety evaluation of candidate vaccines [114, 139]. Live 

attenuated vaccines are usually formulated to be given intranasally so as to elicit 

local inununity at the site of natural infection. Any live attenuated virus therefore 

would need to elicit inununity without causing inflammation of the respiratory 

tract. 

In a recent review evaluating the global burden of RSV associated acute lower 

respiratory infections [145], it was estimated that 19.3-46.2 million new episodes of 

RSV associated ALRI occurred in children ~ 5 years worldwide in 2005 with ap­

proximately 66,000-199,000 RSV related deaths with 99% of the deaths occurring 

in developing countries. So, the issue of developing a vaccine for the developing 

countries is key since they stand the highest chance of benefiting from such a vac­

cine. Clinical trials of candidate vaccines in these target populations are warranted 

but may be out of reach since they are expensive to carry out and time consum­

ing. Hence progress of trials in low income countries requires the involvement 

of international organizations e.g. WHO (World Health Organization) or PATH 

(Program for Appropriate Technology in Health) to give their stamp of approval 
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and ensure that the vaccines are affordable in these populations. 

To date, there remains no licenced vaccine for RSV and the need of preventing 

RSV associated illnesses in the population remains unmet. However a number of 

pragmatic recommendations have been proposed as the way forward by Anderson 

et al [5] as listed below: 

• Develop good surveillance and disease burden data from the developing coun­

try setting to guide resource allocations decisions. 

• Develop educational tools for patients, caregivers and much more impor­

tantly to government leaders in charge of making public health decisions to 

articulate the cost and potential benefits of an RSV vaccine. 

• Develop RSV transmission mathematical models to illustrate how immuniza­

tion may elicit both direct and indirect (vaccinating one target group may 

protect another population group) benefits. 

In this project work, I have focused on the latter looking at the optimal age 

at which an RSV vaccine, should it become available, should be given. This 

involves the development of an age-structured mathematical model capturing the 

most important characteristics of RSV transmission, implementing vaccination in 

different age groups and then comparing the outcomes. However, the adoption of 

any single or combination of vaccination strategies would be subject to different 

factors including but not limited to: logistical, political goodwill and economic. 
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Chapter 3 

Review of data on the epidemiology and 

tra nsm ission of RSV 

3.1 Introduction 

Since it was first isolated in 1957 [30], RSV has been identified as the most impor­

tant viral cause lower respiratory tract infections in infants and children worldwide 

[145, 177]. Additionally, a number of studies have been carried out to enhance our 

understanding of the epidemiology of RSV. These studies include investigations 

of the role of maternal antibodies in protecting infants against disease and infec­

tion, the incidence of infection and disease in the community, and the duration of 

infection and immunity. 

In this chapter, I will present some of the estimates of the epidemiological 

parameters important in describing the patterns of transmission of RSV in its 

host population. The reason for this review is two fold. Firstly, there have been 

recent advances in RSV vaccines. A recent trial of a recombinant live attenuated 
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vaccine demonstrated that the vaccine was well tolerated and immunogenic in 

the key target age group of 1-2 months [114]. For the evaluation of the vaccine 

efficacy, more vaccine trials are needed and there is an argument that they should 

be multi-country. There is therefore a requirement to establish the burden of 

the infection and disease in order to establish baseline denominator data for the 

selection of suitable sites that must meet the criteria of having this kind of detailed 

baseline data. Secondly, there has been an interest in describing the transmission 

of infectious diseases in communities using mathematical models and some have 

been used to evaluate the effectiveness of different control strategies. This has been 

true with RSV where a number of models have been published [201, 1, 205,206]. 

The integrity of mathematical models mostly depend on the data that is available 

in order to parameterize them. This chapter will act as a reference point for which 

mathematical modellers working on RSV transmission models can get estimates 

of some of the most important parameters describing the transmission of RSV. In 

this chapter, I have presented a review of the available published data and I have 

pointed out gaps that may exist in the literature. A proper assessment requires 

a review of the available data on the duration of viral shedding, rate of infection, 

duration of immunity, duration of maternal antibody protection and the risk of 

development of disease and hospitalization given an infection. 
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3.2 Objectives 

The objectives of the work presented in this chapter are to: 

• estimate the epidemiological parameters relevant for the description of the 

transmission dynamics of RSV. The parameters considered are: 

1. duration of RSV specific maternal antibodies 

2. rate of infection 

3. rate of RSV disease 

4. duration of infection 

5. the duration of immunity 

• determine the upper and the lower values for these parameters for inclusion 

in the sensitivity and uncertainty analysis in the work presented in Chapter 

6. 

3.3 Epidemiological parameters 

3.3.1 Duration of RSV specific maternal antibodies 

Children who are born to RSV seropositive mothers receive a similar level of 

RSV specific maternally derived antibodies. It is not clear what the presence of 

maternal antibodies (matAb) specific to RSV implies particularly when detected in 

serum, i.e. whether the protection is against disease [67,118] or infection [154, 21]. 

Additionally, the age profile of the disease [28, 189, 148] would suggest that the 

duration of protection against infection is short, approximately between 1 and 3 
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months. The reason why the duration of protection is short is not well understood 

and it is plausible that it is due to inadequate mat Ab levels and/or matAb not 

being fully protective e.g. protective effect is strain specific [153]. 

A Brazilian study [37] investigating the seroprevalence of RSV antibodies in 

the community of a suburban population found out that the average duration of 

maternal antibodies was approximately 3.3 months (95% Cl: 3-3.5). In this study, 

a serum sample was considered to be positive for maternal antibodies if it was 

above a cut-off threshold of approximately 1.7 log units. In a birth cohort study 

carried out in a rural Kenyan population in Kilifi [152]' the average half life in 

days of RSV specific matAb for the seropositive population was 79 days (95% 

Cl: 76-81) which is about 2.5 months, while the duration that an infant remained 

above the cut-off point for the detectable level of maternal antibody was 112 days 

(95% Cl: 107-118) which is approximately 3.6 months. Another prospective study 

from Turkey monitored the concentration of maternal anti-RSV IgG antibodies 

in healthy newborns over the first six months of life [78]. Blood samples were 

taken at birth then at 1, 3 and 6 months of age. The mean antibody titre from 

birth to 1 month decreased by 38% and from 1 month to 3 months by 30%. At six 

months of age, four infants had positive RSV IgG which was interpreted as acquired 

infection. However, the use of anti-RSV IgG for the diagnosis of acute infection 

in young children may cause difficulties in interpretation since it is not possible to 

differentiate between maternal IgG and acquired IgG . When acquired infections 

were excluded from the analysis, the matAb positivity at 6 months of age was 2%. 

Considering the rapid drop in concentration and the high frequency of negativity 

(95%) at 3 months of age, it is proposed that these infants are susceptible to the 

infection before 3 months of age. Thus, it may be inferred that the mean duration 
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of protective RSV specific serum matAb is likely to be less than 3 months. 

In another study, in the Netherlands [20], 45 children were enrolled at birth 

and followed for a period of six months in order to study the rate of decay of 

RSV specific matAb. The samples were assessed using the virus neutralization 

assay and competition ELISAs. At birth, neutralizing antibodies were present in 

the sera of all the 45 children. From the comparison of the virus neutralization 

serum antibody titres at birth with those found 3 months later, a mean half life 

of RSV specific matAb of 26 days was estimated. In another prospective study 

done in the UK [198]' a group of newborn were followed for 12 months to measure 

the duration of protective RSV specific matAb. Initially, 100 infants and the 

mothers were enrolled but only 10 of these subjects were used in the study using 

radioinununoprecipitation (RIFA) analysis. Blood samples were taken from each 

child at 3, 6 and 12 months after birth. The study reported a duration of maternal 

RSV specific antibodies to be 91.2 days. Table 3.1 gives a summary of the reported 

durations of decay of RSV specific maternal antibodies from these studies. 
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Table 3.1: Estimates of the duration of RSV specific maternal antibodies from published studies 

Location Sample design Reason for No of subjects Screening Age group Mean Refs 
sampling enrolled methods duration 

used 

Kilifi, Infants recruited To monitor 635 newborns RSV specific 0-6 months 112 days (3.6 [152] 
Kenya, at birth. Homes for infections IgG ELlS A months) (95% 
2002- were located in and describe Cl: 107-118) 
2003 a health the age 

demographic related 
survey area and serological 

01>0-
within easy changes 

C.:> access 

Sao Random Sera samples 115 children ELISA 0-6 months 3.3 months [37] 
Paulo sampling of initially with range 
State, families from collected for (3-3.5) 
Brazil, randomly the study of 
1990- selected rubella 
1991 administrative prevalence 

regions 
Continued through the next page ... 



Location Sample design Reason for No of subjects Screening Age group Mean Refs 
sampling enrolled methods duration 

used 

Bursa, Random To determine 49 newborns ELISA 0-6 months 3 months [78] 
Turkey, selection of the 
2002 pregnant women concentration 

in a hospital ofRSV 
setting. specific 
Children maternal 
enrolled at birth antibodies 
then followed for over the first ..,. 
6 months 6 months of ..,. 

life 

The Longitudinal Subjects 45 children Virus 0-6 months 26 daysl [20] 
Nether- study initially neutralization 
lands, participating assay and 
1989- in a Hepatitis competition 
1991 B vaccination ELISA 

trial 
Continued through the next page ... 
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Location Sample design 

UK, 1983 Prospective 
study of a 
cohort of infants 
recruited at 
birth. At least 
one asthmatic 
member of the 
family was 
required 

Reason for 
sampling 

To determine 
the decay of 
RSV specific 
maternal 
antibody in 
infants 

No of subjects 
enrolled 

10 children 

1 Estimated half life of RSV specific maternal antibodies 

Screening 
methods 
used 

Age group 

Radioimmuno 0-1 year 
precipi tation 
assay, RIPA 

Mean 
duration 

91.2 days 1 

Refs 

[198] 



3.3.2 Rate of infection 

The rate of infection is an important parameter estimating how the rate of spread of 

an infection changes with both age and time. It is formally defined as the frequency 

at which susceptible individuals contract the infection per unit time [10]. The rate 

of infection acting on a single susceptible in the population per unit time is referred 

to as the per capita rate of infection or the force of infection. Under the assumption 

of homogeneous mixing, the per capita rate of infection is an age-independent 

value. In our current RSV mathematical model developed in Chapter 6, we have 

relaxed the assumption of homogeneous mixing and therefore the force of infection 

is both a function of age and simulation time denoted by ). (a, t) where a denotes 

the age class of the susceptible individuals and t is the simulation time in years. 

Additionally, the time dependent rate is seasonally forced using a cosinusoidal 

function in order to conform to the seasonality observed in peak RSV transmission. 

A number of community studies have estimated the rate of infection but most of 

these studies were hospital based with passive surveillance and hence they are 

likely to have underestimated the rate of infection in the community. 

One study enrolled entire family members at the birth of a newborn and fol­

lowed them for five years [68]. The members of the household were actively con­

tacted weekly during the RSV disease season and nasal washes were obtained at 

the time of each visit. In this study, the rate of infection ranged from 82.6/100 

cyo for children 13-24 months to 33.3/100 cyo for children in their fourth year of 

life. The results from this study are comparable with the results obtained from 

Henderson et al study [93] where they reported a crude estimate of the rate of 

infection as 53/100 cyo. 
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Hall et al [87] carried out another study in which they enrolled families on 

condition that each contained two or more children one of whom was less than a 

year of age. Enrolled families were visited every three to four days by a team of two 

nurses during the two months of the RSV season. Nose and throat specimens were 

taken of everyone in the household at the time of the visit and cultured for viral 

isolation. No serum samples were taken. All age groups had an appreciable attack 

rate as shown in Table 3.2 with a range of 16.8/100 in adults to 29.4 infections per 

100 exposed individuals in infants. The crude attack rate recorded in this study 

may have been underestimated since some family members may have been infected 

before the initiation of the study. Weekly visits of the families were done after RSV 

was confirmed to be in the population after a child was hospitalized with RSV. 

Additionally, infected individuals may have had negative culture through technical 

difficulty in handling the the relatively labile virus. 

In another study by Hendesrson et al [93], study subjects attended a child 

development center evaluating the effects of educational intervention on the psy­

chosocial and cognitive development of normal children. A daily observation of 

their respiratory health was made. Upper respiratory tract cultures for virus were 

taken every two weeks irrespective of symptoms and at the onset of each illness. 

Fifty percent of the enrolled children (39 out of 78 children) were followed through 

a minimum of 4 exposures with an exposure defined as an yearly seasonal outbreak. 

As shown in Table 3.2, the rate of infection during the first exposure (assuming 

that the first exposure corresponds to primary infection) was 98/100. The rate of 

infection during the second exposure was 75/100 and that for the third exposure 

was 65/100. From this study, the highest rate was recorded in children in their 

first years of life with a reduction in that rate in the second and third years of life. 
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Given that the study was carried out in a day-care setting, it represents a special 

epidemiological place where the conditions are best suited to the spread of a respi­

ratory infection requiring close contact for transmission. Although it is not clear 

how these circumstances differ from those found in a family with young children, 

it is expected that the conditions of exposure in a day-care center approach the 

maximum encountered by most children. The reported results are higher when 

compared to those obtained from the family study by Hall et al [87]. 

Nokes et al carried out a study in a rural popUlation in coastal Kenya where 

a birth cohort study was recruited and followed for one year [150]. During the 

study, weekly visits were undertaken and a nasal washing collected when clinical 

symptoms of acute respiratory infection (ARI) were observed. Passive surveillance 

was done via parental referral to Kilifi District Hospital. The incidence rate (IR) 

of RSV infection was reported to be about 42.8 cases per 100 cyo. The low value 

of the reported figure relative to estimates from other cohort studies [93, 68] may 

be due to differences in study design, population settings and methods of deter­

mination of RSV infection. For example, in the study by Glezen et al [68], weekly 

samples were collected irrespective of symptoms and infections were confirmed 

through virus isolation or a four fold increase or greater in serum neutralizing 

antibodies while in this study, nasal samples were obtained only when subjects 

presented themselves with clinical symptoms of ARI. Both of these reasons would 

have resulted in increased sensitivity of case detection. 

Borrero et al [19] also carried out a study in Cali Colombia. A cohort of 340 

children were followed from birth for a period of 17 months. The children were 

chosen from families of low socioeconomic strata. Active weekly visits were made 

to the homes of the participants and the children with signs of ARI were referred to 
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a health center from where the following samples were taken; nasal aspirates, nasal 

swabs, blood and urine samples. The crude rate of infection was reported as 19.97 

cases per 100 cyo. The age specific rates of infection are shown in Table 3.2. The 

reported estimates are close to other studies reported previously. However there 

are some reasons to believe that the incidence reported may be underestimated. 

The number of episodes counted depends in part on the number of weeks a child 

was in the study and whether a child visited the clinic when ill. It would be 

difficult to know what proportion of children with ARI who were not referred by 

the home visitor to the clinic although the authors suggest that it was very small. 

It is also reported that 10% to 15% of all those referred to the health cent er did not 

present themselves. Whether they went to another clinic or not can not be fully 

ascertained. Therefore the true rate of infection would be higher than reported 

here. RSV was also reported to be the most common cause of ARI with the rate 

of infection slightly higher for children less than 12 months of age. 

Weber at al [203J used both hospital surveillance and community-based study 

to obtain information about the spread of RSV in the compounds in which infected 

children lived. Upon diagnosis of a case of RSV in the hospital, the household of 

this so called index case was visited as soon as possible, and a regime of twice 

weekly follow-up for six weeks initiated. During this follow-up, children under five 

years of age that were exarnined and found to exhibit signs of acute respiratory 

infection had a nasal aspirate collected. Table 3.2 shows the reported rates of 

infection where the lowest rate was recorded in children between 2-3 years (16/100 

cyo) while the highest was in children between 0-1 and 4-5 years (33/100 cyo). 

The reported rate of infection may be under estimated because compounds of 

households of the hospitalized index child, usually the infant, were visited only 
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after the hospitalization i.e. infection in the household may have preceded disease 

in the index child. 

Table 3.2 shows a summary of the reported estimates of the rate of infection 

from the studies described. Where applicable, the rate of infection is categorized 

by the age class of the participant and the history of previous infections. 
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Table 3.2: Estimates of the rate of infection from published studies 

Location Sample design Case ascertainment 

Houston, 
USA 

Entire family 
enrolled at the 
birth of a 
newborn 

Active weekly home visits 
during RSV season. Nasal 
washes obtained 
irrespective of symptoms 
and virus cultured. Blood 
collected to detect infection 
by seroconversion or 4-fold 
rise in titre using 
neutralization assay. 

Age 
class 

0-12 m 
13-24 m 
25-36 m 
37-48 m 
49-60 m 
Total 

NI 

92 

Continued through the next page ... 

Rate/lOO person years at risk 

Crude First in- Re-infection Refs 
fection 

68.8 
82.6 
46.2 
33.3 
50.0 
62.9 

68 
97.1 
100 

74.4 

75.9 
45.3 
33.3 
50.0 
53.0 

[68] 



Rate/lOO person years at risk 

Location Sample design Case ascertainment Age NI Crude First in- Re-infection Refs 
class fection 

Rochester, Entire family Active visits during RSV < lyr 34 29.4 45.4 [87] 
USA enrolled epidemic every 3 to 4 days 1-<2yrs 7 28.6 0.0 

over the two month study. 2-<5yrs 34 26.4 16.6 
Nose and throat specimens 5-< 17yrs 48 18.7 21.0 
were obtained irrespective 17-45 55 16.8 33.3 
of symptoms for virus Total 178 21.9 27.0 
isolation. 

Cl' Cali, Birth cohort of Active weekly visits were 0-5 m 340 19.14 [19] IV 

Colombia 340 children. made at the home of the 6-11 ID 25.32 
Women enrolled participants. Sample taken 12-17 m 12.48 
when attending for children with signs of Total 19.97 
pre-natal clinic ARI, nasal aspirate, nasal 

swab, blood and urine 
sample 

Continued through the next page ... 
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Location Sample design Case ascertainment Age 
class 

Ni 

Western Community Active weekly visits - twice 0-1 yr 320 
Gambia surveillance of a week. Nasal aspirate 2-3 yrs 

children less taken for children with 4-5 yrs 
than 5 years signs of upper or lower 
following an respiratory infection and 
index case at the detected RSV using IF AT . 
hospital Serum samples were also 

taken on the first and final 
visits. 

Kilifi, Birth cohort. Active weekly visits during <1 year 338 
Kenya Children RSV seasons and monthly 

enrolled at birth otherwise. Nasal washings 
or before 2 were taken when signs of 
weeks after birth ARI were observed. Passive 

surveillance was through 
the Kilifi District Hospital 
(KDH). 

Continued through the next page ... 

Rate/lOO person years at risk 

Crude First in- Re-infection Refs 
fection 

33 [203] 
16 
33 

42.8 48.7 19.2 [150] 



Location Sample design Case ascertainment 

Chapel Children were Active daily observations. 
Hill, USA attending a Upper respiratory cultures 

development were taken every 2 weeks 
center assessing and at the onset of 
the effects of symptoms. 50% of the 
educational children were followed over 
intervention on a minimum of 4 years 

CJ1 psychosocial and ""-
cognitive 
development 

1 N represents the sample size 

Age 
class 

O-lyr 
1-2yrs 
2-3yrs 

NI 

61 
47 
26 

Rate/lOO person years at risk 

Crude First in- Re-infection Refs 
fection 

98.4 [93] 
74.5 
65.4 



3.3.3 Rate of RSV associated LRTI 

All of the studies reported in section 3.3.2 report on the incidence of RSV infection. 

However, in this section we will report on studies that have reported the rate of 

severe RSV disease in order to establish the burden of disease caused by RSV 

by which comparison can be made with the burden of other infectious diseases 

competing for health resources. This is potentially beneficial in offering policy 

makers a platform from which they can best make health decisions when faced 

with different conflicting health needs. 

In a study carried out in Brazil by Sutmoller et al [193], active surveillance was 

done among children in two low income populations in Rio de Janeiro. There was 

also inpatient and outpatient data collected over the study period of 3 years from 

January 1987 to December 1989. Weekly home visits were made by the health 

care workers and nasal aspirates were taken from children with symptoms of lower 

respiratory infection (LRI) . The rate of RSV disease per 100 children at risk varied 

in the three groups i.e. community, inpatient and outpatient, with the inpatient 

recording the highest at 40 and the lowest rate was reported in the community at 

22. The age-specific risk of disease is as reported in Table 3.3. During the 3 study 

periods, RSV was observed to be seasonal. 

Karron et al [113] carried out a study in the northern part of the United States 

in Alaskan native children less than three years old and enrolled them into the 

study when admitted with ARI at the YK delta regional hospital. Each subject 

had a nasal aspirate taken for virus isolation and antigen studies. To calculate the 

incidence of severe disease, suspected nosocomial infections were excluded from 

the analysis. Forty six percent of all the ARI hospitalizations and 31% of all 
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hospitalizations were due to RSV. Nineteen percent of all children admitted with 

RSV were readmitted. Given that surveillance in this study was passive and that 

they relied on children who presented themselves to the hospital for admission, it 

may under estimate the actual community risk of disease. 

Robertson et al [171] reported on study in four developing countries namely; 

Mozambique, Nigeria, Indonesia and South Africa in order to determine the age­

specific incidence of disease and seasonality of RSV associated respiratory infection 

in children less than 5 years. For the active community surveillance sites, i.e. Nige­

ria and Indonesia, there were weekly visits to households with children aged less 

than 5 years and samples were collected from children with LRI. In South Africa 

and Mozambique, there was passive surveillance through a health care provider 

and children who presented to the hospital with symptoms of LRI were enrolled 

for the study. The incidence of disease from the different locations is as recorded 

in Table 3.3. The recorded risks for the four different areas were different with 

an order of magnitude of 10 between the lowest and the highest values. A factor 

that may have led to these differences may include the sheltering of infants for the 

first 40 days after birth in Nigeria and Indonesia. In the South African study site, 

rates of health care utilization may have been high but there was a documented 

drop in clinic attendance during the study due to a shortage of drugs. 

Another study was carried out in a rural coastal population in Kenya to report 

on the incidence of RSV infection and disease [150]. Infants were recruited at 

birth or within two weeks of birth and active weekly household surveillance was 

done during the epidemic period and monthly otherwise. During the visits, a nasal 

washing was collected if there were signs of acute respiratory illness. Blood samples 

were taken at birth and at an interval of approximately 3 months until the study 
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completion. From this study, the crude incidence of disease after RSV infection 

was reported as 37/100 child years at risk with the highest rate being reported 

in children aged 3-5 months (36/100) and the lowest risk reported in the children 

aged 6-8 months (33/100). A more recent re-analysis of these data has been done 

taking account of denominator cases due to serologically determined infection [155]. 

Following the re-analysis, the crude incidence of disease following RSV infection 

has been reported as 27/100 with the highest risk reported in children 0-2 months 

(44/100) and the lowest in children aged 18-23 months (18.6/100). See Table 3.3 

Berman et al [15] enrolled children less than 15 years to a two year ambulatory 

study in Cali Colombia. A passive surveillance system was set up in 5 health 

centers in Cali and children were enrolled in the study if signs of acute lower 

respiratory tract infections (LRTI) were observed. A blood sample and nasal 

swab were taken for culture and a throat sample was taken if there was a clinical 

diagnosis of pharyngitis. The crude incidence of LRTI was reported as 0.6/100 

children at risk. 

Djelantik et al [43] have reported the incidence of RSV associated disease in a 

community in Lombok, Indonesia taking part in a Haemophilus infuenzae type b 

vaccine. As part of the study, RSV testing of children less than 2 years hospitalized 

with severe LRTI was performed. Nasopharyngeal w8..<;h samples were taken and 

tested for RSV positivity using a rapid enzyme immunoassay. For children less 

than 1 year of age, the incidence of disease was reported as 0.8/100 child years 

at risk. However, when accounting for untested cases (assuming that tested and 

untested cases had the same proportion of RSV positivity) the corrected estimate 

is 2.5/100. One of the limitation of the study is the inability to obtain specimens 

of all the children, including most of those who died or were discharged without 
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a sample being taken. For this reason, the reported estimates will likely be an 

underestimate of the true risk of severe disease with RSV. 

Chan et al [29] reported on a retrospective study conducted at a teaching hos­

pital in Hong Kong of children <5 years hospitalized with severe RSV disease. 

Patients with laboratory confirmed RSV infection during the 5 years study period 

(Jan 1993- Dec 1997) were identified through records of the virus laboratory. RSV 

was detected from the patients' nasopharyngeal aspirates, bronchoaveolar and en­

dotracheal aspirates by direct immunofluorescent staining and in parallel by virus 

isolation. The risk of RSV hospitalization with severe disease was recorded as 

0.25/100 in children < 5 years. Table 3.3 shows a summary of the incidence of 

severe disease. 

58 



0"1 
(0 

Table 3.3: Estimates of the rate of RSV associated severe disease from published studies 

Rate of severe RSV disease/lOO cy 

Location Sample design Case ascertainment Age 
class 

N 3 Crude First in- Re-

Rio de 
Janeiro, 
Brazil 

Alaska, 
USA 

All children 
< 5yrs enrolled 
following 
baseline census 
of two low 
income 
communities 

Hospital based 
surveillance of 
children less 
than 3 years 

Active weekly home visits. 0-5 m 
Nasal aspirated from 6-11 m 
children with LRI were 12-23 m 
collected. 24-35 m 

36-59m 

Passive surveillance of <1 yr 
Alaskan native children 
between October 1993 to 
September 1996 . Nasal 
aspirates were obtained for 
viral isolation and antigen 
studies 

2625 18.1 
9.1 
5.2 
2.4 
1.5 

324 93/941-5.3 
1524 94/951-24.9 
954 95/961-16.4 

Continued through the next page ... 

fection infection 
Refs 

[193] 

[113] 



Location Sample design 

Bandung, Community 
Indonesia surveillance of 

children less 
than 5 years 

~ Manhica, Hospital based 
0 

Mozam- surveillance of 
bique children less 

than 5 years 

Ibadan, Community 
Nigeria surveillance of 

children less 
than 5 years 

Case ascertainment 

Weekly household visits. 
Children with signs of LRI 
were escorted to a clinic 
where a nasopharyngeal 
specimen as collected by a 
physician 

Passive surveillance of 
outpatients < 1 yr old. 
Nasal specimen were taken 
for RSV antigen test using 
ELISA. 

Weekly household visits by 
research nurses. Nasal 
specimen collected from 
children with signs of LRI 
and were tested for RSV 
antigen using ELISA 

Age 
class 

<1 yr 
< 5 yrs 

<1 year 

<1 yr 
<5 yrs 

Rate of severe RSV disease/lOO cy 

N3 Crude First in- Re-
fection infection 

14205 4.1 
3.4 

3.0 

11.6 
9.4 

Continued through the next page ... 

Refs 

[171] 

[171] 

[171] 
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Location Sample design Case ascertainment 

Agincourt, Hospital based Passive surveillance at 6 
South surveillance at primary healthcare clinics 
Africa2 the clinics of of patients who presented 

children less with severe LRI. Nasal 
than 5 years specimen was taken and 

RSV detected using ELISA. 

Houston, Entire family Active weekly home visits 
USA enrolled at the during RSV season. Nasal 

birth of a washes obtained 
newborn irrespective of symptoms 

and virus cultured. Blood 
collected to detect infection 
by seroconversion or 4-fold 
rise in titre using 
neutralization assay. 

Age 
class 

<1 yr 
<5 yrs 

0-12 m 
13-24 m 
25-36 m 
37-48 m 
49-60 m 
Total 

Rate of severe RSV disease/100 cy 

N 3 Crude First in- Re- Refs 
fection infection 

1.5 [171] 
0.9 

1255 22.4 21.6 [68] 
13.0 5.9 19.0 
10.8 0 10.9 
7.7 7.7 
0 0 
14.5 18.1 11.4 

Continued through the next page ... 
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Location Sample design Case ascertainment 

Kilifi, Birth cohort. Active weekly visits during 
Kenya Children RSV seasons and monthly 

enrolled at birth otherwise. Nasal washings 
or before 2 were taken when signs of 
weeks after birth ARI were observed. Passive 

surveillance was through 
the Kilifi District Hospital 
(KDH). 

Cali, Health clinic Passive surveillance at 5 
Colombia based health clinics. Nasal and 

surveillance of blood samples were taken 
children less from children with signs of 
than 15 years LRTI by a physician. 

Diagnosis was through 
culture and serology as 
evidenced by a four fold rise 
in titre. 

Age 
class 

0-2m 
3-5m 
6-8m 
9-11m 
Total 

<15 yrs 

Rate of severe RSV disease/lOO cy 

N 3 Crude First in- Re-
fection infection 

3385 - 36 
43 
33 
38 
37 25 

87475 0.6 

Continued through the next page ... 

Refs 

[150] 

[15] 
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Location Sample design Case ascertainment 

Lombok, Children Passive surveillance of 
Indonesia hospitalized inpatients less than 2 years 

with severe old. Nasal aspirates were 
LRTI and taking taken and tested for RSV 
part in a vaccine positivity using a rapid 
trial. enzyme immunoassay 

Hong Children Passive surveillance at a 
Kong, hospitalized tertiary hospital. Nasal 
China with severe aspirates or throat swabs 

LRTI were taken and RSV was 
detected by direct 
immunofluorescent and 
virus culture 

Age 
class 

O-lm 
2-3m 
4-7m 
8-11m 
12-24m 

<5 yrs 

Rate of severe RSV disease/lOO cy 

N 3 Crude First in- Re-
fection infection 

3xl04 0.8 
2.4 
2.1 
1.3 
0.4 

0.25 

Continued through the next page ... 

Refs 

[43] 

[29] 
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Location Sample design Case ascertainment 

Ki lifi , Birth cohort. Active weekly visits during 
Kenya Children RSV seasons and monthly 

enrolled at birth otherwise. Nasal washings 
or before 2 were taken when signs of 
weeks after birth ARI were observed. Passive 

surveillance was through 
the Kilifi District Hospital 
(KDH). Blood samples were 
taken at birth and 
approximately 3-month 
intervals 

Age 
class 

0-2m 
3-5m 
6-8m 
9-11m 
12-17 
18-23 
~24m 

Total 

N3 

6355 

IThe risk of severe disewe is given by the epidemic year i.e. 93/94, 94/95 and 95/96. 

