
Open Research Online
The Open University’s repository of research publications
and other research outputs

Summer of Code: Assisting Distance-Learning
Students with Open-Ended Programming Tasks
Conference or Workshop Item
How to cite:

Smith, Neil; Richards, Mike and Cabrero, Daniel G. (2018). Summer of Code: Assisting Distance-Learning
Students with Open-Ended Programming Tasks. In: ITiCSE 2018: Proceedings of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education, ACM, New York, pp. 224–229.

For guidance on citations see FAQs.

c© 2018 Association for Computing Machinery

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/3197091.3197119

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/155776862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/3197091.3197119
http://oro.open.ac.uk/policies.html

The Summer of Code: Assisting distance-learning students with
open-ended programming tasks

Neil Smith
The Open University
Milton Keynes, UK

neil.smith@open.ac.uk

Mike Richards
The Open University
Milton Keynes, UK

mike.richards@open.ac.uk

Daniel G. Cabrero
The Open University
Milton Keynes, UK

daniel.cabrero@open.ac.uk

ABSTRACT
A significant difficulty in teaching programming lies in the tran-
sition from novice to intermediate programmer, characterised by
the assimilation and use of schemas of standard programming ap-
proaches. A significant factor assisting this transition is practice
with tasks which develop this schema use. We describe the Sum-
mer of Code, a two-week activity for part-time, distance-learning
students which gave them some additional programming practice.
We analysed their submissions, forum postings, and results of a
terminal survey. We found learners were keen to share and discuss
their solutions and persevered with individual problems and the
challenge overall. 93% respondents rated the activity 3 or better on
a 5-point Likert scale (n=58). However, a quarter of participants,
mainly those who described themselves as average or poor pro-
grammers, felt less confident in their abilities after the activity,
though half of these students liked the activity overall. 54% of all
participants said the greatest challenge was developing a general
approach to the problems, such as selecting appropriate data struc-
tures. This is corroborated by forum comments, where students
greatly appreciated “think aloud” presentations by faculty tackling
the problems. These results strongly suggest that students would
benefit from more open-ended practice, where they have to select
and design their own solutions to a range of problems.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion;Adult education; •Applied computing→Distance learning;

KEYWORDS
Programming, Intermediate programmers, Distance learning

ACM Reference Format:
Neil Smith, Mike Richards, and Daniel G. Cabrero. 2018. The Summer of
Code: Assisting distance-learning students with open-ended programming
tasks. In Proceedings of 23rd Annual Conference on Innovation and Technol-
ogy in Computer Science Education (ITiCSE’18). ACM, New York, NY, USA,
Article 4, 6 pages. https://doi.org/10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE’18, July 2018, Larnaca, Cyprus
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

1 INTRODUCTION
Teaching programming has long been recognised as difficult [17]
[5]. A key stumbling block in the development of expertise is mov-
ing from the rote application of basic programming constructs to
the selection and application of appropriate algorithms and data
structures to solve problems. This development of expertise can be
influenced by many factors, but the amount of practice is significant
[10] [7].

This paper describes the Summer of Code, a project was designed
to give novice and intermediate programmers in a large distance-
learning university an opportunity to practice and consolidate their
programming skills.

A complicating factor for our students is that they are all studying
part-time, learning at a distance, and typically at a study intensity
of 30%–50% of full-time students. The low study intensity of part-
time students means there can be long gaps between when they are
introduced to a topic in one module and when they have to use and
develop that skill in another. These gaps can lead to loss of ability,
especially with novice programmers when the ability still depends
on explicit, declarative knowledge in the student’s mind [4].

Many of our students are mature students (only 8% of undergrad-
uates are under age 21) [14], which means they need to juggling
study with work and family commitments. These external com-
mitments make it difficult for students to take even the minimal
time required for study, let alone take on additional extra-curricular
work; there is understandable reticence in the faculty to give the
impression that students should take on additional work. The dis-
tance learning nature means there is a reticence to set students
many practical programming tasks, due to problems of providing
technical support. Students are remote from sources of support,
which makes troubleshooting difficult. Distance-learning students
also tend to struggle for long periods with minor problems before
asking for help, when similar problems could be solved in moments
by a TA walking through a lab.

The project had three main research questions:

(1) Will time-pressured part-time students seek out additional
informal learning opportunities?

