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Abstract 

Diatoms are among the most productive photoautotrophic organisms on Earth. Within 

the diatom genus Leptocylindrus, two species, L. danicus and L. minimus, are reported 

as abundant in coastal waters worldwide and in the Gulf of Naples (GoN). This thesis 

aimed at a closer characterisation of Leptocylindrus species through different 

approaches, including the study of their morphology, molecular phylogeny, 

metagenomics and biochemistry. Eighty-three strains from the GoN and one strain 

(CCMP 1856) from the Atlantic US coast were analysed. Based on the morphological, 

molecular and life cycle differences, the taxonomy of the genus was revised. The GoN 

species previously identified as L. minimus was in fact identified as L. belgicus Meunier 

and was placed in a new genus, Tenuicylindrus Nanjappa and Zingone which, along 

with Leptocylindrus Cleve, belongs to the family Leptocylindraceae. Five species in all 

were included in the genus Leptocylindrus: L. danicus Cleve and L. minimus Gran, two 

novel species L. hargravesii and L. convexus, and L. aporus (Hargraves) Nanjappa & 

Zingone, which was raised from the variety to the species status. The real 

Leptocylindrus minimus was not found in the GoN. To address the distribution of the 6 

species outside the GoN, two metagenomic databases, BioMarKs (Europe) and Tara 

Oceans (worldwide) were explored. Sequences of L. aporus, L. convexus and L. danicus 

were recovered at many sites in European waters and across the world's seas, while 

those of L. minimus were retrieved only in the Oslo fjord and those of T belgicus were 

only found in the GoN and Oslo fjord. Additional diversity was observed in the Tara 

Oceans dataset but, in lack of morphological information, whether this diversity is real 

remains to be clarified. All species except L. minimus were also categorised based on 

the diversity in their oxylipins pathways. Leptocylindrus danicus and L. hargravesii 

shared common lipoxygenase pathways, different from the ones shared by the species L. 

aporus and L. convexus. Tenuicylindrus belgicus exhibits a pathway distinct from that 

of Leptocylindrus species. Species-specific compounds produced in minor quantities 

were also observed. Physiological experiments show that L. aporus can withstand 

higher (26°C) temperature but not lower (12 °C) temperature, while L. danicus can 

withstand low temperature but not high temperature. This corresponds to the species 

occurrence in the natural environment, where L. aporus blooms during summer and L. 

danicus is found in all seasons except summer. Altogether, through an interdisciplinary 

approach, the studies described in this thesis provide substantial information that may 

have important implications in the field of ecology, evolution, conservation biology and 

biotechnology. 
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General Introduction 

1.1 Phytoplankton 

The Ocean covers 71 percent of the Earth's surface and contains 97 percent of the 

planet's water in the global hydrological cycle. It is home to three quarters of all life on 

the Earth, mostly unexplored. Among the great diversity of life the sea supports, there is 

a quantitatively and ecologically extremely important group of microscopic organism 

that, all together, are responsible for most of the marine primary production. Taken 

together, these organisms constitute the marine 'Phytoplankton'. The term 

Phytoplankton comes from the Greek words, phyton, which means "plant" and 

plankton, which means "wanderer" or "drifter." 

The marine phytoplankton is responsible for the bulk of the primary production in the 

sea, generating biomass from simple inorganic molecules using light energy. 

Macroalgae and seagrasses are, of course, also relevant primary producers in the marine 

realm, but these organisms are confined essentially to the photic zone of coastlines and 

as drifters in the water surface. Instead, the phytoplankton occupies the photic zone of 

the entire ocean. Through its photosynthetic activity, the phytoplankton contributes to 

half the oxygen present in the earth's atmosphere and are responsible for approximately 

half of the global (terrestrial and marine) net primary production (Field et al. 1998), 

(Nelson et al. 1995). In addition to their ecological relevance, microalgae have potential 

biotechnological applications, e.g., as potential producers of biofuel and as systems for 

heterologous protein expression. These photosynthetic 'workhorses' can convert solar 

energy more efficiently (5% as compared to 1.5 - 2% in land plants) and have much 

higher lipid yields (may exceed 70%, w/w) than those of agricultural oleaginosous crops 

(5%w/w). 

Under suitable environmental conditions microalgae can experience elevated growth 

rates and attain high cell densities. Such bursts of phytoplankton growth are usually 
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composed of many different species and are commonly referred to as algal blooms 

(Diersing 2009). Phytoplankton blooms are governed by nutrient availability and 

external physical factors such as temperature and light. For example during spring at 

temperate latitudes, there is a burst of microalgal growth in response to increasing light 

availability and water column stabilisation (Sverdrup 1953), which is defined as the 

spring bloom, the spring bloom usually declines because nutrients are depleted in the 

photic zone and the thermocline prevents mixing of nutrient-rich deep water. Another 

bloom occurs in the temperate zone during the autumn because the breakup of the 

thermocline allows a replenishment of nutrients in the photic zone whilst there is still 

enough light to permit net growth in the mixed water layer. In the monsoon-governed 

parts of the oceans phytoplankton blooms are governed by the nutrient-rich runoff 

during the wet season and due to upwelling of deep nutrient-rich water due to trade 

winds. These blooms are natural events in the annual phytoplankton cycle of these 

various regions. 

Phytoplankton species reacts quickly to environmental fluctuations (e.g. nutrient 

concentration, temperature values and light irradiance) because of small cell size and 

high growth rates. This rapid response allows ecological studies on the reaction of the 

various species or of the entire community to physical-chemical processes occurring at a 

wide range of spatial and temporal scales (Harris 1986). This task is obviously easier if 

phytoplankton is considered as a unique entity, but becomes much more difficult to 

tackle if individual species responses to environmental fluctuations are addressed. 

Phytoplankton comprises a diverse group, incorporating protistan eukaryotes as well as 

eubacterial and archae bacterial prokaryotes. The most important groups of 

phytoplankton, in terms of biomass, includes the diatoms, the cyanobacteria, the 

haptophytes (including the coccolithophores) and the dinoflagellates, although at times, 

other flagellate groups can contribute significantly to phytoplankton blooms as well. 
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Among the other eukaryotic phytoplankton are the chlorophytes, cryptomonads, 

chloromonads, chrysomonads and euglenoids. 

Cyanobacteria are the most important representative among all phototrophic forms of 

bacteria and include four main evolutionary lines (the chroococcalean, the 

oscillatorialean, and the nostocalean; the stigonematalean line). While prokaryotic 

phytoplankton such as Procholorococcus are the most widespread (Moore et al. 1998) 

the greater part of species diversity is found in the diatoms group. 

1.2 Diatoms 

Diatoms are among the most common types of phytoplankton. Diatoms constitute the 

class Bacillariophyceae within the photoautotroph Stramenopiles. The name diatom is 

derived from the Greek word, diatomos meaning 'split into two'; it refers to their 

distinctive two-part cell walls that fit each other. Diatoms are strictly unicellular algae 

characterized by unique compound-cell walls of amorphous silica (early diagrams by 

Haeckel 1873, Fig 1.1). Many species form chains composed of sister cells, but the cells 

in such chains do not retain cytoplasmatic contact with one another. 

Fossil evidence suggests that diatoms originated during the Jurassic period (Kooistra 

and Medlin 1996, Schieber et al. 2000). Since then they have been found in fossil strata 

of marine and freshwater habitats. Diatoms can now be found in large numbers in 

almost all waters of the world, both freshwater and saline, as well as in temporarily 

moist soil and on wet surfaces (Kooistra et al. 2007). Although many species occur in 

the plankton, the majority of the diversity abounds attached to or gliding over surfaces, 

or drifting over sediments. A few species occur endosymbiotically in dinoflagellates and 

microzooplankton. Under favourable conditions, planktonic diatoms "bloom", 

reproducing clonally rapidly so that they dominate phytoplankton populations. When 

conditions tum less favourable, for instance when light levels become too low, or when 
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one or more critical nutrients get depleted, they can turn dormant and sink to lower 

levels until currents return them to the surface and a new bloom can take place. 

Fig. 1.1. Early drawings of phytoplankton diatoms (Haeckel 1873). 

Diatoms constitute approximately 40% of the phytoplankton and play a major role in 

the ecology and biogeochemistry of the Earth. Diatoms alone contribute approximately 

40% of the 45-50 billion metric tonnes of organic matter generated annually in the 

ocean by photosynthesis (Nelson et at. 1995). Thus constitute a key component of the 

biological carbon pump that transports carbon to the seafloor, where it can get 

sequestered in the sediment and hence, fossilized . In this way diatoms contribute to 

long-term CO2 sequestration. 
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1.3 General biology 

A characteristic hallmark of diatom cells is that they are encased within a highly 

nanopattemed, composite cell wall known as a frustule. The frustule elements are made 

of amorphous silica (hydrated silicon dioxide, [(Si02)n(H20)]), laid down upon an 

organic matrix (Round et al. 1990). Beneath the frustule is the protoplast, which 

consists of a large vacuole, a diploid nucleus and one to several plastids. In its simplest 

form, a cell wall is composed of two valves, the epivalve and the hypovalve, 

accompanied by series of girdle bands (also called the cingular bands) (Round et al. 

1990). Each valve in its simplest form looks like a petri dish with a flat area, called 

valve face, and a rim connecting the girdle, called mantle. The first girdle band that 

connects the valve is called the valvacopula, the other bands are referred to as copulae 

(also, intercalary bands or pleurae). The valve is often ornamented with pores (areolae), 

processes, spines, hyaline areas and other distinguishing protrusions. They might 

provide an added advantage to the cell either protection from grazers or increasing the 

buoyancy. These patternings are so precise and well maintained over mitotic cell 

divisions that, they have attracted materials scientists interested in silica-based 

nanoparticles (Gordon et al. 2009). The frustule is coated with a layer of organic 

substance, sometimes pectin. Heterokont algae have chloroplasts that are surrounded by 

four membranes (Gibbs 1979). Counted from the outermost to the innermost membrane, 

the first membrane is continuous with the host's chloroplast endoplasmic reticulum, or 

cER. The second membrane presents a barrier between the lumen of the endoplasmic 

reticulum and the chloroplast, which represents the next two membranes, within which 

the thylakoid membranes are found. This arrangement of membranes suggests that the 

diatom plastid results from two endosymbiosis events. In the first of such an event, a 

eukaryotic heterotroph engulfed a cyanobacterium, giving rise to all of the eukaryote 

autotrophs. The innermost membrane is derived from this cyanobacterium (Reyes-Prieto 
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et af. 2006). In a secondary event, a eukaryotic heterotroph incorporated a red alga as 

endosymbiont. The second of the four membranes is derived from the plasmalemma of 

this primary host and the third of the plasmalemma of the red alga, the outermost 

membrane is then the plasmalemma of the secondary host. This arrangement gave rise 

to a lineage including the Stramenopiles and probably also the haptophytes, the 

cryptophytes, the picobiliphytes and the dinoflagellates. Stramenopiles include diatoms, 

a series of brown and golden-brown microalgae, the brown macro algae as well as 

parasitic and saprotrophic marine fungi and parasites of land plants (Gibbs 1981, Parker 

et af. 2008, Cavalier-Smith 1993, Cavalier-Smith 2000). More recently, genomic data 

have suggested a more complex evolutionary history for diatoms involving a series of 

endosymbiotic events some of which totally unexpected (Sanchez-Puerta & Delwiche 

2008). A first surprise was the discovery of a bacterial (chlamydial) endosymbiosis 

prior to the primary endosymbiotic event. A subsequent genome-wide gene derivation 

study revealed that many genes (> 1700, constituting 16% of diatom nuclear coding 

potential) show high similarity with those from green algae, suggesting an additional 

green algal endosymbiotic event (Moustafa et af. 2009). Finally, bacteria and viruses 

also seem to have mediated gene transfer adding further complexity to the genome of 

diatoms (Montsant et al. 2007). 

The chloroplasts characteristically contain chlorophyll a and chlorophyll c, and usually 

the accessory pigment fucoxanthin, giving them a golden-brown or brownish-green 

colour. "Diatoms exhibit greater variation in chloroplast morphology and arrangement 

than any other group of algae .... " (Mann 1996a). 

1.4 Diatom classification 

In traditional publications, diatoms have been classified taxonomically into two main 

classes according to the shape and symmetry of their cell walls; this includes centric 

diatoms or centrales and pennate diatoms or pennales. 
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with a raphe (Bacillariophyceae; Fig. 1.2, D) 

Valves of both centrics and pennates may possess additional structures depending on the 

taxonomic group, for example most of the centrics and pennates possess rimoportulae 

i.e., processes with a lip-like (labiate) extension on the interior side. Pennates are often 

benthic, living on sediments or as epiphytes on macrophytes or invertebrates. However, 

some pennate diatoms are successful in the plankton, where they often persist in the 

open ocean waters as well as in turbulent coastal waters, demonstrating their ability to 

tolerate a wide range of environmental conditions. Among pennates those belonging to 

the genus Fragilariopsis, specifically F. kerguelensis, are prominent and form an 

important component of polar seas and especially the HNLC (High Nutrient Low 

Chlorophyll) of the Southern Ocean despite the iron limitation of the area. These 

diatoms escape grazing by building thick-walled frustules (Zielinski and Gersondel997) 

and thus outcompete other diatoms contributing substantially to the diatom ooze 

accumulating under this region. Their local dominance has consequences for the 

capability of the ecosystem to sequester C02 (Treguer et al. 1995). 

1.5 Life cycle features 

Diatoms have a diplontic life cycle (diploid cells undergo growth), unique among algae 

(AI-Kubaisi 1981) where the vegetative cells are diploid (2n) and their gametes haploid 

(n) (Round et al. 1990, Chepurnov et al. 2004). By far the dominant part of the life 

cycle, diatoms grow vegetatively through mitosis followed by cytokinesis. Vegetative 

growth is usually very fast in diatoms with a concomitant increase in biomass, generally 

showing higher growth rates than other algae of comparable size (Furnas 1990). This is 

possibly due to their silica cell wall because it has been shown that the synthesis of the 

frustule requires less energy per atom incorporated compared to the synthesis of organic 

cell walls (around 8%) (Raven 1983, Raven and Waite 2004». 
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Cell division starts with chloroplast division. Chloroplasts divide either autonomously, 

in which case chloroplast constriction occurs independent of other organelles, or their 

division is imposed as a consequence of cell division (cytokinesis) (Mann 1996b). After 

cytokinesis, but before the daughter cells separate, each of the daughters acquires one 

parental theca and synthesizes a new valve and, in some of the species, an 

accompanying set of girdle bands. Valves are formed only during cell division and the 

cell volume can increase during interphase by the stepwise synthesis of girdle bands. 

The new valve - the hypovalve of the new cell - develop within the confines of the 

parental theca. As a consequence, the sibling cell that inherits the parental hypotheca is 

usually smaller than the parental cell, and consequently, the average cell size decreases 

and the variance in cell sizes increases with continued vegetative growth (the 

MacDonald-Pfitzer rule (Round et al. 1990a). 

Populations escape from this miniaturization trap through sexual reproduction. At a 

critical size threshold, they become sexually mature and can engage in sexual 

reproduction. The capacity of cells to become sexualized has been demonstrated to be 

size dependent. However, being in the right cell size window is necessary but often not 

sufficient condition for the induction of the sexual phase and environmental factors 

and/or chemical interactions between cells can further regulate the process (Chepurnov 

et al. 2004). Gametogenesis occurs by meiotic cell divisions and the cell walls of the 

gametangia (gamete-producing cells) are discarded. The resulting gametes fuse to form 

a zygote, which expands twice or three times the original cell volume, mainly through 

vacuolar expansion, to form a specialized cell, called auxospore (Chepurnov et al. 

2004). The auxospore develops an organic wall, or more commonly, an organic wall 

that has siliceous components embedded within it or beneath it. The types of component 

depend on the group to which the species belongs. Multipolar centric diatoms and 

pennate diatoms form sets of bands called properizonial or perizonial bands, which 

constrain expansion of the auxospore into a non-radial shape. As a result, the diatom 
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emerging from this cell is multipolar or elongated as well. Cells that fail to undergo 

sexual reproduction and cell size restitution continue to divide mitotically until they 

become critically small and eventually die. 

An alternate possibility to restore cell size, that has been observed in some diatom 

species, namely through a non-sexual process called vegetative enlargement. This 

phenomenon implies the discard of both valves and synthesis of new bigger ones. 

Vegetative enlargement has been observed in some centric diatoms (Gallagher 1983) 

whereas in pennates it is exceptional and appears to occur only under extreme 

conditions (Chepurnov and Mann 1997). 

1.6 The study model Leptocylindrus danicus 

Leptocylindrus danicus Cleve (1889) is a centric diatom belonging to the class 

Coscinodiscophyceae, order: Leptocylindrales, family: Leptocylindraceae. The species 

is widespread in coastal ecosystems and has been reported frequently along continental 

shelves where it constitutes one of the dominant blooms forming species. (Round et al. 

1990) describes the genus Leptocylindrus as follows: 

"Cell narrow, cylindrical, united to form filaments. Chloroplast 2- many, plate 

like, lying against the girdle. A common, delicate member of the marine 

plankton with less than five species. Valves are circular; thin with a ring of 

projections around the margin of the flat valve face, beneath this is a shallow 

valve mantle bearing vertical rows of areolae. The marginal projections appear 

flap-like between these are other blister -like markings. Valve face with 

indistinct areolae in uniserate striae, these radiate from a central annulus 

within which is a central cluster of irregularly placed areolae. There is also an 

off-centre pore whose nature is uncertain and which has no parallel in any 

other genus. The flaps on the edge of the valve face have no structural 

counterpart on the inside of the valve, but in this region the radiating 'ribs' of 
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the valve face become more distinct before running down the valve mantel; 

this feature is especially obvious in TEM. Copulae many, consisting of collar-

like segments, each finely porous and with a wide truncated 'ligula'''. 

The understanding of the taxonomic history of L. danicus starts with a misinterpretation 

of the frustule structure by Cleve (1889) during his expedition at Kattegat Bay (Fig 1.3). 

The original description says the species 

"has convex shape, with pretty solid valves, as the 

circumference is nearly circular and does not show any 

punctuations or striations. The conjunctiva is very thin and 

lacks the characteristic of Rhizosolenia annular 

condensations. Cells were found in long chains." 

Fig. 1.3. Redrawn pencil diagram of Leptocylindrus danicus Cleve (1889). Sketch of three colonial 

cells. Note the shape of valve face. 

In his drawings he shows the valves as convex, which is rather unusual for 

Leptocylindrus. Later, Cleve (1894) modifies the original description of the species as it 

was, in his words, 

"Originally described from burnt and somewhat misshaped specimens". 

This error apparently mended and re-description is as follows (Fig. 1.4); 

• • 

• 
'. 
• fI 

"Cells cylindrical, with flat (dried convex) ends, forming 

filaments. Valves without processes or perceptible structure. -

Connecting zone very thin, without annuli - Cell contents: a 

few scattered granular chromatophores. Diameter of the 

filament 0.0 I mm. Length of the cell 0.03 to 0.06 mm". 

Fig. 104. Original pencil diagram of mended Leptocylindrus danicus Cleve (1894). Sketch of four 

cell colony. 
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Gran (1912) undertook a study in the Kattegat bay and described Leptocylindrus resting 

spores as spiny and semi-circular. Adding to the species diversity, French and 

Hargraves (1986) described a novel variety of L. danicus based on subtle morphological 

difference and evident life cycle variations. He found the cells sufficiently similar so as 

to be considered as a variety of the species L. danicus and named it as L. danicus var. 

apora (French III and Hargraves 1986). The new variety differed from the original L. 

danicus in that absence of sub central pore and followed vegetative cell size restoration 

instead of the sexual cycle observed in the nominal species. 

In 1915, Gran was the first to distinguish and identify a second species in the genus 

Leptocylindrus. He described L. minimus (Fig. 1.5) based on water-mounted sample as: 

~ "Chains of cylindrical cells 251J long and 1.5-2.5 IJ in diameter, 
'. 

each cell containing two chromatophores, one on either side 

of the cell nucleus. The chains are straight or slightly twisted". 

Fig. 1.5. Original pencil diagram of Leptocylindrus minimus Gran H.H. (1915). Sketch of four cell 

colony. 

The important distinguishing characteristic of species is the presence of two elongate 

chloroplasts that accommodate in a narrow cell of 211m. Considering the only difference 

in the size of cell diameter and the possibility of having narrow L. danicus, Riley and 

Conover (1967) expressed the doubt as to whether L. minimus has to be considered as a 

separate species. Hasle (1975) also expressed doubts to consider L. minimus as separate 

species since the valve structure analysed by TEM was very similar to L. danicus. This 

was clarified by further studies on the species, which defined the morphology and 

distribution in comparison to L. danicus (Hargraves 1990). Leptocylindrus minimus has 
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the following key features, valve diameter of 1-4 ~m and tightly bound to its adjacent 

band of the cingulum. The valve face is ornamented with radial rows of simple poroid 

areolae radiating from the central area. The central area is normally thicker than those of 

L. danicus. Along the valve margin a circumferential ring of raised blunt spines are 

present whose number varies from 3-5 ~min 1 ~m. The bands of the cingulum are 

described to be half and are similar to that of valvacopula. The valvacopula junctions 

exhibit finely serrate margins. A concluding evidence of the species identity was 

provided by the discovery of the resting spore morphology. The distinguishing features 

in the two species were that L. minimus has always two chloroplasts and sometimes one 

when the valve diameter approaches 1 ~m. Whereas L. danicus always has multiple 

chloroplasts and very rarely could have two in invitro cultures, however this overlie was 

not recorded in natural samples. On the whole, the studies have established that life 

cycles of the two species with similar morphology and resting spore structure and 

formation. 

In the same year in which L. minimus was described, Meunier (1915), described a new 

species L. belgicus from the Flemish water, a species with similar morphology of L. 

minimus. The description states, 

"extremely narrow frustules (2 J..I wide in average), arranged in a colony 

straight, rigid, free from differentiation noticeable. Chromatophores few, 

elongated in the longitudinal direction frustules." 

This description is lot similar to L. minimus hence it was later considered to be the 

synonym. 

Leptocylindrus mediterraneus is another species appearmg in phytoplankton 

identification guides. The species was originally described as Dactyliosolen 

mediterraneus, is studied a lot because of its unique morphological and biological 

characteristics. The species is mostly associated with a protozoan epiphytic, Solenicola 

setigera. Based on these unique characteristics, the identity of this species as a diatom 
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has at times been questioned. Other species generally attributed to the genus include L. 

adriaticus Schroder and L. curvatus Skvortzov. These descriptions are imprecise, 

rendering identification of specimens challenging. 

1.6.1 The life cycle ofLeptocylindrus. According to the McDonald-Pfitzer rule in most 

diatoms valve diameter decreases from generation to generation. After they reach the 

minimal size, original size is restored either through sexual reproduction or through 

vegetative expansion. Sexuality and other size regenerative processes are very important 

stages of the life cycle of diatoms. The knowledge of life cycle of the diatom L. danicus 

comes mainly from the studies of French and Hargraves (1985, 1986) and Davis et.al 

(1980). These studies have contributed to the understanding of unique sexual life cycle 

specific to species (Fig. 1.6.1, a-m) and vegetative cell size expansion process (Fig. 

1.6.2, a-i). The formation of resting spores in phytoplanktons is believed to be a 

strategy to survive under adverse environmental conditions. Centric diatoms are well 

known for the formation of resting spores both in the environment and in invitro 

cultures. Formation of highly silicified resting spores in L. danicus was first reported 

by Murray and Hjort (1912), whereas Gran (1915) reported that they develop directly 

from auxospores. Subsequently, Davis et al. (1980) and French & Hargraves (1985, 

1986) demonstrated the formation of resting spores in in vitro cultures. These studies 

have provided a great deal of data to understand the life cycle and spore formation in L. 

danicus: 1) the environmental conditions which induce resting spore formation, and 2) 

those that foster their germination, 3) the physiological processes that are involved in 

the formation and germination of spores and, 4) capabilities of spore to withstand 

adverse climatic conditions. Resting spore formation has been attributed mainly to the 

limitation of nitrogen and higher cell densities. Nitrogen limitation noticeably has been 

a key factor triggering sexual reproduction in almost all cells and subsequent resting 

spore formation. Other environmental factors include temperatures of 10°C and 15 0C 
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but not at 20°C and in cells with a valve diameter not more than 8 flm. Spores were 

observed to withstand anoxic conditions and low temperatures down to 2°C. Vegetative 

cells arising from resting spores had an upper diameter of 14 flm. 

Sexual reproduction starts initially with unequal division of cells within a vegetative 

chain of cells with a valve diameter of less than 8 flm (Fig. 1.6.1, a). The female 

gametangium or egg-producing cell is usually long and highly pigmented (Fig. 1.6.1 , c) 

whereas the short male gametangium or spermatogonangium is only weakly pigmented 

(Fig. 1.6.1, c). Spermatogenesis follows two paths, in wider spermatogonangia (6-8 

flm). The spermatogonangium then breaks open to release the two spermatogonangia 

(Fig. 1.6.1, e). Each spermatogonangia produces a quadriflagellate spermatogonangium, 

which in its tum divides into four uniflagellate spermatogonangia. If the original cells 

are narrower than 6 flm in valve diameter, then they produce either four or eight 

uniflagellate sperm cells. Conjugation of a sperm cell with an egg cell leads to the 

formation of a zygote which swells up to form an auxospore (Fig. 1.6.1, k). Fertilization 

involves bending of the egg cell to 45° angle (Fig. 1.6.1, d and f) where the sperm 

comes in contact with it. Later the sperm cell is drawn abruptly into the cell. Then the 

Fig. 1.6. Comparisons of the life cycles in L. danicus with or without resting-spore formation (I) cycle 

detailed in French and Hargraves (1985); sexuality (b-f) produces auxospore (h) within which the resting 

spore forms G-k), later germinating (I-m) to produce cells of maximum diameter. Right cycle ("alternate 

") exhibited by L. danicus var. apora; (a) Vegetative cells (narrow); (b) extrusion of cell contents, usually 

occurring midway along pervalvar axis (no sexuality); (c-d) extrusion completed, forming an auxospore

like structure; (e)auxospore like structure detached from parent cell; (f-g) elongation and germination; (h) 
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first cell division (presumed mitotic); (i) establishment of vegetative chain (diameter varies considerably) 

(From French and Hargraves 1986). 

spines are formed (Fig. 1.6.1, i-k). This results in the formation of a heavily silicified 

and thick-walled auxospore from which a resting spore develops. Resting spore 

formation and its structure is another criteria used to discriminate L. danicus from L. 

minimus. Resting spores of L. danicus (Hargraves 1976) were described as, sub-

spherical, constructed of two unequal valves, both bluntly and spiny. Whereas, the 

1.6.1, i). Further to cellular contraction two silica walls are deposited and eventually 

resting spores of L. minimus (Hargraves 1990) vary in size from 5-6 I!m in width and 

7-10 I!m in length, and with a shape of a spherical head and a cylindrical neck. Spores 

are usually highly ornamented with spines of varied size and shape. Its shape varies 

from hollow with depressed appearance to shorter and closed acute tips. At times, the 

spores may lack spines. 

The alternate life cycle differs from that of the sexual life cycle in that resting 

spore are not formed. Instead, an auxospore-like structure of varying size is 

formed, into which the old cell content are extruded (Fig. 1.6.2, a-i). Later these 

structures undergo expansion and then normal division occurs. 

1.6.2 Population dynamics. Leptocylindrus danicus is believed to be a widely 

distributed diatom ranging from polar to temperate and equatorial waters. The species is 

most commonly recorded in coastal water, but has been reported also in samples from 

offshore. In temperate regions, the species forms blooms during the warm periods of the 

year, but populations fluctuate in size, often forming blooms of lesser abundance. This 

means the species shows a year round distribution with different peaks of abundance. 

The understanding of the population distribution across a year comes mainly from the 

long-term stations at the Gulf of Naples (GoN) (Ribera d'AIcala et al. 2004) and 

Narragansett Bay «Ribera d'Alcala et al. 2004, Karentz and Smayda 1998, Karentz and 
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Smayda 1984). Both sites are monitored weekly for phytoplankton abundance and 

environmental contextual data. The species shows the highest peaks of abundance 

during the spring and early summer (July-August) in the GoN when mean water 

temperature is around 22°C whereas in Narragansett Bay, the peak occurs in May-June 

when mean water temperature is around 12 °C. This is huge variation within a species 

records. Apparently, other factors than temperature seem to govern the blooming of this 

species. 

L. rninirnus shows a distribution range comparable to that of L. danicus, confined mostly 

to coastal ecosystem. However, L. danicus has a much larger distribution perhaps 

because of its warm water requirements. L. danicus and L. minimus recurrently co

occur, but the relative abundance varies greatly and their temporal isolation is also being 

recorded. 

1.6.3 Physiology. Leptocylindrus danicus is found both in temperate and tropical 

waters. The species forms a major component of coastal blooms during the spring and 

summer. Photosynthesis and respiration are strongly influenced on temperature (Verity 

1981 a). Photosynthesis and cellular composition, growth and excretion of dissolved 

organic carbon (DOC) in L. danicus were found to have a temperature dependent day 

length effect with a QIO value for photosynthesis of7.0 (Verity 1981a). This means that 

at optimum temperature the species is very efficient in utilising low irradiances for 

photosynthesis. Optimum temperature of growth was reported between 15°C to 20 °C, 

with maximum growth at 20°C (Verity 1981a). Further increases in temperature lead to 

a decrease in growth. A higher irradiance period was found to promote growth with at 

least 12:12 L:D (Verity 1982a). Excretion rates were positively correlated with the 

photosynthetic rate and negatively correlated with chlorophyll a content (Verity 1981b). 

Dark (mitochondrial) respiration was reported to be dependent on previous light- and 

temperature history and this was more evident at higher temperatures (Verity 1982b). 

Chapter I. Introduction 17 



Higher temperature increased respiration and day length affected oxygen consumption, 

but there seemed to be no clear effect on dark respiration (Verity 1982b). 

1.7 The GulfofNaples 

The study site in the GoN, located on the western side of the Italian peninsula, opens to 

the Tyrrhenian Sea on the South-eastern side. The GoN can be divided into an 

oligotrophic offshore zone and a mesotrophic near-shore zone affected by ruff-off from 

the land (Pugnetti et al. 2006). The former is characterised by low chlorophyll 

concentrations in the surface water in the summer whereas the latter shows 

phytoplankton growth year-round. The institute, Stazione Zoologica Anton Dohrn 

Naples (SZN), since 1984 maintains a long-term ecological research station called 

MareChiara (MC) situated two nautical miles offshore in the transition zone between 

the coastal and open Tyrrhenian water. At the site, a bimodal distribution of 

phytoplankton species was observed taking into account the five most abundant species. 

Long term trends were also recorded for example there was decrease in cell size and an 

increase in abundances of diatoms and phytoflagellates (Ribera d'Alcala et al. 2004). 

1.8 Motivation for the study 

Diatoms are major components of phytoplankton community in the coastal zones of the 

modern ocean. In coastal areas, planktonic diatoms are subject to fluctuations in their 

abundance due to the remarkable unevenness of their ecosystem at both spatial and 

temporal scales. Over the year, coastal phytoplankton species show peaks and sudden 

drops in abundances. Blooms in coastal areas are not single discrete events, but rather a 

series of fluctuations in which the biomass and the species composition change rapidly 

(i.e., species can be present in high numbers for a short period and later disappear 

completely from the water column; (Boero 1996, Cloern 1996). For example, in the 

GoN almost monospecific diatom blooms and rapid alternations of blooming species are 
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frequently observable features in seasons of high stratification (Zingone et al. 1990), 

(Ribera d'Alcala et al. 2004). Subsequently, life cycle phase transitions can have a 

major effect on succession patterns (Hansson 1995, McQuoid and Hobson 1995, 

Rengefors and Anderson 1998). Hence, the factors regulating the seasonal succession 

and bloom events of marine phytoplanktons, especially harmful algal bloom species, 

and species that are major contributors of algal blooms, are of great interest both from 

an ecological perspective and for coastal management (Anderson and Rengefors 2006). 

Despite years of efforts in monitoring and experimental studies, patterns of succession 

and bloom events remain largely unpredictable (Anderson and Rengefors 2006). To 

date, efforts have been concentrated on the study of the mechanisms underlying the 

spring bloom and on the possible prediction of its timing, whereas there is a poor 

understanding of the factors that drive individual species seasonal fluctuation (Zingone 

and Wyatt 2005) and shape their range. The most accepted paradigm for phytoplankton 

variability at a seasonal scale is that individual species have traits that allow them to 

thrive under particular environmental conditions (Margalef 1978, Reynolds 1998, 

Kneitel and Chase 2004). In this view, the so-called habitat template hypothesis 

(Reynolds 2001, Smayda 2000), the growth of species sharing similar ecophysiological 

traits is stimulated by the regular occurrence of a set of environmental conditions that 

recur yearly over the seasonal time (Kneitel and Chase 2004). On the other hand there 

are multiple evidences of species reoccurring in certain periods of the year despite 

marked interannual variations in environmental conditions (Ribera d'AIcala et al. 2004). 

Eilertsen et al. (1995) provided some evidence for photoperiodic control of blooms in 

diatoms. While some species increase their abundance in restricted periods of the year, 

other species show multiple peaks over the year, in seasons which markedly differ in 

terms of physical and chemical parameters (McDonald et al. 2007); still others show 

relatively long bloom times (months), encompassing a wide range of environmental 

conditions (Ribera d'AIcala et al. 2004). 
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1.9 Goals and thesis framework 

During the research the major question being addressed is: what are the characteristics 

of the species that favour it to grow under a wide range of environmental conditions? 

Current views on phytoplankton species are that coastal species, and especially those 

that are widespread and abundant, are very plastic from the physiological point of view 

and generally have a wide tolerance for environmental parameter variability. An 

alternative hypothesis to explain the wide temporal window of occurrence of L. danicus 

in the GoN is that there are different species or genetically distinct populations under 

this name that alternate over the year, producing blooms under different environmental 

conditions. The two hypotheses however are not mutually exclusive, as there could be 

different genotypes over the year each with high physiological plasticity. Together or 

alternatively, these two aspects of species biology determine its ability to bloom 

under varied niche conditions. 

The main objective of this thesis was to obtain a better understanding of the species 

diversity in the genus and biogeography of the marine diatom genus Leptocylindrus. 

Specifically investigated are; 

1) Whether L. danicus is a single speCles or comprises multiple (pseudo)-cryptic 

species, by analysing variation patterns in selected phylogenetic markers, life cycle 

patterns and morphological characteristics, 

2) Whether the distribution of L. danicus is truly cosmopolitan or whether potential 

(pseudo)cryptic entities show different, possible restricted, geographic distributions; and 

3) Whether the different biological entities have a different physiological adaptability 

alternating across different seasons. 

In the first part of this thesis, the diversity of the species L. danicus, life cycle patterns 

and distribution of the different entities previously recognised within the species is 

elucidated. 
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In Chapter II the morphology and phylogenetic relationships of the five species 

discovered within the genus Leptocylindrus has been described. Sexual reproduction 

was successfully initiated experimentally and its characteristics, together with structure 

of resting spores and alternate life cycle patterns are also described. 

In Chapter III the distribution of Leptocylindrus species based on the databases of 

environmental sequences including BioMarKs (European database for metagenomics), 

Tara Oceans database (the global database) and GenBank (NCB I) has been described. 

These databases were explored for the six species described in Chapter II together with 

any other sequences grouping with them to understand the biogeography and 

seasonality of the species. 

In the second part of this thesis the biochemistry of the six species was studied. Further, 

the physiology of 1. danicus and 1. aporus were studied, which were the two most 

abundant species in the GoN with opposite seasonality. 

In Chapter IV the importance and ecological relevance of oxylipins and the different 

profiles of the five discovered species has been described. The diversity in the 

metabolites production helps structure the ocean ecosystem. 

In Chapter V the physiological differences of the species 1. danicus and 1. aporus in 

response to variation in temperature has been described. Even closely related species 

can differ in functional properties such as production of secondary metabolites and this 

has implications in the functioning of the ecosystem. 
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Morphological and molecular diversity of Leptocylindraceae 

species from the Gulf of Naples 

2.1 Introduction 

Since the description of the first diatom, Bacillaria paradoxa Gmelin L.M. (1791), the 

number of know species in this group of marine algae has incessantly increased, with 

brisk upsurges following the introduction of new methodologies. Until the 1960's, 

diatomists observed diatoms almost exclusively using light microscopy (LM). This tool 

allowed studying frustule shape as well as features of the living cell, thus leading over 

time to the description of numerous species. With the onset of transmission and 

scanning electron microscopy (TEM, SEM) frustule ultrastructure was revealed in all its 

fine details, and as a consequence a wealth of additional, morphological diverse species 

was discovered. In the 1980s, peR amplification of marker DNA sequences 

demonstrated yet another level of diversity: cryptic and semi-cryptic diversity, i.e., 

morphological taxa consisting of genetically distinct but morphologically 

indistinguishable or barely distinguishable species. In cases where this was tested, the 

cryptic species were usually also reproductively isolated (e.g. Amato et al. 2007, 

Lundholm et al. 2012). At present, ca. 200,000 diatom species are estimated to exist 

(Mann and Droop 1996) of which about 10,000 have been described (Mann et al. 1999). 

