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ABSTRACT 

Congenital Hypomyelination (CH) IS the most severe 

demyelinating form of Hereditary Motor and Sensory Neuropathies and 

manifests at birth in human. Some subtypes of CH are due to dominant 

mutations in the gene coding for PO glycoprotein, which functions as a 

homophilic adhesion protein, responsible for compaction of opposing 

myelin lamellae. By homologous recombination in ES cells, we have 

generated a mouse containing a nonsense mutation in the intracellular 

portion of PO (Q215X) that, in the heterozygous state, is associated with 

CH neuropathy in humans. This mutation is predicted to encode a 

truncated PO protein, lacking part of the cytoplasmic domain. Expression 

analysis demonstrated that Q215X heterozygous mice produce both 

wildtype PO and a smaller, truncated PO glycoprotein; furthermore, the 

levels of mRNA and protein produced by the mutated allele are less 

abundant, relative to the wildtype. We demonstrated then that this 

reduction in mRNA and protein levels could be paIiially explained by 

inefficient transcription of the mutated allele, due to the presence of a 

LoxP site with intron 5. Behavioral analysis of the Q215X1+ mice revealed 

reduced motor performance at 11 days after birth. Morphological analysis 

performed on sciatic nerves of mice between PI and P 14 revealed defects 

in the process of axonal sorting by Schwann cells, with the presence of 

bundles of mixed large and small calibre axons surrounded, but not 

ensheathed, by single Schwann cells. These morphogical defects are 

rescued after the second week of life: sciatic nerves from adult mice, in 

fact, show only mild hypomyelination, which is much less severe than the 

morphology reported in patients. From these preliminary data, we 

conclude that the Q215X mutation results in a truncated PO protein; since 

the phenotype ofQ215X1+ mice and PO +1- mice differs, Q215X probably 

produces a gain of function. Finally, we studied in vivo the intracellular 

location of the truncated protein, in order to clarify aspects of the 

pathogenetic mechanism of the Q215X PO mutation: we found that the 

mutated protein is not properly trafficked within Schwann cells, being 

partially retained in the ER compartment. The phenotype we have 
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observed in the mutant mice presents similarities to other hypomyelinating 

mice that carry mutations in different genes, that are all involved in the 

laminin pathway: this suggests that mutant PO may interfere with laminin 

signaling, required for the correct timing of axonal sorting by Schwann 

cells. Thus, from these data we conclude that the Q215X mouse is a partial 

model of Congenital Hypomyelination, less severely affected, if compared 

to human patients. This difference in disease severity could be partially 

explained by the inefficient transcription of the Q215X allele. Thus, we 

believe that the mechanism of this hypomyelination is likely to be related 

to the mechanism of the more severe neuropathy in human. This mouse 

will be useful to reveal the pathogenesis of the mutation. 
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1. INTRODUCTION 

1.1 The Nervous system 

Neurons and glia, together with other supp0l1ing cells like blood 

vessels, meninges, immune cells and fibroblasts are components of the 

Nervous System 

• 1.1.1 Nerve Cells 

Within a neuron, four morphologically different regions can be 

distinguished: the cell body (or the perikaryon), the dendrites, the axon 

and the presynaptic terminal of the axon. What differentiates a nerve cell 

from other cell types is the ability to generate electrical signals. The 

metabolic center of the neuron, the perikalyon, usually gives rise to a 

series of extensions, the dendrites, that form the receptive apparatus of the 

neurons. The other characteristic neuronal structure, the axoll , the 

conducting unit of the neuron, is a tubular process that can extend for a 

long distance in the body. The high speed conduction of the action 

potential is facilitated by the myelin sheath which is present in the Central 

Nervous System (CNS) and in the Peripheral Nervous System (PNS), 

except at the level of the Node of Ranvier. Close to its end the axon 

divides into many specialised extremities, called presynaptic terminals, 

which constitute the transmitting elements of the neuron. It is through 

them that a neuron contacts and transmits information to the receptive 

surfaces of any effector cells. The point of contact is called synapse. 

Three different components give rise to a synapse: the presynaptic 

terminal of a cell, the receptive surface of the other cell and the space 

between them, the synaptic cleft. The terminals of the presynaptic neuron 

sometimes contact the postsynaptic neuron directly on its cell body; more 

commonly they make contact with dendrites. In the case of the motor 

axons of the PNS, the receptive cell is a skeletal muscle cell and the 

synaptic unit is referred to as the neuromuscular junction. In each neuronal 
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cell infOlmation goes from the cell body and dendrites, to the region from 

where the impulse initiates and finally to the presynaptic site of the axon 

that communicates with other cells. Between nerve cells there is no 

cytoplasmic continuity and each cell has specific and precise connections 

only with some nerve cells and not with others. 

On the basis of the number of processes that arise from the cell 

body, neurons are classified into three groups, unipolar, bipolar and 

multipolar. Multipolar neurons predominate in the vertebrate nervous 

system, they have one or more dendtitic processes and a single axon. In a 

typical multipolar cell, dendrites emerge from all parts of the neuronal 

body. Even within the category of the multipolar neurons the size and the 

shape of different cells vary greatly. Different types of multipolar cells 

account for all of the distinguishable neuronal types. The morphological 

differences among multipolar cells are due largely to vatiations in the 

number and length of dendtites and length of the axon. The number and 

extent of dendtitic processes in a given cell correlate with the number of 

synaptic contacts that other neurons make on that cell, while the length of 

the axon reflects the signalling function of a neuron. 

• 1.1.2 Glial Cells 

Glial cells are found contacting nerve cell bodies and also 

contacting and sometimes ensheathing axons, where they serve different 

functions: they provide myelin, they support brain structure, they remove 

debris coming from neuronal death or injury, they drive the migration of 

neurons and guide the outgrowth ofaxons, they provide noutishment for 

nerve cells and finally they modulate synaptic transmission. 

Glial cells are generally divided into macroglia and microglia. The 

macroglia include myelin forming cells: Oligodendrocytes (OL) in the 

CNS and Schwann cells (SC) in the PNS, astrocytes and ependymal cells. 

Microglia includes several phagocytic cells that can be mobilised after 

injuties, infections or other diseases. 
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The major function of OL and SC is to generate myelin 

respectively in the CNS and in the PNS, although in the PNS SC also 

surround small calibre axons without myelinating them, providing a 

support and protective function. They fonn this sheath by spirally 

wrapping their plasma membrane. Probably the major difference between 

these two cell types is that one OL can envelop several axons at the same 

time in the CNS and make myelin around them, on the contrary a single 

SC myelinates only one axon, with a diameter larger than 1 J.lm (Friede and 

Samorajski, 1968). 

1.2 The Peripheral Nervous System (PNS) 

The peripheral nervous system (PNS) includes the cranial nerves, 

the spinal nerves with their roots, the peripheral nerves and the peripheral 

components of the autonomic nervous system and the enteric nervous 

system. Spinal alfa-motoneurons, which extend axons into the PNS, have 

their soma located in the ventral horn of the spinal cord and their axons 

leave the CNS through the ventral roots. Primary sensory neurons are 

located in the dorsal root ganglia (DRG) of the PNS and project axons 

both centrally to the CNS and peripherally through the dorsal roots to their 

peripheral targets. The dorsal and ventral roots are attached to the spinal 

cord and the attachment site is considered as the border between the 

peripheral and the central nervous systems. Of note that, while axons 

penetrate the transition zone, the surrounding glia cells do not. As a 

consequence, Schwann cells (SCs), the glia cells of the PNS, are only 

associated with the parts of the axons that are located in the PNS. The 

outer connective tissue layer of the CNS, the dural sheath, becomes 

merged with the outer connective tissue layer of peripheral nerves, the 

epineurium, where the dorsal and ventral roots merge to form a spinal 

nerve. As the spinal nerves leave the spinal canal, they quickly divide into 

dorsal and ventral rami. The dorsal rami supply the back, while the ventral 
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rami send projections to the ventrolateral part of the body wall and the 

limbs. The ventral rami supplying the limbs form plexuses at the cervical 

and lumbosacral regions, from which the major peripheral nerves emerge 

to reach the limbs. 

The epineurium, the penneunum and the endoneurium, three 

layers of compact connective tissue separate and protect single nerve 

fibers. The epineurium surrounds the fascicles of the peripheral nerve; it is 

constituted by fibroblasts lacking a basal lamina and by collagen type I 

and III. Of note that the epineurium is the only part of the PNS where a 

lymphatic capillary network is present and is connected to regional lymph 

nodes. Two other components are relevant for the epinuerium 

histoarchitecture: first, the vasa neljJorllm, a network of arterioles and 

venules that provides blood support and that extends to the perineurium 

and the endoneurium; second, variable amounts of fat, working as pillows 

to protect the fascicles against damage by compression. 

Six to eight layers of epithelial cells constitute the perinuerium. All 

the layers consist of concentric flattened epithelial cells with a basal 

lamina connected to each other by tight junctions and gap junctions. Of 

these cell layers, both the inner and the outer produce an organized basal 

lamina, made of collagen type IV fibers, fibronectin and proteoglycan. 

Two main functions are accomplished by the perineurium: first, to allow a 

selective transport mechanism, able to restIicts transfer of molecules into 

the endoneurium; second to protect nerve fibers from damage through an 

organized structure of collagen layers (Parmantier et aI., 1999). 

The endoneurium, the intrafascicular compartment of the nerve, is 

made of collagen fibrils running parallel along the nerves. It reaches 50% 

of the intrafascicular space, giving support and protection to the fascicles. 

Embedded in the endoneurium are axons ensheathed by SC. EndoneuIial 

fibroblasts are the main producers of the collagen that is present in this 

structure. 

Finally, within the peIipheral nerves, SCs are the major cellular 

component of the intrafascicular space, together with a smaller number of 

endoneurial fibroblasts. Rows of SCs are arranged longitudinally along the 

axons, fOlming myelin sheaths around them. As a rule, large caliber axons 
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are sUlTounded by myelin, whereas small caliber axons are segregated by 

SCs, but not myelinated. Around the SCs, a carbohydrate rich basal lamina 

covers the surface. 

1.3 Myelin 

Myelin is one of the fundamental adaptations of vertebrates: it is a 

spiraled extension around an axon of, respectively, the Schwann cell 

plasma membrane in the PNS and the oligodendrocyte plasma membrane 

in the CNS. Myelin promotes rapid and repetitive communication between 

neurons and it modulates the maturation and survival ofaxons. Neurons 

communicate by depolarizing the electrical potential of their axons; this 

occurs through channel-mediated exchange ofNa+ in an energy dependent 

manner. Rapid unmyelinated axonal communication would demand 

energy and space requirements that are not consistent with evolution of the 

complex mammalian brain. It was therefore advantageous to evolve a 

mechanism to propagate neuronal communication through thin axons in a 

more efficient manner. Myelin-forming cells serve this function by 

producing a series of discontinuous insulation units called internodes 

along single axons. 

Each myelin internode can be divided into two structurally and 

functionally distinct domains: compact myelin and non-compact myelin 

(the paranodal and Schmidt-Lantermann regions). Compact myelin 

inhibits ion exchange during nerve conduction, while the paranodes, 

which demarcate the longitudinal ends of each internode, facilitate ion 

exchange at the Node of Ranvier, a part of the axon that separates each 

internode. The nerve impulse is transmitted from node to node by 

electrotonic spread and the action potentials regenerated at each Node of 

Ranvier; this process is commonly referred to as saltatory conduction. 

In 1928, Ramon y Cayal provided the first description of a teased 

myelinated PNS axon (Fig 1.1). Compact myelin includes the majority of 

the internode. Non-compact myelin provides cytoplasmic continuity 
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between the myelin fonning cell and its vanous reglOns of myelin 

internode. Since the majority of myelin components are synthesized in the 

cytoplasm of myelin-forn1ing cells, cytoplasmic channels at the abaxonal 

surface (not in direct contact with the axon, but in contact with SC 

cytoplasm) are needed to fOlm and maintain the myelin internode. These 

channels contain cytoskeletal components for transport and stability, 

mitochondria for energy and endoplasmic reticulum for local membrane 

biosynthesis. The cytoplasmic channels at the lateral ends of the internode 

(paranodal loops) are major sites of myelin-axon adhesion. The 

membranes of the adaxonal surface are in direct contact with the axons 

and their cytoplasmic channels may transmit axonal signals that regulate 

myelin fonnation, deternlining the length and thickness of the myelin 

internode. Finally, Schmidt-Lantennan incisures cross compact PNS 

myelin and connect outer and inner regions of the internode. These 

structures are more visible in the PNS than in the CNS, and constitute a 

continuous channel of cytoplasm, which extends through the sheath from 

the peri axonal process to the soma. The incisure membrane is 

characterized by the presence of tight junctions that separate paranodes 

and incisures from extracellular space, adherens junctions, that link 

together consecutive layers of the sheath, and gap junctions, that mediate 

diffusion across incisures by fonning a radial pathway for ions and small 

molecules (Balice-Gordon et aI., 1998). 

By Transmission Electron Microscopy (TEM), compact myelin 

appears as a lamellar structure of alternating dark and light lines that spiral 

around the axon. During the process of myelin compaction, both in 

oligodendrocytes and Schwann cells, the cytoplasm is partially excluded. 

Cytoplasm membrane leaflets are closely apposed to fonn the major dense 

lines (MOL), while extracellular leaflets of adjacent lamellae become 

closely apposed to fornl the intraperiod lines (lPL), separated by 2.0 nm in 

the CNS and 2.5 run in the PNS. The spiral membranes of compact myelin 

have a periodicity (distance from dense line to dense line) of 

approximately 13 to 14 run when fixed with aldehydes and embedded in 

epoxy resins (Kirschner and Hollingshead, 1980) and is slightly greater in 

PNS myelin than in CNS myelin. In situ, however, the distances are larger 
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Fig 1.1: Myelin internodes in the peripheral nervous system (PNS). Drawings by Ramon 

Y Cajal of osmic acid fixed (A) and silver impregnated (B) myelinated fibers from the 

PNS. Compact myelin membranes surround the axon (A, in black) and comprise the 

majority of the myelin internode. To illustrate the membrane expansion that occurs 

during myelination, the size of a Schwann cell before myelination (C) is compared to a 

Schwann cell and its "unrolled" myelin internode (D). Cytoplasmjc domains at the outer 

surface of the internode (B, D) are contiguous with the cytoplasmic channels that 

surrounds (paranodes and inner mesaxon) and traverse (Schmjdt-Lantern1an incisures) 

the compact myelin. (Adapted from "Myelin biology and disorders", chapter I , page 4). 

12 



(17 to 18 nm) when measured by X-ray diffraction (Kirschner and 

Sidman, 1976). 

Since the major function of compact myelin is insulation, it needs 

not to be biochemically complex or molecularly dynamic. In fact, compact 

myelin ultrastructure predicts membrane adhesion as the major function of 

compact myelin molecules. Moreover, adhesion molecules cannot occupy 

large extracellular or cytoplasmic areas and it is more efficient if they have 

a slow turnover rate. Because of its abundance, invariable structure and 

unique biochemical composition, myelin was the first nervous system 

membrane to be isolated and molecularly characterized. Abundant 

proteins in compact myelin include proteolipid protein (PLP) and the 

myelin basic protein (MBP) in CNS compact myelin and PO protein, 

MBP, P2 protein and PMP-22 in the PNS. The different protein content is 

not the only criterion to distinguish between CNS and PNS myelinated 

fibers; in fact, they have a different periodicity and a basal lamina is 

present only around PNS myelinated fibers. In addition, the endoneurial 

space of peripheral nerves is conspicuously abundant and contains 

collagen fibrils, that are not present in the CNS parenchyma. Despite their 

differences, the inner surface of both PNS and CNS myelin internodes are 

separated from the axon by a 12 to 14 nrn periaxonal space and both 

peri axonal spaces contain Myelin Associated Glycoprotein (MAG), 2', 3'

Cyclic Nucleotide 3'-phosphodiesterase (CNP) and microfilaments (Trapp 

et aI., 1988). 

1.4 Myelin Proteins 

• 1.4.1 Proteolipid protein (PLP) 

PLP is the most abundant CNS myelin protein; it constitutes 

approximately 50% of the total. The gene gives rise to two alternatively 

spliced transcripts that encode the classical PLP protein (a hydrophobic 
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protein with four transmembrane domains and a MW of 26kD) and a 

smaller isoform, named DM20. The only difference between them is the 

presence of an additional 35 aminoacid residues in the intracellular region 

of PLP. The PLP/DM20 gene is expressed primarily by mature 

oligodendrocytes, although small amounts of the proteins have been 

detected in embryonic eNS, PNS, heart, spleen, thymus and lymphnodes 

(Bongarzone et aI., 1999; Bronstein, 2000; Gat"bern et aI., 1997). In 

humans, PLP duplication is a common cause of a dysmyelinating disorder, 

Pelizeaus-Merzbacher disease: affected patients present a range of 

phenotypes, whereby larger duplications or point mutations can result in 

more severe clinical manifestations (Inoue et aI., 1999). Increase of the 

PLP gene dosage in nonmutant mice with only a 2-fold transcriptional 

overexpression results in a dysmyelinating phenotype characteIized by 

severe hypomyelination and astrocytosis, seizures, and premature death. 

This demonstrates that precise control of the PLP gene is a cIitical 

determinant of telminal oligodendrocyte differentiation. Oligodendrocytes 

in the dysmyelinated eNS express a range of genes typical of mature cells, 

yet are unable to assemble sufficient myelin. Oligodendrocytes contain 

abnormal vacuoles and stain intensely for PLP and other proteins such as 

MAG. The findings suggest that with high gene dosage much of the PLP, 

and possibly other proteins, is missorted and degraded in the lysosomal 

system. SurpIisingly, mutant mice that lack expression of a targeted PLP 

gene fail to exhibit the dysmyelinated phenotype (Boison and Stoffel, 

1994). Oligodendrocytes are still competent to myelinate eNS axons of all 

calibers and to assemble compacted myelin sheaths. Ultrastructurally, 

however, the electron-dense 'intraperiod' lines in myelin remain 

condensed, correlating with its reduced physical stability. This suggests 

that after myelin compaction, PLP forms a stabilizing membrane junction, 

similar to a "zipper." Animal models of PMD, the jimpy and the msd 

spontaneous mutant mice, accumulate PIp gene products in the perinuclear 

region, are unable to transport them to the cell surface and undergo a two

to threefold increase in oligodendrocyte cell death (Gow et aI., 1998). 

Recently, transgenic mice expressing only the DM-20 isoform were 

created. Although DM-20 is incorporated into functional compact myelin 
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sheaths in young animals, the analysis of these mice revealed that the 35 

amino acid PLP-specific peptide is required to engender the normal 

myelin period and to confer long-term stability on this multilamellar 

membrane (Stecca et at, 2000). As already mentioned above, both PLP 

and DM20 are expressed in the PNS. The role of the two molecules within 

the PNS has not been clarified yet, but it is known that several PLP 

mutations (null- and point mutations) have been identified in different 

patients affected by peripheral neuropathies (Shy et aI., 2003). 

• 1.4.2 Myelin basic protein (MBP) 

MBP accounts for approximately 35% of total protein in eNS 

myelin and 15% in PNS myelin. It has been found in all vertebrates that 

have myelin, both in the eNS and in the PNS. It is localized at the 

cytoplasmic surface of both central and peripheral compact myelin. It 

belongs to a family of alternatively spliced, highly positively charged 

extrinsic membrane proteins (Zeller et aI., 1984), which bind negatively 

charged lipids. It is localized in the major dense line of myelin and in eNS 

it is required for normal myelin compaction. The MBP-deficient shiverer 

mice, natural mouse mutants carrying a deletion of the 3' end of the 

myelin basic protein gene, which completely prevents production of 

mature mRNA and protein, show a severe hypomyelination, a 

delamination in the eNS major dense line, tremors and tonic seizures 

(Molineaux et aI., 1986). Although MBP is also expressed in the PNS, 

examination by electron microscopy showed that the peripheral nervous 

system in the shiverer mice, in contrast to the markedly abnormal central 

nervous system, is grossly normal. Myelin sheaths are of the usual 

thickness and exhibit normal periodic structure consisting of alternating 

major dense and intermediate lines. Subtle abnorn1alities do occur, 

however, consisting of increased numbers of Schmidt-Lanterman 

incisures, abelTant terminations of myelin lamellae in internodal regions, 

invagination of the axon by the inner tongue of the myelin sheath, myelin 

debris in both axon and Schwann cells, and disruption of outer myelin 
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Fig 1.2 Topographical models ofPLP and DM-20 in a membrane bilayer. Four 

transmembrane domains, a-d, are depicted for both proteins, in which numbers represent 

the amino acids in the vicini ty of the membrane surfaces. In thjs model, the amino acids 

K150 of PLP and KIlO of DM-20 define the beginning of the third transmembrane 

domain for each protein (Hartmann et aI. , 1989). Note that F151 in PLP is at the bilayer 

surface but that F116 in DM-20 is displaced toward the center of the membrane by the 

fi ve amino acids, Gly-Leu-Ser-Ala-Thr. This displacement could increase the size of the 

second extracellular domain. (Adapted from Stecca at aI. , 2000). 
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lamellae (Rosenbluth, 1980; Gould et al., 1995). Despite the absence of 

myelin basic protein, the peripheral manifestations of this gene are 

relatively minor and probably not severe enough to compromise peripheral 

nerve function significantly, suggesting the presence of another myelin 

gene in PNS that can rescue MBP absence (Martini et al., 1995). 

• 1.4.3 P2 protein 

P2 protein is an extrinsic membrane protein that is enriched in 

compact PNS myelin where it can participate in fusion of the major dense 

line. P2 was also detected immunocytochemically and biochemically in 

rabbit central nervous system (CNS) myelin. In the PNS, P2 protein was 

detected immunocytochemically and biochemically in rabbit sciatic nerve 

myelin. Immunocytochemically, P2 antiserum only stained a p0l1ion of 

the myelin sheaths present. The myelin sheaths not reacting with P2 

antiserum had small diameters and represented less than 10% of the total 

myelinated fibers (Trapp et al., 1983). 