Rate of severe RSV disease/lOO cy 

Crude First in- Re-
fection infection 

44.2 18.5 
42.9 18.5 
23.3 18.5 
22.0 18.5 
23.9 14.7 
18.6 14.7 
18.8 19.6 
27.0 16.6 

2This study only reports the risk of severe LRI. This may explain why it records the lowest estimates compared to the rest of the 
studies which record the risk of LRI. 

3N represents the sample size 
4Sample size shown grouped by age or year of participation 
5Sample size not age/group specific 

Refs 

[155] 



3.3.4 Duration of infectiousness 

Three durations are important to distinguish in the study of the epidemiology of 

RSV, namely, the duration between infection and infectiousness (latent period), 

the duration between infection and the onset of clinical symptoms (incubation 

period) and the period between the beginning of infectiousness and the cessation 

of infectiousness [156] often referred to as the infectious period. All the three 

periods will vary between individuals and in particular, there will be a distributed 

period between infection with virus and the beginning of infectiousness for which 

it is difficult to have information about in an observational field study. In our 

investigations of transmission dynamics of RSV, we are interested in the latent 

and infectious periods. A recent systematic review has reported that the median 

incubation period for RSV is 4.4 days (95% Cl 3.9-4.9) [119, 112]. However, what 

is observed is usually the start and cessation of symptoms from which to infer 

estimates of interest. However, the use of clinical symptoms to guide estimates of 

latent and infectious periods can be significantly biased if there is either shedding 

before or after symptoms start. There is therefore a need to carry out studies 

that collect samples irrespective of clinical symptoms. However, in estimating 

the shedding duration, a number of studies have accounted for the importance of 

the incubation period since the study design is such that there was nasal sample 

collection irrespective of the clinical symptoms. For studies that have reported 

the duration of shedding based on hospitalized individuals, it is likely that they 

underestimate the duration. 

In an investigation of the transmission dynamics you are interested in the latent 

and infectious period. However, what is observed is usually the start of symptoms 
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(and cessation) from which to infer estimates of the parameters of interest. How­

ever, use of clinical symptoms to guide estimates of latent and infectious period 

can be significantly biased if there is significant shedding before (and after) symp­

toms start (stop). Therefore it is important 9a) to collect samples irrespective of 

symptoms- as done in Patrick's study. 

In this section however, we will concern ourselves with reviewing the infectious 

period of RSV which is defined as the period between the beginning of viral shed­

ding, into the nasopharynx, to the cessation of viral shedding. An individuals is 

considered to be shedding RSV if the virus or virus specific components can be 

detected in nasal secretions through diagnostic techniques ranging from culture, 

Immunofluorescence Antibody Test (IFAT) to Polymerase Chain Reaction (PCR). 

In order to estimate the duration of infectiousness, we have assumed that the 

beginning of viral shedding corresponds to the start of infectiousness and the ces­

sation of viral shedding corresponds to loss of infectiousness and therefore we are 

estimating the duration of viral shedding as a correlate for the infectious period 

distribution (see the discussion). 

In Turku, Finland, [199] a study was undertaken to investigate the shedding of 

infectious virus during acute infection with RSV. The study population consisted of 

children hospitalized at Turku University Central Hospital during an RSV season 

from March 1989 to February 1990. During the period of hospitalization, nasal 

aspirates were taken for a study on the comparison of methods for RSV diagnosis. 

One or more follow up specimens were collected from 41 randomly selected patients 

with proven RSV infection for the shedding duration study. Followed up children 

had a mean age of approximately 8.6 months. From this study, 40-60% of the 

patients ceased to shed the virus 8-10 days after admission to hospital. 
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In a study done in Rochester, USA, [89] adults were challenged intranasally 

with a safety tested pool of RSV at increasing intervals over a 26 months period. 

Challenges were administered six times at 2, 4, 8, 14, 20 and 26 months. Nasal 

washes were obtained before each challenge and daily for the next two weeks. 

A serum sample was also taken at the time of natural infection. From the study, 

fifteen adults were identified as having natural RSV infection with a mean duration 

of viral shedding at 4.7 days with a range of 1-8 days. Of the total infections 

resulting from the challenge, the average duration of viral shedding was 3.4 days 

with a range of 1 to 7 days. After the first reinfection, the average duration of 

shedding was 4.6 days compared to an average of 1.7 days for the subsequent 

reinfections. Given that this study was done in adults who would most likely 

have had experienced their primary infection, then the results presented in this 

study would possibly be an under estimate of the duration of shedding in primary 

infecteds. Furthermore, the amount of virus inoculated in the participants during 

the experimental study may differ from what one would get during a natural 

infection and perhaps this would influence the shedding duration. 

In another study conducted in Rochester, USA during the period from 1975 to 

1995, a total of 2960 healthy adults (18 to 60 years) were prospectively evaluated 

for respiratory virus infections [88]. Surveillance was done during the 5 to 6 months 

when RSV was actively identified to be present in the community. Evaluation of 

all subjects was conducted 2 to 3 times per week and a nasal wash sample was 

taken alongside a physical examination to determine if the illness was symptomatic. 

Acute RSV infection was identified in 7% of these adults. The average duration of 

viral shedding among 118 infected individuals was 3.9 days with a range of 1 to 17 

days. Shedding was detected for less than 7 days in all but 8 of these individuals. 
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In a different study, infants hospitalized with respiratory syncytial virus infec­

tion were studied to describe the quantitative shedding pattern and the duration 

of shedding [85, 80]. Nasal washes for viral culture were obtained from hospitalized 

subjects with acute respiratory tract disease during a two month period when RSV 

was epidemic in the community. The samples were collected as soon as possible 

after admission and thereafter everyone to three days during the period of the 

infants hospitalization. Some infants who appeared to be shedding the virus at 

the time of discharge were followed at home where nurses obtained nasal wash 

specimens. For the patients who were followed up for the entire RSV shedding 

period, the mean duration of shedding was reported to be 6.7 days with a range 

of 1 to 21 days. However, infants with lower respiratory tract disease shed for 

a significantly longer period, 8.4 days, compared to those with upper respiratory 

tract infection, mean 1.4 days. 

In another study, in Houston, USA, [59] children and adults were studied within 

a family study. Families were enrolled for prospective study of viral respiratory 

infections with the birth of a new infant. Nurses took viral specimens (nasal 

washes or throat swabs) from all children during the home visits scheduled weekly 

or biweekly depending on the season. This study reported over 70% of cultures 

positive up to 8 days post illness onset. Majority of the individuals with primary 

infections and reinfections shed the virus for approximately 8 days. 

In a study done in a coastal population in Kenya [158]' 635 infants were re­

cruited at birth and intensively monitored for acute respiratory infections. A sub 

sample of 70 households were enrolled into a family study. All family members 

were actively monitored for ARI through weekly household visits during epidemic 

periods and monthly otherwise. Nasal washings were collected from infants and 
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children younger than 15 years experiencing episodes of acute respiratory illness. 

The overall duration of recovery irrespective of infection history, age and severity 

of illness was 4.5 days (95% Cl: 4.0 to 5.3 days). The community study done in 

Kilifi additionally suggests that the duration of shedding between children who had 

never been infected and those with prior history of infection differed by approxi­

mately 40% i.e. 4.9 days (CI:4.1-5.B) for primary infection compared to 4.1 days 

(CI:3.3-5.1) for secondary infections. For children presenting to the research clinic 

and whose illness history was obtained, the duration of shedding among children 

with no previous history of infection was B.2 days (95% Cl: 6.5-10.3) compared to 

7.0 days (95% Cl: 5.5-B.B) of those with prior history of infection. 

A human experimental infection model has been done that included 35 healthy 

adult (18-45 years) volunteers [41]. Subjects were admitted to a quarantine unit 

for 13 days and were observed for at least 1 day before RSV inoculation, which 

occurred the second day after admission. Nasal washes were obtained on the day 

of admission and twice daily on day 1 up to day 12. Pulmonary tests were also 

performed daily on all volunteers. The mean duration of viral shedding was 7.4 

days, ±2.5 days, as assayed by qPCR . Duration of shedding was lower as assessed 

by quantitative culture (3.6 ±1.1 days) and spin-enhanced culture (5.3 ±1.4 days). 

Hall et al [87] reported on a family study designed to examine intrafamily 

spread of RSV infections and their associated illnesses. They enrolled families on 

the basis of including two or more children. Families were visited every three to 

four days by a team of two nurses during the RSV epidemic season. Nose and 

throat specimens were taken of everyone in the household at the time of visit. The 

duration of documented shedding was between 1 to 36 days with a mean of 3.4 

days. The mean duration of shedding for children less than 16 years of age was 3.9 
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days while for those over 16 years the mean duration was 1.6 days. Children less 

than two years of age had shedding for significantly longer periods with a mean of 

9 days. 

Munywoki et al have recently carried out a household study within a rural 

coastal population in Kenya to determine the duration of viral shedding [142]. A 

household based prospective cohort study was set up with a recruitment target of 

50 RSV naive infants and their household members. Thained field assistants made 

household visits every 3 to 4 days to collect nasal samples irrespective of symp­

toms from all the household members. Samples were taken using nasopharyngeal 

flocked swabs and follow up was done during the 2009-2010 RSV season. An indi­

vidual RSV episode was defined as the period within which an individual provides 

specimen that were peR positive for the same infecting group not more than 14 

days separating any two positive samples. The estimated mean duration of viral 

shedding based on the midpoint estimate was 11.2 days (95% Cl: 10.1-12.3). The 

duration of shedding differed between those who had symptomatic infections and 

those with no symptoms: 13.5 vs 7.8 days. The age-specific durations are shown 

in Table 3.4 which also gives a summary of the previously discussed studies. 
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Location Sampling Number 
design enrolled 

Turku, Hospitalized 41 children 
Finland children 

with 
ARD.l 
Two or 
more 

--l specimens ...... 
were taken 
during 
hospital-
ization. 

Table 3.4: Estimates of the duration of shedding 

Screening Severity Age Prior 
methods of disease groups history of 
used infection 

NPA2 Children Age 
collected were hospi- range: 2 
for viral talized wks -
culture with ARD 3.75 yrs 
and 
detection 
ofRSV 
antigens 
using 
TR-FIA3 

Continued through the next page ... 

Duration of shedding 

Mean Mode Median Ref 

9days 
Range: 
8-10 
days 

[199] 



Location 

Rochester, 
NY 

--l 
I',:) 

Sampling 
design 

Adults 
who had 
acquired 
natural 
RSV. 
Nasal 
samples 
were 
collected 
daily for 2 
weeks after 
challenge. 

Number 
enrolled 

15 adults 

Screening 
methods 
used 

Nasal 
specimens 
collected 
and virus 
isolation 
was done 
using im-
munofluo-
rescent 
testing 

Severity 
of disease 

6: 
moderately 
ill, nasal 
congestion 
5:moder-
ately 
severe with 
fever 4: 
mild 
URTI4 

Age 
groups 

Adults 

Duration of shedding 

Prior Mean 
history of 
infection 

4.7 
days 
Range: 
1-8 

Mode Median Ref 

[89] 

Continued through the next page ... 



Duration of shedding 

Location Sampling Number Screening Severity Age Prior Mean Mode Median Ref 
design enrolled methods of disease groups history of 

used infection 

Rochester, Yearly 211 adults Nasal wash Ranged 18-60 3.9 [88] 
NY community samples from years days 

surveil- collected asymp- Range: 
lance from 2-3 times a tomatic to 1-17 
1975-1995 week symp- days 

during tomatic 
RSV 
epidemic 

~ periods for 
~ culture 

Strong Hospitalized 23 children Nasal wash All had 10 days 6.7 [85,80] 
Memorial children specimen lower to 2 days 
hospital, with LRI5 were ARDl months Range: 
NY, and were collected 1-
1974-1977 followed for viral 21days 

for culture 
duration of 
shedding 
after 
discharge 

Continued through the next page ... 



Duration of shedding 

Location Sampling Number Screening Severity Age Prior Mean Mode Median Ref 
design enrolled methods of disease groups history of 

used infection 

Strong Hospitalized 59 children Nasal wash All had 10 days 9 days [85,80] 
Memorial children specimen lower to 18 
hospital, with LRI5 were ARDl months 
NY, collected except 
1974-1977 for viral for two 

culture children 
aged 2 
and 4 

~ years 

"'" Houston, Families 44 children Nasal Ranged <4yrs Primary 8 days [59] 
family enrolled washes from mild secondary 8 days 
study, with birth were to severe 
1975-1979 of a new obtained, RSV 

infant weekly or 
bi-weekly, 
for culture 

Continued through the next page ... 



Duration of shedding 

Location Sampling Number Screening Severity Age Prior Mean Mode Median Ref 
design enrolled methods of disease groups history of 

used infection 

Kilifi, Infants 193 Nasal Ranged 1-164 All 4.5d 4d [158] 
Kenya recruited children washes from months Primary 4.9d 5d 

at birth. were URTI4 to with Secondary 4.1d 4d 
Homes collected severe median 
were and LRTI7 21months 
located in screened 
the DSS for RSV by 
and within IFAT6 

~ easy access 
c.n 

Tennessee, Healthy 35 healthy Nasal 18-45 Previously 7.4d [41] 
USA adults adults washes years healthy ±2.5 

were (18-45 were adults 
inoculated years) collected 
with RSV daily 
and 
followed 
for 12 days 
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Location 

Rochester, 
USA 

Sampling 
design 

Entire 
family 
enrolled 

Number 
enrolled 

188 
individuals 
with 60 
RSV 
positive 
cultures 

Screening 
methods 
used 

Active 
household 
visits. 
Nose and 
throat 
specimens 
were 
obtained 
for viral 
culture 

Severity 
of disease 

Ranged 
from mild 
to severe 
RSV 

Age 
groups 

<2 yrs 
2-<16 
yrs 
~ 16 yr 

Duration of shedding 

Prior Mean 
history of 
infection 

9 dys 
3.9 dys 

1.6 dys 

Mode Median Ref 

[87] 
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Location 

Kilifi, 
Kenya 

Sampling 
design 

Entire 
family 
enrolled 

Number 
enrolled 

50 house-
holds. 179 
individuals 
with RSV 
were 
included in 
this 
analysis 

1 Acute Respiratory Disease 
2Nasopharyngeal Aspirate 
3Time-resolved Fluoroimmunoassay 
4Upper respiratory tract infection 
5Lower respiratory infection 
6Immunofiuorescent antibody test 
7Lower respiratory tract infection 

Screening 
methods 
used 

Active 
household 
visi ts every 
3-4 days. 
Screening 
irrespec-
tive of 
symptoms. 
Nasal 
specimens 
were taken 

Severity 
of disease 

Ranged 
from no 
symptoms 
to symp-
tomatic 

Age 
groups 

<lyr 
1-4yrs 
5-14yrs 
15-39yrs 
~40yrs 

Prior 
history of 
infection 

Duration of shedding 

Mean Mode Median Ref 

lS.0d 
1l.Sd 
9.1d [142] 
8.4d 
11.2d 



3.3.5 Duration of immunity 

The components of immunity to RSV and its durability are not well understood. 

Children have been shown to develop antibody to both F (Fusion) and G (attach­

ment) proteins but the role of these antibodies in protecting against infection or 

disease in humans is not well defined [198]. Additionally, although young chil­

dren are known to be infected repeatedly, even during successive annual epidemics 

[93, 3], the duration of immunity and influencing factors remains relatively un­

known. In this section, I have presented a review of the studies that have sought 

to estimate the duration of protective immunity against RSV infection. 

In a study carried out in Kilifi, Kenya, enrolled children in the birth cohort 

were monitored through active household visits, weekly during the epidemic pe­

riods and otherwise every 4 weeks and passively through referral to a research 

outpatient clinic at the Kilifi District hospital [150, 184]. Infections were con­

sidered as separate episodes if a positive result was determined 2:14 days after 

a previous positive. Molecular relatedness of RSV causing primary and repeat 

infections, by phylogenetic analysis, in 12 infants from the birth cohort was used 

to provide insight into the duration of RSV immunity. The total observation pe­

riod spanned 16 months and 2 epidemics. Results from this study have indicated 

that re-infections with RSV occurred not only during the first year of life but also 

during the same epidemic and that re-infections can arise with the same variant 

within 7-9 months and in the same group but with different variants within 2-4 

months. The average duration of immunity irrespective of the re-infecting variant, 

whether homologous or heterologous to the primary infection variant, is approx­

imately 6 months. This is clearly influenced by the seasonal nature of the virus 
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occurrence [3]. A more recent re-analysis of the data from this cohort evaluating 

the genetic relatedness of infecting and reinfecting RSV strains demonstrated that 

the mean interval between infection and re-infection was 365 days (range: 21-699 

days) [3]. Of the 55 reinfections, approximately 13% occurred within the same 

epidemic period with a mean interval of 30 days (range: 21-56 days) while 80% 

occurred in either the same or consecutive epidemic as the first infection while 

the remaining 20% occurred in non-consecutive epidemics. Using data derived 

from this cohort [155], it has been demonstrated that, after infection, immunity 

to reinfection appears to last up to 6 months and is 60%-70% partially effective. 

Mufson et al [137] did a study to investigate how often second infections are 

with a virus of the alternate subgroup or alternatively with the same subgroup. 

This study included 13 children with acute upper or lower respiratory tract infec­

tion for whom RSV was isolated from pharyngeal swab specimen on two occasions 

at least 9 months apart. These children were part of an RSV surveillance carried 

out in Huntington in the United States of America (USA). Overall, second infec­

tions with the homologous subgroup were detected as often as second infections 

with the alternate subgroup and all the re-infections were at least 9 month later (at 

most 26 months later) with a mean immunity period of approximately 17 months. 

To understand the duration of immunity against respiratory syncytial virus, 

Hall et al [89] experimentally infected 15 healthy individuals who had acquired 

natural RSV infection. The subjects were intranasally challenged with RSV at 

increasing intervals of time at 2, 4, 8, 14, 20 and 26 months after natural infection 

with a similar strain group (A). After each challenge, the subjects were evaluated 

daily for 2 weeks by physical examination and nasal washes were also obtained. 

Thirty three percent of the individuals were infected after the first challenge, 2 
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months after natural infection, while subsequent challenge produced infection in 

25% - 30% of the subjects. 73% of the subjects were re-infected one or more times 

during the 26 months after natural infection and about 50% had three or more 

infections during the same period. Although this work does not report a mean 

duration of immunity, it seems that protection is far from solid and is potentially of 

short duration given that there were some participants who got infected 2 months 

after the natural infection. 
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3.4 Summary and discussion 

In this chapter, I have presented a summary of the various studies reporting on 

some of the characteristics of the natural history of RSV infection that are relevant 

for its epidemiological study. One of the most important risk factors associated 

with the risk of hospitalization early in life i.e. mostly within the first 2 months of 

life, is the level of maternal antibody. The importance of maternal antibodies to 

RSV in infants has previously been a subject of much discussion [65, 154, 50, 51] 

and it has been shown that children with elevated levels of maternal antibody to 

RSV are protected from infection longer compared to children with low levels of 

antibodies [154, 67]. One of the risk factors associated with decreased placental 

transfer is the level of maternal antibody concentration [49] in cord blood. There 

exists seasonal variation in the RSV specific matAb titre. Antibody titres are 

highest following an RSV season [179]. Higher titres have also reported from 

mothers who had other children at home, perhaps due to the frequent contacts with 

the children who might be infected [87,88]. However, the duration of the protective 

level of maternal antibodies to RSV remains poorly understood. As shown in Table 

3.1, different st udies have reported conflicting estimates. Most of the reported 

estimates have been about the duration of detectable levels of RSV specific matAb 

rather than the duration of the protective effect. Furthermore it has not been 

established whether the presence of maternal antibodies in sera is an indication 

of whether an individual is protected from infection or not. One of the studies 

suggests a linear relationship between the level of maternal antibody and the age at 

first infection [67]. Additionally, the authors suggest that for maternal antibody in 

blood to offer protection against infection, the anti-RSV antibodies need to diffuse 
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through to the lining of the respiratory tract at the alveolar and bronchiolar level to 

provide protection against serious lower respiratory tract disease. It is not known 

what levels of maternal antibody in blood is required for such a diffusion to occur 

hence offering protection. Due to the lack of a credible duration of protection of 

maternal antibodies and a huge variation in the reported estimates, we estimated 

the duration of RSV specific matAb by fitting the mathematical model describing 

the transmission dynamics of RSV to hospitalization data as explained in Chapter 

6. Additionally, we included the parameter estimating the duration of protective 

level of maternal antibody in the sensitivity and uncertainty analysis in order to 

evaluate what effect a variation in the point estimate has on the number of children 

hospitalized with RSV and how that influences the outcome of vaccination against 

RSV. 

The rate of infection on the other hand is an important parameter determining 

how quick the virus is able to spread. There are huge variations in the estimates 

of the rate of infection from the different studies reported here. It is difficult to 

tell what level of variation is due to methodological differences or due to intrinsic 

variation in the study populations. Factors that affect the estimation, accuracy 

and the interpretation of disease and infection incidence data are discussed. The 

experimental design is an important factor. Cross sectional studies require re­

cruiting newborn and upper censoring at the upper age limit while a cohort is 

vulnerable to bias in exposure risk. In order to offset bias arising from temporal 

variation, the recruitment should be done throughout the year. Another impor­

tant factor is the method with which cases are determined. Active community case 

ascertainment may encourage individuals to participate while passive case ascer­

tainment is influenced by care seeking behaviour. It has previous been reported 

82 



in the Gambia [203] a decrease in incidence of disease with increase in cost of 

travelling to the hospital and this has also been reported by Nokes et al [148J. The 

method of sample collection also seem to differ across different studies with known 

differential sensitivity. For example, in a recent study investigating the sensitivity 

and specificity of real time multiplexed PCR (M-PCR) and immunofluorescence 

in the detection of respiratory viruses, the authors found out that nasopharyngeal 

flock swabbing was superior to nasal wash for the detection of viruses by M-PCR 

(sensitivity, 89.6% versus 79.2%; p=O.0043) although inferiority of the nasal wash 

was not observed when immunofluorescence was used to detect the presence of 

the virus [141]. Hence differences in laboratory diagnosis methods will also influ­

ence the outcome. Given that the published estimates of the rate of infection give 

widely varying estimates of the force of infection which are confounded by some 

of the factors discussed above, we will estimate the force of infection in the model 

using the relatively new but well established social contact hypothesis [196J. 

Studies that investigate the duration of shedding are quite few and especially 

those cases that are not hospitalized. Even fewer of these studies are reported 

from developing countries. Out of the eight studies reported here, 5 were hospital 

based (2 for children and 3 for adults) and only 4 community studies. Community 

studies where sampling of participants is done irrespective of the symptoms pro­

vide the most accurate estimates of the duration of shedding. From the studies 

recorded in Table 3.4, it seems that estimates of the duration of infection recorded 

from hospital admissions are higher than for community studies. This may be as a 

result of the fact that most hospital admissions are severe and they also represent 

the narrow age group of children less than two years of age. It has been shown that 

greater severity of RSV infection within in-patients results in increased duration 
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of shedding [85]. Data from the family studies by Munywoki et al [140] and Hall et 

al [87] provide the best estimates given the design of the study. Participants were 

sampled every 2 days during the RSV epidemic season and irrespective of their 

infection status. This design approach reduces the bias that is brought about by 

both right and left censoring of data. We have therefore used 9 days as the mean 

duration of shedding for primary infecteds in the mathematical model developed 

in Chapter 6. For the re-infections, Okiro et al [158] suggests that children with 

a history of RSV infection have a 40% increased rate of recovery from infection 

i.e. shorter duration of viral shedding and therefore duration of shedding given a 

history of infection was taken to be approximately 4 days [158]. This estimate is 

similar to that recorded by Hall et al [88J during yearly community surveillance of 

2,960 adults between 1975 and 1995. The rate of recovery from infection in the 

model is then assumed to be the reciprocal of the estimated duration of shedding. 

here are a number of factors that influence the comparability of studies reported 

in section 3.3.4. Sensitivity of the detection of viral shedding (a measure of infec­

tiousness) is likely to be determined by the amount of virus shed, which is expected 

to increase and then decrease as the infection progresses [41, 82J. Hall at al [82] 

have shown that as the days post infection increase, subsequent specimens tend to 

have lower viral load. From this observation, we can conclude that sensitivity of 

detection will be variable within the infectious period of an individual and partici­

pants sampled during early or late stages of infection are less likely to be classified 

as shedders. 

There are however a number of factors that influence the reliability and com­

parability of the studies reporting on the duration of infection. Sensitivity of the 

detection of viral shedding (a measure of infectiousness) is likely to be determined 
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by the amount of virus shed, which is expected to increase and then decrease as 

the infection progresses [41, 82]. Hall at al [82] have shown that as the days post 

infection increase, subsequent specimens tend to have lower viral load. From this 

observation, we can conclude that sensitivity of detection will be variable within 

the infectious period of an individual and participants sampled during early or late 

stages of infection are less likely to be classified as shedders. 

Another likely bias is the identification of failures i.e. recovered individuals 

who have stopped viral shedding. Different studies have used different criteria to 

try and distinguish between prolonged shedding and unique shedding periods. For 

example, Okiro et al [156, 158] defined a failure as a single negative sample preceded 

by a positive sample. So, given the nature of error in biological measurement, and 

especially at low level shedding, it is possible that children testing negative on a 

single day might subsequently turn positive on the next day. To minimize this bias 

in sampling, one would define a failure as two or three subsequent negatives. 

Another factor influencing the reliability of the estimates is left and right cen­

soring both of which will tend to under estimate the shedding duration. For most 

studies, it is difficult to determine the start time (left censoring) of shedding. This 

bias is more enhanced in hospital based studies where sampling will begin only 

after hospitalization or presentation to the hospital [199, 85] by which most indi­

viduals will have already started shedding. Studies that take samples irrespective 

of symptoms provide more accurate information although that also depends on the 

interval of sampling. Daily sampling would be desirable but due to the invasive 

nature of the sampling procedure, this would be difficult to implement. On the 

other hand, right censoring (difficulty in determining the time of viral shedding 

cessation) is more common in hospital based studies if participants are discharged 
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while still shedding. Some studies have tried to minimize this bias by following 

participants at home after discharge [85, 80]. 

Other factors that have been shown to influence the duration of shedding is 

previous exposure to the virus [158] where it has been reported that the duration of 

shedding is reduced by up to 40% in the secondary infecteds compared to primary 

infections. However studies have indicated that there is no correlation between 

age and the duration of shedding [158, 156, 85]. Infants with lower respiratory 

infection have been reported to shed the virus for a significantly longer period 

(mean 8.4 days) than those with upper respiratory tract infection (mean 1.4 days) 

[85]. Given this observation, it is therefore possible that estimates of the duration 

of viral shedding reported from children with lower respiratory tract infections are 

an overestimate of the mean viral shedding of the general population. 

The extent to which the studies can be compared is also dependent on the nasal 

sampling method and the laboratory diagnosis method. Nasopharyngeal aspirates 

(NPA) and nasal washes (NW) have been the gold standard for the diagnosis ofres­

piratory viruses [81] but in a recent study in children with mild respiratory illness, 

it has been demonstrated that nasopharyngeal flocked swabbing (NFS) is superior 

to NW collection for the detection of viruses by real-time multiplexed PCR (M­

PCR) (sensitivity, 89.6% versus 79.2%; p=0.0043) [141]. However, NFS collection 

was non-inferior to NW collection in the detection of RSV by immunofluorescence 

antibody test (IFAT) 

The duration of acquired immunity to infection is expected to have a significant 

contribution to RSV epidemiology. The duration of immunity determines how fre­

quent individuals become susceptible to re-infection and this may have a potential 

bearing on the seasonality of the infection and hence disease. There have not been 
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many studies documenting the duration of immunity to RSV. The data collected 

from the Kilifi birth cohort [184, 3] presents the best estimate for use in modelling 

studies. We have therefore taken the duration of immunity after infection to be 

approximately 6 months. The rate of loss of immunity is calculated as the recipro­

cal of this duration. Due to the variation in the estimates, the parameter estimates 

reported in this chapter and which are used in the mathematical model developed 

in chapter 6 will be part of the sensitivity and uncertainty analysis to evaluate 

what likely effect a change in their value will have on selected model outputs e.g. 

on the number of predicted hospitalization before and after vaccination. 
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Chapter 4 

Social contact patterns relevant for the 

spread of RSV 

4.1 Introduction 

The spread of respiratory infectious diseases depend on the social mixing pat­

terns that bring individuals into contact sufficient to facilitate transmission. Since 

mixing is intimately related to age, the age structure of contacts i.e. within and 

between age classes is of key importance in determining the pattern of spread 

[48, 136]. Age specific contact rates have therefore been useful in modelling the 

transmission of respiratory infectious diseases and potential impact of vaccine ad­

ministration on transmission pattern [164, 110]. In the case of Respiratory Syn­

cytial Virus (RSV), a major respiratory pathogen, transmission is via fomites and 

large respiratory droplets [86, 83]' which for effective transmission, require close 

contacts. 

Estimation of transmission parameters has previously been done using case no-
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tifications or age cross-sectional serological data [10, 54] and more recently through 

socio-demographic data [60, 40] and self reporting diaries [136, 196, 48]. Such data 

have been of considerable use in the past but have significant limitations: i) esti­

mation of the next generation matrix (NGM) from age related force of infection 

has an identifiability problem, ii) steady states of the endemic disease equilib­

rium are required and iii) the method is best suited for to infections for which 

age-prevalence continues to rise over a wide age range, otherwise inference is con­

siderably reduces. This method has worked well for childhood infections such as 

measles, mumps, rubella and chicken pox [180, 9, 10]. Contact data on the other 

hand yields estimates of who mixes with whom but the disease specific probability 

of transmission following a contact has to be indirectly estimated. 

A number of diary contact studies have been done and their investigations can 

be broadly categorized as those that constitute either short conversation without 

physical touch or a conversation involving physical touch [136]. It has been shown 

that the pattern of contacts within and between age groups identified from data on 

conversations is qualitatively matched by that of physical contacts, [136, 110, 40], 

the latter however being less frequent and more likely to result in complete records. 