The wealth of DNA sequences generated from specimens from all over the diatom 

diversity has also permitted reconstruction of detailed phylogenies. Results show that 

the pennate diatoms form a clade inside a grade of centric diatoms. Pennates have 

usually elongated valves, with a distinctive keel, called a midrib, with rows of pores 

perpendicular upon it; centric diatoms generally have valves that are circular or have a 

multi-polar outline, with a central ring or area from which rows of pores radiate 

(Kooistra et al. 2007). 
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Results of recent multidisciplinary taxonomic studies within common diatom genera 

uncovered considerable diversity in the pennate genera Pseudo-nitzschia (Lundholm et 

al. 2012 and literature therein) and Sellaphora (Evans et al. 2008) and in the centric 

species Cyclotella meneghiniana (Beszteri et af. 2007) and Skeletonema (Sarno et al. 

2005, Sarno et al. 2007, Zingone et al. 2005, Kooistra et al. 2008). The highly diverse 

centric genus Chaetoceros (Rines and Hargraves 1990) also shows marked diversity 

within morphologically perceived species (Kooistra et al. 2010). Cryptic and semi

cryptic species in all these genera are genetically closely related, showing only a marked 

differentiation in rapidly evolving genetic markers such as the nuclear large subunit or 

the internal transcribed spacers of the nuclear ribosomal RNA cistron. In contrast, other 

diatom genera may be species-poor. Phylogenies reveal an apparent paucity of species 

diversity within radial centric genera, which are the oldest and most basal of diatoms in 

the phylogeny and also the earliest ones appearing in the fossil record (Kooistra et al. 

2007). This paucity could result from limited taxonomic work focusing on this group, 

despite the important role of many radial centric genera as primary producers in the 

oceanic or coastal plankton. Alternatively, the apparent paucity of species in these 

genera could be real, with each of these genera consisting of just a few genetically 

distinct survivor species of a once far more extensive diversity (Kooistra et al. 2007). 

Among apparently ancient diatom lineages, the genus Leptocylindrus merits detailed 

exploration of its ultrastructural and genetic diversity. Its species consist of cylindrical 

cells with two or more plastids and valves with a simple morphology. Molecular 

phylogenies usually resolve the genus as sister lineage to a clade containing all other 

diatoms. Currently, two main species are widely recognized; L. danicus (Cleve 1889), 

within which the variety L. danicus var. apora Hargraves & French (1986) was 

described, and L. minimus Gran (1915; see also (Hargraves 1990, Rivera et al. 2002). 

The taxonomic affiliation of the species L. mediterraneus (H. Peragallo) Hasle has been 

long questioned (Hasle and Syvertsen 1997, Gomez 2007). In fact, it is even doubted 
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that this species is a diatom, as only empty frustules with a peculiar ultrastructure have 

been observed in nature, almost exclusively observed as colonized by the protozoan 

Solenicola setigera Pavillard (Gomez 2007). Two other species described in the past, 

namely L. belgicus Meunier (1915) and L. adriaticus Schroder (1908), have 

subsequently been considered respectively as a synonym of L. minimus (Hustedt 1962, 

Hendey 1964), and a variety of L. danicus (Schiller 1929). Finally, the description of L. 

curvatus Skvortzov (1931), which is based on a drawing of undulating chains of cells 

with small plastids, has hardly been followed by any report of the species, whose 

identity remains uncertain. So far, only rarely have L. danicus and L. minimus been 

investigated from the molecular point of view, and one SSU DNA sequence for each of 

these species has been deposited in GenBank (AJ535175, AJ535176). 

The life cycle of Leptocylindrus species shows a wide diversity. Formation of highly 

silicified resting spores in L. danicus was first described by Murray and Hjort (1912), 

whereas Gran (1915) first reported that these resting spores develop directly from 

auxospores. Subsequently, Davis et al. (1980) and French and Hargraves (1985, 1986) 

demonstrated the formation of spores in in vitro cultures, confirming that L. danicus is 

one of the few diatom species forming these stages following sexual reproduction. In 

contrast, the variety L. danicus var. aporus restores its cell size by asexual 

autoenlargement (Hargraves & French 1986). Instead L. minimus forms resting stages 

during the vegetative growth, which is similar to other diatoms (Hargraves, 1990). 

Leptocylindrus danicus has been reported throughout the world's oceans, except in 

Arctic waters, and forms major blooms in coastal waters. Leptocylindrus minimus is 

widespread in the Mediterranean Sea, along the North Atlantic coasts of Europe and 

America as well as in the eastern and western South Pacific. In the latter areas, the 

species is enumerated in the list of harmful species, since its blooms may cause 

damages to fish (Clement and Lembeye 1993, Hallegraeff et al. 2003). In the Gulf of 

Naples (GoN), specimens assignable to L. danicus are observed throughout the year, but 
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show two distinct bloom phases, a conspicuous one in summer and a more modest one 

in the fall. Leptocylindrus minimus is recurrently found in autumn. 

The aim of this study is to investigate the diversity of the genus Leptocylindrus in the 

GoN by combining morphological and molecular data with information on the life 

cycle. To this end, a series of strains were isolated from the GoN over an entire seasonal 

cycle. Strains were examined using six molecular markers as well as light- and electron

microscopic observations. In addition, to elucidate the differences in the life cycle 

patterns among the taxa investigated, spore induction studies were conducted. Attempts 

were made to link morphological characteristics of individual taxa to the descriptions of 

already known species. First, sequences of each marker were sorted into (near) identical 

groups. Within each of these groups three randomly picked strains were checked if they 

shared highly similar ultrastructural details of the cell wall and similar plastid shapes. 

Subsequently the groups of specimens were verified if they could be assigned to known 

species descriptions or if they belonged to species new to science. Second, phylogenies 

were reconstructed to assess if the genus Leptocylindrus is monophyletic and if the 

taxonomic units are phylogenetically closely related or not. Based on molecular and 

morphological results, it is proposed to raise the taxon L. danicus var. apora to the rank 

of species and two new species, L. hargravesii and L. convexus are described. In 

addition, based on morphological and phylogenetic criteria, it is suggested to establish 

the new genus Tenuicylindrus including a single species T. belgicus based on the 

description of L. belgicus, so far considered as a heterotypic synonym of Leptocylindrus 

minimus. 

2.2 Methods 

2.2.1 Strain isolation. 86 strains were obtained to assess the morphological and genetic 

diversity of Leptocylindrus (Table 2.1). Single cells or chains were gathered from net

samples collected at the LTER MareChiara (LTER-MC) in the GoN (40.800 N, 14.250 
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Table 2.1. Strains used in the analysis. All strains are from the GulfofNaples, except CCMP 1856 which 
was isolated by Hargraves, P., from the Gulf of Mexico. 

Lep"tocJ!Jindrus aEorus 
SZN-B702 -/10/2009 + + + + + + 
SZN-B703 -/10/2009 + + + + + + 
SZN-B704+ -/10/2009 + + + + + + 
SZN-B723 03/08/2010 + 
SZN-B724 03/08/2010 + 
SZN-B725 03/08/2010 + 
SZN-B726 03/08/2010 + 
SZN-B727 03/08/2010 + + 
SZN-B728 03/08/2010 + 
SZN-B729 10/08/2010 + 
SZN-B730 10108/2010 + 
SZN-B731 10/08/2010 + 
SZN-B732 10108/2010 + + 
SZN-B733 10108/2010 + 
SZN-B734 10108/2010 + 
SZN-B735 14/08/2010 + 
SZN-B736 14/08/2010 + 
SZN-B737 14/08/2010 + 
SZN-B738 14/08/2010 + 
SZN-B651t+ 21108/2010 + + + + + + 
SZN-B743+ 12/10/2010 + + + + + + 
SZN-B744 19/10/2010 + + 
SZN-B745 19110/2010 + 
SZN-B746 19/10/2010 + 
SZN-B747 19/10/2010 + 
SZN-B748 19/10/2010 + 
SZN-B749 19/10/2010 + 
SZN-B750 19/10/2010 + 
SZN-B751 19/10/2010 + 
SZN-B752 19/10/2010 + + 
SZN-B753t 19/10/2010 + 
SZN-B754 19110/2010 + 
SZN-B758 27/10/2010 + 
SZN-B759 27/10/2010 + 
SZN-B760 0211112010 + 
SZN-B761 02/1112010 + 
SZN-B762 02/1112010 + 
SZN-B763 18/1112010 + 
SZN-B764 18/1112010 + 
SZN-B782 25/0112011 + 
SZN-B784 25/01/2011 + 

LepJocJ!.lindrus convexus 
SZN-B709 09/03/2010 + + + + + + 
SZN-B768.+ 21112/2010 + + + + + + 
SZN-B769 21/12/2010 + 
SZN-B770+ 21112/2010 + 
SZN-B771+ 21112/2010 + 
SZN-B774 25/01/2011 + 
SZN-B775 2510112011 + + + + + Confd ... 
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SZN-B776 25/0112011 + + + + + + 
SZN-B777 25/01/2011 + 
SZN-B778. 25/01/2011 + 
SZN-B779 25/0112011 + 
SZN-B780 25/0112011 + 
SZN-B783 25/0112011 + 
SZN-B788 08/02/2011 + 

Lep../ocpJindrus danicus 
SZN-B705 15/02/2010 + + + + + + 
SZN-B706 15/02/2010 + + + + + + 
SZN-B707.+ 15/02/2010 + + + + + + 
SZN-B708 15/02/2010 + + + + + + 
SZN-B710 30103/2010 + + 
SZN-B711+ 21104/2010 + + + 
SZN-B712 21104/2010 + + 
SZN-B713 21104/2010 + + 
SZN-B714 21104/2010 + + 
SZN-B715 15/06/2010 + + 
SZN-B716 15/06/2010 + + 
SZN-B717 15/06/2010 + + 
SZN-B650.+ 15/06/2010 + + + + + + 
SZN-B718 13/07/2010 + 
SZN-B76S 18/1112010 + 
SZN-B786 25/01/2011 + 
SZN-B789 15/02/2010 + 
SZN-B790 15/02/2010 + 
SZN-B791 15/02/2010 + 

Lep../ocy../indrus hargravesii 
SZN-B772++ 21112/2010 + + + + + + 
SZN-B773 21/12/2010 + + + + + + 
SZN-B781++ 25/01/2011 + + + + + + 
CCMP 1856 + + + + + + 

TenuicpJindrus belgJcus 
SZN-B739.+ 02110/2010 + + + + + + 
SZN-B740 02110/2010 + + 
SZN-B741 02110/2010 + + 
SZN-B742 02110/2010 + + 
SZN-B75S+ 19110/2010 + + + + + + 
SZN-B756.+ 19110/2010 + + + + + + 
SZN-B757 19/10/2010 + + 

+ Strains used for life cycle experiments 
+ Strains used for SEM and TEM observations 

E) from February 2010 to February 2011. Strain CCMP 1856 was obtained from the 

National Centre for Micro Algae and Microbiota (NCMA; formerly CCMP). 

The procedure for cell isolation was as follows: the net was towed gently through the 

surface layer of the water column (about 1 to 2 m), and the obtained plankton sample 
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was stored at about 15°C in the dark until return to the laboratory. Small amounts (ca. 

0.5 to 1 ml) of the sample were placed in single wells of a tissue culture plate and 

diluted with filtered seawater. Under the LM, L. danicus specimens were recognized 

based on cell morphology. Single cells or short chains of L. danicus were isolated with 

drawn-out Pasteur pipettes under an inverted light microscope, washed in sterile 

seawater and placed in wells of a tissue culture plate containing 2 ml K growth medium 

(Keller et al. 1987). The culture plates were incubated at 20°C, with a photon fluency 

rate of 60 J.lmol photons m-2s-1 (provided by cool-white fluorescent tubes) in a 12:12 h 

light: dark (L:D) photo cycle for one week to allow the growth of isolated cells. Strains 

were screened for purity and, if unialgal, used as starter culture for further growth in 

70ml polystyrene flasks containing 25 ml of sterile K medium. Fully grown cultures are 

further used for microscopic observations and molecular characterization. 

2.2.2 Microscopic observations. Microscopic observations were made on selected 

strains including representatives of each genetically distinct group. Morphological 

features were observed in LM, TEM and SEM. All LM observations were carried out on 

exponentially growing cultures and natural samples using a Zeiss Axiophot microscope 

(Carl Zeiss, Oberkochen, Germany) equipped with Nomarski differential interference 

contrast (DIC), phase contrast, and bright-field optics. Light micrographs were taken 

using a Zeiss Axiocam digital camera (Carl Zeiss, Oberkochen, Germany). 

Samples collected for electron microscopy were fixed immediately with 40% formalin 

at a concentration of 4% (VN) and was mixed thoroughly with samples, this, in 

addition to preserve the cells, will help in dehydration of cells. For preparation of 

sample for TEM observation exponentially growing cultures were treated with 10% 

H2S04 and 10% HN03, gently boiled and washed with distilled water for few times to 

remove the residual acid. Acid treatment helps in the removal of organic material and 

detaching the silica frustule, but leaves them intact. Acid cleaned material was mounted 
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on Formvar-coated grids and examined under a TEM LEO 9I2AB. For preparation of 

samples for SEM observation cultures were prefixed either with formalin or Osmium. A 

small aliquot of preserved culture was filtered through nylon membrane filter, taking 

care to have well distributed cells on the filter. An increasing percentage of ethanol 

(25%, 50%, 60%, 75%, 90% and 100%) was passed through the filter to completely 

dehydrate the cells. The dehydrated filter with cells was passed through critical point 

drying, splutter coated with gold-palladium and mounted on a stab. Cells were 

examined using a JEOL JSM-6500F SEM (JEOL-USA Inc., Peabody, MA, USA). 

2.2.3 DNA extraction, peR amplification, sequencing, and phylogenetic analyses. 

Extraction of total DNA from individual strains was performed using a rapid, simple 

and efficient protocol. Exponentially growing cultures (density of 50,000 cell mrl) were 

used for DNA extraction. Cells from 2 ml culture were harvested by centrifugation at 

10,000 g for 10 min at 15°C. The cell pellet was then suspended in 400 III extraction 

buffer (100 mM Tris HCL pH 8.0, 50 mM EDTA, 500 mM NaCl, 1.5% SDS, 0.2% p

mercaptoethanol) containing 2 III of RNase (10 mg Ill-I, Roche S.p.A., Milan, Italy). 

The mixture was incubated at 65°C in a water bath for 20 min, vortexing every 5 min to 

allow efficient disruption of cells and release of cell contents. After incubation, 100 III 

of 5 M potassium acetate was added and mixed well by inverting the tubes. This 

precipitates the cell debris leaving DNA and other soluble molecules in the supernatant. 

The supernatant (500 Ill) was collected by centrifuging at 10,000 g for 10 min at room 

temperature. To the collected supernatant 500 III ice cold isopropanol and 100 III of 3 M 

sodium acetate was added to precipitate DNA. The precipitated DNA was pelleted by 

centrifugation at 10,000 g for 10 min at room temperature. Then the obtained DNA 

pellet was washed with 250 III of 75% ethanol to remove salts. Residual ethanol was 

removed by drying the DNA pellet in a vacuum drier for 8 min at 60°C. The clean dry 
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DNA pellet was resuspended in O.Ix TE buffer (Ix TE buffer: 10 mM Tris-HCI, I mM 

EDTA) and stored at 4 °C for short term use or at -20°C for long term use. 

The following markers were amplified. Of the nuclear ribosomal RNA-coding cistron 

were amplified the SSU (ISS) rDNA, the Internal Transcribed Spacer region (ITS 1, 

5.SS rDNA and ITS2) and ca. 700 bp of the 5' -end of the LSU rDNA; of the plastid 

DNA were amplified the SSU (I6S) rDNA, the Rubisco-Iarge subunit (rbeL) and the 

photo-system binding complex protein coding gene (psbC) following amplification 

using primers listed in Table 2.2 and Polymerase Chain Reaction (PCR) protocols 

present in Table 2.3. The PCR products were purified using a QIAquick gel extraction 

kit (Qiagen, Milan, Italy) according to the manufacturer's instructions. Purified products 

were analysed on an automated Capillary Electrophoresis Sequencer "3730 DNA 

Analyzer" (Applied Biosystems, CA, U.S.A.) in collaboration with the Sevizio 

Biologia Moleculare at the institute. Sequencing primers were the same as those utilized 

for amplification. In addition, internal sequencing primers were deployed for the 

products of the nuclear and plastid SSU rDNA, the rbeL and the psbC, as these products 

were too long to be read with amplification primers alone. Internal sequencing primers 

are also listed in Table 2.2. 

The obtained sequences were aligned (along with sequences from Bolidomonas spp. and 

other outgroup diatom sequences) using Bioedit v. 7.1.3 (http://www.mbio.ncsu.edu

lbioeditlpage2.html) and then adjusted by eyeball in the sequence alignment editor Se

Al version 2.0all (Rambaut 1996-2002). In addition, the DNA sequences of different 

strains were aligned by Clustal-W alignment. The secondary structure of ITS regions 

was predicted usmg the RNAfold web server (http://rna.tbi.univie.ac.at/cgi

bin/RNAfold.cgi) and used for calculating the number of compensatory base changes 

(CBC). Helices were compared with each other to identify possible homologous regions 

to assist alignment. Highly similar sequences were obtained from GenBank using 

BLAST searches. Prior to phylogenetic analysis, identical sequences were removed 
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Table 2.2. List of primers used for the amplification of different regions with the specific annealing and extension temperature with time of hold. 

SSUF AACCTGGTTGATCCTGCCAGT PCR/Seq F -1800 62 0.5 72 2 
SSUrDNA SSUR TGATCCTTCTGCAGGTTCACCTAC PCR/Seq R 

528F GCGGTAATTCCAGCTCCAA Seq F 
-600 1055R ACGGCCATGCACCACCACCCAT SeqR 

LSUrDNA 
DIR ACCCGCTGAATTTAAGCATA PCR/Seq F 

-750 55 1 72 1 D2R TGAAAAGGACTTTGAAAAGA PCR/Seq R 
ITS 1 TCCGTAGGTGAACCTGCGG PCR/Seq F 

46 1 72 2 ITS4 TCCTCCGCTTATTGATATGC PCR/Seq R 
ITS rDNA LDF 1* TACGTCCCTGCCCTTTGTAC PCR/Seq F 

LDR4* GGGGGTGTCACCCTCTATG PCR/Seq R -750 60 1 72 1 

DPrbcLl AAGGAGAAATHAATGTCT PCR/Seq F 
-1470 55 1 72 2 DPrbcL7 AARCAACCTTGTGTAAGTCTC PCR/Seq R 

rbcL rbcLIIF TTAGAAGACATGCGTATT SeqF 
rbcLIIR CAGTGTAACCCATAAC SeqR 
Fo =psbC+ CACGACCWGAATGCCACCAAT PCR/Seq F 

-1100 55 1 72 2 
Ro = psbC- ACAGGMTTYGCTTGGTGGAGTGG PCR/Seq R 

psbC 
Fl = psbC221+ ACGCATTGTTTCACCACC SeqF 
F2 = psbC499+ ACGTGCCCAAGAGAATGGTTTTG SeqF 
Rl = psbC857- CTTTGGTTATGACTGGCGTG SeqR 
R2 = psbC587- ATCTTGTTGGTGGTCATATTTGG SeqR 

Plastid SSU PLA491F GAGGAATAAGCATCGGCTAA PCR/Seq F 
-800 62 0.5 72 1 rDNA OXY1313R CTTCA YGYAGGCGAGTTGCAGC PCRlSeg R 

• Leptocylindrus aporus specific primers were designed and used for the amplification of ITS region of rONA 
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Table 2.3. General peR protocol used for the amplification of different nuclear and chloroplast genes for 
the phylogenetic analysis. 

Step 
Temp Duration No. of 
(OC) (min) c~cles 

Initial denaturation 94 4min 1 

Denaturation 94 30 sec 

Annealing S* S* 35 

Extension 72 S* 

Final extension 72 10 min 1 

Final Hold 10 00 1 
S* specific temperature or time of hold has been mentioned in Table 2.2. 

from the alignments until only paIrs of identical sequences remained. Maximum 

likelihood and maximum parsimony trees were constructed utilizing (Phylogenetic 

Analyses Using Parsimony; PAUP* version 4.0 and other methods) (Swofford 1998). 

Most parsimonious trees were obtained using heuristic searches. Branches were 

collapsed if their minimum length was zero; character state optimalisation was done 

using accelerated transformation, multistate taxa were treated as polymorphisms and 

gaps, if occurring were treated as missing data. Heuristic searches were carried out by 

keeping best trees only; trees were started by random step-wise addition and tree-

bisection-reconnection branch-swapping, performing ten replicate runs. Bootstrap 

values associated to internodes were based on 1000 bootstrap replicates; each replicate 

was carried out as described for heuristic searchers with a single run per bootstrap 

replicate. 

Maximum likelihood trees were obtained as follows. Modeltest version 3.06 (Posada 

and Crandall 2001) was used to select optimal base substitution models and values for 

base composition, % invariable sites, and gamma shape parameter according to the 

Akaike information criterion (AIC). Maximum likelihood (ML) analyses of the 

alignments were performed under the full heuristic search option in PAUP* version 

4.0b 10 and were constrained with values obtained by Modeltest. Only best trees were 
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kept, trees were started by random step-wise addition and tree-bisection-reconnection 

branch-swapping, performing ten replicate runs. Bootstrap values associated to 

internodes were based on 1000 bootstrap replicates; each replicate was carried out as 

described for heuristic searchers with a single run per bootstrap replicate. 

2.2.4 Spore induction. For an explicit description of the identity of different species it 

is important to elucidate the differences in the life cycle patterns, in particular the sexual 

reproductive stage. Spore induction studies were done with two strains representative of 

each genetically distinct clade. Sexual reproduction experiments were carried out as 

described in French and Hargraves (French and Hargraves 1980) by simple reduction of 

the nutrient levels in the medium, designated as "T" medium (containing ammonia at 15 

J.lM; phosphate at 7 J.lM; silicate at 50 J.lM; trace metals, vitamins, and Trizma as in f/2) 

(Guillard and Ryther 1962), with at a slightly lower temperature of 16°C using cool 

fluorescent light of 80 J.lmol photons m-2s- l intensity and a 12: 12 L:D cycle. 

The strains submitted to these reduced nutrient conditions (Table 2.1) were observed 

regularly in the LM for 20 days. On cultures where spore formation was observed, 

pictures were taken in the light microscope and samples were prepared for SEM 

observations as described above. 

2.3 Results 

Five distinct species were recognized in the material mainly from the GoN and also 

including the only strain available in a culture collection. In the following a 

morphological description and a taxonomic assignment is presented for each of the 5 

species. The diagnoses of already known species were emended to include new 

observations and make them comparable among the species. 
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2.3.1. Leptocylindrus aporus (French and Hargraves 1986) Nanjappa et Zingone, comb. 

nov. (Fig. 2.1, A-H) 

Syn: Leptocylindrus danicus var. apora Hargraves 

Emended diagnosis: Cells cylindrical, 3.5-10.6 flm In diameter, 12.5-33 flm in 

pervalvar length, solitary or forming short filamentous chains. Plastids few to many, 

generally ovoidal. Valves slightly convex or concave, with a central annulus delimiting 

a group ofporoids. No distinct sub-central pore. Poroid areolae (10-14 areolae in 1 flm) 

in radiating striae (10-23 striae in 1 flm) Mantle curved, with poroid areolae in parallel 

striae (8-10 striae in 1 flm). Short triangular, often blunt spines along a ring at the 

margin between valve face and mantle. Girdle consisting of elongated and nearly 

trapezoidal half bands, with irregular rows of areolae along their short axis. Resting 

spores not observed. 

Holotype: Figure 6 J in Hargraves and French 1986 

Isotype: A permanent slide of strain SZN-B650 deposited in the SZN Museum as no. 

SZN-B650-01. 

/conotype: Figure 2.1, A-H 

Materials examined: Strains SZN-B650, SZN-B707 and SZN-B714. 

Type locality: Narragansett Bay, Rhode island, USA (41 °30.3'N, 71 °25.2'W) 

Description. The cells are cylindrical, 4-7.5 flm in material from the GoN, and joined 

by their faces (Fig. 2.1, A-D, and Table 2.4) to form filamentous colonies of up to 25 

cells. Solitary cells are also often found in both culture and nature. Each cell contains 

3-13 plastids (even one or two in natural samples during summer), which are ovoid and 

rarely discoid or elongated and are distributed along the periphery of the cell (Fig. 2.1, 

A-C). The valve faces are slightly convex or concave, and include a slightly denser 

central area with a group of areolae delimited by a thickened hyaline annulus (Fig. 2.1, 

E and G), from which striae of areolae (l0-14 in 111m, Table 2.5) radiate towards the 
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Table 2.4. Light microscope morphometric characters in Leptocylindrus and Tenuicylindrus species. 

';'~J;tj{iiliti:;;: :' 
mm-max 4-7.5 3-8 3-13 3-15 2-2 

Cell diameter (flm) mean± SD 5.4 ± 1.38 6 ± 1.52 7.2 ± 2.53 9.3 ± 4.54 2±0 
n 50 55 50 40 40 

min-max 12.5-33 22-65 22-75 30-90 23.6-50 
Perivalvar length (flm) mean± SD 21.9 ± 5.37 40.1 ± 9.54 35 ± 10.11 54.8 ± 14.95 36.1±7.16 

n 50 55 50 40 40 
mm-max 3-13 3-11 7-36 9-55 2-2 

Chloroplast number mean± SD 7±2.6 7.9 ± 3.43 15.6 ± 6.34 25.6 ± 14.22 2±0 
n 50 55 50 40 40 

mm-max 2-6 2-14 2-6 2-6 7-17.8 
Chloroplast size mean± SD 3.21 ± 1.0 4.1±2.82 2.3±0.61 3 ± 1.33 10.91 ± 2.39 

n 70 100 80 166 80 
mm-max 2-24 2-68 2-165 2-162 2-14 

Cells per colony mean± SD 7.52 ± 4.5 8.5 ± 21.25 39.22 ± 34.1 20.31 ± 29.84 4.1 ± 1.71 
n 100 100 100 100 153 
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Table 2.5. Electron microscope morphometric characters in Leptocylindrus and Tenuicylindrus species. 

=:itiij,,,l~jlijr "'-"i.,;iiilgii:i,$-" 1 
Cell Cell diameter mm-max 5.00-7.44 4.54-7.70 4.53-7.40 4.30-15.42 1.30-2.10 

mean± SD 5.95 ± 0.73 6.84 ± 0.85 5.82 ± 7.40 10.52 ± 4.43 1.71 ± 0.25 
N 14 16 9 16 16 

Valve face Valve face diameter mm-max 3.04-5.04 3.03-5.00 3.65-6.52 3.04-12.22 1.11-1.96 
(pm) mean± SD 4.26± 0.52 4.51 ± 0.56 4.77 ± 0.83 8.77 ± 3.64 1.54 ± 0.22 

N 14 16 9 16 16 
Valve face to mantle mm-max 2.90-8.40 2.40-4.04 5.60-11.45 5.30-14.30 
ratio mean± SD 5.32 ± 1.52 3.20 ± 0.42 7.40 ±1.93 8.50 ± 2.51 

N 13 14 7 16 
Striae (1 pm, Centre) mm-max 10-23 10-14 11-16 6-11 13-18 

mean± SD 15.36 ± 4.25 11.80± 1.15 12.60 ± 1.95 8.38 ± 1.26 15.77 ± 1.36 
N 14 16 5 16 13 

Striae (1 pm, End) mm-max 9-13 6-10 8-13 7-11 7-11 
mean± SD 10.21 ± 1.31 8.19± 1.17 10.38 ± 1.51 8.40 ± 1.06 8.71 ± 1.14 

N 14 16 8 16 14 
Areolae no. (1 pm) mm-max 10-14 10-14 18-30 10-14 12-22 

mean± SD 12.57 ± 1.22 11.91±1.13 21.50 ± 4.00 12.31 ± 1.01 15.71 ± 3.29 
N 14 16 8 16 14 

Radial areolae diameter mm-max 0.02-0.035 0.02-0.04 0.014-0.03 0.02-0.055 0.02-0.03 
(pm) mean± SD 0.03 ± 0.001 0.03 ± 0.005 0.025 ± 0.005 0.032 ± 0.006 0.025 ± 0.004 

N 42 42 21 61 42 
Flaps (1 pm) mm-max 1.07-1.78 1.17-3.36 0.88-2.18 0.32-1.50 2.11-3.55 

mean± SD 1.46 ± 0.20 1.78 ± 0.57 1.66 ± 0.51 1.03 ± 0.51 2.76 ± 0.48 
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N 14 13 6 8 16 
Subcentral pore mm-max 0.056--0.13 0.09-0.127 
diameter (11m) mean±SD absent absent 0.089 ± 0.03 0.113 ± 0.01 absent 

N 13 13 
Annulus Dia (11m) mm-max 0.11-0.46 0.20-0.57 0.38-0.54 0.50-1.20 0.11-0.26 

mean±SD 0.29 ± 0.13 0.40 ± 0.12 0.45 ± 0.07 0.77 ± 0.24 0.19 ± 0.06 
N 11 12 7 15 13 

Total areolae number mm-max 5-25 12-18 22-40 14-50 8-16 
mean± SD 13.83 ± 7.55 14.67 ± 1.67 30.0 ± 5.92 34.20 ± 11.71 10.62 ± 2.33 

N 12 12 7 15 13 
Central areolae mm-max 0.02-0.04 0.020-0.035 0.03-0.04 0.03-0.055 0.02-0.03 
diameter (11m) mean±SD 0.03 ± 0.002 0.029 ± 0.003 0.035 ± 0.003 0.07 ± 0.16 0.025 ± 0.003 

N 42 42 21 33 42 
Valve Height (11m) mm-max 0.5-1.07 1.1-1.66 0.38-0.90 0.27-1.80 0.23-0.4 
mantle mean±SD 0.85 ± 0.25 1.42 ± 0.19 0.68 ± 0.21 1.14 ± 0.55 0.316 ± 0.048 

N 13 15 7 16 42 
Striae (rows in 111m) mm-max 8-10 8-11 10-13 7-10 

mean±SD 9.69 ± 0.63 8.80± 0.94 10.86± 1.21 8.31 ± 0.87 absent 

N 13 15 7 16 
Radial areolae (Total) min-max 7-14 14-21 12-20 9-20 

mean±SD 10.77 ± 1.54 16.53 ± 2.29 15.00 ± 2.76 14.94 ± 3.60 scarse 

N 13 15 6 16 
Areolae diameter (11m) mm-max 0.03-0.045 0.03-0.045 0.036-0.04 0.035-0.04 

mean±SD 0.04 ± 0.014 0.036 ± 0.004 0.038 ± 0.001 0.04 ± 0.002 
N 42 42 21 29 

Copulae Length (11m) mm-max 7.6-15.9 8.41-20.5 6.66-17.7 11-28.8 3.61-5.58 
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mean±SO 10040 ± 3.23 12.28 ± 2.28 13.66± 4.13 20.45 ± 5.08 4.39 ± 0.69 
N 5 19 5 17 10 

Width (Ilm) mm-max 1.2-2.1 0.90-3.65 1.2-3.39 2.5-6.5 1.51-2.34 
mean± SD 1.62 ± 0.37 2.07 ± 0.78 2.10 ± 0.78 3.70 ± 0.88 1.82 ± 0.30 

N 5 20 10 17 10 
Striae (rows in 1 I'm) mm-max 11-16 9-15 10-15 8-12 14-15 

mean±SD 13.60 ± 1.95 11.70 ± 1.69 12.50 ± 1.72 10.71 ± 0.99 14.60 ± 0.52 
N 5 20 10 17 10 

Areloae number (1 in JIm) mm-max 11-13 10-16 11-18 11-14 15-17 
mean± SO 12.8± 1.10 12.70 ± 1.53 14.10 ± 2.60 11.88 ± 0.93 15.60±1.17 

N 5 20 10 17 10 
mm-max 0.03-0.045 0.0215-0.035 0.03-0.05 0.03-0.04 0.032-0.045 

Areolae diameter (Ilm) mean± SO 0.036 ± 0.004 0.032 ± 0.001 0.031 ± 0.09 0.037 ± 0.002 0.04 ± 0.004 
N 42 41 31 40 42 

All information is from culture material 
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mantle, where the areolae become less dense and smaller (Fig. 2.1, E and G; Table 2.5). 

The valve surface is smooth except for a ring of spines or flap-like, triangular structures 

at the junction of the valve face with the mantle (Fig. 2.1, D-G). The valve mantle is 

smooth and has parallel striae (8-10 J,lm-1
) of round to rectangular areolae (Fig. 2.1, F 

and G). The mantle evenly curves from the valve face to join the valvocopula (Fig. 2.1, 

E-G). The cell girdle is made of thin, nearly trapezoidal half bands. A thin hyaline 

ridge runs parallel and close to the margins of the three shorter sides of the band, 

delimiting one or a few parallel rows of areolae (Fig. 2.1, H). At times the ridge is only 

visible along the two oblique sides of the band. Crosswise oriented striae are present on 

the bands at a density of 11-16 in 1 J,lm, becoming less regular and dense towards the 

ridge (Fig. 2.1, H). Vegetative cell size expansion through auxospore-like structures 

occurred in cultures growing at constant rate. No spore formation was observed under 

nutrient depletion conditions. 

2.3.2. Leptocylindrus convexus Nanjappa et Zingone, sp. nov. (Fig. 2.2, A-J) 

Diagnosis. Cells cylindrical, 3-8 J,lm in diameter, 22-65 J,lm in pervalvar length, 

forming filamentous chains or often found in couples. Plastids few, ellipsoidal

lanceolate and elongated along the pervalvar axis, often located in the central part of the 

cell. Valve faces slightly concave or convex. Annulus occasionally seen as an irregular 

hyaline ring delimiting a number of areolae in the centre of the valve face. No distinct 

sub-central pore. Poroid areolae (10-14 in 1 J,lm) on the valve face in radiating striae 

(10-14 in 1 J,lm). Mantle wide, slanting abruptly from the valve face margin towards the 

valvocopula, with areolae in parallel rows (8-11 in 1 J,lm). Ring of short, triangular and 

often blunt spines at the junction of valve face and mantle. Girdle bands nearly 

trapezoidal half-bands, with irregular crosswise rows of areolae. Resting spores not 

observed. 
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Holotype: A permanent slide of strain SZN-B781 deposited at the SZN Museum as no. 

SZN-B781-01. 

lconotype: Fig. 2.2, A-J 

Materials examined: Strains SZN-B781 and SZN-B772. 

Type locality: GoN, Italy (South Tyrrhenian Sea, Mediterranean Sea). 

Etymology: The species epithet convexus (convex) refers to the shape of the valve. 

Description. The cells are 3-8 Ilm in diameter, 22-65 Ilm in pervalvar length, and join 

by the valve face to form short filaments generally of 2 or 3 cells (Fig. 2.2, A-C and 

Table 2.4). Chains of up to 68 cells were occasionally observed, at times in gently 

undulated or rarely spiralling chains. Each cell possesses few (3-11), linear or elliptical

lanceolate plastids (Fig. 2.2, A-C) up to 10-15 Ilm long in thin (3--4 Ilm diameter) cells. 

The plastids are often arranged in a star-like pattern around the central nucleus (Fig. 2.2, 

C). Valves are either convex or concave, with a markedly thicker, electron-dense central 

part and an irregular, hardly visible central annulus (Fig. 2.2, E and G). Striae of areolae 

radiate from the central part of the valve and generally continue across the mantle, 

where they run in parallel rows of round to rectangular areolae (Fig. 2.2, E and G, and 

Table 2.5). Spines or flap like, triangular structures are seen at the margin of the valve 

face, but they are generally blunter and denser than in other species (Fig. 2.2, F). The 

valve mantle is wide and slanting towards the valvacopula. This gives a markedly 

convex outline to the whole valve (Fig. 2.2, D and F), resulting in a pronounced 

constriction at the junction between sibling cells, which is also discernible in the light 

microscope (Fig. 2.2, C). Copulae are made of half bands, nearly trapezoidal (Fig. 2.2, I 

and J) or rarely ribbon-like (Fig. 2.2, H), whose width at times decreases from the valve 

towards the mid of the girdle. A thin hyaline ridge runs parallel to the shorter sides of 

the band, at times only seen along the two oblique ones, delimiting one or a few parallel 

rows of areolae (Fig. 2.2, H-J, Table 2.5). Crosswise oriented striae are present on the 

bands at a density of 9-15 in 1 Ilm, becoming less regular and dense towards the ridge 
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central area (arrowhead). Scale bar, 1 f.lm. (H, I and J) Nearly trapezoidal copulae, with different size and 

shape; note the almost continuous hyaline line close to the borders (arrowheads). Scale bar, 1 f.lm. 

(Fig. 2.2, J). Resting spore formation was not observed in nutrient depleted media. Cell 

enlargement was not directly observed either, although size did vary over the time in 

individual cultures. 

2.3.3. Leptocylindrus danicus Cleve 1889 (Fig. 2.3, A-I and 2.4 A-F) 

Emended diagnosis. Cells cylindrical, 4.5-7.4 ).tm in diameter, forming filamentous 

colonies. Plastids numerous, lens-shaped or ellipsoidal. Valves with convex or concave 

faces and a central annulus delimiting a group of poroid areolae. Distinct sub-central 

pore adjacent to the annulus. Poroid areolae (18-30 in 1 /lm) arranged in radiating striae 

(11-16 in 1 /lm). Mantle evenly curving proximally and continuing almost 

perpendicular to the valve face distally. Ring of short, triangular and often blunt spines 

at the junction of valve face and mantle. Girdle comprised of elongated, nearly 

trapezoidal half bands, with areolae along irregular crosswise striae. Auxospore nearly 

spherical, smooth, covered with weakly silicified circular plates. Spores semi-globular, 

composed of two unequal valves bearing triangular or pyramidal spines, with smooth or 

at times serrated margins. 