The species differences in the expression of P2 are also confirmed by the 

differential potentials of the protein to induce an autoimmune 

demyelinating disease both in PNS and CNS. In fact, in inbred Lewis rats, 

P2 basic protein from bovine PNS myelin produced experimental allergic 

neuritis (EAN) without involvement of the brain or spinal cord. In guinea

pigs, bovine P2 did not produce EAN but large doses produced mild 

experimental allergic encephalomyelitis (EAE). In rabbits, bovine P2 

produced both mild EAE and EAN. Finally, P2 protein shares significant 

homology with cellular retinoic acid binding protein (CRABP), and 

cellular retinol binding protein (CRBP), a family of proteins that have 

lipid binding activities and function in fatty acid transport (Uyemura et al., 

1984). 
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• 1.4.4 Peripheral mvelin protein 22 (PJovfP22) 

It is a minor, but crucial component of the myelin sheath of 

peripheral nerves. It represents approximately 2-5% of total myelin in 

PNS. PMP22 belongs to a family of membrane proteins that is 

characterized by four hydrophobic domains and conserved amino acid 

motifs. The group includes epithelial membrane protein-l (EMP-l), EMP-

2, and EMP-3 (Jetten and Suter, 2000). PMP22 is widely expressed in 

neural and non-neural tissues, during embryonic life and in the adult 

(Baechner et aI, 1995). PMP22 is most highly expressed by myelinating 

Schwann cells and its highest levels of expression were associated with 

late stages of myelination; however the presence of the protein in 

nonmyelinating SCs and in SCs commencing myelination supports 

multiple roles for PMP22 in peripheral nerve biology (Notterpek et aI, 

1999). Detailed immunohistochemical analyses have localized PMP22 to 

the plasma membrane of non-myelinating and myelinating Schwann cells 

as well as to the compact portion of myelin (Haney et aI., 1996; Snipes et 

aI., 1992). PMP22 is also found in the CNS, but at much lower levels than 

in peripheral nerves (Parmantier et al., 1995). Its transcripts have been 

found also during mouse CNS development (Parmantier et al., 1997). In 

the adult, PMP22 mRNA levels are approximately lO-fold higher in 

sciatic nerve, compared to the lung and intestine, and about 50 to 100-fold 

higher than in brain. Studies conducted in primary rat SC cultures showed 

that the PMP22 gene is regulated by two alternative promoters that are 

located immediately upstream of two alternative 5' noncoding exons 

(exons lA and IB). While both transcripts are coexpressed in tissues and 

cell lines, the transcripts containing exon IA are preferentially expressed 

in myelinating Schwann cells, while transcripts containing exon 1 Bare 

preferentially expressed in tissues that do not form peripheral myelin 

(Suter et al., 1994). PMP22 encodes a hydrophobic integral membrane 

protein of 160 amino acids, with a predicted non-glycosylated molecular 

weight of approximately 18kD. Given the fact that the protein is not 
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purified yet, computational analysis of these hydrophobic domains 

suggested four potential transmembrane domains. These putative 

intracellular domains are small and unlikely to be involved in specific 

interactions with intracellular proteins. On the other hand, the extracellular 

loops of PMP22 may directly interact with other molecules, but so far no 

such extracellular interaction has been shown, although direct association 

of PMP22 with PO in myelin membrane has been highlighted by co

immunoprecipitation experiments (O'Urso et aI., 1999). Interestingly, 

PMP22 protein has been found to be glycosylated. Human and cat PMP22 

carry the HNK-l carbohydrate epitope, previously found on other cell 

surface glycoproteins, including PO and many other proteins involved in 

cell-cell and cell-extracellular matrix adhesion (Hammer et aI., 1993). 

While PO is well characterized as a major adhesion molecule in PNS 

myelin (see chapter 1.5), the function of PMP22 is still unknown; it might 

be involved in regulating cell proliferation, death, differentiation and 

adhesive processes (Quarles 2002), although strong homophilic 

interactions have been excluded (Takeda et aI., 2001). Most of what is 

known about the crucial function of PMP22 in proper development and 

maintenance of the nervous system has been learned from genetics, since 

PMP22 is the culprit gene in the most common fOlm of hereditary motor 

and sensory neuropathies (HMSN) in human and rodents (Naef and Suter, 

1998). This critical role of PMP22 in peripheral nerves became clear after 

the mouse PMP22 gene was mapped on chromosome 11, a chromosomal 

segment that is syntenic to human chromosome 17p 11.2 (Suter et aI, 

1992a, 1992b). This human chromosomal region had been previously 

linked to the most common form of HMSN, called CMTIA (see chapter 

1.8). FUl1hermore, the importance of PMP22 in PNS was also supported 

by the findings that the mouse mutants Trembler (Tr) and Trembler-J (Tr

J), natural mouse mutants recognized as potential animal models for 

severe forms of HMSN, Dejerine-Sottas Syndrome (OSS), carry point 

mutations in hydrophobic regions of the PMP22 protein (Suter et aI., 

1992a, 1992b, 1993). Finally, it has been recently showed, in a novel 

pmp22 knock-out mouse line, generated by replacing the first two coding 

exons with the lacZ reporter, that PMP22 can bind the integrinllaminin 
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complex, mediating the interaction of SCs with the extracellular 

environment. These PMP22-deficient mice present peripheral nerves that 

display the characteristics of tomaculous neuropathy. In the absence of 

PMP22, myelination of peripheral nerves is delayed, and numerous axon

SC profiles show loose basal lamina. PMP22 and P4 integrin are 

coexpressed at the cell surface and can be coimmunoprecipitated together 

with laminin and a6 integrin (Amici et aI., 2006). 

• 1.4.5 Mvelin Associated Glycoprotein (MAG) 

MAG is a minor myelin constituent, comprising approximately 1 % 

and 0.1 % of total myelin proteins in CNS and PNS respectively. It is a 

glycoprotein of the Ig-superfamily, with a high homology to N-CAM. 

Two distinct isofonns, large MAG (L-MAG) and small MAG (S-MAG), 

are produced through the alternative splicing of the ptimary MAG 

transcript and differ in their cytoplasmic domain. L-MAG is necessary for 

CNS myelin integrity, while S-MAG is sufficient to maintain PNS 

integrity (Fujita et aI, 1998). To elucidate the role of MAG in the axon

Schwann cell interaction leading to myelination, neonatal rodent Schwann 

cells were infected in vitro with a recombinant retrovirus expressing MAG 

antisense RNA. A proportion of the Schwann cells infected with the MAG 

antisense virus did not myelinate axons and expressed lower levels of 

MAG than control myelinating Schwann cells, as measured by 

immunofluorescence. Electron microscopy revealed that the affected cells 

failed to segregate large axons and initiate a myelin spiral despite having 

fonned a basal lamina, which nonnally triggers Schwann cell 

differentiation. Taken together these observations strongly suggested that 

MAG was the critical Schwann cell component induced by neuronal 

interaction that initiates peripheral myelination (Owens and Bunge, 1991). 

Conversely, experimentally increased levels of MAG in SCs accelerated 

initial ensheathment of dorsal root ganglia (DRG) neurites Owens et aI., 

1990). However, MAG-deficient mice have been produced; they appeared 
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nonnal in motor coordination and spatial learning tasks. Normal myelin 

structure and nerve conduction in the PNS was observed, with N-CAM 

overexpression at sites nonnally expressing MAG, indicating a possible 

compensatory effect. On the other hand, in the CNS the onset of 

myelination was delayed, and subtle morphological abnonnalities were 

detected indicating that MAG participates in the formation of the 

periaxonal cytoplasmic collar of oligodendrocytes and in the recognition 

between oligodendrocyte processes and axons (Montag et aI., 1994). The 

analysis of adult and aged MAG -1- mice revealed degenerative alterations 

of myelin in the PNS, with the forn1ation of classical onion bulbs; the 

presence of such alterations suggest an in vivo role for MAG in the 

maintenance of peripheral myelin integrity. Mutant mice expressing only 

one of the two isofonns alternatively showed a differential role of the L

MAG isofonn in CNS and PNS myelin. 

1.5 Myelin Protein Zero 

Protein zero is the major protein in myelin of the peripheral 

nervous system (PNS), where it constitutes 50 to 60% of total protein 

content in peripheral myelin. It was discovered and characterized more 

than 30 years ago. The human protein is a member of the immunoglobulin 

gene superfamily; it is a -30 kD integral membrane protein, constituted by 

a single disulfide-stabilized VH-like domain, a single transmembrane 

domain, one glycosylation site and relatively few other post-translational 

modifications. It contributes to peripheral myelin structure across a wide 

phylogenetic range that includes mammals, reptiles, birds and amphibian; 

only in fish, it is abundant also in the CNS (Schweitzer et aI., 2003). 
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aranodal loops 
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Fig. 1.3: Upper panel: Schematic longitudinal section through a single myelinated axon 

showing the distribution of some of the peripheral nerve myelin proteins, MAG, Po, 

PMP22, P2, MBPs and Cx32 and their association with the major domains of compact 

and noncompact myelin. Lower panel: Schematic diagram of the putative topology and 

orientation of the major myelin proteins with respect to the Schwann cell plasmalemma 

(modified fi'om Suter et a!. 1993). 
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• 1.5.1 PO eDNA 

PO has been cloned so far from human (Hayasaka et aI., 1991), rat 

(Lemke and Axel, 1985), mouse (Lemke et aI., 1988; You et aI., 1991), 

chicken (Barbu, 1990), shark (Saavedra et aI., 1989), trout (Stratmann et 

aI., 1995) and zebrafish (Schweitzer et aI., 2003) (Fig. 1.4). Its cDNA is 

1.85 kb long: it includes a coding sequence of 744 nucleotides and a long 

3' untranslated region. It encodes a single RNA species of 1.9kb. A 29-

residue signal peptide, a 124-residue extracellular domain, a 26-residue 

transmembrane domain and a 69-residue intracellular domain were first 

predicted, then confirmed by direct sequencing of the bovine protein 

(Sakamoto et aI., 1987). The structure of the different domains was then 

studied: the extracellular domain contains an immunoglobulin-like fold; it 

is stabilized by a single disulfide bond between Cys21 and Cys98 and it 

includes an N-glycosylation on Asn93. The 69-residue intracellular 

domain contains several Arg and Lys residues and, therefore, it is highly 

basic. 

• 1.5.2 Mpz gene 

The gene codifying for PO glycoprotein was first isolated and 

characterized in rat and mouse. It is relatively small (7kb), consisting of 6 

exons (Lemke et aI., 1988; You et aI., 1991). Careful analysis of gene and 

protein structure revealed that the separation of the different domains 

mirrors the exon segregation; in fact, exon I codifies for the 5' 

untranslated region of the mRNA and for the major part of the protein 

signal peptide (from residue -29 to residue -7); both exon 2 and 3 code for 

the remaining part of the signal peptide and for the extracellular domain 

(from residue -6 to residue 120); ex on 4 includes the DNA region giving 

rise to the transmembrane domain (from residue 121 to residue 165) and, 

finally, exon 5 and 6 codify the PO cytoplasmic domain and the 3' 

untranslated region (Lemke et at, 1988). Despite its difference in length 

with rodent Mpz gene, human A1PZ preserves its genomic organization, 
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Fig 1.4: Structural homologies between PO molecules of different vertebrate species. The 

deduced amino acid sequence of zebrafish PO is aligned with trout LP 1, as well as shark, 

human, rat, mouse, bovine, Xenopus and chicken PO. The sequence boundaries 

corresponding to exons I to VI of the human PO gene are indicated. The extracellular, 

transmembrane and cytoplasmic domains are indicated by the horizontal bands of green, 

yellow and pink respectively.The multiple species alignment for the nine different species 

reveals the extent of homology: lOO%, white letters on red field, >50%, red letters. 

(Adapted from Myelin Biology and Disorders, chapter 20, Kirschner, Wrabetz and Feltri, 

figure 20.1). 
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with six exons and conservation between exonic and promoter sequences 

(Pham-Dinh et aI., 1993). The chromosomal location is conserved for both 

the mouse Mpz and the human MPZ (being on chromosome 1 Hayasaka et 

aI., 1993; Kuhn et aI., 1990; You et aI., 1991), whereas rat Mpz is located 

on chromosome 13 (Liehr et aI., 1995). 

• 1.5.3 Mpz gene expression 

Mpz expression is mainly limited to the Schwaan cell lineage. In 

addition to that, the otic placode, vesicle, notochord, enteric neural crest 

and olfactory ensheathing cells express the J.,1pz mRNA. Mpz mRNA and 

protein expression is basal before birth and increases during early 

postnatal life, coincident with the onset of myelination (Lee et aI., 1997). 

Mpz mRNA appears first in a subset of neural crest cells and is maintained 

in Schwann cell precursors and embryonic Schwann cells (Baron et aI., 

1994; Zhang et aI., 1995). Protein expression has been detected in the 

neural crest of chicken (Bhattacharyya et aI., 1991) and on the surface of 

freshly cultured cells from E 14.5 rat nerve (Lee et aI., 1997). 

Postnatal expression of PO mRNA increases and distinguishes the 

differentiation of non myelin-fOlming from myelin-forming Schwann 

cells: levels are undetectable in the former, whereas they are strongly 

induced in the latter. The fate choice between the two different cell types 

and the levels of Mpz expression are determined by their contact with 

axons. In fact, myelinating Schwann cells require contact with axons for 

both the induction and the maintenance of high-level Mpz expression 

(Lemke and Chao, 1988; Gupta et aI., 1988; Trapp et aI., 1988). The 

inductive axon signals include increased intracellular levels of cAMP and 

brain-derived neurotrophic factor (BDNF). On the other hand, various 

agents have been identified, that are able to repress .Mpz expression in 

Schwann cells: SV 40 T -antigen with c-Jun (Bharucha et aI., 1994), c-jun 

on its own (Parkinson et aI., 2004), serum, GGF, TGF betas, bFGF2 

(Cheng and Mudge, 1996; Fernandez-Valle et aI., 1993; Mews and Meyer, 

1993; Morgan et aI., 1991; 1994) and NT3 (Cosgaya et aI., 2002). Some of 
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these may be responsible for maintainance of low levels of Mpz 

expression in premyelinating Schwann cells and during differentiation of 

non myelin-forming Schwann cells. 

• 1.5.4 Mrz gene expression regulation 

A quantitative analysis in the rat sciatic nerve of myelin protein gene 

expression during development (Stahl et aI., 1990), revealed that Afpz 

expression is thought to be primarily transcriptionally regulated; in fact, 

Mpz mRNA appears immediately before PO glycoprotein and is 

remarkably upregulated during myelination. 

After the genomic structure of Mpz was revealed, a promoter 

region, without a canonical TAT AA box was identified; a 1.1 kb region 

was in fact capable of driving expression of a reporter gene specifically 

only in transfected Schwann cells, and not in other cell types. Using the 

same 1.1 kb promoter region, activated expression of different proteins 

was specifically achieved in Schwann cells of transgenic mice (Messing et 

aI., 1992). Nevertheless, levels oftrangene expression were not consistent, 

indicating that the 1.1 kb of proximal Mpz promoter were sufficient to 

activate appropriate Schwann cell-specific expression, but not enough to 

achieve full amplitude of Mpz expression. Further studies conducted on 

cultured Schwann cells allowed the dissection of different cis-acting 

elements within the 1.1 kb Mpz promoter (Brown and Lemke 1997). 

Transcription factors like Spl and NF-Y are bound to different DNA 

sequences in the proximal 350 nucleotides, but the basis for cell-specific 

activation remains unclear. Moreover, several other transcription factors 

are upstream regulators of Mpz in developing nerve, including Oct6, 

Krox20 and Sox 10. Oct6 strongly represses the Mpz promoter in vitro 

(Monuki et aI., 1989), but functions as an activator in vivo (Belmingham 

et aI., 1996; Jaegle et aI., 1996). Krox20 is necessary in vivo for terminal 

differentiation of myelin-forming Schwann cells (Topilko et aI., 1994), as 

Krox20-null mice produce none of the normal up-regulation of }'4pz 

expression in post-natal nerve. Finally, the transcription factor Sox 10, 
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which is required for fonnation of Schwann cells (Britsch et aI., 2001), is 

expressed at all stages of Schwann cell life and is able to upregulate both 

endogenous Mpz expression and the Mpz promoter, when ectopically 

expressed in N2A neuroblastoma cell lines (Peirano et aI., 2000). Whether 

this regulation is direct remains unclear for all three. 

In order to produce levels of mRNA and protein expression of 

exogenous genes, comparable to endogenous Mpz, with a correct 

topographical and temporal pattem, insertions into exon I of an Mpz

based transgene, containing 6kb of 5' flanking region and 400 nucleotides 

of 3' region were generated (Feltri et aI., 1999, Previtali et aI., 2000; 

Wrabetz et aI., 2000; Yin et aI., 2000). Recently, a highly conserved 

element within the first intron of the Mpz gene has been identified, which 

contains binding sites for the early growth response 2 (Egr2/Krox20) 

transcription factor. Egr2 can act synergistically with SoxlO to activate 

this intron element and to induce Mpz expression to the high levels found 

in myelinating Schwann cells (LeBlanc et aI., 2006). 

• 1.5.5 PO glvcorrotein svnthesis 

Like the proteins of other plasma membranes, PO synthesis is 

localized to the endoplasmic reticulum, then processed through the Golgi 

network and transported intracellularly in membrane vescicles that finally 

fuse with the polarized plasma membranes of Schwann cells (Mellman 

and Warren, 2000; Eichberg et aI, 2002). Microtubule disassembly 

experiments, associated with confocal microscopy and electron 

microscopic immunocytochemistry, showed that microtubules are 

necessary for specific myelin protein transport; in fact, following 

colchicine-mediated microtubule disassembly, PO, MAG and laminin 

accumulated in Schwann cell perinuclear cytoplasm (Trapp et aI., 1995). 

However, the process through which PO and MAG reach their final 

location within the SC plasma membrane seems to be independent of 

microtubules and most likely occurs by ligand receptor binding 

mechanisms, between carrier vesicles and target membrane. Like other 
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myelin proteins, PO possesses targeting sequences that act in polarized 

cells; in fact, transfection of PO glycoprotein in non-polarized HeLa cells 

produce surface membrane polarization, through PO mediated homophilic 

adhesion. In addition, PO glycoprotein has been stably transfected into 

other cell types, for instance, Madin-Darby canine kidney (MDCK) cells. 

MDCK cells are ideal for this purpose because they are an easily 

transfected cell line that polarizes into two membrane domains. In MDCK 

transfected cells, PO is targeted to the basolateral surface. When the same 

cells are transfected with a deleted form of PO, lacking its cytoplasmic 

domain, the intracellular localization of PO changes to the apical surface 

(Kidd et aI., 2006). 

Post-translational modifications of PO occur both in the 

extracellular and intracellular domain; the extracellular region undergoes 

disulfide bond formation between Cys21 and Cys98 (Shapiro et aI., 1996), 

glycosylation of Asn93 with a complex carbohydrate (Gallego et aI., 2001; 

Poduslo, 1990) and sulfation of the N-acetylglucosamine residues of the 

carbohydrate. In the cytoplasmic domain, the post-translational 

modifications include acylation of Cys 153 with palmitic acid (Bizzozero 

et aI., 1994) and phosphorylation of Tyr 191, Ser 181 and Ser204 (Eichberg 

et aI, 2002; Hilmi et aI., 1995; Iyer et aI., 1996). Of particular interest for 

the topic of this thesis is the fact that in physiological conditions, cleavage 

of PO can occur at the level of its cytoplasmic domain, generating a 

truncated glycoprotein of approximately 25kD (Agrawal et aI., 1990): this 

shorter protein has been isolated and characterized in bovine; it is 

truncated at the level of residue Q215 (numbering of residues 

comprehensive of 29-residue signal peptide) (Qualtieri et aI., 2006). 

• 1.5.6 PO glycoprotein (unction 

The hypothesis that PO glycoprotein was a transmembrane protein 

responsible for interactions at both the cytoplasmic and extracellular 

appositions in PNS myelin originated from application of x-ray diffraction 

techniques to study myelin membrane packing in sciatic nerves from 
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nonnal mice and the shiverer mouse mutant (Kirschner & Ganser, 1980). 

The shiverer mouse has an extensive deletion in the gene encoding MBP; 

as a result, the mutant is not able to express functional MBP mRNA or 

protein. In the eNS, this mutation results in a severe hypomyelinated 

phenotype, whereas in the PNS the myelin appears nonnal. This finding, 

together with the fact that PO is the most abundant protein in PNS myelin, 

supPOlied the conclusion that PO protein specifically accounts for spacing 

and adhesion at both Schwann cell membrane surfaces. Several different 

functional studies, conducted in vitro on various transfectcd cell lines or 

myelinating cultures, and in vivo on transgenic mice sUPPOlied this role of 

PO in promoting peripheral myelin membrane adhesion and compaction 

through homophilic interactions. First of all, cells transfected with PO 

acquire the ability to adhere to each other, while anti-PO antibodies inhibit 

the adhesion (O'Urso et al., 1990; Filbin et al., 1990; Schneider-Schaulies 

et aI., 1990). Then, the cytoplasmic domain of PO is required for 

extracellular adhesion to occur: its truncation (at the level of the last 52 or 

59 residues) inhibits adhesion of full-length PO by a dominant negative 

mechanism (Wong and Filbin, 1994, 1996). Finally, the use of transfected 

cell lines helped also in identifying the possible role of post-translational 

modifications for PO adhesive function. In fact, glycosylation at Asn93 

with complex carbohydrate (Filbin and Tennekoon, 1991, 1993), disulfide 

bond formation (Zhang and Filbin, 1994) and possibly acylation (Gao et 

aI., 2000) all apparently modulate PO adhesive function. Moreover, 

antibodies against the HNKI carbohydrate chain, expressed by PO at its 

single N-glycosy1ation site, partially inhibit PO homophilic interaction 

(Griffith et aI., 1992). In vitro and in vivo myelination experiments further 

confinn the role of PO in adhesive homophilic interaction and fonnation of 

the intraperiod line: first, Schwann cells infected with a retrovirus coding 

for PO antisense RNA show diminished levels of PO protein and are unable 

to myelinate, or fonn myelin with uncompacted lamellae when co-coltured 

with DRG neurons (Owens and Boyd, 1991). Second, mice lacking PO 

glycoprotein (PO-/- mice) are able to fonn a multilamellar spiral structure 

around larger axons. This structure is uncompacted and therefore results in 

reduced nerve conduction velocities. In addition, in PO -/- mice intraperiod 
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lines are absent. Finally, some myelin sheaths show compaction, 

particularly at the major dense line, suggesting that other molecules can 

compensate for the loss of PO (Giese et aI., 1992). The mechanism through 

which PO-mediated homophilic interaction occurs was clarified by the X

ray resolution of PO extracellular domain structure: in the myelin sheath, 

PO forms tetramers in the plane of the membrane; these tetramers can 

interact with other tetramers on the opposing cell membrane. The 

tetrameric assembly of PO proteins is supported by analytical 

ultracentifugation data showing that oligomerization of the extracellular 

domains of the rat recombinant protein is energetically favorable in 

solution (Shapiro et aI., 1996, Inouye et aI., 1999 - Fig 1.5). 