(2) Are mixed-ability communities of undergraduate students
off-putting for students at either end of the ability scale?

(3) Do distance learning students exhibit similar stumbling blocks
in their development of programs to solve problems?

We discuss related work in section 2. We describe the Summer
of Code activity in section 3 and how we supported student partic-
ipation. We analyse results from the tasks, student forums, and a
terminal survey in section 4. Finally, we summarise what we have
learnt in section 6 and describe our next steps.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

ITiCSE’18, July 2018, Larnaca, Cyprus N. Smith et al.

2 RELATEDWORK
The development of programming expertise has received much
attention over many years, from Soloway’s rainfall problem [12] to
investigations into how students design software systems [6] [3].
The consensus is that students find programming a difficult skill
to develop, especially the transition from novice to intermediate
programmer. A key signifier of this transition is the student’s un-
derstanding and use of “schemas” [17], which transfer knowledge
from a declarative form to a more procedural form, reducing the
cognitive load of programming [8]. As well as the explicit statement
of schemas in teaching material, examination of worked examples
and practice are key elements of developing programming skill [15]
[7].

The distinction between declarative and procedural expertise
in programming becomes important when we consider how ex-
pertise may degrade over time if it is not practised. Kim et al. [4]
suggest that declarative knowledge deteriorates over time, some-
times catastrophically (leaving the learner unable to perform the
task at all) while procedural knowledge is much more resilient. The
longer gaps between programming activities for part-time students
means there is more opportunity to forget key skills, making the
reinforcement that comes from practice even more important.

Another factor in the design of the Summer of Code was the
student population. An additional, voluntary, non-credit-bearing
programme of study is more akin to a MOOC than a traditional
module. With time-pressured part-time students, uptake and re-
tention in the activity could be low. However, engaging materials
and good interaction between students and instructors have been
shown to greatly increase MOOC retention [2], and using tasks
with at least the pretense of real-world relevance are more engaging
than many seen in introductory programming courses [1] [9].

3 THE SUMMER OF CODE
The Summer of Code activity was developed to support students
in the transition from novice to intermediate programming exper-
tise. It was intended to both develop their skills and confidence in
programming. The activity provided a low-stakes and supportive
environment where students could practice and develop their skills.

The activity was not intended to replace any existing teaching,
but to supplement and consolidate it; therefore, we decided to
include only programing concepts which were covered in existing
materials. The tasks had to be appropriate for the students’ existing
level of skill, and engaging to keep time-poor part-time students
involved. Most tasks were solvable by students who had completed
our introductory modules; two used additional techniques (graph
search and dynamic programming) introduced in a second level
algorithms module.

3.1 Activity structure
The activity comprised a series of ten programming puzzles over
a two week period, with one puzzle released at midnight on each
week day. Each puzzle was intended to require one to two hours
of work to solve, including a number of problem analysis steps
as well as programming. Students were encouraged to discuss the
problems and share their solutions in a set of linked online forums;
we provided support through these same forums. We provided an

Figure 1: A sample Summer of Code task (worked example
removed for brevity)
After a fairly dull flight, you’ve finally arrived at your hotel. The
good news is that the hotel has high-security electronic locks on
the room doors. The bad news is that the staff are rather busy, and
you think it will take a long time to get to your room.
Luckily, you know how their system works.
Each door in the hotel has a keyboard on the lock. You have to enter
the correct two-letter code to get in to the room. Because the staff
know that people won’t remember the codes, they tell you a pass
phrase you can use the generate the code from.
There’s a long queue for people to be told how to generate the
code from the pass phrase. You were here last year and you still
remember how to do it.
You start with the first two letters of the pass phrase. This is the
starting value of your code.
Then, for each subsequent letter in the pass phrase, you:

(1) “Add” the second letter of the code to the first letter of the
code, replacing the first letter of the code

(2) “Add” the current letter of the pass phrase to the second
letter of the code, replacing the second letter of the code

(3) Move on to the next letter of the pass phrase
“Adding” letters is done by converting the letters to their position in
the alphabet (starting at one), adding, then converting the number
back to a letter. For instance, to add t + h, convert them to numbers
(t=20, h=8), add them (20 + 8 = 28), then convert back to a letter (28
is larger than 26, so it becomes 28 - 26 = 2, which is b).
All letters are converted to lower-case, and anything that isn’t a
letter is ignored.
For example, to find the code from the pass phrase the cat, the
code starts as being the first two letters th, then the subsequent
letters are used to update the code to give vk.

additional “day zero” puzzle before the main event started, to allow
students to familiarise themselves with the style of puzzle.