Neotype: A permanent slide of strain SZN-B650 is deposited in the SZN Museum as no. 

SZN-B650-0 1. 

Jconotype: Figure 2.3, A-I 

Materials examined: Strains SZN-B650, SZN-B707 and SZN-B714. 

Type locality: Kattegat Bay. 

Description. The cells are 3-13 /lm in diameter and 22-75 !Jll1 in pervalvar length 

(Table 2.4), and form filaments often composed of hundreds «165, Table 2.4) cells. 

Each cell possesses many (7-36) discoid, rarely ovoid plastids (Fig. 2.3, A and B), 

which are regularly distributed across the pervalvar axis along the cell periphery. The 
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valve faces are convex or concave and have a slightly more silicified central area, with a 

group of areolae delimited by a hyaline annulus (Fig. 2.3, F and G). On the valve, the 

striae originate from the central annulus and run across the mantle, at times splitting into 

two half-way on the valve face (Fig. 2.3, F). The sub-central pore is conspicuous, 0.06-

0.13 J.lm, with a hyaline margin which is also visible on the internal surface of the valve 

(Fig. 2.3, G) and is generally located adjacent to the hyaline ring (at least in 80% of the 

observed valves). A circle of spines or flap-like, triangular structures are found at the 

margin of the valve face (Fig. 2.3, C-E). The mantle bends proximally, and then runs 

almost perpendicular to the valve face towards the valvo copula (Fig. 2.3, C). It is 

perforated by parallel striae of round areolae, which almost always are in continuity 

with those of the valve face (Fig. 2.3, D and F). The girdle consists of nearly trapezoidal 

half-band segments, with irregular crosswise striae of poroid areolae. A thin hyaline 

ridge runs parallel to the margins of the two oblique sides of the copulae (Fig. 2.3, H 

and I), while one or more irregular ridges are seen at times along the shorter of the two 

parallel sides. Crosswise or obliquely oriented striae (10-15 in 1 J.lm) are present on the 

bands, becoming less regular towards the ridge (Fig. 2.3, H and I). Under nutrient

depleted conditions, spherical auxospores covered by siliceous scales (Fig. 2.4, A) are 

produced which tum into semi-globular spiny spores (Fig. 2.4, B and C). Each spore is 

composed of two unequal valves, a bigger semi-circular epivalve (Fig. 2.4, C and E) and 

a relatively smaller hypovalve (Fig. 2.4, D). Both the epivalve and hypovalve have 

triangular or pyramidal spines which have smooth or at times branched or serrated 

margins (Fig. 2.4, D-F). 
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2.3.4. Leptocylindrus hargravesii Nanjappa et Zingone sp. nov. (Fig. 2.5, A-K and 2.6, 

A-D) 

Diagnosis. Cells 3-15 J.lm in diameter, with heavily silicified, cylindrical frustules, 

joined to form filamentous chains. Plastids numerous, lens-shaped to ellipsoidal. 

Valves with convex or concave faces and a central annulus delimiting a group of 

poroids. Distinct sub-central pore generally not adjacent to the annulus. Poroid areolae 

(10-14 in 111m) arranged in radiating striae (6-11 in 111m), in most cases interrupted 

before reaching the mantle. Mantle evenly curved proximally, almost perpendicular to 

the valve face distally. Ring of short, triangular and often blunt spines at the junction of 

valve face and mantle. Girdle comprised of elongated, often nearly trapezoidal half

bands with areolae along irregular crosswise rows. Auxospore nearly spherical, smooth, 

covered with weakly silicified circular plates. Spores semi-globular, composed of two 

unequal valves. Spore valves with pyramidal spines with smooth or at times serrated 

margms. 

Holotype: A permanent slide of strain SZN-B781 has been deposited in the SZN 

Museum as no. SZN-B781-01. 

!conotype: Figure 2.5, A-K and 2.6, A-D. 

Materials examined: Strains SZN-B781, SZN-B772 and SZN-B773. 

Type locality: GoN, Italy (South Tyrrhenian Sea, Mediterranean Sea). 

Etymology: The species is dedicated to Paul Hargraves, who greatly contributed to the 

understanding of the diversity and life cycle of the genus Leptocylindrus. 

Description. The cells are 3-15 J.lm in diameter and 30-90 J.lm in pervalvar length 

(Table 2.4), with a relatively stout frustule (Fig. 2.5, A-C). In culture, filamentous 

chains may be composed of up to 162 cells (Table 2.4). Each cell possesses numerous 

(9-55, Table 2.4), discoid or ellipsoidal plastids, regularly distributed along the cell 

periphery (Fig. 2.5, A and B). Valves have concave or convex valve face. The areolae 
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variable position in culture material is at times observed for this pore, which can rarely 

be found close to the valve face margin (Fig. 2.5, G, Hand J). Marginal spines or flap 

like, triangular structures are present along the border between mantle and valve face 

(Fig. 2.5, C). The mantle is set off from valve face at an angle of about 90°, proximally 

bending towards the valve face (Fig. 2.5, C and D). It has round to rectangular, areolae 

arranged in parallel striae, which often are not continuous with those of the valve face. 

The girdle is composed of numerous pointed, nearly trapezoidal bands. A thin hyaline 

ridge runs parallel to one margin of the band, generally opposite to the longer side, 

delimiting one or a few parallel rows of areolae (Fig 2.5, I and K). A ridge at times can 

be seen only along the oblique sides of the band. Crosswise oriented striae are present 

on the bands at a density of 8-12 in 1 ~, becoming less regular towards the ridge (Fig. 

2.5, J). 

Spiny, semi globular spores are formed upon induction by simple deprivation of 

nutrients (Fig. 2.6, A-I). These spores develop inside smooth auxospores, which show 

disc-like scales. Each resting spore consists of two unequal sized valves, a lager 

epivalve and a smaller hypovalve (Fig. 2.6, B). Both valves are heavily silicified and 

covered with pyramidal spines with smooth or at times serrated margins and residual 

scale fragments sticking to them. The hypovalve can be smoother than the epivalve, and 

has a marginal band covered with granules arranged in regular rows, which fits into the 

epivalve (Fig. 2.6, B and C). 

2.3.5. Tenuicylindrus Nanjappa et Zingone gen. nov. 

Tenuicylindrus belgicus Nanjappa et Zingone, comb. nov. (Fig. 6, A-J) 

Synonym: Leptocylindrus belgicus Meunier 1915 

Diagnosis: Cylindrical cells, 2-2.5 ~m in diameter, forming short chains, slightly 

undulating in culture material but always straight in nature. Two thin, elongated, leaf

shaped plastids per cells. Two granules visible at each end of the cells, under the valve 
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face. Circular valves, with radial striae (7-11 in 1 J1m) of pores. Mantle perpendicular 

to the valve face, smooth and with scarce pores, proximally ending with a zig-zag 

margin joining the valve face rim. Triangular teeth-shaped processes at the boundary 

between mantle and valve faces, closely fitting those of the sister cells. Girdle 

composed of lip-shaped half bands with longitudinal rows of pores. Spores not 

observed. 

Holotype : Plate XII, Fig. 4 in Meunier 1915 

Epitype: A permanent slide of strain SZN-b has been deposited in the SZB Museum as 

no. SZN-B739. 

Iconotype: Figure 2.7, A-J 

Materials examined: Strains SZN-B739, SZN-B755 and SZN-B756. 

Type locality: Belgian waters. 

Etymology: The genus name refers to the extremely thin (tenuis in Latin) frustules of 

this species. The species epithet assigned by Meunier (1915) refers to the type locality 

of the species. 

Description. Cells are cylindrical, with small and scarcely variable diameter (2-2.5 Ilm) 

and relatively long pervalvar axis (23-50 Ilm, Table 2.4). Each cell has two long and 

narrow leaf-like plastids, positioned on either sides of the nucleus along the girdle (Fig. 

2.7, A and B). Cells are joined by the valves to form long filaments, which in natural 

samples are always straight and comprised of two or three cells, whereas in culture they 

are often slightly curved or undulated and are comprised of many cells (2-14 cells per 

colony, Table 2.4). The frustule is delicate and only requires a weak acid treatment to 

eliminate the organic matter and preserve the morphological features. The valve face is 

either convex or concave (Fig. 2.7, C and D), the concave valves fitting the convex ones 

of the sister cell in the chains. The central area of the valve has a group of areolae that at 

times is ill defined or may be delimited by a hyaline, poreless ring. Over the valve face, 

round areolae of variable size are placed along radiating striae (Fig. 2.7, F). The mantle 
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is smooth, with very sparse areolae, and lies perpendicular to the valve face plane. The 

margin towards the valvacopula is smooth, while a sharp, zigzag-edged margin is 

present towards the valve face, conferring the valve a crown-like shape. The zigzag 

margin of one cell perfectly fits that of the adjacent cell, thus producing chains with no 

constrictions at the boundary between two sister cells (Fig. 2.7, E). The girdle bands 

have pointed ends and often show a lip-like outline. They bear longitudinal, more or less 

regular, striae of areolae. One edge of the band is smooth while the other edge is finely 

serrated (Fig. 2.7, H, I and K). Cultured cells maintain a rather constant cell size range, 

with no indication of vegetative autoenlargement or of auxospore formation. Spores 

were not observed under nutrient-deprived conditions. 

2.3.6. Seasonal distribution 

Based on the time the 85 strains were brought in cultivation and on their genetic 

identification (Table 2.1), the seasonality for the five species in the GoN was 

reconstructed. This was possible considering that isolation of Leptocylindrus and 

Tenuicylindrus strains was regularly performed over more than one year, and was also 

accompanied by careful observations of the net samples on a weekly basis. For some 

weeks of the year Leptocylindrus spp. cells in net samples were scarce and culturing 

was unsuccessful. Microscopic observations on those rare cells often did not allow 

species identification thus generating gaps in the seasonal distribution map. 

Leptocylindrus aporus strains were all retrieved from mid-July to mid-November, 

whilst L. convexus strains were found from January to towards the end of March. 

Leptocylindrus danicus showed the longest period of occurrence across seasons, with 

strains retrieved from mid-November to mid-July, whilst L. hargravesii were only 

retrieved in December and January. Finally, Tenuicylindrus belgicus strains were 

retrieved from the end of August to the beginning of November. The period of 

Chapter 2. Taxonomy 53 



occurrence of the individual species is plotted in Fig. 2.8 against the temperature and 

day length value that are typical for the seasonal cycle at station L TER-MC. 
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- Leptocylindrus aporus - Leptocylindrus convexus Leptocylindrus danicus 
- Leptocylindrus hargravesii - Tenuicylindrus belgicus 

Fig. 2.8. Temporal distribution of the Tenuicylindrus and Leptocylindrus species at the station LTER-MC, 

in the Gulf of aples, plotted on a temperature/photoperiod diagram. 

2.3.7. Molecular phylogenies. Information about the aligned sequences of the nuclear 

encoded SSU rDNA, the partial LSU rDNA and the ITS region, as well as the plastid 

encoded SSU rDNA rbcL and psbC of the various Leptocylindrus and Tenuicylindrus 

strains have been listed in Table 2.1. The ITS 1 and ITS2 sequences within the ITS 

region were unalignable among different species. For L. danicus and L. hargravesii 

only, however, the ITS sequences, were al ignable and differed at least at 29 positions . 

ITS sequences within each of the species remained identical. The 5.8S rDNA within the 

ITS region aligned well across all the Leptocylindrus sequences, but also this conserved 

region differed among the species. 
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Overviews of the phylogenetic relationships among the Leptocylindrus and 

Tenuicylindrus species inferred from the six different molecular markers are shown in 

Fig. 2.9 (as cladograms) and Fig. 2.10 (as phylograms). These trees resulted from 

analyses using only the sequences of Leptocylindrus and Tenuicylindrus and the latter 

have been designed as the outgroup. The number of parsimonious informative 

characters associated with internodes and end-branches has been represented in the 

cladograms in Fig. 2.9, bootstrap support for clades is presented in the phylograms in 

Fig. 2.10. Information about the alignment lengths and numbers of parsimonious 

informative positions is presented in Table 2.6. Although the number of positions 

varied among the different regions, almost all the regions contained sufficient 

information to distinguish the studied species with plastid SSU rRNA region providing 

the least information (57 positions). The summary of base substitutions inferred through 

the best fit model for different regions has been presented in the Table 2.7. All the trees 

showed essentially the same phylogenetic relationships, with L. hargravesii as sister to 

L. danicus and L. aporus as sister to L. convexus. 

The following trees were inferred with sequences of Leptocylindrus, Tenuicylindrus and 

other genera. Selected sequences among the latter were designed as outgroup. A 

neighbour joining (NJ) tree showing the position of the two genera among numerous 

genera throughout the diatom diversity, other autotrophic Stramenopiles and 

heterotrophic Stramenopiles is shown in Fig. 2.11. The maximum likelihood (ML) tree 

inferred from the nuclear SSU rDNA sequences is shown in Fig. 2.12, the nuclear 

partial LSU ML-tree is shown in Fig. 2.13, the plastid SSU rDNA ML-tree is shown in 

Fig. 2.14, the psbC ML-tree is shown in Fig. 2.15, the rbcL ML-tree is shown in Fig. 

2.16. In the nuclear-encoded SSU rDNA tree (Fig. 2.12), Leptocylindrus was sister to 

Tenuicylindrus (Lineage I). Within Leptocylindrus, the clade with L. danicus and L. 

hargravesii (Lineage II) branched off first, followed by a clade with L. aporus. 

Leptocylindrus minimus was recovered as sister to L. convexus. The latter three species 
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Table 2.6. DNA markers used in this study, their alignment lengths and the parsimony informative positions. 

Nuclear SSU rONA 1618 484 
Partial nuclear LSU rONA 679 354 
5.8S rONA 146 42 
ITS Unalignable* 
Partial plastid SSU rDNA 752 57 
rbcL 1435 345 
psbC 742 338 

* total length of sequences obtained is circa 620 bp 

Table 2.7. Base composition and estimated base substitution models as inferred with Modeltest (cit) for each ofthe alignments used in this study. 

Nuclear SSV rONA 0.2677 0.1863 0.2551 0.8212 2.5788 1.3773 0.7444 4.0728 0.3654 0.5570 
Nuclear LSU rONA 0.2320 0.1818 0.2980 0.9427 2.6720 1.8988 0.8757 5.9041 0.2110 0.6765 
5.8S rONA 0.2500 0.2500 0.2500 0.7959 7.4751 3.9730 0.3001 7.4751 0.5585 equal 
ITS 0.2908 0.1961 0.2241 UA VA UA UA UA 
Plastid SSU rONA 0.2887 0.1839 0.2702 1.0000 4.2159 0.5664 0.5664 7.4776 0.7337 0.5289 
rbcL 0.2900 0.1551 0.2009 1.2564 4.9147 6.6717 1.7640 9.4251 0.4981 0.7194 
psbC 0.2353 0.1 051 0.2142 0.7892 5.2819 6.9855 0.6920 24.6727 0.6004 1.4849 
UA - unalignable data 
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Fig. 2.9. Maximum parsimony relationships inferred for each of the alignments used in this study for 

Tenuicylindrus and Leptocylindrus species. Values indicate the number of parsimonious informative 

characters. 

are designated from here onwards Lineage III. All clades within Leptocylindrus 

obtained high bootstrap support. The more extensive nuclear SSU tree in Fig. 2.11 

showed the same relationships. Leptocylindrus rninimus was missing in all other trees 

because only nuclear SSU rDNA sequence of this species was retrieved from GenBank. 
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Fig. 2.10. Maximum likelihood relationships inferred for each of the alignments used in this study for 

Tenuicylindrus and Leptocylindrus species. Bootstrap values have been generated with 1000 replicates. 

In the nuclear-encoded partial LSU-tree (Fig. 2.13), Leptocylindrus species grouped into 

a clade. Tenuicylindrus was not resolved as sister clade to Leptocylindrus, but bootstrap 

support for the basal clades in this tree was insufficient, thus not ruling out possible 

sister relationships between the two clades. All clades within Leptocylindrus obtained 

high bootstrap support. 
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Fig. 2.11. Neighbour joining tree inferred from SSU rDNA illustrating the relationship among 

Tenuicylindrus, Leptocylindrus species and other diatom groups. Bootstrap values have been generated 

with 1000 replicates. 
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Fig. 2.12. Maximum likelihood tree inferred from 1618 positions of the nuclear SSU rRNA of 

Tenuicylindrus, Leptocylindrus, and close groups including Bolidomonas mediterranea as outgroup. 
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Maximum likelihood tree for 28S rRNA 

Rhizosolenia setigera (AF289048) 

Helicotheca.tamesis (DQ400574) 

.-------------1 T. belgicus SZN-B739 

99 
100 

100 T. belgicus SZN-B755 

Syneropsis.hyperboreoides (AF417685) 

\ ~~ Fragilaria.capucina (AF417684) 

Attheya sp. ESlO (EF423426) 

C. contortus DH22 (EF423429) 

C. diadema DH21 (EF423433) 

Cyclotella quillensis L776 (AJ878498) 

00 Cyclotella cryptica CCMP 336 (AJ878483) 
100 

Thalassiosira sp. SZN-B101 (AJ633506) 

Thalassiosira rotula (AJ633505) 

71 Skeletonema costatum FDK230 (AB630064) 
661.---1 

ML 
MP 

100 
100 

100 
100 

100 
97 

Skeletonema dohrnii FDK231 (AB630065) 

Skeletonema menzellii FTK326 (AB630045) 

L. danicus SZN-B707 

,....-----1 L. danicus SZN-B650 

l gg L. hargravesii CCMP 1856 

L. hargravesii SZN-B781 

L. convex us SZN-B768 ,....----i 

L. convexus SZN-B770 

95 L. aporus SZN-B702 
96L.-____ ~ 

L. aporus SZN-B703 
- 0.05 substitutions/site L. aporus SZN-B743 

Fig. 2.13. Maximum likelihood tree inferred from 679 positions of the nuclear LSU rRNA of 

Tenuicylindrus, Leptocylindrus, and close groups including Rhizosolenia setigera as outgroup. 

In the plastid SSU rDNA tree (Fig. 2.14), Leptocylindrus and Tenuicylindrus were 

resolved close to Bolidomonas outgroup. Leptocylindrus aporus and L. convexus were 

resolved as sister species, though with low bootstrap support, and L. danicus and L. 

hargravesii were recovered together. Bootstrap support for most of the clades in this 

tree was low or insufficient, meaning that relationships remain unresolved. 
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ML tree for 16S rRNA 
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Fig. 2.14. Maximum likelihood tree inferred from 752 positions of the plastid SSU rRNA of 

Tenuicylindrus, Leptocylindrus, and close groups including Bolidomonas mediterranea as outgroup. 

In the psbC tree (Fig. 2.15), Leptocylindrus species grouped into a clade. Tenuicylindrus 

was not resolved as sister clade to Leptocylindrus, but bootstrap support for the basal 

clades in this tree was insufficient, thus not ruling out possible sister relationships 

between the two clades. All clades within Leptocylindrus obtained high (100%) to fair 

(70%) bootstrap support. 

In the rbcL tree (Fig. 2.16), Leptocylindrus speCIes grouped into a clade with 

Tenuicylindrus resolved as its nearest sister with weak bootstrap support (61-57%). 

Bootstrap support for the clades within Leptocylindrus was insufficient to high. 
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Fig. 2.15. Maximum likelihood tree inferred from 742 positions of the plastid psbC gene of 

Tenuicylindrus, Leptocylindrus, and close groups including Bolidomonas pacifica as outgroup. 
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Maximum likelihood tree for rbcL 
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Fig. 2.16. Maximum likelihood tree inferred from 1435 positions of the plastid rbcL gene of 

Tenuicylindrus, Leptocylindrus, and close groups including Bolidomonas mediterranea as outgroup. 

The comparison of the secondary structure of the ITS of the two cryptic species, L. 

danicus and L. hargravesii, showed three and one CBC and eleven and thirteen non-

CBC in ITS 1 and ITS 2 respectively. The comparison of the secondary structures of 

different species signifies no conservation in the structure. This means that the species 

divergence is very ancient and evolution has resulted in the completely different ITS 

structures for these species. 

2.4 Discussion 

2.4.1. Molecular phylogenies The study on morphological, molecular and life cycle 

characteristics of species in the genus Leptocylindrus, although spatially limited, has 

Chapter 2. Taxonomy 64 



shown that the species L. danicus, so far identified in the GoN as one of the most 

abundant planktonic diatoms, consist in fact of 4 distinct species which can be found 

over the years in the study area. One of these, L. aporus, was considered a variety of L. 

danicus, while two others, L. hargravesii and L. convexus are new to science. In 

addition, the present results also indicate that the actual L. minimus is not found in GoN, 

while the species so far identified under this name in the area is related to L. belgicus. 

The latter was so far considered as synonym of L. minimus but, in fact shows profound 

morphological and molecular differences from both L. minimus and all the other known 

species, indicating the need for the establishment of the new genus Tenuicylindrus to 

accommodate it. 

The taxonomic history of both genera, Leptocylindrus and Tenuicylindrus, i.e. of their 

type species, L. danicus and T. belgicus, is complicated, which affects to some extent 

the present definition of the two taxa, prompting some arbitrary and opportunistic 

choices in the amendment of their descriptions. The taxonomy of L. danicus starts with 

the misrepresentation of the frustule structure by Cleve (1889) based on material 

collected in his expedition in the Kattegat area (Chapter I). Cleve drew the valves as 

very convex, only contacting the next ones with a small surface or a point, which is 

rather unusual for Leptocylindrus. In addition, and in contrast with the description, the 

drawing showed some lines in the cingulum which would indicate that the band margins 

were at times visible. Later, Cleve (Cleve 1894) himself provided another description of 

the species as it was, in his words, "originally described from burnt and somewhat 

misshaped specimens". The preservation error was apparently mended and the re

description was: "cells cylindrical, with flat (dried convex) ends, forming filaments. 

Valves without processes or perceptible structure. - Connecting zone very thin, without 

annuli - Cell contents: a few scattered granular chromatophores. Diameter of the 

filament 0.01 mm. Length of the cell 0.03 to 0.06 mm". Gran (1912) undertook a study 

in the Kattegat bay and described Leptocylindrus resting spores as spiny and semi-
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circular, and produced through auxosporulation. This peculiarity was confirmed by 

more recent studies (Hargraves and French 1986) which also described the presence of a 

subcentral pore in the valve. Therefore, despite the initial uncertainty arising from a 

type material not representing the species correctly, there are several elements that 

concur to define the species L. danicus in modem terms. However, the finding of at 

least two very distinct genotypes sharing most of the features used for the definition of 

L. danicus poses further problems as to i) whether separate them as distinct species and 

ii) which would deserve the name L. danicus. One possibility is to consider one single 

species L. danicus, as a genetically diverse taxon. However, the differences among the 

two genotypes are small for SSU and ChI. 16S but considerable for all the other markers 

(LSU, ITS, rbcL), which are commonly used in species separation in most diatom 

genera, and these differences are also accompanied by some subtle morphological 

differences. For practical purposes, not to keep track of one genotype versus the other 

might cause confusion in interpreting results of future investigations on the species, e.g. 

in physiological or 'omic' studies. It appears then more convenient to attribute two 

distinct names to the two genotypes. The decision about which of the two deserved the 

name and the designation as neotype of L. danicus was arbitrary, though. Unsuccessful 

attempts were made to retrieve the type material, or material collected in the same 

cruise by Cleve, in the Swedish Museum of Natural History and Diatom Herbarium, 

The Academy of Natural Sciences, Philadelphia, USA as well as at the National 

Botanical Garden of Belgium, where Cleve's materials are maintained. The final choice 

was hence made based on the higher abundance of one of the two genotypes in the 

study area, which also contributed to select it for further metabolomics (this study) and 

transcriptomic analyses (in progress). 

It may also be considered arbitrary to establish the genus Tenuicylindrus with T. 

belgicus (basionym L. belgicus) as the type species, based on the limited information 

presented in the original description, and with a poor illustration. On the other hand, the 
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resemblance with the material examined from the GoN is evident in both the drawing 

and description, especially since the presence of the subvalvar granuli which are typical 

of the material from the GoN are also perceivable in the illustration by Meunier (1915). 

By contrast, the designation of the new combination of L. aporus based on the 

description of L. danicus var. apora is supported by morphological and life cycle 

characteristics as well as by the presence in GenBank of one sequence obtained from a 

strain apparently used by Hargraves and French (1986) in the description of this 

organism (L. Medlin pers. com.), which is identical to the corresponding one of the 

material examined in the present study. 

2.4.2. Morphological and lifecyc/e features of Tenuicylindrus and Leptocylindrus 

species. Morphological features in diatom species are historically studied using light 

microscope and this provides little information of the variation that exists in a species. 

For this reason, I was interested in studying the genetic diversity of the species. 

Leptocylindrus possesses, perhaps, the simplest known diatom ultrastructure, and until 

now was considered to comprise of L. danicus and L. minimus. Vegetative cells of these 

species are morphologically similar and the main distinction among them is the cell 

size, plastid number and shape, and spore morphology. The results of the morphological 

and phylogenetic analyses in this study suggest instead the existence of six taxa 

associated with the genus Leptocylindrus; these can be arranged into three main 

morphological groups, which correspond to the Lineages I to III identified in the 

phylogenetic tree. These groups are morphologically and physiologically quite distinct 

from each other, whereas interspecific differences within the groups are generally more 

subtle. A comparison between these species is presented in the Table 2.8 and in Fig. 

2.17. 

The species T. belgicus comb. nov., (Lineage I) is morphologically markedly different 

from Leptocylindrus although L. belgicus was considered as synonym of L. minimus. In 
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light microscopy the two species are indeed similar in size. Tenuicylindrus belgicus 

possesses two elongated plastids and so does L. minimus as described in the literature 

(Gran 1915, Hasle 1975, Hargraves 1990, Rivera et al. 2002). Thus, neither size nor 

plastid number can be used as distinguishing features in LM. However, the presence of 

two granules on both side of the cell in T. belgicus provides an alternative means to 

discriminate the species in the light microscope. The ultrastructure of Tenuicylindrus 

belgicus with respect to valve and girdle bands is instead peculiar and quite dissimilar to 

any of the species in Leptocylindrus. The valve mantle of T. belgicus is perpendicular to 

the valve face, while in all Leptocylindrus species it lies proximally in the same plane 

with the valve face, marginally bending and becoming perpendicular to it. The mantle 

of T. belgicus has one free end with a zig-saw format, connecting the other valve 

mantle, and the opposite end is attached to valvacopula, whilst in Leptocylindrus both 

mantle margins are smooth and attached to the valve face and valvacopula. The short 

interlinking, triangular processes involved in the tight association with neighbouring 

cells, have been documented in some fossil records (Crawford and Sims 2008). The 

intercalary bands in T. belgicus have often a lip-like outline with pointed ends, while in 

Leptocylindrus they are nearly trapezoidal or collar-like. All these differences in a range 

of characters that are rather homogenous across Leptocylindrus species support the 

establishment of a new genus, Tenuicylindrus, which is also confirmed by large 

molecular phylogenetic distances and life cycle data. Indeed another peculiarity of T. 

belgicus is that it maintains a constant cell size throughout the life cycle and hence does 

not need cell expansion. This kind of constant cell size has also been observed in some 

other diatoms including for instance Phaeodactylum tricornutum (De Martino et al. 

2007). 

The next two lineages are both assigned to the monophyletic genus Leptocylindrus. 

Within this, the two members of Lineage II, L. danicus and L. hargravesii, are closely 

related and characterized by the presence of a conspicuous sub-central pore, although 
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Table 2.8. Main morphological characters distinguishing Leptocylindrus and Tenuicylindrus species. 

Cell diameter (Jlm) 4-7.5 3-8 3 -13 3 -15 2 1.5 - 4.5 2-5.2 

Cell length (11m) 12.5 - 33 22-65 22-75 30-90 23.6- 50 
Chloroplast no. 3 -13 3 -ll 7 -36 9-55 2 1-2 1-2 

Chloroplast shape discoid, ovoid ovoid to elongated discoid discoid elongated elongated elongated 

Cells per colony 2-24 2-68 2-165 2-162 2 -14 
Valve to mantle ratio 2.9- 8.4 2.4 - 4.04 5.6 - 11.45 5.3-14.3 
Constriction at the 

small marked small small absent small 
cell junction 

spiny, globular 
Auxospores and 

not observed not observed 
semi globular, semi globular, 

not observed 
with a not 

resting spores spiny spmy cylindrical described 
neck 

Subcentral pore on 
absent absent 

adjacent to slightly away 
absent absent absent 

valve circular ring from circular ring 
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hyaline ring in 80% of cells in healthy cultures, whilst in L. hargravesii, the pore was 

never observed adjacent to the hyaline ring. This difference however is difficult to 

appreciate in spoiled cultures of both species, where the pore position on the valve 

varies between close to the annulus and valve face border, i.e. adjacent to the mantle. 

Other ultrastructural differences between the two species concern morphometric 

characteristics, i.e. the striae and areolae density in the centre of the valve face and the 

striae density on the mantle are higher in L. danicus than in L. hargravesii, with scarce 

or no overlap in the ranges between the two species. The annulus is also larger in L. 

hargravesii, where the centre of the valve appears more densely silicified. Indeed L. 

hargravesii strains appears to be considerably more silicified and stouter than L. 

danicus, and accordingly the samples of the former prepared for electron microscopy 

retain their morphology better than the latter. In LM, the above mentioned differences 

are hardly appreciable, but L. hargravesii generally has a larger pervalvar axis than L. 

danicus, and it has also a higher number of plastids. However, the number of plastids 

per unit of cell volume is similar in the two species. 

In both L. danicus and L. hargravesii sexual reproduction was readily induced in 

monoclonal cultures, producing similar type of auxospores and spores. In all other 

diatom genera the auxospore produces a vegetative cell of the maximum size (see 

Montresor, 2006 for a review). The spores produced in L. danicus and L. hargravesii are 

similar, but the hypovalve of L. danicus has a narrower rim than that of L. hargravesii. 

Even though spores of different size are observed, probably depending on the parent cell 

size, the cells resulting from spore germination generally show the maximal cell size. 

Lineage III includes three species without the sub-central pore, L. minimus, L. aporus, 

and L. convexus. Leptocylindrus aporus, the outermost taxon within the lineage, can be 

differentiated from other species in the light microscope only based on the relatively 

smaller size and the shape of the plastids, which are ovoidal as compared to lenticular in 

L. danicus and L. hargravesii and more elongated in L. convexus. The latter species is 
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generally larger than L. aporus and contrasts with all the other species by its convex 

valve, which results in a marked constriction at the cell junction level and for the lack of 

a marked constriction at the cell junction level. Like the other member of this lineage, L. 

aporus does not possess a sub-central pore. Morphological analysis of L. minimus was 

limited because no isolate matched the genetic and morphological features of the 

species. Based on the available literature, cell diameter and the presence of two plastids 

match the characteristics of T. belgicus, but L. minimus has a wider size range of (1.5-

5.2 f.lm; (Hargraves 1990, Rivera et at. 2002) as compared to T. belgicus (2-2.5 f.lm, 

Meunier 1915 and this study). Both species have elongated plastids. The valve structure 

of L. minimus comes closer to the current description of L. aporus. 

Sexual reproduction and spore formation were not observed in the species of lineage III. 

However vegetative cell size expansion through auxospore-like structures was observed 

in L. aporus, in agreement with the observations of French and Hargraves (1986). A 

vegetative mechanism of cell size expansion was initially reported by von Stosch 

(1965), followed by similar observations on a number of centric diatoms, for example, 

Skeletonema costatum, (Gallagher 1983), Coscinodiscus wailesii (Nagai et al. 1995), as 

well as for the pennate diatom, Achnanthes longipes (Chepumov and Mann 1999). The 

vegetative mechanism is believed to have a selective advantage because of the lower 

energy requirement and because it overcomes the risk of finding a mate of the opposite 

mating type. As an autapomorphic character, L. minimus only is reported to produce 

resting spores with a different morphology, but whether they also develop from a sexual 

auxospore is unclear. This latter characteristic, along with the number and shape of the 

plastids, could also help discriminating this species from L. minimus, which instead do 

form spiny globular spores with a neck shaped structure at the basis (Hargraves 1990). 

Spores were not produced in L. convexus cultures either, but a rather strange silicified 

structures of maximal cell size were observed (data not presented), which requires 

further investigations. 
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2.4.3. Variation of plastid morphology and number. The species of Leptocylindraceae 

show differences in plastid size, number ~nd morphology. The number of plastids varies 

from two per cell, in T. belgicus, to many per cell as in L. danicus and L. hargravesii. 

The plastids can be ovoid as in L. danicus and L. hargravesii to very elongate as in T. 

belgicus, with some intermediate forms as in L. aporus and L. convexus. These 

differences can result from environmental factor such as light regime, as well as 

intrinsic factors such as cell size relative to plastid size. Light induced changes in plastid 

shape if a species will especially affect light-harvesting and -utilisation, and can be 

observed as changes in the pigment content and intracellular self-shading. 

Characteristically, low light acclimated cells have plastids evenly distributed in the cells 

(maximising light harvesting), while high light acclimated cells have condensed plastids 

(less light-absorbing surface) (Blatt et al. 1981). 

2.4.4. Temporal and spatial distribution of the species. With its simple morphology, 

the species has been considered widespread, mostly coastal, with numerous records of 

its occurrence and often being the major contributor of the diatom bloom in many parts 

of the ocean. Tenuicylindrus belgicus (formerly Leptocylindrus belgicus) has never been 

reported elsewhere after its first report by Meunier (1915) from the Southern North Sea, 

Belgium. However, this may be due to a lack of recognition of this taxon as a species 

different from L. minimus. Indeed, the species illustrated in Round et al. (1990, 342, 

Fig. a) as L. minimus clearly shows the characteristic features that are identified in T. 

belgicus. Unfortunately, it is not possible to determine the geographic origin of the 

specimen illustrated in that picture. Other specimens attributable to T. belgicus are 

shown in the manual by Kraberg et al. (2010, page 82, figures a and b). Meunier (1915) 

and Kraberg et al. (2010) reported an early spring-summer period of occurrence for the 

species, whereas in the GoN the species, easily identified in LM and so far classified as 
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L. minimus, is observed from late summer to autumn period at our L TER-MC station, 

with a narrow period of bloom in autumn (Ribera d' Alcala et al. 2005). 

For the Leptocylindrus spp., the seasonal distribution is mainly based on the number of 

clones recovered from the cell brought under laboratory cultivation, as the species have 

not been discriminated in morphological observations at the LTER-MC stations so far. 

The distribution of L. danicus is wider than the other species recognized in the study, 

with its population recorded from late autumn through mid-summer, while L. 

hargravesii has the narrowest distribution (December-January) over the year in the 

GoN. L. hargravesii is very rarely brought into cultures; hence they may be rare in 

natural populations or, alternatively, is difficult to be grown in laboratory conditions, as 

it happens with many phytoplankton species. Leptocylindrus aporus is apparently the 

species responsible for the remarkable summer blooms so far attributed to L. danicus, 

and it is also widely found in autumn, along with T. belgicus seems to be mainly a 

summer blooming species and L. danicus is present in all the seasons except summer, 

other species are also not found during summer. Thus L. aporus seems to have evolved 

to bloom during warm season. Leptocylindrus convexus also occurs mostly in the winter 

season from December to March but was never found in very high numbers. 

Leptocylindrus minimus was not found in the GoN, but the possibility that it escaped 

sampling cannot be totally excluded. 

A more rigorous and detailed study on the autecology of the species needs to be made 

through the application of sequence based techniques including Fluorescent In Situ 

Hybridization (FISH), quantitative-PCR (qPCR) or construction of clone libraries with 

species specific primers. With respect to the spatial distribution of the recognized 

species, based on the metagenomic sequences available in GenBank has revealed that 

the species are not restricted to the study site but occur from the South China Sea to the 

north Atlantic Ocean (Chapter III). 
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2.5. Conclusion: 

The study provides a description of the genetic diversity of the genus Leptocylindrus in 

the GoN. In addition to L. danicus, which was considered to be the most abundant 

species in the GoN, two new species, L. hargravesii and L. convexus, were found. The 

variety L. danicus var. aporus probably is a distinct species. Finally, the species so far 

identified as L. minimus in the GoN proved to be very different from any Leptocylindrus 

from the ultrastructural and molecular point of view and was recognised as synonym of 

the species L. belgicus. Due to the marked differences observed for this species, the 

establishment of the new genus Tenuicylindrus was proposed to accommodate it. 

It is relatively easy to distinguish the five species in light microscopy, but in natural 

samples this is not always possible. The often subtle morphological differences that 

exist for light microscope differentiation among the currently recognized Leptocylindrus 

species were detected in laboratory cultures, whereas more information would be 

needed on the natural variability of the different characters. It is often impossible to 

discriminate, for example L. danicus, L. hargravesii and L. aporus, in case plastid shape 

is not well preserved. In such cases electron microscopic examination may permit 

identification, and in some cases this may need confirmation from molecular analyses. 

New molecular methods like Fluorescent In Situ Hybridization (FISH) would be simple 

and convenient to identify in natural samples. 

This study shows that also in Leptocylindrus it is possible to detect species new to 

science. In fact, species diversity in this genus (and its sister Genus Tenuicylindrus) has 

increased from two to five. This is a state of affairs similar to that described for the 

increase in species diversity in the polar centric genus Skeletonema according to Sarno 

et al. (2005, 2007). Species diversity may increase further if samples from other regions 

are screened for Leptocylindrus and Tenuicylindrus species, comparable to what was 

found in the global biogeographic study of Skeletonema by Kooistra et al. (2008). 