• 1.5.7 PO cvtoplasmic tail {imction 

Electron microscopy and membrane diffraction studies helped to 

clarify the cytoplasmic apposition between Schwann cell plasma 

membranes in compact myelin. It is in fact commonly thought that the 

formation of the so-called Major Dense Line, is due to electrostatic 

interactions between the basic cytoplasmic domain of PO and the acidic 

phospholipids present in SC plasma membrane; this hypothesis is 

supported by the fact that a peptide containing 65 of the 69 residues of the 

intracellular domain of PO is able to bind to and to aggregate artificial 

phospholipid vesicles (Ding and Brunden, 1994). However, this 

hypothesis is strongly questioned by the evidence that even ifpH and ionic 

strength vary, the Major Dense Line remains unchanged. As a 

consequence, it has been proposed that the cytoplasmic apposition is likely 

to result from lipid anchoring and hydrophobic interactions between PO 

intracellular domains (Inouye et aI., 1999). Furthermore, evidence from PO 

and MBP knock-out animals seems to indicate that PO is not the only 

molecule responsible for Major Dense Line compaction: in fact, in mice 

lacking both molecules axons are enwrapped by myelin-like processes 

devoid of the major dense line, while mice deficient in either protein 

showed partial and normal compaction (Martini et aI., 1995). 
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In addition to that, PO, like other adhesion receptors, could also 

have a signal transduction role; this hypothesis is supported by the finding 

of phosphorylation of setine and tyrosine residues in the cytoplasmic 

domain (Brunden and Poduslo, 1987; Hilmi et aI., 1995; Iyer et aI., 1996). 

Other evidences for this role of PO glycoprotein comes from transfection 

experiments in HeLa cells, which indicate that PO can control aspects of 

Schwann cell differentiation, such as polarization and gene expression: in 

fact, HeLa cells expressing PO ectopically can augment the adhesion 

program in the cells, by the placement of junctional proteins at cell-cell 

contacts, promoting the assembly of desmosomes and adherens junctions 

and suppressing the transfom1ed phenotype to an epithelioid phenotype; 

this response is paralleled by an increase in expression levels for proteins 

that are nOffi1ally associated with epithelial junctions (Le. N-cadherin, a

catenin, and vinculin; Doyle et aI., 1995). Furthermore, when PO is 

introduced in HeLa cells, the carcinoma cell line regains adhesion

mediated growth control, together with the acquisition of contact 

inhibition and loss of anchorage-independent growth. Finally, PO

expressing HeLa cells lose their tumorigenic and metastatic potency when 

injected into nude mice. Other findings supporting the potential signal 

transduction role for PO atise from in vivo studies conducted on 

engineered mice: in PO null mice myelin gene expression is altered and 

MAG, E-cadherin and beta-catenin are mislocalized. 

Given the fact that PO could signal to regulate Schwann cell 

polarization, junction fOffi1ation and gene expression during myelination, 

recent disease-related evidence further suggests that the cytoplasmic 

domain of PO may signal to the extracellular domain, regulating its own 

adhesiveness. Serine residues in the cytoplasmic domain of PO are 

phosphorylated by Protein Kinase C (PKC). When the PKC target motif 

(RSTK motif) or an adjacent setine residue is mutated, PO adhesive 

function is abolished and peripheral neuropathy can develop in humans. 

31 



Fig. 1.5: Molecular structure of PO extracellular domain and its tetrameric arrangement. 

The molecule is represented by its backbone and the disulfide bonds are indjcated in 

yellow. A) The tetramer (formed of 4 PO molecules) is viewed looking down onto the 

membrane surface. B) The tetramer is viewed perpendicular to that in A), parallel to the 

membrane surface. C) Lateral view, parallel to the membrane surfaces, of two PO 

glycoproteins forming the adhesive interface. D) View of the head-to-head interface, 

early event in myelin formation (Adapted from Shapiro et aI1996). 
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Consistent with these data, PKC alpha together with the PKC 

binding protein RACK-l and p65 adaptor protein are immuno-precipitated 

with PO; moreover, inhibition of PKC activities abolishes PO-mediated 

adhesion in an in vitro system (Xu et aI., 2001, Gaboreanu et aI., 2007). 

Finally, the role of tyrosine phosphorylation remains to be detennined. 

Tyrosine phosphorylation occurs mainly at residue Tyr191 (Iyer et aI., 

2000; Xu et aI., 2000); however, mutations at this site do not influence PO 

adhesiveness (Xu et aI., 2001). 

In summary, the cytoplasmic tail of PO has several hypothetical 

functions in trafficking, Major Dense Line compaction, extracellular 

domain adhesiveness and intracellular signaling. All these different 

functions may have important implication for the pathogenesis of CMT 1 b 

neuropathy (see chapter 1.8). 

• 1.5.8 PO prenata16mction 

As already discussed in this chapter, PO mRNA and protein are 

expressed at low levels expression during pre-natal life in a subpopulation 

of neural crest cells and in Schwann cell precursors (Baron, 1994; 

Bhattacharyya, 1991; Lee, 1997); the presence of PO mRNA is also found 

in the otic placode, enteric nervous system and olfactory ensheathing cells 

(Lee et aI., 2001). Such a widespread prenatal expression indicates 

possible additional functions of PO, outside the myelin sheath. One 

possibility is that PO mediates heterophilic adhesion to neurites: in fact, 

cells expressing ectopic PO are able to promote neurite outgrowth in dorsal 

root ganglion neurons with neurites of a mean length of about 150 

microns. (Schyneider-Schaulies, 1990). In addition, several observations 

predict a possible role for PO in the maintenance ofaxons. First, both 

heterozygous and homozygous PO null mice develop axonal degeneration 

(Frei et aI., 1999; Giese et aI., 1992; Martini et aI., 1995/2). Second, 

several PO mutations in patients cause the axonal fonn of Charcot-Marie-

33 



Tooth, with minimal myelin involvement, pupillary signs and deafness 

(De Jonghe et aI., 1999; Marrosu et aI., 1998). 

1.6 PNS Development 

Different components of the PNS originate from different germ 

layers. The neuroectoderm gives rise to neurons and glial cells, while the 

nerve sheath and nerve vasculature derive from the mesoderm. The cells 

that differentiate into neurons and glial cells in the trunk region are the 

neural crest cells. During embryonic development, neural crest cells are 

formed at the border between the neural plate and the presumptive 

epidermis, overlaying the lateral plate mesoderm in a gastrulating embryo. 

Two processes determine neural crest cell development: 

delamination and fate determination. 

The process of neural crest delamination is important for 

differentiation and migration of these cells towards target organs. As a 

first step, the cells must switch from an epithelial to a mesenchymal 

morphology. The zinc-finger protein Slug is considered a good marker for 

neural crest cell induction and subsequent delamination in Xenopus, 

chicken and mouse embryos, even if its involvement in neural crest 

induction and delamination remain unclear; in fact its deletion does not 

cause any failure in this process (Jiang et aI., 1998). Delamination of 

neural crest cells starts at the rostral end of the embryo in Slug positive 

migrating cells. It was also demonstrated that ectopic expression of 

Noggin, a BMP-4 inhibitor, can prevent migration and positively regulate 

the epithelial-mesenchymal transition (Sela-Donenfeld et aI., 1999). 

Neural crest, originating from rostral to caudal levels, can generate 

distinct but also overlapping sets of derivatives (Baker et al., 1997). In 

order to demonstrate this hypothesis, a series of homotypic graft 

experiments were performed; these experiments helped to demonstrate for 

example that only a small population of trunk neural crest generate 

chromaffin cells of the adrenal, while SC derive from neural crest cells of 
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the entire antero-postelior axis (Le Douarin et al., 1993). FUl1hermore, 

several tracing experiments were perfOlmed to understand if the fate 

decision of neural crest cells is due to an instructive action of the 

environment on a homogeneous population of cells or to a selective action 

on a collection of committed cells. The results of these studies show that 

while most pre-migratory cells, such as sensory neurons and glia, are 

multi potent, there are also precursors generating a single unique neural 

crest derivative (Frank and' Sanes, 1991). Rat and mouse neural crest cells 

were grown at clonal density, in order to understand their entire repe110ire: 

the results indicate that many cells, before leaving the neural crest, are 

multipotent self-renewing stem-like cells (Ito et al., 1993). Using these 

clonal cell culture techniques, several factors that are potentially involved 

in the lineage determination of the neural crest were identified. One of 

these factors is GGF-2. This is the product of the neuregulin gene and it 

can induce differentiation of neural crest cells into SCs (Shah et al., 1994). 

On the contrary, BMP-4 or BMP-2 promote neuronal differentiation, 

while smooth muscle cells are induced by TGFj3 (Shah et aI., 1996). 

• 1.6.1 Schwann Cell development 

As already introduced in the preVIOUS paragraph, dUling 

development, SCs originate from a multipotent migratory cell population 

that derives from the neural crest. 

The process of SC development involves three transitions: 

1- from neural crest cells to precursor SCs; 

2- from precursor to immature SCs; 

3- from immature to the myelinating and the non myelinating SCs (Fig 

1.6). 

Only the first and the last of this transition points involve a fate choice 

decision. The regulation of gliogenesis from the neural crest is not clear 

yet; some future glial cells already enter the glial lineage at the onset of 

crest migration, while other cells start glial development later. The signals 

important for inducing glial development from both early and late entry 
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crest cells still need to be clarified. In vitro and in vivo experiments 

identified two growth factor signals that are involved in regulating early 

SC development in embryonic nerves: p neuregulin 1 and endothelin 

(Brennan et aI., 2000; Garratt et aI., 2000). Very likely these factors have a 

role in the establishment of the PNS glial lineage. Neuregulin in fact 

strongly suppresses neuronal differentiation of rat neural crest stem cells 

while promoting or allowing glial differentiation. (Shah et aI., 1994). In 

addition, p neuregulin 1 is required for some aspects of neural crest 

migration: in fact the blockade of the neuregulin signalling pathway 

results in inefficient development of the sympathetic ganglia, due probably 

to the failure of sympathogenic neural crest cells to migrate to the 

appropriate site (Garratt et aI., 2000). 

One key regulator of PNS glial differentiation is the transcription 

factor Sox-l 0, which is initially expressed in the earliest migrating neural 

crest cells. Interestingly, mice that carry a spontaneous or a targeted 

mutation of Sox 1 0 show neuronal cells in dorsal root ganglia, but no 

Schwann cells or satellite cells (Britsch et aI., 2001). Therefore, it is very 

likely Sox 10 has a major function in undifferentiated crest cells, to drive 

their choice between neuronal and glial development. In this light, it is 

interesting to know that ErbB3 gene expression in neural crest cells is 

under SoxlO control. ErbB3 gene product is a neuregulin receptor: in fact, 

as observed in SoxlO mutant mice, the down-regulation of ErbB3 receptor 

is one of the causes of several changes in development of neural crest 

cells. 

• 1.6.2 Neural crest - SC precursor transition 

As already mentioned above, one of the major problems in 

defining the development of SC from neural crest cells is the absence of 

early differentiation markers. 
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Fig. 1.6: Schematic illustration of the main cell types and developmental transitions 

involved in Schwann cell development. Dashed arrows indicate the reversibility of the 

final, largely postnatal transition during which mature myelinating and non-myelinating 

cells are generated. The embryonic phase of Schwann cell development involves three 

transient cell populations. First, migrating neural crest cells. Second, Schwann cell 

precursors (SCPs). These cells express various differentiation markers that are not found 

in migrating neural crest cells, including brain fatty acid-binding protein (BF ABP), 

protein zero (PO) and desert hedgehog (DHH). At anyone time, a rapidly developing 

population of cells - such as the glia of embryonic nerves - will contain some cells that 

are rather more advanced than others. Third, immature Schwann cells. All immature 

Schwann cells are considered to have the same developmental potential, and their fate is 

determined by the axons with which they associate. Myelination occurs only in Schwann 

cells that by chance envelop large diameter axons - Schwann cells that ensheath small 

diameter axons progress to become mature non-myelinating cells. (Adapted from Jessen 

and Mirsky, 2005) 
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In rat sciatic nerve at E 14 precursor SC present sheath like processes, 

which contact each other and divide groups ofaxons into large bundles. 

PO mRNA can be considered as another precocious marker of a population 

of neural crest cells: during development, in fact, it is expressed at very 

low levels, in precursor and immatw'e SC, regardless of whether they are 

destined to become myelinated or non-myelinated (Bhattacharyya et al., 

1991; Lee et al., 1997). In order to survive, SC precursors need an 

axonally derived signal. In vitro data support this hypothesis: in fact if SC 

precursors are dissociated from the neurons and they are put in culture, 

they die; moreover, their programmed cell death can be rescued by adding 

conditioned medium from post-natal day 1 Dorsal Root Ganglia (DRG) 

neurons to the cultures, or putting SC precursors in close proximity to 

neurites of DRG neurons or finally exposing the cultures to axonal 

membranes isolated from cultured DRG neurons (Jessen et al., 1994; 

Dong et aI., 1995). These in vitro findings were confirmed in vivo in chick 

embryos, where programmed cell death of Schwann cells occurs both 

during normal development and after axonal degeneration induced by 

neurotoxin treatment. Interestingly, in those embryos Schwann cell 

apoptosis during development coincides with normally occurring 

motoneuron death. All together these in vitro and in vivo data indicate that 

axonal-derived trophic signals are involved in the regulation of Schwann 

cell survival in peripheral nerves during development. This axonal signal 

is f3 Neuregulin I(NRG) (Mirsky and Jessen, 1999). Four different genes 

code for neuregulins: NRG-l, NRG-2, NRG-3 and NRG-4. Little is known 

of the role of NRG-2, NRG-3 and NRG-4, whereas NRG-J has been shown 

to be fundamental for SC and OL survival and differentiation. 

Neuregulins are a family of growth factors, characterised by the 

combination of different domains: an Epidermal Growth Factor (EGF)

like motif, a signal peptide, an immunoglobulin (Ig)-like domain, a 

cysteine-containing N-terminal domain, a glycosylation domain and a 

transmembrane domain. All NRG-1 isoforms can be proteolytic ally 

cleaved and released from the cell surface. 
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In El4 rats, the beta fOlms of NRG prevent apoptosis of Schwann 

cell precursor and stimulate DNA synthesis. When precursors are exposed 

to NRG in defined medium, they generate Schwann cells, with a time 

course that is similar to that occurring in embryonic nerves in vivo; 

moreover, if SC precursors are exposed to the extracellular domain of the 

ErbB4 NRG receptor, a protein that specifically blocks the action ofNRG, 

the neuronal signal that mediates precursor survival and maturation can be 

blocked (Dong et aI., 1995). These in vitro findings are suppOlied by in 

vivo data generated in 13 neuregulin 1 null mice: neuregulin -/- embryos 

die during embryogenesis, due to cardiac malformations. Interestingly, 

before the embryos die, they are almost completely devoid of SC 

precursors (Meyer and Birchmeier, 1995). 

NRG-l is expressed at the right time and place to act as signal 

. from neurons to precursors, but also to play a role at later stages of 

development. In fact, the level of NRG-l protein in adult mice is strongly 

reduced as compared to rat embryos at E 14 through to adult life. 

(Bermingham-McDonogh et aI., 1997; Marchionni et al., 1993). 

The four members of the EGF family of receptor tyrosine kinases, 

ErbBI (EGF-receptor), ErbB2, ErbB3 and ErbB4, function as receptors 

for neuregulins. The different ErbB receptors contain a large extracellular 

ligand-binding domain, a single transmembrane domain and an 

intracellular part with a COOH-tail and a tyrosine kinase domains, with 

few exceptions: ErbB2 has no affinity for NRGs, while ErbB3 receptor 

lacks the tyrosine kinase activity. The ErbB receptors usually form 

heterodimers on the cell surface, with nearly all the possible combinations, 

in a process of ligand induced dimerization, in which one of the other 

ErbB members is recruited as co-receptor. Finally, ligand-binding 

mechanism leads to receptor phosphorylation and activation of 

downstream signalling pathways. 

Many of these receptors are expressed in neurons and in glial cells 

during development (Burden and Yarden, 1997). The ErbB2IErbB3 

heterodimer is the primary NRG-l receptor in SC (Canoll et aI., 1996). In 

vivo data coming from engineered mice support this finding: first, 
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knockout mice for ErbB3 die soon after bilih, and their nerves are devoid 

of SC (Riethmacher et aI., 1997). Second, like ~-NRG null mice, mice 

lacking ErbB2 receptor die from cardiac defects, at an embryonic stage in 

which it is not possible to evaluate the effect on SC development. Third, 

some knock-out animals with cardiac rescue of erbB2 survive until birth 

and completely lack SCs (Lee et aI., 1995; Garratt et aI., 2000; Lin et aI., 

2000). 

The survival and progression of Schwann cell precursors to 

Schwann cells is regulated in vitro and in vivo by another family of 

factors, endothelins (ETs). In vitro data confirm this role for ETs: in fact, 

when added in vitro to rat Schwann cell precursors, ETs promote survival 

without stimulation of DNA synthesis (Brennan et aI., 2000). This action 

of ETs is mediated by the ET(B) receptors, that are expressed in 

developing peripheral nerves. Interestingly, within the complex growth 

factor interactions controlling the timing of Schwann cell development in 

embryonic nerves ETs seem to act as negative regulators of Schwann cell 

generation: in fact, in the combined presence of ~-neuregulin and ETs 

Schwann cell generation is significantly slower than in f3-neuregulin alone. 

A further in vivo confirn1ation of these in vitro data came from the 

characterization of spotting lethal rats, in which functional ET(B) 

receptors are absent: these animals presented accelerated expression of the 

Schwann cell marker S 100 in developing nerves (Brennan et aI., 2000). 

• 1.6.3 Precursor- immature SC transition 

This transition occurs between E14 and E17 in rat and in vivo it is 

characterized by a series of morphological changes mainly related to 

regulation of survival and response to mitogens. As opposed to Schwann 

cell precursors, immature SC can survive when cultured at high density in 

a defined medium without external addition of NRG or DRO conditioned 

medium (Jessen et aI., 1994). As SC mature in peripheral nerves, they 

move gradually from axon-dependent to axon-independent survival. This 
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capacity of SC to survive for an extended period of time in the absence of 

axons is crucial for nerve regeneration: for example, during Wallerian 

degeneration, near the lesioned point a retraction of proximal and distal 

stumps of the nerve occurs; as a consequence, SC de-differentiate to an 

immature phenotype and provide both trophic factors and adhesive 

substrates that promote axonal growth in the distal stamp. The ability of 

Schwann cells to survive without axons is due to the establislunent of an 

autocrine survival loop that is absent in precursors. Insulin-like growth 

factor, neurotrophin-3, and platelet-derived growth factor-BB are 

important components of this autocrine survival signal. Schwann cells 

have receptors for these factors: when they are applied at very low 

concentrations in Schwann cell conditioned medium, they promote and 

support survival; moreover, if the action of these factors is blocked (using 

specific blocking antibodies) the SC survival activity is blocked (Meier at 

aI., 1999). Finally, another factor secreted by SC that can promote SC 

survival in the presence of other growth factors is Leukemia Inhibitory 

Factor (LIF) (Dowsing et aI., 1999). 

In addition to positive survival signals, other factors that actively 

promote apoptosis may also play an important role in SC death after 

injury: the Nerve Growth Factor (NGF) promotes cell death in SC, via the 

p75 neurotrophin receptor (Soilu-Hanninen et ai., 1999). Finally, TGFI3 

can have a similar effect on developing SC, both in vitro and in vivo 

(D' Antonio et al., 2006). 

• 1.6.4 Immature to mvelinating or non-mvelinating SC transition 

Once formed, immature SC invade bundles ofaxons and sort them 

into smaller groups. Depending on the size ofaxons, they associate with 

only one large axon or with multiple small caliber axons, in order to adopt 

a pro-myelinating or a non pro-myelinating phenotype, respectively. The 

decision to become a myelinating versus non-myelinating SC is 

determined by cell-extrinsic signals coming from the axons. The identity 
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of the axonal signals responsible for this choice is not known, although it 

is determined by the axonal diameter; in fact only axons with a diameter 

bigger than Il-lm will become myelinated, whereas smaller axons will not. 

However, it has been recently demonstrated that NRG I Type III is 

involved in this choice, in fact myelinated axons express it at higher levels 

as compared to ensheathed axons; moreover, the analysis of neurons from 

NRG I Type III null animals revealed thinner myelin sheaths; lentiviral

mediated expression of NRG 1 Type III in neurons is able to rescue these 

defects and drive Schwann cells to myelinate axons that would normally 

not be myelinated (Taveggia et aI., 2005). 

On the other hand, se also determine multiple properties ofaxons 

and neurons. They directly control the number of neurofilaments of the 

axons and their phosphorylation state. This is particularly important 

because a change in neurofilament number is imp0l1ant in determining 

axon diameter (Martini, 2001). As it is for Wallerian degeneration, this is 

another process where se exert a fundamental effect on neuronal final 

development. Further evidence of the reciprocal relationship of SC and 

axons comes from the analysis of the ErbB3 knock out mice: these mice 

die soon after birth, but their nerves are devoid of se, presumably because 

they lose se precursors even ifaxons can reach their normal target with 

normal innervation (Riethmacher et aI., 1997). However analysis of DRG 

survival in these mice revealed that 80% of them die before reaching the 

final target between E 13 and E 18, indicating that sensory neuron death is 

due to lack of se and their precursors. 

In addition to that, SC mediate also the spacing of Na + channel 

clusters along axonal membranes, during development of the Node of 

Ranvier (Salzer, 2002). Na+ channels are positioned in the middle of the 

Node of Ranvier and their distribution is particularly important for the 

saltatory conduction of impulses. Myelinating glia regulate the targeting of 

these channels at the Node of Ranvier, not only in the PNS, but also in the 

CNS (Boiko et aI, 2001). Other soluble factors could be involved in the 

clustering of these channels at the Node of Ranvier (Kaplan et aI., 1997; 

MaI1ini, 2001). 
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Finally, the effect of SC on the axons is proven by the fact that 

some of the mutations that cause human inherited neuropathies, such as 

Charcot Marie Tooth (CMT) disease, Dejerine Sottas Syndrome (DSS) 

and Congenital Hypomyelination (CH) disease, are due to a primary 

defect in SC. However, as a consequence of these mutations, some 

patients show also changes in the axons, such as reduced axonal caliber 

and alteration in the phosphorylation state of neurofilaments (Bjartmar et 

aI., 1999). These secondary defects affecting the axons could lead to 

axonal degeneration with subsequent severe clinical consequences 

(Sahenk 1999). 

All these observations strongly supp0l1 the existence of a strict 

reciprocal relationship between SC and axons. Both axons and SC 

cooperate for development and maintenance of the PNS. 

Finally, immature SC can generate also non-myelinating SC: these 

cells can be identified by the expression of several characteristic surface 

markers such as p75, Glial Fibrillary Acidic Protein (GFAP), N-CAM, Ll, 

GAP-43. These markers are all suppressed in myelinating Schwann cells, 

when the myelination process takes place (Fig. 1.7). 