An important finding in diary based studies is that mixing is assortative with age 

[136, 48, 110J i.e. people of similar age-group tend to mix more often than those 

in different age-groups. Observations between age-groups contacts more likely 

represent the interaction between individuals of parental age and young children 

and referred to as cross-generational mixing. 

Such data on social contact mixing is largely lacking within the developing 

country setting. In fact, only one such study has been done in Africa by Johstone 

et al [110J and it was recently published in 2011. In general, the areas in which these 
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data were collected were either non-representative of our setting [136, 100, 95] or 

there were design issues, such as small convenient sample sets [16, 48] and therefore 

it is not clear to what extent the result can be generalized to our geographical 

setting. To address this lack of empirical data from our setting, we undertook 

a population based, prospective diary survey of epidemiologic ally relevant social 

self-reported contacts. A random sample of individuals from the registers of the 

KHDSS were selected by age class and asked to keep a diary (record of physical 

contacts occurring with a day). The resulting data was used to extract daily 

contact rates by which to define the age-specific mixing pattern. 

Given the scarcity of contact data in different populations, the costly nature 

and the difficulty in carrying out a population wide contact study, we also devel­

oped a computation approach to derive mixing patterns from routinely collected 

socio-demographic data. In particular, we focus on constructing a synthetic con­

tact matrix from available demographic data on households. This kind of synthetic 

contact matrix generation has recently been independently developed for a num­

ber of European countries with a notable agreement between the synthetic mixing 

matrices and the contact diary data generated by the POLYMOD study [60]. The 

proposed method of generating the synthetic matrix is general and can be easily 

adopted in other regions where household demographic data is readily available. 

The two contact matrices developed in this chapter i.e. diary mixing and 

synthetic mixing data have been used in the mathematical model developed in 

Chapter 6 to model the transmission dynamics of RSV and to explore the benefit 

of different vaccination strategies. 
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4.2 Objectives 

The objectives of the work developed in this chapter are to estimate the age-specific 

contact rates in the KHDSS from: 

• conventional prospective self-reported contacts from diary data 

• a synthetic mixing matrix generated from demographic household data 

4.3 Methods 

4.3.1 Prospective diary survey 

4.3.1.1 Study design 

The study is a cross-sectional survey with randomized sampling by age-group. 

Six age-groups were identified: infants « 1 year old), pre-school (1-5 years old), 

primary (6-14 years old), secondary (15-20 years old), adults (20-49 years old) 

and elderly (> 50 years). A contact is defined as an interaction between two 

individuals involving some form of close physical contact e.g. handshaking, kissing 

or embracing. 

4.3.l.2 Study site 

The study was conducted in the northern part of the KHDSS of Kilifi District which 

is a coastal District in Kenya, with the Kilifi District Hospital as the reference 

point. Participants were drawn from 5 locations that are traversed by the main 

Kilifi-Malindi highway i.e. Kilifi Township, Tezo, Ngerenya, Roka and Matsangoni 

as shown in Figure 4.1. 
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Study area locations. 

Key: 
A - Kilifi Township 
B - Tezo 
C - Ngerenya 
D - Roka 
E - Matsangoni 
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Figure 4.1: KHDSS map with the regions labelled A, B, C, D and E showing the 
study locations within the KHDSS 
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The KHDSS is located on the Indian Ocean coast of Kenya and was established 

in 2000 as a record of births, pregnancies, migration events and deaths and is main­

tained by 4-monthly household visits. The study area was selected to capture the 

population from which hospitalizations are observed at the Kilifi District Hospital. 

It has a total population of approximately 262,000 as at March 2011 (See Figure 

4.2 for the population structure) living within an area of approximately 900km2 

with 49% of the population aged less than 15 years. It is worth highlighting at 

this point that there exists clear differences between the distribution of male and 

females above 20 years i.e. fewer males compared to females. This is possibly 

due to the high outmigration of males at this age to look for work outside of the 

KHDSS. Most of the men live and work outside of the KHDSS and more particu­

larly in the nearby city of Mombasa. As they maintain their family in rural Kilifi 

within the KHDSS, some of them consider themselves resident too. Some mothers 

as well move between the homes of their husbands and they therefore don't fall 

within the classification of a resident. These two issues highlight the challenge 

of defining who is a resident in a frequently migrating population. The average 

crude out-migration rate for the period between January 2006 and December 2010 

has been estimated at 88.5/1000 pyo (persons year of observation). For a more 

detailed description of the KHDSS, please see the work by Scott et al [182]. 

4.3.l.3 Study population 

The individuals who met the following conditions were included in the study: 

• residents of the KHDSS 

• participants able to give a written informed consent or their parents/guardians 
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Figure 4.2: Population pyramid of the KHDSS in 2011. Adapted from Scott .lAG 
et al [182] 

if below the age of 18 years 

Individuals were excluded from the study if: 

• they refused to give informed consent . 

• they Ken' planning to move out of the KHDSS within three months from the 

study start date. 

4.3.1.4 Sample size calculation 

An age structurecl mathematical model of RSV transmission was used to conduct 

a sensitivity analysis of the influence of variation in the age-sp<.'cific contact rates 

on the estimated age-specific force of infection (a study outcome influential to the 

predict<.'d impact of iIltervention). In the absence of suitable data for om proposed 
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study population, we adopted the age-specific rates of physical contacts defined 

in the POLYMOD study of UK residents [136]. The daily contact rates shown in 

Table B.1 in Appendix B was scaled by a factor q in order to estimate the per 

capita rate of infection per age group according to the social contact hypothesis 

[196]. The contact rates for the six age-groups are scaled by a multiplicative factor 

of ±20% (range 0.8-1.2) and the resulting matrix is then fitted to RSV inpatient 

data from the Kilifi District Hospital. The age specific force of infection is then 

plotted at equilibrium i.e. at the final time point as seen in Figure 4.3. The 

variability observed in the per-capita rate of infection gives an indication of the 

relative importance of the contacts between the age groups involved. For example, 

Figure 4.3 first panel shows the force of infection for each of the multiplicative 

factors as shown in the legend, when the contact rate between infants and infants 

is increased/reduced by ±20%. Considerable variability is observed which is an 

indication that the contacts between infants and other infants is important in 

determining the pattern of spread of the infection in the population of interest. 

In the final panel, i.e. the one on the 6x6 location, little variability is observed 

when contacts between adults older than 50 years are changed within the same 

limits. From Figure 4.3 we can see than the variation in contact rates within and 

between three groups, namely, infants, preschoolers and adults have more influence 

on the force of infection estimates than those of the other groups. For example, 

a 20% change in the contact rate of infants resulted in 0.69% change in the force 

of infection in infants and 9.13% in adults, whereas a 20% change for secondary 

school children resulted in 0.033% change in the force of infection for this group an 

0.0018% for younger age groups. This implies that minimum sample size estimates 

should be based on achieving adequate precision of contact rate estimates in these 
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three age groups. 

Infants Preschool Primary Secondary Adults Elderly 
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Figure 4.3 : Sensitivity measured a..'i the variability ()bserved in the force of infection 
when the daily contact rat e between two classes e.g. infants and preschoolers. i~ 
varied between ± 20%. The lines in each panel show the age-specific force of 
infection as predicted by the model output at equilibriwn. 

Assuming a desired precision (i .e. 957t, confidence limit) of ± 207t for an est i-

mated contact rate . and using an estimate of the cOlltact rate variation (~talldard 

deviation ~ 13) based on a school study diary recently undertaken in the KHDSS 
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but not yet published (SSC#1716, n=177), we estimate using standard methods a 

required sample size of 150 per age group or a total of 900 for the six age classes. 

To account for possible non-response and errors in completion of the diary, this 

number was increased by 20% to give a final sample size of 1080 individuals. 

4.3.1.5 Sampling procedure 

The study participants were drawn, in equal number, from each of the 5 locations 

shown in Figure 4.1 using records available in the KHDSS stratified into the six 

age classes. Recruitment was also staggered over a six month period spanning a 

period of social mobility related to farming practice, with equal sampling effort by 

month. A random sample of 180 individuals was therefore selected from each age 

group. 

The selected participants were followed up for consenting after explaining the 

requirements of the study. During consenting, participants were informed that 

they will be keeping the diary on one random day of the week. Each participant 

was requested to randomly pick one card out of seven, with each card labelled 

with a different day of the week. The participants were visited one day prior 

to the assigned day by a suitably trained field worker who explained how the 

diary was to be filled-in and also collected basic demographic data about the 

participant. The diary was collected the day following the recording day allocated 

to the participant. The field worker then conducted an exit interview to assess the 

participant's views on the diary and also asked a set of structured questions that 

will be used to determine the commonness of contacts with each individual and 

assist in validating the data collected in the diary. 

Random sampling of the entire study area was performed on a monthly basis 
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for five months. This translates to 180 diaries per month with each of the 5 

field workers coordinating the fieldwork expected to consent and supervise the 

filling of 9 diaries per week. This monthly staggering allowed us to account for 

heterogeneities in age-specific contact rates that occur before, during and after the 

normal planting season and between rural and town locations. 

4.3.1.6 Tool specification 

Two types of diaries we proposed. Text diaries and pictorial diaries. As is com­

mon in social science studies, a pilot study was conducted among 50 participants 

selected at random from the study area. The purpose was to assess the suitability 

of the diaries and make improvements, identify a suitable method of reminding 

participants to complete the diaries before rolling out the main study and also 

to formulate a validation method using a standard exit questionnaire. From the 

Focus Group Discussions (FGDs), we adopted a diary with both text and pictorial 

descriptions of the age classes for all study participants, see the diary sample in 

Appendix A.I. 

The diary design is such that the participants will only record the informa­

tion necessary for use in the age-structured RSV transmission model developed in 

Chapter 6. To minimize the effort required to fill out the data in the diary and to 

maintain the correctness of the data entered, we used a simple diary where only 

the age class of the person contacted and the frequency of the contact was entered. 

The diary was designed as a booklet with instructions on the first page on how 

to fill it in and the remaining five pages were reserved for recording contacts. In 

total, the diary had a capacity to record contacts with 75 different individuals. 

However, there was no limit to the number of physical contacts recorded with the 
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same individual in the final column of Appendix A.1. The duration or intensity 

and location of contact were not included in the diary design. The exit interview 

ascertained the frequency of contacts for each individual recorded in the diary to 

try and ensure the correctness of the data. The diaries were also translated to and 

from Swahili and Giriama (local dialect) from English. A participant was then 

required to select a diary in one of the languages provided. 

Codes representing household members were written on the diary by the par­

ticipant with the help of the fieldworker prior to handing over the diary to the 

participant. A household was defined as people who eat from the same kitchen. 

4.3.1.7 Community engagement 

We set up a number of focus group discussions (FGDs) during piloting to identify, 

for example, how to best shadow those unable to self-complete the diary and how 

to best fill in the diary induding prompting reminders through wrist watches or 

mobile phones. The FGDs were convened in the community with the help of the 

Community Advice for Specific Study Teams (CAST) at the KEMRI-Wellcome 

Trust Research Programme, Kilifi. The CAST team is responsible for advising 

and assisting study teams on the best approaches and practices when conducting 

community based studies. 

4.3.1.8 Ethical considerations 

The study underwent local internal review by the KEMRI/Wellcome Trust Pro­

gramme Scientific Coordinating Committee prior to submission to KEMRI Scien­

tific Steering Committee. Subsequent ethical approval for the study was sought and 

granted by the KEMRI/National Ethical Review Committee (KEMRI/RES/7/3/1) 
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as well as the Biomedical and Social Ethics Review Committee of the University 

of Warwick (134-07-2011). 

4.3.1.9 Diary allocation and keeping procedures 

Participants were expected to keep the diary for a day, and this was generally 

expected to begin when the participants woke up and end when they went to bed 

[48]. A field worker visited the participant a day prior to the randomized day 

of keeping the diary and explained the procedure for making diary entries. An 

at risk event which was to be recorded was a direct physical contact. A direct 

physical contact was defined as having occurred when two or more people touch 

one another e.g. handshake, sleeping together, embracing and kissing. Sharing of 

objects and talking without touching was not to be recorded as a contact. Re­

peated contact with the same individual was to be recorded in the same row as a 

tally in the last column of the diary. See Appendix A. Participants were requested 

to record information about the age class of each contact person. The diaries had 

six age classes which were chosen to so as to represent the schooling pattern in 

the population up to the secondary school and then adults and elderly in the final 

two age classes. The six age classes are infants « 1 year), preschool (1-5 years), 

primary school (6-15 years), secondary school (16-19 years), adults (20-49 years) 

and elderly (>50 years). These age classes were represented in the diary as both 

text and pictorial for ease of identification by the participants as shown in Fig­

ure A.I. During the first visit, the fieldworker also administered a questionnaire 

recording the sociodemographic information about the participant and that of the 

family members. These data included the age of the participant, the occupation, 

the gender, level of completed education, the administrative location and the com-
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position of the family. Participants were requested to record their contacts as they 

happened. In instances where this was not possible, they were asked to fill the 

diary at the next convenient time and were supplied with a reminder table, a sep­

arate piece of paper to keep a record of these contacts before transferring them to 

the diary. Participants were provided with alarm watches that were programmed 

to go off at hourly intervals so as to remind them when to fill the diaries. 

Individuals who could neither read nor write were assisted in filing their diaries 

by shadows. The shadowing process was designed to be as covert as possible so 

that participants did not modify their normal behaviour. Participant and shadow 

were expected to meet once hourly with alarm serving as a reminder and the 

participant was supposed to tell the shadow the people with whom they have had 

a physical contact in the previous one hour i.e. the age class and the number of 

times contacted. Shadowing of preschoolers and infants was done by the caregiver 

at home. Consented adults who can neither read nor write selected an appropriate 

person to shadow them. School going children < 9 years old were shadowed by two 

people, one in the household and the other one while at school. At the household, 

the caregiver shadowed and while at school, the class teacher was asked to assist 

the child to record their contacts. Both the caregiver and the class teacher gave 

informed consent or assent to allow participation in the study. 

4.3.1.10 Data capture, management and analysis 

Data capture and storage Each field worker was appropriately trained to explain 

the requirements of filling in the diary to the participants with an emphasis on 

ensuring the participant or the shadow understood how the diary was to be filled. 

Participants were also encouraged to fill in the diary once the wrist watch prompt 
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went off or whenever possible so as to mitigate recall bias. Data from the diaries 

was entered into a customized database in FileMaker® on the KEMRI-Wellcome 

Trust Research Progranune servers in Kilifi. 

Data analysis The average number of contacts per person was computed from 

the tally of the total contacts i.e. all contacts occurring within and outside of 

the household. In addition, the mean number of contacts stratified by age-group, 

smoothed and corrected for reciprocity were calculated as explained below. 

Generation of the contact rate matrix Let Yij be the number of unique indi­

viduals (respondents) in age class j that a participants in age class i contacts. 

Then Yij has the observed values Yij,t and t = 1,2, ... , T; where Ti is the number of 

participants in age class i. Therefore, Yij can be expresses as the total number of 

contacts as: 
T; 

Yij = LYij,t ( 4.1) 
t=1 

To calculate the mean number of the unique individuals contacted per day per 

person, we divide each row by the number of participants in each age class denoted 

by Ti . Let us denote the mean number of unique individuals contacted per day by 

(4.2) 

where J.Lij denotes the mean number of unique individuals contacted per day a 

participant in age group i has with individuals in age group j. 

Contact surface smoothing Contact surface smoothing was performed using 

a smoothing spline. The smoothing was performed in order to explore the non-
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linear structure of the data and to find the relationship between age and the unique 

number of contacts. The idea behind the smoothing spline is to combine a measure 

of tbe smoothness of a function and how well it fits the data. In this report, we 

have used a Bayesian formulation of the smoothing spline as reported by Rue et al 

[176]. A smoothing spline formulation involving a Bayesian model with a Gaussian 

prior is given as: 

Yi = f(x) + ( 

(4.3) 

(4.4) 

where x E [0 1], i = 1, ... , nand ( '" N(O, (12). The coefficients 81 and 82 can be 

fixed and unknown or random, b > 0 is a precision parameter and 

(4.5) 

where (.)+ = max(O, .). F(x) is a one-fold integrated Weiner process and the 

solution of the stochastic differential equation (SDE) shown in Eqn (4.6). The 

smoothing spline can therefore be found by solving a SDE and a Bayesian model. 

J2 f(x) dW(x) 
dx2 dx 

(4.6) 
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The Bayesian hierarchical model introduces a latent variable in addition to the 

observations and the hyperparameters such that 

Observations: ylf "" 7r(YIJ) 

Latent variable: fiB"" 7r(JIO) 

Parameters: 0 "" 7r(O) 

(4.7) 

(4.8) 

(4.9) 

The distribution of latent variable and parameter 7r(JIB) and 7r(B) represent f(x) 

and () before the observations are done and are referred to as the priors. Rue et al 

[176] have developed a computer package in R, for approximate Bayesian inference 

using integrated nested laplace approximation (INLA). The package is designed 

to handle Gaussian models such as the Bayesian formulation of smoothing splines 

and computes the 95% confidence interval from the posterior densities without 

using MCMC methods. 

Correction for reciprocity The major assumption behind this correction is that 

at the population level, symmetry of total contacts must hold. That is, the total 

number of contacts that individuals in age group i make with respondents in age 

group j must be equal to the total number of contacts that individuals in age 

group j make with participants in age group i. We will compute the total number 

of contacts, at the population level, between age group i and j and denote it by 

Tij such that: 

(4.10) 
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where ~ is the number of people in the population in age class i. If we assume 

reciprocity of total contacts holds at the population level, then 

(4.11) 

However, ~j =I- Tji and some of the reasons why the discrepancy may exist is 

because of participants failing to record all their contacts, recording more contacts 

than they actually had, participants contacting people outside of the population 

and bias in sampling. To correct the lack of reciprocity, we calculate the mean 

number of contacts between age group i and j from both ~j and T ji as shown in 

Eqn (4.12). 

M - T.J + 7;, 
'J - 2 (4.12) 

The adjusted mean number of contacts per day per person after correction for 

reciprocity is given by 

(4.13) 

and we refer to this matrix as the diary contact matrix. 

4.3.2 Synthetic mixing matrix 

The diary contact matrix in the previous section requires one to conduct a sur-

vey in order to estimate the mean number of contacts per person per day. Such 

surveys are not available for all populations because such collection of empirical 

contact data on large scale is both difficult and expensive. In this section, we will 

present an alternative approach by constructing a synthetic contact matrix. The 

main advantage with this method is that it is general and can be easily used for 
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regions without contact surveys data but with the necessary socio-demographic 

data available. 

We developed the synthetic matrix with the starting assumption that the 

WAIFW matrix can be thought to be composed of three sets of contacts, namely: 

household contacts, school contacts and general/other contacts. In order to con­

struct the overall contact matrix, the three setting specific matrices were built and 

then linearly combined. In generating the synthetic matrix, a contact is assumed 

to have occurred if two or more people share a physical environment. 

Household contacts These are contacts that happen within the household setting. 

A household in our setting is defined as an establishment where people share and 

eat from the same kitchen. The contacts that occur within this setting can be 

thought to represent a stable and easily quantifiable compartment of population 

mixing [136]. They are also characterized by some common features of intense 

and regular interactions. To determine the entries of this matrix, we obtained 

household data from the KHDSS that was collected between September 2010 and 

January 2011. These data include the location i.e. latitude and longitude, of each 

household, the number of people and the age of each individual in the household. 

U sing this set of data, we generate a household mixing matrix assuming that 

individuals within each household mix homogeneously but by age. We started by 

putting people in yearly age classes up to 76 years of age and people older than 

76 yeas were put into the last age class. Whenever we encountered two people 

from the same household, we added a counter to the corresponding intersection 

of their age classes. Since contacts are reciprocal in nature, the corresponding 

intersection of their ages was updated as well. All self-contacts were disregarded. 
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We repeated the process for all the individuals in the population in each and every 

household. This matrix is represented as Hij and represents the total number of 

contacts in the population occurring in the households. Since Hij accounts for the 

total number of contacts accounting for reciprocity, then it relates to the mean 

number of contacts CH as shown in Eqn (4.14) 

(4.14) 

where Wi, Wj are the population sizes in age classes i and j. 

School contacts In general, contacts within a school setting have been reported 

to occur within individuals of predominantly the same age group [133]. We have 

assumed that children will be in school between the age of 5 years and 20 years. To 

populate this school mixing matrix, we equated the elements of the main diagonal 

from age 5 to 20 years with the maximum value from the household contact matrix. 

Additionally, we equated the two parallel diagonals on either side of the main 

diagonal to half of the value of the main diagonal of the household matrix. This 

matrix is represented as Cs. 

General! other contacts A homogeneous contact matrix represents all other con­

tacts in the population outside of the household and the school. The homogeneous 

mixing matrix assumes that the mixing rate between age groups is independent 

of the number of individuals within the age groups. This matrix is represented by 

To relate the three mixing matrices to the WAIFW matrix, we linearly combine 
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them as shown in Eqn (4.15) 

( 4.15) 

where qH, qs and qH s are disease specific infectivity parameters and are estimated 

by fitting the the age structured RSV model developed in Chapter 6 to RSV 

hospitalization data. However, in this chapter we will present the results only of 

the household component of the synthetic matrix since the other two component 

matrices are based on assumptions rather than generated from data. Additionally, 

the WAIFW matrix generated from the linear combination shown in Eqn (4.15) is 

presented in Chapter 6. 
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4.4 Results 

4.4.1 Diary survey results 

A total of 1138 individuals were randomized for participation in the study. Fifty 

five percent (623 individuals) consented to participation while 515 refused to par-

ticipate. Table 4.1 shows the reasons for non-consent in the study and by the 

study locations as shown in Figure 4.1. Of the 623 diaries given, 606 diaries were 

collected and only 571 were completed and were used in the analysis presented. 

The mean age of the participants is 23 years (SD 22). 

Table 4.1: Reasons for non-consent 

Reason for non-consent A B C D E I Total 

Hostile 0 0 0 0 1 I 1 

Silent 1 1 0 1 1 14 

Not interested 28 23 6 9 6 I 72 

Absent 14 8 2 6 19 149 

Migrated 30 5 4 4 14 I 57 

Temporarily away 27 11 10 17 19 
1

84 

Parent failed to give consent 21 3 7 13 2 1 46 

U ntraceable 23 3 0 2 1 1 29 

Withdrawal 6 7 0 2 2 117 

Dropped from study 9 0 0 0 2 111 

Died 1 1 1 1 1 15 

Unknown 49 17 21 36 17 1 140 

Total 209 79 51 91 85 I 515 

A total of 27,395 physical contacts were recorded with 11,498 unique contact 

persons. Figure 4.4 shows the distribution of total contacts which are skewed to 
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the right with majority of the participants recording contacts of frequency 1. The 

baseline characteristics of the 571 study participants who completed the diaries 

me shown in Table 4.2. Of the 27,:395 total physical contacts recorded, oYer 70<X 

of these contacts were reported during weekdays. The mean number of people 

contacted per clay per participant was associated with the participant's age class 

with the lowest mean number of contacts reported among infants (15.16) and the 

highest among the secondary (22. ) followed by the primary (21.9) school agcs 

classes. Figure 4.5 shows the distribution of the contacts that are with unique 

4500 
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~25OO 
c: ., 
g 
Li: 2000 

3 5 7 9 11 13 15 17 19 21 23 25 27 29 
Counts 

Figure 4.4: Di~tribution of contacts. Note that the contacts are skewed to the 
right wit h majority of the part icipants recording contacts of freqlH'llcy 1. 

indi viduals. From the figure, we can observe that the medicUl l1umlwr of illcli vicluuls 

contacted is 17 ppr person per day. The distribution is skewed to the right with 3 
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participants recording tl1(' highest number of unique people met ill a day at 68. 
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Figure 1.5: Showl) the distribution of contacts that are with \\lIique individuals 
\\'i t h a llledian (red) of 17 and a Illean (green) of 20.14 p('r person per day 

4.4 1.1 Age related mixing pattern 

Figure 4.6 shows the mean llumlH'r of people contacted (solid grey lines) with tilr 

slIloothing splines (black solid liues) and the 9f)<J{ Cl (dashed black linrs). The 

resulting mean number of individllals contacted after correcting for reciprocity is 

shown in Figmr 4.7. There are three main features apparent from the data. Firstly. 

the diagonal elemeut where individuals ill all age groups tend to lllix a.<;sortativel:,>, 
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Table 4.2: Number of recorded contacts per participant per day by different char-
acteristics 

Category Number of Total num- Total in- Mean number 
participants ber of con- dividuals of contacts (IQ 

tacts contacted range) 

Total sample 571 27,395 l1,498 20.14 (12-24.75) 
Gender 
Female 307 15,866 6099 19.87 (12-24) 
Male 264 11,529 5,399 20.45 (12-25) 
Age group (years) 
< 1 86 4,924 1,304 15.16 (10-18) 
1-5 94 7,034 1,838 19.55 (13-23) 
6 - 15 98 5,143 2,146 21.90 (13-28) 
16 - 19 92 3,747 2,098 22.80 (14-29) 
20 - 49 139 5,151 2,976 21.41 (13-28.75) 
250 62 1,396 1,136 18.32 (10-24) 
Day of keeping 
diary 
Weekday 402 20,067 8,004 19.91 (12-24) 
Weekend 169 7,328 3,494 20.67 (13-28) 
Location 
Kilifi Township l10 3,825 1,925 17.50 (l1-22) 
Matsangoni 134 6,745 2,961 22.10 (14-28) 
Ngerenya 86 6,557 1,883 21.90 (13-26) 
Roka 153 7,463 3,049 19.93 (l1-24) 
Tezo 88 2,805 1,680 19.09 (12-26) 
Occupation 
Agricult ure /Fishing 38 1,096 774 20.37 (12-24) 
Business person 28 976 658 23.50 (14-30.5) 
Casual labourer 30 928 620 20.67 (l1-30) 
Office worker 2 30 23 l1.50 (7-16) 
Pre-school 104 5,830 1,781 17.13 (l1-21.5) 
Retired 4 210 92 23 (18.5-27.5) 
Student 143 6,698 3,320 23.22 (14-28) 
Unemployed 180 10,224 3,399 18.88 (12-23) 
Other 39 1,323 775 19.87 (8-27.5) 
Missing 3 80 56 18.67 (17.5-20.25) 
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at relatively high rates except for a) the infants whose contacts with other infants 

is the lowest and b) individuals >50 years. This pattern is most pronounced in 

the age group 6-14 years and least pronounced in the infants. Secondly, there is 

high mixing recorded between infants and a) children aged 6-14 years and to a 

lesser degree 1-4 years old and b) adults aged 21-49 years. This pattern represents 

infants mixing with primary school going children (6-14 years) and adults (21-49 

years) with the contacts probably happening at home since that is where the infant 

is likely to be. 
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Figure 4.6: Mean number of people contacted per participant with unsmoothed 
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4.4 .2 Synthetic mixing results 

The synthetic WAIFW matrix is generated by combining the household, school 

and general population mixing matrices in a linear fashion. The WAIFW matrix 

resulting from this linear combination is discussed in Chapter 6. In this section, 

we will limit Oill" discussion to the pattern resulting from the household mixing. 

Figure 4. ' shows the resulting mixing matrix from the household data for the en-

tire KHDSS. The scale on the right hand side shows the mean number of contacts 

that a member in a household has scaled by the total number of individuals ill 

the KHDSS population of the participants age dass. From this figure , we call see 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 
Age in years 

Figure 4. : HOlls('hold contact surface deduced from the Kilifi HDSS household 
occupancy data for the period from September 2010 to January 2011 
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that majority of the contacts occurring in the households within the population 

are among individuals aged between 5 and 26 years old. We can also observe 

assortative mixing between individuals of the same age class as demonstrated by 

the strong diagonal component up to the age of approximately 30 years. Parallel 

to the main diagonal on either side, there are strong mixing components between 

individuals under 20 years of age with individuals roughly 20-30 years old i.e. re­

flecting the inter-generational for of household occupancy. The peak of this mixing 

between younger and older individuals in between infants and approximately 30 

years old individuals. These are mostly likely to be the parents or the guardians 

taking care of the infants in the household. Another notable feature of the mixing 

within the households is the strong mixing between children aged approximately 

10-20 years old with elderly adults aged greater than 70 years. This result most 

likely reflects the tendency of grandparents living within the households of their 

children at old age within this population. 

The diary mixing matrix has been validated against the the synthetic household 

mixing matrix by correlating its elements against those of the household mixing 

matrix. We found that they are linearly correlated with a coefficient of determina­

tion (R2) of 0.55. Figure 4.9 shows the scatter plot from which it can be seen that 

a linear relationship exists between the two types of contact data. It is important 

to note that unlike the diary contacts matrix, the household mixing matrix is not 

affected by sampling error since the survey enumerates the entire population. 

4.4.2.1 Contact surface by administrative location 

Figure 4.8 shows the mixing pattern in the households in the entire KHDSS. To 

explore any differences in the household contacts, including any demographic tran-
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sitions, we divided the household occupancy data by the administrative locations 

(government administrative unit) shown in Figure 4.10. Figure 4.11 shows the con­

tact surfaces for the different locations. To enable comparison, we used the same 

coloring limits for all the plots. As in the general population, we can observe 

assortative mixing within all the administrative locations with strong off diagonal 

mixing. For Kilifi Township, which is classified as an urban area, the pattern is 

dominated by assortative mixing among adults of age 20-30. This may be an indi­

cation of adults sharing living arrangements with fewer children compared to the 

rural areas. In fact, Kilifi Township has the lowest mean number of occupants per 

household at 6.7 while Jaribuni has the highest mean number of occupants per 

household at 11.26 as shown in Figure 4.12 
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4.5 Discussion 

We report on a study designed to estimate the age specific contact rates between in­

dividuals in a defined population for the purpose of using the Who Contacts Whom 

(WCW) matrix to estimate the Who Acquires Infection From Whom (WAIFW) 

matrix. The WAIFW matrix is then used to parameterize the age-specific RSV 

mathematical model developed in Chapter 6. To enable the quantification of the 

contacts, it was necessary to define a contact event that would be easily under­

stood and easy to record in a quantifiable way. For the purpose of the study, we 

defined a contact between two individuals as a direct physical contact involving 

some form of touch e.g. kissing, sleeping in the same bed, handshake e.t.c. These 

close physical contacts are the ones that are most likely to lead to a potential 

transmission event for RSV for which transmission has been shown to effective 

through close contacts [86]. What we do not include though, is the possible role 

of fomites which might enable relatively 'long distance' transmission possible. 