Nevertheless, if Leptocylindrus and Tenuicylindrus constitute the sister clade of a clade 
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with all other diatoms, then even the discovery of a series of additional species in these 

two genera will leave the clade as a species poor group in comparison to the estimated 

200,000 species in the rest of the diatoms. 

Tenuicylindrus and Leptocylindrus species appear to have evolved very distinct life 

cycle mechanisms, encompassing no cell size reduction along the vegetative cycle, 

vegetative auto en I argem ent, spore formation with no apparent sexual mechanisms, and 

spore formation following sexual reproduction. Whether the differences in the life cycle 

mechanisms have influence on the success of the species and the extent to which these 

complex mechanisms have helped the species in the adaptation to their environment 

needs to be studied. Results of such studies would help in gaining insight into the 

ecology of the species. 
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Molecular detection and distribution of Leptocylindrus species using 

metagenomic databases 

3.1 Introduction 

The assessment of biogeography of diatom species started with the comparison of species 

and the mapping of their distribution patterns by Ehrenberg in 1843 in his 

"Microgeologie." Further studies included those by De-Toni, "Sylloge Algarum" and by 

Cleve, who introduced the term 'plankton type' to classify and categorise plankton species 

and to track their distribution. Smayda (1958) and Braarud (1962) emphasised the 

ecological and biological factors that govern the distribution of phytoplankton species. 

Initially, biogeographic studies were based almost exclusively on species as defined by 

frustule morphology. This approach has often resulted in overly inclusive taxonomic units. 

On the other hand, over-interpretation of environment-induced, subtle morphological 

differences among allopatric populations has led to erroneous descriptions of new taxa. For 

example, Thalassiosira gravida Cleve and T. rotula Meunier were originally considered to 

be two distinct species, the former being restricted to high latitudes and the latter to lower 

latitudes (Hasle 1976). However, culture experiments with decreasing temperature, showed 

that valve morphology changes from typical T. rotula to typical T. gravida (Syvertsen 

1977). Despite these artefacts and shortcomings, diatom classification continues to rely on 

the morphological distinction as the method of choice for species delimitation and has 

resulted in the description of over 25,000 species (Alverson 2008). 

Recent studies have shown that diatom species diversity has been severely underestimated. 

Discontinuous morphological variation coupled with variations in reproductive, molecular, 

genetic, physiological, and ecological characters exist within morphologically delineated 

species (species sensu lato). For example, Skeletonema costatum sensu lato was found to 

include several morphologically, ecologically and genetically different taxa (Sarno et al. 

2005, Sarno et at. 2007). Pseudo-nitzschia delicatissima and P. pseudodelicatissima were 
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found to consist each of several reproductively isolated taxa, with subtle morphological 

differences amongst them (Amato 2007, Amato 2008, Lundholm 2012). Similar examples 

of such diversity within Pseudo-nitzschia species sensu lata were reported by (Lundholm 

2002, Behnke 2004, Mann 1999, Montresor 2003, Slapeta 2006). 

The diversity in a particular geographical region is the result of interactions between 

processes that add species, such as allopatric species formation and geographic dispersal, 

and processes that lead to local extinction, such as predation, competitive exclusion, and 

stochastic variation. While all these processes regulate distribution of macroscopic 

organisms, their relevance to microorganisms is still debated. Conceptually, 

microorganisms, including prokaryotes, unicellular eukaryotes, and small multicellular 

organisms, are assumed to be cosmopolitan, the hypothesis, "everything is everywhere, but 

the environment selects" (Baas-Becking 1934, Fenchel 2006). This view has been 

empathised in studies applying ecological methods and concepts on both original studies 

and literature data of heterotrophic protists, mainly ciliates (Fenchel 1997, Finlay 2002, 

Azovsky 2002). The most commonly suggested elucidation for cosmopolitism is that large 

population sizes, short generation times (Fenchel 2004, Coleman 2002, Finlay 1999) and 

the ability to form dormant stages (cysts, eggs and spores) facilitate dispersal. Water 

movement interconnects water masses at various geographic scales (Cermefio 2009) and 

therefore, allopatric speciation should be rare or non-existent (Finlay 2002). In this 

hypothesis, the distribution of microorganisms is restricted only by adverse environmental 

conditions (Baas-Becking 1934) 

The alternate hypothesis states that dispersal capability is low, and that restricted 

geographical distribution patterns promote speciation. Recently, studies have demonstrated 

that microorganisms exhibit biogeographic patterns, but that the rates of the underlying 

processes vary more widely for microorganisms than for macroorganisms (Whitaker et al. 

2003, Martiny et al. 2006, Telford et al. 2006). One approach for testing cosmopolitism is 
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through the study of similarities or dissimilarities in specIes composition among 

geographically distant sites with similar or different environmental characteristics (Green 

and Bohannan 2006). 

The advancement of large scale sequencing capacity has enabled a comprehensive view of 

the microbial diversity. New technologies, like metagenomics, which can quantify the total 

genetic diversity including unculturable species, have opened new possibilities to 

investigate the hidden diversity, triggering geographic distribution studies of 

phytoplankton. The sequence data can be utilized to quantify the degree of overlap in 

microbial assemblages between habitats and to estimate (or roughly approximate) the 

richness of microbes in the world's oceans and coastal seas. In addition massive 

sequencing data provide a powerful tool to describe molecular species diversity, and may 

discover rare species in samples, discriminating between the two alternative hypotheses of 

species distribution. 

Recent metagenomic projects apply next generation sequencing (NGS) technologies such 

as Illumina, SOliD, PacBio and Ion Torrent, which are high throughput and economic 

than the traditional Sanger sequencing technology. These have led to numerous 

metage nomic projects in diverse environments such as the human microbiome (Group et 

al. 2009), and virome (Dinsdale et at. 2008). Sequence based surveys based mainly, in the 

most common being small subunit rRNA-based surveys, rely on the resolution provided by 

small subunit rRNA (SSU; in eukaryotes I8S rRNA and in prokaryotes I6S RNA) have 

led to the discovery of important groups such as the third branch on the tree of life (the 

Archaea) (Woese and Fox 1977). Many of these newly discovered lineages elude 

discovery in the laboratory because they cannot be cultured in the laboratory. The I8S 

rRNA of eukaryotic organisms is typically 1750 bp long and can be divided into nine 

variable parts, Vl-V9, according to Nelles et al. (1984), that provide an appropriate 

phylogenetic signal for genealogy and systematics (Medlin and Kooistra 2010). The 
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presence of highly conserved regions in the SSU rDNA gene at several positions has 

facilitated designing and use broadly targeted oligonucleotide primers that work on a wide 

diversity of species for both sequencing and amplification by the polymerase chain 

reaction (PCR). Two hypervariable regions of SSU, the V4 and V9, have been used 

recently as targets for high throughput sequencing (Amaral-Zettler 2009, Stoeck 2009) and 

discrimination of thousands of phylotypes (or operational taxonomic units, OTUs) that 

serve as a provisional surrogate for "species", in metagenomic studies. These groupings 

have revealed that the level of DNA diversity is much higher than previously known, 

especially in marine planktonic microorganisms (Lopez-Garcia and Moreira 2008). 

However, even V 4 or V9, is considered to be too conservative to distinguish between 

closely related species within some taxa (Stoeck et at. 2010). 

Despite the advantages, metagenomic projects engaging current and emergmg NGS 

technologies, face analytical challenges because of the need to balance the desire for high 

quality methods with the need for automation to keep up with the sequence onslaught (Wu 

et at. 2008). Firstly, the SSU rDNA sequence occurs in multiple copies, and in theory, 

these copies can show base differences. This means that a population may exhibit micro

variation, i.e., huge numbers of highly similar sequences without any phylogenetic 

structure. Second, sequence-based surveys through metagenomic projects, studying 

diversity in the environmental samples produce massive amounts of infonnation (due to 

artificial PCR-based duplication of reads, (Niu et at. 2010) that are difficult to organise, 

integrate and finally to classify species. This wealth of infonnation is rarely mined to its 

full potential. Third, sequence errors and artefacts produced are more than traditional 

Sanger sequencing, which is further propagated in the analysis leading to false elucidations 

(Gomez-Alvarez et al. 2009). Finally, the sequence diversity may vary over time (season) 

and the sample reflects the diversity found only during that moment. Therefore, it is 
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necessary to record this information with as much detail as possible that can be useful to 

different user needs and subsequently be interpreted with best possible way. 

Clustering analysis, i.e. methods that identify and cluster groups of similar objects, can be 

applied effectively to resolve the above-mentioned challenges (Li et al. 2012). By 

sequence clustering a large redundant dataset can be represented with a small non

redundant (NR) set, which requires less computation. Clustering also helps identifying 

errors by using a consensus from sequences and thus leads to an efficient classification of 

species. There are several programs available for clustering but the recent ones are fast 

programs and hence popular. These include CD-HIT, first fast and comprehensive 

clustering package (Huang et al. 2010), others include DNACLUST (Ghodsi et al. 2011), 

Uclust (Edgar 2010), and SEED (Bao et al. 2011). The choice of the program mainly 

depends on the user's requirements and preferences, for a review on different methods see 

(Li et al. 2012). 

In a previous study (Chapter II) we obtained monoclonal strains from single chains isolated 

from net samples taken in the Gulf of Naples (GoN). Through this study, the morphology 

and biology of the species has been associated to the type sequence has been made, but this 

is restricted to few observations being made at a single geographical location, which 

renders this approach not effective in capturing the total diversity. Instead, massive nuclear 

rRNA encoding sequence data bases obtained from NGS approaches as of environmental 

samples allow to obtain a far more extensive sample of the diversity, but it is based 

exclusively on the obtained sequences at hand. 

Using metagenomic data from distant geographical regions and contrasting ocean 

environments, we surveyed the spatial distribution of marine diatom species of the genus 

Leptocylindrus. Owing to the relatively contrasting or similar physicochemical conditions 

between sites in the ocean, our analysis, perhaps, also allows addressing the eco

physiological characteristics of the species. The radial centric diatom genus Leptocylindrus 
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is an example of pseudo cryptic diversity where gross intraspecific morphological variation 

and minor morphological differences among species mask actual genetic diversity (Chapter 

II). As an example, Leptocylindrus danicus is a common species in the coastal 

environments of temperate to sub-tropical regions, and is recorded also in the Antarctic and 

Artic regions, where it is often prominent species during diatom blooms. The species has a 

simple morphology and hence was considered single species. Other species in the genus 

included, mainly, L. minimus comparatively less abundant and less widespread (Hargraves 

1990). 

A detailed investigation of the species, L. danicus, genetics and frustule morphology has 

led to the discovery of an additional three species. First, L. hargravesii, a close relative of 

L. danicus, showed a similar morphology and life cycle pattern. Thereafter two 

morphologically and physiologically distinct species, L. aporus and L. convexus, were 

described (Chapter II). In the GoN, in some cases the species occurrence overlapped in 

time, and in some others exhibited an opposite pattern of occurrence (Chapter II). Hence, it 

is intriguing to understand the biogeographic distribution of each of these species across 

the Ocean. 

In the present study, the following questions were addressed: 

1. Whether the marker sequences within clades of Leptocylindrus species sensu stricto 

a) show high micro-variation (many end branches) or not, 

b) consist of one or a few end branches with large numbers of copies and the 

remaining end branches representing single copies, or if there are many end 

branches within a clade containing multiple copies, 

c) are on long internal branches (are many base pairs different from their sister 

sequences) or not, 

2. Whether the marker sequences of newly recognized Leptocylindrus speCIes In 

Chapter II are each recovered in their own clade of environmental sequences, or if 
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marker sequences of multiple species are within single clades without any internal 

phylogenetic structure. 

3. Whether additional diversity exists in Leptocylindrus and Tenuicylindrus, i.e., there 

are well delineated clades firmly embedded within Leptocylindrus and 

Tenuicylindrus without any sequences of the species sensu stricto delineated in 

Chapter II, 

4. Whether the Leptocylindrus species sensu stricto that pass the test of being real 

entities, are widespread or occur only locally, 

5. Whether the species sensu stricto within the L. danicus complex are as widespread 

as the historically recognized L. danicus sensu lato, 

6. Under what ecological conditions the species are found. 

To address these questions, I explored metagenomic databases that were generated from 

DNA and RNA extracted from geographic water samples gathered in the projects 

"Biodiversity of Marine Eukaryotes" (BioMarKs) and Tara Oceans. BioMarKs is a 

European Union ERA BioMarKs project involving experts from eight EU research 

institutes studying eukaryotic microbial taxonomy and evolution, marine biology and 

ecology, genomics and molecular biology, bioinformatics, as well as marine economy and 

policy. The "Tara Oceans expedition" is three-year global ocean expedition to study the 

impact of climate change on the microscopic life forms in the ocean. Species diversity was 

recorded using variable regions of the nuclear SSU rONA. The databases have been 

developed with the goal to record the diversity and influence of climate change on the 

microscopic life forms. 

Note that the sampling scheme was one of opportunity and that a species may be present at 

a site but remained undetected because it was below detectable concentrations at the time 

of sampling. 
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3.2 Methods 

3.2.1 Sampling and databases. The "BioMarKs" project assessed biodiversity of 

unicellular eukaryotes at nine different European marine stations through development of a 

SSU rONA database (Table 3.1). For the present study, samples from six stations were 

considered: Oslo Fjord (sampled; Sept 2009 and June 2010), Roscoff (the English 

Channel; sampled April 2010), Gijon (Bay of Biscay; Sept. 2010), Barcelona 

(Mediterranean Sea; Feb. 2010) and Naples (Mediterranean Sea; Oct. 2009 and May 2010) 

and Varna (Black Sea; May 2010). In the BioMarKs project both the V4 and V9-regions 

were sequenced, but in the present study, only the V4 region was scanned for the presence 

of Leptocylindrus-like sequences. 

For protocols on sampling and sequencmg refer to BioMarKs reports on website 

(http://www.biomarks.euDandrefertoLogaresetal.(2012).Briefly. seawater samples 

were taken with Niskin bottles from the subsurface (lm) and to the depth of deep 

chlorophyll maximum (20m, OCM) or to the sediment. Subsurface and OCM samples 

were fractioned into 0.8-3Ilm, 3-20 Ilm and 20-2000llm through polycarbonate filters 

(142 mm in diameter). Filters were flash frozen and stored at -80C. Sediment samples 

were taken with sediment cores and small aliquots were frozen at -80C for downstream 

molecular analysis. 

Total DNA and RNA were extracted from the same filter using the NucleoSpin RNA kit 

(Macherey-Nagel, Hoerdt, France) and from sediment samples were extracted using the 

RNA Power Soil Total Isolation kit combined with DNA Elution Accessory kit (MoBio 

Laboratories). Extracted RNA was reverse transcribed to ONA using the RT Superscript 

III random primers kit (Invitrogen, Carlsbad, CA, USA) and universal primers for the V4 

region (Stoeck et al. 2010). 

The PCR mixture (25 ilL final volume) contained 5 ng of template with 0.35 IlM of each 

primer, 3% of OMSO and 2X of GC buffer Phusion Master Mix (Finnzymes). 
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Amplifications of the V4 region were done in triplicates following the PCR program: 

initial denaturation step at 98°C for 30 sec, followed by 10 cycles of 10 sec at 98°C, 30 

sec at 53 °C, 30 sec at 72 °C, followed by 15 cycles of 10 sec at 98°C, 30 sec at 48 °C, 30 

sec at 72°C and final elongation step at 72°C for 10 minutes. Amplicons were then pooled 

and purified using the NucleoSpin® Extract II kit (Macherey-Nagel, Hoerdt, France). 

Amplicon pools where finally sequenced at the CEA Genoscope in Evry using a GS FLX 

emPCR Genomic Lib-L kit according to the manufacturer's protocol (Genome Sequencer 

FLX Titanium, 454 Life Sciences from Roche, Brandford, CT, USA). The "Tara-Oceans" 

project assessed biodiversity of unicellular eukaryotes at a large series of marine sample 

stations, the DNA harvested at 35 of these have been considered in the present study. 

These stations were located in the Mediterranean Sea, The Red Sea, the Arabian Sea, the 

wider Indian Ocean, Cape Town, Southern and Central Atlantic Ocean, the Antarctic 

Peninsula, and the eastern side of the southern and central Pacific Ocean (Fig. 3.1, A and 

B). This project sequenced only the V9 variable region of SSU rDNA as barcode for 

documentation of species diversity and abundance across continents and different biomes. 

The colossal database was explored for sequences of Leptocylindrus species. 

For protocols on sampling and sequencing refer to Karsenti et. af. (2011). Briefly, seawater 

samples were taken with Niskin bottles at surface and DCM were sequentially obtained in 

four size fractions, 0.8-5Ilm, 5-20Ilm, 20-180llm, and 180-2000llm. Filters were flash 

frozen and stored at -80°C. Sediment samples were taken with sediment cores and small 

aliquots were frozen at -80°C for downstream molecular analysis. DNA extraction was 

done following the protocol of BioMarKs. If the sample contained low amount of DNA 

then the whole genomic DNA was amplified. The PCR mixture was the same as that of 

BioMarKs protocol. PCR program for amplification of V9 fragment involved: initial 

denaturation step at 98°C for 30 sec, followed by 25 cycles of 10 sec at 98°C, 30 sec at 57 

°C, 30 sec at 72 °C, followed by 15 cycles of 10 sec at 98°C, 30 sec at 48 °C, 30 sec at 72 
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°C and final elongation step at 72°C for 10 minutes. Triplicate reactions were pooled and 

the pooled amplicons of the V9 fragment were sequenced using a Genome Analyser IIx 

system (IlIum ina, San Diego, CA, USA). 

3.2.2 Sequence Retrieval. Sequences were retrieved from already defined Bacillariophyta 

datasets of the V 4 region from the BioMarKs team (courtesy of Dr Stephane Audic) and 

the V9 region from the Tara Oceans team (courtesy of Dr Chris Bowler). The query

datasets were clustered with the V4- and V9-regions in the nuclear SSU rDNA sequences 

of 134 diatom species available at the LEEP laboratory at SZN (reference dataset), as 

reference for clustering, with the CD-HIT-EST-2D module of CD-HIT suite 

(http://weizhong-Iab.ucsd.edu/cdhitsuite/cgi-bin/index.cgi). Reference sequences of each 

of the Leptocylindrus species and Tenuicylindrus belgicus (Chapter II) were included in the 

reference dataset. 

Pairwise distances among Leptocylindrus species, Tenuicylindrus belgicus and outgroup 

taxa were computed for the V4 and V9 regions using PAUP* (Phylogenetic Analyses 

Using Parsimony and other methods; version 4.0b 1 0) (Swofford 1998) to define the 

sequence identity (similarity) cut-off value for clustering of query sequences with the 

reference sequences. A value too close to 100% would result in finding only sequences 

almost identical to the reference sequences of the known species, whereas setting the value 

too low would not only include sequences belonging to possible yet-unknown clades 

within Leptocylindrus and Tenuicylindrus, but also include possibly thousands of 

sequences outside these genera. 

The sequence identity (similarity) cut-off value was set at 0.90. All sequences in the query 

dataset with similarity 2::0.90 to any of the 134 reference sequences were gathered from the 

query datasets and matched with the most closely related reference sequence. In addition, 
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Table 3.1. Metadata for the BioMarKs sampling stations. 

Oslo 2009 PI. 59.25 10.71 22 SeE, 2009 15.5 8.0 25.0 35.0 3.0 

Oslo 2009 Sed. A 59.25 10.71 Station A 103m deEth 23 SeE,2009 15.5 8.0 25.0 35.0 3.0 

Oslo 2009 Sed. B 59.26 10.72 Station B 24m deEth 23 SeE, 2009 15.5 8.0 25.0 35.0 3.0 

NaEles 2009 PI. 40.81 14.25 L TER MareChiara 13 Oct, 2009 22.8 14.6 37.7 37.9 

NaEles 2009 Sed. 40.81 14.25 L TER MareChiara 15 OCT, 2009 22.5 14.6 37.7 37.9 

Barcelona 20 10 PI.lSed. 41.67 2.80 Blanes Ba~ 9 Feb, 2010 12.5 12.5 37.5 37.8 1.3 

Roscoff 20 I 0 Sed. 48.77 -3.96 SOMLIT Astan PI 20 AEr, 20 I OlBenthic 26 AEr, 20 I 0 10.0 10.0 34.9 34.9 

Roscoff 2010 Sed. 48.77 - 3.96 SOMLIT Astan PI 20 AEr, 2010/Benthic 26 AEr, 2010 10.0 10.0 34.9 34.9 

NaEles 2010 PI./Sed. 40.81 14.25 L TER MareChiara PI II Ma~, 20 I OlBenthic 12 Ma~, 2010 19.2 14.5 37.1 37.9 1.2 

Oslo 2010 PI. 59.25 10.71 22 JUN, 2010 15.0 6.0 

Oslo 2010 Sed. 59.25 10.71 Station A 103m deEth 23 JUN, 2010 15.0 6.0 21.5 34.5 

Varna 2010 Pl./ Sed. 43.17 28.83 26-27 JUN, 2010 21.5 
S- 2 of Radial de 

Gijon 2010 PI./ Sed. 43.67 - 5.58 XiX6n 14 SEP, 2010 20.0 
Lat.- Latitude, Lon.- Longitude, Pl.- Plankton, Sed.- Sediment, Sur.- Surface, Bot.- Bottom 
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Fig. 3.1. Tara Oceans cruise. (A) Route of the Tara Oceans expedition. (B) Methods for sampling organisms 

by size classes and abundance. The blue background indicates the filtered volume required to obtain 

sufficient organism numbers for analysis. (C) Sampling stations for which samples were sequenced, source: 

(Karsenti et al. 2011). 
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the following parameters were set for the sequence retrieval procedure: i) do not compare 

both strands (i.e., do not include the reverse complement); ii) use global sequence identity; 

iii) cluster sequence to the best cluster that meets the threshold; iv) and a band-width of20. 

Alignment coverage parameters and length coverage parameters were set to default 

settings. Only the clusters of those sequences that grouped most closely with the reference 

sequences of the Leptocylindrus and Tenuicylindrus species were selected for phylogenetic 

analysis. Sequences were annotated, i.e., given names, based on their smallest distance to a 

reference sequence (here on referred to as distance criterion), not based on phylogenetic 

criteria. 

The clusters of sequences that grouped most closely with the reference sequences of the 

Leptocylindrus and Tenuicylindrus species were re-clustered at a sequence identity cut-off 

(similarity) of 0.97; other parameters were set as in the previous step. The result of this 

step was a series of secondary clusters of sequences with similarity ~0.97. Only one 

sequence per secondary cluster was taken randomly to represent the cluster in the 

subsequent alignment and phylogenetic analysis procedure. This condensation of the 

sequence data was applied to keep the size of resulting trees manageable. 

3.2.3 Alignment of obtained sequences. Sequence alignment involved the following 

steps. First, the clusters of sequences that grouped most closely with the reference 

sequences of the Leptocylindrus and Tenuicylindrus species were merged into a single 

database. The reference sequences of Leptocylindrus and Tenuicylindrus species were 

included. Sequences of related diatom species and of Bolidomonas were included as 

outgroups. The gathered sequences were aligned with the ClustalW module of Bioedit 

v7.1.3 (http://www.mbio.ncsu.edu/bioedit) and verified by eyeball to correct any miss

alignments. 
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3.2.4 Phylogenetic analysis of obtained sequences. Phylogenetic signal among 

parsimony-informative sites was assessed by comparing the measure of skewedness in the 

length-distribution among 100,000 random trees of the distinct sequences (Ol-value, 

PAUP*) with the empirical threshold values for 4-state characters, given the number of 

distinct sequences and parsimony informative sites (see Hillis 1992). Neighbour joining 

(NJ) trees for individual species datasets and the combined dataset of the V 4 region and of 

the V9 region were constructed utilizing PAUP*. Trees were rooted with the most distant 

outgroup sequences. Metadata associated to the sequences (geographic location, sample 

date) were mapped over the resulting trees. Bootstrap support values were generated using 

1000 bootstrap-replicated datasets and the same settings as in the NJ-settings. 

3.3 Results 

The results of the database searches have been presented separately because the BioMarKs 

dataset uses the variable V4 region, and the Tara Oceans dataset, the V9 region. The two 

regions are situated in different parts of the SSU rDNA. 

3.3.1 Pairwise dissimilarity. Pairwise dissimilarities among the V 4 sequences as well as 

among the V9 sequences of SSU rDNA of all of the Leptocylindrus spp., T. belgicus and 

Bolidomonas spp. are presented in Table 3.2 and V9-region is presented in Table 3.3 

respectively. Pairwise dissimilarities among the V 4 region Leptocylindrus spp. varied from 

0.00258-0.2066, between Leptocylindrus spp. and T. belgicus, 0.1749-0.2168. Pairwise 

dissimilarities among the V9 region ranged between 0.00 and 0.14 among Leptocylindrus 

spp. and from 0.16 to 0.20 between Leptocylindrus species and T. belgicus. Pairwise 

dissimilarities between the in- and outgroups varied from 0.15 to 0.23 for the V 4 region 

and between 0.09 and 0.22 for the V9 region. A cut-off sequence identity value of 0.9 

(dissimilarity 0.10) was chosen for the subsequent analyses. 
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3.3.2 The BioMarKs data (V4-region) 

i. Sequence abundance. ggsearch36 search for Leptocylindrus and Tenuicylindrus 

sequences in the BioMarKs V 4 dataset with a sequence identity cut-off of 0.9 resulted in a 

total of 4498 unique sequences. CD-HIT-EST-2D clustering with a sequence identity cut

off of 0.9 with 134 V4 sequences of reference species gave 3748, 5,116, 212, 60 and 56 

unique sequences closest to L. aporus, L. convex us, L. danicus, L. hargravesii, L. minimus, 

and T. belgicus, respectively (Table 3.4, A). The percentage of similarity of the sequences 

to reference species is represented in Fig. 3.2, A. The sequences assigned to L. aporus were 

the most abundant and those assigned to L. convexus were the least abundant in the 

samples. Further clustering at identity cut-off of 0.97 for individual species resulted in 10, 

1, 6, 21, 3 and 8 secondary clusters of multiple sequences assigned to L. aporus, L. 

convexus, L. danicus, L. hargravesii, L. minimus, and T. belgicus, respectively (Fig. 3.2, 

B). Clustering at other lower and higher values is presented in Fig. 3.2, B but the cluster 

generated at 0.97 was used for phylogenetic tree construction. The number of sequences in 

each secondary cluster is provided behind their end-nodes in the resulting trees. 

ii. Alignment and phylogenetic inferences. The aligned dataset contained 91 distinct 

sequences and 419 characters (alignment positions) of which 149 were constant, 61 

parsimony-uninformative and 209 parsimony-informative. Of the 91 sequences, two 

belonged to Bolidomonas, 28 to reference sequences of centric diatoms other than 

Leptocylindrus and Tenuicylindrus, and the remainder to sequences of those two genera. 

Evaluation of lengths of 100,000 random trees, given the sequence dataset, showed a 

skewed distribution with a G) value of -0.341252. The threshold value for 100 parsimony 

informative positions and far more than 25 different taxa is -0.12, which is closer to 0 than 

the observed value. Therefore, the V4 region contains significant phylogenetic 

information. 
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Table 3.2. Pairwise dissimilarities between V4 regions of the nuclear SSU rDNA of Leptocylindrus, Tenuicylindrus belgicus, Bolidomonas spp. and four 
centric diatoms 

L. af!.orus 

2 L. convexus 0.1653 
3 L. danicus 0.20403 0.19845 
4 L. hargravesii 0.20662 0.20103 0.00258 
5 L. minimus 0.16267 0.08247 0.18814 0.19072 
6 T belgJcus 0.2168 0.19327 0.20624 0.20886 0.1749 
7 Bolidomonasmediterranea 0.19419 0.17255 0.15939 0.15675 0.16189 0.18307 
8 Bolidomonas f!.acifica 0.19204 0.17025 0.18605 0.18341 0.16492 0.18081 0.08853 
9 Paralia sulcata 0.18529 0.17498 0.20112 0.20376 0.17502 0.15971 0.15053 0.14609 

10 Stef!.hanopyxis nipl!.onica 0.19482 0.1818 0.20273 0.20537 0.17648 0.16721 0.15262 0.15072 0.04691 
11 HJ!.alodiscus sf!.: 0.20239 0.21029 0.19985 0.20248 0.17902 0.19863 0.16298 0.17397 0.1 0678 0.10622 
12 Melosira cf octagona 0.22284 0.20405 0.22773 0.23035 0.20394 0.15754 0.20974 0.19729 0.16578 0.15758 0.18115 
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Table 3.3. Pairwise dissimilarities between V9 regions of the nuclear SSU rONA of Leptocylindrus, Tenuicylindrus belgicus, Bolidomonas spp. and four 
centric diatoms 

1 L. al!.0rus 
2 L. convexus 0.08046 
3 L. danicus 0.10609 0.13503 
4 L. hargravesii 0.1 0609 0.13503 0.00000 
5 L. minimus 0.08621 0.08046 0.14080 0.14080 
6 T. belgicus 0.16523 0.20389 0.16192 0.16192 0.18169 
7 Bolidomonas mediterranea 0.17241 0.17241 0.17687 0.17687 0.22414 0.20476 
8 Bolidomonas l!.acijica 0.19540 0.16667 0.18288 0.18288 0.22414 0.21801 0.08046 
9 Paralia sulcata 0.13218 0.17241 0.14697 0.14697 0.18391 0.18139 0.14943 0.18391 

10 Stel!.hanopyxis nipl!.onica 0.10042 0.15917 0.12627 0.12627 0.16481 0.16285 0.16490 0.20040 0.11818 
11 Hl!..alodiscus sp: 0.09373 0.16373 0.14394 0.14394 0.16956 0.16692 0.14015 0.16992 0.12851 0.07632 
12 Melosira cf octagona 0.12069 0.16092 0.14096 0.14096 0.15517 0.20985 0.20115 0.21264 0.13218 0.12357 0.14030 
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The NJ tree inferred from the V4 dataset of BioMarKs is presented in Fig. 3.3. With 

Bolidomonas sequences designed as outgroup, the sequences assigned to Leptocylindrus 

grouped into a basal grade consisting of two clades, one of which contains the reference 

sequences of L. hargravesii and L. danicus and the other one the reference sequences of L. 

convexus, L. minimus and L. aporus. Next to branch off was a clade containing all 

sequences of T. belgicus. All other (centric diatom) taxa included in this study grouped in a 

clade as sister to T. belgicus, though without bootstrap support. Moreover, the centric 

diatoms in this clade did not form clades as expected according to their taxonomic 

assignment, i.e., bi- and multi-polar centric diatoms did not form a clade. 
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Fig 3.2. Percent of sequences that form a cluster with the reference sequence (A and C) and the number of 

OTUs detected at different OTU calling thresholds for the datasets (B and D) retrieved from environmental 

samples. (A) the percent of sequences that form a cluster with the reference sequence at different OTU 

calling thresholds based on V4 for the BioMarKs dataset. (B) the number ofOTUs detected at different OTU 

calling thresholds based on V4 for the BioMarKs dataset. (C) the percent of sequences that form a cluster 

with the reference sequence at different OTU calling thresholds based on V9 for the Tara Oceans dataset. . 

(D) the number of OTUs detected at different OTU calling thresholds based on V9 for the Tara Oceans 

dataset. 
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Table 3.4. Summary of number of sequences retrieved from the environmental sequences database. (A) 

BioMarks. (B) Tara Oceans 

A 

L. aporus 3748 48877 10 4 

L. convexus 5 17 1 1 
L. danicus 116 692 7 2 
L. hargravesii 212 671 21 2 
L. minimus 60 248 1 1 
T. belgicus 56 172 8 2 

B 

L. ap..orus 1456 41700 147 32 
L. convexus 1012 31265 85 31 
L. danicus 338 4666 26 20 

Six clades (marked I - VI) were recognised for Leptocylindrus species and T. belgicus. 

Each clade, except one, contained multiple end-nodes and several of these end-nodes 

represented secondary clusters of multiple sequences with similarity ;:::0.97 (see Fig. 3.3). 

For each of the clades, the number of end-nodes, the total number of sequences, the 

reference species, if any, and the geographical origin of its sequences, has been presented 

in Table 3.5 and Table 3.7. The number of sequences in each secondary cluster is shown 

behind the end-nodes in Fig. 3.3. 

Clade I (l00% bootstrap support) included the reference sequences of both L. danicus and 

L. hargravesii, 27 end-nodes of BioMarKs sequences / secondary clusters, as well as four 

environmental sequences from GenBank. The reference sequences of L. danicus and L. 

hargravesii can be distinguished by only two base changes in the V 4 regions and were 

recovered closely together well inside this clade. Notably, the reference sequence of L. 

danicus grouped with 685 sequences in one large secondary cluster and the reference 

sequence of L. hargravesii grouped with 635 sequences in another large secondary cluster, 

whereas all the remaining sequences in Clade I formed end-nodes containing singletons or 
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pairs. The marked sequence variation among all these remaining sequences did not result 

in any significant bootstrap support for clades. 

Clade II (100% bootstrap support) included the reference sequence of L. convexus, which 

was identical to a secondary cluster of 17 sequences, and three GenBank sequences. All 

these sequences were found to be closely related. 

Clade III (100% bootstrap support) contained the reference sequence of L. minimus, with 

four secondary clusters of sequences, each with many sequences. The reference sequence 

was recovered branching off first within this clade. 

Table 3.5. Summary of BioMarKs NJ trees. The number of end-nodes within each clade, their total sequence 

abundance and the geographical origin ofthe sequences are presented. 

Clade I 33 1363 
L. danicus 

Naples, Oslo 
Ihargravesii 

Clade II 5 17 L. convexus Naples 
Clade III 5 246 L. minimus Oslo 

Clade IV 1 1 Naples 
Clade V 9 48876 L. aporus Naples, Oslo, Barcelona, Gijon 

Clade VI 172 8 T. belgicus Naples, Oslo 

Clade IV was found to contain a singleton only; it contained no reference sequence. 

Clade V (100% bootstrap support) contained the reference sequence of L. aporus, as well 

as eight additional end-nodes, four of which consist of secondary clusters. The reference 

sequence itself groups in a secondary cluster with 48820 additional sequences. The clade 

showed marked sequence variation, but the reference sequence was recovered well inside 

it. 

Clade VI (100% bootstrap support) contained the reference sequence of T. belgicus, as 

well as eight additional end-nodes, one of which was found to consist of a secondary 

reference sequence. The remaining singletons were found to be remarkably different, but 

without any phylogenetic structure. 
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Fig. 3.3. Neighbour joining tree illustrating the relationship among the V4-based secondary clusters from the 

BioMarKs dataset along with Leptocylindrus species, Tenuicylindrus belgicus and other diatom species. 

Bootstrap values have been generated with 1000 replicates. Bootstrap support for clades receiving <50% 

support have been omitted. 

iii. Pbylogeograpby and additional metadata: With eight sampling sessions at six sample 

stations, sequences attributable to the genus Leptocylindrus and T. belgicus were found at 

four stations, namely, Oslo, Gijon, Barcelona and Naples. The remaining two stations 

(Roscoff and Varna) showed no sequences of Leptocylindrus and T. belgicus. The relative 

sequence abundance of the Leptocylindrus species and T. belgicus during sampling of 2009 

and 2010 have been shown in Fig. 3.4. Sequences assignable to L. danicus and L. 

hargravesii have been pooled in the geographic analysis because they grouped in a single 

clade in Fig. 3.3. 

The samples taken at the Oslo Fjord-station In September showed the presence of L. 

aporus, L. danicus / hargravesii, L. minimus and T. belgicus, whereas in July 2010, only L. 

danicus / hargravesii and L. minimus sequences were present, of which the latter were the 

most abundant. Notably, L. convexus was absent in both samples from Oslo. The sample 

taken at the Gijon-station in September 2010 contained a few sequences of L. aporus, and 

so did the sample taken at Barcelona in February 2010. All other species sequences were 

absent from these samples. In the coastal Mediterranean station off Naples (L TER-MC), 

sequences of L. aporus, L. danicus / hargravesii and T. belgicus were obtained during 2009 

autumn sampling and those of L. aporus, L. convexus and L. danicus during the 2010 

spring sampling. 
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Sequences belonging to Leptocylindrus aporus and L. danicus / hargravesii were detected 

in samples taken in seawater with temperatures ranging between 12.5 and 22.8 °C (Fig 3.4, 

Table 3.5). However, both were absent in the June 2010 water column samples from Oslo 

when the temperature was within this range. Contrastingly, T. belgicus was present in the 

October 2009 (22.8°C) samples from Naples and September 2009 (I5.5°C) samples of 

Oslo. Leptocylindrus convexus was found only in the May 2010 sample from Naples when 

water temperature was 13.5°C. 

Sediment samples collected to trap out of season species that form resting stages showed 

the same sequences of species recovered in subsurface and DCM. The only exception was 

that of L. danicus / L. hargravesii, whose sequences during June 2010 in Oslo were found 

exclusively from sediments. 

3.3.3 Tara Oceans data (V9-region) 

i. Sequence abundance. CD-HIT-EST-2D clustering of the Tara Oceans V9 dataset of 

Bacillariophyta at a sequence identity cut-off of 0.9 with 133 sequences of reference 

diatom species resulted in total of 2806 unique Leptocylindrus sequences. (Unfortunately, 

the sequences of Tenuicylindrus were excluded because the species previously unknown to 

science and given its phylogenetic position was considered outside Bacillariophyta). Of 

these 2806 sequences, 1456, 1012 and 338 belonged to L. aporus, L. convexus and L. 

danicus respectively; the percent similarity with reference sequences is presented in Fig. 