1.7 Transcriptional control during SC development 

Although the molecular identity of the axonal signals that induce 

the myelinating or non-myelinating phenotype in SC is only partially 

known, relevant infonnation on the transcription factors regulating 

myelination in SC is broader. Three transcription factors are known to be 

important in the development of the glial lineage: the first of these, Sox 10 

has been discussed in a previous section, the other two, Oct 6 (also known 

as SCIP and Tst 1) and Krox 20 are both involved in the myelination 

program and are important for the topic of this thesis. 
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Fig. 1.7: Changes in phenotypic profile as cells progress through the embryonic Schwann 

cell lineage. Shared profiles are indicated by distinct colours. The boxes above the 

lineage drawing indicate the changes in gene expression that take place during embryonic 

Schwann cell development. The gene expression shown here is based on observations of 

endogenous genes rather than on observations of reporter genes in transgenic animals. 

Each developmental stage also involves characteristic relationships with surrounding 

tissues, and distinctive cell signalling properties (boxes below lineage drawing). For 

instance, neural crest cells migrate through extracellular matrix. By contrast, SCPs and 

Schwann cells are embedded among neurons (axons) with minimal extracellular spaces 

separating them from nerve cell membranes, a characteristic feature of glial ceUs in the 

CNS and PNS. Basal lamina is absent from migrating crest cells and SCPs, but appears 

on Schwann cells. ' Proteins that also appear on neuroblasts/early neurones. tMarkers that 

are acutely dependent on axons for expression. §Glial fibrillary acidic protein (GF AP) is a 

late marker of in vivo Schwann cell generation, as significant expression is not seen until 

about the time of birth. GF AP + SCs can be distinguished from astrocytes for their 

peculiar shape. The expression of GF AP is suppressed in cells that form myelin but 

retained in non-myelin-forming Schwann cells. The early expression ofGFAP has not yet 

been carefully examined in mice. IISCPs have been shown to be S 100 calcium-binding 

protein (SlOO)-negative and Schwann cells SIOO-positive using routine 

immunohistochemical methods. (Adapted from Jessen and Mirsky 2005) 
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• 1.7.10c(-6ISCIPITstllPOU3F 

Oct-6/SCIP/TstllPOU3F belongs to the class III family of POU 

domain transcription factors. This family consists of two evolutionarily 

conserved regions, an amino terminal specific domain and a carboxy 

terminal homeodomain. In the SC lineage both Oct-6 mRNA and protein 

can be detected in SC precursors (Fig. 1.7), reaching a peak soon after 

birth. In adult Oct-6 is expressed at low levels in non-myelinating SC 

(Arroyo et aI., 1998; Blanchard et aI., 1996). In Oct-6 null mice SC reach 

the pro-myelinating phenotype, by achieving a 1: I relationship with 

axons, but animals die at birth from respiratory defects (Bermingham et 

aI., 1996). However a small number of knock out mice can survive, and 

these animals show only a delayed myelination (Jaegle et aI., 1996). An 

explanation for this rescue is that Oct-6 might be involved in determining 

the transition from pro-myelinating to myelinating SC. It is also possible 

that other POU genes compensate for its absence; this is the case for two 

different POU domain transcription factors, B111-2, that is normally 

expressed by the SC lineage and Bm-l that is not nOlmally expressed in 

Schwann cells; both proteins are able to rescue the developmental delay 

phenotype, when ectopically expressed in cultured Oct-6 null Schwann 

cells or in Oct-6 -/- animals (Jaegle et aI., 2003; Friedlich et aI., 2005). 

Other in vitro and in vivo studies, using a dominant negative fonn of Oct-

6, postulated that it can act as a negative transcriptional regulator and a 

general repressor for myelin genes in immature SC in vitro (Monuki et aI., 

1993; Weinstein et aI., 1995). However a recent paper showed that Oct-6 

is a direct Krox-20 activator. In particular the authors showed that it acts 

as a positive regulator at the beginning of the myelination process 

(Ghislain et ai., 2002). Thus, Oct-6 probably serves to regulate the timing 

of myelination by regulating the transition of SC from pre-myelinating to 

pro-myelinating and to the myelin-forming phenotype. 
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• 1.7.2 Krox-20 

Egr-2 (Krox-20) is a zinc finger transcription factor belonging to 

the Early Growth Response (Egr) family; it is expressed in the SC lineage 

(Fig. 1.7). This family includes also Egr-1. Egr-3 and Egr-4 genes. Krox-

20 contains different domains: a DNA binding domain, an activation 

domain and a domain that is able to interact with two co-factors NAB 1 

and NAB2 iliGF-IA-hinding protein) (Russo et aI., 1995; Svaren et aI., 

1996). The gene is activated around E 1 0.5; it is not expressed in SC 

precursors while it is present in the dorsal and ventral roots close to the 

neural tube. In the peripheral nerve Krox-20 is activated around E15, very 

likely with the acquisition of a one-to-one relationship between SC and 

axons. During adulthood, Krox-20 expression marks myelinating SC 

(Topilko et aI., 1997). This axonal regulation is evident after nerve 

damage. During Wallerian degeneration, SC de-differentiate to an 

immature SC phenotype, losing their myelin sheath, while Krox-20 is 

downregulated (Topilko et aI., 1997). 

The function of Krox-20 in myelination has been studied in 

engineered mice. Mice carrying a targeted deletion of Krox-20 die soon 

after birth, and in addition to defects in hindbrain segmentation and in 

bone formation, they are defective in SC differentiation (Topilko et aI., 

1994; Schneider-Maunoury et aI., 1993). All SC destined to meylinate in 

these mice acquire a one-to-one relationship with the axon, but they seem 

to be arrested at the pro-myelinating stage. This impairment is also 

paralleled by a strong reduction in the expression of PO, MBP and PMP22 

myelin genes. The peripheral nerves of the few animals that survive after 

birth were analyzed: in these nerves, both SC proliferation and apoptosis 

are increased as compared to controllittermates. Therefore, it is likely that 

Krox-20 is involved in regulating the transition into the pro-myelinating 

phenotype, not only by activating specific myelin gene expression, but 

also by inactivating different signaling pathways present in immature SC 

and responsible for the inhibition of their differentiation. One example is 

the c-Jun-amino-terminal kinase (JNK) pathway that is active in SC from 

E 18 to birth; this pathway is inactivated as SC start to myelinate with a 
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mechanism that is Krox-20 dependent (Topilko et al., 1994; Jessen and 

Mirsky, 2005). 

In humans, mutations in Krox-20 are associated with peripheral 

neuropathies such as CMT, CH and DSS neuropathies (Warner et al., 

1998; Warner et al., 1999). Co-transfection experiments show that Krox-

20 can partially trans-activate the PO promoter (Zorick et al., 1999). 

Another paper describes an induction of mRNAs for PO, MBP, MAG, 

PMP22 Cx32 and MAG by Krox-20 (Nagaraj an et al., 2001). Some of the 

mutations described in humans have a dominant negative effect on the 

wild type Krox-20, affecting, at the end, the expression of myelin genes. 

Recently, a highly conserved element has been found in the first intron of 

the Mpz gene, which contains binding sites for Krox20 and Sox 10 

transcription factors (LeBlanc et al., 2006; LeBlanc et al., 2007). Egr2 

mutants specifically affect this element in the Mpz first intron. Both Egr2 

and Sox 1 0 are able to bind this element, when myelination takes place in 

the sciatic nerve. A dominant Egr2 mutant does not impede Egr2 binding 

to Mpz, but reduces SoxlO binding to the Mpz intron element, thereby 

resulting in the disruption of the genetic program that controls myelination 

(LeBlanc et al., 2007). 

Another mutation that causes human neuropathy is recessive and is 

located in the Krox-20 domain interacting with the NAB transcriptional 

co-factors (Warner et al., 1999). The location of this mutation strongly 

suggests that NAB proteins, complexed with Krox-20, are key regulators 

of the Schwann cell myelination program. This hypothesis is supported by 

in vivo data coming from mice lacking both Nab! and Nab2; these mice 

show elevated Egr2 expression, but a severe congenital hypomyelination 

of peripheral nerves, with a block of Schwann cell development at the pro

myelinating stage (Le et aI., 2005). 
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1.8 The Inherited Neuropathies 

The Inherited Neuropathies are a clinically and genetically 

heterogeneous group of diseases that affect the peripheral nervous system 

(PNS) and can result in a severe neuromuscular deficit. 

These neuropathies were first identified more than one century ago. In 

fact, in 1886 J.M Charcot and P.Marie in Paris, and T.T.Tooth in London 

described a syndrome, which they defined respectively as "une forme 

peculiere d'atrophie musculaire progressive" and "the peroneal type of 

progressive muscular atrophy". The syndrome, that carries their names, 

was characterized by a decrease in strength and distal muscular atrophy, a 

minimal sensory component, the presence of foot deformities, a rare, but 

present, infantile onset and a frequent familiar recurrence (Charcot, Marie, 

1886; Tooth, 1886). Due to the vast clinical heterogeneity of these 

diseases, a chaotic classification followed the first description, where 

ambiguous and overlapping definitions were used ("Charcot-Marie-Tooth 

disease", "peroneal muscular atrophy", "hypertrophic neuropathy", 

"Dejerine-Sottas disease or syndrome", "Roussy-Levy syndrome" -

Harding and Thomas, 1980). The coming of electromyographical (EMG) 

techniques produced a significant improvement in the nosography of 

inherited neuropathies. At present, the most used clinical classification 

(Dick et a1. 1983) includes eight different types of Hereditary Motor and 

Sensory Neuropathies (HMSN), subdivided by means of clinical and 

electromyographical repOlis. Only three types of HMSN exclusively affect 

the PNS, while in the other forms the neuropathic status is associated with 

other neurological and non-neurological problems. 

HMSN I (demyelinating or type 1 Charcot-Marie-Tooth disease) 

and HMSN III (Dejerine-Sottas disease) are characterized by a moderate 

to severe reduction in motor nerve conduction velocities (NCV - in 

normal individuals it reaches 40-50 mfs, while in affected patients it goes 

down to 10-30 mfs); the very early onset and the higher severity 

distinguish HMSN III from HMSN I. 
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On the other hand, HMSN II (axonal or type 2 Charcot-Marie

Tooth disease) is characterized by slight or absent reductions in NCV, 

accompanied with EMG signs of chronic axonal damage. 

Recently, in the last decade, the identification of HMSN patients 

with mutations in specific myelin genes moved the principles of 

classification from the clinical-electrophysiological phenotype to the 

original genetic alteration. So far, myelin gene defects were identified in 

patients suffering from Charcot-Marie-Tooth type 1,2 and 4 diseases, 

Dejerine-Sottas disease, Hereditary Motor and Sensory Neuropathy with 

Liability to Pressure Palsies and Congenital Hypomyelination (Fig. 1.8). 

• 1.8. J Charcot-Marie-Tooth disease (CJvfT) 

CMT. is the most common inherited peripheral neuropathy in 

humans, with a prevalence of 40 in 100000. According to 

electrophysiological reports, two distinct forms of CMT can be identified, 

one demyelinating (CMT 1) and one axonal (CMT 2) (Lupski et aI., 1991; 

Kaku et aI., 1993; Dyck et aI., 1983). 

1.8.1.1 CMT 1, the most frequent form of CMT, is caused by 

abnormalities intrinsic to the Schwann cells, the myelin-producing cells of 

the pelipheral nervous system; therefore it is associated with severe PNS 

demyelination, as demonstrated by slowed nerve conduction velocities; its 

onset usually occurs in the first two decades and is characterized by a 

progressive distal muscular strength deficit (Lupski et aI., 1991): Patients 

may require foot care (pes cavus and pes equinovarus) or bracing to 

ambulate normally (steppage gait), and sometimes become unable to 

walk. Usually osteotendinous reflexes are absent or very weak and rarely, 

a sensory impairment is present. The typical electrophysiological reports 

are always present in CMT 1 patients several years before clinical disease 

onset (Kaku et aI., 1993; Garcia et aI., 1998). From the histopathological 

point of view, peripheral nerves of affected individuals present a reduction 

in the number of myelinated fibers, characterized by very thin sheaths and 
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the emergence of hypertrophic "onion bulb changes", that represent 

morphological features of a chronic process of 

demyelinationlremyelination (Dyck et aI., 1983). A trait of CMT 1 

patients is the huge clinical variability, observed not only in unrelated 

individuals (Lupski et aI., 1991), but also between members with a 

common pedigree (Kaku et aI., 1993) and even between identical twins 

(Garcia et aI., 1995) . 

. Type I CMT is usually inherited as an autosomal dominant 

disorder, although recessively inherited, sporadic and X-linked forms do 

occur. According to genetic linkage analysis data, CMT 1 has been 

subdivided in: 

- CMT lA, with linkage on chromosome 17pl1.2 (Vance et a1. 

1989). About 90% of CMT 1 patients are CMT lA; the disease condition 

is most commonly due to segmental duplication of a region of 

chromosome 17 (71 % of all CMT lA cases), leading to the presence of an 

extra copy of the gene for peripheral myelin protein 22 (PMP22) (Lupski 

et aI., 1991; Raeymaekers et aI., 1991, 1992; Nelis et aI., 1999). 

Inheritance is autosomal dominant in pattern and analysis of nerve 

biopsies suggests that the disorder is caused by increased gene dosage 

(Hanemann et aI., 1994; Yoshikawa et aI., 1994; Vall at et aI., 1996). As 

demonstrated by Pentao et aI., in 1992, the duplication arises from an 

unequal crossing-over and recombination occurring between homologous. 

sequences flanking the duplicated genomic region. The clinical symptoms 

in patients carrying the duplication may appear in the first decade or early 

in the second decade. Muscle weakness starts in the feet and legs. Infants 

and children manifest the disease by walking on their toes and inability to 

walk on their heels. Older patients consult a physician because of 

abnormality of the gait, foot deformities, or loss of balance. Steppage or 

equine gait, pes cavus deformity and claw toe are usually present in 

CMTIA patients. Hand tremors are a frequent complaint and are most 

likely related to hand weakness or to coexisting essential tremor. 

Enlargement of nerves can be seen or palpated, predominantly in male 

patients. Muscle stretch reflexes disappear early in the ankles and later in 
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Fig. 1.8: In the last decade, several studies contributed to the identification of HMSN 

patients with mutations in specific myelin genes. In this schematic view of myelinated 

axon and myelinating Schwann cell, the localization within the cell of some proteins 

mutated in patients with inherited neuropathies is illustrated. The region enclosed in the 

rectangle on the bottom panel is shown in detail on the top. MPZ is localized to compact 

myelin, whereas ex 32 is localized to the paranodal loops, incisures and inner mesaxon 

composed of noncom pact myelin. (The figure has been adapted from Shy et aI., 2002) 
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the patella and upper limbs. The plantar responses are frequently absent. 

Finally, mild sensory loss may be seen in some patients. 

Occasionally, CMT lA has been demonstrated to result from 

PMP22 point mutations. The clinical features of these patients show 

severe disease in childhood and higher reduction in nerve conduction 

velocities, as compared to individuals having the duplication. In fact, point 

mutations in the PMP 22 have been found in patients that have been 

diagnosed with a more severe form of HMSN, the Dejerine Sottas 

syndrome (Hayasaka, 1996). 

- CMT 1B, with linkage on chromosome lq22-q23 (Bird et aI., 

1982). CMT 1 B represents approximately 5-10 % of families with CMT 1 

phenotype, and it has been shown to be associated with mutations in the 

gene coding for PO (Hayasaka et aI., 1993; Kulkens et aI., 1993). From a 

clinical perspective, an earlier onset of the symptoms manifested by 

delayed ability to walk, proximal leg weakness without decreasing 

ambulation, and slower motor NCVs are the only differential points with 

CMT lA. Nevertheless, a great variability of disability can be observed 

also in CMT 1 B patients, even in members of the same family (Szabo et 

aI., 2005). That is the reason why, for a definite diagnosis of CMTs in 

general, the DNA test is required. The morphology of sural nerve biopsy 

of confirmed CMT 1 B cases shows a demyelinating process with onion 

bulb formation. Ultrastructural alterations consist of uncompacted myelin 

in agreement with the accepted function of PO as a homophilic adhesion 

molecule (Gabreels-Festen et aI., 1996): To date over 110 different 

mutations in MPZ have been identified, that result not only in the mild 

CMT IB phenotype, but also in more severe phenotypes like Dejerine

Sottas syndrome and Congenital Hypomyelination. 

- CMT X, the X-linked form of demyelinating CMT, accounts for 

7 -10% of CMT. It is caused by point mutations in the connexil1-32 gene, a 

gap junction protein expressed in myelinating Schwann cells in the 

paranodal loops and Schmidt-Lanterman incisures (=SLI), but not 

incorporated into the myelin sheath (Bergoffen et aI., 1993). CMT X is 

mainly inherited as a dominant form (about 90% of the cases). The clinical 
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features and clinical variability are similar to the CMT 1 A and 1 B 

patients, but the family pedigree reveals lack of male-to-male transmission 

and, moreover, the affected males have more severe phenotypes than the 

affected females. The nerve conduction studies have shown intermediate 

motor slowing in most families; the velocities are usually between 30 and 

40 mls in males and can be faster or near-normal in females: these values 

are consistent with a demyelinating form of the disease (Bergoffen et aI., 

1993; Nicholson and Nash, 1993; Lewis and Shy, 1999). However, there 

are intriguing reports describing CMT X patients with primarily axonal 

features on electrophysiological and morphological analyses (Timmerman 

et a11996; Birouk et a11998; Gutierrez et aI., 2000; Hattori et aI., 2003). 

- Finally, an additional, less common form of CMT1, sometimes 

indicated as CMT IC, exists; it refers to a group of CMT 1 with no 

detectable mutations in PMP 22 or MPZ genes. Two causative genes have 

been identified so far: the egr 2 gene on chromosome 10q21-22A, coding 

for the zinc finger transcription factor EGR2, expressed in myelinating 

Schwann cells and discussed above (Warner et aI., 1998), and a putative 

protein degradation gene, LITAFISIMPLE, on chromosome lOp13.l-12.3, 

coding for a ubiquitous lysosome protein that may be involved in cell 

proliferation and apoptosis (Street et aI., 2003; Bennett et aI., 2004). 

1.8.1.2 CMT 2 (or Type II) is the axonal or neuronal form of 

CMT; it has been previously suggested to represent about one-third of 

autosomal dominant CMT families. CMT 2 is mainly distinguishable from 

CMT 1 by the presence of normal or slightly slowed NCV; the classical 

clinical symptoms are similar to the ones of CMT 1 patients, but some 

differences are present: the onset usually occurs later, hypertrophic 

changes on biopsies are absent and foot muscle weakness is often more 

severe. Morphological studies on patient biopsies showed only occasional, 

small onion bulbs, but mainly a reduction in the number of myelinated 

fibers, more pronounced distally. Nevertheless, the clinical phenotype 

within the CMT 2 subgrouping can vary more than CMT 1. Due to the 

absence of the electrophysiologic changes, peculiar to CMT 1, CMT 2 is 

more difficult to diagnose. 
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Several unique genes have been found for eMT 2, mapping to at 

least seven distinct loci and originating the different forms of axonal 

eMT. Between them: a mitochondrial membrane protein AIFN2 

(Mitofusin2), a protein involved in axonal transport KIF 1 B (Kinesin 

family member IB), a protein involved in endosomal trafficking RAB7 

(Ras-associated protein), a protein involved in RNA processing GARS 

(Glycil-tRNA synthetase), a neuronal structural protein NEFL 

(Neurofilament light), a protein involved in chromatin organization 

LMNA (Lamin NC), a heat-shock 27-kD protein-l (HSPBl) and finally 

PO (Zuchner and Vance, 2006). The classification of eMT 2 subgroups is 

actually based on the genomic linkage analyses; some of these forms 

present the classical eMT 2 phenotype, while others are characterized by 

specific clinical findings: 

- CMT 2A was mapped on chromosome 1 p35-36 (Ben Othmane 

et aI., 1993), in an area that is believed to be gene rich; this, coupled with 

the instability of the region, has made progress on identifying this locus 

very difficult. Patients show the traditional eMT phenotype. Recently it 

has been linked to mutations in MFN2 (Zuchner et aI., 2004) and KIFIB 

(Bissar-Tadmouri, 2004) 

- CMT 2B mapping on chromosome 3q13-22 (Auer-Grumbach et 

aI., 2000). Families with CMT 2B are likely to be distinct in their clinical 

presentation, with sensory symptoms being unusually severe; patients; in 

fact, commonly had ulcerations leading to amputations of the feet. 

Recently it has been linked to mutations in RAB7 (Houlden et aI., 2004) 

- CMT 2C, in 2003 Klein and colleagues found linkage to a 

region at 12q23-q24. Patients suffering from this subfoffil of type II CMT 

have been noted to have diaphragm and vocal cord paresis that can lead, in 

most severe cases, to respiratory failure (Dyck et aI., 1994). No gene has 

been yet associated to this subform. 

- CMT 2D, mapped on chromosome 7p14 and sometimes 

associated with an upper extremities onset of symptoms (Ionanescu et aI., 

1996). Screening of different families diagnosed with CMT2D led to the 

identification of a mutation in the GARS gene (Antonellis et aI., 2003). 
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- CMT 2E, related to a mutation In the NF-L gene on 

chromosome 8p21 (Mersiyanova et aI., 2000). 

- CMT 2F, linkage of the disorder has been found on 

chromosome 7qll-q21 (Ismailov et aI. 2001). Affected members of two 

different families showed mutations in the HSPB 1 gene (Evgrafov et aI. 

2004). 

- CMT 2 with MPZ mutations, characterized by the classical 

axonal CMT phenotype (Marrosu et aI., 1998; Senderek et aI., 2000; 

Boerkoel et aI., 2002). 

- Autosomal recessive CMT 2, mapped on chromosome 1 q21.2 

q21.3 (Bouhouche et aI., 1999). In 3 consanguineous Algerian families 

with autosomal recessive CMT2 linked to chromosome lq21, a 

homozygous mutation in the LMNA gene was identified (De Sandre

Giovannoli et aI. 2002). 

1.8.1.3 CMT 4 is an autosomal recessive form of CMT, with 10 

loci and five causative genes identified. According to the disrupted gene, 5 

different forms of CMT 4 has been identified: 

- CMT 4A, mapped on chromosome 8q21 and often classified as 

a recessive form of an axonal CMT. CMT 4A patients carry mutations in 

the GDAP 1 gene. This gene is predominantly expressed in neural tissue, 

including brain, spinal cord, dorsal root ganglia and sural nerve and it is 

probably involved in neural differentiation (Cuesta et aI., 2002). CMT 4A 

is characterized by early age of onset, severe sensorimotor impairment and 

foot deformities. Nerve conduction studies and nerve biopsy findings are 

highly variable both between families and within families, some showing 

prominent demyelination while others showing primary axonal 

degeneration (Nelis et aI., 2002). 