The distribution of the number of total contacts were highly skewed as shown 

in Figure 4.4 with the majority of the participants recording more contacts of 

frequency 1. The distribution of the number of physical contacts with unique 

individuals per day is also skewed to the right with a mean of 20.14 per person 

per day. This value is higher than in previously published contact studies c.g. 

the mean number of contacts per participant per day in Vietnam [100], was 7.7 

and in South Africa [110] it was 15.84. The POLYMOD study [136] also reported 

a mean daily contact rate (of both physical and conversational contacts) which 

is lower, 13.4, than in our study and the contact rate of the physical contacts 

alone would be expected to be much lower although not reported. There are at 
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least two possible reasons why this may be the case. Firstly, there may be more 

contacts reported within the KHDSS population due to the tradition of extended 

family members staying within the same compound and sharing a kitchen. This 

would expose them to more contacts within the household compared to people 

in living arrangements where only the nuclear family lives together. Secondly, 

the study design could have been an influence in that people were reminded to 

fill in the diaries at hourly intervals using programmed watches. Both of these 

reasons may have improved participant response rates to filling the diaries. The 

mean number of contacts per participant was associated with the participant's 

age class with the lowest mean number of contacts recorded by infants and the 

highest recorded by primary school (21.9) followed by the secondary school (22.8) 

children. Additionally, it was observed that the contacts made with pre-school and 

primary aged children are more assortative compared to contacts made by other 

age groups. This means that most of the contacts that individuals in ages 1-14 

make are with people of the same age group and this result has been observed in 

the POLYMOD study done is several European countries [136]. This outcome is 

possibly the reason why young children have been shown to be important in the 

initial spread of respiratory infections requiring close contacts [196]. 

One of the main assumptions in our work is that physical contact with another 

person is what has been defined as the main at-risk event for transmission of an 

infection. However, there may exist other at-risk events that this methodology 

has not captured e.g. the duration and intimacy of a contact and being in a con­

fined space with another person but not touching them [16, 167] and the possible 

transmission through fomites via the sharing of contaminated items [83]. Such 

at-risk events are probably less important in the transmission of RSV compared to 
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the physical contacts captured by our work. Another limitation of diary study is 

that approximately 60% of the participants had their diaries filled in by a shadow. 

Shadowing has the disadvantage that it can lead to behaviour modification of the 

person being shadowed. Additionally, a shadow would not necessarily record all 

contacts since they are not always in the company of the participant. Although 

every effort was made to minimize recall bias, it is possible that the data is subject 

to it. Participants were required to fill in the diary as often as they could during 

the course of the day and they had wrist watches that had a timed alarm that 

went off at a certain interval to serve as a reminder. The simplicity of our study in 

terms of the small number of actions that the participants had to do is likely to be 

an advantage relative to previous studies requiring the participants to record e.g. 

location of contact, type of contact, duration. This ensured that the participants 

effort was geared towards only a few entries i.e. the age of the respondent and 

the frequency of the contacts and it is possible that it enhanced the correctness of 

the data entered. A limitation that was reported in one of the main diary contact 

studies (POLY~IOD study) is that of right censoring. In that study, data analyzed 

were right censored at 29 contacts because of a limited number of possible diary 

entries in some of the study populations. However, in our study, this effect of 

right censoring is minimized if not absent. This is because there are only three 

individuals who reported 68 contacts with different people while the diary had a 

capacity to record a total of 68 different contacts. Participants in the study were 

provided with a reminder table on which they would record any additional contacts 

incase the diary spaces were filled up. However, during the exit interview, it was 

established that none of the three had recorded any contacts in the reminder table 

that were not in the main diary. None of the participants expressed any concerns 
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about limited space in the diaries. 

Another limitation that is also worth highlighting is that of a high non-consent 

rate. We reported a non-consent rate of 50.1%. Non-consent rate was determined 

as the proportion of all cases in which a respondent refuses to consent and cuts 

off contact with the field worker well before keeping the diary [61]. It is important 

to note, as shown in Table 4.1 that majority of the reasons for non-consenting in 

the study are not known, followed by individuals who are temporarily away and 

then individuals who are generally not interested in the study. Although there is 

a high non-consent rate, there are actually multiple reasons and only in part due 

to refusals. It is important to note that since there was a fixed time schedule for 

sampling, there could be very little to carry over from one month of the study to the 

next and this would increase non-participation. More important in the assessment 

of the influence of non-participation bias is the extent to which non-participation is 

associated with exposure to varying contact rate. We did not record any data from 

the individuals who did not consent and therefore it would be difficult to determine 

if there are any differences in the contact patterns between the participants and 

those who did not consent to participate. However, a comparison between the 

synthetic and the diary data suggests that the pattern of contacts is similar for 

the two methods and since the synthetic method enumerates the entire population, 

then it suggests the individuals who did not consent may have very likely had the 

same mixing pattern as the participants. 

Using contacts diaries in the population has been sho\\n to be a feasible method 

of collecting social contact data. However, we have also used household occupancy 

data to try and validate our finding using a different approach. From Figure 

4.8, the synthetic household mixing represents two clear features: 1) a dominant 
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diagonal from 5 year old children to 26 year old individuals and 2) there is an upper 

and lower off diagonals possibly accounting for contacts that parents have with 

children. This patterns has also been observed by Fumanelli et al [60] with data 

from European countries. This mixing patterns also seems to be conserved across 

the different administrative locations within the KHDSS as seen in Figure 4.11 

with the exception of Kilifi Township and Junju. The pattern in the two locations 

is indicative of more adults sharing living arrangements compared to the other 

locations within the Kilifi HDSS. This social contact matrix from the diary survey 

has been validated against this household synthetic matrix by jointly regressing 

their elements. Although there is a good agreement between the two matrices, their 

elements differ by a factor i.e. the diary matrix records more contacts compared 

to the household mixing matrix though the mixing pattern remains the same. 

This is expected since the synthetic household matrix is composed of only the 

contacts in the household and ignores all the contacts occurring elsewhere e.g. 

between households. Given that the pattern observed in the two matrices is closely 

related, it possibly implies two things either the diary contacts are dominated by 

contacts within the household or contacts outside of the household are assortative 

in nature. From this work however, it is not possible to discriminate between the 

two suggestions. The use of the synthetic matrix for the determination of social 

contacts relevant for the transmission of close contacts has the advantage that it 

is cheap since it makes use of available social demographic data. This method can 

be extended by using data from other sources e.g. school and work attendance 

data as proposed by [60] and therefore form a good alternative for settings without 

social contact data. Historic mixing patterns can also be constructed and used, 

together with mathematical models of disease transmission, to study the effect of 
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demographic transition on the transmission of infections. 
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Chapter 5 

A mathematical model of RSV 

transmission dynamics 

5.1 Introduction 

Mathematical models in the description of biological processes have previously 

been developed for two reasons. The first one is a predictive purpose [180, 12, 130] 

where the model is developed to include sufficient processes parameterized from 

observational and experimental data with the aim of predicting the effect of an 

action or intervention. The second purpose for which a model would be developed 

is to gain an understanding of the underlying process influencing the behaviour 

of the system [69, 46, 131]. The complexity of such models is kept to a minimum 

and at the same time ensuring that the most important aspects of the infection 

are captured [72]. The model presented in this chapter is one of the second nature 

and also serves as a template on to which further biological and demographical 

complexity can be added. A simple mathematical model is presented which allows 
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for the definition of the most important epidemiological elements of RSV. The 

compartmental model developed allows the host population to be categorized based 

on their infection history and immunity status. 

There have been previous RSV mathematical models developed. Weber and 

others [201] compared a standard SIR model with a more realistic model of RSV 

transmission in which individuals acquire immunity gradually after repeated ex­

posure. The risk of an exposed person contracting an infection was assumed to 

decrease after the first four experiences such that the risk of infection is 50% for the 

second, 35% for the third and 25% for the fourth infection compared to primary 

infection. Qualitatively, the two models gave an equally good fit to a time series 

of hospital case reports. Estimates of the basic reproduction number (Ho) ranged 

from 1.2 to 2.1 with the SIRS model and 5.4 to 7.1 with the model accounting for 

gradual acquisition of partial immunity. 

Luis and others [1] developed a mathematical model of RSV with two age 

classes describing the transmission of RSV in Valencia, Spain. They fitted the 

model to hospitalization data from illnesses related to RSV from Valencia. They 

further considered a new born vaccination strategy in terms of the estimated cost 

of vaccine, the average cost of hospitalization of RSV infected children who de­

wlop acute symptoms and the parent work loss. From the outcome of the model, 

a reduction of 2 million Euro of total cost is predicted or an estimation of 3 days 

of parent work loss on average for hospitalized infected children. The predictive 

results arising from this work should be looked at in the light of the following 

limitations. Firstly by using a SIRS model, they have assumed that the primary 

and secondary infections are similar in terms of their recovery period and infec­

tiousness. This is not necessarily true as it has been shown that the secondary 
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infectious period can be reduced by as much as 40% from the primary infectious 

period [158, 156]. The assumption will potentially bias the simulation and vac­

cine effectiveness results. For example, the number of cases hospitalized might be 

overestimated since it will include both primary and secondary infecteds in the 

first age cohort. Secondly, the vaccination strategy is evaluated at birth yet we 

know from previous work that the efficacy of a vaccine given at this age may be 

compromised for possibly two reasons. The first one is that the immune system 

of the infant may not be properly developed to elicit an immune response [174] 

and the second is that the presence of RSV specific maternally derived antibodies 

may influence the effect of the vaccine given at that age hence leading to possible 

vaccine failures [187, 160]. 

White and others [205] proposed a single model structure that captures four 

possible host responses: partial susceptibility, altered infection duration, reduced 

infectiousness and temporary immunity to infection. By setting the homotopic pa­

rameters to extreme values, the model generated a set of eight nested sub-models. 

These models were applied to time series case reports from eight geographically 

distinct locations. ~[odels that incorporated either of the two extreme assumptions 

of immunity (none or solid and lifelong) were unable to reproduce the observed 

temporal dynamics. Models with waning or partial immunity to disease were both 

visually comparable with the best fitting model being the one with lifelong partial 

immunity to RSV infection. This work therefore seems to suggest that the data 

supports two model forms: a) lifelong partial immunity and b) waning immlmity. 

The model that we present in this chapter will seek to address some of the 

limitations of the previously developed RSV models. We have considered the 

natural progression of the infection from previous studies and have endeavored 
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to keep the structure of the model as simple as possible to allow for analytical 

tractability but not so simple as to exclude the most important epidemiological 

aspects. We have presented the model in two forms in this chapter. The first one 

is an analytic evaluation to determine the stability of the model and the conditions 

for the invasion of the infection in an infection free population. Given the analytical 

intractability of the endemic equilibrium model, the second form of the model is 

presented in terms of numerical simulations exploring the behaviour of the model 

in the presence of the infection as well as to confirm the analytical results both in 

the presence and the absence of a vaccination programme. 

5.1.1 Objectives 

The objectives of the work presented in this chapter are: 

• to model the transmission dynamics of RSV using a compartmental math­

ematical model and explore the stability behaviour both in the disease free 

population and in the infection endemic state. 

• to explore the behaviour of the model under different parameter values and 

explore regions exhibiting backward and forward bifurcations. Additionally, 

I have considered whether the criteria for multiple endemic equilibria is sat­

isfied within a set of biologically meaningful parameters. 

5.2 Model structure 

I have developed a deterministic compartmental model in which an individual 

occupies one and only one compartment. This kind of compartmental deterministic 
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modelling has previously been used to describe childhood diseases [180, 164, 125]. 

The host population is divided into nine distinct epidemiological groups according 

to their infection status. The cartoon in Figure 5.1 shows the flow of individuals 

between the different compartments with respect to time. 

Figure 5.1: Schematic flow diagram of the compartmental model. Arrows represent 
the flow of individuals between states. The parameters defining the rates of flow 
are discussed in the text and listed in Table 5.1. 

Simply, the infection dynamics are as follows: Individuals are born into com-

partment M during which they are protected from contracting the infection by ma-

ternal antibodies. It has previously been shown that children born to seropositive 

mothers are born with maternally derived antibodies against RSV [154, 152, 20j. 

In one prospective study [154], newborn infants were examined prospectively for 

one year for evidence of infection with RSV. Mean titre of maternal IgG antibody 

to RSV was significantly higher in those mothers whose babies remained unin­

fected. Babies born to mothers with high levels of IgG antibody to RSV were 

protected against infection with the virus during the first months of life when the 
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risk of severe disease was highest. In another study measuring the duration of 

RSV specific maternal IgG in infants [152], 97% of the children in the birth cohort 

had detectable levels of maternal antibodies at birth. 

The maternal antibodies wane leaving individuals susceptible to primary in­

fection. So. upon which they progress into primary infected class, 10 , at a rate A 

as shown in Eqn.(5.1). Individuals then recover into class Po at a rate "(0 where 

they have solid but waning immunity. Individuals are known to be repeatedly 

infected throughout life [68, 87, 149] and so immunity is not solid and/or life­

long. Individuals then lose their temporary protection to become susceptible to a 

second infection at a reduced rate aoA. Re-infected individuals then progress to 

secondary infected class 11 with reduced infectiousness compared to 10 possibly due 

to reduced duration of shedding and reduced viral shedding. A recent study [158] 

investigating the duration of RSV infection and viral shedding in relation to the 

infection history, age and severity showed that the rate of recovery was 40% faster 

for children previously infected. Transmission has also been shown to be associ­

ated with the quantity of viral material shed [85]. Once individuals recover from 

the second infection, they enter class PI' where they lose their protection at a rate 

PI to become susceptible to a re-infection and proceed to class 12 . The rate of 

infection from S2 is alA such that alA ~ aoA ~ A. This implies that there is 

long-term partial immunity conferred upon an individual by a previous infection. 

The risk of an exposed person getting infected decreases after the first and second 

experiences of an infection and subsequent re-infections are assumed not to confer 

any extra protection and hence individuals will move between compartments S2, 12 

and g. This assumption is based on a longitudinal study done on a birth cohort 

during seven successive epidemics where the attack rate for the second and third 
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infections was reduced by 25% and 35% respectively, with statistical significance, 

compared to the attack rate of the primary susceptible individuals [93]. There was 

no extra benefit acquired beyond the third infection and the reduction in the rate 

of attack was minimal and without statistical significance. 

Eqn. (5.1) shows the set of Ordinary Differential Equation (ODE) representing 

the flow of individuals through the lO epidemiological classes as represented in Fig­

ure 5.1. The model parameters, their description and values are shown in Table 

5.1. The model parameters in the table are not strictly based on the review dune 

in Chapter 3. This is because they were chosen so as to give a basic reproduction 

number of approximately 7.3 which is within what previous modelling work sug­

gested [205, 201]. However, the parameters used in Chapter 6 and the upper and 

lower bounds used in the uncertainty and sensitivity analysis have been based on 

the review. During the model numerical simulations, the population size was as­

sumed constant. The mortality and fertility rates are therefore assumed constant 

and equal, denoted by /1, such that the value is the reciprocal of the average life 

expectancy. The total number of deaths is given as I1N and the number of births 

is chosen so as to match the mortality rate. The initial conditions are such that 

99% of the people are in the M class and 1% are in the 10 class. 
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Table 5,1: Baseline parameter estimates used in the numerical simulations in Fig­
ure 5,2 

Symbol Description Value 

J.l Birth/death rate Estimated as the reciprocal of J.l = 0,02 
the life expectancy which is as-

w 

b 

Pi 

TJi 

sumed to be 50 years 

Rate of decay of ma- w = 4/yr,The duration is ap- w = 4/yr 
ternal antibodies proximately 3 months 

Transmission parame- A = b [<>oIo+<>].J! +<>2[2] where IV b = 300 
ter is the population size and A is 

the force of infection 

Long-term immunity O:S 0'0,0'1,0'2 :S 1 and 0'2,0'1:S 0'0 = 1 
factor (partial) reduc- 0'0, O'i = 1 implies complete 0'1 = 0,75 
ing the susceptibility immunitYO'i = 0 implies no im- 0'2 = 0,65 
of previously exposed munity where i=0,1,2 
individuals in Si where 
i=2,3 and P2 classes 

Rate of waning of To be explored, Assume pro- Po = 4/yr 
short term immunity tection for 3 months and 6 PI = 2/yr 
of recovered individu- months after primary infection P2 = 2/yr 
als, Pi where i=0,1,2 

Short-term immunity 0 < TJi < 1 TJi = 0 implies TJo = 0,5 
factor reducing the complete immunity TJi = 1 im- TJ1 = 0,25 
susceptibility of recov- plies no additional immunity, TJ2 = 0,25 
ered individuals in the 'f/2:S TJ1 :S TJo 
P; classes 

Rate of recovery from 1'1,1'2:S 1'0 Assume 9 days and 
infected classes Ii into then approx 40% reduction to 
recovered classes P; 4,2 days 

Factor reducing infec- 00 = 1 and 0 :S 01,02 < 1 
tiousness 0i = 0 implies not infectious 

and 0i = 1 implies complete in­
fectiousness 
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1'0 = 40,6/yr 
1'1 = 86,9/yr 
1'2 = 86,9/yr 

00 = 1 
01 = 0,5 
02 = 0,5 

REF 

\ \'odd 
Bank 
Data 

[78] 

Taken 
to 
give an 
Ro=7,36 

[93] 

[184] 

Assumption 

[199,85] 
[158] 

Assumption 
based 
on [158] 



dM 
fJN - M(fJ + w) 

dt 

dSo 
wM - SO(fJ + A) -

dt 

dIo 
ASO - IO(fJ + 1'0) -

dt 

dPo 
1'010 - Po(fJ + Po + 1]oo-OA) -

dt 

dSI 
PoPo - SI (fJ + o-OA) -

dt 

dII 
o-OASl + 1]o0-0APo - 11 (fJ + 1'1) -

dt 

dPI 
1'111 - P1(fJ + PI + 1]lo-I A) -

dt 

dSz 
PIH + P2P2 - S2(fJ + o-lA) 

dt 

dIz 
1ho-IAP1 + 0-1 A5\ + 1]20-2A.P2 - 12 (/1 + 1'2) -

dt 

dP2 
1'212 - P2(/1 + P2 + 1]20-2A) -

dt 

where 
b 2 

A = N 2: a i I i 
i=O 

(5.1) 

In the next section, I will present an analytical analysis of the model exploring 

the basic reproduction number, the invasion threshold and the conditions under 

which multiple sub or supercritical endemic equilibria can exist. A numerical 

solution to the Eqn.(S.l) is also presented and the results compared with the 

analytical results. 
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5.3 Results 

5.3.1 Invasion threshold 

The basic reproduction number is a well known measure representing the potential 

for an infection to be transmitted in a population. Technically, we denote it as Ho 

in this thesis and define it as the average number of new infections that arise from 

an average primary case during their infectious period in a completely susceptible 

population [116, 10]. In order to calculate the analytical invasion threshold, we 

need to work out the closed form of Ho and then equate it to one. The Ho has 

been calculated based on the standard methodology illustrated in [42, 195]. 

Let's consider a homogeneous population whose individuals can be distin­

guished by their infection status as shown in Figure 5.1. The compartments are 

mutually disjoint and an individual can belong to one and only one compartment 

at any unit time. The basic reproduction number cannot be determined from the 

structure of the model alone but also depends on the definition of infected and 

infectious compartments. Therefore, the model has been defined starting with 

the three infected classes and then the disease free compartments such that the 

solution can be expressed as [I~'/;, I;, M*, So, PO', Si, P{, s~, P;]. 

In order to compute Ho, it is important to distinguish new infections from all 

other changes in the population. To do this, let: 

G;(x) be the rates of appearance of new infections in compartment i 

v:+ (x) be the rate of transfer of individuals into compartment i by all other means 

v:- (x) be the rate of transfer of individuals out of compartment i and V; = v:- - v:+ 
Therefore the set of ODEs in Eqn.(5.1) can generally be written as: 

Xi = Gi(x) - V;(x) where i = 1,2, ... , 10. From Eqn.(5.1), then we generated the 
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following vectors describing the flow of individuals between compartments: 

),,50 IO(J1 + /'0) 

ao)"5, + TJoao)..Po h (J1 + /,,) 

TJ,a,)..P, + a,)"52 + T]za2)"P2 12(J1 + /'2) 

° -J1N + M(J1 + w) 

0 -wM + 50 (J1 + )..) 
G(x) = , V(x) = 

0 -/'010 + Po(J1 + Po + TJoao)..) 

0 -PoPo + 5'(J1 + ao)..) 

0 -/,,1, + P, (J1 + p, + TJ,a,)..) 

° -PIP, - P2 P2 + 5 2(J1 + a,)..) 

0 -/'212 + P2(J1 + P2 + TJ2 a2)..) 

The infected compartments are 10 , I, and 12 . Assuming that there is no mater­

nally protected class, then the form of the disease free equilibrium solution, Xo = 

[0,0,0,50,0,0,0,0,0]' will give us an Ra of a simple SIR model: Ra = <l+ob. The 
/'0 I-' 

disease free equilibrium (DFE) solution, such that ID = I, = 12 = 0, in the presence 

of a maternally protected class has the form Xo = [0,0,0, M*, 50,0,0,0,0,0]. It 

is worth indicating at this point that maternal protection at the DFE equilibrium 

does not make biological sense since in the absence of infection, there would he no 

RSV specific maternal antibodies against the infection. However, the assumptions 

allows us to calculate the Ra of an infection. Without loss of generality, assume we 

scale the population to unity. We then work out the disease free stable equilibrium 

point of our model by equating to zero the differential equations describing the 

maternally protected and the primary susceptible classes and solving the resulting 
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simultaneous equations. Doing so gives us the following stable equilibrium point 

Xo = [0,0, 0, ~, IJ~' 0, 0, 0, 0, 0]. From [42, 74], the basic reproduction number 

is calculated as ~ = '!9(FV-I) where '!9 is the spectral radius and F = [~(xo)] 

and V-I = [~(xo)] are the Jacobi evaluated at the disease free equilibrium. The 

spectral radius of a square matrix is defined as the supremum of the elements in 

its set of eigenvalues. The spectral radius will therefore be the dominant eigen 

value of the FV- I matrix. So F and V-I become: 

[- o]bw 02 bw _1_ 0 0 IJ+W IJ+W IJ+W 'YO+IJ 

F= 0 0 0 V- I - 0 _1_ 0 , -
'Y]+IJ 

0 0 0 0 0 _1_ 
'Y2+1J 

Consequently, we evaluate the product FV- I . So, FV- 1 becomes: 

opbw o]bw o2bw 
("YO+IJ)(IJ+W) (')'] +IJHIJ+w} ("Y2+1J)(IJ+W) 

o 
o 

o 
o 

o 
o 

(5.2) 

To interpret the entries of matrix (5.2), lets consider an infected individual 

introduced in a disease free population in compartment k. The (j, k) entry in V-I is 

the average length of time this individual spends in compartment j. The (i, j) entry 

of the F matrix is the rate at which infected individuals in compartment j produce 

new infections in compartment i. The (i, k) entry of matrix (5.2) is the expected 

number of new infections in compartment i produced by the infected individual 

originally introduced into compartment k and the matrix is referred to as the next 

generation matrix as defined in [195] . To calculate ~, I evaluate the spectral 

radius which is the dominant eigen value of matrix (5.2). To calculate the closed 
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form of the eigen values, I used the symbolic math toolbox in MATLAB® [128] 

powered by the l\IuPAD symbolic engine. The resulting three eigen values of FV- l 

are denoted as x. where i = 1,2,3. Xl = \'2 = 0 and \'3 = ( bait) provided 
/L+')'o /L+W 

that (Ji + lO)(Ji + w) f- O. Given that Ji, wand 'o are all rates greater than 0, then 

(Ji+,O)(Ji+W) is always greater than O. Again, since all the rates are greater than 

zero, then the max (Ixil) = max (Xi) = X3. Hence, the basic reproduction number 

is given as: 

(5.3) 

At the invasion threshold, RJ = 1. In order to calculate the analytic invasion 

threshold, we equate Eqn.(5.3) to 1 and then make b, the transmission parameter, 

the subject of the resulting expression. So, the invasion threshold denoted as b*, 

can be expressed as shown in Eqn.(5.4): 

b* = (11 + lO)(Ji + w) 
(tow 

(5.4) 

We will compare the results obtained from Eqn.(5.4) with numerical simulations. 

5.3.2 Local stability of the model 

In section 5.3.1, we have calculated the invasion threshold from the disease free 

equilibrium point of the model. In this section, we aim to determine the neigh­

bourhood stability of this disease free equilibrium and the endemic state of the 

infection. According to [2], local or neighbourhood stability is the investigation of 

the behaviour of the system at equilibrium to small perturbations. 

The steady states are obtained by setting Eqn.(5.1) to zero and solving the 
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resulting simultaneous equations. Since we are calculating the steady state in the 

presence of the infection in the population, then the form of the solution will be 

X* = [M*, S~, I;, P;, 0, 0, 0, 0, 0, 0]. This assumes that infection is present only in 

the primary infected class and this assumption allows the model to be analytically 

tractable even though it is biologically implausible. The Jacobian is then calculated 

from the first four equations in Eqn.(5.1). The Jacobian is expressed as follows: 

;it (X*) aF (X*) aso aF (X*) alo g~ (X*) 

:Zr (X*) ac (X*) ac (X*) ac (X*) aso alo apo 
(5.5) 

gZ (X*) aH (X*) aH (X*) aH (X*) aso alo 8Po 

;fr (X*) az (X*) aso 
az (X*) 
aI" 

az (X*) apo 

such that F = d~f, G = ~, H = ~ and Z = ~. After calculating the above 

partial derivatives on the equation describing the rate of change of maternally 

protected individuals, the primary susceptible, primary infected and recovered 

classes we obtain the following J acobian matrix: 

-(p + w) 0 0 0 

w _p _ oo'f:tlo ~ oooSo 0 
J= 

N (5.6) 
0 baolo - P - 'o + oop/o 0 N 

0 0 'o -It 

142 



Solving for X* gives the following solution 

M* ..!::!.E.... ..!::!.E.... 
I'+W I'+W 

S~ 
Nw Nho+l') 

I'+w ar --a;;b 

l* 0 N 1'( <>Qwb-"(OW-I'W-1'2 -"(01') 
0 <>ob(l'+w)(,,(o+l') 

(5.7) 

P,* 0 NJ.ow _ !:!JJJ. 
0 ho+I')(I'+w) <>ob 

The first solution gives the disease free equilibrium. Substituting the disease free 

equilibrium into matrix (5.6) gives 

-/1- W 0 0 0 

W -/1 -<>obw 0 
Jdj = I'+w 

0 0 <>obw 0 - /1 - /'0 I'+w 

(5.8) 

0 0 /'0 -/1 

while substituting the second solution vector gives 

-/1-W 0 0 0 

W 
o:ob/!:.w -/1 - /'0 0 

Jd = 
(l'+w)(-yn+l') 

0 uubw/!:. 0 0 (l'+w)ho+l') - J.l 

(5.9) 

0 0 /'0 -J.l 

The stability of the system is determined by evaluating the sign of the eigen­

values obtained from matrix (5.8) and (5.9) as follows: 

• If the eigenvalues of a matrix has all real parts less than zero, then the steady 

state is stable . 

• If at least one of the eigenvalues has a real part greater than zero, then the 
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steady state is unstable. 

• If at least one of the eigenvalues has a real part equals to zero, then no 

conclusion can be made about the stability. 

To obtain the eigenvaiues, K, we solve the characteristic equation of matrix (5.8) 

and (5.9). The characteristic equation is obtained by calculating the determinant 

of J, - KI (where I is the 3x3 identity matrix and i is either df or d) and equating 

it to zero i.e. det 1 Ji - KI 1= o. Therefore, the characteristic equation becomes a 

polynomial of order 3 such that: 

(5.10) 

Solving for K generated from the matrix (5.8) gives the following eigenvalues: 

aobw 
K1 = -- - J.l - 1'0 

J.l+w 

(5.11) 

From the set of Eqn.(5.11) KZ, K3 and K4 have got all real parts less than zero 

since all of parameters J.l and w are always greater than zero. To check the sign 

of K1, let us suppose that Z = :~,:. We can then express Ra as a function of Z. 

Thus Ra = (o!+,bw) ---L+ = Z _+1 . At the invasion threshold, Ra > 1 and therefore 
I-' W "Ill I-' I-' "10 -

---L > 1. Making Z the subject gives us Z 2: J.l + 1'0 whenever Ra 2: 1. Hence, 
1-'+"10 -

when Ra 2: 1, then K1 > 0 making the disease free equilibrium unstable and 

whenever Ra < 1, then Z < J.l + 1'0 making /"Cl < 0 resulting to the disease free 
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equilibrium being stable to small perturbations. 

Solving for K generated from matrix (5.9) gives the following eigen values: 

K1 = -IL 

and 

1I:4(i) = ((12,oIL5 + 81L5W + 41L6 + 12'~1L4 + 4,gIL3 + 41L4W2 + 24,oIL4W 

+ 12,oIL3W2 + 24,51L3W + 4,J/LW2 + 8'Yg1L2w + 12,51L2w2 - 4aobIL4w 

+ a~b21L2w2 - 4aoblL3w2 - 8aolrroIL2w2 - 4aolrr~/-Lw2 - 4aolrr6/-L2w 

if ,o/-L + ,OW + /-LW + /-L 2 "I- 0 and 

(2 2 2 2 2 3 2 
1I:4(ii) = ,o/-L + 'Yo/-L + ,ow + /-L W + /-L + ,o/-LW 

if ,oIL + ,OW + /-LW + 1L2 = 0 and ao, b, W "I- O. 