3.2, C. The total abundance of these sequences is presented in Table 3.4, B and their 

percent similarity distribution with the reference sequences is represented in Fig. 3.2, D. 

Sequences assigned by the distance criterion to L. aporus were the most abundant and 

those assigned to L. danicus / L. hargravesii were the least abundant. Further clustering 

with CD-HIT-EST at a percent identity of 0.97 for individual species resulted in 147, 85 

and 26 clusters for L. aporus, L. convexus, and L. danicus / L. hargravesii, respectively 
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(Fig. 3.2, C). Clustering at other lower and higher values is presented in Fig. 3.2, D but the 

cluster generated at 0.97 was used for phylogenetic tree construction. The number of 

sequences in each secondary cluster is provided behind their end-nodes in the resulting 

trees. 

ii. Alignment and phylogenetic inferences. The dataset contained 29 I distinct sequences 

and 147 characters of which 26 were constant, 17 were parsimony uninformative and 104 

were parsimony informative. Of these 291 sequences, five belonged to non-diatom 

photoautotrophic stramenopiles, 28 to centric diatoms outside Leptocyiindrus, and the 

remainder to sequences assigned to this genus. Evaluation of lengths of 100,000 random 

trees, given the sequence dataset, showed a skewed distribution with a G l value of -0.1936. 

The threshold value for 100 parsimony informative positions and far more than 25 

different taxa is -0.12, which is closer to zero than the observed value. Therefore, the V9 

region contains significant phylogenetic information. 

The distance tree inferred from the V9 dataset of Tara Oceans is presented in Fig. 3.5. In 

this tree, eleven distinct clades (Clade I to Clade XI) were recognised. All these Clades 

contained two or more end nodes, many of which constituted secondary clusters of 

sequences less than 3% different. The numbers of end-nodes in each clade, the total 

sequence abundance, the reference species if any and the geographical locations in which 

the sequences have been sampled are presented in Table 3.6. Bootstrap support for most of 

the clades was found to be insufficient (clades supported are indicated). 

Clade I was shown to contain 11 end nodes of which six are singletons; one of the 

secondary clusters contained 261 sequences. The clade grouped closely with radial centrics 

Auiacoseira, and Actinoptychus and the bipolar centric diatom Chaetoceros. 

Clade II contained the reference sequence of L. aporus, and 49 end-nodes, 37 of which 

were singletons. An end-node close to the reference sequence consisted of a secondary 
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Fig. 3.5. Neighbour joining tree illustrating the relationship among the V9-based secondary clusters from the 

Tara Oceans dataset along with Leptocylindrus species, Tenuicylindrus belgicus, other diatom species and 

few autotrophic stramenopiles. Bootstrap values have been generated with 1000 replicates. Bootstrap support 

for clades receiving <50% support have been omitted. 

cluster with 38943 sequences, whereas other secondary clusters contained just 2-25 

sequences. 

Clade III was found to be composed of a single end-node consisting of a secondary cluster 

of 15 sequences. Although the distance criterion assigned this end node to L. aporus, it did 

not contain any reference sequence. 

Clade IV included 13 end-nodes of which four were singletons, two secondary clusters 

contained pairs of sequences, and the remainder included five to 35 sequences. Although 

the distance criterion assigned all the sequences in Clade IV to L. aporus, it did not contain 

any reference sequence. 

Clade V included a single end-node, composed of a secondary cluster of five sequences. 

Although the distance criterion assigned these sequences to L. aporus, it did not contain a 

reference sequence. 

Clade VI (55% bootstrap support) contained the reference sequences of L. danicus and L 

hargravesii, as well as 26 end nodes, most of which represented only one or a few 

sequences. Yet, four of the end-nodes contained 409, 132,810, and 3252 sequences. 

Clade VII included 66 end nodes, most of which represented only one or a few sequences. 

Yet, six of the end nodes consisted of secondary clusters that contained 55 or more 

sequences (134, 245, 144,201, 55, 283). Although the distance criterion assigned all the 

sequences in this clade to L. aporus, it did not contain any reference sequence. 

Clade VIII included 11 end-nodes of which seven contained 6 or more sequences, the most 

populous of which contained 625 sequences. Although the distance criterion assigned all 

the sequences in this clade to L. convexus, it did not contain any reference sequence. 
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Table 3.6. Summary of Tara Oceans NJ trees. The number of end-nodes within each clade, their total sequence abundance and the geographical origin of the sequences are presented. 

Clade I 15 288 East African coast, Mediterranean sea, Indian Ocean 

Clade II 112 39110 L. aporus multiple sampling stations 

Clade III 5 15 multiple sampling stations 

Clade IV 16 165 South Atlantic-, South Pacific- Ocean, Arabian-, Red- Sea, Antarctic Peninsula 

Clade V 3 5 Southern Ocean, few African Coast and Arabian Sea 

Clade VI 54 4666 L. danicuslhargravesii multiple sampling stations 
Clade VII 134 2090 multiple sampling stations 

Clade VIII 51 824 multiple sampling stations 

Clade IX 1 1 L. minimus Alboran Sea 
Clade X 15 79 multiple sampling stations 

Clade XI 113 30367 L. convexus multiple sampling stations 
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Clade IX included the reference sequence of L. minimus and was sister to an end-node of a 

singleton. However, this singleton sequence was assigned to L. convexus because its 

dissimilarity to the reference sequence of this species was smaller than that to the reference 

sequence of L. minimus. Nevertheless, from a phylogenetic viewpoint it grouped with L. 

minimus, though without any bootstrap support. 

Clade X contained three end nodes, two of which were singletons and one contained 77 

sequences. Although the distance criterion assigned all the sequences in this clade to L. 

convexus, it did not contain any reference sequence. 

Clade XI contained the reference sequence of L. convexus, as well as 70 end nodes, 49 of 

which were singletons. The end-node closest to the reference sequence contained 30135 

sequences. The distance criterion assigned all the sequences in this clade to L. convexus. 

3.3.4 Biogeography. Leptocylindrus sequences were detected in 32 out of the 35 stations 

sampled and sequenced by the Tara Oceans team. More stations were sampled, but the 

sequence results were made available following the analysis carried out in this study. 

Distribution of clades sequences across the stations is presented in Fig. 3.6 and their 

abundance in different size fractions is presented in Table 3.6, Table 3.8 and Table 3.9. 

Geographical demarcation in clades was observed (see Fig. 3.5 and Table 3.6, Table 3.8 

and Table 3.9). Within Clade I, Clade I-D was found exclusively in the Adriatic and Ionian 

Seas, and all sequences of Clade IV were found near the Antarctic Peninsula except for a 

few sequences from the station 66 (8 sequences) near Cape Town and station 36 (1 

sequence) in the Arabian Sea. Within Clade VI, the L. danicus and L. hargravesii clade the 

Sub-clade VI-A (1357 sequences) appeared to be occurring in temperate latitudes and Sub

clade VI-B (3390 sequences) was found in non-temperate latitudes. Other clades contained 

sequences from multiple stations from all over the expedition track. 
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3.4 Discussion 

Discrimination of taxa in recent methods such as metagenomics generally depends on the 

choice of the genetic marker and cut-off value used for taxon discrimination. A growing 

dataset of reference SSU rRNA sequences, covering virtually every known protist 

taxonomic group has led to its development as the marker of choice for estimation of 

diversity in sequence based surveys in environmental samples (Medlin and Kooistra 2010). 

Despite the apparent advantages of availability of diverse primers and hyper-variable 

regions that provide phylogenetic signals, there are limitations to its application. For 

example, the copy number of rRNA molecules varies between different evolutionary 

lineages and species, which make it challenging to evaluate whether a library has captured 

a large enough fraction of the diversity and to further estimate the relative abundance of 

different phylotypes in the source environment (Case et al. 2007). Another limitation lies 

in the discrimination level offered by the variable regions, as the regions mostly categorize 

thousands of closely related sequences (clades of secondary clusters) that have hardly been 

linked to already sequenced morphospecies (Caron 2009, Nebel, 2011). Risk in 

interpreting the species richness and diversity though SSU rDNA tags in a sample is also 

due to the fact that not all the SSU rDNA gene copies are necessarily identical (Rooney 

2004). Additionally, at times even the hyper-variable regions have failed to discriminate 

the closely related species (Stoeck et al. 2010). The V 4 and V9 regions of the nuclear 

encoded SSU rDNA genes, most commonly used SSU rDNA regions in the metagenomic 

study of diversity and to distinguish different phylotypes, offer different levels of 

phylogenetic signals. The BioMarKs V4-tree reveals a series of well-supported clades, 

each of which contain one or two reference sequences of Leptocylindrus and 

Tenuicylindrus. The V4 region is the larger in size (:::::330bp), shows a higher number of 

parsimony informative site and higher signal to noise ratio than the V9 region (~130bp). 

This is also illustrated in the tree topologies of the V4 and V9 regions. The one based on 
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Fig. 3.6. Distribution of Leptocylindrus spp. and Clade VII inferred from the phylogenetic analysis ofV9 

metagenomic database of the Tara Oceans. (A) Leptocylindrus aporus. (B) Leptocylindrus convexus. (C) 

Leptocylindrus danicus. (D) Clade VII. Sequence abundance in logl o values. 
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the V4 was better resolved than the one based on the V9. These results are consistent with 

other studies of comparative morphological and marker analysis and estimates of species 

diversity and richness estimates. For example the comparative study of 29 species of the 

order Tintinnida concluded that V9 was less effective than V 4 in taxon discrimination 

(Santoferrara et al. in press). In diatoms, many of the Pseudo-nitzschia sensu lato species 

cannot be distinguished at even at whole 18S rONA and many of them differ at very few 

bases (Valeria Ruggiero personal communication). Hence in such cases both the regions 

fail to identify the species richness. 

Singletons are considered to be the single biggest cause of over-estimation in species 

richness tests in environmental samples (Li et al. 2012). Many singletons and doubletons 

were observed in the datasets presented in this study. The swarms of singletons that are 

recovered within clades probably represent sequences that are a few point mutations away 

from others, whereas those that form markedly distinct clades on their own, e.g., the 

singleton that is sister to L. minimus in Clade IX in the Tara Oceans dataset and the 

singleton in Clade IV of the BioMarKs dataset, probably represent rare sequences of novel 

species. In theory, they might also be chimaeras due to a peR error, but we screened these 

sequences and did not find evidence for them being chimaeras. 

Singletons or errors in PCR sequencing also depend on the sequencing platform used. Each 

claims a high level of accuracy but still errors in sequencing are of major concern 

especially in environmental sample sequencing where it is difficult to understand whether 

the diversity in sequences is the diversity of the species in natural environment. For 

instance in a comparative study Illumina yielded longer and more accurate contigs despite 

the substantially shorter read length relative to Roche 454 and comparable average 

sequencing errors in the raw reads of the two platforms (0.5% per base). Nevertheless, the 

field of NGS is rapidly progressing and advanced and efficient methods are continuously 
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under replacements. Errors are also introduced during the PCR reaction therefore if 

amplicon sequencing (involving PCR reaction before DNA sequencing) is followed over 

direct DNA sequencing then there are more chances of errors being incorporated into the 

database thus generating a false diversity value for the sample. To eliminate errors 

algorithms like SLP (Huse et al. 2010), PyroNoise (Quince et al. 2009), Denoiser (Reeder 

and Knight 2010) and Ampliconnoise (Quince et al. 2011) were developed that focus at 

identifying and removing sequence noise. Thus, species richness is an arbitrary value, 

which mayor may not reflect the actual diversity in the environment. Despite the problem 

in handling singletons in the dataset and in the phylogenetic trees, we observed 

considerable diversity in the studied species. 

Clone libraries generated through isolation of single cells or through PCR amplification by 

species specific primers provide another window for diversity estimates in phytoplankton. 

The level of diversity interpreted from clone libraries likewise the metagenomic studies 

with NGS, depends on the choice of marker and the effort made in sequencing (sample 

size). 

Dissimilarity cut-off values. The diversity inferred in the natural samples inferred through 

the metagenomic sequencing depends on the choice in dissimilarity cut-off value chosen 

for sequence retrieval and further taxonomic identity assignment. Higher sequences 

dissimilarity may result in the low number of species diversity and a lower cut-off may 

result in higher species diversity. This choice depends on the molecular marker used for 

the estimation of the diversity and on the distance of separation between the 

morphospecies. 

3.4.1 Support/or the different recognized species in Chapter II. The nuclear SSU rDNA 

was able to distinguish all the species in Leptocylindrus including L. danicus and L. 

hargravesii. However, the latter two species differed only in a few bases in the V 4 region 
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and in none at all in the V9 region. It is therefore not surprising that within the phylogeny 

of the Tara Oceans-dataset the marker sequences of these two species are found together in 

a clade. However, what is surprising is that the reference sequences of these two species 

are embedded within a larger clade with many end-nodes, several of which are composed 

of secondary clusters, each with large numbers of sequences. In fact, the two reference 

sequences are resolved in one of these clusters. Within the BioMarks V4-dataset, a similar 

pattern is revealed. The reference sequences of the two species are not identical, but at 

least closely related. The reference sequences are embedded within a group of closely 

related sequences, some of which happen to be more similar to that of L. hargravesii and 

others to that of L. danicus. So, the taxonomic assignment of these query sequences based 

on dissimilarities to these two marker sequences is rather arbitrary. A possible 

interpretation for all this sequence diversity within L. danicus - L hargravesii is that the 

secondary clusters with their many sequences represent distinct populations or even 

distinct species within a L. hargravesii / L. danicus species complex. All this does not 

questions the validity of the two species as established in Chapter II because Neapolitan 

strains of these two species formed two groups based on differences on five molecular 

markers. 

In the BioMarKs V4 dataset, the single secondary cluster of L. convexus suggests that this 

morphological species consists of a single species. This conclusion is of course valid only 

within the restricted geographical distribution in the GoN. Within the Tara Oceans V9, L. 

convexus is found in Clade XI with considerable microvariation, but no subdivision in 

distinct clades, and therefore, no clear evidence either for mUltiple species within this 

morphological taxon. 

The phylogeny inferred from the BioMarKs V4 dataset suggests that L. minimus consists 

of a single species because the sequences in its clade show no clear further subdivision into 

well-supported clades. The absence of any query sequences very close to L. minimus in the 
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phylogeny inferred from the Tara Oceans V9 dataset, indicates that the species is absent in 

the regions sampled by Tara Oceans, that is, at least, during the sampling dates of the 

stations. However, the results do not prove the absence of the species in these regions 

because the species may occur at these stations in the plankton outside the sampling 

period. However, a singleton sequence was found as relative of the L. rninirnus reference 

sequence, but markedly dissimilar from it, suggesting that this sequence belongs to an 

individual that is either a variety of the species or constitutes a close sister species of L. 

minimus. 

The phylogeny inferred from the BioMarKs V 4 dataset suggests that L. aporus consists 

also of a single species because as in the previous species the sequences in its clade show 

no clear further subdivision into well-supported clades. Within the Tara Oceans V9, L. 

aporus is found in Clade II with considerable microvariation, but as in the previous 

species, no clear subdivision in distinct clades, and therefore, no clear evidence either for 

multiple species within this morphological taxon. 

The phylogeny inferred from the BioMarKs V4 dataset suggests that T. belgicus consists 

also of a single species because also this clade shows no clear further subdivision into 

well-supported clades. Within the Tara Oceans V9, query sequences grouping with T. 

belgicus were unfortunately eliminated from the dataset. 

3.4.2 Possible evidence for additional Leptocylindrus species. In the BioMarKs V4 

dataset, Clade IV contains a singleton sequence, which might represent a species new to 

science. It must be a Leptocylindrus species because it is embedded within a clade 

containing other species belonging to this genus. The fact that it is just a singleton could be 

interpreted as it being a PCR error, specifically a chimaera. However, visual examination 

showed that base chances with the sequences of its closest sister sequences of L. aporus are 

distributed all over the sequence. This means that the sequence could be a pseudogene 
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(dysfunctional relatives). However, the differences are not scattered haphazardly all over 

the sequence but localized in small groups in regions where the differences among species 

are found. Therefore, this sequence is probably the representative of a rare species close to 

L. aporus. 

Within the phylogeny inferred from the Tara Oceans V9 region Clades I, III, IV, V, VII, 

VIII and X do not contain any reference sequences. This implies that these clades belong to 

species new to science or they represent species for which no reference sequences have 

been collected yet. Alternatively, and given that the clades are not well supported, they 

might belong to Leptocylindrus species mentioned above or even to other centric genera. 

Yet, if it is assumed that the tree topology reflects true relationships among the 

Leptocylindrus sequences, then Clades III-XI together form a clade and all sequences 

inside this clade can be assumed to belong to Leptocylindrus because the marker sequences 

recovered within this clade all belong to Leptocylindrus. Clade I might then belong to 

another genus closely related to Leptocylindrus because it is close to radial centric 

outgroup taxa. 

The lack of any additional clades close to these existing clades of these genera within the 

in the V4 tree suggests that there are no additional Leptocylindrus species in Western 

Europe. The alternative explanation is that, due to the cut-off value of 0.90, clades 

containing sequences that are still within Leptocylindrus but that represented different 

species were discarded in the selection procedure. The clades in the phylogeny inferred 

from the Tara Oceans V9 dataset are generally poorly supported or not at all. This is not 

surprising because the sequence is much shorter than the V 4 region with only 104 

parsimony informative positions. 

The micro-variation in all of the clades in the V 4 tree is comparable and so is the state of 

affairs in the V9 tree. However, the fact that there are no end-nodes on long branches 

inside the clades could be a consequence of the restrictive cut-off value of 0.90. 
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3.4.3 Biogeography. Results of the present study indicate that all Leptocylindrus species 

recognized in Chapter II are widely distributed. According to the Tara Oceans dataset 

some of the species appear to be more typical coastal whereas others are also well 

represented in mid oceanic samples. Yet, none of the species is exclusively coastal; they 

are present in low numbers also in mid-oceanic samples, suggesting that they occur there 

naturally or that they are being transported by ocean currents from one coastal region to the 

other on the opposite side of the ocean. Apparently, for Leptocylindrus species, everything 

can migrate everywhere, but the environment selects if the species can occur there in large 

numbers. 

However, a few clades without marker sequences (Clades I and IV) reveal a more 

restricted distribution. For instance, Clade I is found only in the Adriatic and Ionian seas 

and not even in other regions within the Mediterranean Sea. So, apparently, a few clades 

are not everywhere. This observation fits observations in Kooistra et aI. 2007 that a few 

Skeletonema species showed a restricted distribution pattern. 

Despite the high number of sequences at many sites, absence of sequences in a sample 

from a particular geographical location does not necessarily mean that the species is 

absent. Some species show a restricted period of occurrence whereas some others exhibit 

longer periods of occurrence (Chapter II). Also phytoplankton occurrence is patchy, which 

challenges a conclusion that the species does not occur in a region because we did not 

detect it in a sample. Thus it remains difficult to quantify species richness through 

sequencing of SSU rDNA regions in metagenomic projects if the sampling is based on a 

single visit of a site, especially in regions showing strong seasonality. 

Sampling sediments is often considered as alternatives to track the presence or absence of 

species and to construct their spatial distribution. Sediments are seeding store houses 

preserving material for the next bloom in the form of resting stages as spores, cysts, or 
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resting cells. Resting stages often result from sexual reproduction and are typically 

considered as traits to survive short-term and seasonal unfavourable conditions (Lewis 

1999) although in most diatoms they are formed during the vegetative growth phase. Some 

studies have reported that resting stages can survive for years to decades in the natural 

environment. They are an important source of genetic novelty (Genovesi-Giunti et aZ. 

2006) and also aid dispersal. It is often viewed that what is not observed in surface layers 

can be found in the sediments. The BioMarKs sediment samples contained mainly 

sequences from species that were also present in the surface layers, indicating that the 

fallen material was amplified and sequenced. In the Oslo sample of June 2010, L. danicus 

was detected in the sediment whereas in the September 2009 sample it was present in the 

plankton suggesting that this species over-summers in the benthos. This is true for all the 

sites including station Varna in Black Sea, where none of the studied species were found. 

However, phytoplankton checklists for Black Sea have readily provided long term records 

of Leptocylindrus danicus (Proshkina-Lavrenko 1955). Hence, failure of sequence retrieval 

in sediments does not necessarily imply that the species is absent at the site of sampling. 

Part of the reason for this might be that DNA extraction protocols result in low quantity of 

DNA from resting stages that are hard to break, anyway. The abundant DNA from freshly 

fallen diatom cell from recent blooms might be over amplified because of its higher 

quantity and easier accessibility. As a result, it is difficult but not impossible to construct 

the biogeographic distribution for a species. Certainly a spatial distribution by simply 

reporting as presence-absence based estimate of biodiversity can be readily assembled. 

3.5 Conclusion 

Understanding the diversity, biogeography and ecological role of protists depends on the 

degree of correlation between the morphological and molecular characters. Morphological 

analysis involves careful observations for cryptic species whereas estimating and 
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interpreting species richness from the metagenomic sequences of environmental samples 

depends on the choice made in the use of molecular marker and the cut-off value. Among 

the variety of choice available for genetic markers selection to estimate the diversity of 

species in environmental samples, SSU, V4 and V9 are the widely used, which provide 

similar taxon discrimination, while V9 was less effective in producing reliable distance 

trees. The diversity observed for Leptocylindrus spp. and T. belgicus was marginal with the 

V4 region with restricted geographical sampling in BioMarKs. On the other hand Tara 

Oceans with a greater sampling provides a contrasting view of the genetic diversity in the 

natural environment. The novel clades obtained can belong to any of the unknown genetic 

identity or even a novel species. However, given the uncertain phylogenetic trees generated 

with V9 region and without any information on the morphology of the identity, it is 

difficult to conclude the definitiveness of the novelty. Thus continued thoughts and efforts 

in the choice and improvements of the bioinformatic tools used for analysis of 

metagenomics data, can result in better interpretations of the species richness III 

environmental samples and finally to expand the studies of biogeography and ecology. 
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Table 3.7. Summary ofV4 sequence abundance in BioMarKs sampling stations based on the assignment of reference species by CO-HIT-EST-2D clustering analysis. 

S0234 Barcelona 2010 Subsurface 0-0.2 DNA 6697 3 

S0155 Barcelona 2010 Subsurface 20-2000 cDNA 18349 1 

S0156 Barcelona 2010 Subsurface 20-2000 DNA 17934 2 

S0066 Barcelona 2010 Subsurface 3-20 eDNA 8902 

S0157 Gijon 2010 Subsurface 0.8-3 eDNA 15383 

S0158 Gijon 2010 Subsurface 3-20 eDNA 5685 5 

S0160 Gijon 2010 Subsurface 3-20 DNA 14130 43 

S0052 Naples 2009 DCM 0.8-3 eDNA 15866 1 6 1053 

S0161 Naples 2009 DeM 0.8-3 eDNA 19219 1 11 917 

S0162 Naples 2009 DeM 0.8-3 eDNA 20905 5 250 

S0042 Naples 2009 DeM 0.8-3 DNA 10131 4 210 

S0167 Naples 2009 DCM 0.8-3 DNA 14121 4 252 

S0168 Naples 2009 DeM 0.8-3 DNA 15243 5 185 

S0235 Naples 2009 DeM 0-0.2 DNA 739 0 35 

S0041 Naples 2009 DeM 20-total eDNA 8409 1 5 64 

S0164 Naples 2009 DeM 20-total eDNA 23645 9 76 I 3 

S0045 Naples 2009 DeM 20-total DNA 9751 3 20 

S0170 Naples 2009 DCM 20-total DNA 16022 1 7 21 

S0048 Naples 2009 DeM 3-20 eDNA 8637 25 3851 

S0165 Naples 2009 DeM 3-20 eDNA 29232 9 69 11782 1 5 

S0049 Naples 2009 DCM 3-20 DNA 10053 21 1 2076 
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S0171 Naples 2009 OeM 3-20 DNA 15076 3 11 5399 

SOO05 Naples 2009 Sediment total cDNA 20490 63 65 194 1 

S0147 Naples 2009 Sediment total cDNA 21790 41 46 93 2 

SOO08 Naples 2009 Sediment total DNA 26540 13 7 29 

S0148 Naples 2009 Sediment total DNA 7985 3 1 8 

S0050 Naples 2009 Subsurface 0.8-3 cDNA 22249 4 2 1788 2 

S0163 Naples 2009 Subsurface 0.8-3 cDNA 27024 7 1231 2 

S0051 Naples 2009 Subsurface 0.8-3 DNA 8111 1 2 ]44 

S0169 Naples 2009 Subsurface 0.8-3 DNA 30255 1 3 456 3 

S0236 Naples 2009 Subsurface 0-0.2 DNA 2343 3 18 

SOO17 Naples 2009 Subsurface 20-total cDNA 1715 1 2] 1 

SO]25 Naples 2009 Subsurface 20-total cDNA 15371 8 17 ]70 5 

SOO19 Naples 2009 Subsurface 20-tota] DNA 1450 7 

S0135 Naples 2009 Subsurface 20-total DNA 16454 14 3036 4 

S0046 Naples 2009 Subsurface 3-20 cDNA 3646 5 1246 2 

S0166 Naples 2009 Subsurface 3-20 cDNA 30868 8 42 8867 27 

S0047 Naples 2009 Subsurface 3-20 DNA 14471 3 5 3043 1 

SOI72 Naples 2009 Subsurface 3-20 DNA 8064 4 1801 1 

S0098 Naples 2010 OeM 0.8-3 DNA 8732 I 

S0086 Naples 2010 DCM 20-2000 cDNA 12968 1 

S0096 Naples 2010 DCM 20-2000 DNA 10936 1 I 

S0087 Naples 2010 OeM 3-20 cDNA 13001 2 3 1 

SOO97 Naples 20]0 OeM 3-20 DNA 8367 3 2 1 5 

S0089 Naples 2010 Sediment total eDNA 6972 5 1 

S0099 Naples 2010 Sediment total DNA 17061 5 3 
---- - ~~ 
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S0085 Naples 2010 Subsurface 0.8-3 eDNA 8054 1 3 

S0095 Naples 2010 Subsurface 0.8-3 DNA 3812 1 3 20 

S0083 Naples 2010 Subsurface 20-2000 DNA 7338 1 1 2 

S0074 Naples 2010 Subsurface 3-20 cDNA 4413 4 2 3 6 

S0084 Naples 2010 Subsurface 3-20 DNA 3797 1 1 4 35 

S0025 Oslo 2009 DeM 0.8-3 cDNA 1978 2 

S0127 Oslo 2009 DeM 0.8-3 cDNA 11179 3 5 2 1 2 2 

S0027 Oslo 2009 DeM 0.8-3 DNA 1180 1 

SOB7 Oslo 2009 DeM 0.8-3 DNA 17176 20 10 1 14 

S0021 Oslo 2009 DeM 20-2000 cDNA 1098 8 1 3 

SOl28 Oslo 2009 DeM 20-2000 eDNA 20585 52 20 15 4 

SOB8 Oslo 2009 DeM 20-2000 DNA 13533 8 3 6 

S0033 Oslo 2009 DeM 3-20 eDNA 1193 7 3 2 26 3 

S0126 Oslo 2009 DeM 3-20 eDNA 9738 95 52 6 15 131 26 

S0035 Oslo 2009 DeM 3-20 DNA 404 1 2 

SOB6 Oslo 2009 DCM 3-20 DNA 13928 24 8 6 16 97 to 

SOO06 Oslo 2009 Sediment total eDNA 12458 2 7 2 1 1 1 

SOOtO Oslo 2009 Sediment total eDNA 8916 5 14 1 

S0129 Oslo 2009 Sediment total eDNA 3971 3 2 

SOBO Oslo 2009 Sediment total eDNA 8128 8 8 4 1 

SOO07 Oslo 2009 Sediment total DNA 7195 3 

SOO09 Oslo 2009 Sediment total DNA 3196 2 

SOB9 Oslo 2009 Sediment total DNA 8300 1 1 

S0140 Oslo 2009 Sediment total DNA 15734 3 2 4 2 

S0029 Oslo 2009 _ Subsurface 0.8-3 eDNA 2078 9 2 2 
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S0131 Oslo 2009 Subsurface 0.8-3 cDNA 11063 40 11 7 6 

S0031 Oslo 2009 Subsurface 0.8-3 DNA 424 1 2 

S0141 Oslo 2009 Subsurface 0.8-3 DNA 9494 32 10 5 2 1 

S0065 Oslo 2009 Subsurface 20-2000 cDNA 10451 5 6 2 1 

S0075 Oslo 2009 Subsurface 20-2000 DNA 9818 10 1 1 5 

S0037 Oslo 2009 Subsurface 3-20 cDNA 1506 6 2 2 

S0132 Oslo 2009 Subsurface 3-20 cDNA 14666 86 37 9 31 37 

S0039 Oslo 2009 Subsurface 3-20 DNA 1157 2 2 1 2 

SOl42 Oslo 2009 Subsurface 3-20 DNA 16654 76 37 5 45 13 

S0133 Oslo 2010 DeM 0.8-3 eDNA 7649 2 13 

SOl43 Oslo 2010 DeM 0.8-3 DNA 13672 14 77 

SOlOS Oslo 2010 DeM 3-20 eDNA 17313 8 18 

SOIlS Oslo 2010 DCM 3-20 DNA 23504 2 43 

S0134 Oslo 2010 Sediment total eDNA 12535 I 

SOl44 Oslo 2010 Sediment total DNA 15985 I 2 

SOl06 Oslo 2010 Subsurface 0.8-3 eDNA 10313 4 2 

SOl16 Oslo 2010 Subsurface 0.8-3 DNA 16128 4 6 

SO 108 Oslo 2010 Subsurface 20-total eDNA 11709 I 

SOl17 Oslo 2010 Subsurface 3-20 DNA 17920 16 29 
DCM- Deep Chlorophyll MaXimum 
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Table 3.8: Estimated relative abundance of each clade in the thirty six stations included in the study is shown as percentage of the total number of sequences generated for the respective 
station. 

120 



72 22094164 0.00117 0.00000 
76 18180547 0.00002 0.00001 0.00065 0.00001 0.00008 
78 19429802 0.00004 0.00001 0.00002 0.00005 
82 17324392 0.00026 0.00001 0.00002 0.00237 0.00027 0.00008 
84 8078955 0.00022 
85 22271842 0.00013 0.00059 0.00012 
98 15013819 0.00002 0.00001 0.00034 0.00001 
100 16995862 0.00018 0.00004 0.00001 0.00009 0.00023 
102 17597963 0.00001 0.00010 
109 23608165 0.00005 0.00004 0.00062 
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Table 3.9. Summary of V9 sequence abundance for each of the clades in the Tara Oceans sampling 

stations inferred through phylogenetic analysis. 

4 DeM DNA 0.8-5 192 40 4 

4 DeM WGA/DNA 5-20 465 2 

4 DeM WGA/DNA 180-2000 7 2 2 

4 SUR DNA 5-20 639 4 

4 SUR DNA 0.8-5 143 9 2 

4 SUR DNA 180-2000 1 

7 DeM DNA 0.8-5 1182 6 

7 DeM DNA 180-2000 6 

7 DeM DNA 20-180 987 7 

7 DeM WGA/DNA 5-20 4923 3 15 

7 SUR DNA 0.8-5 888 12 1 

7 SUR DNA 180-2000 3 1 

7 SUR DNA 20-180 1059 1 1 

7 SUR WGA/DNA 5-20 1 20725 S 30 

9 DeM DNA 0.8-5 9 1 

9 DeM DNA 180-2000 

9 SUR DNA 0.8-5 19 

9 SUR DNA 180-2000 2 

18 DeM DNA 5-20 3 S 1 2 

18 DeM DNA 0.8-5 25 1 

18 DeM DNA 1Ro-7oon 3 2 2 

18 D~ DNA 20-180 42 2S 22 51 6 

18 SUR DNA 5-20 178 56 14 28 8 

18 SUR DNA 0.8-5 79 14 1 

18 SUR DNA 180-2000 

18 SUR DNA 20-180 41 5 3 

23 DeM DNA 5-20 4 ~ 1 

23 DeM DN~ 0.8-5 74 562 S 

23 DeM DNA 180-2000 1 3 3 4 

23 DeM WGA/DNA 20-180 105 33 172 

23 SUR DNA 5-20 70 87 18 1 

23 SUR DN_~ 0.8-5 34 28 

23 SUR DNA 180-2000 

23 SUR DNA 20-180 4 60 7 10 1 2 

25 OeM DNA 0.8-5 15 3 

25 oeM D~ 180-2000 1 2 

25 oeM DNA 20-180 4 27 46 148 2 30 

25 DeM WGA/DNA 5-20 46 21 12 2 1 

}~ SUR DNA 5-20 10 4 35 3 6 

25 SUR DNA 0.8-5 12 5 

Chapter III. Biogeography 122 

( '(}/Ild .. 