- CMT 4B, mapped on chromosome l1q22 (Ben Othmane et aI. 

1999). It is a recessively inherited demyelinating neuropathy characterized 

by early onset (age 2-3 years), severe phenotype (loss of ambulation in 

adult), mild facial weakness and hearing loss in some patients, and 

demyelination with distinct redundant focally folded myelin shown on 

nerve biopsies (Quattrone et aI., 1996; Gambardella et aI., 1999). The 
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defective genes have been identified: one is myotubularin-related protein 2 

(MTMR2) gene, encoding a ubiquitously expressed dual specificity 

phosphatase, whose main substrate are phosphorylated phosphoinositides 

(Bolino et al., 2000; Nelis et al., 2002; Berger et al., 2002); the second one 

is the myotubularin-related 13 (MTMRJ 3) gene, coding for a protein in 

which key catalytic residues are missing ("pseudophosphatase", Azzedine 

et al., 2003). 

- CMT 4C, linked to chromosome 5q23-33; the presenting 

problem of CMT 4C is disabling scoliosis, usually apparent by age 10 

years. The severity of distal sensorimotor neuropathy varies and foot 

deformities are common. Sural nerve biopsies show demyelinating 

features with focal myelin thickenings (Gabreels-Festen et a1., 2002). The 

disrupted gene has been identified with the SH3TC2 gene (or KlAA1985; 

Senderek et al., 2003). 

- CMT 4D, mapped on chromosome 8q24.3 and also known as 

hereditary motor and sensory neuropathy-Lorn type (HMSN-LOM); it is a 

demyelinating neuropathy that presents at age 5-6 years with gait 

difficulty from leg weakness and is associated with hearing loss. It was 

initially identified in the gypsy community. A homozygous nonsense 

mutation in the N-myc downstream-regulated gene 1 (NDRGJ) has been 

found in all affected individuals. NDRG 1 is a ubiquitous gene with the 

highest levels of expression in Schwann cells and with no expression in 

axons, probably involved in the Schwann cell-axon interaction 

(Kalaydjieva et al., 2000). 

- CMT 4F, mapped on chromosome19q13, is a sensory-motor 

demyelinating neuropathy with neuropathic pain. It is caused by 

homozygous mutations in periaxin (Guilbot et al., 2001). Periaxin 

mutations can cause recessively inherited demyelinating neuropathies with 

a broad variety of phenotypes, ranging from Dejerine-Sottas disease to 

CMT 4F. Hearing loss is a distinctive associated feature of CMT 4F 

patients. Nerve biopsies show evidence of demyelination and 

remyelination with some onion bulb formation and segments of 

hypermyelination (or tomacula) that can contribute to unusual 
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susceptibility to fiber dysfunction or degeneration after modest 

compression (Takashima et aI., 2002). 

• 1.8.2 De;erine-Sottas Disease (DSD) 

With this name is indicated a third fonn of Hereditary Motor and 

Sensory Neuropathies, equivalent to HMSN III and sometimes also 

indicated as CMT type 3; it is defined as a severe demyelinating 

neuropathy, presenting in infancy with delayed motor development, very 

slow nerve conduction velocities (less than 10-12 mls) and usually 

elevated Cerebro-Spinal Fluid (CSF) proteins. Progression is severe and 

walking is lost early. Inheritance is thought to be autosomal dominant 

(Dyck et aI., 1975). Hypomyelination of the peripheral nerves is seen as a 

pathological hallmark and it is more severe than in CMT patients. Classic 

onion bulbs, made of concentric thin Schwann cell lamellae, and myelin 

breakdown products were considered evidence of an ongoing 

demyelinating process (Dyck et aI., 1971; Ouvrier et aI., 1987). Recent 

genetic investigations showed that several of the earlier published cases of 

DSD result from de novo heterogeneous dominant point mutations of the 

PMP 22 gene (Roa et aI., 1993; Gabreels-Festen et aI., 1995; Valentijn et 

aI., 1995), or the MPZ gene (Hayasaka et aI., 1993; Nakagawa et aI., 

1999). More recently it has been demonstrated that also autosomal 

dominant mutations of EGR2 might result in DSD (Warner et aI., 1998). 

Furthennore, an autosomal recessive inherited fonn of DSD may result 

from mutations in the periaxin gene (PRX - Boerkoel et aI., 2001). In 

addition, one mutation in the inhibitory domain of EGR2 and at least one 

PMP22 mutation in the C-tenninal intracellular domain of the protein are 

inherited as an autosomal recessive trait (Warner et aI., 1998; Pannan et 

aI., 1999). These mutations are silent in the heterozygous parents, but 

cause a DSD in the homozygous children. Two specific mutations of MPZ 

lead to a DSD phenotype in the homozygous state, but result in a mild 

CMT phenotype in the heterozygous state (Ikegami et aI., 1996; Pareyson 

et aI., 1999). Finally, the phenotypic expression of the few reported cases 
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of a homozygous PMP22 duplication may cause a DSD (LeGuern et al., 

1997; Sturtz et al., 1997). 

• 1.8.3 Congenital Hvpomvelination Nellropathy (CHN) 

Lyon in 1969, and Kennedy and colleagues in 1977 had discerned 

a variant of HMSN III, distinct from DSD; they called it Congenital 

Hypomyelination Neuropathy (CHN) and defined as a severe neuropathy 

with a congenital or early infantile onset; peripheral nerve biopsies from 

CHN patients present no or extremely thin myelin sheaths and atypical 

onion bulbs of mainly basal lamina (Bornemann et al., 1996). Several 

cases with a similar pathology have been described, with distal muscle 

weakness, hypotonia, areflexia, and severe slowing of nerve conduction 

velocities. The findings of CHN patients led CHN to be considered 

distinct from DSD, the first being a non-progressive disorder with a defect 

in myelin formation and the second a progressive demyelinating disorder 

(Harati and Butler, 1985). In most severe cases of CHN, articular 

contractures or arthrog'yposis multiplex congenital are reported (Boylan 

et al., 1992). The majority of CHN cases occurred sporadically, but in 

some of them clear evidence of autosomal recessive inheritance was 

present. Although CHN is a distinct clinical entity, it may share similar 

genetic features with DSS; in fact molecular genetics analysis of CHN 

patients revealed mutations in genes coding for MPZ (Warner et al., 1996; 

Mandich et aI., 1999), PMP 22 (Fabrizi et aI., 2001) and EGR 2 (Warner 

et aI., 1998). 

• 1.8.4 Hereditary Neuropathy with Liability to Press lire Palsies 

(HNPP) 

Hereditary neuropathy with liability to pressure palsies (HNPP) is 

a frequent demyelinating neuropathy (10 to 50 per 100.000), which is 

sometimes classified with the CMT 1 syndromes because of its genetic 

and functional relationship to the latter group of peripheral neuropathies. 
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HNPP is an autosomal dominant disorder, first described by De Jong in 

1947 and often viewed as an entrapment or compressive neuropathy that 

may affect the peroneal, median or ulnar nerves at vulnerable sites. The 

onset of HNPP is usually in childhood or adolescence. When palsies 

occur, they may be debilitating in that they may last for days to weeks and 

may require installation of a lower limb brace in the cases of prolonged 

peroneal palsies. The abnormal neurophysiological features of HNPP are 

consistent with demyelination, showing mildly prolonged motor and 

sensory nerve conduction velocities in a symmetrical, generalized pattern. 

Mild electrophysiological signs of demyelination are present also in 

nerves not affected by palsy (Earl et aI., 1964). Histological assessment of 

sural nerve biopsies reveals the presence of tomaculi, the pathological 

signature of HNPP in which there is massive redundancy or overfolding of 

layers of the myelin sheath, with predominance in the paranodal region. 

Rare patients showing axonal regeneration and lacking tomacula have 

been observed (Sessa et aI., 1997). The spectrum of clinical presentation in 

HNPP is broad and may range from clinically asymptomatic persons 

(obligate gene carriers), to those who more typically present with recurrent 

palsies and in some advanced cases may mimic smouldering forms of 

CMT 1. 

The genetic locus for HNPP maps to chromosome 17p 11.2-12, where it is 

often associated (90% ofHNPP cases) with a large 1.5-Mb DNA deletion, 

involving the same DNA fragment that is duplicated in CMT lA patients 

and that harbors the peripheral myelin protein-22 gene (Chance et aI., 

1993). Rarely, point mutations have been observed in HNPP patients 

(Nicholson et aI., 1994; Lenssen et aI., 1998; Sahenk et aI., 1998). 

1.9 Animal models of CMT disease 

As we have seen in the prior chapter, even if genetically 

heterogeneous, the CMT phenotype is similar among the majOIity of 
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patients and includes progressive distal weakness and wasting in the limbs 

with less evident sensory loss, deformities in the feet and reduced or 

absent tendon reflexes. Even if the majority of CMT disorders start as 

demyelinating diseases, disability in the patients mainly correlates with 

axonal damage; essentially, most of CMTs evolve to a disturbance of the 

SC/axon unit, rather than isolated damage to myelin-forming SC or axons. 

In order to clarify the pathogenetic mechanisms of the different CMT 

neuropathies, animal models have taken on a key role. In fact, it is there 

that the normal three-dimensional and reciprocal relationships between SC 

and axons can be highlighted and that pathologic changes can be 

monitored, with the aim of understanding first how mutations in different 

genes, some of which are expressed specifically by SC, can lead to similar 

disabilitating axonopathies, and second how the different CMT 

phenotypes (CMTI, DSS, CH and CMT2) can be generated from different 

mutations in the same gene. 

Here below I include a short review of the main CMT animal 

models known so far, that can be somehow helpful for the purpose of this 

thesis. 

• 1.9.1 PMP22 animal models 

As discussed in the dedicated chapter, mutations affecting the PMP22 

gene are the most frequent causes of inherited peripheral neuropathies 

(Fig. 1.9). Various animal models for PMP22 point mutations are 

currently available. Some of them carry naturally occurring PMP22 

mutations (Tr and Tr-J mice), while others were artificially generated 

through common transgenic techniques (PMP22 transgenic mice; PMP22 

transgenic rats; conditional PMP22 overexpressing mice and mice with 

decreased PMP22 gene dosage). 

1.9.1.1 Trembler mouse: this spontaneous mouse mutant was 

described more than 50 years ago (Falconer, 1951). It is characterized by 
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autosomal dominant inheritance, unsteady gait, weakness of the 

hindlimbs, axial tremor and stress-induced convulsions. The Trembler 

mutation is a Glycine to Aspartic Acid substitution at position 150, in the 

last hydrophobic domain of PMP22 protein (Suter et aI., 1992). The same 

mutation has been found in a family diagnosed with a severe DSS 

phenotype (Ionasescu et aI., 1997). Within the cell, the mutation leads to a 

trafficking defect of the PMP22 protein, associated with the high tendency 

of the Tr protein to form aggregates (Tobler et aI., 2002). At the 

morphological level, adult Tr mutants show severe hypomyelination of 

peripheral nerves, with increased SC number and SC proliferation (Perkins 

et aI., 1981; Sancho et aI., 2001) and reduced NCV « 10 mls; Low and 

McLeod, 1975). During development, the onset of myelination is delayed: 

Schwann cells are late in progressing from the promyelination stage to 

myelination (Henry et aI., 1983). Finally, hypomyelination in the Trembler 

mutant mice is associated with a general downregulation of myelin protein 

components, including PMP22; in fact quantitative and qualitative 

immunocytochemical analysis performed in the sciatic nerve of the Tr/+ 

mouse showed a significant decrease in PMP22, PO and MBP (Vallat et 

aI., 1999). 
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Fig. 1.9: Schematic summary of how PMP22 mutations affect PMP22. The positions of 

the amino acids affected by the mutations, as well as their phenotypes, are indicated in 

the legend. N-linked glycosylation sites are shown (amino acid 41). Mutations that affect 

the splice sites are not depicted. The patients were classified according to the published 

information given in the references on the website (http ://molgen

www.uia.ac.be/CMTMutations/DataSource/MutByGene.cfm). but in many cases this 

information is insufficient to make a definitive diagnosis. (Modified from KJeopa and 

Scherer, 2002). 
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1.9.1.2 Trembler-J mouse: it is again a spontaneous mutant mouse, 

carrying a missense mutation exchanging a Proline residue for a Leucine 

at position 16 in the first hydrophobic domain of PMP22 (Suter et aI., 

1992b). The same mutation has also been described in a family with a 

severe CMT 1 (Valentijn et aI., 1992). At the intracellular level, the Tr-J 

protein appears to reach the intermediate compartment between the 

endoplasmic reticulum and the Golgi, but cannot proceed further (D'Urso 

et aI., 1998; Tobler et aI., 1999). The pathology in adult heterozygous Tr-J 

mice is qualitatively similar (thinly myelinated axons, SC onion bulb 

formation, abnormalities in myelin compaction and perturbances of the 

axon-glia compartment), but less pronounced than in the Tr (Henry et aI., 

1983). 

1.9.1.3 PMP22 transgenic mouse: transgenic mice carrying 16 to 

30 additional copies of the PMP22 gene have been generated (Magyar et 

aI., 1996). These mice display a severe congenital hypomyelinating 

neuropathy, characterized by an almost complete lack of myelin and 

marked slowing of nerve conductions. An increased number of 

amyelinating Schwann cells can be found in affected nerves. These 

amyelinating SC do not form onion bulbs, but associate with axons. The 

expression of embryonic Schwann cell markers (p7SNTR, N-CAM and Ll) 

indicates that the mutant Schwann cells are characterized by a 

premyelination-like phenotype. In addition, Schwann cells continue to 

proliferate during adulthood. Thus, these data show that mutant Schwann 

cells are unable to proceed in their differentiation into the myelinating 

phenotype. Further analysis of PMP22 transgenics revealed that the 

mutant mice develop also a distally accentuated axonopathy. Interestingly, 

degenerating axons seem to be preferentially associated with 

demyelinating or dysmyelinating SC (Sancho et aI., 1999). In addition to 

these, another set of PMP22 trangenic lines, carrying fewer copies (about 

8 copies) of the gene, have been generated. These mice show a peripheral 
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neuropathy, similar to the human pathology: the disorder is dominant, 

causes progressive weakness of the hind legs, and there is severe 

demyelination in the peripheral nervous system including the presence of 

onion bulb formations (Huxley et aI, 1996). 

1.9.1.4 PMP22 transgenic rat: a single line carrymg three 

transgenic Pmp22 copies was generated (Sereda et aI., 1996). PMP22-

transgenic rats develop gait abnormalities caused by a peripheral 

hypomyelination, Schwann cell hypertrophy (onion bulb formation, 

suggesting active demyelination), and muscle weakness. Myelin 

abnormalities are more pronounced in ventral than in dorsal roots. 

Reduced nerve conduction velocities closely resemble recordings in 

human patients with CMTIA. Furthermore, when bred to homozygosity, 

transgenic animals completely fail to elaborate myelin. Trafficking of the 

overexpressed PMP22 myelin protein through the endoplasmic reticulum 

is not significantly impaired in fact the molecule acquires complex 

glycosylation and is blocked in the Golgi compartment. Finally, in 

PMP22-trangenic rats the program of myelin gene expression, analyzed 

using semiquantitative reverse transcription-PCR and 

immunofluorescence techniques, is not affected (Niemann et aI., 2000). 

1.9.1.5 Conditional PMP22 overexpressing mouse: this is a 

transgenic mouse model in which mouse pmp22 overexpression can be 

regulated. In this mouse model, Schwann cells specifically overexpress 

pmp22 in of the peripheral nerves; when the mice are fed with tetracycline 

overexpression is turned off. When pmp22 overexpression occurs, it 

causes demyelination. In contrast, when pmp22 overexpression is off, 

myelination is nearly normal. When overexpression of pmp22 is switched 

off in adult mice, correction begins within 1 week and lead to advanced 

myelination by 3 months. Nevertheless the myelin sheaths are still thinner 

than normal. Conversely, when the gene is upregulated in adult mice, 

active demyelination starts 1 week after and progresses for about 8 weeks. 
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All together these data indicate that Schwann cells with mature myelin are 

sensitive to increased amounts ofpmp22 (Perea et aI., 2001). 

1.9.1.6 Mice with decreased PMP22 gene dosage: mice with 

genetic disruption of the PMP22 gene have been generated (Adlkofer et 

aI., 1997); they present a delay in the onset of myelination and develop 

abundant tomacula at a young age. The presence in older animals of thinly 

myelinated axons and SC onion bulbs, together with very slow nerve 

conduction velocities indicate that the mice develop demyelination and 

remyelination. In homozygous Pmp22 null mice distal axonopathy 

develops: it differs from the one described in PMP22-transgenic mice 

because of the presence of clear signs of active axonal degeneration, like 

accumulation of dense bodies and vesicles, vacuolization of axonal 

organelles, disruption of the axolemma and disorganization of cytoskeletal 

elements. Heterozygous mutant mice are less affected than homozygous 

null animals, but they also exhibit focal tomacula (Sancho et aI., 1999). 

These sausage-like hypermyelination structures are comparable to the 

morphological features in hereditary neuropathy with liability to pressure 

palsies (HNPP). Therefore, analysis of knock-out animals indicates that 

Pmp22 is required for the correct development of peripheral nerves, the 

maintenance ofaxons and the determination of myelin thickness and 

stability. 

• 1.9.2 PO animal models: 

As previously discussed, more than 110 mutations MPZ have been 

identified, causing CMT IB in humans. They reach 4 to 14% of CMT not 

due to chromosome 17 duplication. No deletion or duplication of the gene 

has been reported, but only missense, nonsense and frameshift mutations,. 

Most of the mutations are distributed in the extracellular domain, but also 

mutations within the transmembrane and intracellular domains have been 

described. Mutations in MPZ probably generate the widest variety of 
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CMT phenotypes, ranging from mild CMT 1 B to more severe DSS, CH or 

even CMT 2 (Fig. 1.10). This variety in CMT phenotypes is paralleled by 

a great diversity in pathological traits, including demyelination, 

dysmyelination, tomacula, myelin outfolding or axonal loss with clusters 

of regenerating axons. These different phenotypes indicate different 

mutation-specific pathogenetic mechanisms that can be investigated in 

animal models. 

In contrast to PMP22, there are no naturally occumng mouse 

mutants with Mpz point mutations. In the last decade, mice have been 

engineered in order to introduce specific PO mutations and produce both 

Loss-of-Function (LoF) and Gain-of-Function (GoF) models of MPZ

related neuropathies. 

1.9.2.1 LoF Mouse models: knock-out mice for PO have been 

generated using homologous recombination in embryonic stem cells to 

replace the endogenous PO gene on mouse chromosome 1 with an 

inactivated PO gene (Giese et aI., 1992). Heterozygous null mice develop a 

late-onset neuropathy. The myelin sheaths of PO+I- mice were 

indistinguishable from those of PO+I+ mice until four months of age, when 

mild hypomyelinated profiles appeared and occasional onion bulbs were 

indentified. These morphological abnormalities were more evident in one

year-old animals: segmental demyelination and formation of onion bulbs 

become predominant pathological features in peripheral nerves, resulting 

in moderate electrophysiological alterations (significant increase III 

compound muscle action potential latencies; Martini et aI., 1995). In 

contrast, homozygous-null mice showed a very early-onset neuropathy: 

when the mice were two-weeks old they presented a phenotype 

characterized by weak vibrations of the animal body; four-week old 

mutants developed clasping of hindlimbs when lifted by the tail, slight 

tremors and jerky movements of the hindlimbs; with age, this behaviour 

became more pronounced and some of the animals developed convulsions. 
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delayed onset of walking or other early milestones. Late onset cases are defmed as those 
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2004). 
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Their peripheral nerves showed severe morphological abnormalities such 

as myelin uncompaction and an unusually high number of non-myelinated 

axons, already apparent four days after birth. With age, hypomyelination 

became even more severe, with poorly compacted myelin sheaths, some 

axons surrounded by reduced or absent wraps of SC membrane, redundant 

basal lamina and formation of rudimentary onion bulbs (Giese et aI., 1992; 

Maliini et aI., 1995). Finally, homozygous-null mice develop a distal 

axonopathy with significant loss of distal axons (Frei et aI., 1999) These 

severe morphological alterations in PO-/- mice are reflected by 

dramatically reduced nerve conduction velocities (Zielasek et aI., 1996). 

These two situations model one MPZ mutation, V I 02FS, which 

probably represents a complete null allele; the mutated protein is predicted 

to contain only 78 aminoacidic residues, with no transmembrane domain 

(Pareyson et aI., 1999; Warner et aI., 1996). However, in an extended 

family, a phenotype in the heterozygous state was recognized only after 

homozygous children presented with DSS. The children presented delayed 

motor milestones, severe weakness and NCV < 4 mls. Subsequent nerve 

biopsies showed severely reduced numbers of myelinated fibers, 

abnormally thin myelin sheaths and numerous basal lamina onion bulbs. 

Heterozygous relatives were asymptomatic, with only a very modest 

reduction in NCV (Sghirlanzoni et aI., 1992). 

1.9.2.2 GoF Mouse models: from the studies presented in the 

previous paragraph, it seems clear that complete haploinsufficience of PO 

both in human and mouse could result only in a mild neuropathy; as a 

consequence, many MPZ-related neuropathies probably include an 

additional gain of abnormal functional that could arise from either: 

1) a dominant-negative effect that originates from the myelin 

sheath or, 

2) a toxic effect of the mutant protein that initiates from an 

intracellular location during the synthesis and trafficking of PO. 

Support for the notion of gain of function comes from different 

evidence, in vitro experiments and transgenic mice. In human samples, 
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high magnification electron microscopical analyses of CMT patient nerve 

biopsies showed that peripheral demyelinating neuropathies have 

distinguishable ultrastructural phenotypes that depend on the alteration in 

primary structure of PO; this suggests that patients with PO mutations 

could express the mutated abnormal protein that is inserted into the myelin 

sheath where it could lead to specific impairments in inter-membrane 

appositioning (Kirshner et aI., 1996). In addition, in vitro coexpression of 

full-length PO and mutated PO (missing either 52 or 59 aminoacids from 

the cytoplasmic domain) in ClIO cells, prevents the full-length PO protein 

from behaving as an adhesion molecule; this shows that the mutated fonns 

of PO can have a dominant-negative effect on the adhesiveness of the WT 

protein (Wong and Filbin, 1996). 