(5.12) 

(5.13) 

(5.14) 

Since one of the eigenvalues from Eqn.(5.12) is zero, then no conclusion about the 

stability of the model can be made. Additionally, the equation set (5.13) and (5.14) 

quickly become analytically intractable on trying to determine the behaviour of 

K. For this reason, the behaviour of the model beyond the invasion threshold is 

presented in the next section using numerical simulations. 
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5.3.3 Numerical simulations 

The following section investigates the temporal behaviour of the homogeneous 

model and confirms some of the analytical results in section 5.3.1 using the nu­

merical solution obtained from Eqn.(5.1). The integration of the system of ODE 

was done using MATLAB® [128J using the Runge-Kutta method of order 4,5 with 

an adaptive time step. During the simulations, the population was held constant 

by equating fertility and mortality rates. The parameters were held constant as 

shown in Table 5.1 unless otherwise stated and the initial conditions were set to 

M =240,000, ID = 1 and all the other state variables were set to O. 

Figure 5.2 shows the dynamic behaviour of the epidemiological compartments 

in the model presented in Figure 5.1. Initially, the model is started without infec­

tion and this leads to the disease free equilibrium where almost all the individuals 

remain in the So class. Introduction of a single primary infectious person is done 

at time 20 years and the model attains the endemic equilibrium with damped oscil­

latiOIlS. During the course of the epidemic, after the introduction of the infection 

in the population, the primary susceptibles gradually become infected and move 

into the 10 class. Individuals then gradually move through the recovered Po class 

and into the second level of infection. Majority of the people in the population, 

at equilibrium, are in the S2 class. This is expected since most of the people will 

have experienced their first and second infections and the duration of infection 

is much shorter in the 11 and 12 classes. At endemic equilibrium, the number of 

people in each state remains unchanged and the effective reproduction number de­

noted by Re is unity [116, 10]. The effective reproduction number is defined as the 

number of new infections that a primary infected individual infects during their 

146 



III 
a; O.B 
::> 

" > 
~ 0.6 

'0 
Q 0.4 
t:: 
8. 
£ 0.2 

Maternally protected class 

A 

O~~------------------

III 
;;; O.B 
::> 

" > 
~ 0 .6 
'0 
Q 0.4 
t:: 

8. 

o 2 4 6 B 10 

Susceptible indIVIduals 

-- so 
-- 51 

c --52 

£ 0.2 

oLJl~==== o 20 40 60 Ba 100 
Time In years 

X 10-3 Infected individuals 
4 

-- 10 
-- 11 

3 -- 12 

2 B 

0 
0 20 40 60 BO 100 

Recovered indiViduals 
0.4 

-- PO 
-- Pl 

0.3 D --- P2 

0.2 

0.1 

0 
0 20 40 60 Ba 100 

Time In years 

Figure 5.2: Shows tilt, behaviour of the model compartments at both the discasp 
free pquilibrinll1 and following the introduction of a single primary infected at (imp 
20 years using the baseline parameters in Table 5.1. The Y-B.-xis shows tltp propor­
tion of illdividuals in any of the compartments and the x-axis shows time in ye'HS. 
Subplot (A) shows the behaviour of the Maternally protected class , subplot (B) that 
of the infC'cted classes, subplot(C) that of the susceptible and partially susceptible 
classes and subplot(D) that of the recovered classes . 

infectious period . The modd proceeds lo dynamic equilibrium ill an oscillatory 

IllruUlC'r which is typical of this fruuily of models [116]. The value of the transmis-

sion parameter. b. tlsC'cl during the simulations was 300 giving a basic reproduction 

number of 7:lG. This is in dose rrulge of the best fitting l\ISEIRS.,t (l\Iaternally 

protected Susceptible Exposed Infected Recovered Susceptiblp) model explored by 

Weber et al [201 ] and \Yhite et al [205] who e Ro values range between 5.3-7.2 ami 

9.2-9.-1 respt'ctiycl~·. 

1<-17 



We will use numerical simulations to validate the results obtained in Eqn.(5.4) 

for the invasion threshold. Given that we have the baseline parameters in Table 

5.1, we will replace the values of /1, /'0, w and G'o into Eqn.(5.4). Replacing these 

values gives us an invasion threshold, b* = 40.778. To compare this value with the 

numerical estimate, we will plot the proportion of infected individuals in the 10 , 11 

and 12 classes in the population at equilibrium as a function of the transmission 

parameter. Figure 5.3 shows the resulting invasion threshold. At the invasion 

threshold the model indicates a qualitative behaviour at which point the system 

branches from the disease free equilibrium to the endemic equilibrium. The point 

at which this happens is known as the bifurcation point and the resulting curve is 

referred to as the bifurcation curve. The parameter on the x-axis, b, is referred to 

as the bifurcation parameter. 

From Figure 5.3, the bifurcation point is estimated to be 40.6 which is in 

agreement with the analytic solution. The reason the two values are not equal 

is because, in the numerical solution the step size of b was taken to be 0.2 and 

therefore the next value from 40.6 was 40.8 which is above the threshold. The 

numerical solution can be improved by reducing the incremental step of the trans­

mission parameter to the desired accuracy. The refining of the incremental step 

would however demand a reasonable amount of computer time and therefore it was 

not done. The kind of bifurcation curve shown in Figure 5.3 is known as a forward 

bifurcation curve since the nature of the curve is such that as we travel along it 

beyond the bifurcation point, the level of infection increases as the bifurcation 

parameter increases [74]. 
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Figure 5.:3: Bifurcation diagram showing the invasion threshold. The transmission 
parameter on the x-a.x.is is the bifurcation parameter while the y-a..xis shows thE' 
proportion of infectE'cls I.e. 1o, 11 and 12 in the population at equ ilibriulll 

5.3.4 Sensitivity analysis 

By changing the model parameters in a controlled ItlaIllCf and observing the effect 

they have on the output givE'S LlS an idea of how robust the model is to challges 

in the input. We will carr," out the sensitivity analysis by investigating how the 

model inpllt parameter "alues will affect the modC:'l's output alld especially the 

kind of bifurcation curve it exhibits. 

In ordC'r to carry out the analysis, we identified paramE'ters that wC:' had lif-

tiC' information about and varied them within bounded ranges. \Vt:> identified the 

following paranH'ters to constitute the sensitivity analysis : aQ, a), a2 which repre-

sent the partial immunity factor. '/0,171,172 representing the partial immllnity factor 
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reducing susceptibility and 00,01,02 as factor reducing infectiousness of infected 

individuals. The simulations in Figure 5.4 were run with the initial conditions 

similar to that shown in Figure 5.2 but with small changes in ai, 'f}i and 0i where 

i = 0,1,2. From figure 5.4, we can see that the equilibrium proportion infected 

in the population increases with an increase in infectivity of individuals and with 

increased susceptibility. One can see this sustained increase in the equilibrium pro­

portion infected from subplot 1 to 6 and subplot 7 to 12. The bifurcation points 

for all the parameter combinations have remained at 40.6. 

Alternatively, instead of starting with the initial conditions where everyone is 

in the maternally protected class and a single person in the infected, la, class, 

we started with a more general situation where the number of individuals in the 

epidemiological classes are distributed in a more realistic way but not necessarily 

at equilibrium such that So < SI < S2, la < It,I2 and Po < PI < P2. The 

bifurcation diagrams, not shown, obtained using the new initial conditions were 

exactly the same as those obtained in Figure 5.4. So far, the algorithm that we 

have used to produce the bifurcation plots may only be useful in producing curves 

exhibiting forward bifurcation. This is so thought because the procedure did not 

succeed in producing a backward bifurcation for a model with a well known set of 

parameters resulting in multiple sub-critical endemic equilibria [79J. 

As a result, we adopted the following heuristic procedure: we started by evolv­

ing the system through time and plotting the equilibrium proportion of infected 

people in the population for every value of the bifurcation parameter. In this case 

the parameter is incremented from 0 to 500. We then proceeded by simulating the 

model through time a second time but now decrementing the bifurcation parame­

ter from 500 to O. The initial conditions for each "backward" step was taken to be 
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Figure 5.4: Sensitivity analysis depicting the diffprellL parameter values used. The 
following parameter estimatps wcre 1L.c;ed for the graphs aboV('. Subplot 1 and 7 
770 = 7]1 = TJ'2 = 0 and 00 = 1,01 = 02 = 0.5 subplot 2 and 8 7]0 = 7]1 = 1/2 = 0 and 
(to -= 01 = 02 = 1 subplot 3 and 9 7]0 = 7]1 = TJ2 = 0.5 and 00 ~ lal = a2 - 0 .. ') 
sublot .J and 10 7]0 = 7]1 = 7]2 = 0.5 and ao = 01 = 02 = 1 plot 5 and 11 
7]0 = Tit""" 7]2 = 1 and 00 = lal = a2 = 0.5 subplot 6 and 12 7]0 = 7]1 = 112 = 1 and 
ao = 0'1 = 02 = 1. For subplot I to 6 ao = 0.7, al = a6, a'2 - ag and subplot 7 to 
12 all = 0.7. al ao 0.2. a2 - ao - OA. The red curve shows the base case as 
shown in Figme 5.3. 

the filial equilibrium yalu('s of the system at the point wh('re the bifurcation pa-

rameter is at its maximulll. \V(' t('sted this procedurc against a s('t of models with 

wpH known paralllPter sets m:iUlting to backward bifurcation and the procpdure 

produced the desired results. Howeyer, tltis does not mean that it will work with 
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all kind of models but it gives us confidence to apply the procedure to our model. 

We applied the procedure to the RSV model but it remained quite robust to the 

invasion threshold in Figure 5.3. All the parameter values chosen resulted to a 

model displaying forward bifurcation. Both the curves resulting from the forward 

run and the backward run perfectly overlapped. 

We then introduced vaccination in the model to explore what effect it would 

have on the bifurcation curve observed. This was inspired by previous work done 

by Greenhalgh at al [74, 75, 73] on a two stage and three stage bovine RSV mod-

els. Vaccination was assumed to move newborn individuals from the M class to 

the S2 class. This does not necessarily represent reality since it is unlikely that 

the vaccine will provide better immune response than a primary infection. Using 

this model, our previous calculation of the invasion threshold and the basic repro­

duction number does not hold. We therefore re-calculate the basic reproduction 

number by applying the procedure explained in [195, 42]. The resulting ~ is given 

by Eqn.(5.15). 

(5.15) 

where <p represents the proportion of individuals effectively vaccinated and pro­

tected since it is a compound parameter representing the vaccine efficacy and 

vaccine uptake. We have also assumed that the force of infection acting on the 

Si and S2 classes is different from that acting on the primary susceptibles, So. 

We therefore introduced three new transmission parameters (30, (31 and (32 which 

are indicative of the difference in the transmission potential as individuals gain 

experience by being infected multiple times. Infectivity may not be directly or 
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easily measured and therefore in this modified model we have assumed that it is 

a compound parameter within the transmission parameter and that allows us to 

set the parameters 00, 01 and 02 to l. The new force of infection function can 

therefore be expressed as: 
1 2 

A= - ~(3I 
N~ " 

i=O 

where (3i = biOi' 

(5.16) 

To plot the bifurcation diagram, we used the parameter (30 as the bifurcation 

parameter holding all the other parameters constant during the simulations. Figure 

5.5 shows the resulting bifurcation diagram with parameter values indicated in 

Table 5.2 in the column labelled baseline. The resulting bifurcation diagram is 

known as a backward bifurcation curve. This is because there exists multiple 

super-critical endemic equilibria. From the Figure, the discontinuity shows that 

there exists two endemic equilibrium in the interval 45 :s: (30 :s: 55. The sensitivity 

analysis column in Table 5.2 shows the range of the parameter values where the 

backward bifurcation is conserved. The regions were determined by holding all 

other parameters constant to values in the baseline column and then varying a 

single parameter in the model. 
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Table 5.2: Parameter estimates used to produce the backward bifurcation diagram 
in Figure 5.5 (column labelled baseline) and the parameter space within which the 
backward bifurcation is conserved (column labelled sensitivity analysis) 

Parameter Description 
symbol 

Death/birth rate 

Baseline 

0.02/yr 

w Rate of decay of maternal 4/yr 
antibodies 

Sensitivity 
analysis 

0.005 :s J-L :s 0.2 

1 :s w :s 53.143 

(30 Transmission parameter 
(Primary infecteds) 

Used as the bifurcation parameter 

PI 

Long-term immunity fac- 0'0 = 1 
tor reducing the suscep- ab 0'2 = 0.5 
tibility of previously ex-
posed individuals in Si 
and Pi 

Rate of waning of short- Po = 4 
term immunity of re- PI, P2 = 2 
covered individuals, P; 
i=0,1,2 

Short-term immunity fac- 1]0 = 1 
tor additionally reducing T]1, T]2 = 0.5 
the susceptibility of re-
covered individuals, P; 

Rate of recovery from in- 10 = 36.5 
fected classes Ii into the 11 = 40 
P; classes 12 = 40 

Factor reducing infec- ao, aI, a2 = 1 
tiousness of 10 , It and 
12 

Effective vaccination cov- 0 
erage 

Transmission parameter 10.95 
(Secondary infecteds) 

Transmission parameter 86.87 
(Tertiary infecteds) 
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0.611 :s 0'0 :s 1 
0.497 :s 0'1 :s 1 
O:S 0'2 :s 1 

0.01 :s Po :s 52.143 
0.28 ::; PI ::; 52.142 
l.157 :s P2 ::; 52.143 

16 :s 1'0 ::; 138.732 
16 ::; 1'1 :s 180 
16 ::; 1'2 ::; 39.88 

0.267 :s 0'0 :s 1 
o :s 0'1 ::; 1 
0.98 ::; 0'2 ::; 0 

0:S~:S1 

86.364 :s b2 :s 1000 
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Figure 5.5: Shows the proportion infectious at equilibri um. The x-axis shows (30 
which is Llseci 3.'5 the bifurcation parameter and the rest of the parameters are as 
shown in Table 5.2 ill the column labelled baseline. 
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5.4 Summary and discussion 

In this chapter, I have presented and described a simple epidemiological model 

describing the transmission of Respiratory Syncytial Virus (RSV). I have used a 

deterministic model in section 5.2 with 10 different epidemiological compartments. 

The comparative simplicity of the model allows for a partial stability analysis 

to be carried out as well as the calculation of the analytical invasion threshold. 

However, even with such a simple model, investigating the stability of the endemic 

equilibrium is mathematically difficult. Investigating the equilibrium properties 

reveal that the disease free equilibrium is locally stable provided that Ho < 1 and 

locally unstable provided that Ho 2:: 1. The model was solved numerically to test 

and confirm the analytical results and at the same time to explore the dynamic 

behaviour at equilibrium. The model achieves dynamic equilibrium with damped 

oscillations as can be seen in Figure 5.2. 

The model without vaccination consistently generated forward bifurcation di­

agrams for different parameter values and initial conditions. However, in the pres­

ence of vaccination, the model displays backward bifurcation with multiple super­

critical endemic states. Figure 5.5 was produced with a parameter set in Table 5.2 

in the column labelled baseline. This implies that is possible to have this kind of 

backward bifurcation for what may be assumed to be realistic parameter values for 

RSV transmission. However, it must be admitted that there might be some issues 

in the epidemiological interpretation of some of the parameters. For example, the 

inclusion of the extra transmission parameters (30, (31 and (32 makes the parameters 

collinear with the ai, i = 0,1,2, and therefore making the af redundant. The 

reason is because a: modify the infectiousness of the infected classes and with the 

156 



introduction of 13: the infectiousness can now be modified by 13: alone since 13: 

become a compound parameter inherently accounting for infectiousness. Within 

the sensitivity analysis region, 132 can potentially be greater than 131. This may be 

construed to mean that susceptible individuals who have had three or more infec­

tions are more susceptible to infection than those who have had a single previous 

infection. This seems contrary to previous studies reporting a decline in the attack 

rate by experience of infection [93, 68]. The sensitivity analysis reported in this 

chapter gives a parameter space region within which the backward bifurcation is 

conserved. The univariate sensitivity analysis has the advantage that it is quick 

and simple since you hold k - 1 parameters constant and only vary one parameter 

at a time. However, the disadvantage of this approach is that only a small region 

of the k-dimensional parameter space is evaluated and the remaining parameters 

have to be estimated with a high degree of certainty. There are however more 

sophisticated statistical techniques that have been developed to allow the simul­

taneous variation of different parameters. One such technique, Latin Hypercube 

Sampling, has been considered in Chapter 6. 

The presence of backward bifurcation has got certain implications for infection 

control. Classical epidemiological modelling suggests that at the invasion threshold 

Ra should be equal to 1. However, this is not always the case for a model display­

ing backward bifurcation with multiple sub-critical endemic equilibrium points as 

the condition is no longer satisfied. In order for the infection to be eliminated 

from the study population, we would require that Ra < ~ where ~ is the value 

of Ra corresponding to a vertical turning point on the bifurcation curve. So, a 

model displaying; backward bifurcation with multiple sub-critical endemic equilib­

ria would require more effort to eliminate the infection in the population compared 
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to a model displaying forward bifurcation. 

However, the discussion of the results should be looked at in the light of the 

limitations of the model presented. The analysis presented is based on a deter­

ministic model and hence the results will be valid under a large population size. 

If the spread of the infection is within a small population, then a stochastic model 

may be more appropriate. 
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Chapter 6 

Modelling RSV transmission dynamics and 

the potential impact of vaccination 

6.1 Introduction 

Mathematical models have previously been used to inform decisions on the im­

pact of vaccination on the transmission of infectious diseases [147, 125, 47, 164]. 

Vaccination has not only been shown to be an extremely effective way of control­

ling infections in vaccinated individuals but also in those not vaccinated through 

indirect protection [124, 66]. This mechanism of indirect protection has been at­

tributed, in part, to the eradication of some infectious diseases e.g. small pox 

[58]. A proper evaluation of direct and indirect effects of vaccination need to be 

evaluated before the introduction of a vaccine in the popUlation. RSV has no 

licenced vaccine although there are some under development that are promising 

(see the review in Chapter 2), and this would be the opportune time to evaluate 

the optimal allocation of such a vaccine and to evaluate the optimal age at which 
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to vaccinate taking into consideration the indirect effect of vaccination. A series 

of mathematical models to describe the transmission of RSV and the effect of 

introducing an RSV vaccine would therefore be a valuable tool for exploring for 

example the optimal vaccination strategy. 

In this chapter, we have presented an investigation of the epidemiology of RSV 

and the potential outcome of routine vaccination using a realistic age structured 

model. We have generalized the mathematical model developed in Chapter 5 to 

include age structure and the age specific risks of developing disease given an infec­

tion and risk of hospitalization given disease. The model parameters are derived 

from published studies. The model has been validated against RSV hospitalization 

data from Kilifi District Hospital (KDH). Transmission rates between individuals 

are determined by the Who Acquires Infection From Whom (WAIFW) matrix 

[151, 10] which has been parameterized using self reported rates of social contact 

from a diary study [196, 136] and a synthetic contact mixing matrix, see Chapter 

4. The characterization of the social contact data in computational mathematical 

models is important since it has been shown that the transmission potential of an 

infection is strongly dependent on mixing patterns between individuals which in 

turn depends on the socio-demographic parameters [173]. 

Using the fully parameterized RSV transmission model, we then implement 

routine vaccination assuming two types of vaccines: one that acts to prevent pri­

mary infections and the other that works to prevent all infections. Given that the 

results of any modelling process are confounded by the presence of uncertainties, 

we have presented a global uncertainty and sensitivity analysis to assess how ro­

bust the model outcomes are to different assumptions. The sensitivity analysis has 

been carried out using Latin Hypercube Sampling (LHS) [129] and the method of 
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Partial Rank Correlation Coefficient (PRCC). 

6.1.1 Objectives 

The objectives of the work presented in this chapter are: 

• to develop a Realistic Age-Structured (RAS) mathematical model that ac­

curately reflects the transmission of RSV within a community of individuals 

• to evaluate the impact of routine vaccination on the number of RSV hospi­

talizations and identify the optimal age at which to vaccinate given the two 

mixing assumptions presented in Chapter 4 

• to assess the variability in the outcome of interest that is due to uIlcertainty 

in estimating the values in the input parameters using LHS sampling and 

PRCC. 

6.2 Methods 

6.2.1 Model structure 

The mathematical model developed aimed at simulating the transmission dynamics 

of RSV in an age-structured population is presented. The model is subdivided 

into two sub-models, one capturing the demographics while the other one the 

epidemiological dynamics of RSV. 
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6.2.1.1 Demographic sub-model 

The model draws from previously published age-structured models [96, 180, 164] 

making use of discrete age classes rather than continuous age classes requiring 

the use of Partial Differential Equations (PDE). A system of PDE is difficult to 

handle numerically since it requires time consuming computer simulations while 

on the other hand systems of ODEs are relatively easy to solve, parameterize 

and easier to conceptualize. The demographic sub-model is divided into 99 age 

classes i.e. 24 monthly age classes in the first two years of life and yearly age 

classes from the third year of life. Individuals older than 76 years have been put 

together in the final age class. The selection of monthly age classes is chosen 

so as to capture the transmission dynamics and the impact of vaccination in the 

most critical age groups. We relax the assumption of a constant population by 

making use of the age-specific mortality and fertility rates from the KHDSS since 

the demographic sub-model is intended to correspond to its popUlation structure 

and growth. Temporal changes in the mortality and fertility rates have not been 

included since their inclusion would possibly make the demographic model more 

complicated and difficult to tell whether features observed in the model are as 

a result of demographic, epidemiological or vaccination patterns. The number of 

people in each age class is allowed to vary as a result of a continuous ageing process 

from a younger to an older age group and through natural deaths. The rate of 

ageing is taken to be the reciprocal of the length of the source age class. Assuming 

that an age class can be represented as [ai, ai+l], then the rate of ageing from 

age class i to i + 1, denoted as "'i, will be expresses as "'i = a,+~-ai. Describing 

the ageing process using a rate results in a fixed proportion of individuals in an 
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age class moving into the next class at each time step with exponential duration 

of stay and with duration equal to the length of the age class. However, having 

several age classes within the first two years of life minimizes the limitation of 

having exponentially distributed time since the duration of stay now approaches 

a gamma distributed time for the first and the second years of life. 

6.2.1.2 Epidemiological sub-model 

As in Chapter 5, the host population is stratified into 10 epidemiological groups: 

those that have maternal protection (M), primary susceptibles (So), primary infect­

eds (10), primary recovereds (Po), secondary susceptibles (SI)' secondary infecteds 

(11)' secondary recovereds (Pd, tertiary susceptibles (S2), tertiary infecteds (12) 

and tertiary recovereds (P2). We have modelled several stages within the M class 

so as to include a more realistic distribution of waning of RSV specific maternal 

antibodies. The diagram in Figure 6.1 shows the flow of individuals through the 

epidemiological compartments. A notable difference between the model structure 

presented in Chapter 5 and this one is that immunity to RSV is now considered 

to be temporary but solid while in the previous one we had a combination of both 

temporary and partial immunity. The partial immunity was dropped due lack of 

sufficient support information from published data and was only included on an 

exploratory basis in Chapter 5. However, there exists evidence from recently pub­

lished data that individuals remain protected while in the P class showing that 

over a six month period, following infection, an individual has about 70% protec­

tion from infection [155]. Data from literature also suggests that individuals rarely 

get infected more than once during the same epidemic [3] and hence we have mod­

elled solid immunity for approximately six months. Sensitivity and uIlcertainty 
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analysis presented later explores what effect this assumption has on the number 

of hospitalizations and the optimal age at vaccination. The number of M classes 

is determined by fitting the model to time series and age-specific RSV related hos­

pitalizations in the KDH (Kilifi District Hospital) which will be presented later. 

As the host population is now stratified by age, the model includes age-dependent 

processes, such as the force of infection. Thus all the state variables are strati­

fied by both age and time such that So,; (t) represents the density of the primary 

susceptibles of age i at time t and so forth. The rates, with respect to both time 

and age, at which individuals flow from one epidemiological state to another are 

described in the system of ordinary differential equation shown Eqn.(6.1): where 

q is the number of M sub-classes, "'; is the rate of ageing, 8 i is the fertility rate, 

,O,i"l,; and 12,; are the recovery rates from primary, secondary and tertiary in­

fections respectively, Wj is the rate of loss of maternal antibodies, PI,i and P2,i are 

the rates of loss of secondary and tertiary immunity respectively, Ai is the per 

capita rate of infection, Ni is the total number of people in age class i and Ili is 

the mortality rate where i represents the age class. We have ignored RSV related 

deaths since, relative to all other causes of death (even in childhood), RSV related 

mortality is negligible and therefore they are not represented in Eqn.{6.1). For a 

list of the model parameters and their source, see Tables 6.1, 6.2 and 6.3. 
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Figure 6.1: Schematic flow diagram of the compartmental model. Arrows represent 
the flow of individuals between states. 
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(6,1) 

6,2,1.3 Force of infection 

The force of infection is defined as the per person rate at which a susceptible in­

dividual becomes infected, The force of infection in the model is both time and 
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age-specific and is denoted by Ai' Determining the age-specific force of infection 

is problematic and difficulties arise because there are usually more unknown age-

specific transmission parameters than observations on risk of infection for each age 

class and as a consequence we face an indeterminacy problem [180, 54J. Often, 

a-priori assumptions about contact processes are invoked in order to reduce the 

number of unknowns to the number of age classes [56, 10]. The simplest such 

hypothesis is homogeneous mixing which is assumed in the model developed in 

Chapter 5. To overcome the problem of assuming that the mixing pattern is 

known a-priori, we can infer a likely contact pattern from detailed household oc-

cupancy data and from social contact data reported from paper diaries [136, 48]. 

Two contact matrices have been developed as part of this work, refer to Chapter 4, 

and have been applied to the current age specific RSV model. Therefore to calcu­

late the force of infection we make use of the social contact hypothesis suggested by 

Wallinga et al [196] which states that the WAIFW matrix (age-specific transmis-

sion parameters) is proportional to the number of self-reported age-specific social 

contacts such that !3iJ = qcGi .) where GiJ is the social contact matrix, i3i,j is the 

WAIFW matrix, qc is a proportionality factor that measures the disease specific 

infectivity and i, j are the age classes. Seasonality of RSV is included using a cos­

inusoidal function since the main drivers are not well understood. Seasonality of 

RSV is a more complicated process that is probably affected by a combination of 

a changing contact pattern, changing immunity and a constantly changing virus. 

The age-specific force of infection is therefore expressed as shown in Eqn.(6.2). 

A ( ) = ~ (!3i,j (1 + a cos (2n(t - <p))) ~ I ()) 
,t L... N(t) L... D:k k,) t 

j=1 • k=O 

(6.2) 

167 



where !3ij represents the transmission coefficient between susceptibles of age i 

and infecteds of age j, Ni(t) is the total number of individuals in age class i at 

time t, ao, a1 and a2 represent the relative infectiousness of infected individuals 

in 10 ,11 and 12 classes respectively. The seasonal parameters defining the relative 

amplitude, a, and the peak in transmission, cp, are unknown and are determined 

by fitting the model to RSV specific hospitalization data from the Kilifi District 

Hospital. 

The initial conditions i.e. the values of all the state variables for each age class 

at time t = 0 and the boundary conditions i.e. the values of the state variables for 

the first age class are taken to be the pre-vaccination numbers found by running 

the model to its stable limit cycle. 

6.2.2 Parameter estimates and model fitting 

Many of the model parameters that have been identified from literature can be 

found in Chapter 3 while the contact data that has been used to parameterize the 

force of infection can be found in Chapter 4. Tables 6.1, 6.2 and 6.3 give a sum­

mary of the parameter estimates that have been used in the numerical simulations 

i.e. their baseline value and the source. A parameter that is worth highlight­

ing at this point is the factor reducing the infectiousness of 11 and 12 denoted by 

a1 and a2 respectively. Hall et al [85] suggested that infants shed the virus in 

large quantities and for prolonged periods of time. The large quantities shed can 

equally be attributed to primary infections since these infants are most likely ex­

periencing their first infection. Reduction in shedding quantities is reported to be 

a function of age with reported decline in shedding quantities with increasing age. 
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This means that the quantity of virus shed will also decrease with the number of 

previous RSV infections. We have therefore assumed that second infections are 

half as infectious as primary infections and third and subsequent infections are 

half as infectious as second infections. We have therefore estimated 0:1 and 0:2 to 

be 0.5 and 0.25 respectively. These parameters have however been included in the 

uncertainty and sensitivity analysis to assess how different assumptions affect the 

output of interest. 

The model predicts the number of individuals in the population in each state 

variable and at each time interval for each age class i where i = 1,2, ... ,99 while 

the hospitalization data gives the number of new hospitalized cases per month 

per age class. \-Ve therefore must use a scaling factor on the incidence of new 

infections in order to compare the model output with the hospitalization data. 

From Figure 6.1, the risk of developing disease following infection is shown by 

the circular compartment labelled D while the risk if hospitalization following 

development of disease is given by the compartment labelled H. The risk of 

development of disease given a primary, secondary and tertiary infection is given 

by the parameters do, d1 and d2 respectively (see Table 6.2) while the age-specific 

risk of hospitalization given that one has disease is given by parameter h (see 

Table 6.3). The age-specific risk of hospitalization was estimated by fitting the 

static model (model with force of infection that was age-specific but constant in 

time) to the age specific hospitalization data from the Kilifi District Hospital. The 

intial vector used was from published work [149] and there was reason to believe 

that the study underestimated the proportion of hospitalizations and hence the 

fitting to data. The output from the compartment labelled H in Figure 6.1 is what 
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we fit to the hospitalization data and can be expressed as shown in Eqn.{6.3). 

H = hA (,l~s,o + d l '(71 SI + d2 '(72 52 .) t I I U{),l ,t ,t ,t ,t ,I ,t ,t (6.3) 

where Ai is the force of infection as shown in Eqn.(6.2). In fitting the model, we 

have used maximum likelihood estimation (MLE) method [207, 144] and given 

that hospitalizations is count data, we have assumed it follows a poisson distri­

bution. MLE was chosen because it has several optimal properties: sufficiency 

(complete information about the parameter of interest is contained in its MLE 

estimator), consistency (true parameter value that generated the data is recovered 

asymptotically), efficiency (lowest possible variance achieved asymptotically) and 

parameterization invariance (same MLE estimate independent of the parameter-

ization used) [144]. The negative log-likelihood was calculated as shown in Eqn 

(6.4) such that 

nTT( ki) 
LL = - ~t; kilogA; - Ai + ~logj (6.4) 

where T is the number of observations for each month n, nT is number of months 

and Ai is the corresponding expected incidences. To calculate the 95% confidence 

interval of the fitted parameters, we compute the central finite difference approx-

imation to the Hessian of the log-likelihood estimates given the observed data 

to generate an asymptotic covariance matrix [121]. Using the covariance matrix, 

we compute the confidence interval using the normal approximation. However, 

the 95% confidence intervals calculated from the application of this procedure are 

expected to be narrow possibly due to the assumption of independent Poisson 
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observations for the likelihood calculations. 