48 

22 

1 

270 

25 

372 

3 

266 

1953 

1§r 

286 

8477 

34 

10 

5 

7 

3 

3 

111 

475 

64 

16 

54 

2 

21 

74 

3 

40 

3 

12 

16 

1 



25 SUR DNA 180-2000 

25 SUR DNA 20-180 15 24 1 2 11 

30 oeM DNA 0.8-5 1 2 
30 oeM WGA/DNA 20-180 1 2 
30 SUR DNA 0.8-5 

30 SUR DNA 180-2000 1 
30 SUR DNA 20-180 2 4 
31 SUR DNA 0.8-20 24 2 
31 SUR DNA 180-2000 2 

31 SUR DNA 20-180 6 

32 oeM DNA 0.8-5 31 3 5 
32 oeM DNA 180-2000 

32 oeM DNA 20-180 44 5 2 3 
32 oeM WGA/DNA 5-20 414 1 
32 SUR DNA 0.8-5 6 3 

32 SUR DNA 180-2000 5 

32 SUR DNA 20-180 3 1 1 3 
32 SUR WGA/DNA 5-20 1 1 
33 oeM WGA/DNA 0.8-inf 41 45 18 67 

33 SUR DNA 0.8-20 33 4 1 4 

33 SUR DNA 180-2000 

33 SUR DNA 20-180 

34 oeM DNA 5-20 201 13 4 168 

34 oeM DNA 0.8-5 51 3 19 

34 oeM DNA 180-2000 1 

34 oeM DNA 20-180 13 1 54 1 9 
34 SUR DNA 180-2000 1 

34 SUR DNA 20-180 4 1 1 

34 SUR WGA/DNA 5-20 53 3 1 
36 oeM DNA 0.8-5 42 388 

36 oeM DNA 180-2000 18 4 430 

36 oeM DNA 20-180 2 2 107 

36 oeM WGA/DNA 5-20 1 1 

36 SUR DNA 0.8-5 99 1281 

36 SUR DNA 180-2000 7 14 

36 SUR DNA 20-180 104 21 2339 

36 SUR WGA/DNA 5-20 14 13 266 

37 DMZ WGA/DNA 0.8-5 3 1 

37 DMZ WGA/DNA 20-180 10 

38 oeM DNA 0.8-5 2 

38 oeM DNA 180-2000 3 

38 oeM DNA 20-180 6 

38 DMZ WGA/DNA 5-20 16 4 

38 SUR DNA 0.8-5 2 1 9 

38 SUR DNA 20-180 1 5 
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38 SUR WGA/DNA 180-2000 4 1 4 

41 DeM DNA 0.8-5 1 6 

41 DeM DNA 180-2000 

41 DeM DNA 20-180 4 27 1 3 

41 DeM WGA/DNA 5-20 10 6 8 

41 SUR DNA 0.8-5 

41 SUR DNA 180-2000 

41 SUR DNA 20-180 4 6 51 

41 SUR WGA/DNA 5-20 

42 DeM DNA 0.8-5 2 13 

42 DeM DNA 180-2000 1 

42 DeM DNA 20-180 

42 DeM WGA/DNA 5-20 2 4 13 
42 SUR DNA 0.8-5 3 

42 SUR DNA 180-2000 

42 SUR DNA 20-180 1 1 4 

42 SUR WGA/DNA 5-20 1 

44 SUR DNA 0.8-20 65 1 

45 SUR DNA 5-20 3 3 

45 SUR DNA 0.8-5 2 1 

45 SUR DNA 180-2000 

45 SUR DNA 20-180 

48 SUR DNA 0.8-20 393 1 7 2 1 147 

48 SUR WGA/DNA 180-2000 

52 DeM DNA 0.8-5 

52 DeM DNA 180-2000 

52 DeM DNA 20-180 1 8 

52 DeM WGA/DNA 5-20 21 

52 SUR DNA 0.8-5 1 1 

52 SUR DNA 180-2000 

52 SUR DNA 20-180 2 

52 SUR WGA/DNA 5-20 1 3 

64 DeM DNA 0.8-5 176 216 2 356 

64 DeM DNA 180-2000 2 1 3 

64 DeM DNA 20-180 9 113 115 98 127 8 550 

64 SUR DNA 5-20 2680 2745 11 8263 

64 SUR DNA 0.8-5 255 425 2 1 569 

64 SUR DNA 180-2000 1 1 6 

64 SUR DNA 20-180 40 35 65 98 5 251 

65 DeM DNA 0.8-5 738 122 17 1 431 

65 DeM WGA/DNA 5-20 90 1 565 97 

65 MES DNA 0.8-180 2 

65 SUR DNA 0.8-5 370 91 3 343 

65 SUR DNA 180-2000 

65 SUR DNA 20-180 157 3 31 261 68 1 326 
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65 SUR WGA/DNA 5-20 30 12 459 

66 DeM DNA 0.8-5 1 1 

66 DeM WGA/DNA 5-20 13 25 14 4 

66 SUR DNA 0.8-5 1 5 

66 SUR DNA 180-2000 1 

66 SUR DNA 20-180 5 

66 SUR WGA/DNA 5-20 2 8 2 2 

67 SUR DNA 5-20 7 1 4 

67 SUR DNA 0.8-5 13 1 46 

67 SUR DNA 0.8-inf 50 9 101 

67 SUR DNA 180-2000 1 

67 SUR DNA 20-180 

68 DeM DNA 0.8-inf 2 2 

68 DeM DNA 180-2000 

68 DeM WGA/DNA 5-20 1 12 

68 MES DNA 0.8-3 1 

68 MES DNA 3-inf 

68 SUR DNA 0.8-5 1 1 

68 SUR DNA 20-180 14 

68 SUR WGA/DNA 5-20 1 

70 MES WGA/DNA 0.8-3 15 1 2 

70 MES WGA/DNA 3-inf 1 

70 SUR DNA 5-20 

70 SUR DNA 0.8-5 

70 SUR DNA 0.8-inf 

70 SUR DNA 180-2000 

70 SUR DNA 20-180 2 

72 DeM DNA 5-20 7 

72 DeM DNA 0.8-5 

72 DeM DNA 0.8-inf 2 2 

72 DeM DNA 180-2000 

72 DeM DNA 20-180 1 20 

72 MES WGA/DNA 0.8-3 17 16 

72 MES WGA/DNA 3-inf 

72 SUR DNA 0.8-5 2 

72 SUR DNA 0.8-inf 1 30 

72 SUR DNA 180-2000 1 

72 SUR DNA 20-180 1 200 1 

72 SUR WGA/DNA 5-20 4 5 

76 DeM DNA 5-20 

76 DeM DNA 0.8-5 1 31 54 

76 DeM DNA 0.8-inf 2 

76 DeM DNA 180-2000 

76 DeM DNA 20-180 

76 MES WGA/DNA 0.8-3 
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76 MES WGA/ONA 3-inf 2 

76 SUR DNA 5-20 1 1 2 

76 SUR DNA 0.8-5 1 35 

76 SUR DNA 0.8-inf 

76 SUR DNA 180-2000 

76 SUR DNA 20-180 

78 oeM DNA 0.8-5 1 9 

78 oeM DNA 0.8-inf 1 7 

78 oeM DNA 180-2000 

78 oeM DNA 20-180 2 2 1 1 

78 MES DNA 0.8-3 4 

78 MES DNA 3-inf 1 

78 SUR DNA 5-20 2 1 8 

78 SUR DNA 0.8-5 2 1 

78 SUR DNA 0.8-inf 2 2 10 

78 SUR DNA 180-2000 

78 SUR DNA 20-180 1 3 1 3 

82 oeM DNA 0.8-inf 1 10 1 
82 oeM DNA 180-2000 

82 oeM WGA/ONA 5-20 17 

82 oeM WGA/ONA 0.8-5 34 1 49 60 

82 oeM WGA/DNA 20-180 10 46 45 

82 SUR DNA 5-20 57 

82 SUR DNA 0.8-5 2 153 2 3 

82 SUR DNA 0.8-inf 1 188 

82 SUR DNA 180-2000 1 2 2 

82 SUR DNA 20-180 1 

84 SUR DNA 0.8-5 1 

84 SUR DNA 0.8-inf 17 

84 SUR DNA 180-2000 

84 SUR DNA 20-180 

84 SUR WGA/DNA 5-20 1 

85 oeM DNA 0.8-5 2 25 1 

85 oeM DNA 0.8-inf 6 

85 oeM DNA 180-2000 

85 oeM WGA/DNA 5-20 4 15 10 

85 oeM WGA/DNA 20-180 4 5 8 14 

85 MES WGA/DNA 0.8-3 2 

85 MES WGA/DNA 3-inf 22 11 

85 SUR DNA 0.8-5 50 

85 SUR DNA 0.8-inf 32 

85 SUR DNA 180-2000 

85 SUR WGA/DNA 5-20 2 9 

85 SUR WGA/DNA 20-180 8 

98 oeM DNA 180-2000 1 
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98 DCM DNA 20-180 1 2 

98 DCM WGA/DNA 0.8-5 23 

98 MES DNA 0.8-3 1 

98 MES DNA 3-inf 1 

98 SUR DNA 5-20 2 1 

98 SUR DNA 0.8-5 

98 SUR DNA 180-2000 1 

98 SUR DNA 20-180 

100 DCM DNA 0.8-inf 2 23 

100 DCM DNA 180-2000 

100 DCM DNA 20-180 16 

100 DCM WGA/DNA 5-20 30 7 42 

100 MES DNA 0.8-3 1 1 
100 MES DNA 3-inf 1 

100 SUR DNA 5-20 1 

100 SUR DNA 0.8-5 2 
100 SUR DNA 0.8-inf 1 

100 SUR DNA 180-2000 

100 SUR DNA 20-180 2 

102 DCM DNA 5-20 5 
102 DCM DNA 0.8-5 3 

102 DCM DNA 0.8-inf 

102 DCM DNA 20-180 2 4 3 

102 MES DNA 0.8-3 1 

102 MES DNA 3-inf 1 
102 SUR DNA 5-20 1 

102 SUR DNA 0.8-5 1 1 

102 SUR DNA 0.8-inf 10 

102 SUR DNA 180-2000 

102 SUR DNA 20-180 3 

109 DCM DNA 0.8-5 2 

109 DCM DNA 0.8-inf 3 

109 DCM DNA 180-2000 1 

109 DCM DNA 20-180 

109 DCM WGA/DNA 5-20 

109 MES DNA 0.8-3 

109 MES DNA 3-inf 1 

109 SUR DNA 5-20 5 

109 SUR DNA 0.8-5 

109 SUR DNA 0.8-inf 8 

109 SUR DNA 180-2000 1 

109 SUR DNA 20-180 

SUR-Surface, DCM-Deep Chlorophyll Maximum, WGA-Whole genome Amplication, MES- Mesopelagic 
OMZ-Oxygen Minimum Zone 
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Diversity of oxylipins and their biosynthetic pathways in the 
centric genera, Leptocylindrus and Tenuicy'indrus 

4.1. Introduction 

Diatoms are a major component of the marine coastal ecosystems, forming the basis of 

the marine food chain and carrying out approximately one fifth of the photosynthesis on 

the Earth. These highly diverse photosynthetic organisms are found worldwide and 

populate almost all the aquatic ecosystem where sufficient light and nutrients are 

present to support their growth. It is estimated that around 200,000 species exists, of 

which approximately around 10,000 being currently described (Alverson 2008). The 

majority of non-described species are uncultivable and many are difficult to distinguish 

morphologically that are referred to as cryptic or pseudo-cryptic species. 

Cryptic diversity has been well documented in the pennate diatoms (for example the 

genus Pseudo-nitzschia (Lundholm et al. 2002, Lundholm et al. 2003, Lundholm et al. 

2006, Amato et al. 2007», but the recent discoveries in centric diatoms (for example, 

Skeletonema costatum sensu lato (Sarno 2005, Sarno 2007; Leptocylindrus, Chapter II) 

have raised doubts on the factual diversity of diatoms. In recent years, a combination of 

different methods, involving microscopy and molecular markers (DNA sequences), 

have been applied to distinguish and identify diatom species. Metabolomics for 

chemical fingerprinting of species and functional genomics have proven particularly 

useful in plants and animals; however, its application in the diatom systematics is 

relatively less explored. 

Evolved as the product of natural selection, secondary metabolites are the low 

molecular weight organic compounds that occur within the cell or tissue and represent a 

large group of structurally and functionally diverse chemicals. Microalgae produce a 

great variety of secondary metabolites that are synthesized by a diverse set of enzymes, 
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from a limited number of precursors from primary metabolism and possess a wide 

variety of biological function. 

A major driving force in structuring the chemical diversity of secondary metabolites is 

the interactions between the organism and its environment. Although the functional 

analysis of secondary metabolites remains largely uninvestigated, a growing body of 

evidence suggests that chemical signals are involved in many processes, such as defense 

against grazers, competition, resource foraging and reproduction (Hay 2002). For 

example, compounds produced by microalgae such as dimethylsulfide (DMS) and its 

precursor dimethylsulfoniopropionate (DMSP) have important physiological functions 

such as osmolyte (Dickson and Kirst 1987), antioxidant (Karsten et af. 1992) or 

cryoprotectant (Sunda et al. 2002). In addition, DMSP play important roles in biological 

interactions; DMS released upon cell lysis triggers a tail-flapping response in the 

copepod Temora longicornis that probably helps the animals in finding food (Steinke et 

af. 2006). Thus the success of a species to perpetuate in a dynamic ecosystem depends, 

among other factors, on the complexity and diversity of molecules it can produce. 

Polyunsaturated aldehydes (PUA) and polyunsaturated fatty acids (PUF A), along with 

their derivatives, constitute an important class of compounds with diverse roles, 

produced in diverse organisms, ranging from bacteria, fungi, algae to plants and 

animals. This group of compounds is generally named 'oxylipins', which include "any 

cyclic or acyclic product derived by the incorporation of oxygen into the carbon chains 

of PUF As" (Gerwick et al. 1991, Cutignano et al. 2011). Diatoms are also known to 

produce oxylipins, which appear to play complex roles in predator defence processes as 

well as in other inter- and intra-specific interactions. Specifically, in diatoms oxylipins 

include short-chain unsaturated aldehydes and hydroxyl-, keto- and epoxyhydroxy fatty 

acid derivatives (Fontana et al. 2007). The first biosynthetic study in diatoms by 

Pohnert (2000), demonstrated the synthesis of 9-oxonona-5Z,7E-dienoic acid from C20 
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fatty acids in benthic diatom, Gomphonema parvulum. Later, in Skeletonema costatum 

the formation of octadienal and octatrienal by lipoxygenase (LOX) mediated oxidation 

of CI6 fatty acids was demonstrated. 

Diatoms produce either one PUA or a mixture of several PUAs in wound-activated 

processes (Wichard et al. 2005, Fontana et al. 2007), e.g. upon cell breaking due to 

either grazing or mechanical damage, that trigger a cascade of reactions leading to the 

production of hydroperoxy-, hydroxy-, keto-, oxo-, epoxy-alcohols and aldehydes 

(Wi chard et al. 2005). Oxylipin biosynthesis involves, as the first committed step, the 

oxidation of fatty acids to hydroperoxides by LOXs (classified based on their positional 

specificity in the molecular oxygen introduction), a non-heme iron dioxygenase that 

adds molecular oxygen to the carbon chain of fatty acids. In plants, oxygenation 

typically involves a CIS chain of linoleic and linolenic acids (the most abundant PUFAs 

in plants; Andreou, 2009), while in diatoms it generally involves CI6 and C20 PUF As 

(Cutignano et al. 2011). Alternatively, hydroperoxides may be formed through chemical 

oxidation of fatty acids (Schneider et al. 2007). Oxidation of fatty acids at different 

positions in the carbon chain leads to the formation of the corresponding 

hydroperoxides, for example oxygenation at C-9 by 9-LOX leads to the formation of 9-

hydroperoxy-derivatives of the substrate, that are further metabolised to diverse 

compounds. In diatoms, the most commonly synthesised oxylipins includes CIO 2E,4E 

IZ-decadienal (2E,4EIZ-DD) and 2E,4EIZ,7Z-decatrienal (Miralto et al. 1999), but also 

Cg 2E, 4EIZ-octadienal, 2E, 4EIZ-octatrienal and C72E, 4EIZ-heptadienal (d'Ippolito et 

al. 2002, Wichard et al. 2005). 

The ecological and biological role played by oxylipins is relatively well understood in 

plants where they play diverse biological functions as second messengers and as anti

microbial, anti-insecticidal as well as antifungal compounds (Knight et al. 2001, 

Eckardt 2008). In diatoms, they are apparently involved in defence mechanisms against 
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grazing activity, as both infochemical and allelochemicals (Leflaive and Ten-Hage 

2009). 

Diatoms were considered to be valuable food for copepods and other grazing organisms, 

until the mid-1990s, when one of the first experimental observation by (lanora and 

Poulet 1993) revealed that a diatom diet can decrease egg hatching rate in the copepod 

Temora stylifera. This observation was further supported by many laboratory studies 

where copepods were either fed with PUA-producing diatom cultures (Ianora et al. 

2004) or were exposed to pure compounds (Caldwell et al. 2004). Field studies have 

also demonstrated reduced egg hatching rates, like in the case of Acartia clausi, which 

showed a 12% reduced egg hatching rate (Miralto et al. 1999) and of Pseudo-calanus 

newmani and Calanus pacificus, which showed reduced reproductive success during 

blooms of Thalassiosira spp. (Halsband-Lenk et al. 2005, Pierson et al. 2005). The 

bioactive compounds responsible for such effects were firstly characterised by Miralto 

et al. (1999) as 2E,4E-DD,2E,4E,7Z-decatrienal and 2E,4Z,7Z-decatrienal. Through 

laboratory and field studies, the anti-proliferative effect of diatom PUAs is now clear, 

but it is not restricted to copepods. For example an earlier study by Caldwell et al. 

(2004) showed reduced sperm motility in sea urchins under the effect of 2E,4EIZ-DD. 

In polychaetes, crude and pure extracts of 2E,4E/Z-DD from Skeletonema costatum was 

found to inhibit fertilization, embryogenesis and hatching success (Caldwell et al. 

2002). The mode of action of PUAs has been fairly predicted to be due to the apoptotic 

activity during the developmental stages (Romano et al. 2010). Independent of PUA 

production, the enzymatic oxidation of Chaetoceros ajjinis and C. socialis PUF As and 

consequent teratogenic effects (malformation of embryos) was recently demonstrated in 

copepods (Naup/ii) (Fontana et al. 2007). The synthesis of fatty acid hydroperoxides 

(FAHs) and other oxylipins (e.g., PUAs) in specific steps of defence signalling, and 

through the indirect boost of the oxidative stress with synthesis of lethal radical 
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chemicals (highly reactive oxygen species) was shown to reduce copepod reproductive 

capacity (Fontana et al. 2007). Despite these studies and demonstrations, the factors 

affecting copepod reproduction and the roles played by PUAs and PUF As derivatives in 

different biotic interactions remain largely unclear. 

The role of PUAs is not restricted to the defence against grazers, as new functions have 

recently been discovered which have widened the list of biological activities in which 

they are involved. Casotti et al. (2005) first proposed a role of PUA as chemical signals 

in interspecies communication under unfavourable conditions. The study demonstrated 

that 2E,4E/Z-DD could induce an apoptotic-like degenerative process causing cell death 

in Thalassiosira weissjlogii, a species not producing 2E,4E/Z-DD. The response to 

2E,4E/Z-DD was also studied in Phaeodactylum tricornutum, where it includes a rapid 

accumulation of nitric oxide (NO) in subcellular compartments and an altered 

expression of superoxide dismutase and metacaspases, which are involved in stress 

response pathways (Wolfe-Simon et al. 2006). Ribalet et al. (2007) showed that the 

sensitivity to PUAs is species-specific, demonstrating a role of these compounds in the 

control of bloom development and termination. Therefore the knowledge of bioactive 

lipid derivatives, and of the diversity in their synthesis pathways across different 

lineages, is crucial to the understanding of the biotic interaction in the natural 

environments. 

Oxylipins synthetic pathways and the compounds eventually synthesized are highly 

diverse in the photosynthetic eukaryotes. Although the level of functional diversity is 

scarcely studied, some attempts have been made to use these compounds in 

chemotaxonomy as a complementary or alternative tool to classify and identify cryptic 

species. Surprisingly, a high species-specificity has been observed in both centric and 

pennate diatoms (Wichard et al. 2005, Fontana et al. 2007). Thus oxylipins might be 

used to characterise and classify species, to identify the physiological differences and at 
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times as chemical markers for identification in case of cryptic and pseudo-cryptic 

species. 

In the case of Leptocylindrus, where pseudo-cryptic/cryptic species were identified in 

this thesis research (Chapter II), a study was planned to develop a metabolomics-based 

approach to the taxonomy of the genus by applying targeted Liquid chromatography

mass spectrometry (LC-MS) metabolite profiling of oxylipins. This study was done in 

scientific collaboration with Dr Angelo Fontana and colleagues at CNR-Instituto di 

Chimica Biomolecolare, Naples, Italy. As samples, cultures of selected strains isolated 

for the species diversity study of Leptocylindrus and T. belgicus were used. The 

discrimination among species was hence based on differences in their metabolite 

profiles in strains isolated in a single geographical location. During the study, firstly the 

diversity of compounds produced was investigated to determine whether specific 

metabolites could be adopted as biomarkers in the chemotaxonomy of the genus 

Leptocylindrus. Secondly, a comparative analysis of the phyco-oxylipins synthetic 

pathways of each species was performed. 

4.2. Methods 

4.2.1. Cultures. Two strains of each of 5 species (Leptocylindrus aporus, L. danicus, L. 

convexus, L. hargravesii and Tenuicylindrus be/gicus) were selected (Table 4.1) from 

the existing culture collection established for the study presented in Chapter II. Stock 

cultures were maintained in an incubator at 20°C and on a 12:12h L:D (Light:Dark) 

photoperiod with an irradiance of about 40-60 /-lmol photons m-2sec-1 by periodic 

transfers into 50 ml polystyrene flasks with 30 ml of K culture medium (Keller et al. 

1987). Before the start of the experiment, the growth cycle of the individual species was 

investigated to determine the time needed to reach the stationary phase. To this end, 

200 ml flat polystyrene bottles containing 100 ml of K medium were inoculated with 50 
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xl03 cells from a culture in the exponential phase and were allowed to grow under a 

12:12h L:D photoperiod with an irradiance of about 100 J,lmol photons m-2sec-1at 20°C 

until the decline phase. For the determination of the growth cycle, one strain of each 

species was used. 

To obtain the material for the oxylipin analysis, cells were inoculated from 

exponentially growing cultures into two 2 I spherical, flat bottomed, glass flasks with 1 I 

of K media at a final cell density of 500 cells mrl. The cultures were allowed to grow 

under 100 J,lmol photons m-2sec-1 of light with an L:D cycle, 12: 12. Cell densities were 

estimated every alternate day by counting cell number till the end of stationary phase. 

At the beginning of the stationary phase (or at the end of the exponential phase) the 

cultures were centrifuged and the culture pellets were collected. Pellets from 300 ml 

culture in triplicates of each species strain were frozen until used. 

Table 4.1. Strains used in the analysis. 

Leptocylindrus aporus 
SZN-B727 03/08/2010 
SZN-B764 1811112010 

Leptocylindrus convexus 
SZN-B783 25/0112011 
SZN-B778 25/0112011 

Leptocylindrus danicus 
SZN-B707 15/02/2010 
SZN-B714 21/04/2010 

Leptocylindrus hargravesii 
SZN-B781 25/0112011 
SZN-B772 21112/2010 

Tenuicylindrus belgicus 
SZN-B739 02110/2010 
SZN-B755 19/10/2010 

4.2.2. Oxylipins analysis. Culture pellets collected for oxylipin analysis were extracted 

and analysed according to the methods described in (d'Ippolito et al. 2009). Briefly, 
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cells were suspended in 1 ml of filtered sea water 0.22 !-lm, sonicated for 1 min and 

incubated at room temperature. After 20 min, 1 ml of acetone and 5 !-lg 16-hydroxy-

hexadecanoic acid (16-0H, internal standard) were added. The sample was sonicated 

for 1 min and centrifuged at 2000 g for 5 min at 5°C. The pellet was resuspended in 2 

ml of H20 lace tone (1:1, v/v), sonicated 1 min and centrifuged at 2000 g for 5 min. The 

supernatants were combined and extracted twice with equal volume of CH2Ch. The 

organic layers were combined, dried over dry Na2S04, hence filtrated and evaporated at 

reduced pressure. The dry extract was methylated with ethereal diazomethane for 30 

min, and evaporated under nitrogen flow. 

Methylated extracts were dissolved in methanol to a final concentration of l!-lg !-lrl and 

directly analysed by LC-MS. The mass spectrometry (MS) method was based on a 

micro-Quadrupole time-of-flight (micro-QToF) instrument equipped with an 

electrospray ionization (ESI) source in positive ion mode and a UV photodiode array 

(DAD) detector (scan range 205-400 nm) for a dual monitoring of the chromatographic 

runs. For ESI-QToF-MSIMS experiments, argon was used as collision gas at a pressure 

of 22 mbar. Chromatographic analysis was carried out on a reverse phase column 

(Phenomenex, C-18 Kromasil 4.6 x 250 mm, 100 A) using a linear MeOHl H20 

gradient 75/25 to 10010 in 30 min with a column flow of 1 ml min-I. One tenth of the 

column flow was channelled by a post-column split to the ESt (Q-Tof) MS analyser 

and the remaining 9/10 to the UV DAD detector (Cutignano et al. 2011). 

4.3. Results 

4.3.1. Growth. Many of the secondary metabolites are expressed during the stationary 

phase of the growth cycle and hence it is important to determine the time taken to reach 

that phase with a given inoculum. Before the start of the experiment, the growth curve 

for each species was determined. A typical growth cycle for each species is shown in 

Fig. 4.1, based on cell counts. All the species grew exponentially for 6-8 days and then 
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entered the decline phase. The only exception was the specIes T. belgicus, which 

showed a fluctuating cell density for an extended period of time, maintaining a plateau 

after reaching a maximum cell density (8.30 x10scells mrl). Leptocylindrus danicus 

(1.98xl05 cells mrl) and L. hargravesii (2.10 x10scells mrl) reached a similar density, 

which was lower as compared to other species. Leptocylindrus aporus (4.S0x 105 cells 

mrl) and L. convexus (S.lOx105 cells mrl) showed similar maximum cell density at the 

end of experiment. 
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\000 I----------=--====;::==:::::::;,F::::::~==~ 

'0 ->< 

E 
:!:. 

100 +-----~~~~-------~---------~ 

] 10 +---~.H.r_--------------------~ 

0.1 +--~--~-~--~-~-~~-~-~--~-~-~ 
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days 
-+-Leptocylindrus aporus ~Leptocylindrus convexus Leptocy lindrus danicus 

""*-Leptocy lindrus hargravesii ~Tenuicylindrus belgiclls 

Fig. 4.1. Typical growth curves established by cell density for Leplocy/indrus species and r be/gicus 

(n=3). 

4.3.2. Oxylipin profiles. Using the standardised sample preparation protocol followed 

by the optimised LC-MS analysis, a reproducible chemical fingerprint of each species 

was obtained (Fig. 4.2 and 4.3). The mass (mlz), retention time (Rt), and UV absorption 

(!..max) of major peaks in different samples are reported in Table 4.2. Strains of all the 

species showed similar oxylipin profiles with sl ight variation in the relative quantity. 
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Oxylipins profiles of L. aporus showed two major peaks on the chromatogram (Fig. 4.2; 

Table 4.2, A) with rn/z 355.1 (Rt 19.3, Amax234) and 371.1 (Rt 14.5, Amax210). The later 

peak was abundant in the strain SZN-B727 in comparison with strain SZN-B764. 

Leptocylindrus convexus chromatograms (Fig. 4.2; Table 4.2, B) were characterised by 

the presence of peaks with rn/z 381.2 (Rt 22.28, Amax 234),355.1 (Rt 19.32, Amax 234), 

397.2 (Rt of 22.28, Amax 210),395.2 (Rt of 22.28, Amax 234),371.1 (Rt 14.2, Amax 210). 

The two strains, SZN-B783 and SZN-B778 had a similar profile except for the presence 

in SZN-B778 of a peak with m/z 353 (Rt 18.9, Amax 234). Leptocylindrus danicus 

chromatograms (Fig. 4.2; Table 4.2, C) showed four major peaks with mlz 381.2 (Rt 

22.48, Amax 234),355.1 (Rt 19.61, Amax 234),397.2 (Rt 17.9, Amax 210),371.1 (Rt 14.8, 

Amax 210). In both strains, small quantities of isomers with rn/z 371 were detected. The 

profile of L. hargravesii was characterised by presence of four major peaks (Fig. 4.2; 

Table 4.2, D and E) with rn/z 381.2 (Rt 22.5, Amax 234),355.1 (Rt 19.6, Amax 234), 397.1 

(Rt 17.9, Amax 210), 371.1(Rt 14.8 Amax 210). Tenuicylindrus belgicus chromatograms 

(Fig. 4.3; Table 4.2, F) were constituted by two major peaks with rn/z 355.1 (Rt 21.3 Amax 

234) and 395.1 (Rt 19.0, Amax 234), and additional minor peaks with m/z 371 at different 

retention time. 

On the basis of the rn/z, Rh & Amax and in comparison with the Rt of 16-0H (internal 

standard), few of the molecules were characterized. The compounds with rn/z 355, Amax 

234, and Rt from 19 to 22 were assigned as hydroxyacids derivatives of 

eicosapentaenoic acid (EPA), while the molecules with mlz 371, Amax 210, and Rt from 

13 to 15 were characterized as epoxyalcohol derivatives of EPA. The compounds with 

m/z 381, "-max 234, and Rt from 22 to 23 were assigned as hydroxyacids derivatives of 

docosa hexaenoic acid (DHA), while the molecules with mlz 397, Amax 210, and R t from 

16 to 18 were characterized as epoxyalcohol ofDHA. 
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Fig. 4.2. Phyco-oxylipins signatures by LC-MS in Leptocylindrus species. (A) L. aporus, strain SZN

B764. (B) L. aporus, strain SZN-B727. (C) L. convex us, strain SZN-B778. (D) L. convexus, strain SZN

B783. (E) L. danicus, strain SZN-B707. (F) L. danicus, strain SZN-B714. (G) L. hargravesii. strain SZN

B772. (H) L. hargravesii, strain SZN-B781. Numbers above the peaks indicate the molecular ion 

(M+Nal as determined by ESr+ ionization and retention time. 16-hydroxyhexadecaenoic acid methyl 

ester, shown by the mass peak at mlz 309. 
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Fig. 4.3. Phyco-oxylipins signatures by LC-MS in Tenuicylindrus belgicus. (A) strain SZN-B739. (B) 

strain SZN-B755. Numbers above the peaks indicate the molecular ion (M+Na+) as determined by ESt 

ionization and retention time. 16-hydroxyhexadecaenoic acid methyl ester, shown by the mass peak at 

m/z 309. 

4.3.3 Oxylipin characterisation. To characterize LOX pathways in diatom species, a 

simple and reproducible procedure recently published for the detection and 

characterization of oxylipins in micro algae (Cutignano et al. 2011) working directly on 

the extract was applied. The method was based on the fragmentation pattern of 

epoxyalcohol, generated at high collision energy using positive ESt as source in a Q-

ToF MS. If the hydroxyl moiety is between the epoxide and the carboxylic end, MStMS 

fragmentation induces fonnation of ion clusters producing three main peaks that result 

by breaking of the carbon bonds of the epoxide, as well as the bonds between the 

epoxide and hydroxyl group. Contrastingly, if the hydroxyl moiety is between the 

epoxide and the methyl end, one detectable fragment is given that is derived from the 

cleavage of the epoxide ring. The mechanism is general and highly predictable. The 

analysis of the MStMS spectra of epoxy-alcohols allows unambiguous prediction of the 

position of peroxidation, thus establishing the LOX activity responsible for the primary 

insertion of oxygen. 
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Table 4.2. Summary of the LC-MS chromatograms of Leptocylindrus species and T. belgicus. (A) L. aporus. strain SZN-B727 and SZN-B764 (8) L. convex us. strain SZN-B783 and 
SZN-B764. (C) L. danicus. strain SZN-B714 and SZN-B707. (D) L. hargravesii SZN-B78I. (E) L. hargravesii. strain SZN-B772. (F) T. belgicus. strain SZN-B739 and SZN-B755. (0) 
comparative peaks among the species. 

A B C D 

L. al!.eorus SZN-B727 L. convexus SZN-B783 L. danicus SZN-B714 L. hargravesii SZN-B781 

309.2 23.04 235 16-0H 309.2 23.04 235 16-0H 309.2 23.08 235 16-0H 309.2 23.03 235 16-0H 

381.2 22.07 234 OH22:6 381.2 22.07 234 OH22:6 381.2 22.28 234 OH 22:6 381.1 22.27 234 OH22:6 

355.1 19.15 234 OH20:5 355.1 19.12 234 OH20:5 338.2 20.64 355.2 21.09 234 

371.1 14.32 210 EPA 20:5 353.2 18.67 234 355.2 19.96 234 355.1 19.45 234 OH 20:5 

371.2 13.09 210 EPA 20:5 397.2 17.15 210 EPA 22:6 355.1 19.42 234 OH 20:5 331.2 19.07 

301.1 12.62 395.2 15.91 234 397.2 17.71 210 EPA 20:5 397.1 17.71 210 EPA 22:6 

L. al!.0rus SZN-B764 310.2 13.46 371.1 14.66 210 373.2 17.01 

309.2 23.12 235 16-0H 371.1 14.05 210 EPA 20:5 310.2 13.38 397.2 15.93 210 

381.2 22.14 234 OH22:6 301.1 12.62 301.1 12.59 371.1 14.66 210 EPA 20:5 

338.2 20.62 L. convexus SZN-B778 L. danicus SZN-B707 371.1 14.31 210 EPA 20:5 

355.1 19.15 234 OH20:5 309.2 23.11 235 16-0H 309.2 23.08 235 16-0H 371.1 12.91 210 

345.1 15.36 - 381.2 22.08 234 OH 22:6 381.2 22.28 234 OH22:6 301.1 12.59 

371.2 14.26 210 EPA 20:5 355.1 19.12 234 OH 20:5 355.1 19.41 234 OH20:5 371.1 12.24 210 

301.1 12.58 - 353.1 18.66 234 397.2 17.72 210 EPA 22:6 301.1 11.23 

310.2 13.37 - 397.2 17.12 210 EPA 22:6 371.1 14.68 210 EPA 20:5 

395.1 15.83 234 371.2 13.41 210 

371.1 13.99 210 EPA 20:5 301.1 12.64 

371.1 12.49 210 EPA 20:5 

371.2 12.12 210 EPA 20:5 

301.1 11.40 - Contd. .. 
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E F 

L. hargravesii SZN-B772 T. belgicus SZN-B739 
309.2 23.12 235 16-0H 309.2 23.06 235 16-0H 
381.1 22.31 234 OH 22:6 397.2 22.23 210 EPA 22:6 
355.2 21.09 234 355.2 21.06 234 OH 20:5 
355.1 19.48 234 OH 20:5 338.2 20.54 
331.3 19.01 - 395.2 18.8 234 
397.1 17.67 210 EPA22:6 371.2 16.1 210 EPA 20:5 
373.2 16.99 - 371.2 15.46 210 EPA 20:5 
371.1 14.59 210 EPA 20:5 371.2 14.02 210 
371.1 14.33 210 EPA 20:5 310.2 13.4 
371.1 12.89 210 301.1 12.61 

313.1 12.06 - T. belgicus SZN-B755 
301.1 11.23 - 309.2 23.11 235 l6-0H 

397.2 22.28 210 EPA 22:6 
355.1 21.11 234 OH 20:5 
395.1 18.8 234 
371.2 16.07 210 EPA 20:5 
371.2 15.45 210 EPA 20:5 
371.2 13.95 210 EPA 20:5 
301.1 12.58 
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Fig. 4.4. MSIMS fragmentation of (A) 16-hydroxy-14,15-epoxy-eicosa 5Z,8Z,llZ,17Z-tetraenoic acid 

isolated from L. aporus and L. convexus (all strains). (8) 13-hydroxy-14,15-epoxyeicosa-5Z,8Z,llZ,17Z

tetraenoic acid isolated in L. danicus and L. hargravesii (all strains). (C) 18-hydroxy-16, 17 -epoxydocosa-

4Z,7Z,10Z,13Z,19Z-pentaenoic acid isolated from L. aporus and L. convexus (all strains). (D) IS-hydroxy-

16,17-epoxydocosa-4Z,7Z,10Z,13Z,19Z-pentaenoic acid isolated from L. danicus and L. hargravesii (all 

strains). 
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The MSIMS spectra of epoxyalcohol with rnIz 371, Rt 14 & Amax 210 of L. danicus and L. 

hargravesii (Table 4.2, C-E) showed fragments at IlYZ 289, 273 and 259 accounting for the 

occurrence of the intermediate compound containing the a-hydroxy-aldehyde function of 

13-hydroxy-14-oxo-5,8,II-tetradecatrienoic acid methyl ester (Fig. 4.4, B). These ions 

were consistent with the structure of 13-hydroxy-14,15-epoxyeicosa-5Z,8Z,11Z,17Z

tetraenoic acid (13, 14-HEpETE). 

The analysis of MSIMS spectra of epoxyalcohol with rnIz 397, Rt observed in L. aporus 

and L. convexus revealed the presence of three fragments of rnIz 285, 299 and 315, that are 

consistent with molecule 15-hydroxy-16, 17 -epoxydocosa-4Z,7Z, 1 OZ, 13Z, 19Z-pentaenoic 

acid (l5,16-HEpDPE; Fig. 4.4, D). 

The MSIMS spectrum of epoxyalcohol with rnIz 397, Rt 17 recorded in L. aporus and L. 

convexus (Table 4.2, A and B) showed a single molecular ion at m/z 299, that was 

diagnostic to assIgn to the structure of 18-hydroxy-16, 17 -epoxydocosa-

4Z,7Z,1 OZ,13Z, 19Z-pentaenoic acid (18,16-HEpDPE; Fig. 4.4, D). 

The compounds with m/z 353 and 395 remained uncharacterized, because they had m/z 

and Rt that are not diagnostic for their characterization with existing knowledge of these 

compounds. Isolation and structural elucidation is necessary to assign a structure to these 

molecules, which are planned for future studies. 

Likewise, on the basis of the epoxyalcohol found in each species, lipoxygenase pathways 

were established. In L. aporus and L. convexus, 14-LOX acting on EPA and 16-LOX 

specific for DHA were identified (Fig. 4.5, A and B). Instead, in L. danicus and L. 

hargravesii 15-LOX activity that recognize EPA and 17-LOX acting on DHA was 

characterised (Fig. 4.6, A and B). 
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14-HpEPE = 14-Hydroperoxy eicosapentaenoic acid 
14-HEPE = 145- Hydroperoxy eicosa-5Z,8Z,IIZ,13E-triaenoic acid 
16, 14-HEpETE = 16-hydroxy-14, 15-epoxy-eicosa 5Z,8Z, lIZ, 17Z-tetraenoic acid 

16-HpEPE = 16-Hydroperoxy eicosapentaenoic acid 

16-HDHE = 16-Hydroxy docosa hexaenoic acid 
16-HEpDHPE = 18-hydroxy-16, 17-epoxydocosa-4Z, 7Z, 1 OZ, 13Z, 19Z-pentaenoic acid 

Fig. 4.5. OxyIipins synthesis pathways of C20:5 and C22:6 PUFAs in L. aporus and L. convexus. (A) 14-

LOX pathway of EPA. (B) 16-LOX pathway ofDHA. 
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Fig. 4.6. Oxylipins synthesis pathways of C20:5 and C22:6 PUF As in L. danicus and L. hargravesii. (A) 15-
LOX pathway of EPA. (B) 17-LOX pathway ofDHA. 
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4.4. Discussion 

In Chapter II, through the application of a combination of molecular makers from nuclear 

and plastid origin and morphological characters the species of Leptocylindrus and T. 

belgicus were distinguished and their relationships are inferred. In the light of those results 

in the present study, differences among the newly recognised species in the synthetic 

pathways of oxylipin are analysed. The study of oxylipin composition and possible 

biosynthetic pathways in the already known and newly recognised species offers a new 

angle for the study of their diversity. In the following, the results obtained are discussed in 

the relationships evidenced among the species in Chapter II. 

4.4.1. Support for the species recognized in Chapter II. The differences noted in the 

growth curves of species suggests that the three lineages identified in Chapter II have some 

distinguishing feature in their growth which reflect their phylogenetic distance. The 

analysed oxylipin pathways of Leptocylindrus species and T. belgicus indicate that the 

hydroxyacids and epoxyalcohol of EPA and DHA are the common traits of these genera. 

The LOX pathways between the species lineages (Chapter II), L. aporus and L. convexus 

(Lineage II; Fig. 4.5, A and B), were different from those found in L. danicus and L. 

hargravesii (Lineage III; Fig. 4.6, A and B) indicating that the two lineages have evolved 

different LOX for oxylipin synthesis. Among the species, L. danicus and L. hargravesii, 

and L. convexus and L. aporus, showed very similar oxylipin profiles, in which 

hydroxyacids and epoxyalcohol of EPA and DHA had the same Rt• In fact, Lineage II is 

characterised by 14-LOX acting on EPA and I6-LOX acting for DHA, whereas in the 

Lineage III is characterized by I5-LOX activity that recognizes EPA and 17-LOX activity 

that recognizes DHA. In comparison with Lineage II and III constituted by Leptocylindrus 

species, Tenuicylindrus belgicus (Lineage I) has quite dissimilar oxylipin pathways, 
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showing mainly the presence of hydroxyacid of EPA, and the complete absence of DHA 

derivatives. The sharing of common pathways across Lineage II and Lineage III reflects 

close association of the species within the two lineages, whereas their distance from 

Lineage I validate the molecular, morphological and phylogenetic relationships delineated 

in Chapter II. 