Further evidence for gain of function of PO mutations come from 

transgenic mice (Wrabetz et aI., 2000; Previtali et aI., 2000; Wrabetz et aI., 

2006). To test for GoF mechanisms, several MPZ mutations have been 

inserted into the Mpz gene, which was then inserted as a random trangene 

in the mouse genome, in addition to the two endogenous Afpz alleles. In 

this way loss of mutant PO function in these mice should not be visible. As 

a preliminary control for this kind of approach, additional copies of wild

type Mpz have been inserted randomly in the mouse genome. The analysis 

of these transgenic mice showed that normal peripheral nerve myelination 

depends on strict dosage of Mpz (Wrabetz et aI., 2000). The mice in fact 

manifested a dose-dependent, dysmyelinating neuropathy, ranging from 

transient perinatal hypomyelination to arrested myelination and impaired 

sorting ofaxons by Schwann cells. Such defects represent a gain of 

normal PO function and could be associated with premature arrival of PO 

in the membrane spiraling around the axon (= inner mesaxon; Yin et aI., 

2000). Myelination was restored by breeding the trans gene into the Mpz

null background, demonstrating that dysmyelination does not result from a 

structural alteration or Schwann cell-extrinsic effect, but only to PO 

glycoprotein overexpression. Mpz mRNA overexpression inthe transgenic 

animals ranged from 30-700%. Breeding experiments placed the threshold 

for dysmyelination between 30 and 80% Mpz overexpression. 
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Following on these studies, we have investigated gain of abnonnal 

function in authentic mouse models of CMTI B mutations. S63 (34th 

residue of MPZ, after cleavage of the signal peptide) is conserved from 

fish to human (Kirschner et a1., 2004), and mutations of S63 in the POECD 

detennine diverse neuropathy phenotypes. Lupski and colleagues (Warner 

et a1., 1996) proposed that PO deleted for S63 (POS63del) and associated in 

humans with CMTI B phenotype (Kulkens et aI., 1993) would be unstable, 

resulting in the loss of one-half of PO function, whereas substitution of 

serine to cysteine (POS63S), associated with Dejerine-Sottas syndrome in 

humans (Hayasaka et a1., 1993) might produce aggregates and a toxic gain 

of function in the myelin sheath. To test this hypothesis, we produced 

transgenic mouse models expressing the mutated alleles, using the same 

approach as for Mpz overexpression (a random trangene inserted in the 

mouse genome, in addition to the two endogenous Mpz alleles, in a way 

that only phenotypes resulting from gain of function can be observed). 

Both S63del and S63C mice develop neuropathies that resemble the 

corresponding human neuropathy. Each P063 mutant acts via gain of 

abnonnal function, but their pathogenetic mechanisms originate from 

different intracellular locations. S63C arrives to the myelin sheath where it 

produces a packing defect, whereas S63del is retained in the ER and 

induces an Unfolded Protein Response (UPR), probably toxic to the 

myelin-fonning Schwann cell. Interestingly, this was the first evidence for 

UPR associated with peripheral neuropathies (Wrabetz et a1., 2006). 

In this thesis, I describe the generation and characterization of one 

authentic mouse model of an HMSN mutation, associated in humans with 

the most severe phenotype resulting from MPZ mutations, the Congenital 

Hypomyelination Neuropathy. Thus, to generate this authentic model, we 

decided to use homologous recombination in ES cells in order to replace 

one mouse endogenous Mpz allele, with one human MPZ allele, carrying 

the specific mutation in its open reading frame. This mutation is a C to T 

transition in exon 5 that, once translated, generates a premature stop codon 

in the cytoplasmic domain of PO. Our additional hope then is that the 
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characterization of this mouse model could give more indication of the 

role of the PO cytoplasmic tail in peripheral nerve myelination. 
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2. RESULTS 

The purpose of this thesis is to describe and discuss the creation and 

characterization of a new transgenic mouse model of POQ215X mutation 

associated with Congenital Hypomyelination neuropathy in humans. 

2.1 Patients carrying POQ215X mutation 

In 1996, Warner et al. described a patient that presented early in 

life (10 months of age) with delayed motor milestones and severely 

reduced nerve conduction velocity (= NCV, 6 mls), indicative of a 

generalized demyelinating peripheral neuropathy. A sural nerve biopsy 

was performed 8 months later and revealed abnormally thin myelin 

sheaths with a mild reduction of the number of myelinated fibers; no 

axonal degeneration was visible and no macrophages could be observed. 

Rare rudimentary onion bulbs were seen. Occasionally, large axons were 

found that had no myelin and were surrounded by Schwann cells with 

abundant cytoplasm. All these morphological defects were more indicative 

of an abnormal development of myelin rather than the result of a failed 

remyelination process, following demyelination. For this reason the 

patient was diagnosed with a Congenital Hypomyelination. The patient 

was then examined at 6 and 8 years of age and nerve conduction velocity 

confirmed the previous findings. 

Heteroduplex analysis of the patient highlighted the presence of a 

base change in exon 5 of the MPZ gene, a C to T transition at nucleotide 

643 that creates a premature stop in the GIn 215 codon (numbering 

includes 29-residue leader sequence). Further analyses indicated that the 

mutation was a de novo mutation, not inherited from one of the parents, 

and that it was a disease-associated mutation. 

Another patient, carrying the same de novo mutation in the MPZ 

gene was then described (Mandich et aI., 1999); the patient was 12 months 

old when she was first evaluated by a neurologist because of delayed 
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motor milestones; the neurological examination revealed diffuse muscle 

weakness, hypotonia, reduced deep tendon reflexes, scoliosis and foot 

deformities (pes planus). NCVs at that age were absent. At 7 years of age, 

the patient confirmed the reported symptoms and manifested in addition 

sensory ataxia and distal muscle wasting of the lower limbs. Nerve 

conduction velocities reached a value of approximately 4 mls and sensory 

nerve action potentials were not recordable. A sural nerve biopsy 

confimed the pathological findings described in the previous patient by 

Warner: loss of myelinated fibers, hypomyelination of all the remaining 

sheaths, several completely unmyelinated axons frequently surrounded by 

Schwann cells with copious cytoplasm and, finally, atypical onion bulbs. 

2.2 Generation ofMpz Q215X1+ mice 

To express the Q215X mutated MPZ in mice, we generated a 

targeting vector (Fig. 2.IA), which contains the whole Alpz gene, except 

for the 5' untranslated region, exon I and part of intron 2. This targeting 

vector carries the C to T mutation in exon 5 and a neomycin gene 

expression cassette, for selection, inserted in intron 5 and flanked by two 

LoxP sites. The linearized vector was electroporated into TBV2 129SVPas 

embryonic stem (ES) cells and one potential recombinant was identified 

among 168 G418 selected clones, using a Southern blot assay, with a 

hybridization probe 5' to the targeting construct. As expected for a 

homologous recombination event, the endogenous Hind III fragment was 

larger by 1.3kb, due to the presence of the neomycin inse11ion (Fig. 2.1 B). 

We confirmed the absence of potential concatemers at the PO locus using 

two different probes inside the targeting vector, in order to evaluate for 

concatamer junction fragments in Southern Blot analysis (data not shown). 

The C to T transition in exon 5 results in the ablation of a restriction site 

for BsoF! endonuclease. To confirm the presence of the Q215X mutation 

in the genomic DNA of the ES clone, we amplified by PCR the genomic 

region flanking the mutation and we digested it with BsoF!. Restriction 

enzyme digestion revealed the expected absence of the BsoF! site in the 
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peR amplimer (Fig. 2.1 e). Targeted ES cells were injected into e57B1I6 

blastocysts and one germline male chimera transmitted the mutation to the 

offspring. We obtained mice carrying the Q215X NEO allele (Fig. 2.1A); 

these mice were then crossed with mice expressing eRE recombinase 

ubiquitously, to excise the neomycin selection cassette and we obtained 

mice having the Q215X mutated allele, which still carries one Lox P site 

in intron 5 (Fig. 2.1A). 
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Fig 2.1: A) Schematic representation of the genomic organization of wild-type, 

Q215XNEO and Q215X Mpz alleles. The external probe used for Southern Blot analyses 

of ES cell clones is indicated (E.P.), together with the length of the DNA fragments, 

originating upon Hindill digestion. The C to T mutation in exon 5 is indicated by 

asterisks. The BsoFI site within exon 5 is indicated (B). 

B) Southern Blot analysis of the genomic DNA of the ES cell clone where homologous 

recombination occurred. 

C) BsoFI restriction enzyme digestion of the PCR-amplified genomic region flanking the 

C to T mutation in ex on 5. The BsoFI site within exon 5 is indicated (B). 
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2.3 Expression and synthesis of Q215X MPZ 

We next studied the expression of the mutant allele. The Q2l5X 

mutation in MPZ is predicted to code for a truncated PO, lacking the C

terminal 33 aminoacids of its intracellular domain. Western blot analysis 

performed on protein extracts from sciatic nerves of P28 wild type, 

Q2l5X heterozygous and homozygous mice confirmed that the mutation 

produces a smaller PO glycoprotein with a molecular weight of 

approximately 24kD (Fig. 2.2A). As shown in Fig. 2.2A, an additional 

band appears in the western blot for PO (indicated with an asterisk in Fig. 

2.2A); its putative molecular weight is approximately 27kD. This band 

could be the result of the secondary antibody reacting with other 

immunoglobulin-like chains present in the nerve, due to the fact that the 

same band is not always appearing, when performing western blot using 

the same antibody (= mouse mAbs P07, generous gift of Dr. Juan 

Archelos, Department of Neurology, Karl-Franzens-Universitat, Graz, 

Austria; Archelos et al. 1993) (see also Fig 2.11). Alternatively, this 

intermediate band could represent an intermediate product of PO 

glycosylation. 

Then, we quantitated the amount of the mutated protein relative to 

endogenous PO, using a densitometric approach, and we found it to be 10 

times less abundant than the endogenous one (ratio of approximately 

1: 1 0). Of note that the amount of protein extract loaded on each lane was 

normalized using p-Tubulin as a reference (Fig. 2.2A). 

Thus, in order to understand if this reduction in protein amount 

was determined at the level of transcription or translation, we performed 

an RT-PCR analysis on RNA from P28 sciatic nerves of wild type, Q215X 

heterozygous and homozygous mice. We amplified the mutated region 

with primers that recognized ex on 4 and 6 of Mpz, flanking the point 

mutation in exon 5 and we could distinguish and quantitate the Q215X 

mutated transcript relative to endogenous PO mRNA, after digestion with 

BsoFI restriction enzyme. As shown in Fig 2.28, this analysis indicated 

that the amount of transcript deriving from the mutated allele is 
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significantly lower (about 1 :20) than the amount of transcript deriving 

from wild type Mpz allele, indicating that very likely the reduction in 

protein amount could be due to reduced steady state levels of mRNA. 

Notably, this reduction in the total amount of PO mRNA is even more 

pronounced in the Q215X homozygous mice, where the amount of the 

mutated mRNA is less than double the levels ofQ215X mutated transcript 

present in the heterozygous state. 
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Fig 2.2: A) PO Western Blot analysis on protein extracts from sciatic nerves of wild type, 

Q215X1+ and Q215X1Q215X sacrificed at postnatal day 28. Normalization has been 

performed using ~ Tubulin as reference. The asterisk indicates an additional band 

appearing in the western blot for PO with a putative molecular weight of approximately 

27kD. 

B) BsoFI restriction enzyme digestion of the RT-PCR-amplified eDNA, obtained RNA 

extracted from wild type, Q215X1+ and Q215X1Q215X P28 sciatic nerves. The BsoFI 

sites within the amplified cDNA are indicated (B). 
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2.4 Effect of the LoxP site in intron 5 on MPZ expression 

This reduction in PO mRNA steady state levels could be due to a 

specific effect of the point mutation. Alternatively, the LoxP site left in 

intron 5 of the Q215X allele could reduce the PO mRNA and, as a 

consequence, result in an hypomorphic allele. To discriminate between 

these possibilities, we generated, by homologous recombination in ES 

cells, a control mouse (LoxP mouse), that carries the LoxP site in intron 5, 

but not the Q215X mutation in exon 5. We then produced hybrid LoxP 

mice with C57Bl6 outcrosses and we measured the expression of the allele 

by RT-PCR on RNA from sciatic nerves. We used primers in exons 2 and 

3 of Mpz that flank a polymorphic restriction site in exon 3, present only 

in the C57BI6 background, to quantitate the transcript deriving from the 

LoxP (l29SV background) allele relative to the one deriving from 

endogenous C57BI6 Mpz allele: we found a ratio of about 1:5 (Fig. 2.3). 

This indicated that the LoxP site has an effect on PO mRNA stability, but 

this effect could not account completely for the severe reduction in Q215X 

MPZ amount (1110 of endogenous PO). 
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B) Dpnn restriction enzyme digestion of the RT-PCR-amplified cDNA, obtained RNA 

extracted from wt (129SVPas/C57BI6 - left lane) and LoxP(l29SVPas/C57BI6 - right 

lane) P28 sciatic nerves. The Dpnll site within the amplified cDNA is indicated. 
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2.5 Q215X1+ mice develop transient Congenital Hypomyelination 

Since the Q21SX mutation in human is autosomal dominant, we 

focused our phenotypical and morphological analyses on Q21SX 

heterozygous mice. Surprisingly, although the phenotype in the patients 

has a very early onset and is remarkably severe, heterozygous mutant mice 

did not present any external sign of peripheral neuropathy (gait difficulty, 

reduced weight, tremor, atrophy of the paraspinal and hindlimb 

musculature). As shown in Fig. 2.4 (M-N-O), semi-thin section analysis of 

P28 sciatic nerves from Q2ISX heterozygous mice revealed only a mild 

hypomyelination, not consistent with the severe dysmyelinating 

neuropathy described in the patients. Thus, we analyzed the morphology 

of sciatic nerves in the first two weeks of postnatal life. During this period, 

when myelination takes place, PO glycoprotein expression is induced at 

very high levels in myelin-forming Schwann cells. Sciatic nerves of PI 

and PS mutant mice did not show any obvious abnormality, when 

compared to wild type littermates (Fig. 2.4A to 2.4F). In contrast, at P11, 

some bundles of unsorted mixed calibre axons were present in Q21SX 

heterozygous mice (Fig. 2.4H-arrowheads), and not in wild type 

littennates (Fig. 2.41) or in PO haploinsufficient mice (Fig. 2.4G). At PI4, 

these radial sorting defects were not visible anymore indicating that the 

myelination deficit observed in P 11 Q21SX heterozygous mice is 

transient. 

In order to confirm and characterize the radial sorting defects, we 

decided to study bundles of wt, POKO +1- and Q21SXI+ Pll nerves by 

electron microscopy (Fig. 2.S). In all the nerves we analyzed, the bundles 

are surrounded by Schwann cells, with normal basal lamina and include 

mixed calibre axons, with diameters ranging approximately from 0.2 to 2 

~lm. In most of the bundles, surrounding SCs send their cytoplasmic 

processes within bundles, sorting single axons away from contact with 

their neighbours. 
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Fig 2.4: Semi-Thin Sections of sciatic nerves taken from wild type, Q2ISx/+ and POKO 

+1- mice, at PI (A-B-C), PS (D-E-F), Pll (G-H-I), P14 (J-K-L) and P28 (M-N-O). In 

H, arrowheads indicate bundles of unsorted axons. Magnification lOOX. 
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Fig 2.5: Electromicrographs of sciatic nerves taken from wild type, Q215X1+ and POKO 

+/- mice at PII , showing details of bundles of unsorted axons. Magnification 20000X. 
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To quantitate these abnonnalities, we used the NIH Image J 

software: first, we perfonned detailed morphometric analyses to look at 

the distribution of fiber diameters in unsOlied bundles. As shown in Fig. 

2.6, bundles from wt (in total 24 from n=3 mice) and POKO +1- (in total 23 

from n=3 mice) nerves at PII contain none or few axons with diameter < 

I)lm (the maximum diameter they reach being < 1.2)lm), whereas bundles 

from Q215X1+ animals (in total 34 from n=3 mice) include axons with 

diameters larger than I.4)lm (the maximum diameter they reach being 

approximately 2.2)lm). In addition, we counted the total number ofaxons 

present in the bundles; as shown in Fig. 2.7A, our analysis revealed that 

the Q215X heterozygous mice present a higher, although not to a 

significant extent, number ofaxons in the bundles (indicated by asterisks 

in Fig 2.7A); secondly, we examined the number of unsorted axons (an 

unsorted axon being in direct contact with other axons and not surrounded 

only by SC processes; indicated by asterisks in Fig. 2.7B) and we found it 

significantly higher in Q215X1+, as compared to both wild type and POKO 

heterozygous mice. Third, we also counted the number of sorted (not in 

close contact with other axons, but surrounded exclusively by SC 

processes, indicated by asterisks in Fig. 2.7C) and unsorted axons 

(indicated by asterisks in Fig. 2.7D) present within the bundles and having 

a diameter greater than 1 )lm; by this age (P 11), in fact, every large calibre 

axon in a nonnal nerve has already been segregated and presents at least 

some turns of compact myelin. As shown by the graphs, both parameters 

are significantly higher in the Q215X1+ than in the other two genotypes 

examined; in fact, while in control nerves all the axons larger than l)lm in 

diameter had been already segregated and at least partially myelinated, in 

contrast, approximately 15% of the axons we measured in the bundles of 

mutant Q215X1+ mice had a diameter ranging from I to 2 )lm (Fig. 2.6). 

Taken together, these data showed that Q2I5X heterozygous mutant mice 

present a transient dysmyelinating neuropathy, due to a radial sorting 

defect that appears around PIO and that disappears around P14, leading to 

a delay in the myelination process. Since we have already demonstrated 
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that in Q215X heterozygous mutant mice the amount of the mutated 

protein relative to endogenous PO was 10 times less abundant, one can 

argue that the transient phenotype we described could be the result of an 

overall reduction of the total amount of PO glycoprotein in Q215X 

heterozygous mutant mice. Nevertheless, our morphological analysis 

demonstrated that the radial sorting defect observed in Q215X 

heterozygous mutants is specifically due to the presence of the Q215X 

mutated glycoprotein and not to the lower amount of MPZ in mutant mice. 

This is clearly demonstrated by the absence of similar unsorted bundles of 

large calibre axons in PO null heterozygous mice; in POKO +1- mice in fact 

the amount of total PO mRNA is lower than in Q215X heterozygous mice. 

This absence demonstrates that the Q215X point mutation acts through a 

gain of function mechanism. 
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Fig 2.6: Axon diameter (in ~m) distribution within bundles of unsorted axons, in sciatic 

nerves taken from wild type, Q215X1+ and POKO +/- mice at P 11 . This graph reports the 

percentage ofaxons/genotype, measured within the bundles, with a given diameter, over 

the total number ofaxons examined/genotype. 
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Fig 2.7: A) Total number ofaxons within the bundles (sorted + unsorted). Error bars 

represent SEM. 

B) number of unsorted axons (in direct contact with other axons, indicated by asterisks in 

the right panel) within the bundles. 

C) number of sorted axons (not in close contact with other axons, but surrounded by SC 

processes, indicated by asterisks in the right panel) within the bundles, with a diameter > 

Il-lm. 

D) number of unsorted axons (in direct contact with other axons, indicated by asterisks in 

the right panel) within the bundles, with a diameter > 111m. 

*p<O.05; **p<O.Ol; ***p<O.OOI vs. wild type (one-way ANOVA followed by Tukey 

test) 

#p<O.05; ##p<O.OI; ###p<O.OOI vs. POKO+/- (one-way ANOVA followed by Fisher test) 
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2.6 Q215X1+ mice present a neuromuscular defect 

We next tested if this transient defect in the process of myelination 

resulted in a developmental motor deficit, by rotarod test, a behavioural 

test already used in the past in Dr. Wrabetz's lab to assess motor 

coordination in mice. Mutant and wild type mice, from PlO to P12, were 

placed on a horizontal rod, rotating at increasing speed and the time they 

remained on the bar was measured and plotted. The purpose of the rotarod 

test is to assess the mice sensorimotor coordination. The test is sensitive to 

damages (traumatic, drug induced or genetic) that effect motor function. 

After the first two trials, where the difference between control and mutant 

mice is not significant, Q215X heterozygous mice remained on the bar for 

significantly less time than control mice, revealing that the radial sorting 

defects observed in sciatic nerves result in a motor deficit in P 11 mutant 

mice (Fig. 2.8). The motor deficit is no longer present in adult (P28) mice 

(data not shown). 
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Fig 2.8: Rotarod analysis shows that Q215X1+ mice at PI1 (n=72) remain on the 

accelerating cylinder less time than the wild type littermates (n=57). Error bars represent 

SEM. *p<O.05; **p<O.OI vs. wild type (t-test) 
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2.7 PO Q215X MPZ is not trafficked correctly 

Genetic and expressIOn analysis of Q215X1+ together with 

morphological analyses of the mouse sciatic nerves, suggest a gain of 

abnormal function, resulting from the truncated Q215X MPZ. Thus, as a 

further step to characterize our mouse model, we decided to investigate the 

pathogenetic mechanism through which the mutated protein is able to 

produce the aberrant phenotype. We began by determining the 

intracellular location of the Q215X MPZ, in order to strengthen our 

previous hypothesis that the transient phenotype we observed in our 

mutant mice might be determined by an improper trafficking of PO 

Q215X. To this end, we bred the mutation to obtain Q215X homozygous 

mice, in which only the mutated protein is detectable. As shown in figure 

2.9A and B, semi-thin sections of these nerves, at P28, revealed a 

substantial hypomyelination, with the presence of many fibers with thin 

myelin sheaths for the diameter ofaxons, and few fibers in which single 

Schwann cells ensheathed axons, but were not able to form any myelin 

sheath around them. Then, we stained transverse sections of sciatic nerves 

from P28 homozygous mutant and control mice, using an antibody 

directed against the extracellular domain of PO. To localize intracellularly 

the mutated MPZ, we co-stained the sections with an antibody that 

recognizes the KDEL signal, a tetrapeptide located at the carboxy-terminal 

sequences of Endoplasmic Reticulum (= ER) luminal proteins, that 

perform essential functions related to protein folding as well as assembly. 