Table 6.1: Baseline parameter estimates used in the numerical simulations with 
the values based on the review in Chapter 3 

Parameter Description Baseline Data source 
symbol value 

w Rate of decay of Fitted 
maternal antibodies 

/3;,j Age-specific transmission Fitted - Estimated by fitting contact matrices. 
parameter (WAIFW) 

aj Long-term immunity al = 0.75 [93J 
factor reducing the a2 = 0.65 
susceptibility of 
previously exposed 
individuals in SI and S2 

Pi Rate of waning of Po = 2yr- 1 [3,184J 
short-term immunity of PI = 2yr- 1 

recovered individuals, ~ P2 = 2yr- 1 

i=0,1,2 

/'0 Rate of recovery from 40.6yr- 1 [87, 199] 
primary infection, ID 

1'1, 1'2 Rate of recovery from 93.7yr- 1 [158,87J 
secondary and tertiary 
infections, 11,12 

O'j Factor red ucing 0'1 = 0.5 See text for the 
infectiousness of ID, 11 0'2 = 0.25 justification 
and 12 

N Initial population size ~ 240,000 KHDSS 

/\,j Rate of ageing Reciprocal of the 
0- ~ 24m 12yr-l length of the age 
3-77yrs 1yr-1 class 

a Relative amplitude Fitted 

rp Phase angle - Peak of Fitted 
transmission 
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Table 6.2: Baseline parameter estimates for the age-specific disease risk i.e. 
do, d1 and d2 following infections 

Age in Primary Second and Data source 
months infection subsequent 

infections 

do(%) d1, d2(%) 

0-2 31.2 5.0 

3-5 28.6 5.0 

6-8 20.0 5.0 

9-11 13.0 5.0 [155J 

12-17 7.6 5.0 

18-23 2.0 5.0 

2: 24 2.0 2.0 

6.2.3 Vaccination 

We assume that a vaccine will confer a protective effect which is equivalent to a 

natural infection. Therefore vaccination moves individuals from Si to Pi where 

i = 0,1,2. We will consider two vaccine types: a vaccine that works to prevent 

primary infections (solid green line in Figure 6.1) and a vaccine that works against 

all infections (all green lines). Routine vaccination is implemented as individuals 

pass a defined age class. For example, implementing 80% vaccination coverage at 

at 2 months involves effectively vaccinating 80% of the susceptible individuals who 

are ageing from the first age class into the second one and moving them into their 

respective recovered classes i.e. Pi : i = 0,1,2. Vaccination provides both direct 

protection to those who are successfully immunized with the vaccine and indirect 

protection for those who are not immunized, by decreasing the likelihood that 

they will come into contact with an infectious individual. To calculate the effect 
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Table 6.3: Baseline parameter estimates for the age-specific risk of hospitalization 
following disease 

Age in Risk of Data source 
months hospitalization, h 

(%) 
1 32.76 
2 33.07 
3 21.9 
4 20.74 
5 18.86 
6 12.27 
7 9.4 
8 10.76 
9 9.1 
10 12.11 Estimated by fitting 
11 9.87 
12 6.7 

the static model to 

13 7.11 
age specific 

14 7.78 
hospitalization data. 

15 7.34 
The initial 

16 4.13 
age-specific risk of 

17 4.1 
hospitalization was 

18 10.52 
sourced from [149J 

19 20 
20 14.84 
21 13.95 
22 10.18 
23 2.36 
24 8.41 

25-36 3.76 
37-48 1.08 
49-60 0.19 
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of indirect protection, we run the model with a time invariant force of infection 

whose value is fixed to the pre-vaccination equilibrium. 

6.2.4 Uncertainty and Sensitivity analysis 

Due to the structural complexity coupled with a high degree of uncertainty in some 

of the model input parameters, the behaviour of the model to changes in these pa­

rameters is investigated using global uncertainty and sensitivity (U&S) analysis. 

Several approaches to this analysis exist ranging from a full factorial method to 

more sophisticated statistical methods allowing for simultaneous variation of the 

model input parameters depending on their probability density functions [104]. 

Uncertainty analysis may be used to assess the variability (prediction imprecision) 

in the outcome variable that is due to the uncertainty in estimating the values of 

the input parameters. Sensitivity analysis on the other hand extends the uncer­

tainty analysis by identifying which input parameters are important (due to their 

uncertainty) in contributing to the prediction imprecision of the outcome variable. 

In our current model, we have adopted the Latin Hypercube Sampling (LHS) 

procedure developed by McKay et al [129] and has previously been applied to 

other epidemiological models [17, 125, 18, 126]. This method has the advantage of 

varying all the uncertain parameters simultaneously and the entire k-dimensional 

parameter space is explored. The procedure has been explained in [17, 126, 129] 

but in this section, we will layout the steps that we implemented: 

1. We began by identifying parameters that should be part of the analysis. To 

do this, we identified parameters that reported great variation between dif­

ferent studies as presented in the review done in Chapter 3. For parameters 
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whose entire parameter space was known because they lie within a well de­

fined bounded region e.g. between 0 and 1, the entire parameter space was 

explored. See Table 6.4 for a list of the parameters included in the U&S 

analysis and their upper and lower bounds. 

2. For each of the parameters we identified, we defined a probability density 

function from which we draw random samples. 

3. We then determined the number of simulations required. There does not ex­

ist an exact formula but the following inequality has to be satisfied Ns > ~K 

where N s is the number of simulations and K is the number of parameters 

involved in the analysis [17,129]. The upper bound of the number of si mu la­

tions is dependent on the availability of a computing resource that should do 

the work within a reasonable amount of time. We settled for 200 simulations 

which satisfy the inequality and was within our computing resource's ability 

to finish the work within a reasonable amount of time. 

4. The range of each parameter was then divided into N s non-overlapping equi­

probable intervals such that ~s = J f (x) dx = F (x!nax) - F (x~in) where F 

is the cumulative density function of x. 

5. The final step involves calculation of the LHS table. This involves random 

sampling from each of the equi-probable regions without replacement. This 

ensures that a sample is taken from each of the regions forming what is 

known as a Latin Hypercube Sample. The sampled parameters are then 

paired randomly to form the input vector for the simulatiolls. 

Figure 6.2 shows a summary of the steps explained above. A sensitivity analysis 
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is then done using partial rank correlation coefficient (PRCC) for each input pa­

rameter and outcome variable [104]. PRCC indicates the degree of monotonicity 

between a specific input variable and a particular outcome variable. This method 

allows for the determination of the independent effects of each variable while ad­

justing for the variation brought about by the rest of the parameter values. Table 

6.4 shows the model input parameters that were selected for inclusion in the sen­

sitivity analysis, their upper and lower limits and the probability distribution that 

was adopted. 
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Table 6.4: Model parameters that have been included in the sensitivity analysis, 
their upper and lower limits and the probability function assumed 

Parameter 

Duration of 
primary 
infection 

Duration of 
second and 
subsequent 
infections 

Duration of 
short term 
protection 

Reduction in 
suscepti bili ty 
after first 
infection 

Reduction in 
susceptibility 
after second 
infection 

Reduction in 
infectiousness of 
second and 
subsequent 
infections 

Symbol 

10 

11, 12 

Lower and upper 
limits 

[4-10] days 

[1-5] days 

[2-17] months 

[0-1] 

[0-1] 

[0-1] 

178 

Probability 
function 

Triangular distribu­
tion with peak at 9 
days 

Triangular distribu­
tion with peak at 4 
days 

Triangular distribu­
tion with peak at 6 
months 

Triangular distribu­
tion with peak at 
0.75 

Triangular distribu­
tion with peak at 
0.65 

Uniform distri bution 



6.2.5 Numerical techniques and presentation of the results 

The resulting system of ordinary differential equations, shown in Eqn (6.1) is solved 

numerically in Matlab@ [128] using the function ode45 that is based on an explicit 

Runge-Kutta method of order (4,5) using an adaptive time step. See Appendix E 

for the Matlab code that we used. 

A major objective in this work is to assess the effectiveness of introducing an 

RSV vaccine in a vaccine naive population on the incidence of total RSV hospital­

izatiollS. Predicted changes in the number of hospitalizations alone will sometimes 

give misleading results given that, at a single time point, a better vaccination strat-

egy will give equivalent incidence estimates compared to incidence when there is 

no vaccination. This observation is due to seasonal forcing or damped oscillations 

before the system achieves equilibrium or its stable limit cycle. In view of this 

challenge, the relative effectiveness of a vaccination strategy against the baseline 

(no vaccination) will be measured by a case ratio (eR) defined as the ratio of the 

accumulated cases of RSV hospitalizations for a given vaccination strategy against 

the accumulated cases of RSV hospi talizations at baseline (no vaccination) [147]: 

(6.5) 

where a is the age class, Na is the final age class at which hospitalizations are ob­

served, i is time in months, Nt is the final month, H:i represents the incidence of 

hospitalizations under baseline scenario for each age class a at time i and Hiv~ rep-

resents the incidence of RSV hospitalizations under vaccination. Hence eR is < 1 

if vaccination reduces the number of hospitalizations due to RSV and > 1 if vac­

cination increases the number of hospitalizations. This case ratio is calculated for 
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the models parameterized with both the diary contacts and the synthetic mix­

ing data. To calculate the average age of primary infections at time t, denoted as 

Ap (t), we have used the method previously used by Pitzer et al [163] and expressed 

mathematically as: 

(6.6) 

where 1/Ji is the midpoint of the age group i, Ai(t) is the force of infection at time 

t and age i and SO,i(t) is the number of primary susceptibles time t and age i. 

6.3 Results 

6.3.1 Pre-vaccination and fitting results 

6.3.1.1 Diary mixing model 

In this section, we will present the model fitting results using the diary contact 

data. Figure 6.3 (A) shows the model fit to the age-specific profile of RSV related 

hospitalizations from Kilifi District Hospital while Figure 6.3 (B) shows the model 

fit to the time series hospitalizations. The red dots represent the hospitalization 

data and blue line represents the model fit. There is a good agreement between the 

predicted and the observed number of RSV related hospitalizations which suggests 

that the model is appropriate for modelling RSV transmission dynamics. Table 

6.5 shows the parameters that were fitted and their optimal values together with 

the 95% Cl (confidence interval). Figure C.l in Appendix C confirms that the 

optimized values are truly locally minimum. The number of M sub-classes was 

only serially varied and therefore has got no Cl calculated. Figure 6.4 shows the 

distribution of RSV cases that are due to primary (red), secondary (yellow) and 
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tertiary (blue) infections. It is worth noting that over 82% of the hospitalizations 

in children less than 13 months old are attributable to primary infection while 

over 80% of the infections occurring in children between 3 and 5 years of age arc 

attributable to second infections or greater. 
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Figure 6.3: Diary model fit to age-specific (A) and time series (B) RSV relate,cl 
hospitalizations from Kilifi District Hospital. 
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Table 6.5: Shows the parameters that were included in the fitting, their optimal 
values and the lower and upper 95% confidence limits for the diary contacts model 

Param- Description Optimal Lower Cl Upper Cl 
et er value 

q Infectivity 0.000679 0.000673 0.000686 
parameter - q value 
for the diary matrix 

a Amplitude 0.073 0.069 0.077 

cjJ Phase angle 0.16 0.146 0.173 

w Duration of matAb 1.37 1.07 1.67 
protection (months) 

p N umber of maternal 1 
su b-classes 
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6.3.1.2 Synthetic mixing model 

Figure 6.5 (A) shows the model fit using synthetic contact data to the age-specific 

profile of RSV related hospitalizations from Kilifi District Hospital while Figure 

6.5 (B) shows the model fit to the time series hospitalization data. The red scatter 

and the blue line represent RSV hospitalization data from the KDH and the model 

fit respectively. From Figure 6.5 (A), it can be seen that the model tends to 

explain the hospitalization data well particularly from the 7th month of life, but 

that the 2nd, 4th and 5th months of life are least well predicted. However, from 

Figures 6.3 and 6.5 the two models fits are almost visually indistinguishable from 

each other in terms of fitting to the hospitalization data. Table 6.6 shows the 

parameters that we fitted, their optimal value and the 95% Cl while Figure C.2 

in Appendix C confirms that the optimized values are truly locally minimum. 

Figure 6.5 shows the distribution of the predicted hospitalized cases that are due 

to primary (red), secondary (yellow) and tertiary (blue) infections. Similar to the 

diary model, primary infections account for the majority of the hospitalizations 

(~79%) observed in children less than 13 months old while second and tertiary 

infections account for over 84% of hospitalizations in children between 3 and 5 

years of age. By the fifth year of life, tertiary and subsequent infections account 

for about 86% of the hospitalizations albeit the total number of hospitalizations 

at this age class are quite low. 

184 



200 

al 150 
.~ 

~ 
'6. 
:g 100 
.c 
'0 
o 
Z 50 

0 
Om 

100 

SO 
-0 
Cl> 
. ~ 
~ 60 
'6. 
(JJ 

0 
.c 
'0 
0 
Z 

A • 

2m 4m 6m Sm 

B 

• 
• • 

Jan 2006 

• KDH data 
-- Model fit 

• 
• • 

10m 12m 14m 16m 18m 20m 22m 2yrs 4yrs 
Age 

• 
• • 

Jan 2007 Jan 2008 Jan 2009 Jan 2010 
Time in years 

Figure 6.5: Synthetic model fi t to age-specific (A) and time spries (B) RSV related 
hospitalizations from KiWi District Hospital . 

185 



~ 
§ 60 
z 

40 

20 

1m 3m Sm 

_ Primary infections,I
Q 

[:=J Secondary infections,1
1 

_ Tert iary infections,1
2 

Figure 6.6: l3ubble plot showing the distributioll of hospital RSV rpl ated cas('s ill 
each age class fTom the synth('tic model fit tha t arc due to primary (rcd ), s('('on<iary 
(yellow) and tertiary &:. subsequent infections (blue) . 

1 6 



Table 6.6: Shows the parameters that were included in the fitting, their optimal 
values and the lower and upper 95% confidence limits for the synthetic contacts 
model 

Param- Description Optimal Lower Cl Upper Cl 
eter value 

qH Household mixing 96.95 95.67 98.24 
infectivity parameter 

qs School mixing 13,867.9 13,729.6 14,006.4 
infectivity factor 

qHS General mixing 2.842xl0- 12 -0.0118 0.0118 
infectivity factor 

a Amplitude 0.215 0.206 0.225 

<t> Phase angle 2.216 2.209 2.223 

w Duration of matAb 3.63 3.59 3.68 
protection (months) 

p N umber of maternal 1 
sub-classes 
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6.3.2 Vaccination results 

We introduce vaccination at the stable limit cycle and vaccinate both all suscepti­

bles (all green lines in Figure 6.1) and primary susceptibles (green solid line). We 

begin by presenting the results when we vaccinate all susceptibles. 

6.3.2.1 Vaccination of all susceptibles 

Figure 6.7 shows the the proportion of hospitalizations prevented, 1 - eR, after 

introducing routine vaccination at different coverages (proportion immunized) by 

age with (A) and (B) showing the results from the diary model and the synthetic 

model respectively. From Figure 6.7, we can see that the diary model leads to 

a greater reduction in the proportion of hospitalizations prevented compared to 

the synthetic model. This greater reduction in the diary model can be attributed 

to greater indirect benefit from vaccination as can be shown in Figure 6.11. We 

have then identified the optimal age at vaccination which is defined as the age 

at which the greatest vaccination benefit is achieved at the lowest vaccination 

coverage. Vaccination coverage is a proxy measure of the amount of resources 

required to reach a certain coverage i.e. the higher the vaccination coverage, the 

higher the resources required. The optimal month at vaccination for the synthetic 

model is 5 months compared to the diary model which is 7 months. For both 

scenarios in Figure 6.7, it is worth noting that the benefit from vaccination is 

increased as we delay vaccination from the first month of life to the optimal age 

at vaccination while a further delay decreases the impact of vaccination. However, 

there is little benefit lost by delaying vaccination between 5 and 13 months for 

the diary model. For both the mixing assumptions and even at an optimistic 
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vaccination coverage of 100%, all the ages at which the vaccine is eval uated do 

not eliminate neither the infection nor the disease. Figure 6.8 shows how the 
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months respectively and at 70% vaccination coverage. From the Figure, we can 

observe that vaccination at the optimal month Le. at 7 months leads to the greatest 

reduction in the number of primary susceptible individuals. Reducing the number 

of primary susceptibles reduces the population which is most at risk of developing 

disease consequently reducing the number of hospitalizations. Vaccination also 

seems to increase the number of primary susceptible individuals before the month 

at which vaccination is implemented. This is possible because of the increase in 

the average age at vaccination, see Figure 6.13 implying that individuals will be 

susceptible to primary infection longer than before vaccination. Figure 6.8 (B) 

shows the profile of susceptibles for the synthetic model with vaccination at 5 

(dashed line) and 15 months (dotted line) at 70% vaccination. From (B) was can 

observe that vaccination at the optimal month reduces the number of primary 

susceptible individuals but although not as much as the diary model does at 7 

months. This may be as a result of the higher force of infection acting on primary 

susceptibles in the synthetic matrix compared to the diary matrix model, see 

Figure 6.10 (A). 
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Figure 6.9 shows the age distribution of infecteds i.e. 10, It and 12 at equilibrium 

in the presence of vaccination. Vaccination at 7 and 5 months for the diary and 

the synthetic model respectively (dashed lines in Figure 6.9 (A) and (B)) leads 

to the greatest decrease in the number of primary infections with a much greater 

decrease from the diary model. Indirect benefit of vaccination leads to a decline 

in the hospitalizations in the ages classes prior to the age at which vaccination is 

implemented. 
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Figure 6.12 shows the short-term (5 years) temporal dYllamics of RSV hospi-

talizations rot('r th(' illtroduction of va.ccination at 7 lllouths for the diary lllodC'1 

(A) and 5 Illonth for the synthetic model (13) with vaccinatioll implellH'lltrd at 

70<7t, coverage for both cases. The diary model predicts a honeYIlloon prriod of 

approximat('ly 1 y('ar Wh(,Il there arc very few number of hospitalizatiolls [('port ('d. 

The pattern of hospitaliza tiolls then results to yearly epid('mics with an a.lt('rnatillf!, 
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pattern of high and low peaks before settling down to a uniform yearly epidemic 

pattern. On the other hand, the synthetic model does not predict a change in the 

pattern except that the epidemic peaks are slightly positively skewed. In both the 

model assumptions, vaccination leads to a decrease in the height of the epidemics 

with a greater reduction observed in the diary model. 
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Figure 6.13 shows how the average age at primary infection, denoted by Ap , 

changes as a function of both the age at vaccination and the vaccination cover-

age for the diary model. In the absence of vaccination, the average age at primary 

infection is approximately 1.36 years. Vaccination increases the average age at pri-

mary infection with the highest value (Ap ~ 8.33 years) being recorded at 5 months 

at 100% vaccination coverage. Vaccination at the optimal month of 7 months a.t 

100% vaccination coverage yields an average age at infection of 6.34 years. Figure 
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Figure 6.13: Shows the average age at primary infection (in years) as a fUllction 
of both the vaccination coverage and the age at vaccination 

6.14 shows the average age at primary infection for the synthetic matrix model 

presented as a fUllction of both the age at vaccination and the vaccination cover­

age. The synthetic modp[ 's average age at infection in the absence of vaccination 
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is higher at approximately 1. 7 years compared to the diary mode] 's at 1.:3 .yrars. 

This is po sibly due to the higher force of infection acting on susceptibl('s ill thr 

fir t year of life compared to the diary matrix model. Addi t ionally, th(' high('st 

age at primary infection (Ap ;::::: 2. 9) is acrueved at 5 months at 100% vaccination 

coverage. The diary model predicts an average age at primary infection which is 

three orders of magnitude rugher than that of the synthetic model at thrir optimal 

months and V'accination coverage. 
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Figure 6.14: Shows the mwage age at primary infection (in YC<-Lrs) as a fUllct iOIl 
of both tllf' vaccination covNage and the age at vaccinatioll 

199 



6.3.2.2 Vaccination of primary susceptibles 

In this section, we will present the impact of vaccination after introducing immu­

nization in the primary infecteds only i.e. the green solid line in Figure G.l. From 
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Figure 6.1.5: Proportion of hospitalizations pr vented after introducing illullulliza­
tiOll in primary susceptible i.e. So. (A) shows vaccination outcome' llsing the 
diary model while (8) is the outcome using the synthetic model. The x-a..'\:is shows 
thE' vaccination coverage as a proportion and the y-axis represents 1lH' ap; at V<)('­

ciliation. Note that tlH're is no diffC'fence between vaccination of all susceptible::; 
and primary Stlsc('ptiblcs. 

Figure 6.15 it is worth noting that the predicted reduction in the proportion of 

hospitalizations resulting from immunizing primary susceptibl<, , is similar to that 
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predicted by immunizing all the susceptibles in Figure 6.7. The reason for this ob­

servation is because majority of the infections leading to hospitalizations are as a 

result of primary infections as can be seen in Figures 6.4 and 6.6. Over 70% of the 

hospitalizations, from both the diary and the synthetic model assumptions, occur 

in children between the age of 1 month to 15 months. A vaccine that therefore 

protects individuals from primary infections will achieve the greatest reduction in 

the number of hospitalizations. This is further supported by the age-specific profile 

of susceptibles at equilibrium as shown in Figures 6.8 CA) and CB) with no vacci­

nation. Both the diary CA) and the synthetic model (B) indicate that majority of 

the susceptibles at equilibrium between 0 and 20 months of life are in the primary 

susceptible class, So, and therefore vaccinating these primary susceptibles will re­

sult in the greatest reduction in the number of hospitalizations. Figures 6.9 (A) 

and (B) show the resulting incidence of infection from the three susceptible classes 

in the absence of vaccination for the diary and the synthetic model assumptions 

respectively. 
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6.3.3 Uncertainty and sensitivity analysis 

The LHS technique was used to explore the effects of the uncertainty in estimat­

ing the values of the input variables on the prediction precision of two outcome 

variables namely: the cumulative number of hospitalizations before and after vac­

cination and the optimal age at vaccination. We will begin by presenting the U &8 

results of the diary mixing matrix and then the synthetic mixing matrix. 

6.3.3.1 U&S of the diary model 

Figure 6.16 (A and B) shows the imprecision in the number of hospitalization 

(both temporal and age-specific) that is attributable to the variation in the input 

parameters with the bars representing the 95% confidence intervals. The model 

assumptions are quite robust in predicting the number of children hospitalized 

with RSV since majority of the hospitalizations from the Kilifi District Hospital 

(red scatter plot) fall within the confidence limit. However, we observe a greater 

variability in the third, fourth and fifth months of life. 
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To explore the parameters attributable to the variation observed, we present 

the partial rank correlation coefficient values calculated for each of the parameter 

for each age class as shown in Figure 6.16 (C). The sign of the PRCC identifies 

the qualitative relationship between the input and the output variable. A positive 

PRCC value implies that when the value of the input variable is increased, the 

number of hospitalizations (which is the outcome) increases as well and when the 

PRCC is negative, it implies that an increase in the input variable decreases the 

number of hospitalizations. A parameter with a PRCC value which is approx­

imately zero implies that changing that parameter or even excluding it has no 

bearing on the outcome variable. From Figure 6.16, we can see that the duration 

of RSV specific maternal protection is the most important in explaining the vari­

ability in the number of children hospitalized in between the ages of 1 month and 

13 months of life with PRCC values that are statistically significantly different 

from zero. For the first two month of life, an increase in the duration of maternal 

antibodies leads to a decrease in the number of hospitalizations while for children 

between 3 to 13 months months old, it leads to an increase in the number hos­

pitalized. The second parameter that is important in explaining the variability 

observed in the number of hospitalization is the duration of primary infection i.e. 

10. An increase in the duration of primary infection leads to an increase in hospi­

talization in children older than 14 months old while for younger children children 

it leads to a reduction in the number of hospitalizations. Thirdly, an increase in 

the duration of immunity in all the three immune classes i.e. Po, Pi and P2 leads to 

a decrease in the number of hospitalizations in all age classes. This implies that an 

introduction of a vaccine that increases the duration of protection from infection 

would be beneficial in reducing the number of hospitalizations. 
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Figure 6.17 (A) shows the imprecision in the optimal month at vaccination 

that is due to the uncertainty in measuring the input variables. The optimal 

month at vaccination is 7 months with the 95% Cl ranges from 3 to 12 months. 

Figure 6.17 (B) shows a tornado plot with the PRCC values on the x-axis and 

the input parameters on the y-axis with the red scatter besides the bar showing 

that the value is statistically significantly different from zero. From the figure, the 

parameter that is contributing to the greatest variability in the optimal month at 

which to vaccinate is the duration of RSV specific maternal antibodies. An increase 

in the duration of maternal antibodies leads to an increase in the optimal age at 

vaccination. An increase in the duration of infection (/2) and infectiousness of 

tertiary infections (a2) and an increase in the susceptibility of tertiary susceptibles 

(0"2) leads to a significant decrease in the optimal age at vaccination since an 

increase in these parameters leads to an increase in the force of infection. On the 

other hand, an interesting result is that an increase in the infectiousness (al) of 

second infections leads to a reduction in the optimal age at vaccination. 
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Figure 6.17: (A) shows the prediction imprecision in the optimal month at vaccination that is attributable to 
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6.3.3.2 U&S of the synthetic model 

Figure 6.18 (A) and (B) shows the variability in the number of hospitalizations 

(both age-specific and temporal) that is attributable to the variation in the input 

parameters with the bars representing the 95% confidence interval of the model 

prediction. Most of the age-specific hospitalization data is predicted to fall within 

the 95% confidence interval of the model fit as can be seen in Figure 6.18 (A). 

However, there is also a lot of variability that is observed in the first six months 

of life. Most of the variation observed in the first twelve months of life can be 

attributed to uncertainty in four main parameters 1) duration of protective effect 

of maternal antibodies, 2) duration of primary infection, 3) duration of protection 

after primary infection and 4) duration of protection after second infections as can 

be seen in Figure 6.18 (C) from the values of their PRCC. Increasing the duration 

of maternal antibody protection reduces the number of hospitalization in the first 

three months of life. This is because individuals are protected from infection at 

the age range when they are most susceptible to severe disease requiring hospital­

izations. On the other hand, this increase leads to an increase in the number of 

hospitalizations between the 5th month and the 3rd year of life. This result can be 

attributed to the loss of maternal antibodies with individuals becoming suscepti­

ble to infection at an age when they arc still vulnerable to severe disease. The 

importance of the duration of RSV specific maternal antibodies starts to decline 

beyond the 3rd year of life. 
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An increase in the duration of primary infection leads to an increase in the 

number of individuals hospitalized between the 2nd and the 11th months of life 

after which it ceases to be an important parameter in explaining the variation. 

An increase in the other two important parameters i.e. duration of primary and 

secondary protection, leads to an decrease in the number of hospitalizations since 

increasing the duration of protection reduces the number of infecteds in the pop­

ulation by reducing the per capita rate of infection. Most of the other parameters 

have their PRCC values around zero and are therefore not important in explaining 

the variation. 

Figure 6.19 (A) shows the imprecision in the optimal month at vaccination that 

can be attributed to the variation in the input parameters. The optimal month 

at vaccination is 5 months with the 95% Cl ranging from 4 to 9 months. The 

tornado plot in subplot B shows the PRCC values for each of the parameters. 

Six parameters are important in explaining the uncertainty in the optimal month 

at vaccination as shown by the red scatter dots besides the bars and they are: 

the duration of primary and second infections ho and 1'1)' level of susceptibility 

of third and subsequent infections (0"2)' the infectivity of second and subsequent 

infections (G\ and G2) and the duration of maternal antibodies protection (w). 

Except for the duration of maternal antibodies, an increase in the rest of the 

parameters lead to an increase in the optimal age at vaccination. This is possibly 

so because an increase in these parameters leads to an increase in the number of 

infecteds in the population consequently increasing the force of infection hence 

reducing the average age at primary infection leading to a vaccination strategy 

that requires early delivery of the vaccine. An increase in the duration of maternal 

anti bodies leads to an increase in the optimal age at vaccination. 
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6.4 Discussion 

In this chapter, we have presented the analysis of a mathematical model describing 

the transmission dynamics of RSV. Additionally, we have explored the long-term 

impact of introducing vaccination in the population with two mixing assumptions. 

Hospitalization output from the model with both mixing assumptions fits well to 

both the age-specific and time series hospitalization data. For the model assuming 

the synthetic matrix we have estimated three q values: qH (household mixing), 

qs (school mixing) and qHS (general mixing) with qHS giving a lower confidence 

limit which is below zero. The confidence interval is for the qHS is wide suggesting 

that the hospitalization data was probably too limited to provide information or 

support the inclusion of the homogeneous mixing matrix in the linear combination 

generating the WAIFW matrix. Therefore, the conclusions derived from the model 

with the synthetic matrix warrant to be compared with the model fitted to other 

hospitalization datasets. 

It is quite clear that the introduction of a vaccine at any age between 1 month 

and 5 years leads to a reduction in the incidence of hospitalizations in children 

without any adverse effects. However, it has been demonstrated in this work that 

vaccination leads tu an increase in the average age at first infection. This has 

previously been observed with the introduction of vaccination of other childhood 

infections [96, 8, 164]. The clinical effects of a first infection at an older age for 

RSV is not documented since majority of the primary infections occur within the 

first two years of life [68]. If the development of severe disease is, at least in 

part, physiological, then older individuals who have a greater residual for gaseous 

exchange, may have a reduced risk of respiratory congestion. It has been shown 
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that the severity of infections decreases with increased age at infection [149, 93] 

and by the history of infection [93]. However, if disease does not decline with age 

at first infection, or even increases, then the model will overestimate the reduction 

in the number of hospitalizations with the introduction of vaccination. Under this 

scenario, vaccination would increase the average age at primary infection and if 

getting the first infection later in life is detrimental, then vaccination would lead 

to more severe first infections. However, we currently do not know the clinical 

outcome of a delayed first infection since most children will have their primary 

infection in their first two to three years of life [93, 68]. 