Puzzles where presented to students using our existing online
quiz platform. Each puzzle came in two parts, with the second part
requiring some modification or extension of the first part. For each
puzzle, the students were given the puzzle description (including
a small problem instance) and a text file containing the data for
the full task. The same puzzle input was used for both parts of the
puzzle. The solution was typically a number or a few words of text.

Students implemented the solution on their own PC, using what-
ever language and development environment they wanted. We did
not run any solutions on our platform. Students could submit their
solutions as many times as they liked, with only their best result
counting for completion. The puzzles did not require handling of
malformed input and there were no trick questions.

Puzzle descriptions were presented in a light-hearted style, to
reinforce the fun nature of the activity. Figure 1 gives an example;
other puzzles involved processing instructions to drive a dot-matrix
display board, word puzzles, and detection of interleaved subse-
quences in a set of strings. This format was based on the highly
successful Advent of Code annual competition [16]. The full set of
puzzles for the Summer of Code is available online [11].

The Summer of Code: Assisting distance-learning students with open-ended programming tasks ITiCSE’18, July 2018, Larnaca, Cyprus

3.2 Student support
The puzzles were open to all undergraduate students. So that less
skilled students would not be intimidated by the proficiency of more
proficient students (some of whom were professional programmers,
studying to deepen their skills), we created three forums: a normal
“task discussion” forum, one called “No question too simple”, and a
“Show-offs’ corner”. The “no question too simple” forum contained
guidance that all responses should be supportive and generous.
The “show offs’ corner” was described as being for activity that
lay beyond the tasks themselves. Expecting that some students
would be using the Summer of Code to explore new programming
techniques, this forum was a place where they could discuss this
activity without intimidating less proficient participants.

Faculty support for the activity was mainly participation in the
forums. We also provided worked example solutions posted a few
days after each puzzle was revealed, and video-conferenced inter-
active tutorials. Many puzzles had associated “tips” threads on the
forum, released at the same time as the puzzles. These tips sug-
gested ways of thinking about the puzzle, problem decompositions
to try, and outline algorithms which students could develop.

3.3 Rewards
The event did not formally contribute to the students’ qualifica-
tion in any way, and participation was not enforced. We did not
offer any type of leaderboard or reward for early submission of
correct answers. However, to encourage continued participation,
all students who successfully solved both parts of a problem on the
same day were automatically entered into a daily draw for a £20
Amazon voucher. We also held a draw for those who completed at
least eight of the ten puzzles by the end of the event, and a draw
for respondents in the terminal survey (see section 4.3 below).

4 RESULTS
We evaluated this project in three ways: learning analytics of the
puzzle submissions, analysis of the forum posts, and an optional
terminal survey.

4.1 Task submissions
Our learning analytics allows us to count both students to examined
a task and those who submitted a solution to a task.

The event was advertised to around 2500 undergraduate students.
325 engaged with the introductory task and 143 students partic-
ipated in the main ten days of the Summer of Code. 80 different
students made a total of 595 submissions (537 submissions if multi-
ple submissions to the same task are ignored). An additional 165
students accessed only the introduction task; 98 students submitted
a solution to this task and 174 students only examined it. In the
remainder of this section, we will look only at the ten tasks in the
core of the Summer of Code event.

The number of submissions per day declined over the ten days
of the activity (Figure 2). Interestingly, there are an appreciable
number of participants, termed “lurkers”, who looked at each day’s
puzzle but did not submit a solution.

Students tended to stay the course for the Summer of Code. Of
the 80 students who submitted at least one solution, 26 submitted

Figure 2: Submitters and lurkers per task

2 4 6 8 10

20

40

60

80

Task

Completers
Lurkers

Figure 3: Number of students who submitted exactly n solu-
tions

2 4 6 8 10
0

5

10

15

20

Tasks submitted

solutions on at least eight of the ten days and 19 submitted a solution
for each day (Figure 3).