In addition to the compounds identified and characterised as lineage specific other peaks 

observed in each of the species can be further investigated to provide a species specific 

compound pattern. For instance the compound with rnlz 395 (Rt 15.9, Amax 253) was 

specific to the species L. convexus, hence can be used to recognise L. convexus among the 

other Leptocylindrus species. Nevertheless, here the lineage specific LOX pathways are 

identified. Therefore in case of Leptocylindrus and Tenuicylindrus oxylipins are potential 

biomarkers. 

4.4.2. Diatom taxonomic classification. Diatoms taxonomy has traditionally relied on the 

differences in the frustule structure for species classification and delimitation. However, 

with the discovery of PCR and DNA sequencing, molecular markers have emerged as the 

more reliable markers for species discrimination. Despite the availability of multiple 

molecular markers the scientific community is still to agree upon a consensus gene for the 

barcode of algae and plants, like that of cox gene in animal system. A combination of rbcL 

and LSU are proposed, rbcL is proposed to be used as the primary marker for diatom 

barcoding, while LSU D21D3 to be sequenced as a secondary marker to facilitate 

environmental surveys (Hamsher et af. 2011). 

4.4.3. Chemotaxonomy in Diatoms. Biochemical fingerprinting is not very new in species 

identification, but rather has decades of history. In fact, allozymes (principle - protein 

variants in enzymes that can be distinguished by native gel electrophoresis according to 
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differences in size and charge caused by amino acid substitutions) were the first molecular 

markers to be established (Schlotterer 2004). These markers showed high amounts of 

within-population polymorphism that led to a very important discovery, the neutral theory 

of evolution. The theory essentially states that most of the mutations are effectively neutral 

(Kimura 1968, King and Jukes 1969). However due to scarcely informative marker loci, 

the use of allozymes for mapping and association studies (i.e. the joint occurrence of two 

genetically encoded characteristics in a population and, often, an association between a 

genetic marker and a phenotype) was challenged (Hills et al. 1996). In recent years, with 

the advancement of technologies, biochemical fingerprinting has emerged as a valuable 

alternative. In diatoms this approach, when applied to the discrimination of closely related 

species, could also highlight physiological differences and hence provide valuable 

information on the ecological characteristics of the distinct species. 

Other molecules, such as pigments (Ruivo et al. 2011) and PUF As or in general 

hydrocarbons, are used for species discrimination in general and also in diatoms. An 

example is the cuticular hydrocarbons in insects (Singer 1998, Baracchi et al. 2010). In 

phytoplankton, pigment concentrations and ratios are investigated for identifying species 

or lineage specific character. Irradiance-independent, species- or group-specific 

discrimination was recently demonstrated on 18 species of Pseudo-nitzschia spp., a genus 

that has a complex genetic structure (Zapata et al. 2011). Comparative pigment 

(chlorophyIIs and carotenoids) concentrations studied in cultures of dinophyceae, 

bacillariophyceae, prasinophyceae and cryptophyceae showed that growth phase and 

irradiance can affect the levels and ratios of pigments in cells (Ruivo et al. 2011). 

Nevertheless, pigments are being investigated for the applicability in detection of dominant 

groups based on the ratios in natural environments (Ruivo et al. 2011). 
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Many studies have investigated the hydrocarbons or PDF As composition of microalgae, 

but the characterisation of these compounds is largely limited to the exploration of long-

chain PDF As for commercial production (Volkman et al. 1989), with few addressing their 

application for taxonomy (Lang et al. 2011). Fatty acid profiles of 2976 strains of 

microalgae (from different algal groups) were suitable to discriminate taxa of higher rank, 

while the variability was too high to obtain a species-specific character (Dunstan et al. 

1993). Thus a systematic use of these compounds in diatom taxonomy awaits investigation. 

4.4.4. Oxy/ipins as biomarkers. Since the discovery of the diatom PDAs role as a defence 

mechanism against grazers, many studies have also addressed (focused on) the other 

possible functional roles of these molecules. Such studies, although few, have contributed 

to the understanding that these molecules are highly diverse, at times lineage-specific, and 

are involved in complex biological interactions. In the current study, using targeted HPLC 

coupled with LC-MS oxylipin profiling of Leptocylindrus species and T. belgicus, a unique 

profile for each species was generated that allows in species identification. The study 

demonstrates the diversity in the synthetic pathways of oxylipins and the possible 

application of these compounds as biomarkers for species delimitation. 

Oxylipins have rarely been applied in species delimitation due to the plasticity in the 

production of these compounds. Gerecht et al. (2011) revealed that oxylipin production in 

Skeletonema marinoi can vary even among clones isolated from the same area in different 

time periods. These authors reported significantly higher amount of oxylipin in two of the 

four strains analysed. In addition, qualitative differences in oxylipin production among the 

clones were noted that might provide competitive advantages. This result was also 

consistent with the genetic diversity observed among the clones of the species that might 

further have propagated downstream (Gerecht et al. 2011). Thus it appears that the 

diversity of oxylipins can even be traced back to intraspecific genetic differences. The 
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clones used in the current study are from two different time periods but during the same 

season. Moreover, the differences described among the species are consistent between the 

strains, while quantitative differences are excluded for species and lineage delineation. 

Considering that the small genetic differences in molecular marker genes observed in the 

clones of the species S. marinoi was replicated in the oxylipin content of the cells (Gerecht 

et al. 2011), it seems obvious that different taxa might have diverse oxylipins deriving 

from diverse enzymatic activity. The genetic relationships constructed with the 

phylogenetic marker genes in this thesis (described in Chapter II) are consistent with the 

biochemical synthetic pathways observed for the oxylipins. Leptocylindrus aporus and L. 

convexus that belong to same lineage in the phylogenetic tree (Chapter II on this thesis) 

had similar oxylipin pathways. The two pathways of L. danicus and L. hargravesii are 

highly similar indicating close relationship. This was also revealed in the molecular 

analysis where the species could be differentiated with the rbcL, psbC and ITS regions but 

not with LSU and SSU genes. Tenuicylindrus belgicus, a species for which a separate 

genus has been established (Chapter II) based on remarkable structural-ultrastructural and 

molecular differences, also shows conspicuous differences in oxylipin synthesis pathways 

and the compounds produced within. Similar results have also been reported in another 

study involving sympatric species of Pseudo-nitzschia delicatissima, where the 

reproductively isolated pseudo-cryptic species (Amato et al. 2007) were also qualitatively 

and quantitatively differentiated in LOX products (Lamari 2009). Thus greater efforts in 

characterising the pathways of oxylipins synthesis in diverse diatoms can help in 

understanding its applicability as a potential biomarker. 

4.4.5. Intraspecific variations in oxylipins. During growth progression along the growth 

curve and bloom time obvious metabolic changes occur (Vidoudez and Pohnert 2011). 

Changes have also been noted in the production of oxylipins, as reported in some recent 
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studies (Vidoudez and Pohnert 2008, d'Ippolito et af. 2009). In the current studies, 

oxylipins were extracted from the stationary phase cultures, since a significantly higher 

oxylipins production was reported during this phase in other species including S. marino; 

(Ribalet et al. 2007, Vidoudez and Pohnert 2008) and P. delicatissima (d'Ippolito et al. 

2009). Therefore oxylipin machinery is functional at its maximum during the stationary 

phase. 

Environment exerts its influence on all the biological process and so does on the 

production of oxylipins in diatom cells. Physiological stress has been reported to trigger 

the production of oxylipins. For example, Nand P limitation in S. marinoi increased PUAs 

production by 1.4 to 1.8 fold (Ribalet et al. 2007). Silica- limited cells of S. marinoi have 

been shown to produce a 7.5 fold higher amount of PUAs (Ribalet et al. 2009). 

Additionally, temperature has also been reported to have a negative relationship with EPA 

content in Nanochloropsis sp. (Hu and Gao 2006). This relationship with temperature has 

been discussed in more detail in Chapter V. Consequently, environmental factors 

particularly nutrient availability can profoundly influence the oxylipin content in diatoms. 

Nevertheless in the study all the environmental factors were kept constant between the 

species. 

4.5 Conclusion 

In the current study, a method for the identification of individual Leptocylindrus species 

and T. belgicus using the oxylipin profiles is proposed. A methodology is also proposed as 

a metabolic discrimination of the species identified using the morphological and DNA-

based molecular markers. The application of morphological, molecular and metabolic 

discrimination of species will provide a fertile interface to diatom species identification 

and physiological validation of the different genetic entities that might have different 

ecological roles. 
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Oxylipin profiling for species delimitation has several practical advantages that are 

tantalizing to employ them as biochemical markers either as sole markers or as a support to 

morphologically and physiologically discriminated genetic entities. The protocol described 

is high throughput, relatively economic on a per-sample basis and can be fully automated 

with analytical acquisition time taking less than three hour. PUF As account for a large 

portion of the diatom cell volume and therefore only a few cells are needed for the 

analysis. Additionally, the use of internal standards, such as 16-hydroxyhexaenoic acid in 

the analysis, allows for the quantitative comparison of the phyco-oxylipin fingerprints 

among species. 

The diversity in oxylipins class appears to be too high and certainly provides enough 

characters for discrimination even for the species rich diatoms or even a combination of 

different compounds can reflect the species identity. On the other hand, the process of 

oxylipin synthesis is dynamic and is influenced by the biotic and abiotic factors (discussed 

in Chapter V). Therefore, prior to its application as biomarker, it is important to decipher 

the factors that trigger and the physiological condition that favour their synthesis. Thus 

with the greater efforts in characterising the pathways of oxylipins synthesis in diverse 

diatoms species can help not just in understanding its applicability as a potential biomarker 

but also shed light on numerous other process in which these molecules are involved. 
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Physiological responses and biochemical phenotypes in the diatom species 

Leptocylindrus danicus and Leptocylindrus aporus exposed to three different 

temperatures 

5.1 Introduction 

One of the intriguing questions in the study of phytoplankton ecology is how these 

microalgae have been able to adapt to the extremely wide spectrum of environmental 

conditions. Since their origin (Triassic-Jurassic period), microalgae of the contemporary 

ocean have been constantly adapting to the ever changing marine environment and this 

fight against the dynamic nature of the oceans has been conducted by increasing fitness 

and producing diverse genotypes to suit either narrow or diverse niches. 

It is generally accepted that diatoms have a wide thermal tolerance agreeing with Eppley's 

(1972) that 'temperature does not seem to be very important in the production of 

phytoplankton in the sea' and that maximum growth rate of phytoplankton scale with 

temperature (Eppley 1972). Thus they have successfully colonised diverse spatial and 

temporal thermal environments. Although diatoms are ubiquitous as a group, their 

diversity is wide. For example their morphology ranges from large, chain forming species, 

such as Fragilariopsis kerguelensis found in polar latitudes (Nodder and Waite 2001), to 

small unicellular species in tropical waters (Cavender-Bares et al. 1999). The cosmopolitan 

species, which have a wider geographical range including diverse environmental 

conditions, often show considerable ecological plasticity (Smayda 1958, Hasle 1976). In 

contrast, there are also species which have a limited tolerance to environmental variations 

and hence are endemic to a restricted geographical location. For example, a careful 

morphological analysis of the Thalassonemataceae species revealed that, of the few species 

occurring in temperate to cold waters, one has a cosmopolitan distribution, one is restricted 

to the northern hemisphere and two others to the Southern Ocean (Hasle 2001). These 

studies reveal that diatom distribution is influenced by environmental conditions in general 
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and temperature in particular and there is a necessity to understand this influence on the 

growth and physiology of individual species. 

Among the different environmental factors which the cells cope with, temperature plays a 

major role driving the spatial and temporal distribution of a species, and thus the 

community composition, and food web structures (Portner and Farrell 2008, Montes-Hugo 

et al. 2009). Temperature is one of the fundamental factors because growth is only possible 

within some relatively limited range. In some groups temperature plays a key role for 

example, the prochlorophyte, Prochlorococcus cannot grow below 15-18°C (Olson et al. 

1990, Cavender-Bares et al. 2001). In other cases, temperature plays a secondary role i.e. 

when coupled with other environmental controls such as nutrient availability and light, 

having either an antagonistic or a synergistic role in structuring the species distribution. 

For instance, a marked increase in diatom abundance was noted when both Fe supply and 

temperature were increased (Rose et al. 2009). In diatoms, where the effect or role of 

temperature is still unresolved in most cases, findings from laboratory and/or field 

experiments combined with distribution data can help understanding the influence of 

temperature on individual species distribution. 

Temperature can have substantial effect on the growth and physiology of the cells by 

altering the rate of enzyme catalysed reactions in various metabolic processes, changing 

the cell composition. Temperature also influences many physical cellular processes such as 

diffusivity, solubility and fluidity that are associated with growth, which are maintained in 

a feedback control processes with the external environment. These effects are species and 

at times strain specific reactions and they determine the successes in coping with the 

fluctuating temperature. It is important to understand these differences if it is possible to 

determine the significance of the physiological variations. They are primarily reflected in 

the physiological adjustments of cellular mechanisms and finally in the biochemical 

phenotype i.e. the metabolome of cells. 
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The metabolome is the final product of genetic and environmental interactions, and as such 

provides a blueprint for the cellular biochemical machinery. Understanding the regulation 

of the metabolome enables a better understanding ofthe biochemical pathways that control 

biological processes. 

Metabolomics, i.e. the identification and quantification of all the metabolites in a 

biological samples (Dettmer et al. 2007), has been successfully applied in studies of 

environmental influence on cells, for example, stress physiology under nutrient depletion 

(Bolling and Fiehn 2005), acclimation to CO2 limitation (Renberg et al. 2010) in 

Chlamydomonas reinhardtii, and other ecological and evolutionary studies (Mace I et al. 

20 10). Although metabolomic studies related to microalgae are limited, (Bolling and Fiehn 

2005) they have already provided significant insights in to molecular mechanisms and have 

identified novel metabolites and pathways that are triggered by changes in the 

environmental condition. 

Diatoms possess a wide array of biochemical compounds that help them mitigating the 

effects of a changing environment and often these compounds are released into the 

environment (Hay 1996), which may provide an added advantage such as defence against 

grazers (ex. Domoic acid, Shaw 1997; Saxitoxin in dinoflagellates, Schantz, 1966 and 

pathogens, Naviner 1999) or in overcoming competition for resources or to overcome 

stress conditions. These compounds, referred to as secondary metabolites, are low 

molecular weight molecules with diverse chemical structures, among which are the 

physiologically and ecological relevant group of fatty acid derivatives called oxylipins 

(Chapter IV). Secondary metabolites including oxylipins are often modified in terms of 

their concentrations or functional properties to help make the organism more fit to its 

environment and at times can be used as signature molecules that reflect the physiological 

status and affect response to stress (d'Ippolito et al. 2004, Vidoudez and Pohnert 2008, 

Vidoudez and Pohnert 2011). Despite all these implications, the research of diatom 
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metabolites has a very short history, with limited knowledge on chemical diversity and 

exploration of biosynthetic mechanisms with the primary goal of isolating novel 

compounds in the search for new drugs. 

Response to temperature has been well studied in the terrestrial plant system, at least in 

comparison to microalgae, through the application of system biology approaches involving 

a wide array of genetic, molecular and metabolomic techniques. Non-targeted metabolome 

analyses of low temperature acclimation have revealed that the plants reconfigure the 

metabolome extensively. The central carbohydrate metabolism was found to be most 

strongly positively correlated metabolites, increasing the levels of glucose, fructose, and 

sucrose (Hannah 2006). Another study reported an increase in the metabolites like 

trehalose, putrescine and ascorbate, all of which are considered to have potential roles in 

cold tolerance and a possible up regulation in the urea cycle (Cook et al. 2004). High 

temperature metabolome response included an increase in the level of beneficial osmolytes 

including sucrose, maltose, trehalose, fructose and glucose. At high temperature proline 

was not found to be beneficial, since it was down regulated, whereas glutamine synthesis 

was specifically elevated. Thus, in plants, in response to temperature stress at high and low 

temperature, there is a profound shift in the levels of amino acids, citric acid cycle 

intermediates and many other metabolites of carbohydrate metabolism. 

In diatoms, the response to temperature stress is mainly addressed in studies where this 

factor is considered as synergistic/antagonist in combination with other factors like nutrient 

limitation, salinity. Temperature stress metabolome in diatoms still needs to be explored 

and studied, it might or might not respond in the same pattern as other photosynthetic 

organisms. For example, the response of Thalassiosira pseudonana carbon metabolism to 

nitrogen starvation was found to be similar to cyanobacteria but not to green alga and 

Arabidopsis (Hannah et al. 2010). In general diatom species physiologically acclimate in 

response to variation in temperature, for example, by adjusting their membrane lipid 
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composition, thus increasing their capacity to grow. Some of the responses reported 

include an increased level of unsaturated fatty acids as a marker of low temperature 

adaptation in Chaetoceros socialis (Degerlund et al. 2012), and an increase in the level of 

proline and chlorophyll content per cell was noted for cold region strain than the warm 

region strain in Phaeodactylum tricornutum as a response to increase in temperature 

(Krabs and BUchel 2011). Another study in Chaetoceros cf. wighamii revealed higher 

carbohydrates and lipid content at lower temperatures than at higher temperature tested, 

whereas there was no significant change in the protein levels (de Castro Araujo and Garcia 

2005). Thus it appears diatoms respond to temperature in concordance with the higher 

plant system, but the hypothesis needs to further tested and studied. 

To investigate whether the diversity found in the morphology and phylogenetics is paired 

with similar degree of diversification at the physiological and biochemical level, 

differences in growth characteristics and metabolite levels at varying temperature were 

analysed in related species. Ultimately, the study could also help to understand how 

biochemical constitutes are linked to the fitness of the species in relation to the particular 

suite of environmental or ecological conditions it faces in nature. 

The study focuses on the ecophysiology of Leptocylindrus danicus and L. aporus, which 

were selected among the other Leptocylindrus species (Chapter II) due to their relevance in 

the Gulf of Naples (GoN) phytoplankton. The two species, L. danicus and L. aporus, have 

been strategically chosen based on their remarkable differences in the phylogeny and time 

of occurrence in the natural environment, despite subtle morphological differences. We 

believe the system is simple as well as robust enough to understand the problem. At the 

sampling site LTER-MareChiara, typically, water temperature varies between 12°C and 

22 °C from winter through spring, while during summer it is between 22°C and 26 °C 

(Ribera d'A\cahl et ai. 2004). The contrasting temperature conditions associated with the 

occurrence of the two species (Chapter II) suggest they might have opposite physiological 
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attributes that are suitable to the environment in which they occur. Thus, the aim of the 

experiment was to establish the temperature tolerances of the two species and to 

understand the biochemical phenotype specific to the temperature and species. To this end, 

cultures of species were exposed to three temperature conditions of 12°C, 19 °C and 26 

°C. During the experiments, 

1) growth rates, as net products of sub-cellular responses (Munns and Tester 2008), 

2) maximum cell density, indicating the carrying capacity of the species, 

3) cell morphology, as a reflection of the vigour of cultures, and 

4) selected metabolites, as the clues of physiological adjustments, were analysed. Based on 

their occurrence, the response of the two species at lower temperatures and higher 

temperature might be different. Furthermore, the biochemical phenotype though whole 

metabolite, that are planned for later studies, might help in understanding the molecular 

mechanisms that are altered as a response to variations in temperature. 

The study included an acclimation step, in which four strains of each species were 

gradually adapted to the different temperature conditions, followed by an analysis of their 

acclimated growth response and of possible intraspecific variations of growth parameters. 

One strain for each species was then selected and submitted to new growth experiments at 

the three temperatures prior to oxylipins and fatty acid analyses. The latter analyses were 

conducted in collaboration with Dr Angelo Fontana and colleagues at CNR-Instituto di 

Chimica Biomolecolare, Naples, Italy, where the facilities of LC-MS and GC-MS were 

utilised, together with scientific guidance. Overall, results of this study support the idea 

that functional variations in diatoms mayor may not be reflected in profound or subtle 

differences in the external silica frustules. Therefore, it is proposed that, at least in this 

case, species physiological properties could be a better indicator of phylogenetic 

relationships than morphology. The study also restates the importance of addressing 
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genetic variations among similar speCies, as they could be indicator of physiological 

differences that are relevant to the understanding of the ecology of these species. 

5.2 Methods: 

5.2.1 Cultures. Four strains of L. danicus and L. aporus were selected (Table 5.1) out of 

those used for the study of genetic diversity at the GoN (Chapter II). The eight strains 

were chosen among those isolated on different dates, to cover the entire season of 

occurrence of the two species and possibly identify intraspecific variations in the 

adaptation to different environmental conditions. Two strains of L. danicus and L. minimus 

submitted to the Moore Foundations for transcriptome analysis were included among the 

selected strains. Stock cultures were maintained in an incubator at 20°C and under a 12:12 

h L:D photoperiod, with an irradiance of about 40-60 !lmol photons m·2sec· l • Cultures 

were maintained in the exponential phase by periodic transfers into 50 ml polystyrene 

flasks filled with 30 ml ofK culture medium (Keller et al. 1987). 

Table 5.1. Strains used in the physiological responses to three different conditions 

Leptocylindrus danicus 
SZN-B707 15/02/2010 
SZN-B714 21/04/2010 
SZN-B715 15/06/2010 
SZN-B650+ 15/06/2010 

Leptocylindrus danicus 
SZN-B727 03/08/2010 
SZN-B651+ 21/08/2010 
SZN-B752 19/10/2010 
SZN-B753 19/10/2010 

+ Strain used for whole transcriptome sequencing and metabolomic study 

5.2.2 Acclimation, batch cultures and experimental conditions 

i. Acclimation. Strains of both species were initially acclimated to experimental 

temperature (T) conditions in a 50 rol flask with 30 rol K media. Other factors including 

light intensity (l00 !lmol photons m·2sec·'), photoperiod (L:D, 12: 12) and culture condition 
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(type of media and nutrient concentrations) were kept constant. For acclimation, cultures 

from the mother stock usually maintained at 19-21 °C were divided into three parts and 

incubated at T stepwise reduced or increased gradually reaching the planned experimental 

temperatures. To acclimate to lower T the cultures were transferred from 20°C to 12 °C 

through 16°C and 14 °C. To acclimate to higher temperature, the cultures were transferred 

from 20°C to 26 °C through 22°C and 24 °C. Throughout the acclimation period the 

cultures were maintained in the exponential phase by continuous dilution and, at each 

transition stage, in-vivo fluorescence was measured using a Turner to-AU fluorometer, to 

estimate the cultured cell biomass. The cultures were grown at the different temperatures 

for about 25 to 35 days, depending on the experimental T. During the acclimation period 

cell diameter was measured cell to check whether there were variations that would indicate 

sexual reproduction or vegetative auto-enlargement. All cell measurements were made 

using an Axiophot light microscope (Carl Zeiss, Oberkochen, Germany) fitted with an 

ocular micrometre. 

Subsequently to test acclimation, 200 ml flat polystyrene bottles containing 100 ml of K 

culture medium were inoculated with 1 ml of each culture in the exponential phase at a 

density of 2000 cells mr) until the stationary phase. At stationary phase, the cultures were 

diluted back to the initial density and allowed to grow again. Growth rate and in-vivo 

fluorescence, as growth indicators, were measured by taking daily samples of cultures 

starting from day two till the beginning of the stationary phase. A subsample of 4 ml was 

taken from each sample and cell counts were performed on 1 ml in a Sedgwick-Rafter 

counting chambers, preserving the remaining 3 ml culture for later verifications. 

Depending on the cell density, cell counts were performed in replicates of either transects 

or fields of counting chamber. In-vivo fluorescence was measured on a 15 ml subsample 

of experimental culture placed in a sterile glass tube, which was replaced back into the 
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respective culture bottles after the measurement. The whole procedure was repeated until 

the growth rate remained persistent for three sequential growth curves. 

ii. Growth experiment with multiple strains. During the growth experiment, 150 cm2 

polystyrene flasks were inoculated with exponential cultures of the 8 strains selected 

(Table 5.1) to a density of 2000 cells mrl. The culture was allowed to grow at the 

respective T under 100 J.lmol photons m-2sec-1 of light and 12:12 L:D cycle. Each 

experiment typically lasted eight days and consisted of daily monitoring of the growth 

starting from the second day of inoculation. Cell density and in vivo fluorescence were 

monitored as described earlier (in acclimation). 

iii. Growth and metabolomic experiment with two strains. during the metabolomic 

experiment, the strains of L. danicus and L. aporus also used for the transcriptome 

sequencing at the Moore Foundation (see above) were used to further study the 

physiological responses and to identify changes in selected biochemical properties under 

different T conditions. For each species, cells were inoculated from exponential growing 

cultures into five, 2 I spherical, flat bottomed, glass flasks with 1.2 I of K media to a cell 

density of 2000 cells mrl. The cultures were allowed to grow under 100 !lmol photons m-

2sec-l with a 12:12 L:D cycle. All subsequent measurements were performed independently 

on each of the five flasks (i.e., at each T, for each species, n=5). Growth rate was 

monitored only by counting cell number per ml as described above for the growth 

experiment on the 8 strains. The changes in the morphological features, including variation 

in cell size, and colony formation were recorded at the same time in the light microscope. 

At the stationary or end of the exponential phase the cultures were centrifuged and the 

culture pellets were frozen until analysis. A culture pellet of 100 ml for protein analysis, 

200 ml for oxylipin and polyunsaturated fatty acid (PUF A) analysis and 800 ml for whole 

metabolite profiling through NMR (for future studies) were prepared and frozen until used, 

for each of the 5 replicates of the two species. 
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5.2.3 Calculation of maximum growth rate, biovolume and biomass. To calculate 

maximum growth rates (Jlmax = divisions dafl or d- l), cell density values were transformed 

into 10glO values and analysed calculating the linear regression of log transformed cell 

density versus time for each species/replicate. The average and standard deviation were 

calculated. 

Biovolume acts as a proxy for the physiological status of cells at different T values. 

Biovolume calculations were made using cell diameter measured on 20 randomly selected 

exponential phase cells along with the average pervalvar axis, obtained for each of the two 

species based on average values obtained in the later experiment with a single strain. To 

obtain more precise data on biomass achieved under different condition in the growth 

experiments on two strains with replicates, measurements of the diameter and pervalvar 

axis were made on 25 randomly selected cells. A standard cylindrical geometric shape for 

the cells was assumed to calculate biovolume (nr2h). Biomass was calculated as Carbon 

converting biovolume using (Menden-Deuer and Lessard 2000) formula; 10glO C = -0.541 

+ 0.811 X 10glO V. The converted 10glOC gives pg of C celr l, which multiplied by 

maximum cell density mrl gives the maximum biomass attained in terms ofpg ofC mrl. 

5.2.4 Oxylipin analysis. Culture pellets collected for oxylipin analysis were extracted 

and analysed according to the methods described in (d'!ppolito et al. 2009) and briefly 

explained in Chapter IV. Oxylipin analysis is presented only for the L. danicus strain since 

the L. aporus strain that had been selected for the whole transcriptome analysis and hence 

used in this study, on subsequent analysis, showed no oxylipin production. 

5.3 Results 
5.3.1 Acclimation 
Acclimating pre-treatment of cultures to lower and higher T allow for the cells to gradually 

change their morphological, physical, and/or biochemical traits in response to changes in 
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their environment, possibly avoiding stress responses. Acclimation is plastic and reversible 

process during which diverse physiological modifications occur that usually terminate 

when the environmental condition stabilize. After the physiological and biochemical 

adjustments, the cells maintain a constant Ilmax provided that other factors remain constant. 

In order to test whether the cells were acclimated to the given conditions, four sequential 

growth tests were assessed. The Ilmax of the eight acclimated strains are represented in 

Table 5.2. The growth curves and maximum growth rates of cultures of all the four strains 

of both species were fluctuating in the initial two cycles of the growth test. In the 

subsequent two growth tests, the growth curves were more stable and Ilmax were similar. 

When the slopes and Ilmax of last two consecutive transfers were not significantly different 

the cultures were considered acclimated. Therefore the initial 35 days of acclimation to T 

conditions was sufficient for the cell to balance the cellular mechanisms towards the 

changes in T. 

5.3.2 Effect of temperature on growth and physiological characteristics 

Growth curves for L. danicus are presented in Fig. 5.1 (A-D) as cell number counts and in 

Fig. 5.2 (A-D) as fluorescence measurements, while for L. aporus they are presented in 

Fig. 5.3 (A-D) as cell numbers and in Fig. 5.4 (A-D) as fluorescence measurements. Ilmax 

values calculated from cell multiplication rate during the exponential phase as a measure of 

physiological response to variation in T for four strains of L. danicus and L. aporus are 

presented in Fig. 5.5, A. The maximum cell density attained, the number of days taken to 

reach the stationary phase and the total biomass produced for each of the 
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species strain at three growth T values are presented in Figures 5.5, B-D, respectively. 

Results for maximal growth rates and biomass production are calculated based on the cell 

number counts. 

i. Maximum growth rate. Based on cell counts, At the T of 19°C L. danicus grew 

exponentially for 3-4 days, followed by slow growth for a day or two, and finally a decline 

phase (Fig. 5.1, A-D). Likewise, at 19°C, the species L. aporus grew exponentially for 4-

5 days, followed by a day or two of slow growth, later entering a decreasing growth phase 

(Fig. 5.2, A-D). At 26°C and 12 DC, deviation from the normal growth cycle was clearly 

visible but the growth curves at these Ts were always below the curve of 19°C, at times 

they overlapped. 

The cultures of L. danicus had a very similar J-lmax at the three T values, among which the 

one at 26°C showed a slightly higher average J-lmax (Table 5.3), while L. aporus had similar 

growth curves at both the higher T values (19 and 26°C; Fig. 5.2, Students t-test p<O.002), 

and in some strains slightly higher growth rates at 19°C (Fig. 5.2, C and D). At 12°C, L. 

aporus showed significantly lower growth but grew steadily for a long time (Fig. 5.2; 

p<O.002). In both the species, there was an increase in the J-lmax with the increase in the T 

(Fig. 5.5, A) from 12°C to 19 DC. The increase was far more evident in L. aporus, whereas 

L. danicus the difference was lower because the different strains had a relatively high J-lmax 

(1.3 d- l
) even at 12°C. At this T value, the differences in growth between the two species 

was the highest, whereas J-lmax values were rather comparable between the two species, 

considering all strains, at 19°C and 26 °C (p>O.02). Indeed, the increase in temperature 

from 19°C to 26 °C did not have a remarkable effect on the J-lmax, although at 26°C all 

strains of Leptocylindrus danicus showed a lower growth rate (1.3 d- I±O.07) than at 19°C 

(1.6 d- I±O.l5; p=O.OI) while in the case of L. aporus, two strains had a higher J-lmax, one a 

comparable J-lmax and finally one a lower J-lmax than at 19°C, resulting in an average growth 
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rate of 1.5 d-1 at both T values (Fig. 5.5, A; p>O.5). The same trend was repeated during 

the growth and metabolomic experiment (Fig. 5.6, A). 
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Table 5.2. Maximum growth rates (d· l
) for the four curves of the acclimation test inferred from cell counts 

(n=l). (A) l20e. (B) 19°e. (C) 26°C. 

A 

curve 1 1.09 1.29 1.27 0.86 1.21 0.96 1.34 1.15 

curve 2 0.94 1.10 0.72 0.77 1.15 0.91 1.09 1.11 

curve 3 1.35 l.54 1.47 l.74 1.19 1.15 l.22 1.19 

curve 4 1.40 l.46 0.91 1.60 1.29 l.l2 0.93 1.26 

Avg 1.23 1.37 1.03 1.37 1.21 1.06 1.08 1.19 

B 

19°C B707 B714 B715 B650 B727 B651 B752 B753 

curve 1 1.25 1.40 1.25 1.10 1.54 1.69 1.81 1.65 

curve 2 1.46 1.31 1.17 0.84 1.26 1.31 1.30 1.46 

curve 3 1.69 l.70 1.33 1.38 1.63 1.85 1.99 1.96 

curve 4 1.60 1.54 1.46 1.37 1.68 1.80 1.91 1.93 

Avg 1.58 1.52 1.32 1.19 1.52 1.65 1.73 1.78 

D 

26°C B707 B714 B715 B650 B727 B651 B752 B753 

curve 1 0.85 0.64 0.75 0.73 1.52 1.56 1.54 1.61 

curve 2 1.20 1.19 l.l9 1.01 1.52 1.62 1.70 1.78 

curve 3 1.43 1.60 1.65 1.49 1.77 1.78 1.81 1.92 

curve 4 1.39 1.39 1.56 1.39 1.73 1.79 1.79 1.85 

Avg 1.34 1.39 1.47 1.29 1.67 1.73 1.77 1.85 

Based on an arbitrary fluorescence unit scale (FU), at 19°C FU values in L. danicus 

increased on an average for 6 days (4-7 days), followed by a day of slow or sharp decline 

in the values (Fig. 5.3, A-D). Likewise, at 19°C, FU values for the species, L. aporus 

increased exponentially for 7 days, followed by a day or two of marginal increase, later 

declining abruptly (Fig. 5.4, A-D). At 26°C and 12 °C, a deviation from the normal 

growth cycle was clearly visible but the growth curves at these Ts were always below the 

curve of 19°C, at times overlapping. The only exception was L. danicus SZN-B707, 

whose growth curve at 26°C was higher than those 12 °C and 19°C. 
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Table 5.3. Physiological growth responses expressed as (A) growth rates (d-l) (B) maximum cell density 

(cells mrl) and (C) days needed to reach stationary phase to different temperature of acclimated cultures 
(n=I). 

A 

12 °C 1.30 1.46 1.07 1.35 0.78 0.93 0.93 0.90 
19°C 1.52 1.54 1.84 1.61 1.25 1.42 1.74 1.41 
26°C 1.24 1.39 1.36 1.39 1.54 1.52 1.50 1.39 

B 
Cell 

B707 B714 B715 B650 B727 B651 B752 B753 
Den. 

12 °C 159000 116000 84000 175000 428000 774000 725000 702000 
19°C 342000 133000 91000 71000 450000 650000 683000 627000 
26°C 111000 81000 143000 70000 301000 280000 270000 540000 

0 

Days B707 B714 B715 B650 B727 B651 B752 B753 

12 °C 5 5 5 5 10 10 10 10 
19°C 5 5 4 4 6 6 5 7 

26°C 5 5 5 5 5 5 5 6 

ii. Cell density. The maximum cell density (Cmax) attained is presented in Fig. 5.5, B for 

each strain of the two species. Strains of L. danicus attained a Cmax of 7-34 x 104 cells mr\ 

which was comparatively lower than in L. aporus, which attained a Cmax of 27-77 xl04 

cells mr! (p<0.001 at 12 and 19°C and p<O.OI at 26°C). Although there is a small overlap 

in the range, the Cmax attained at each of the three T values was significantly lower for L. 

danicus compared to L. aporus. Strains of L. danicus showed similar Cmax at the three T 

values, with a tendency to increase at 19°C compared to 12 °C and 26°C, and with a 

higher standard deviation at this latter T. Instead, L. aporus showed a negative relationship 

with T, i.e. Cmax decreased with the increase in T. The decrease was more pronounced at 26 

DC, with larger overlaps at 12 and 20°C among the strains. One strain showed a marginal 

increase, another showed a moderate decrease and two others showed a marginal decrease 

in Cmax at 19°C compared to 12°C. The same trend was repeated during the growth and 
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metabolomic experiment (Fig. 5.6, A) in both the species. In L. aporus, the difference in 

Cmax among the three T conditions overlapped in replicates (p>0.02). 

iii. Days to complete the exponential growth phase. The total number of days taken for the 

completion of the exponential and attain the stationary phase is presented in Fig. 5.5, C. 

Leptocylindrus danicus took approximately 5 days to complete the exponential growth 

phase at all the three T (p>O.l), with an exception of two strains taking 4 days at 19°C. 

Contrastingly, L. aporus showed a decreasing number of days to reach the stationary phase 

with the increase in T. The difference was remarkable between l20e and 19°C (p<0.001) 

whereas often the species took an extra day to complete the growth cycle at 19°C 

compared to 26 °e. The only exception was the strain SZN-B752, which took 5 days at 

both T conditions. 

During the growth and metabolomic experiment with a single strain of each species, the 

two species showed the same trend as in the multiple strain experiment, but they took one 

day less to complete the growth cycle (Fig. 5.5, C and Fig 5.6, C). Additionally, L. aporus 

took 6 days instead of 10 days to complete the growth cycle. For L. danicus, the regression 

analysis shows that for each one-degree rise in temperature Ilrnax increases by 0.056 d· l, 

Cmax decreases by 126 cells mrl and the time to reach stationary phase increases by 0.07 

days. On the other hand, for the same T variation, L. aporus Ilrnax increases by 0.08, Crnax 

decreases by 4800 cells mrl and the time to reach stationary phase increase by 0.2 days. 

The two species also showed a negative regression coefficient for biomass (0.007 and 

0.22) and a positive regression coefficient for carbon content per cell (1.5 and 0.32). 

iv. Cell size and morphology. During the experiment, L. danicus had a diameter of ca 8 11m 

and L. aporus had a cell size of ca 5 11m during exponential phase, without any noticeable 

changes among the three temperatures. In the growth curves built for the metabolomic 

experiment more detailed observations were made for both the species, and a variation in 

the pervalvar cell length with temperature was observed (Fig. 5.6, D). Leptocylindrus 
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danicus showed an increase in average pervalvar distance with the increase in T and this 

was evident between 12°e or 19°e and 26°e but not between 12°e and 19°e (Fig. 5.6, D). 

The average pervalvar distance in L. aporus was the highest at 19 °e, while it decreased at 

12 °e and 26 °e (Fig. 5.6, D). Yet, in both the species the range in the pervalvar distance 

of cell in exponential phase overlapped, with no clear trend. 