In control nerves (Fig. 2.10 A-B-C), almost all PO glycoprotein was 

detected in compact myelin and its signal never co-localized with ER 

resident proteins. In contrast, in homozygous mutant mice (Fig. 2.10 D-E

F), Q215X truncated PO partially co-localized with anti KDEL antibody, 

indicating that the mutated protein is, at least in part, sequestered in the 

ER. 
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Fig 2.9: Semi-Thin Sections of sciatic nerves taken from wild type (A) and 

Q215X1Q215X (B) mice at P28. Magnification loOX. 
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Fig 2.10: Immunofluorescence staining for PO (A,D) or KDEL (B, E) or overlay of the 

two (e, F) in WT (A, B, C) and Q215X1Q215X (D, E, F) sciatic nerves at P28. PO and 

KDEL stainings were almost mutually exclusive in wild-type nerves, with most PO 

staining in circular myelin sheaths. In contrast, a part of PO and KDEL staining coincided 

in Q215X1Q215X nerves (see asterisks). Magnification lOOX. 
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In addition to the immunohistochemical analyses, to further 

characterize the intracellular location of the mutant protein, we analyzed 

the glycosylation of Q215X PO, using a specific glycosidase digestion 

approach. As already mentioned in the introduction, PO is nonnally 

glycosylated within the Schwann cell ER, at the level ofNl22 (D'Urso et 

aI., 1990). In the pre-Golgi and cis-Golgi compartments, N-linked 

glycoproteins contain immature high-mannose oligosaccharides that are 

sensitive to digestion with endoglycosidase H (EndoH). When the proteins 

arrive at the medial-Golgi compatment, oligosaccharides are processed to 

mature, becoming resistant to EndoH digestion. Both EndoH-resistant and 

EndoH-sensitive PO have been found in nonnal myelin sheaths (Brunden, 

.1992). Another specific glycosidase, peptide N-glycosidase F (PNGaseF), 

is able to digest N-linked oligosaccharides, despite their maturation. After 

EndoH or PNGaseF digestion, Western Blot analysis of mutant nerve 
, 

protein lysates demonstrated that our cytoplasmic tail truncated PO is 

mostly glycosylated; nevertheless a small fraction of it is EndoH resistant 

(indicated by a red arrow in Fig. 2.11). Thus, most of PO Q215X has 

immature glycosylation, which could be consistent with ER or Golgi 

localization, but some may arrive to the myelin sheath. 

Of note that, in this western blot analysis no additional band for PO 

with an approximate molecular weight of 27kD appears, even when 

endoglycosidase digestion occurred. This demonstrates that this 

intennediate band could not represent an intennediate product of PO 

glycosylation, but it is very likely the result of the secondary antibody 

reacting with other immunoglobulin-like chains present in the nerve. 
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Fig. 2.11: Biochemical and expression analysis of Q2 l5X mutants shows that the 

mutated PO has altered post-translational modification. 

Western analysis for PO on sciatic nerve lysates from WT or Q2 l 5X homozygous 

mutants untreated (C) or after digestion with EndoH (H) or PNGaseF (F) . 
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3. DISCUSSION 

In the result section of this thesis the creation and characterization of a 

new transgenic mouse model of POQ215X mutation associated with 

Congenital Hypomyelination neuropathy in humans was described. In this 

section, the obtined results will be discussed. 

3.1 Generation of Mpz Q215X1+ mice, expression and synthesis of 

Q215X MPZ and effect of the LoxP site in intron 5 on MPZ 

expression 

As already discussed in the result section, taking advantage of 

homologous recombination in ES cells and electroporating them into 

mouse blastocists, we obtained mice carrying the Q215X NEO allele (Fig. 

2.IA) that were then crossed with mice expressing CRE recombinase 

ubiquitously, to excise the neomycin selection cassette in order to generate 

mice having the Q215X mutated allele and carrying one Lox P site in 

intron 5 (Fig. 2.1A). We then studied the expression of the mutant allele. 

We have shown that the Q215X mutation in MPZ produces a smaller PO 

glycoprotein with a molecular weight of approximately 24kD (Fig. 2.2A). 

Since both Warner and colleagues and Mandich and her collaborators did 

not examine their patient biopsies for the presence of a truncated form of 

PO, lacking part of its intracellular domain, this is the first demonstration 

that the C to T transition in exon 5 of Mpz gene observed in the two 

different patients effectively results in a shorter form of PO glycoprotein, 

with a lower molecular weight, as compared to wild type protein. 

Then, we quantitated the amount of the mutated protein relative to 

the the endogenous PO and we found it to be 10 times less abundant than 

the endogenous one (ratio of approximately 1:10 - Fig. 2.2A). By RT-PCR 

analyses we then demonstrated that very likely the reduction in protein 

amount could be due to reduced steady state levels of mRNA in mutant 

mice. In addition, we generated and characterized a control LoxP mouse 

carrying the LoxP site in intron 5, but not the Q215X mutation in exon 5. 
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We then measured the expression of the LoxP allele by RT-PCR on RNA 

from sciatic nerves, relative to the one deriving from endogenous C57Bl6 

Mpz allele (Fig. 2.3). We demonstrated that the LoxP site has an effect on 

PO mRNA stability, reducing it, but not to the same extent as for Q215X 

MPZ allele. Interestingly, such an effect of the LoxP insertion on mRNA 

steady state levels was never reported before. Therefore, the mechanism 

by which LoxP reduces mRNA levels is not clear. Of note that intron 5, 

the one bearing the LoxP site in the mutated Mpz allele, is very short, only 

107bp in length. It is well known that the process of transcription is slow 

and, at least for highly expressed genes, transcription of long introns, 

particularly common in mammals, is expensive. As a consequence, it has 

been demonstrated that introns in highly expressed genes are shOlter than 

those in genes that are expressed at low levels, and natural selection 

appears to favour short introns in highly expressed genes to minimize the 

cost of transcription and splicing (Castillo-Davis et aI., 2002). In order to 

express the Q215X mutated MPZ in vivo, we generated mice having the 

Q215X mutated allele, carrying one Lox P site in intron 5; this means that 

an original intron of 107 bp has reached the "new" length of 

approximately 220bp. Such an increase in intron length could explain the 

less efficient transcription of the mutated Mpz allele in the LoxP mouse, 

but at the same time it may not be the only reason for the massive 

reduction of Q215X mutated transcript. One possible explanation for this 

further decrease in Q215X mRNA is Nonsense-Mediated Decay; it is 

known in fact that the strength of biological systems depends on the 

function of proofreading mechanisms preventing errors. Studies in yeast 

(Losson and Lacroute, 1979) and of human genetic disorders (Chang and 

Kan, 1979) allowed the identification of a conserved control mechanism 

that identifies faulty open reading frames and eliminates imperfect 

mRNAs that contain premature translation termination codons (PTCs) and 

code for nonfunctional or dangerous polypeptides; this mechanism has 

been termed nonsense-mediated mRNA decay (NMD) (Hentze and 

Kulozik, 1999). Anyhow, the hypothesis that NMD may be responsible for 

the reduction of Q215X mRNA is not supported by the position of the 

PTC in the Q215X mutated allele; it is well known in fact that the 
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distinction between a nonnal and a premature stop codon is made on the 

basis of its location with respect to the last exon-exon junction: in 

particular, the tennination codon is considered premature when it is 

positioned > 50-55 nucleotides upstream of the last exon-exon junction 

(Nagy and Maquat, 1998). Here the Q215X mutation is only 3 nucleotides 

from the last exon-exon junction. In addition to that, recent data 

demonstrated that NMD could be one of the molecular mechanisms by 

which different mutations, in particular truncating mutations, in the same 

gene can result in different disease phenotypes; in particular, the more 

severe phenotypes occur only when the mutated mRNAs are able to 

escape NMD (Inoue et aI., 2004). The authors focused their attention on 

SOX 10 and MPZ mRNA containing PTCs: mutant mRNAs that result in 

a less severe disease have decreased stability, while the more severe 

neurological diseases seem to result from a stable mRNA that is translated 

into a mutant protein with potent dominant-negative activity. More 

specifically the authors tested several MPZ mutated transcripts (Produced 

in trasfected human cell lines) and found that the PTCs associated with 

severe diseases are all located in the last exon (except for one, Q215X, 

that is located at the distal end of the penultimate exon) and resulted in an 

accumulation of mRNA at levels equivalent to the wild-type allele. Since 

no expression data are available from Q215X human patient samples, our 

mutant mouse could be useful to confirm in vivo these in vitro findings 

and could help in clarifying the mechanisms that are responsible for the 

massive reduction of Q215X mutated transcript. For instance, we can test 

Q215X sensitivity to NMD in mouse SN by treating excised and 

desheathed SNs with cycloheximide (CHX) in culture medium. CHX is an 

inhibitor of protein biosynthesis in eukaryotic organisms, produced by the 

bacterium Streptomyces griseus. As a positive control we can use SNs 

from a mouse line, generated in the lab and expressing an Mpz transgene 

containing lac-z and a premature stop codon, more than 50-55 nucleotides 

upstream of the last exon-exon junction and therefore predicted to undergo 

NMD. After CHX treatment, mRNA can be extracted and retro

transcribed and expression evaluated by RT-PCR. If no difference in 

Q215X and LoxP-WT expression is detected after treatment, while, as 
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expected, there is a significant increase in the positive control, we could 

confinn that, also in vivo in a myelin context, Q215X does not undergo 

NMD. 

Other potential mechanisms through which LoxP could negatively 

influence expression can act both at the transcriptional or post

transcriptional level. In fact, the LoxP-dependant expression reduction 

could be due to an effect of LoxP at the transcriptional level. Intronic 

sequences are known to be involved in transcriptional regulation and 

highly conserved sequences in Mpz intron 1 have previously been 

demonstrated to bind Sox 1 0 and Egr2 transcription factors (TF) and that 

this binding plays a key role in Mpz expression (LeBlanc et al., 2006). As 

already discussed, Mpz intron 5, where the LoxP site is inserted, is very 

short and highly conserved; there is the possibility to investigate potential 

TF binding sites, using the rVIST A software analysis and having intron 1 

binding as positive control. Last year, a sequence in mpz intron 5 has been 

identified as a potential binding site for CTCF, the vertebrate insulator 

protein (Kim et al., 2007). Interference with this binding could affect the 

euchromatinlheterochromatin status of the genomic region and thus alter 

the expression of mpz in our mice; we therefore can test by ChIP if CTCF 

does bind to Mpz intron 5 and if yes, ask in vivo in our LoxP control 

mouse if the presence of LoxP in intron 5 is able to abolish such binding. 

Recently in Dr. Wrabetz's lab Q215X heterozygous mice have 

been brought into the C57 background; as a consequence, the mpz 

expression in Q215X heterozygous mice has been re-evaluated in relation 

to the WT allele, using semiquantitative radioactive RT-PCR and taking 

advantage of a OpnII restriction site present in the background strain allele 

(C57) and absent in the ES cell strain (Sv129), used for the generation of 

our transgene. Transgene expression in the line carrying the mutation 

(Q215X) and in the one carrying only the LoxP site was 1:4 compared to 

the WT allele, indicating that the mutation itself was not able to induce 

any reduction in PO mRNA (Fig. 3.1). Interestingly, when examining mpz 

expression in the Q215X line through BsoFI digestion, the expression was 

quantified as I: 15 compared to WT. There is the possibility that such a 

difference in results, when analyzing two different segments of the same 
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cDNA, could be due to the presence of alternative splicing products in the 

3' region of the gene, where LoxP and the mutation are inserted. In order 

to test this hypothesis, different RT-PCRs from sciatic nerve cDNA from 

Q215X homozygous, LoxP homozygous and WT animals using primers 

extending from mpz exons 4 and 5 to exon 6 can be perfonned and all the 

resulting amplimer patterns can be carefully analyzed and compared. The 

possibility of alternative splicing occurring in all the lines carrying the 

LoxP in intron 5 is further supported by the finding of a detailed 

bioinfonnatic analysis of the exon 6 splice acceptor perfonned in Dr. 

Wrabetz's lab; this analysis contributed to identify a "weak" splicing 

acceptor site in exon 6. The presence of the LoxP site and its flanking 

sequence between the mpz intron 5 branchpoint and the ex on 6 splice 

acceptor, along with the "weak" acceptor site in exon 6, may have 

contributed to the generation of these alternative splicing patterns. It's 

important to remark that the LoxP sequence, along with its flanking 

region, can function here as a cryptic splice acceptor (Fig. 3.2). 

Alternative splicing at the exon 5-6 junction could explain the 

difference amongst the expression results using the polymorphic DpnII 

site in exon 3 or the BsoFI restriction site in exon 5, but doesn't justify the 

overall underexpression of the mpz-IoxP alleles of 1:4 compared to WT 

mpz alleles. Increased instability of the alternatively spliced fonns could 

explain this reduction. To test this hypothesis, LoxP homozygote sciatic 

nerves can be explanted, desheathed from the perinevrium to make them 

more accessible to treatment, and incubated at 37 C in culture medium 

with RNA polymerase II inhibitor actinomycin D (ActD). RNA at 

different time-points (1-2-4 hours) can be extracted and RT-PCRs for mpz 

perfonned, to analyze the stability of the different splice variants. This 

approach will give us the possibility to evaluate the half-life of the 

alternatively spliced variants, if any, and their contribution to the overall 

mpz expression reduction. 
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Fig. 3.1: A) DpnII restriction enzyme ctigestion of the RT -PCR-amplified cDNA, 

obtained from RNA extracted from wt (FVB/C57BI6 - left lane), Q215X1+ heterozygous 

(l29SVPas/C57B16 - mid lane) and LoxP/+ heterozygous (l29SVPas/C57Bl6 - right 

lane) P28 sciatic nerves. The DpnII site within the amplified cDNA is indicated. The red 

arrow indicates the amplified D A coming from the LoxP and Q215X Mpz alleles. 

B) Schematic representation of the genomic organization of LoxP and Q215X Mpz 

alleles. The Dpoll site within exon 3 is indicated, together with the primer pair used to 

amplify the cDNA from sciatic nerve of Q215X heterozygous, LoxP heterozygous and 

WT animals using primers extending from mpz exons 2 to exon 4. 
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Fig. 3.2: Mpz DNA sequence of exon 5, iutron 5 and exon 6 and LoxP site: the 

branchpoint, together with the BsrGI within intron 5, used to generate the Q215X allele, 

and the acceptor site within LoxP are indicated. 

3.2 Q215X1+ mice develop transient Congenital Hypomyelination 

As reported in the results, our phenotypical and morphological 

analyses on Q2I5X heterozygous mice revealed that heterozygous mutant 

mice present a transient dysmyelinating neuropathy, due to a radial sorting 

defect that appears around PI0 and disappears around P14, leading to a 

delay in the myelination process. Furthermore, we demonstrated that the 

radial sorting defect observed in Q215X heterozygous mutants is 

specifically due to the presence of the Q215X mutated glycoprotein and 

not to the lower amount of MPZ in mutant mice. Finally, by comparing 

morphological features of our Q215X heterozygous with the ones of 

POKO +/- mice, we clearly showed that the Q215X point mutation IS 

acting through a gain of function mechanism. 

What Gain of Function mechanism might explain the 

morphological phenotype we have observed in Q215X heterozygous 

animals? Analyses of mutant mice presenting similar phenotypes might be 

revealing. For example, one possible explanation for the transient 

dysmyelinating phenotype we observed in our mutant mice is that the 

protein, PO Q215X, can somehow interfere with laminin signals, necessary 

for Schwann cells to segregate the axons. In fact, an impairment in the 
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process of radial sorting has been first described in mice deficient for 

Laminin-2, the major laminin isofOlm within the PNS. The animals 

present bundles of unsorted axons in spinal roots and, to a minor extent, in 

sciatic nerves (Bradley and Jenkinson, 1973). A further hint into the 

regulation of radial sorting process came from the generation and 

characterization of mice undergoing Schwann cell specific inactivation of 

PI integrin; these mice develop a severe dysmyelinating phenotype, due to 

the inability of Schwann cells to form and maintain interactions with 

axons. In pl-integrin null animals, Schwann cells can migrate, proliferate 

and survive as in normal mice. Careful ultrastructural analysis of mutant 

nerves revealed that PI is necessary for Schwann cells to reorganize the 

cytoskeleton as they ensheath axons. In its absence, Schwann cells cannot 

segregate axons and leave bundles of naked axons in adult nerves (F eltri et 

aI., 2002). 

More recently, further data on engineered mIce led to the 

identification of two genes downstream of laminin signals, necessary for a 

correct spatial and temporal axonal sorting within peripheral nerves. One 

of these genes is Rac!. It is known that the levels of the small GTPase 

Rac1 activity control extension of radial lamellae in different cell types 

(Pankov et aI., 2005). Within the PNS, the segregation ofaxons by 

Schwann cells requires the activation of Rac 1 by PI integrin. It has been, 

in fact, demonstrated that cultured Schwann cells, devoid of pi-integrin, 

can migrate and elongate correctly on axons, but are not able to extend 

radial cytoplasmic processes; in addition, in PI null nerves the levels of 

active Rac-l are decreased; on the other hand, ectopic expression of active 

Rac1 in PI null nerves results in improvement of sorting defects. Finally, 

the generation and characterization of Rac I null mice showed a delayed 

axonal sorting within peripheral nerves (Nodari et aI., 2007; Benninger et 

aI., 2007). 

Despite the striking similarities, Rac1 null mice show milder radial 

sorting defects as compared to pi-integrin knock-out 'animals. This 

indicates that PI signalling in Schwann cells is not only acting via Rac 1. 

This finding is supported by the empirical data showing that pl-integrin is 
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able to physically associate to the nonreceptor tyrosine kinase F AK 

(Fernandez-Valle et aI., 1998). Moreover, when the FAK gene is 

specifically inactivated in SC, mutant nerves are characterized by alTested 

sorting of large-calibre axons. Of note is that mutant SC can infiltrate 

processes between axons, but are not able to proliferate properly, 

indicating that the dysmyelinating phenotype can be the result of an 

insufficient number of SC (Grove et aI., 2007). F AK is not the only gene 

whose ablation results in sorting defects, due to impaired SC proliferation; 

another example comes from cdc42 knock-out mice, where the radial 

sorting defects could be related to a lowered SC proliferation rate. In 

contrast to F AK, Cdc42 activation is not dependent on PI activity; in fact, 

the levels of active Cdc42 in 131 null nerves appear not to be substantially 

different to those of wildtype animals (Benninger et aI., 2007; Nodari et 

aI.,2007). 

In this section, we presented a new transgenic animal with a 

heterozygous mutation in the intracellular domain of MPZ that developed 

a transient congenital hypomyelination phenotype. This hypomyelinating 

phenotype is highly similar, even if to a less severe extent, to other 

hypomyelinating mice that carry mutation in different genes, all involved 

in the laminin signalling events, responsible for controlling the 

myelination process and the cross talk between the Schwann cell 

compartment and the nerve environment. These similarities lead me to 

suggest that PO Q215X could perturb events downstream of the laminin 

signalling pathways. This "laminin signalling pathway perturbation" 

hypothesis is further supported by in vitro findings, obtained in transfected 

MDCK cells (see paragraph 5.5). When these cells are stably transfected 

with PO glycoprotein, they localize PO within their basolateral surface; on 

the contrary, deletion of the PO cytoplasmic domain results in apical 

targeting in MDCK cells. Using the same in vitro approach, the authors 

identified a novel amino acidic sequence (=Y AML motif) within the PO 

cytoplasmic tail that includes active tyrosine-based and leucine-based 

signals and that is necessary for basolateral targeting of PO (Kidd et aI., 

2006). Further support to this hypothesis came already from previous 
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studies perfonned on transgenic mice overexpressing wild type PO 

glycoprotein. As we have seen in paragraph 1.9.2.2, these mice manifested 

a dysmyelinating neuropathy, that ranges from transient perinatal 

hypomyelination to arrested myelination and impaired sorting ofaxons by 

Schwann cells. Such defects have been associated with incorrect 

trafficking of PO in the SC membrane (Yin et aI., 2000). Thus, according 

to the data we collected, we can speculate that PO Q215X is not properly 

trafficked within Schwann cells. Perhaps, it arrives at an inappropriate 

location (e.g. the basal surface near the basal lamina), where it perturbs 

laminin signalling, somehow altering the communication between axons 

and Schwann cells and generating the transient radial s0l1ing phenotype 

we have described. This hypothesis could be tested using a strategy similar 

to the one used by Kidd et al. in 2006 and described later in section 2.7. 

An alternative possibility to explain the phenotype of Q215X 

heterozygous mice is suggested by the similarity to claw paw mice. In 

1991, the murine autosomal recessive mutation elaw paw was described: 

homozygous elp/clp mice presented abnonnalities of limb posture within 

the first one or two postnatal days; morphological analyses of elp/elp 

mutant sciatic nerves showed that affected animals present delayed and 

abnonnal myelination in the peripheral nervous system; in addition, the 

nerves presented defects in radial sorting of the fibers, with blocked 

myelination of small calibre axons, that are myelinated in nonnal animals 

(Henry et aI., 1991). The abnonnalities highlighted in clp/elp mice 

represent Schwann cell difficulties in perfOlming the transitional step from 

promyelin to compact myelin. A recent study, where reciprocal nerve 

grafting experiments between wild-type and clplclp animals were 

perfonned, demonstrated that the elp mutation affects the Schwann cell 

compartment and possibly also the neuronal compartment, being likely 

involved in direct axon/Schwann cell interactions. Furthennore, within the 

Schwann cell compatment, elp affects a myelin-related signaling pathway 

that regulates the expression of one very imp0l1ant transcriptional 

regulator of myelin genes, Krox-20, but not Oct-6, another major 

transcriptional regulator of the myelination process (Darbas et aI., 2004). 

More recently, the elp mutation has been identified as a 225bp inse11ion in 
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the Lgi4 gene. This gene codes for a secreted and glycosylated leucine

rich repeat protein that is expressed in Schwann cells and in restricted 

populations of neurons. The elp mutation perturbs Lgi4 mRNA splicing, 

precluding splicing of exon 4 of Lgi4 and generating a mutated protein 

that is retained within the cell. Functional studies performed in sensory 

neuron-Schwann cell cocultures, where Lgi4 was downregulated using 

siRNA, identified Lgi4 as an important signalling molecule that controls 

axon sorting during peripheral nerve myelination: in fact, when siRNA for 

Lgi4 in turned-off in cocultures, myelination is inhibited; in addition, 

administration of Lgi4 to elp/elp neuron-Schwann cell cocultures is able to 

restore myelination (Bermingham et al., 2005). Given the phenotype 

similarities between the elp/clp and POQ215X heterozygous mice, one 

might speculate that PO Q215X alters normal Lgi4 function. 