98% of student submissions on each day’s task resulted in the
student successfully answering both parts, but students sometimes
made multiple attempts (Table 1).

Some students attempted some days but not others. Even if a
student did not submit a solution to one task, they often remained
engaged with the activity. 47 students submitted a solution to a task
after they had examined but not submitted a solution for a previous
task, meaning that students were still engaged in the activity even if
they skipped a task or two. See Table 2 for a breakdown of numbers
of student completing and examining different numbers of tasks.

80% of tasks were completed on the same day as they were
started. The median duration of a task-solving attempt was 2 hours
45 minutes, though this is an unreliable measure of time spent on

ITiCSE’18, July 2018, Larnaca, Cyprus N. Smith et al.

Table 1: Number of people making this many attempts per
task

Attempts

Task 1 2 3 4 5 6 7 8

1 60 13 3 0 0 0 0 0
2 62 5 2 1 0 0 0 0
3 56 2 1 0 0 0 0 0
4 31 10 4 0 1 0 0 0
5 34 4 1 1 0 0 1 0
6 18 8 2 2 2 2 1 0
7 31 1 0 0 1 0 0 0
8 16 3 1 3 0 0 0 0
9 27 2 0 0 0 0 0 0
10 16 7 2 1 0 0 0 1

Table 2: Lurkers vs Completers

Lurked

Completed 0 1 2 3 4 5 6 7 8 9 10

0 0 49 8 5 0 0 0 0 0 0 1
1 5 4 1 0 0 0 1 0 0 0
2 1 3 1 0 1 0 1 0 2
3 3 2 3 0 1 1 0 0
4 0 3 3 0 1 1 1
5 2 1 1 0 1 0
6 1 0 0 1 1
7 2 1 1 3
8 0 0 1
9 0 6
10 19

a task, as there were some attempts that tasked up to 13 days. If
someone started a task, then moved to some other activity, then
came back to the task later, the whole duration from start to finish
is counted.

Despite there being no benefit to starting the task early, 17% of
task completions were started before 1.00am and 11% were finished
before 5.00am.

4.2 Forum analysis
We encouraged students to post their solution programs in the
task discussion forum and to discuss each others’ programs. We
encouraged discussion as soon as each task opened. There were
192 solutions posted, in a variety of languages. The most common
languages were Python, Java, and Sense (a modification of Scratch
used on our introductory programming module), which are the lan-
guages used in our taught modules. Only 77 of the posted solutions
contained any kind of description of the code, either a description
in the forum post or comments in the code itself.

Analysis of the posted code was inconclusive. The range of pro-
gramming languages used and the range of difficulty of the puzzles

Table 3: Lurkers vs Completers

Forum name Authors Posts Threads

Announcements 8 31 13
Task discussion 47 554 35
Show offs’ corner 22 94 26
No question too simple 19 66 13

obscured any trends in program complexity or programming profi-
ciency during the Summer of Code activity.

Table 3 shows the participation in the forums. 58 different people
posted, with most engaging in the general “task discussion” forum;
25 people posted only there. 15 people posted in both “Show off’s
corner” and “No question too simple”, with discussion going in
both directions: experienced programmers were answering “simple”
questions, and less-confident programmers were engaging with
threads in the “Show off’s corner”. Participation per author followed
a typical distribution, with most posts produced by a small number
of users.

The forums were reasonably interactive. In the “task discussion”
forum, 206 of the 554 posts referred to another post in the forum,
either answering a question or commenting on a posted program. 32
posts indicated that the student was trying out a new programming
language or programming technique, and 18 of those posts also
referred to another post in the forums. This was a disappointing
number of interactions, but perhaps not surprising. Discussions
between students were universally generous and supportive. Some
sample exchanges are below:

X: I used the deque.rotatemethod for rotating both
rows and columns. Easier.
<code removed>
Y: I like the way you parse the instructions—very easy
to read.

X: Saw Y used a dispatch table in one of his solutions
and it wasn’t something I’ve done before, so I thought
I’d try it for this. I think it turned out well.

There were only 23 student posts that referred to the “tips”
threads, but all those references commented on how useful the
tips threads were.