During the experiments, no significant changes in the morphology of the two species were 

observed in either species. In both species, cells at 12 °e tend to form longer colonies than 

at higher Ts. This change was more pronounced in L. danicus strains, while L. aporus 

showed this tendency in a less intense way. However, these results were based on long

term visual observations and no precise quantification was made. Another long-term 

observation was that the species L. danicus needed frequent and precise intervals of 

subcultures at 26 °e whilst L. aporus did not withstand long-term culturing at 12 °e. This 

indicates that L. aporus might experience physiological stress at the lowest T conditions. 

V. Biomass. The maximum biomass build up for the four strains of each L. danicus and L. 

aporus is presented in the Fig. 5.5, D and Fig. 5.6, E. The species L. aporus produced 

approximately twice the biomass than that of L. danicus at all the three Ts. In both species, 

the strains did not show a clear trend, except for one strain of L. danicus and two strains of 

L. aporus, which showed a decrease in biomass with increase in T. On an average among 

the strains, L. danicus produced 18.7, 15.3 and 11.2 J.lg of e mrl and L. aporus produce 

37.8,40.3 and 27.5 J.lg of e mrl at 12, 19 and 26 °e, respectively. These values show that 

in L. danicus there was a decrease in biomass accumulated with the increase in T, while in 

L. aporus there was a slight increase in biomass accumulated from 12 °e to 19 °e and a 

remarkable decrease at 26 °e compared to the other two T conditions. In L. aporus, during 

the growth and metabolomic experiment with a single strain and five replicates, similar 

results were observed to that of the average among the strains, whereas in L. danicus the 
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species produced a similar biomass at the end of the stationary phase at all the three Ts. 

Nevertheless, between the two species, the biomass build-up in L. aporus was twice of L. 

danicus except at 26°C. 

5.3.3 Oxy/ipin and fatty acid profiles 

Leptocylindrus aporus SZN-B651 did not produce oxylipins in any of the exposed 

temperature. The typical LC-MS chromatograms for oxylipins produced by the species L. 

danicus at the three T conditions are presented in Fig. 5.6. Two pathways of oxylipins 

synthesis were recognised in the species (Fig. 5.7, Chapter IV). These involve the 

oxidation of C20 and C22 fatty acids to hydroxide reductase derivatives I5-HEPE and 

HDHE respectively and epoxyalcohol synthase derivatives 13,14-HEpETE and HEpDHPE 

respectively (Fig. 5.S, A and B). All the four compounds were detected at the three T 

condition. However, the quantity of oxylipins produced decreased with the increase in T 

(Fig. 5.8). Nevertheless, the percent levels of different oxylipins were comparable, i.e. the 

proportionality of the four oxylipins remained similar across the three Ts (Fig. 5.S). To 

comprehend the reason for the higher amount of oxylipins production at lower growth T, 

the fatty acids, which are the precursor molecules of oxylipins, were quantified. GC-MS 

analysis of fatty acid content of the samples showed that L. danicus produces CI6, CIS 

and C20 saturated fatty acids (SF A) and C 16, C 18, C20, and C22 unsaturated fatty acids 

(USFA). The species produced 25.5 pg cello! and 45.05 pg cello! of SFA and USFA at 

12°C. At 19°C and 26°C the species produced 18.73 pg celr! and 29.12 pg cello! and 21.65 

pg cello! and 35.6 pg cell-I of SFA and USF A, respectively. The variation in the SF A 

content was not profoundly different at three Ts whereas the USF A produced at 12°C was 

significantly higher than at 19°C and 26 °C. Together the SF A and USF A specifically the 

precursor fatty acids C20:5 and C22:6, produced decreased with the increase in T (Fig. 5.9 

A and B). Taken together, L. danicus produce a higher quantity of fatty acids (C20:5 and 

C22:6) and oxylipins at 12°C and both the compounds decrease with increase in T. 
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5.4 Discussion 

The aim of this study was to comprehend the phylogenetic and ecological background 

influence on the physiological responses of two Leptocylindrus species at different 

temperatures. Leptocylindrus danicus and L. aporus are the member species of the two 

genetically distinct lineages within the genus Leptocylindrus (Chapter II). The two species 

strains were isolated from the same geographical area but were found to bloom under 

contrasting environmental conditions (Chapter III). The two species were also found to 

have opposite life cycle patterns with L. danicus having sexual reproduction and auxospore 

formation to restore cell size while L. aporus shows cell size restoration by vegetative 

auto-enlargement (French III and Hargraves 1986, Chapter II). Both the species were 

cultured under a wide range of temperature (12 °C, 19°C and 26 °C) to reveal differences 

in their physiology and metabolite composition. 

On exposure to the three tested Ts, the species L. danicus, with slightly lower /lmax at 12°C 

and similar /lmax at higher Ts, similar Cmax at all Ts and an extra day at 12°C with respect 

to higher Ts to reach the stationary phase, can produce a similar biomass at the end of the 

experiment. By contrast, L. aporus showed variations in the measured parameters leading 

to variations in the yield biomass at the end of the growth cycle. At 12°C, the species, with 

lower /lmax, in a longer time period could attain the highest Cmax, producing higher 

biomass. At 19°C, with higher /lmax, much less time to complete the growth cycle than at 

12°C, could attain a higher Cmax, producing the highest biomass. At 26°C, with the 

highest /lmax, far lower growth period than at 12°C, attained the lowest Cmax, producing the 

lowest biomass. Thus, it appears that L. danicus cellular mechanisms are adapted to grow 
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under wider Ts than L. aporus, which is equally efficient at higher temperature but less at 

low temperature conditions. 

Physiological responses 

5.4.1 Maximum growth rates as a function of temperature. The overall effect of the 

biotic and abiotic factors on cell physiology is reflected in the growth rate and finally in the 

biomass accumulation. These parameters have been used for several decades as metrics to 

understand the effect of environment, based on in vitro experiments. Growth rate variation 

as a function of temperature is hypothesized to be either exponential, with growth rate 

doubling with every 10°C increase (following an Arrhenius relationship, QlO=2, where QIO 

is the factor by which a biological rate is increased following a 10°C rise in the 

temperature; van't Hoff 1884, Eppley 1972, Raven 1988), or showing a linear slope. 

Further, bell shaped responses have also been reported (Fiala and Oriol 1990). The results 

here presented in the study show a linear and exponential increase in the maximum growth 

rate with increase in the temperature for the two species examined. The species, L. danicus 

showed a linear increase in the growth rate from 12°C to 19 °C (based on cell counts); 

while a further increase did not significantly increase the growth rate indicating cells may 

have suffered a negative effect of temperature increase. Leptocylindrus aporus showed an 

exponential growth rate trend with a marked increase in growth from 12°C to 19 DC, but a 

further increase to 26°C only showed a slight increase. Overall both species showed a QIO 

of 2 for a temperature increase from 12°C to 26 DC, demonstrating an exponential curve. 

In protists, growth rate is a combination of many processes and its increase with 

temperature is generally considered to be linear rather than exponential or power response, 

especially when single species are considered as compared to when multiple species are 

grouped in community studies (Montagnes 1996). Thus, maximum growth rate change in 

response to different controlling factors can be considered a species-specific character. 
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Interspecific variation in growth rate can be related to cell size with smaller diatoms 

generally having higher growth rates (Geider et af. 1986, Sarthou et af. 2005) because of 

the catalytic advantage. Although in the current study there were no changes in cell valve 

diameter, the changes observed in the pervalvar distance provide some indications on the 

physiological status of the cells. Under stress, cells tend to divide slower and hence have a 

larger pervalvar distance than cells growing under optimal conditions. The two species 

had different average pervalvar distance, although range overlapped. The increase in 

average pervalvar distance with increasing temperature in L. danicus indicates, the species 

prefers lower temperature for normal cell division. In contrast, the results for L. aporus are 

less clear, as the lower average pervalvar distance at 19°C and higher at 12 °C and 26°C 

indicate the species divides easier at 19°C. An increase in cell size decreases the surface 

area to volume ratio and subsequently the number of membrane transporters, thus reducing 

the solute influx and effiux. Besides, the chlorophyll-a specific absorption cross-section 

coefficient increase with cell size thus decreasing the effectiveness of photon absorption 

per chlorophyll molecule in larger cell than in smaller cell, the so-called 'package effect'. 

In simple terms the 'package effect' implies that the increase in cell size decreases the 

effectiveness of increased pigmentation in harvesting light (Kirk 1994, Finkel and Irwin 

2000). 

Growth rate calculations based on cell numbers are preferred over fluorescence based 

measurements as there might be the problem of self-shading of cell when they reach higher 

abundances, which can cause an increase in chlorophyll independent from cell divisions. 

Additionally, fluorescence yield also depends on the physiological status of the cell, which 

is more relevant during the stationary and decline phase of the growth curve as cells 

experience various stresses at this stages. 
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5.4.2 Cell volume and morphology as a function of temperature. The relationship 

between diatom cell size and temperature has been well debated in literature. Many studies 

have demonstrated a decreasing cell size with the increasing temperature (J0rgensen 1968, 

Margalef 1989, Montagnes and Franklin 2001) and still others that do not provide a clear 

trend (Yoder 1979, Sournia 1982). There are also reports of cell size reduction to decrease 

in Fe availability (Kudo et al. 2000); hence it is important to note this change in the study 

of response to niche. In the current study both the species visually appear bigger cells (but 

not in measurements) in their preferred temperatures. This means, L. danicus which grows 

well at lower temperature also visually appear vigorous at those temperature values. On the 

contrary, L. aporus, which prefers warmer temperature, visually appear vigorous at 19°C, 

and at 26 °C, cells appeared to be in better status than those of L. danicus. However, no 

remarkable and clear trend for change in cell size and volume was observed. These 

observations are in line with Verity (1981) who demonstrated no clear trend for L. danicus, 

although it is difficult to trace which of the species described in Chapter II were used in 

their experiments. The possible explanations to this kind of slight variation or no clear 

trend include the interplay of the growth rate and cell size expansion (Montagnes and 

Franklin 2001). These two components control when and how changes in cell size occur. A 

higher growth rate at higher temperatures might decrease the average cell size of cultures 

which may need to undergo cell size expansion earlier as compared to the slow growing 

cultures. Another factor influencing cell size is life cycle pattern of a species i.e. whether 

the species undergoes sexual or vegetative process to restore the cell size. In L. danicus 

and L. aporus, the sexual reproduction in L. danicus and vegetative reproduction in L. 

aporus has been demonstrated to be clearly dependent on temperature (French III and 

Hargraves 1985, French III and Hargraves 1986). Evidently, further careful investigations 

are needed to understand whether diatom cell volume can be influenced by temperature 
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and this is a relevant issue as cell size can affect sedimentation rate and autotrophic 

production. 

The colony size i.e. the number of cells per colony decreased for both the species with the 

increase in the temperature and this was growth stage specific, with the number of cells per 

colony being higher in early stages (lag and early exponential phase), and hence decreasing 

towards the stationary phase. Seasonal changes in colony size have been noticed in natural 

samples (Lund et al. 1963) and have also been demonstrated in laboratory studies 

(Hayakawa et al. 1994, Werner and Stangier 1976). There is also confusion in 

understanding the trend in this feature in response to environmental changes as there are 

studies that demonstrate a decrease in colony size with increase in temperature (Werner 

and Stangier 1976) and other that demonstrate the contrary (Hayakawa et al. 1994). There 

are still other reports of combined effects of different niche factors, including changes in 

nutrient concentrations, for example silica and temperature (Werner and Stangier 1976). 

Colony fonnation has important ecological implications as it detennines the sedimentation 

rate and grazing pressure from zooplankton. 

5.4.3 Cell number and biomass as a function of temperature. Biomass production is 

directly dependent on the physiological status of the cell and is thus influenced by abiotic 

factors. In the study, for L. aporus we observed approximately double biomass 

accumulation as compared to that of L. danicus. It can be a species-specific character that 

certain species can reach higher cell abundance than others. The decreasing biomass 

demonstrated by L. aporus was clearly the response to temperature which is the result of 

decreasing cell number with the increase in the temperature. 

The variation in growth rate, cell density and subsequent biomass accumulation is 

dependent primarily on the photosynthetic ability of cells. As photosynthetic carbon 

assimilation is enzymatically controlled, it is a temperature-dependent process. It is 
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frequently assumed that the light-dependent portion of the photosynthetic response is 

temperature independent but this is proposed not to be strictly true (Raven and Geider 

1988) for two reasons. Firstly, electron transfer process is dependent on membrane fluidity 

and, secondly, the electrochemical turnover of plastoquinone and plastocyanin do depend 

on temperature (Falkowski and Raven 1997). At low temperature, even at relatively low 

irradiance levels, the limitation of electron transport or carbon fixation reduces the cell's 

ability to absorb light. The resulting excess energy may cause photo inhibition due to 

damage to the PSII apparatus. In general many aquatic photoautotrophs acclimate to 

changes in temperature in a comparable fashion to that of photoacclimation. Temperature 

dependent activity and level of expression (Bose et al. 1999) of Ribulose-l ,5-bisphosphate 

carboxylase/ oxygenase (RuBisCo), the key enzyme involved in carbon assimilation in 

photosynthetic organisms, thus regulating the ability of cells to produce and store 

carbohydrates. In Chlamydomonas reinhardtii, variation in RuBisCo content has been 

reported as an adaptive mechanism at low temperatures to counterbalance poor catalytic 

efficiency (Devos et al. 1998). Under high temperature, substrate affinity of RuBisCo 

increases more slowly for 02 than for CO2 with the consequence that the potential for 

photorespiration increases (Berry and Raison 1981 ); this is amplified by temperature 

dependent changes in the relative solubility of C02 and O2 (Raven and Geider 1988). 

Together, increased concentrations of PUF As in lipids of the thylakoid membrane to 

maintain electron transport under low temperatures was shown in the psychrophilic 

Chlamydomonas subcaudata (Morgan-Kiss et al. 2002). These alterations lead to a 

reduction in the light absorption capacity while increasing photosynthetic capacity. The 

effect is that light-saturated photosynthetic rates per unit carbon biomass can often be 

maintained at decreased temperatures, while simultaneously the propensity of the cell or 

organism to photoinhibition is also maintained (Falkowski and Raven 1997). The 

photosynthetic process is also closely associated with lipid biosynthesis, since mobilization 

Chapter V. Physiology 183 



of lipids is partly controlled by carbohydrate levels as demonstrated by Larson and Rees 

(1996) in Phaeodactylum tricornutum. It is also viewed that at high temperature cell shift 

from light saturated condition to light limited condition, thereby experiencing a light 

limitation stress rather than a temperature stress. This might explain the negative 

relationship of L. aporus cell density with T. Hence, temperature determines major 

biological activities and finally biomass accumulation. Cells may mitigate the negative 

effects of lower temperatures through many physiological processes by either making more 

of an enzyme or by using an alternative form of the enzyme with higher kinetic efficiency 

(Raven and Geider 1988). This might explain the marginal differences in the observed 

values of the Ilmax's of L. danicus at the three Ts. 

Biochemical Changes 

Biochemical composition of microalgae including lipids, protein and carbohydrates content 

can be strongly influenced by temperature by effecting cellar processes. There alterations 

may reflect an adaptive response to perturbations in the environment. Responses to 

environmental stresses occur at all levels of cellular organization including adjustment of 

the membrane permeability, modifications of the cell wall architecture, and changes in cell 

cycle and cell division, additionally in production of compatible solutes (e.g. proline, 

raffinose, and glycine betaine) and restoration of cellular redox balance. Taking into 

account the importance of diatoms as primary producers in the marine food web many 

studies have also concentrated on the changes in the nutritional properties with the 

variation in temperature. 

5.4.4 Lipids, Polyunsaturated/atty acids as a/unction o/temperature. Lipids and fatty 

acids play important structural and functional roles in cell membranes and cellular 

processes including photosynthesis, secretion, signal transduction, vesicle trafficking, 

cytoskeletal recognition, and environmental responses. The cellular lipid composition in 
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microalgae is often affected by environmental factors, including temperature (Rousch et al. 

2003, Renaud et al. 1995), salinity (Huflejt et al. 1990), light intensity (Solovchenko et al. 

2008), nitrogen, phosphorus and silicon (Fidalgo et al. 1998 {Khozin-Goldberg, 2006 

#13638) (Roessler 1988) (Yu et al. 2009). In general lipid content increase with the 

increase in culture temperature until a maximum value and later decrease (Thompson et al. 

1992). In the current study we noticed significantly higher lipid content at lower 

temperature (12°C) and slightly higher content at higher temperature, indicating an 

inverted U shaped relationship with temperature, which are in concur with previous studies 

(Thompson et al. 1992, Sayegh and Montagnes 2011). This indicates that lipids are 

important at both higher and lower temperatures. 

The decrease in the PUF A contents per cell with increase in temperature, specifically the 

highly unsaturated fatty acids (HUF A), C20:5 and C20:6 observed in this study is a 

common trend reported for microalgae. For example, the percentages of 20:5 in six marine 

algae, including Chaetoceros, Rhodomonas, Isochrysis and Cryptomonas were reported to 

be higher at lower temperatures (Renaud et aI., 2002). Other reports of significant decrease 

in the production of HUF A at higher growth temperatures exist for species like 

Chaetoceros calcitrans (Thompson et al. 1992), C. simplex (Thompson et al. 1992) and 

Nitzschia spp (Renaud et at. 1995). However there are other reports where higher PUF A 

content at higher temperature, for e.g. Stichococcus (Teoh et al. 2004) and still other do not 

show a very clear trend in response to temperature (Renaud et al. 2002). Hence, it appears 

that the relationship between PUF A production and temperature is a species specific 

character (Renaud et at. 1995, Teoh et at. 2004). 

Depending on the length and degree of unsaturation of fatty acid chains, temperature can 

have a profound effect on membrane fluidity (Harwood 1988). We did not observe this 

trend for L. danicus, where the proportionality of the SF A and USF A was similar at all the 

three temperatures. In many other species, a high growth temperature has been shown to 
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increase the saturated fatty acids (Thompson et aI., 1992; Renaud et aI., 1995) thus 

increasing the melting temperature (decreasing the fluidity) of the membrane. This 

suggests that the total lipid variation observed at three temperatures was sufficient to 

maintain the membrane fluidity of cells. 

5.4.5 Oxylipins as a/unction o/temperature. Leptocylindrus aporus SZN-B651 did not 

produce oxylipins hence the changes are noted only for 1. danicus. This type of 

observations in strain difference is also made in other species. In fact other strains of 1. 

aporus show that the species does produce oxylipins. The reason as to why some strains 

in a species don not produce oxylipins is rather unclear. Together fatty acids profile of 1. 

aporus was not analysed for the strain because of lack of oxylipins in the strain. Moreover 

it is well established mechanism that lipid content varies from temperature that regulates 

membrane permeability. The observed inverse relationship of oxylipins to temperature 1. 

danicus has also been reported for Nanochloropsis sp., where eicosapentaenoic acid 

content decreased with the increase in the temperature (Hu and Gao 2006). Although the 

observed variation in the total as well as in the individual oxylipin content among the 

three temperatures is in accordance with the variation in C20:5 fatty acid, it is difficult to 

attribute the variation to the non-availability of precursor molecules. Oxylipin 

biosynthesis is often regulated by environmental stimuli and developmental cues; their 

generalisation is indisputably difficult. Variation in oxylipins content is often attributed to 

the regulation at the release of fatty acids by phospholipase and the primary enzyme 

lipoxygenase involved in the first step of oxidation process. In addition, variation in the 

content across the growth cycle has been reported in Pseudo-nitzschia delicatissima, 

which shows increase in oxylipin content with the growth curve and growth stage specific 

compound, 15-oxoacid, produced only during stationary phase. (d' Ippolito et ale 2009). 

Nevertheless, in the current study the relationship between oxylipins and their variation 

and their adaptive significance is highly uncertain. Hence, further biochemical studies are 
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necessary to investigate the ecological significance of variation in the quantity but not the 

diversity of compounds produced in response to temperature stress. 

5.4.6 Intraspecific variations in physiological and biochemical responses. Studies of 

physiological and biochemical parameters on multiple strains have clearly demonstrated 

the intraspecific variation in physiological responses (Balzano et al. 2011) and biochemical 

mechanisms (Gerecht et al. 2011). In the present study, marginal differences in 

physiological responses among the strains in both the species were noted. Differences were 

also observed when multiple replicates of same strain were studied indicating that all the 

strains had a range within which they responded. Strains taken from distinct environments 

might also show intraspecific variations in physiological responses (Balzano et al. 2011). 

In addition continuous laboratory cultivation under optimal cultivation, especially in 

species with short generation time, might allow for a selection process that generates a 

clone that loses its original flexibility. The experimental results generated from such strains 

reveal the evolutionary adaptations to, and/or non-adaptive changes induced by, the culture 

conditions under which the strain is maintained. 

Intraspecific variations in oxylipin metabolism were also reported for example in 

Skeletonema marinoi (Gerecht et al. 2011). This has been discussed in the previous chapter 

(IV). Thus, a single strain represents only a part of physiological diversity in a species, and 

when maintained in laboratory for long time mayor may not reflect the actual adaptations 

in a species. 

5.4.7 Temporal isolation of the species explained by the temperature. One of the 

reasons for undertaking the study was to understand the reason for temporal isolation of the 

two species in the GoN. Leptocylindrus danicus that performs equally well at all Ts, with 

slightly low J.lmax at 12°e can be suited to grow throughout the year, Although, the species 

L. aporus that undergoes physiological stress under 12°e but grows equally well at 
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temperature of 19 and 26°C, is suited to grow in all seasons except winter. However in the 

natural environment L. danicus can be found in all seasons except summer and L. aporus 

can be seen only during summer and autumn (Chapter II). The observation made in the 

study, that maintenance of long-term cultures of L. danicus at 26°C and L. aporus at 12°C 

requires careful monitoring, are in better concordance with what is observed in the natural 

environment. Thus, from the study, it appears that even a single niche factor like 

temperature can help answer the temporal isolation of species. 

5.4.8 Genetic and physiological distances between species. The distances of separation 

of species based on morphology, physiology and biochemical constituents can vary at 

different levels. The physiological differences observed for L. danicus and L. aporus in this 

study point out that the level of diversity seen in morphology can hardly be compared to 

what is observed in the physiology of the species. The two species being morphologically 

subtly different responded distinctly to the T conditions exposed. Thus, in the study, there 

is no significant correlation in the distances inferred from morphology and the distances 

inferred through the physiological responses. The possible reason for this non-significant 

correlation might be biased view with a single factor. The differences in physiological 

traits of the two species are viewed singly to T, but they might sharply vary when 

combined with other factors especially in the natural environment. Considering this view, 

morphology and physiology give a different level of estimate of the genetic distance 

between species. 

5.4.9 Trade-off in biomass build-up, time and metabolite accumulation. The two 

species show differences in their physiology and metabolite production patterns that point 

to towards a trade-off between biomass build-up, time and metabolite accumulation. 

Leptocylindrus danicus performs equally well at all three Ts, with slightly low J.lmax at 

12°C, whilst L. aporus performs better at the two higher temperatures. Besides, L. danicus 
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accumulates similar biomass in approximately the same time. Instead, L. aporus 

accumulates a higher biomass at a lower temperature, but takes a longer time to reach this 

high biomass. Therefore, at least in L. aporus, there is trade-off between the biomass 

accumulated and time taken to accumulate the given biomass, which is the ultimate target 

in any commercial application or sustainability in ecosystem. Furthermore, oxylipin 

accumulation in L. danicus decreases with increase in temperature. If the same trend of L. 

danicus also holds for L. aporus, which can accumulate a far higher biomass, then the 

quantity of metabolites produced constitutes a trade-off between the produced biomass and 

the time in which this biomass is produced. Thus commercial firms producing secondary 

metabolites must consider this trade-off in the process of optimising the yield. 

5.5 Conclusions 

The study helps to improve our understanding of the species adaption to particular 

environmental condition in the natural environments by providing data on the changes in 

their cell morphology, growth rates, biomass accumulation and specific biochemical 

changes to different T. From the study it is evident that abiotic factors like T can 

profoundly influence the cellular functions causing many physiological and biochemical 

changes. Responses to the changes in T can be species specific, with each species 

responding at different levels and exhibiting different patterns. The observed physiological 

changes especially based on a single factor mayor may not reflect the actual distance 

between the species. Thus, diversity estimates based on physiological factors must 

consider multiple factors before correlating it with morphological and/or molecular 

diversity. 

Biomass accumulation and pattern of secondary metabolite production are strongly 

influenced by abiotic factors. Temperature influence on biomass accumulation can be a 

species specific character. 
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Temporal distribution of species is largely determined by the environmental factors. 

Species tend to occur in conditions for which they are evolved and best adapted to grow. In 

the study, the observation made for L. danicus and L. aporus in response to different T 

may explain the contrasting seasonality of the species. Therefore, single abiotic factor like 

T can provide clues for the temporal isolation of species. Finally studies on individual 

environmental factors can elicit a response different from that of synergistic effects 

resulting from multiple factors. Data interpretations on single factor must be done rather 

carefully as it is rare to have an isolated stress factor in the natural environment. 

Thus, a wide variety of information is generated by comprehensive analyses of the 

physiology and oxylipin quantification at different temperature. The analytic platforms to 

do metabolite profiling are becoming increasingly powerful by the introduction of Fourier 

transform-MS and by platforms that combine different LC-MSIMS approaches. Along 

with the use of increasingly powerful technologies, it is also vital to employ suitable 

protocols for harvesting, quenching, sample handling, and analysis and to perform 

laboratory experiments in order to validate that the measurements dependably reflect the 

levels of metabolites that were present in the cultures. 
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CHAPTER VI 



Conclusions and Perspectives 

Marine diatom blooms exhibit recurrent and at times highly predictable patterns 

(Smayda 1980, Zingone et al. 1995). These patterns might be explained by a 

combination of abiotic and biotic factors. The blooming of a species in different regions 

and over a broad range of environmental conditions could be explained by differences 

in the genetic composition among populations in these different regions, or even the 

existence of different cryptic species in the different regions (Hypothesis 1, see 

introduction). The alternative hypothesis states that a species blooms in different 

regions and over a broad range of environmental conditions because each single 

individual in that population exhibits wide-ranging physiological capabilities, which 

enables it to cope with different conditions in different environments, i.e., cells possess 

a high physiological plasticity (Hypothesis 2 in Introduction). 

The present studies have shown that these two hypotheses are not mutually exclusive. A 

single morphological species (sensu lato), believed to bloom all year round in the Gulf 

of Naples (GoN), was shown to consist of multiple species, each with their own, more 

confined, blooming period, which may partly overlap with that of other species. The 

results also demonstrated that these different species exhibit physiological differences as 

well. All this evidence supports Hypothesis 1. Nonetheless, all the strains tested were 

able to grow under a wide range of temperature conditions, which provides support for 

Hypothesis 2. 

A test of the first hypothesis of genetic diversity in Leptocylindrus danicus (Chapter I) 

revealed that Leptocylindrus danicus consists of multiple genetic units: L. aporus, L. 

convexus, L. danicus and L. hargravesii, i.e., four genetically, and ultrastructurally 

distinct species. Of these, L. aporus was considered a variety of L. danicus, and L. 

convexus and L. hargravesii are new to science. Each of the four species showed a 

restricted period of occurrence, suggesting that each one of them has a different 
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seasonality. Thus, the finding of genetically distinct Leptocylindrus species within the 

morphospecies L. danicus sensu lato demonstrates that the diversity of a so called 

cosmopolitan species should be studied in detail and its geographic genetic diversity 

assessed before drawing inferences about its distribution. The problem with 

morphological taxonomy of phytoplankton species has been that the majority of 

phytoplankton species were described for European waters. The resulting taxonomic 

keys were then forced upon the phytoplankton diversity in other parts of the world. 

This study has not only resulted in demonstrating that L. danicus sensu lato in the GoN 

consists of multiple species, it also has raised many new questions. The first question 

relates to whether geographic sampling increases the number of species detected in a 

genus such as Leptocylindrus. 

Leptocylindrus danicus and L. hargravesii are closely related because their fast 

evolving DNA markers (ITS, psbC, rbcL) are highly similar. Peculiarly, the two species 

occur in sympatry during part of the seasonal cycle in the GoN. This result suggests that 

these two species do not interbreed. Phenological studies are needed over the seasonal 

occurrence of the two species to assess if they reproduce sexually in different periods. 

Mating experiment, using fluorescent tags for differentiating gametes and zygotes in 

these homothallic species, might resolve if these two species can interbreed 

successfully. Population genetic studies, using microsatellites, may demonstrate in 

sharper focus if the two species are indeed entirely separated taxa, or if they interbreed 

in nature (Le., if gene flow occurs between the two species). The differences in 

seasonality observed for the Leptocylindrus species raises the question why some 

species, such as L. convexus, L. hargravesii, and T. belgicus, exhibit more restricted 

time periods of occurrence than L. danicus. Is this determined by the environmental 

conditions that the species is adapted to, or is it the internal genetic control mechanisms 

that control the occurrence of the species. 
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Although the diversity hypothesis (Hypothesis 1) is basically correct for L. danicus 

sensu lato, it does not necessarily exclude Hypothesis II as the description of species 

diversity is restricted to a single geographical location. Therefore, prior to testing the 

other hypothesis it is important to establish the validity and distributions of these 

species in other geographical locations. Distribution of species can be according to two 

hypotheses, cosmopolitanism and endemism. As a quick estimate of the spatial 

distribution of the species (investigated in Chapter I) and to detect additional diversity 

in diverse geographical locations, metagenomic databases developed at two different 

geographic scales were utilised: BioMarKs (European) and Tara Oceans (worldwide). 

The diversity inferred from such metagenomic studies depends on the choice of the 

molecular marker and on the cut-off values used to delineate genetic similarity as a 

proxy of species adherence. In Chapter III, the V 4 and V9 regions of the nuclear SSU 

rDNA were used to estimate species richness in the natural environment. The BioMarKs 

V4-based metagenomic database on a European scale did not reveal additional species 

diversity. Yet it provided additional information about the distribution of the already 

known and newly described species. Although, the results support the seasonality 

established at the site L TER-MC, the environmental conditions in which the species can 

occur varied among sites. For example, the temperature range at which L. aporus 

bloomed in the GoN was distinct from that at which it bloomed in the Oslo Fjord or 

near Barcelona. Leptocylindrus aporus bloomed in Naples and Oslo in the summer 

season, but under very different temperatures, indicating that temperature cannot be the 

only factors determining species distribution and seasonality. The Tara Oceans dataset 

based on the V9 marker was generated from samples gathered over a wide geographical 

area. This dataset provided a larger overview of the distribution of all the 

Leptocylindrus species, and revealed additional diversity within the genus. The species 

of Leptocylindrus identified in Chapter II are not limited to the GoN or Europe, but 

occur all across the world's oceans, supporting the hypothesis of cosmopolitanism for 
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these species. Notably, L. minimus was not detected in the Tara database, possibly 

because the Tara Oceans expedition did not sequence samples from Northern cold 

waters (as of the time of sequence retrieval for this study). Additional clades, possibly 

belonging to yet unknown Leptocylindrus species were found to be restricted to smaller 

geographical regions or even single sample sites, which in contrast, challenges the 

hypothesis of cosmopolitism. This finding is similar to what was observed for some of 

the Skeletonema species in Kooistra et al. (2008). In any case, the results of the present 

study suggest that species diversity recovered in the environment increases with the 

sampling scale. This first attempt to reconstruct species distribution using metagenomic 

databases might have been influenced by the choice of molecular maker and the cut-off 

values used to consider the genetic identity. Additionally, the methods developed in the 

study can be replicated with other known diatoms species or even other diverse species. 

The study is one of the first attempts studying the spatial distribution of individual 

species of microalgae worldwide, while similar attempts have been made in microbial 

system. 

Through the application of metagenomic databases the species discovered in Chapter II 

were established as to be present not just in the GoN but also in Europe and other parts 

of the world. Leptocylindrus minimus that was absent in the samples of GoN was 

recovered from the Oslo Fjord sequences. There are many more questions to be 

answered. Why the species L. minimus is present only in the North Sea and not also in 

the cold waters of the Southern Ocean such as the Antarctic Peninsula (sampled by Tara 

Oceans)? It might be that the species was absent during the time of sampling. Multiple 

sampling at a single location across different seasons is proposed to show that species 

can be recovered at a single site. However, the repeated sampling at the GoN has not 

revealed the presence of the species. So, the question why this species is restricted to the 

North Sea remains to be answered. The phenology of Tenuicylindrus belgicus differs 

from that of L. minimus, in that the former species blooms exclusively in late summer in 
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GoN (that is, in warm water), but instead in spring in Oslo (that is, in cold water). This 

situation is similar to that observed in Chaetoceros socialis (Degerlund et al. 2012). Is 

the latter species the same at both sites? Why does it have a narrow blooming time? 

What are the physiological adaptations in the strains of these distinct geographical 

locations that cause the differences in the seasonality? Likewise each species has its 

own unique characteristics that pose many questions. In addition the general questions, 

again, remain to be answered. Does species diversity increase with multiple location 

sampling? Is everything everywhere, or are some species everywhere and others not? If 

the latter is correct, then why are some species cosmopolitan whereas others have 

restricted distribution patterns? Do the cosmopolitans differ in their physiological 

mechanisms from the regionalists? I tried to develop and pursue this question in the 

next two chapters 

Although morphological and DNA-based markers are regularly applied for species 

identification and delineation, alternative methods including biochemical markers can 

be applied especially for species that are closely related. LOX-derived polyunsaturated 

fatty acid profiles differed markedly amongst the species tested, whereas they showed 

only very minor differences among strains belonging to the same species. Oxylipin 

profiles provided the same resolution as DNA markers and morphology. In fact, even 

the closely related species, L. danicus and L. hargravesii could be differentiated using 

their oxylipin profiles. Thus, biochemical markers could be used to discriminate among 

cryptic species, if not exclusively in combination with the morphological and DNA 

based markers. 

Oxylipin pathways are widespread in photosynthetic organisms. Their application as 

biomarkers still remains to be explored. Some of the strains, such as L. aporus SZN

B651, do not produce oxylipins. To understand why these strains do not produce 

oxylipins, their transcriptome might provide indications why this is so. Moreover, 
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whole transcriptomes of different strains can be compared to explain metabolomic 

differences between strains. 

The second hypothesis of the study, physiological diversity, was also included and 

tested. Temperature, one of the major determining factors of species occurrence was 

used to understand the physiological diversity in the species L. danicus and L. aporus. 

The two species occur in different seasons in the GoN and, thus, can reflect differential 

physiological adaptation. Leptocylindrus danicus is present in all seasons except in 

summer. Results (Chapter V) show that it is unable to withstand long-term exposure to 

26°C, which is a temperature typical for the summer conditions of the surface water in 

the GoN. Leptocylindrus aporus, the species responsible for intense bloom in summer 

in the GoN, can grow under these high temperature conditions. Instead, L. aporus could 

not withstand long-term exposure to 12°C, whereas L. danicus can. Overall, these 

results indicate that L. danicus can better sustain low temperatures whereas L. aporus 

can cope better with high temperatures. However, the seasonal restriction observed for 

the species are based on the strains grown under laboratory conditions. Environmental 

sequencing results of the two species at the GoN demonstrates the presence of these 

species in the environment during the season in which they do not bloom, but 

apparently exist in low numbers that are difficult to detect by traditional methods. 

Nevertheless, the observed pattern of seasonality in the natural environment 

corroborates with the physiological responses in situ. Thus, physiological adapt ion 

determines the species occurrence in diverse environments. An alternative view is that 

the species phased on a selected season by internal, genetic time control eventually lose 

their capability to withstand different conditions. This mechanism, i.e. removing 

adaptations to conditions not really experienced, probably involve some energetic 

advantages or at least does not have an impact on the fitness of the species in that 

environment, although it reduces its plasticity. In this case, the selectivity for certain 
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temperature ranges could be the consequences and not the cause for the observed 

seasonal i ty . 

The analysis presented in Chapter V is the first step for future studies that are planned 

on this material. Addressing the whole metabolite pattern (metabolome) will reveal 

metabolic changes that occur at three temperatures in L. aporus and L. danicus, thereby 

providing an explanation for the observed physiological differences. This explanation 

has important implications for the biotechnology industries where maximum product 

yield is the ultimate aim. An optimised growth condition is mandatory for balancing the 

maximal biomass yield and obtaining maximal product of interest. 

Overall, the presence of mUltiple species within a morphologically simple species, their 

seasonal distribution, the differences in special distribution, and differential responses to 

abiotic factors, all suggests that genetically distinct species may play different 

ecological and biogeochemical roles in marine habitats. The succession of genetically 

distinct species over the year under distinct environmental conditions (Chapter II) 

suggests a close connection between the genetics and the environment in which a 

species persists. The difference in the spatial distribution, with restrictions of some 

genotypes to a geographical location and others to multiple locations (Chapter III), 

again strengthens the connection between the genetics and the environment in which a 

species persists, suggesting that the two hypotheses of species biogeography are valid, 

i.e., not mutually exclusive. The physiological adaptation in closely related species, 

with each species responding differently to variation in abiotic factors, adds further 

strength to the connection between the genetics and the environment, suggesting an 

environmental role in shaping community structure. Understanding this connection 

might help better explain, and perhaps predict, blooms of individual species, which is 

particularly interesting for invasive and harmful algal-bloom species, but also for 

predicting alterations of species distribution which in tum may alter biogeochemical 

cycles under the ongoing and predicted climate change 
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