3.3 Q215X1+ mice present a neuromuscular defect 

Using the Rotarod test we next demostrated that this transient 

defect in the process of myelination we showed, resulted in a 

developmental motor deficit. These data, together with previous 

morphological observations in peripheral nerves, lead us to conclude that 

the Q215X heterozygous mice are a partial model of Congenital 

Hypomyelination neuropathy; partial in the sense that they present a 

dysmyelinating phenotype that appears very early in postnatal life and that 

results in a motor disability for the mice, as has been reported for the two 

patients presenting Q215X de novo mutations. Nevertheless, this 

dysmyelination is less severe if compared to the clinical and pathological 

picture of the patients. The possible reasons for this have been already 

discussed in the previous paragraphs and relate to dosage and efficient 

transcription of the mutated allele. However, it is also true that having no 

expression data from human patients, we can not be certain that the less 

severe phenotype we observed in our mouse model could be due to 

intrinsic differences in the control of the myelination process, or, more 

generally of the transcription machinery, between mice and men. In 
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support of the inefficient dosage hypothesis, we have demonstrated that 

the Q215X mutation is manifesting its phenotype through a Gain of 

Function mechanism. As shown in paragraph 1.9.2.2, we have investigated 

the mechanism of action of different PO mutations and we have found it to 

be always dose-dependent. In addition, we have generated homozygous 

Q215X mutant mice: those mice express more mutant protein and present 

a more severe phenotype, as compared to heterozygous (Fig. 2.9 and data 

not shown). Thus, we can speculate that Q215X1+ mice are less severely 

affected than Q215X1+ humans, due to the LoxP-induced reduction of the 

expression of the mutated allele. Although the phenotype we have 

described is milder, it is Congenital Hypomyelination-like, suggesting that 

this could be useful to elucidate the cell biological pathophysiology 

underlying Q215X neuropathy. 

3.4 Q215X MPZ is not trafficked correctly 

We then decided to investigate the pathogenetic mechanism 

through which the mutated protein is able to produce the aberrant 

phenotype. We determined the intracellular location of the Q215X MPZ, 

together with its glycosyltion status. With both analysis, we found that 

most of PO Q215X could be located in the ER or Golgi, but a portion of it 

may arrive to the myelin sheath. These data let us speculate that PO 

Q215X may in part arrive to inappropriate locations, thereby generating 

the radial sorting defects we have described. 

Recently (Wrabetz et aI., 2006), we investigated gain of abnormal 

function also in mouse models of CMTI Band Dejerine-Sottas syndrome 

(DSS) mutations. We have chosen two different mutations in the same 

aminoacid S63, conserved from fish to human (Kirschner et aI., 2004): 

POS63del, associated with CMTIB (Kulkens et aI., 1993) and POS63C is 

associated with DSS (Hayasaka et a1., 1993). We produced transgenic 

mouse models with these alleles and we showed that both alleles produce 

gain of function, but of different types, originating from diverse 

intracellular locations. In particular, our immunohistological analyses 
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revealed that POS63C arrived to the myelin sheath, whereas POS63dei is 

mostly retained in the ER. In addition, to better characterize the 

intracellular location of the mutant proteins, we analyzed the glycosylation 

of both POS63dei and POS63C, using the same approach reported for 

Q215X PO. After EndoH or PNGaseF digestion, Western Blot analysis of 

mutant nerve protein lysates demonstrated that POS63C is glycosylated 

like WT, consistent with arrival to myelin sheath, whereas the majority of 

POS63del is not glycosylated and completely resistant to any glycosidase 

treatment, consistent with ER retention. 

Thus, the evidences of mislocalization of Q215XPO that are 

reported in my thesis provide further support to the idea that wide-ranging 

MPZ-related neuropathy phenotypes result from different kinds of Gain of 

Abnonnal Function, originating from diverse intracellular locations 

(Wrabetz et aI., 2006). 

3.5 Conclusions 

In this manuscript we have described the generation and 

characterization of a mouse model of Congenital Hypomyelination 

neuropathy, due to a mutation, Q215X, in the cytoplasmic tail of PO 

glycoprotein. By using homologous recombination into ES cells, we have 

inserted the C to T transition in exon 5 that generates the Q215X mutation 

into one endogenous allele of the mouse mpz gene. Then, we have 

generated a mouse carrying the mutated allele in heterozygosity. We 

analyzed the expression of PO in Q215X1+ mice and we showed for the 

first time that the mutation was effectively translated into a shorter fonn of 

PO glycoprotein, with a lower molecular weight, as compared to wild type 

protein. Morphological observations in sciatic nerves, together with the 

analysis of neuromuscular defects in the transgenic animals lead us to 

three main conclusions. First of all the Q215X heterozygous mice are a 

partial model of Congenital Hypomyelination neuropathy; in fact the 

animals present a dysmyelinating phenotype that appears very early in 

postnatal life and that results in a motor disability for the mice, as has been 
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reported for the two patients presenting Q215X de novo mutations. 

Nevertheless, this dysmyelination was less severe if compared to the 

clinical and pathological picture of the patients. The possible reasons for 

this mild phenotype have been already discussed in the previous 

paragraphs and relate to dosage and inefficient transcription of the mutatcd 

allele. Secondly, by comparing the phenotype of our PO mutant mouse 

with the one of PO +/- mice, we demonstrated that the Q215X mutation is 

acting through a Gain of Function mechanism. Finally, by analyzing the 

intracellular location of the mutated PO glycoprotein and by comparing it 

with the ones of other PO mutant protcins, we have provided further 

support to the hypothesis that the wide-range of neuropathy phenotypes 

due to mutations in MPZ come from different kinds of Gain of Abnormal 

Function, originating from diverse intracellular locations. 

In addition to these findings on the molecular pathogenesis of 

Q215X MPZ Congenital Hypomyelination Neuropathy, the detailed 

morphological analysis of altered radial sorting in sciatic nerves of Q215X 

+/- mice suggests that Q215X may perturb the laminin signalling 

pathways andlor alter normal Lgi4 function, that are necessary for the 

correct spatial and temporal occurrence of radial sorting ofaxons by SC, 

within peripheral nerves. 

Finally, during the process of accomplishing a careful 

characterization of our Q215X mutant mice, we generated a control mouse 

(LoxP mouse), that carries the LoxP site in intron 5, but not the Q215X 

mutation in exon 5. We then found that the LoxP site by itself had an 

effect on PO mRNA stability, reducing its amount as compared to a 

wildtype PO allele. Interestingly, this is the first time that such an effect of 

the LoxP insertion on mRNA steady state has been reported. This effect of 

the LoxP site within intron 5 can explain why the Q215X1+ mice show a 

very mild phenotype compared to patients' clinical picture. In fact, 

recently in Dr. Wrabetz's lab, RNA obtained from skin biopsies taken 

from glabrous myelinated-tiber-containing surfaces of the finger and 

forearm of a patient carrying a Q215X de-novo mutation and from the 

mother as a control was extracted and retro-transcribed. By RT -PCR, a 

149 bp fragment extending from exon 4 to exon 6 was amplified using the 
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same primer pair on patient and control cDNA and on Q2I5X/+ mouse 

and WT cDNA. Contribution from the mutated and normal allele was 

evaluated with BsoFI digestion, since in both the human and mouse 

sequence context, the C to T transition abolishes a BsoFI restriction site. 

This analysis confirmed the reduced expression of the mutated allele in the 

mouse model, previously shown in the thesis, while in the patient the two 

alleles showed similar levels of expression. These data taken together with 

the ones, discussed in paragraph 3.1, demonstrating that the mutation itself 

was not able to induce any reduction in PO mRNA, strongly support our 

idea that the milder phenotype of our Q215X1+ mice, compared to 

patients' clinical picture, is due to the low expression of our transgene, 

carrying the LoxP in intron 5. 

During the last year, new techniques have been validated to create 

transgenic, knock-in and knock-out mice (Copeland et aI., 2001); in 

particular, the development of phage based homologous recombination 

systems made the generation of transgenic and knockout constructs 

simpler, enabling scientists to engineer large segments of genomic DNA, 

like those carried on bacterial artificial chromosomes (BACs) or PI 

artificial chromosomes (PACs) that replicate at low-copy number in 

Escherichia coli. This technicque, which takes advantage of phage 

recombination to perform genetic engineering, is called recombinogenic 

engineering or recombineering: it offers exciting opportunities to create 

mouse models of human disease and for gene therapy. The most important 

aspects of recombineering are that only short homology segments are 

required to direct the recombination, and recombination efficiency rates 

allow recombinants to be screened rather than selected. The fact that 

recombinants can be screened means that only one recombination step is 

required to create the desired modification. These plasmid and phage 

systems possess a high frequency of recombination, offering the 

possibility to manipulate the DNA without any drug selection. With this 

technique, virtually any kind of mutation can be engineered into a BAC in 

the absence of drug-selectable markers or of 10xP or FRT sites, the 

presence of which, as we have clearly seen in our Q215X mutant mice, 

can affect the function of the region of the BAC being studied. 
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4. MATERIALS AND METHODS 

4.1 Production of Targeting Vector 

The complete Mpz was cloned from a a A-DASH II mouse (129S2 strain) 

genomic DNA library, a generous gift from Andras Nagy (Mount Sinai 

Hospital, Toronto, Canada), and subcloned into pBluescript SKII 

(Stratagene, La Jolla, USA), in order to obtain the Mpzblue plasmid. To 

generate the Q215X targeting vector, a 2.6-kb BsrGI fragment, containing 

exons 2, 3, 4 and 5 and part of intron 5 was excised from Mpzblue, blunted 

and subcloned into blunt pBluescript (EcoRI digested and subsequently 

filled-in), to generate the plasmid SAwtblue. Polymerase chain reaction 

(PCR)-based, site-directed mutagenesis (Ho et al., 1989) was performed 

on an Ncol-EcoRV fragment of SAwtblue, in order to introduce the 

mutated eDNA sequence in exon 5. After sequence confim1ation, the 2.6-

kb SmaI-EcoRV mutated fragment was excised from the resulting plasmid 

(SAo2Isxblue) and subcloned into a SmaI digested pLOX plasmid (kind 

gift of Dr. P Orban), 5' to a floxed neo selection minigene present in 

pLOX, to obtain the plasmid SAo215XLOX. A 4-kb BsrGI-SalI fragment 

containing part of intron 5 exon 6 and flanking sequence was excised from 

Mpzblue and subcloned 3' to the floxed neo cassette, into SalI-BsrGI 

digested SAQ215XLOX, in order to generate a new plasmid termed 

SA+1I2LAQ215XLOX. Finally, to obtain the complete Targeting Vector, to 

be used for homologous recombination in ES cells, a 4-kb BsrGI fragment 

was excised from Mpzblue and subcloned into BsrGI digested 

SA+ 1I2LAQ215XLOX plasmid. The resulting TV Q215X plasmid was 

linearized using NotI endonuclease and electroporated into ES cells. In 

order to construct the TV wI for the generation of the control LoxP mouse, 

we used the same strategy, except that the 2.6 BsrGI fragment was not 

mutated. 
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4.2 Generation of recombinant embryonic stcm (ES) cells 

ES cells (TBV2 line - Corradi, 2003) were grown in Dulbecco's Modified 

Eagles Medium (DMEM) 15% fetal calf serum, 10-4 M B-mercaptoethanol 

(all from GIBCO Industries, Langley, OK, US), 2 mM L-Glutamine and 

107 Ulml LIF (CHEMICON Int.- Temecula, CA, US), on an embryonic 

fibroblast feeder layer previously inactivated with Mitomycin C. 

Electroporation and positive selection were performed as described 

(Joyner, 1993). Resistant colonies were picked after 8-10 days of selection. 

Genomic DNA was extracted from expanded clones, digested with HindUI 

and analyzed by Southern blotting at the 5' end of the recombinant locus 

(see Fig.lA for external probe). Homologous recombinant clones were 

analyzed at the 3' end by HindIU and BglII digestion and semi-quantitative 

Southern analysis, for copy number monitoring. Out of 168 ES clones 

screened, one scored positive for Q215XNEO homologous recombination 

and was propagated. 2 clones, out of 190, scored positive for LoxP 

homologous recombination and were propagated. The Q215XNEO 

positive clone was screened for the presence of the mutation by PCR 

analysis, using intron 4 and intron 5 specific primers (5'-

CCCTAGACTGCTTCAGTGGTGG-3 ' and 5'-

GGTCAGCCTTGGGCTTGAC-3' respectively), followed by restriction 

with BsoFI endonuclease (Fig.l C). PCR conditions were 95°C for 30s , 
55°C for 60s and 72°C for 30s (30 cycles), followed by 10 min extension 

at 72°C, in a standard PCR reaction mix. 

4.3 Generation of chimeric micc and germline transmission of the 

Mpz targeted allele 

All experiments perfonned on mice were conducted with appropriate 

anaesthesia, in accordance with experimental protocols approved by the 

Institutional Animal Care and Use Committee, San Raffaele Scientific 

Institute and the Italian ministry of Health. The targeted ES clones were 

injected into blastocysts derived from C57BLl6J females. The chimeric 
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embryos were then transferred into the uteri of 2.5 day pseudopregnant 

foster mothers. Chimeric males with 70-100% agouti color were bred by 

crossing with wild-type C57BLl6J females and germline transmission was 

identified by the presence of agouti offspring. Genotyping was carried out 

by multiplex PCR amplification with one primer in intron 4, another one 

in exon 6 and the third one on the neomycin minigene (respectively: 5'· 

CCCTAGACTGCTTCAGTGGTGG·3' , 

GGTGCTTCGGCTGTGGTCC·3 ' and 

5'· 

5'· 

CAATGACGACGCTGGGCGGGG·3'). PCR conditions were 95°C for 

60s, 68°C for 60s and 72°C for 120s (32 cycles), followed by 10 min 

extension at 72°C, in a standard PCR reaction mix. Heterozygous mice for 

the Q215XNEO allele were subsequently confirmed by Southern blotting 

using the 5' probe. In order to remove the neomycin minigene, we then 

crossed Q215XNEO heterozygous mice with transgenic mice expressing 

the Cre recombinase under control of the human cytomegalovirus minimal 

promoter (Schwenk et aI., 1995). We obtained neo negative, Q215X 

heterozygous mice, that were then crossed to homozygosity. Genotyping 

of these mice was carried out by PCR using intron 4 and exon 6 specific 

primers that flanked the remaining LoxP site in intron 5. Both Southern 

blot and PCR analyses were performed on genomic DNA prepared from 

tail samples (Sambrook et aI., 1985). Q215X heterozygous mice were then 

maintained by backcrosses to FVBIN mice (Charles River Lab.). Animals 

used for most experiments were congenic N 5 to NIl in FVBIN 

background. 

4.4 Western Blot Analysis 

Frozen sciatic nerves dissected from P28 Q215X heterozygous, 

homozygous and wild type mice were pulverized, sonicated in lysis buffer 

(95 mM NaCI, 25 mM Tris-HCI, pH 7.4, 10 mM EDTA, 2% SDS, and 

protease inhibitors), boiled for 5 min, and spun at 14,000 rpm in a 

microcentrifuge for 10 min at room temperature to eliminate insoluble 

material. The protein concentration in supernatants was determined by 
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BioRad protein assay according to the manufacturer's instructions. Equal 

amounts of homogenates (containing 2.5-10 Ilg of protein) were brought 

up to 5 III with 8 M urea, to which was added 5 III of 8 M urea, 0.05 M 

OTT, 1 %SOS, followed by 10 III of standard reducing sample buffer. The 

samples were denatured, resolved on a 14% SOS-polyacrylamide gel, and 

electroblotted onto PVOF membrane. To verify equal loading of protein, 

membranes were stained with amido black or ponceau red. Blots were then 

blocked with 0.05% Tween, 5% dry milk in PBS, and incubated with the 

appropriate antibody in 0.05% Tween and 1 % dry milk in PBS. Mouse 

mAbs recognized PO (P07, the generous gift of Dr. Juan Archelos, 

Department of Neurology, Karl-Franzens-Universitat, Graz, Austria; 

Archelos et al. 1993) and B-tubulin (Sigma Chemical Corporation, St. 

Louis, MO, US). Peroxidase-conjugated secondary antibodies (Sigma 

Chemical Corporation, St. Louis, MO, US) were visualized using the ECL 

method with autoradiography film (Amersham Biosciences AB, Uppsala, 

Sweden). The intensity of bands was quantified by densitometry, and the 

ratio of intensities for each myelin protein and B-tubulin was determined. 

For deglycosylation experiments with peptide N-glycosidase F (PNGaseF) 

and endoglycosidase H (EndoH), homogenates were digested per 

manufacturer's instructions (New England Biolabs, Beverly, MA) and 

visualized as described above. 

4.5 Semi-quantitative RT -peR 

Sciatic nerves were dissected from mutant and control littermates at the 

ages indicated (n=3 mice/genotype/time point). Total RNA was isolated 

using the triazol reagents (Boehringer Mannheim, Mannheim, Germany) 

with minor modification. Nerves were homogenized in the presence of 

triazol, extracted with chloroform and precipitated in the presence of 

tRNA. A portion (500 ng) of total RNA was reverse transcribed using 

Moloney Murine Leukaemia Virus reverse transcriptase and oligo dT 

primers (Promega Corporation, Madison, WI, US). For analysis in sciatic 
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nerves, equal volumes of the reverse-transcribed product from nerves of 

mutant and control mice were amplified using GAPDH-specific primers 

(5'-GTATGACTCTACCCACGG-3' and 5'

GTTCAGCTCTGGGATGAC-3') in the presence of alpha 32p_dCTP. PCR 

conditions were 95°C for 30s, 55°C for 60s and 72°C for 60s (30 cycles), 

followed by 10 min extension at 72°C, in a standard PCR reaction mix. 

Aliquots from the amplification were withdrawn at 22, 24 and 26 cycles, 

resolved on an acrylamide gel and visualized by autoradiography. The 

intensity of the bands was quantified by densitometry (Molecular 

Dynamics), to verify that amplification was logarithmic, and to determine 

the relative amount of starting cDNA from each sample. Equal amounts of 

RT product, as detem1ined by the GAPDH signal, were amplified using PO 

specific primers. Analysis of the products was conducted as for GAPDH. 

To analyse PO expression in LoxP and wild type mice, we exploited the 

exon 3 polymorphism using the RT-PCR method of Fiering et al. (1995), 

as described in Wrabetz et al. (2000). Briefly, 200 ng of total RNA was 

reverse transcribed, PCR amplification was performed as described above 

in the presence of alpha 32p_dCTP, using a single primer pair recognizing 

Po ex on 2 (5'-GTCCAGTGAATGGGTCTCAG-3') and exon 4 (5'

GCTCCCAACACCACCCCATA-3') that flank a polymorphic DpnII site 

present only in the C57BLl6J allele and not in 129S2Pas (the polymorphic 

BglII site spans the intron 2/exon 3 boundary, such that in the cDNA 

product, only its 4 nucleotide core, a DpnII site, remains). PCR conditions 

were 95°C for 30s, 63°C for 60s and 72°C for 60s (26 cycles), followed by 

10 min extension at 72°C, in a standard PCR reaction mix. To avoid the 

formation of heteroduplexes between the DpnII-containing and non

DpnII-containing products, only cycles in the logarithmic range were 

chosen. Two microlitres of RT-PCR product were digested with DpnII for 

60 min, phenol extracted, precipitated, resolved by acrylamide gel 

electrophoresis and visualized by autoradiography. The intensity of the 

bands was quantified by densitometry, and the ratio between DpnII

containing (from wild type mice) and non-DpnII-containing (from LoxP 

mice) products was calculated. The procedure described above was 

repeated three times to confirm reproducibility of the data presented. To . 
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analyse PO expression in Q215X mice, we took advantage of the BsoFI 

site that disappear when the C to T transition in exon 5 is present. We used 

the RT-PCR method of Fiering et al (1995) described above. We 

perfonned PCR amplification using a PO specific primer pair that flanks 

the Q215X mutation in exon 5 (in exon 4: 5'-

GGCAGGCTGCCCTGCAG-3' and in exon 6: 5'-

CTTCTCACTGGCAGCTTTGGTGC-3'), in the presence of 32p_dCTP. 

PCR conditions were 95°C for 30s, 63°C for 30s and noc for 30s (26 

cycles), followed by 7 min extension at noc, in a standard PCR reaction 

mix. The RT-PCR products were digested with BsoFI for 60 min, phenol 

extracted, precipitated, resolved by acrylamide gel electrophoresis and 

visualized by autoradiography. The intensity of the bands was quantified 

by densitometry, and the ratio between BsoFI-containing (from wild type 

Mpz allele) and non-BsoFI-containing (from Q215X allele) products was 

calculated. The procedure described above was repeated three times to 

confinn reproducibility of the data presented. 

4.6 Morphological Analysis 

Mutant and control littennates were sacrificed at the ages indicated and 

sciatic nerves were dissected. In most cases, semi-thin section and electron 

microscope analyses of sciatic nerves was perfonned as described in 

Quattrini et aI., 1996. For semi-thin analysis, a portion of the nerve was 

fixed in 2% buffered glutaraldehyde and post fixed in 1 % osmium 

tetroxide. After alcohol dehydration, these samples were embedded in 

Epon. Transverse sections (0.5-1 )..lm thick) were stained with toluidine 

blue and examined by light microscopy. Ultra-thin sections were stained 

with uranyl acetate and lead citrate and examined by electron microscopy. 

Morphometric features in electromicrographs were detennined using NIH 

ImageJ software (http://rsb.info.nih.gov/ijl). 
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4.7 Behavioral Analysis 

For Rotarod analysis, groups of PIO mutant and control littermates were 

placed on a round cylinder rotating first at 4 rotations per minute (rpm) 

and then accelerating at 7.2 rpm2 (Ugo Basile, VA, Italy). The animals 

were allowed to stay on the rod for a maximum of 900 s and the time of 

hold on the rotating rod was measured in subsequent trials (2 trials per day 

from PIO to PI2). Statistics was made using SigmaStat 3.0 software. 

4.8 Immunohistochemistry 

For cryosections, sciatic nerve segments from mutant and control animals 

were collected in PBS and either directly, or after overnight fixation in 4% 

paraformaldehyde in O. I M PBS at 4°C, cryoprotected in 20% sucrose, 

embedded in a.C.T. (Miles), and snap-frozen in liquid nitrogen. Indirect 

immunofluorescence was performed on 10-l1m thick cryosections fixed 

again in 4% paraformaldehyde in O.IM PBS for 4 min and in cold acetone 

for lOsee, rinsed twice in PBS, and blocked with 10% normal goat serum 

(Dako, Glostrup, Denmark), 1 % bovine serum albumin, 0.1 % Triton X-

100 and 0.05% sodium azide. Double staining was performed with a rabbit 

polyclonal Ab recognizing PO extracellular domain (a gift from Dr.D. 

Colman, Montreal Neurological Institute, Montreal, CA) and a 

monoclonal Ab recognizing the KDEL tetrapeptide at the carboxy

terminal sequences of ER-resident proteins (StressGen, Victoria, BC, 

Canada). Sections were then treated with FITC- or TRITC-conjugated 

secondary antibodies (Southern Biotechnology Associates, Inc., 

Birmingham, AL, US), and viewed with a fluorescence microscope. 
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4.9 Image Analysis 

Micrographs of morphological samples and radiographic films were 

digitalized using an AGF A Arcus 2 scanner and figures were prepared 

using Adobe ® Photoshop 7.0. 
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