4.3 Terminal survey
We invited all students to participate in a terminal survey, hosted
on SurveyMonkey [13]. Participation was not required and could
be anonymous, though everyone who provided an email address
was entered into a draw for a £25 Amazon voucher. The survey
comprised 16 questions and took about three minutes to complete.
58 students completed the survey. The survey was presented near
the end of the Summer of Code period, but only 45% of respondents
said they had attempted nine or more tasks in the challenge and
22% said they had attempted 3 or 4 tasks. This indicates that the
survey captures the results from a range of students.

When asked whether they liked the Summer of Code, 93% of
students rated the activity 3 or higher on a 5-point Likert scale

The Summer of Code: Assisting distance-learning students with open-ended programming tasks ITiCSE’18, July 2018, Larnaca, Cyprus

Table 4: Change in confidence by self-reported skill

Change in confidence

Original
ability

Not
sure

Much
less

Little
less

No
change

Little
more

Much
more

Novice 1 3 2 1
Reluctant 1
Poor 2 1 1
Average 5 2 9
Good 2 1 1 10 12 1
Professional 3

(mean 4.44, variance 0.75) and 93% said they would recommend it
to other students (the remaining 7% responded “not sure”).

60% of respondents said they engaged with the challenge to
improve their programming. 66% said they learnt a new skill during
the challenge. None said they were motivated by any prizes on
offer.

An interesting finding was how the participants’ confidence
changed as a result of the Summer of Code (Table 4). Respondents
were asked, in separate questions, to describe their self-assessed
programming ability and how their confidence in programming
changed as a result of the Summer of Code. 46% of respondents re-
ported an increase in their confidence while 24% reported a decrease
in confidence. Unsurprisingly, self-rated professional programmers
did not change in confidence. Most “good” programmers showed an
increase in confidence, while other grades of programmer showed
a reasonably equal split between those who felt more and less
confident.

Changes in confidence did not correlate with satisfaction with
the Summer of Code. Seven respondents gave the Summer of Code
a rating of 3 or less when asked if they like it. All seven indicated
that they felt less confident after the activity, though the other
seven responents who felt less confident gave the overall activity a
rating of 4 or 5.

We asked participants what they found the most challenging
(Table 5). 53% of respondents said that developing a general algo-
rithm or data representation was the most challenging. Only 14%
struggled with the programming language and only 10% found
debugging the most difficult. (Of the four “other” responses, two
wanted to give multiple responses, one was essentially “developing
a general algorithm or representation” and one was a comment
about their personal lack of time.) This corroborates the comments
made on the forum and the survey freetext responses, where stu-
dents reported they had difficulty bridging the gap between the
problem and programming language structures.

Free-response comments showed that the students enjoyed and
valued the opportunity to develop their programming skills; some
of those comments are below. Although not explicitly asked in the
survey, the free-response comments and forum posts showed that
less-proficient students enjoyed the opportunity to engage with
more proficient students, even if they did not directly learn specific
techniques.

It was good fun, I learnt some useful tricks from view-
ing the code others used to answer the same questions,

Table 5: Greatest challenges

Challenge Responses

Understanding the task 6
General algorithm or representation 31
Language syntax features 8
Finding reference materials 1
Debugging a running program 6
None 2
Other 4

I realised how far my programming had come (and
also how far it had to go!)

It is helpful to see how others code and to share ideas
about the best way to go about solving a particular
programming problem.

To be practical at programming, practising is vital.
The computing modules haven’t got enough practice
examples with enough variety.

It has provided a friendly environment for less-experienced
programmers to try out their code, and maybe get ad-
vice and encouragement, which has to be a good thing.
Many thanks!

When I started, creating a loop which cycled through
a list required a little thinking but now the structure is
intuitive to me. Debugging and testing meant a quick
glance through what I’d written but these activities
meant that I had to actually plan my approaches and
analyse everything in much more detail. This chal-
lenge REALLY helped me!

5 LESSONS LEARNT
We can draw a number of conclusions from this project. First is that
there is an appetite for part-time mature students to engage in this
extra-curricular activity, despite the myriad other demands on their
time. Most students who engaged for two days completed all ten:
there was a low drop-out rate over the course of the event. Students
of all ability levels seemed to relish the chance to practise and
develop their programming skills. Several students started on the
puzzles soon after midnight, and there was a burst of submissions
each day between 11.00pm and midnight.