Routine vaccination at 7 and 5 months are the optimal vaccination strategies 

in reducing the number of hospitalizations for the diary and the synthetic mixing 

models respectively. For the model using the diary data from Figures 6.7 (A) and 

6.15 (A), there is little loss in effectiveness resultant from delay to vaccination is 

between 5 to 12 months of age. On the other hand, there is a sharp decline in 

the impact of vaccination in the synthetic model beyond the optimal vaccination 

month. There are two observations here: 1) we see a flat area of peak benefit 

between 5 months and 12 months for the diary model and a peaked profile for the 

synthetic model around 5 months. This result seems to be a trade-off between 

decay of protective RSV specific maternal antibody and the rate of infection. 

Although there is a predicted longer duration of maternal antibodies from the 

synthetic matrix, i.e. 3.6 months compared to 1.4 months for the diary model, 

this does not result in delayed optimal age at delivery since as soon as they lose 

their protection they get infected due to the high force of infection in the early age 

classes as can be see Figure 6.10 (A). On the other hand, the diary matrix predicts 

a rapid loss of maternal antibodies hence the benefit from early vaccination but 
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little in the way of losing the benefit with increasing age due to the relatively lower 

force of infection in children below 12 months. However, at 13 months, the force 

of infection rises and this leads to a sharp decline in the benefit from vaccination 

in the diary model. 

Vaccination of children older than 15 months results in very little or no reduc­

tion in the number of hospitalizations implying that children less than 15 months 

are the ones who are important for the transmission of RSV within a community. 

If the protective effect of vaccination is short lived, since the vaccine behaves like a 

natural infection, why then do children less than 15 months seem important? This 

is the question that comes into mind when one sees that the highest benefit of vac­

cination is in children less than 15 months instead of the previously hypothesized 

school going children [156, 140] who bring the infection back to the household. 

This is partly because protecting the naive susceptibles will directly prevent dis­

ease. As can be seen in Figures 6.4 and 6.6, majority of the hospitalizations are 

attributable to primary infections. However, based on these results, it would be 

premature to write off school child vaccination. It seems that the model structure 

does not support household mixing which is required in order to have strong mix­

ing in the household that leads to transmission from school child to infant through 

other members of the household. The structure of the contact matrices in Figures 

4.7 and 4.8 reveal this fact. In that there is high mixing within and between the 

school age groups but not a lot of the off diagonal mixing with infants i.e. mixing 

is held within the school groups and does not impact on infants. Another pos­

sible explanation why vaccination of the older individuals leads to very minimal 

benefit is because immunity is short lived and therefore it does not reduce the 

fore of infection appreciably to provide indirect protection. Our understanding is 
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that vaccination across all age groups would however have a short term benefit 

deferring infant infection, but would need to be repeated annually for there to be 

a lasting effect. 

From the uncertainty and sensitivity analysis, it is quite clear that the dura­

tion of RSV specific maternal antibody is important in explaining the variability 

observed in both the age-specific hospitalizations and the optimal month at vac­

cination for both the diary and the synthetic model assumptions. For the diary 

model, an increase in the duration of RSV specific maternal antibodies reduces 

the number of hospitalizations in the first 2 months of life while increasing the 

number of hospitalizations in the 3rd to the 13th months of life. For the synthetic 

model, the duration of maternal antibodies leads to a decrease in the number 

of hospitalizations in the first three months of life while increasing the number 

of hospitalizations between the 4th month and the 3rd year of life. Beyond this 

point, maternal antibodies cease to be a significant. This analysis has got impor­

tant epidemiological implication. It has revealed that the model prediction of the 

number of hospitalizations is robust, only a few of the variables are important in 

explaining the variability with the duration of maternal antibody being important 

in both model assumptions. This suggests that it is important to quantify this 

variable accurately. Reducing the uncertainty increases the prediction precision of 

the model. Additionally, the importance of the duration of RSV specific maternal 

antibody reveals that vaccinating pregnant mothers would be potentially benefi­

cial in reducing the amount of disease in early infancy if it leads to an increa."e in 

the duration and level of maternal antibody protection in the offspring. This will 

allow for protection from infection at an age when the child is most susceptible to 

severe disease and also allows for vaccination at an older age when RSV vaccines 
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have been shown to be safe and immunogenic. Uncertainty in the optimal month 

at vaccination is between 3 and 12 months for the diary-based model while that 

of the synthetic mixing matrix model is 4 to 9 months. Both models suggest that 

delaying the age at which a vaccine is delivered from birth is beneficial. 

For the diary model, an interesting observation is the effect that 0'1 and 0'2 have 

on the optimal age at which the vaccine should be delivered. The expectation is 

that an increase in the infectiousness of both 11 and 12 will increase the force of 

infection hence increasing the the level of infection in the population leading to 

a reduction in the optimal month at which the vaccine should be delivered. This 

is true for et2' However, an increase in 0'1 leads to a counter intuitive outcome 

of increasing the optimal age at vaccination. This outcome seems to be robust 

to the number of LHS samples since increasing the number of LHS samples from 

100 to 200 does not affect the outcome. This outcome should be looked at in the 

light of the changes in the other parameters as well. For example, increa.<;ing 0'1 

generally leads to an decrease in the optimized infectivity parameter denoted as 

q. Therefore, increasing et1 drives the overall dynamics that tend to decrea.<;e the 

transmission potential in the population if looked at in the presence of changes 

in the other parameters. This is contrary to what one would expect if a 1 alone 

is increased. The non-linear effect of the changes in the parameters operating 

through the different mixing matrices might result in the differences between the 

diary and the synthetic matrix outcomes for 0'1' 

We have only implicitly accounted for the antigenic differences between strains 

of RSV. Earlier work demonstrated that inclusion of two genetic types, groups 

A and B, explained some of the epidemiological pattern, especially the group A 

and B epidemic dominance [206]. Secondary infections may also only occur if 
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a susceptible individual encounters an RSV strain that is substantially different 

from the previous infection as suggested by Agoti et al [3]. Consequently, the host 

immune responses to the two strains is likely important and may influence the 

outcome of vaccination. Additionally, the characteristics of a vaccine in terms of its 

ability to generate immunological responses across the spectrum of RSV antigenic 

types will greatly influence the outcome of vaccination [45, 170]. Although our 

model produced the temporal features of an RSV epidemic, the exact factors that 

drive the epidemic are not explicitly known. We have modelled the epidemics 

using a cosine function with annual forcing. It is interesting to note that even 

with this kind of a forcing function, introduction of a vaccine eventually changes 

the pattern of epidemics for the diary-based model. More work needs to be done 

to explore the potential factors driving the the epidemics. 

We plan to extend this work by exploring different vaccination strategies along­

side the routine vaccination of children. A number of strategies have been proposed 

in literature: maternal immunization in late pregnancy [50, 161]' vaccination of 

school going children [169] and campaign vaccination over a wide age range. 
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Chapter 7 

Modelling transmission dynamics in 

households 

7.1 Introduction 

In early models developed to describe the transmission of respiratory pathogens, 

the population was ordinarily assumed to mix homogeneously with frequency or 

density dependent transmission [116, 10]. These homogeneous models were later 

extended to account for host heterogeneities in the transmission. This included 

the stratification of mathematical models to correspond to the age structure of the 

host population [180, 47, 10, 116] where age was used as a measure of elevated risk 

e.g. increased infectivity or acquisition of infection with age. Further extension 

has taken a different form where the population is divided into various risk groups 

[117, 116] and more recently by households [14, 102, 62, 146]. 

For a number of respiratory infections requiring close contacts, their transmis­

sion within the household or the family is an important mechanism for their spread 
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[102,209] due to the greater strength of contacts between individuals sharing living 

arrangements compared to contacts outside of the household [122, 166]. There are 

a number of other aspects of a household that make them special and epidemio­

logically more different than other heterogeneities. Firstly unlike schools and work 

places, they have a wide range of ages and gender allowing for inter-generational 

transmission of infection more likely to occur. Secondly, there is greater genetic 

similarity within household members than between random individuals. Such het­

erogeneities makes households epidemiologically relevant since the ease or difficulty 

with which an infection occurs or controlled is dependent on the factors mentioned 

above albeit not limited to them. For example a recent household study demon­

strated that older children particularly school going are the frequent introducers 

of RSV into households that lead to infant infection [140]. Exploring transmission 

dynamics using household models can also allow for more targeted implementa­

tion of interventions. House & Keeling [102] have demonstrated that targeting 

to vaccinate households with more susceptibles is a better strategy compared to 

vaccinating random households or random individuals against influenza and hence 

can allow for more efficient use of vaccines. 

There has been recent interest in household modelling with earlier models deal­

ing with SIS-type model dynamics in household structured settings [13, 62, 146]. 

Ball [13] demonstrated that the stochastic household model can be approximated 

using a deterministic model. In order for the deterministic model to provide a 

good approximation to the more realistic stochastic model, the author suggests 

that it is necessary that the number of households in the population be assumed 

infinite so that the probabilistic effects leading to stochastic extinction can be av­

eraged out. This has also been demonstrated by Neal [146]. Following this early 
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work, more formal household models making use of the deterministic approxima­

tion have appeared linking data with the models [101] with others exploring the 

effect of interventions [102]. More recently, Ross et al [175] have extended the 

methods developed earlier to include more efficient methods of evaluating some of 

the more important epidemiological quantities such as the invasion threshold, early 

growth rate, household offspring distribution and endemic prevalence of infection 

using path integrals for Markov Chains. 

In this chapter, we will present a simple multi-strain deterministic household 

model describing the transmission of RSV both within a household and in the 

community. The model is composed of two transmission rates: one representing 

transmission between members of the same household and the other transmission 

to general members of the community. This simplified model has been used to 

describe the equilibrium dynamics of RSV in the general population and within the 

household. The motivation for presenting this work here is two fold a) we want to 

demonstrate that the household model allows for more epidemiologically relevant 

parameters to be determined compared to the model considering age only as the 

most important heterogeneity and b) this model would form a basic framework 

on which to develop new methods of analyzing household cohort data. Recently, 

these kind of studies are being done with increasing frequency and they seek to 

measure infections in whole households over time. 

The deterministic household model developed in this chapter was chosen due 

to its simplicity of conception and the ease of parameterization. An alternative 

formulation would take the form of an individual based model which can be readily 

iterated with any of the standard stochastic algorithms e.g. the Gillespie's direct 

algorithm [63]. However, computational difficulties would arise due to the vast 
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number of different possible events. Parameterization of the model would also 

be difficult to implement [116]. In deterministic settings, parameters are chosen 

that minimize the deviation between observed and simulated epidemics so that 

the predicted behaviour by the system matches, as close as possible, the observed 

behaviour. However, stochasticity can have a significant effect on the mean and 

therefore possibly bias this simple form of estimation. This problem is enhanced 

when localized extinctions are frequent especially when implementing an integer­

valued stochastic model. 

7.2 Objectives 

In the work presented in the chapter, we seek to develop a household based model 

and assess its potential in describing the transmission of RSV A and B within a 

population of households. 

7.3 Methods 

In order to achieve the objectives mentioned above, we have adopted the method­

ology used by House & Keeling [101] which is a deterministic model with explicit 

household structure. For the epidemiological model, we have adopted a modified 

version uf the multi-strain RSV model developed by White et al [206J. Figure 7.1 

shows the graphical representation of the epidemiological compartments and the 

flow between them. In this work, we take a simpler approach to the epidemic 

model so as to focus exclusively on the implications of household structure on the 

transmission dynamics. Briefly, individuals are initially susceptible to primary in-
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IBA 

Figure 7.1: Graphical representation showing the epidemiological compartm nts 
and flow of individuals betw en them. See text for definition of symbols. 

fection with either group A or B virus with strain specific transmission parameter. 

If infected, they re over into th RA and RB , depending on the primary infecting 

strain where th y r main susceptible to a second infection albeit at a lower risk of 

infection compared to primary susceptibles in class S. At this point , re-inf ction 

will be governed by the cro s protection arising from the pr vious infection . Onc 

infected with a heterologous strain , individuals recover into th RAB class. This 

class contains individuals who have been infected with both strains. Individuals 
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can then either, become re-infected with one of the viruses (A or B) or in the 

absence of exposure to re-infection they lose their protection and revert into the 

RA or RB compartments. In the absence of exposure, individuals in the recov­

ered classes RA and RB will lose their acquired immunity and move to primary 

susceptible class, S. 

Let us now consider a population grouped into households where individuals 

retain their random interaction within the entire population while they experi­

ence an additional per capita rate of infection for each infectious person within 

the household. In this formulation, we make the assumption that transmission 

potential within members of the same household is greater than within the gen­

eral population. We therefore have two transmission parameters 1) the within 

household and 2) the general population transmission parameter. Let us make a 

simplifying additional assumption that all the households contain exactly N in­

dividuals. Figure 7.2 shows the coupling system used to define the interaction 

between households and within households. The blue arrows represent interaction 

between households while the black arrows represent stronger interaction within 

households. 

To write down the model equations, let us define Ha,b,c,d,e,f,g,h as the proportion 

of households in the population consisting of a, b, c, d, e, j, g, h individuals in the 

S, lA, IB, RA, R B, IBA, lAB and RAB compartments respectively with 

L Ha,b,c,d,e./,g,h = 1 and with the number of people represented by the alphabets 

from a to h are integers. To calculate, for example the proportion of susceptible 
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Figure 7.2: Coupling system used to represent the interaction between (blue arrow) 
and within (black arrow) households in the population. All households are assumed 
to contain the same number of individuals with each individual experiencing a 
higher rate of infection within the household compared to between households. 

individuals in the population, we use the expression: 

1 
S = N L aHa ,b,c,d,e,f,9,h 

'la 

(7.1) 

In the work presented in this chapter, we consider the situation where the number 

of individuals in a household, N, equals to 10. The stochastic nature of model 

is considered by modelling all the possible household configurations. The number 

of possible household configurations is dependent on the number of people in the 

household and the number of epidemiological classes under consideration. The 
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number of household configurations increases exponentially with both an increase 

in the number of epidemiological classes and household members. For example, 

assuming a modest N = 10, the number of household configurations increases 

from 66 with three classes to 19,448 with 8 epidemiological classes. This therefore 

requires that we keep both the number of people per household (N) and the 

epidemiological classes small although not too small as to compromise the natural 

history of the infection. The complete dynamics of the household model can be 

determined by considering the rates of movement between the epidemiological 

classes as represented by the ODE system shown in Eqn.{7.2). It is important 

to note that the impossible terms are excluded e.g. there can be no infection 

in a household with 10 infecteds or there can be no recovery in a household of 

completely susceptible individuals. For the sake of notational convenience, H 

will always represent Ha,b,c,d,e,J,g,h unless otherwise stated. The integration of the 

resulting system of differential equations was solved numerically using MATLAB® 

[128]. The initial condition is such that 99% of the households are completely 

susceptible and the remaining 1% are in households with 2 infected individuals i.e. 
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1 in lA and the other in IB and the remaining in the susceptible class. 

dH i3A TA dt = N _ 1 (-abH + (a + l)(b - l)Ha+l,b-d + N _ 1 (-agH + (a + l)gHa+l.b-d 

i3B TB + N _ 1 (-acH + (a + l)(c - l)Ha+l.c-d + N _ 1 (-af H + (a + l)f Ha+1,c-d 

+ "YA (-bH + (b + l)Hb+l,d-l) + "YB( -cH + (c + l)Hc+l,e-l) 

aBAi3B aBATB 
+ N _ 1 (-dcH + (d + l)cHd+l,J-l) + N _ 1 (-df H + (d + 1)(f - 1)Hd+1,J-l 

~B~ ~B~ + N _ 1 (-ebH + (e + l)bHe+l,g-l + N _ 1 (-egH + (e + l)(g - 1)He+1•9-d 

+ "YB(- f H + (f + l)HJ+l,h-d + "YA( -gH + (g + l)Hg+l,h-d 

+ f2 A ( -hH+(h + 1)Hd- 1,h+J) + flB ( -hH + (h + l)He-l,h+d 

+ WA( -dH + (d + 1)Ha- 1,d+d + WB( -eH + (e + 1)Ha - 1,e+d 

(7.2) 

+ fBIB + D:BIBA( -aH + (a + l)Ha+l,C-l) + aBA(fBIB + D:BIBA)( -dH + (d + 1)Hd+1,J-d 

+ aAB(fAIA + D:AIAB)( -eH + (e + l)He+l,g-d + fAIA + D:AIAB( -aH + (a + 1)Ha+1,b-d 

The cross immunity matrix is defined by [a AA a AB] where a AA is the level of 
aBA aBB 

protection from re-infection with homologous A, a AB is the level of protection from 

re-infection with heterologous A, aBA is the level of protection from re-infection 

with heterologous Band aBB is the level of protection from re-infection with a 

homologous B. Table 7.1 gives the description and the values of the baseline pa­

rameters used in the simulation. The parameters presented are for demonstration 

purposes only in order to show the utility of such a model and should not be 

construed as necessarily accurate transmission parameters. 
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Table 7.1: Shows the model parameter explanation and their baseline values used 
in the multistrain model 

Parameter Description Estimate 

lA Rate of recovery from A infection 1.2/week 
IB Rate of recovery from B infection 1.2/week 

(JBA Cross protection from re-infection 0.5 
with B given a previous A 

(JAB Cross protection from re-infection 0.8 
with A given a previous B 

0.4 Rate of loss of protection from RAB 2/week 
to RA 

OB Rate of loss of protection from R Aa 2/week 
to Ra 

WA Rate of loss of protection from RA 0.05/week 
to S 

WB Rate of loss of protection from Ra O.OS/week 
to S 

EA External transmission parameter 0.6JJA 
from I A class 

°A External transmission parameter 0.6TA 
from I AB class 

Ea External transmission parameter 0.6JJa 
from I B class 

°a External transmission parameter 0.6TB 
from I BA class 

(3A Household transmission parameter 8/week 
from I A class 

TA Household transmission parameter 8/week 
from lAB class 

(3a Household transmission parameter 5/week 
from I B class 

TB Household transmission parameter 5/week 
from IBA class 
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7.4 Results 

In this section, we begin by presenting the equilibrium results at both the popula­

tion and the household level. Figure 7.3 (A) shows the model nill at equilibrium 

at the population level with the proportion of individuals with eithC'r RSV A or B 

shown Oil thp y-a..x.is and simulation time in years on the x-axis. We note t hal gi VCll 

the ba~eline parameters uspd in Table 7.1, the proportion of people with RSV A 

and B in thE' population is approximately equal at 0.22 of the entire population 

with majority of the infecteds in the secondary infected classes i.e. JAB and J a'l an 

shown in Figure 7.3 (C). Figure 7.3 (8) and (D) shows the proportion of inff'ctecl 
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individuals in the households at both the peak and endemic prevalence. Most of 

the households, over 89%, at the endemic equilibrium as shown in Figure 7.3(D) 

have no infected individuals with neither primary RSV A nor B. The proportion of 

households, at endemic equilibrium, with over 2 individuals with primary infection 

(i.e. either RSV A or B) is very small at less than 0.002. However, at the same 

endemic equilibrium, the peak level of infection in households with secondary B 

infection is in households with 1 infected at 24% of the households while the peak 

in households with secondary A infection is in households with 2 infecteds at 25% 

of the distribution of households. The proportion of households decreases with an 

increase in the number of both secondary and primary infecteds. 

Figure 7.4 shows the joint probability of observing co-infection in a household. 

Co-infection in a household is loosely defined as a the simultaneous infection of a 

household with both RSV A and B. The Figure 7.4 (A) and (B) shows the prob­

ability of co-infection with primary and secondary infections respectively. Let us 

suppose that x represents the number of individuals infected with RSV 8 and y 

represents the number of individuals infected with RSV A. Then Figure 7.4 (A) 

shows the the joint probability of observing x individuals with primary RSV B 

and y individuals with primary RSV A in a household i.e. P(IB = x U lA = y) 

while subplot (8) shows p(/BA = XUIAB = y). For primary infections, the highest 

joint probability is that of observing neither A nor 8 infections in a household at 

endemic equilibrium. However, for secondary infections, the joint probability is 

highest in households with 2 RSV A infections and 1 RSV B infection at endemic 

equilibrium. The white regions show the areas within which it is not possible to 

have a combination of infecteds since each household is assumed to have 10 indi­

viduals and therefore the joint probability is zero. This asymmetrical distribution 
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observed can be attributed to the interaction between the cross immunity term 

and the rate of infection. 

At the endemic equilibrium as shown in Figure 7.3(C), the proportion of indi­

viduals in the population with secondary B infections (IBA) is equal to that with 

secondary A infections. However, in the household distribution profile for infection 

with the two RSV groups, the peak level of infection with secondary B infections 

(IBA) is in households with 1 infected while for secondary A infections (lAB) is in 

households with 2 infected as can be seen in Figure 7.3 (D). This is an interesting 

outcome showing that, even though at the population level the infection appears 

indistinguishable, at the household level there is a clear difference in the peak of 

infection. The result suggests that, even though there is a strong interaction of 

the viruses within the household, it does not reflect at the population level. 

229 



rv 

"" Cl 

~ 

Primary inlections 

10 

9 A 

8 

7 

6 

5 :-. 
2 

o 1 2 3 4 5 6 7 8 9 10 

16 

0.2 0.4 0.6 0.8 

10 

9 

8 

7 

6 

w 
5 ~ 

4 

3 

2 

o 

Secondary infections 

o 1 2 3 4 5 6 7 8 9 10 

IBA 

0.01 0.02 0.03 0.04 0.05 

Figure 7.4: The joint probability of observing a household with x RSV B infections and y RSV A infections at 
equilibrium and for both primary and secondary infections. 



7.5 Discussion 

In this chapter, we have presented a mathematical model with two levels of trans­

mission: at the household and at the population level. This model is obviously 

an over simplification of the complex dynamics of RSV transmission within the 

household and in the general population. The model presented is a very simple 

abstraction of the real infection dynamics and with the stochastic nature of trans­

mission within the household accounted for by modelling all the possible household 

configurations. Our result shows that the general epidemic profile in the popula­

tion may be different from the household epidemic profile as seen in Figure 7.3 (C) 

and (D). This allows for the household model to lend itself to the determination 

of more epidemiological parameters compared to simple mean field models. 

The sort of modelling approach that we have taken has got some drawbacks. 

Firstly, even with a modest number of compartments, 8 epidemiological classes, 

and a fixed number of people in the households, 10 individuals, the system of or­

dinary differential equations ends up with 19,448 equations. Solving this system 

of ODE numerically takes a considerable amount of computer time on a desktop 

machine. However, there are computationally efficient methods that are being 

developed for estimating certain epidemiological quantities such as the thresh­

old for invasion, endemic prevalence distribution and early growth rate [175, 44]. 

Secondly, we have only dealt with a population that is homogeneous i.e. where in­

dividuals and households are identical although we know that in reality households 

vary in size and in their composition. To accommodate this level of heterogene­

ity, we require some considerable level of model complexity which is the direction 

that we plan to extend this work. We plan to use this model to explore vac-
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cination strategies targeted at households with both mono or bi-valent vaccines. 

Most importantly, we need to determine the model parameters especially both the 

household and the population wide transmission parameter and this can be done 

using a household infection data from a cohort that was monitored intensively 

with nasal samples taken every 3 to 4 days for RSV infection between January 

and June 2010 [140]. 

In general, we have highlighted some general concepts for epidemic modelling 

in populations that are structured into households and that can provide a basis 

for more parameters to be identified compared to simple ODE models. This kind 

of modelling can also be used to explore various vaccination strategies that are 

targeted towards households. However, more complex simulations models should 

be considered when determining policy. 
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Chapter 8 

Final discussion 

8.1 Introduction 

The main findings arising from research presented in this thesis are summarized 

and discussed in this final chapter. The limit.ations of the work are highlighted 

and suggestions for future work have been presented. 

8.2 Summary of the main findings 

In the introductory chapter (Chapter 1), we set out the main objectives of the 

work presented in this thesis which were 1) to gain a better understanding of the 

transmission dynamics of RSV within a defined population, 2) estimate the social 

contact rate for the determination of the force of infection within the mathematical 

model framework and 3) to explore the impact of introducing routine vaccination 

in the population with an aim of identifying the optimal strategy in reducing the 

burden of disease in the infants. 
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In Chapter 4 we presented the results of the contact pattern within a Kenyan 

coastal population based on two data sets 1) data from the paper diary contact 

study and 2) data from the synthetic population based on household occupancy 

within the KHDSS and have considered the ability of the two datasets to accom­

modate the heterogeneous mixing patterns in the population. Besides the fact that 

these matrices have been constructed in different ways, they both share the same 

features i.e. strong assortative mixing by age among children with a decline in the 

strength in the older age groups. Another feature is the strong mixing between 

children and the individuals aged between 20 to 50 years, in the contact diary data, 

and 20 to 55 in the synthetic diary data. This most probably represents children 

having high rates of contact with their care takers at home, or if in school, with 

the teachers or instructors. The contact data as well reveals high mixing rates 

between infants and children aged 6 to 14 years. These 6 to 14 year olds are most 

likely to be primary school-going children. This sort of high inter-class mixing 

could be important in explaining the transmission of RSV to infants within the 

household. In fact, a previous household study identified that infants living in a 

household with at least one school-going child are at a higher risk of RSV infec­

tion compared to other infants in households with no school-going child [156]. This 

is further supported by a recent study that has demonstrated that older children, 

particularly school going, are the frequent introducers of RSV into households that 

lead to infant infection [140]. We also demonstrated that the pattern of mixing 

with the synthetic mixing data is mostly similar across different administrative 

locations within the KHDSS as seen in Figure 4.11. The only exception was in 

Junju and Kilifi Township where much of the mixing was recorded between adults 

approximately 20 years old. This may be due to households having fewer children 
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and the possibility of house sharing among adults. It also turns out that Kilifi 

Township and Junju have got the lowest mean number of household occupants at 

6.7 and 7.9 respectively. If it is indeed true that households in these two regions 

are having fewer number of children that can be attributed to low fertility rates 

among adults living there, then it is possible Junju and Kilifi Township might be 

undergoing a demographic transition. It would be interesting to investigate what 

effect this kind of transition has on the transmission of infections. A direct com­

parison of the diary and the synthetic contact data by jointly linearly regressing 

their elements reveals that they are linearly correlated (R2 ~ 0.6) implying a sim­

ilarity in the mixing pattern observed. Similar results have been observed with a 

different formulation of the synthetic matrices from European countries [55, 60] 

which were then compared to POLYMOD contact diary data [136]. 

In Chapter 4 we have consistently assumed that the at-risk event of transmis­

sion of an infectious agent (in our case RSV) is a physical contact. The assertion 

is that if two individuals are close enough to touch, then they are probably close 

enough to transmit. This assertion is not necessarily true since it has been shown 

that RSV can also be transmitted through fomite [83] which can include sharing 

of objects. This would be true for people sharing public transport and they are 

exposed to touching communal surfaces or children at school sharing objects. The 

contacts are also ag.<;umed to be of equal intensity and hence the risk of transmis­

sion is homogeneous across all the contacts. However, contacts occurring within 

the household are likely to be more conducive to transmission since they last longer 

and are more intimate compared to contacts elsewhere [167]. In fact Edmunds et 

al [48] have suggested that one might imagine the relative risk of developing an 

infection from a contact in the different social settings obeys the following pattern: 
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home> work/social> background where background contacts are those that oc­

cur in shops or while travelling, with the background contacts acting as links to the 

more stable contacts occurring within the household or a social setting. However, 

we think that the data provides valuable information on the rates and pattern of 

mixing that may influence the spread of infectious diseases particularly RSV. 

In Chapter 5, we then introduced a simple RSV mathematical model that was 

designed to enhance our understanding of the underlying RSV transmission pro­

cess. The objectives were two-fold 1) to explore the stability of the model both at 

the disease free and the endemic equilibrium and 2) to explore conditions under 

which multiple endemic equilibria can exist i.e. the model exhibits a backward 

bifurcation curve. After analytically investigating the equilibrium properties of 

the model we found out that the disease free equilibrium is locally stable provided 

that Ra < 1 and locally unstable when Ra = 1. Given the difficulty in evaluat­

ing the model analytically beyond the invasion threshold i.e. at Ra > 1, we ran 

numerical simulations that led to the observation that the model is locally stable 

when Ra > 1. In the simplest form, backward bifurcation usually implies the exis­

tence of two subcritical endemic equilibria when Ra < 1 and a unique supercritical 

endemic equilibrium when Ra > 1. We have shown that multiple supercritical 

endemic equilibria exist as can be seen in Figure 5.5. An examination of the pa­

rameter set in Table 5.2 that resulted in the backward bifurcation shows that the 

parameter estimates are possibly realistic and this could have a bearing on the 

control of RSV. Classical epidemiological modelling implies that for the control 

of an infection, one needs to reduce Ra to less than 1. This condition is how­

ever not necessarily satisfied with a model displaying backward bifurcation since 

there may exist endemic equilibria below Ra = 1. This implies that for a disease 
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exhibiting a backward bifurcation curve, more effort is required to eliminate the 

infection from the population since you need to reduce the level of infection below 

that predicted by the invasion threshold. This analysis can be extended further 

by exploring whether the bifurcation curve can be linked in any way to the con­

cept of probability of stochastic extinction. This would require the construction 

of a stochastic version of the model and to look at possible connections between 

the different bifurcation curves that might result and the stochastic phenomena 

observed. 