The most significant finding for the teaching of programming is
about problem solving. As discussed in section 4.3, students found
the most challenging part of the puzzles to be the development of an
overall approach to solving the problem. Once they had identified
that approach, students we able to implement it in their chosen lan-
guage, and also reported few problems with debugging programs
once written. Faculty-provided worked examples of solving the
problems were very well received, especially the “think-aloud” sec-
tions where faculty described their thought processes for solving

ITiCSE’18, July 2018, Larnaca, Cyprus N. Smith et al.

problems. In common with many other undergraduate curricula,
the Open University spends a lot of teaching time on language con-
structs. It seems this effort has paid off, but perhaps at the expense
of more practice of analysing problems and decomposing them into
computationally-achievable parts.

The students quickly gelled into a supportive community via the
event’s forums, with many cases of students asking and answering
questions, making helpful comments, and engaging in some social
chat. This was despite the fact that there were no reports from
the students that any of them had previously met, even online.
Faculty monitored the forums for conduct, but no intervention was
necessary.

Students’ limited time was a frequent comment in both the fo-
rums and the terminal survey. Many students reported difficulty
with finding time to complete the puzzles, especially at the pace of
one puzzle per day. In the survey, 40% of respondents self-reported
as spending 2–5 hours on each puzzle and 43% of respondents asked
for more time between puzzles. Despite that report, 70%–80% of
puzzle completions were made on the same day as the puzzle was
released.

There is a danger that reducing the pace of puzzles, and spreading
the event over a longer period, will increase the number of students
who drop out of the event due to other circumstances. We need to
balance these factors when presenting the next event.

The number of students participating in the eventwas disappoint-
ing given the size of the cohort who could have engaged. However,
there was no compulsion on students to take part, and the event
was deliberately pitched between modules so that students had
some free time to participate. In addition, the Open University is
extremely sensitive to how much information is pushed to students,
and we chose to send only two emails to students inviting them to
participate. More advertising of the event in other channels, such
as being mentioned during current modules, would likely increase
the number of students participating.

6 CONCLUSIONS
This first Summer of Code exercise was a successful pilot project.
We are preparing a follow-up activity in the same vein, but incor-
porating changes suggested by this pilot. The main changes are to
reduce the complexity of the later problems, and to reduce the pace
of the problem presentation. We will place greater emphasis on
describing the programming schemas used to address these prob-
lems, through more explicit descriptions of schemas in the “tips”
threads and more “think-aloud” worked example transcripts and
videos from experts.

We will also follow the progress of participants in the Summer
of Code as they study other modules, to see if their outcomes are
different from their peers; a similar activity, aimed at first-year
students, increased their confidence but seemed to have no effect
on their module outcomes [18].

This activity has addressed the our three research questions:

(1) There is a substantial desire for more learning opportunities,
even when the work is not attached to any form of formal
award or credit. Half the students who found the activity
challenging, and who felt less confident as a result, still rated
the activity highly.

(2) Students relished the opportunity to interact with other stu-
dents with different programming ability. In particular, less-
proficient students were not seemingly disheartened by ex-
posure to solutions presented by more-proficient students.

(3) The findings from this project substantially recapitulate the
findings of Lahtinen et al. [5], that novice programmers have
most difficulty with designing an approach to a problem and
constructing a program to carry out that task.

This study indicates that a large number of students want to take
control of their learning and will pursue additional opportunities
to develop their skills and understanding, despite the time pressure
that comes from mature students studying part-time.

ACKNOWLEDGMENTS
We would like to thank Daniel Gooch for insightful comments and
suggestions of drafts of this paper.

REFERENCES
[1] Mark Guzdial. 2003. A media computation course for non-majors. InACM SIGCSE

Bulletin, Vol. 35. ACM, 104–108.
[2] Kate S. Hone and Ghada R. El Said. 2016. Exploring the factors affecting MOOC

retention: A survey study. Computers & Education 98 (2016), 157 – 168. https:
//doi.org/10.1016/j.compedu.2016.03.016

[3] C. Hu. 2016. Can Students Design Software?: The Answer Is More Complex Than
You Think. In Proceedings SIGCSE ’16. 199–204.