We have further extended the model developed in Chapter 5 in order to include 

age heterogeneity within the transmission process in Chapter 6 with the aim of 

1) developing a Realistic Age Structured (RAS) model reflecting the transmission 

dynamics of RSV within a defined population 2) evaluate the impact of routine 

RSV vaccination on the burden of disease in infants and 3) assess the variability 

of the vaccination programme outcome that is due to uncertainty in the model 

parameters using Latin Hypercube Sampling. We fitted the model to RSV hos­

pitalization data from Kilifi using two mixing assumptions; diary and synthetic 

mixing assumptions. Fitting the model to temporal and age-specific RSV hospi­

talization data reveals that the model describes the data to a large extent since 

most of the model fit data points fall within the 95% Cl of the hospitalization 

data. 

It is clear that introduction of routine vaccination at any age between the first 

month of life and 5 years leads to a reduction in the number of hospitalizations 

without any adverse effects with the possibility of an increase in the average age at 

first infection for both mixing assumptions. At 7 months with 100% vaccination, 

the diary contact matrix model predicts that the average age at primary infection 
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will increase from 1.36 to approximately 6 years while that of the synthetic mixing 

matrix model increases from 1.7 to approximately 3 years with vaccination at 5 

months with 100% vaccination coverage. If the development of disease is partly 

physiological. then older individuals who may have a higher residual for gaseous 

exchange may have a reduced risk of respiratory congestion such that an increase 

in the average age at first infection may be beneficial in reducing the amount of 

disease in the population and supported over early age classes by data from a birth 

cohort in Kilifi [155]. However, if disease does not decline with age in older age 

groups, or even possibly increasing, then the model may be overestimating the 

reduction in the burden of disease. However, the effect of this outcome remains 

unknown since. due to the ubiquitous nature of the virus, most ofthe first infections 

occur before the second year of life [68]. 

Both mixing assumptions have demonstrated that the effectiveness of the vac­

cine increases when delivery is delayed from birth as can be seen in Figures 6.7 

and 6.15. For the model using the diary data, there is little decrease in the ef­

fectiveness when vaccination is delayed to between 5 and 12 months of age. In 

contrast, there is a sharp decline, beyond the fifth month of life, in the impact of 

vaccination on infant hospitalization using the model incorporating the synthetic 

mixing matrix. This observation seems to be the result of a trade off between 

the decay of protective level of RSV specific maternal antibody and the rate of 

infection. Although the synthetic contact matrix model predicts a longer duration 

of maternal antibodies, 3.6 months compared to 1.4 months for the diary-based 

contact matrix model. this does not translate to delayed optimal age at vaccination 

since as soon as children lose maternal protection, they are subjected to a higher 

rate of infection compared to the diary model, see Figure 6.10. On the other hand, 
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the diary matrix predicts a lower duration of maternal antibody protection hence 

the benefit of vaccinating early in life but little in the way of losing the benefit 

due to the lower rate of infection in the first year of life. However, this benefit is 

lost at the end of the first year of life when the rate of infection increases and this 

leads to a sharp decline in the benefit and this result is highly dependent upon the 

age-structure form of the force of infection. If these model results are robust, then 

a significant consequence is that the problem of vaccinating early in life can be 

circumvented. This may imply that much of the pressure in vaccine development 

could be lifted from early childhood vaccines and could accelerate the timetable 

to vaccine development. licensure and eventual introduction. However, given the 

variation in results of the two mixing matrices, the possibility of combining vacci­

nation with measles vaccine delivery at 9 months remains uncertain. 

Another interesting observation is that vaccination of children in the older age 

classes bring very little in the way of reducing the number of hospitalizations. This 

is in part because protecting the naive susceptibles will directly prevent disease 

since vaccinated individuals will not experience primary infection which is associ­

ated with increased risk of development of disease. Figures 6.4 and 6.6 show that 

the majority of the primary infections result from primary infections. However, 

we do not write-off school child vaccination since there may be benefit from vac­

cination across a wide age range at school rather than the delivery at a specific 

age gateway as currently specified in the RAS model. Furthermore, the model 

structure does not support household mixing which is required to create a strong 

mixing component between school going siblings and the infants. All the contacts 

in the model are treated with equal strength e.g. a contact occurring between an 

infant and an adult outside of the household contributes equally to the process of 
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infection with a similar contact within the household, despite the fact that house­

hold contacts are probably more stable temporally and more intimate [136, 166] 

and hence better placed to transfer the infection from one person to another. 

The sensitivity and uncertainty analysis revealed that the duration of RSV spe­

cific maternal antibodies is important in explaining the variability in the number 

of age-specific hospitalizations and the optimal age at vaccination. An increase 

in the duration of the protective levels of maternal antibodies lead to an increase 

in the optimal age at which to vaccinate. This suggests that boosting the level 

of RSV specific maternal antibodies transfer from mother to child, increasing the 

duration of protection from infection of the child, would be another vaccination 

strategy that is potentially beneficial to explore and it is intended that such an 

analysis will be done. Longer protective duration would increase the average age 

at first infection therefore increasing the vaccination window to allow for vaccina­

tion in older children where vaccines have been shown to be both irnmunogenic 

and safe [114]. 

Even though the household model developed in Chapter 7 is an over simplifi­

cation of reality, we have demonstrated that it can be used for the determination 

of epidemiologically relevant parameters that distinguish, at the household level, 

infection dynamics that are indistinguishable at the population level. Parameter­

izing this model requires the use of household infection data that is available to us 

through a recent cohort study that was carried out in the Kilifi KHDSS [140]. 
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8.3 Limitations of the study and future research 

During the course of the study, a number of limitations have been identified and 

that require further research. The limitations can be broadly categorized into two 

areas: 1) applications of the existing RSV model 2) improvements of the model 

with an aim of improving our biological and epidemiological understanding of RSV. 

The structure of the contact matrix used to estimate the force of infection is of 

importance to the vaccination outcome. One of the main assumptions in using the 

diary contact data is that recorded physical contacts are the only at-risk events. 

However, there may exist other risk events that are important for the transmission 

of RSV e.g. being at close proximity with another person but not touching [16] and 

contacting items that are contaminated by the virus that are separated from the 

infecting individual [84]. The study was designed in such a way that it spanned six 

months in order to help account for any seasonal changes in contact patters. We 

established, that potential seasonal triggers might be influenced farming practises, 

fishing patterns and tourism [182]. During the farming season, most people will 

temporally leave their normal residential areas and move to work in the farms 

where they might hav/:' contacts with a different set of new individuals or even 

fewer contacts. However, even in our best attempt to account for seasonal changes, 

there is still a residual seasonal bias since we did not sample throughout an entire 

year. Therefore the extent to which the contact data should be interpreted as 

representative of the average throughout a year should be interpreted in view of 

this limitation. Another limitation of the diary study is that a majority of the 

partici pants (;:::: 60%) had their diaries filled in by a shadow. This is because those 

participants could neither adequately understand what was required to complete 
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the diary or had inadequate reading or writing skills. This applied either to children 

under 11 years and to the elderly. Shadowing has the disadvantage that it can lead 

to behaviour modification or failure to disclose all of the contacts. Recall bias is also 

another limitation that plagues diary studies and although every effort was made to 

reduce recall bias by encouraging participants to record their contacts as regularly 

as was practically possible and giving them watches that went off at a certain 

interval, it is likely that the data is still subject to this bias. The synthetic contact 

matrix on the other hand is based on data from household occupancy registers of 

the Kilifi HDSS. Assumptions about mixing outside of the household were made in 

order to estimate the population wide WAIFW matrix. In future, effort should be 

made to acquire data from other settings outside of the household e.g. from school 

attendance registers and the work place. The synthetic contact matrix approach 

can easily be extended to settings without social mixing data and can also be 

used to reconstruct contact patterns from the past by using previous census data, 

and this would be useful in identifying the influence of demographic transition 

on transmission of not only RSV but other respiratory pathogens requiring close 

contacts for their transmission. 

The analysis in Chapter 6 has predominantly focused on implementing a de­

layed vaccination strategy in reducing the burden of disease in the infants. This 

analysis should be extended to examine the outcome of other vaccination strate­

gies. This would be simple to achieve since the model structure has already been 

developed and the required data on social mixing patterns is available. Two forms 

of vaccination can be included 1) maternal vaccination and 2) post-natal vaccina­

tion. Maternal vaccination will have the benefit of boosting the level and duration 

of protection in the infant. Post natal vaccination can take the form of delayed 
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vaccination (as implemented in Chapter 6) or campaign vaccination over a wide 

age range. Another process of immunization that should be looked at in conjunc­

tion with the ones mentioned above is passive or prophylactic vaccination of high 

risk infants. High risk infants e.g. premature infants would be a relatively small 

number and hence unlikely to affect the transmission pattern. However, significant 

decrease in the overall burden of disease may be observable since vaccinating them 

directly protects them from primary infection and hence disease. The timing of 

the vaccination may be particularly important in this instance i.e. prophylactic 

vaccination would be best suited just before the beginning of the epidemic in order 

to boost the level of antibody protection at the time when most needed as opposed 

to giving it at birth. 

Another limitation of the model is that the age specific fertility and mortality 

rates that we have used in our model are from a developing country setting. This 

challenges the extent to which our results can be generalized to a developed country 

setting. The model can be easily extended to make use of demographic data from 

the developed country setting and compare the vaccination outcome from the two 

settings. Finally, we have assumed that the vaccine elicits an immune response that 

is equivalent to a natural infection and that it protects against infection but with 

waning immunity. It would be of interest to evaluate the vaccine outcome when 

the vaccine elicits more or less protection compared to natural infection. Further, 

vaccination with a vaccine that protects against disease rather than infection would 

have a bearing in reducing the burden of disease but may have very little in the 

way of reducing the If'vel of infection in the population and this would potentially 

reduce the strong indirect protection effects observed. We envisage to extend this 

model in the near future to accommodate more vaccination strategies and different 
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vaccine properties. 

One of the dominant features about RSV is the regular seasonal epidemics. 

We have modelled these epidemics using a cosinusoidal function since the drivers 

of the seasonality are not known. There is therefore need to carry out studies 

trying to identify the seasonal triggers so as to facilitate their explicit inclusion in 

the model. However, it is worth noting that even with the cosinusoidal function, 

the model still captures the temporal epidemics. Another limitation of the work 

presented in Chapter 5 and 6 is that we have only implicitly accounted for antigenic 

differences between the two RSV strains i.e. group A and B. Work done by White 

et al. [206] has shown that the inclusion of the groups can in part explain the 

pattern of dominance of a single group during alternating epidemics. Additionally, 

the host immune response is likely to be important in estimating the outcome of 

vaccination especially given that a vaccine can have differential ability to generate 

an immunological response across the two groups or even sub-groups within a 

single group. However, this limitation would be mitigated if we consider a vaccine 

that targets the F -protein which is highly conserved between the two groups. 

In the household modelling work, we have considered a homogeneous popu­

lation i.e. where individuals and household are similar. We plan to extend this 

work by relaxing this assumptions and parameterizing the model using household 

cohort infection data from our setting. using the model, we can then explore 

a vaccination strategy that targets households with a mono and/or a bi-valent 

vaccme. 
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8.4 Concluding remarks 

In this thesis, we have taken a multidisciplinary approach in trying to understand 

the transmission dynamics of RSV and the impact of introducing vaccination. 

The mathematical model that we have developed has the capacity to capture the 

observed patterns in the epidemiology of RSV. There is currently no approved 

RSV vaccine and the goal of preventing RSV disease in the population therefore 

remains unmet. The success and choice of the immunization regime to adopt will 

be dependent on a number of factors which include epidemiological, logistical, 

economic and political goodwill. 
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Appendix A 

Diary sample 

.. ---.. _,. ....... ,. ._ ....... -.....-.. --- .. ..... ... ~UMpIo -
.... -- - -,.- -,.- .. "' ...... ..-

CfWI,.~., 

_ .. , 
M •• 15 U.ahJf'I I" 'J ~ 10- 4y ad".m.iIio ..... :.c1 

~.~t M f~t, .Il! 
~ 

Jd--.:ljY"lR1~no 

I '1*t 

~ 
(~ . .,,~ . w A \ l~~ . A; ~ir 
'j ~ >k " -I ljt \ff?y, "';.\ , 
L ... I. ~ Ji iil ~ J;; ~.H 

• r: 
• / e ~ ~. ';/'1 • 

.~ . . 
. C 

f " 
I ~, .. 

, ,. 

l 
I 

Figure A.I : Sample of the pictorial / text diary useu during the survey 
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Appendix B 

POLYMOD contacts for UK 
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Table B.l: Contact matrix of all reported contacts in Great Britain consisting of the average number of contact 
persons recorded per day per survey participant in the POLYMOD study 

Age group of participant 
Age of contact 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 >70 

0-4 1.92 0.65 0.41 0.24 0.46 0.73 0.67 0.83 0.24 0.22 0.36 0.2 0.2 0.26 0.13 

5-9 0.95 6.64 1.09 0.73 0.61 0.75 0.95 1.39 0.9 0.16 0.3 0.22 0.5 0.48 0.2 

10-14 0.48 1.31 6.85 1.52 0.27 0.31 0.48 0.76 1 0.69 0.32 0.44 0.27 0.41 0.33 

15-19 0.33 0.34 1.03 6.71 1.58 0.73 0.42 0.56 0.85 1.16 0.7 0.3 0.2 0.48 0.63 

20-24 0.45 0.3 0.22 0.93 2.59 1.49 0.75 0.63 0.77 0.87 0.88 0.61 0.53 0.37 0.33 

25-29 0.79 0.66 0.44 0.74 1.29 1.83 0.97 0.71 0.74 0.85 0.88 0.87 0.67 0.74 0.33 
t--:l 30-34 0.97 1.07 0.62 0.5 0.88 1.19 1.67 0.89 1.02 0.91 0.92 0.61 0.76 0.63 0.27 -.l ..,. 

35-39 1.02 0.98 1.26 1.09 0.76 0.95 1.53 1.5 1.32 1.09 0.83 0.69 1.02 0.96 0.2 

40-44 0.55 1 1.14 0.94 0.73 0.88 0.82 1.23 1.35 1.27 0.89 0.67 0.94 0.81 0.8 

45-49 0.29 0.54 0.57 0.77 0.97 0.93 0.57 0.8 1.32 1.87 0.61 0.8 0.61 0.59 0.57 

50-54 0.33 0.38 0.4 0.41 0.44 0.85 0.6 0.61 0.71 0.95 0.74 1.06 0.59 0.56 0.57 

55-59 0.31 0.21 0.25 0.33 0.39 0.53 0.68 0.53 0.55 0.51 0.82 1.17 0.85 0.85 0.33 

60-64 0.26 0.25 0.19 0.24 0.19 0.34 0.4 0.39 0.47 0.55 0.41 0.78 0.65 0.85 0.57 

65-69 0.09 0.11 0.12 0.2 0.19 0.22 0.13 0.3 0.23 0.13 0.21 0.28 0.36 0.7 0.6 

> 70 0.14 0.15 0.21 0.1 0.24 0.17 0.15 0.41 0.5 0.71 0.53 0.76 0.47 0.74 1.47 



Appendix C 

Optimal sinks 
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Figure C.l: Optimal sinks for the fitted parameters of the diary model. The red 
scatter plot represent the optimal value while the blue line shows the variation 
on either sides. To ensure optimality, all the scatter plotb should fall wit.hin the 
lowest point in the graphs. 
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Appendix D 

Parameter table 

Table D.l shows the parameters involved in the modelling exercise and how they 

were used. They are put under three headings 1) those that were part of the 

uncertainty and sensitivity analysis 2) those that were fitted during optimization 

and 3) those that were fixed during optimization. The shaded region shows the 

parameters that were part of the activity shown at the top of the column. 
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Appendix E 

Matlab code 

l\[atlab co(\e for the system of ODE. The function below ~'eturns the rate of change 

from the ODE system in Eqn 6.1 for use with the ode solver ode45. 

dy_dt = rate3DynamicS(time , yO , mu , birth , age , gamma , omega , 

rho , eta , sigma , vsO , vsl , vs2 , vsm , vsmm , beta , alpha , n , a , p , vaccine , 

vage , nMclasses , nlclasses) 
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17 

.'. 

52 " 

55 yO=reshape (yO, n , (nMclasses+l+nIclasses+7)) 

5ti 

5, N=sum (yO, 2) 

tiO 

"' f time >20 

62 

G3 

~ vsO(vage)=vaccine; 

ljL 

<07 vsl (vage) =vaccine ; 

(j!j 

ro vs2(vage)=vaccine ; 

71 
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7J 
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1" k 1 
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nMclasses+2 ; 
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SI k2 nMclasses+l+nlclasses ; 

82 

.3 k3 nMclasses+l+nlclasses+3 ; 

". 
,s5 k4 nMclasses+l+nlclasses+6 ; 

~6 

.- k5 1+(a*cos(2 *pi*(time-p» ) ; 

"" 
uo k6 = ((sum(yO( :, kl : k2) , 2) . *alpha( :, 1» + (yO( : ,k 3) .* alpha( :, 2» + 

(yO(: , k4) . *alpha( :, 3») . /N ; 

!Jl 

93 lambda k5* ( (beta ' ) *k6) ; 

u. 

95 

!Jti , , • • 
1)7 

'JO 

U9 

100 

1111 

102 

11)3 dy_dt=ones (n , (nMclasses+l+nlclasses+7) ) ; 

104 

105 

106 foi lambda*ones(1 , 3) ; 

lO7 

100 

109 

110 ! pr • It"" 

I II j. jr 
\ l n , . J. I l) I 

1I 

(b i rth * (l-vsm(l» )-yO(l , l)*(mu ( l)+age(l)+(omega(l) * 
nMclasses) ) ; 

114 

115 dy_dt(1 , 2 : nMclasses) = (yO(l , l : (nMclasses-l»*omega(l)*nMclasses)­

yO(1 , 2 : nMclasses) *(mu(l)+age(l)+(omega(l)*nMclasses» ; 
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11" 

11' d y _dt (1, (nMc1asses+ 1) ) = (omega (1) *nMc1asses *yO (1 , nMc1asses) ) -yO (1 , ( ... 

nMc1asses+1)) * (mu(l)+age(l)+foi(l , l)) ; 

111) 

1211 

121 dy_dt (1 , (nMclasses+1+1)) (fai (1 , 1) *yO (1 , (nMclasses+1)) )-yO (1 , (. 

nMclasses+1·1) )*(age(l)+(gamma(l , l)*nlclasses)+mu(l)) ; 

122 

12-1 dy _dt (: , (nMclasses+l+2) : (nMc1asses+1+nlclasses)) = yO (1 , (nMc1asses . . . 

+1+1) : (nMclasses+l+(nlc1asses-1)) )*(gamma(1 , 1)*nlc1asses) - yO 

126 

12i 

(1 , (nMc1asses+I+2) : (nMc1asses+1+nlc1asses)) * (age (1) +mu 11) + ( . 

gamma(1 , 1)*nlc1asses)) ; 

12~ dy_dt (1 , (nMc1asses+l+nlc1asses+l) )=(gamma(l , 1) ' nlc1asses*yO(I , ( ... 

nMclasses+1+nlclasses) ))-yO(l , (nMc1asses+l+nlc1asses+l)) *(mu(l) 

+age (1) + rho (1 , 1) + (et a (1 , 1) * Slgma (1 , 1) * fai (1 , 2) ) ) + (bi rt h *vsm (1) ) 

12!J 

1311 

1~1 dy_dt (1 , (nMc1asses+1+nlc1asses+2) )=(rho(l , 1) *yO(I , (nMclasses+1+ 

nlc1asses+l) ) )-yO (1, (nMc1asses+1+nlc1asses+2) ) * (mu (1) +-age (I) + ( 

sigma (1 , 1) * foi (1 , 2) ) ) ; 

132 

13J 

134 dy_dt (1 , (nMc1asses+1+nlclasses+3)) = (sigma (1 , 1) *fai (1 , 2) *yO (1 , 

nMclasses+l+nlclasses+2) ) ) + (eta (1 , 1) *sigma (1, 1) * toi (1 , 2) .yO (I , ( 

nMclasses+1+nlc1asses+l) ))-yO(l , (nMclasses<1+nlclasses+3))* (mu 

(1)+age(1)+gamma(1 , 2) ) ; 

IJ6 

137 dy dt (1 , (nMc1asses+l+nlclasses+4)) = (gamma (1 , 2) *yO (1 , (nMc1asses+l+ 

nl c 1asses+3)) )-yO (1 , (nMclasses+1+nlc1asses+4)) * (mu (1) +age(l) + 



rho (1, 2) + (eta (1, 2) *sigma (1 , 2) *foi (1 , 3))) ; 

13<> 

139 

14[) dy_dt (1 , (nMclasses+l+nlclasses+5)) = (rho (1 , 2) *yO (1 , (nMclasses+l+ .. 

nlclasses+4) ))+(rho(1 , 3) *yO(l, (nMclasses+l+nlclasses+7)) )-yO ... 

(1, (nMclasses+l+nlclasses+5) )*(mu(1)+age(l)+(sigma(1 , 2)*foi. 

(1,3) ) ) ; 

141 

142 

143 dy _dt (1, (nMclasses+ 1 +nlclasses+6) ) = (eta (1 , 2) *s igma (1 , 2) * foi (l , 3) * . 

yO (1 , (nMclasses+1+nlclasses+4))) + (sigma (1 , 2) *foi (1, 3) *yO (1 , ( ... 

nMclasses+l+nlclasses+5)) )+(eta(1 , 3)*sigma(1 , 3) *foi(1,3) *yO(l , ( 

nMclasses+l+nlclasses+7) ))-yO(l , (nMclasses+l+nlclasses+6) )*(mu. 

(1) +age (1) +gamma (l , 3) ) ; 

144 

145 

14" dy _dt (1, (nMclasses+l +nlclasses+ 7) ) = (gamma (1 , 3) *yO (1 , (nMclasses+ 1 + .. . 

nlclasses+6)) )-yO(l, (nMclasses+1+nlclasses+7) )*(mu(1)+rho(1 , 3)+ .. . 

age (1) + (eta (1 , 3) *sigma (1 , 3) *foi (1 , 3))) ; 

147 

14S 

150 
, , I • 

151 

1&2 

153 dy_dt(2:n , 1)=«age(l: (n-1)) .*yO(l : (n-1) , 1)) . *(l-vsmm(l: (n - l))))-yO 

(2 on, 1) . * (mu (2 : n) +age (2 : n) + (omega (2 : n) . *nMclasses)) ; 

1'::'4 

155 i • J' , I 

IN dy_dt (2 : n , 2:nMclasses)=( «age(1 : n-l)*ones(1 , length(2:nMclasses))) 

*yO (1 : n-1 , 2 : nMclasses)) . * «l-vsmm (1 : n-1)) *ones (1 , length (2 : 

nMclasses) ) ) ) + (yO (2 : n , 1 : (nMclasses-1) ) . * ( (omega (2 : n) *nMclasses) 

*ones(1,length(2:nMclasses))) )-yO(2 : n,2:nMc1asses).* «mu(2 : n)+ 

age(2:n)+(omega(2:n) .*nMclasses) )*ones(1 , length(2:nMclasses))); 

157 

, ' 

284 



I.", dy_dt(2:n,(rMclasses+l» = (omega(2 : n).*yD(2 : n , nMclasses) 

nMclas<;es)+(age(l: (n-1) .*y0(1:n-1 , (nMclasses+1» . *(l-vsO(l : n. 

1) : \ -yO (2: n, (nMc lasses+ 1) ) . * (mu (2 : n) +age (2 : n) + foi (2 : n , 1) ) ; 

Il'~ dydt(2:n,'nMclasses+l+1» = (foi(2 : n , 1).*yO(2:n , (nMc1asses+1))+(. 

ILl 

age(l : n 1) .·.,.0(1:n 1, (nMc1asses+1+1»)-yD(2 : n , (nMc1asses+1+1» .. 

• (aqe(2:n)+(gamma(2:n , 1)*nlc1asses)+mu(2 : n» ; 

I"" dy _dt (;:: r., (n~L':'asses+ 1 +2) : (nMclasses+ l+n1classes» = ( (age (1 : n-1) * 

1 tilt 

~nE'S (1, d'ngth ((nMclasses+l"'2) : (nMclasses+1+n1classes»» . *yO (1 : 

'I 1, (nMt"'lassE's+1+2) : (nMc1asses+1+nlclasses») +yO (2 : n , (nMclasses. 

+ 1 ... 1) : (nMclasses+ 1 + (n1classes-1) ) ) . .. ( (gamma (2 : n , 1) *n1classes) * .. 

,mes:" , :ength ( (nMc1asses+1+1) : (nMc1asses+l+ (n1classes-1» » )-yO . 

(2: n, ('1Mc1as~es+1 +2) : (nMclasses+ 1 +n1classes) ) . * ( (age (2 : n) +mu (2 : 

n) • (gamma (2: n, 1) .nlc1asses) ) *ones (1 , length ( (nMclasses+ 1 +2) : ( .. 

nMc.as'iE's·'+n1classes») ); 

1o, dy _dt (2: n, (nMclasses+1+nlclasses+1) ) = (gamma (2 : n , 1) . *n1c1asses . *yO. 

(2: n, (nMcl asses+ 1 +n lc 1 asses) ) ) + (age (1 : n-1) . *yO (1 : n-1 , (nMclasses . 

+1-n1c1a3<;es.1» )-yO (2 :n, (nMclasses+l+n1classes+1» . * (mu (2: n) + 

age (2 : n) + rho (2: n, 1) + (eta (2 : n , 1) .' sigma (2 : n , 1) . * foi (2: n , 2) ) ) + ( ( 

agE'(l:n 1) .'yDIl:n-1,nMclasses+l+nlclasses» . 'vsmm(l :n l»+(age 

(::n 1).-yO(1:n 1,(nMc1asses+1) . *vsO(1 : n-l» ; 

I~I dy_dt<2:I', (nM,:al.>ses+l+n1c1asses+2»=(rho(2:n , 1) . *yO(2:n , ( . 

nMc1asses + 1 + '1 I c lasf";>s ... 1) ) ) + (age (1 : n-1) . * yO (1 : n-1 , (nMclilsses+ 1 + 

n1class€>s+2») . ' (l-vs1 Cl :n-1) ) yO (2 :n, (nMclasses+1+nlclasses+2) 

) ... (mu (2: n) +age (" : n) + (s igma (2: n , 1) . * fol. (2 : n , 2) ) ) ; 
1.2 

17:1 

1,1 dy_dt (2:n, (nM'::ldS1('s+1+nlclasses+3»=(sl.gma(2 : n , l) . *f01(2:n , 2) .*yD . 

(2: '1, (rM.::1 dS.;;e~ -1 +n I classes +Z) ) ) + (age (1 : n-1) . • yO (1: n-1 , ( 

nMc.cl SS€>5 + :. n I classes'" 3) ) ) + (eta (2 : n , 1) . * sigma (2 : n , 1) . * foi (2 : n . 

,2) . • ~'v '" : n, : nMc lasses+1 +nlclasses+ 1) ) ) -yO (2 : n , (nMclasses+ 1 + 

n: .c3<~f><'~» .• (m.J(2:n)+age(2:n)+gamma(2:n , 2» ; 

28,'5 



171j 

,0; dy_dt(2 : n, (nMclasses+1+nlc1asses+4))=(gamma(2 : n , 2) , *yO(2 : n , ( 

rMc1asses+' +nlclasses+3) ) ) + (age (1 : n-1) . * yO (1 : n-l , (nMclasses+1+ 

plc lasses+ 4) ) ) -yO (2 : n , (nMclasses+ 1 +n Iclasses+4) ) , * (mu (2 : n) +age 

(2: p) + rhc (2: n , 2) + (eta (2: n , 2) , *s igma (2 : n , 2) . * foi (2 : n , 3) ) ) + (age 

(1::" l) . • yO(1:n-1 , (nMclasses+1+nlclasses+2)) , *vs1(I : n-1)) ; 

11') 

'"" dy dt (2:n, (nMclasses+l+nIclasses+5) )=(rho(2 : n , 2) . * yO(2 : n , ( 

,,,' 

nMc IdS.,es~ 1 +nI.-lasses +4) ) ) + (rho (2 : n, 3) ,* yO (2 : n , (nMclasses+1 + 

nlc1asses+": ) ) ... (age (1 : n-1) . * yO (1 : n-1 , (nMc1asses+1 +nlclasses+5) ) , , 

, ·(1 vSL(1 : n-:')))yO(2 : n , (nMc1asses+1+nlclasses+5)) , *(mu(2 : n)+,., 

age (2 :n) + (sigma (L : n , 2) . *foi (2 : n , 3))) ; 

"3 dy,dt (",:n , nM(:lasses+l+nlclasses+6) )=(eta(2 : n , 2) , *sigma(2 : n , 2) . * 

fOl(.:: : n , 5) "yO(2:n , (nMclasses+1+nIc1asses+4)))+(age(1 : n-l) . *yO 

( 1 : n - 1, (n M ~ , ass e s + 1 ... n I cIa s se s + 6) ) ) + ( si gma ( 2 : n , 2) . * f 0 i (2 : n , 3 ) * 
yO(2:r, (r.Mr::::'asses+l+nIclasses+5)) )+(eta(2 : n , 3) . *sigma(2 : n , 3) " 

[,,)l (2: n, 'l .• yO (2: n , (nMc1asses+l+nlclasses+7) ) )-yO (2 : n , ( 

nMc 1asses+ 1 +n 1 c 1il.sses + 6) ) . * (mu (2 : n) +age (2 : n) +gamma (2: n , 3) ) ; 

,,, ' 

"" dy_dt (2:n, (nMc1asses+l+nlc1asses+7) )=(gamma(2 : n , J) . *yO(2 : n , (. 

nMc1asses+.+nIclasses+6) ) ) + (age (1 : n-1) , *yO (1 : n-l , (nMclasses+1+ 

nI-lassp<;+ I)) )-yO (2 : n , (nMclasses+1+nlclasses+7)) , * (mu (2 : n) +rho 

(2 : n , ~) +a'je " : n) + (eta (2: n, 3) . * sigma (2 : n , 3) . * foi (2 : n , 3) ) ) + (age 

(l : n 1), ' yO (1 :n-I, (nMclassesd+nIclasses+5)) . *vs2 (1 : n-l)) ; 
l e:. 

1911 

191 

1!J2 

1'14 

".> dy dt=re~hdPe(dy dt , (n* (nMclasses+1+nIclasses+7)) , 1) ; 

1'.It) 

286 



197 return 
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