[4] JongW. Kim, Frank E.Ritter, and Richard J. Koubek. 2013. An integrated theory for
improved skill acquisition and retention in the three stages of learning. Theoretical
Issues in Ergonomics Science 14, 1 (2013), 22–37. https://doi.org/10.1080/1464536X.
2011.573008 arXiv:https://doi.org/10.1080/1464536X.2011.573008

[5] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A study of the
difficulties of novice programmers. In Proceedings, ITiCSE ’05. 14–18.

[6] C. Loftus, L. Thomas, and C. Zander. 2011. Can graduating students design:
Revisited. In Proceedings SIGCSE ’11. 105–110.

[7] K.M. Lui and K.C.C Chan. 2006. Pair programming productivity: Novice–novice
vs. expert–expert. Int. J. Human-Computer Studies 64 (2006), 915–925.

[8] Jerry Mead, Simon Gray, John Hamer, Richard James, Juha Sorva, Caroline St.
Clair, and Lynda Thomas. 2006. A Cognitive Approach to Identifying Measurable
Milestones for Programming Skill Acquisition. In Working Group Reports on
ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE-WGR
’06). ACM, New York, NY, USA, 182–194. https://doi.org/10.1145/1189215.1189185

[9] Abhiram G. Ranade. 2016. Introductory Programming: Let Us Cut through the
Clutter!. In Proceedings, ITiCSE ’16. 278–283. https://doi.org/10.1145/2899415.
2899430

[10] F. E. Ritter and L. J. Schooler. 2001. The learning curve. 13 (2001), 8602–8605.
[11] Neil Smith. 2017. Summer of Code. (2017). Retrieved 22 January, 2018 from

https://github.com/NeilNjae/ou-summer-of-code-2017
[12] E. Soloway. 1986. Learning to program = learning to construct mechanisms and

explanations. Commun. ACM 29, 9 (1986), 850–âĂŞ858.
[13] SurveyMonkey. 2017. Summer of Code survey. (2017). Retrieved 22 January,

2018 from https://www.surveymonkey.com
[14] Open University. 2016. Facts and Figures 2015–16. (2016). https:

//www.open.ac.uk/about/main/sites/www.open.ac.uk.about.main/files/
files/uk_fact_figures_1516_pdf(1).pdf

[15] Jeroen J.G. van Merrienboer, J.J.G. van Merrienboer, and Fred G.W.C. Paas. 1990.
Automation and schema acquisition in learning elementary computer program-
ming : implications for the design of practice. Computers in human behavior 6, 3
(1990), 273–289. https://doi.org/10.1016/0747-5632(90)90023-A

[16] Eric Wastl. 2017. Advent of Code. (2017). Retrieved 22 January, 2018 from
https://adventofcode.com

[17] L.E. Winslow. 1996. Programming pedagogy—a psychological overview. ACM
SIGCSE Bulletin 28, 3 (1996), 17–22.

[18] John Woodthorpe. 2017. Personal communication. (2017).

https://doi.org/10.1016/j.compedu.2016.03.016
https://doi.org/10.1016/j.compedu.2016.03.016
https://doi.org/10.1080/1464536X.2011.573008
https://doi.org/10.1080/1464536X.2011.573008
http://arxiv.org/abs/https://doi.org/10.1080/1464536X.2011.573008
https://doi.org/10.1145/1189215.1189185
https://doi.org/10.1145/2899415.2899430
https://doi.org/10.1145/2899415.2899430
https://github.com/NeilNjae/ou-summer-of-code-2017
https://www.surveymonkey.com
https://www.open.ac.uk/about/main/sites/www.open.ac.uk.about.main/files/files/uk_fact_figures_1516_pdf(1).pdf
https://www.open.ac.uk/about/main/sites/www.open.ac.uk.about.main/files/files/uk_fact_figures_1516_pdf(1).pdf
https://www.open.ac.uk/about/main/sites/www.open.ac.uk.about.main/files/files/uk_fact_figures_1516_pdf(1).pdf
https://doi.org/10.1016/0747-5632(90)90023-A
https://adventofcode.com

	Abstract
	1 Introduction
	2 Related work
	3 The Summer of Code
	3.1 Activity structure
	3.2 Student support
	3.3 Rewards

	4 Results
	4.1 Task submissions
	4.2 Forum analysis
	4.3 Terminal survey

	5 Lessons learnt
	6 Conclusions
	Acknowledgments
	References

