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ABSTRACT 

The mechanisms by which individuals acquire immunity to malaria are poorly understood 

and although antibodies are thought to be central, evidence that specific anti-malarial 

antibodies are associated with protection from clinical episodes of malaria has been 

conflicting. 

I hypothesized that the breadth (number of important targets to which antibodies were 

made) and magnitude (antibody level measured in a random serum sample) of the 

antibody response were important predictors of protection from clinical malaria. I also 

investigated whether allele-specific antibodies protected children from developing clinical' 

episodes of malaria associated with parasites bearing homologous alleles. 

I analyzed naturally-acquired antibodies to five leading P.falciparum merozoite stage 

vaccine candidate antigens, and schizont extract, in Kenyan children monitored 

longitudinally for mild and severe malaria. I also genotyped parasites from clinical 

episodes to investigate allele-specific antibody-mediated immunity. 

Serum antibody levels to apical membrane antigen 1 (AMA1), and merozoite surface 

protein antigens (MSP-l block 2, MSP-2, MSP-3) were inversely related to the probability of 

developing malaria, but levels to MSP-119 and erythrocyte binding antigen (EBA-17S) were 

not. The risk of mild malaria was also inversely associated with increasing breadth of 

antibody specificities, with none of the children who simultaneously had high antibody 
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levels to five or more antigens experiencing a clinical episode, (17/119,15%) P=O.0006. 

Particular combinations of antibodies (AMA1, MSP-2, MSP-3) were more strongly 

predictive of protection than others. The results were validated in a larger, separate case

control study whose end-point was malaria severe enough to warrant hospital admission 

(n=387). I found little evidence that allele-specific antibodies conferred protection against 

clinical episodes associated with parasites bearing homologous alleles. 

These findings suggest that under natural exposure, immunity to malaria may .result from 

high titre antibodies to multiple antigenic targets and support the idea of testing 

combination blood stage vaccines optimized to induce similar antibody profiles. 
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THESIS OUTLINE 

I begin in Chapter one with a broad overview of the burden of malaria in the context of the 

global disease burden, before focusing on current malaria statistics and control strategies. 

I then review malaria vaccines in more detail as vaccines have historically provided the 

most cost-effective interventions in the long-term against infectious diseases. This is 

followed by a review of naturally-acquired immunity to malaria, the understanding of 

which is essential to the rational development of vaccines. 

In Chapter two I provide a comprehensive review of five leading malaria vaccine candidate 

antigens, MSP-1i9, MSP-l block 2, MSP-2, MSP-3 and AMA1. These antigens were the 

subject of my thesis. For each antigen I start from the beginning with antigen discovery, 

review the current understanding of antigen structure and processing, before critically 

reviewing the evidence that antibodies against the antigen playa role in providing 

protection from malaria. In particular I highlight reasons why data on these antigens from 

immuno-epidemiological studies has been conflicting using MSP-119 as an example. This 

sets the scene for the approaches used for my studies. 

In Chapter three I outline my objectives and detail the methodology including, the study 

cohorts, recombinant antigens, antibody and cellular assays, parasite genotyping and 

sequencing. I also explain the key parameters used in molecular population genetic 

analyses to allow the non-specialist reader to follow the logic of the analyses. 
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The experimental work begins in Chapter four where I test the hypothesis that the 

breadth of antibody specificity and the magnitude of the antibody response are key 

determinants of protection from clinical episodes of malaria. I develop the analytical tools 

using data from one cohort and then validate these tools in a separate group of children. I 

found that serum antibody levels to some but not all antigens were inversely related to the 

probability of developing malaria. The risk of disease was also inversely associated with 

increasing breadth of antibody specificities and particular combinations of antibodies 

(AMA1, MSP-2, MSP-3) were more strongly predictive of protection than others. 

Interestingly in this analysis, protection did not seem to depend on the allelic version of the 

antigen suggesting that there may be significant cross-allele protection to clinical episodes. 

This was investigated in more detail in chapter six. 

Chapter five is a sub-analysis exploring whether the quality and/or quantity of antibodies 

can distinguish children responding to a malaria challenge by developing mild disease (a 

more efficient response) or severe malaria (a less efficient response). Antibodies collected 

at the time of the clinical episode and at convalescence did not distinguish between these 

two groups of children. 

In Chapter six I investigate allele-specificity by determining whether pre-existing allele

specific antibodies protect against clinical episodes associated with parasites bearing the 

homologous parasite alleles. I used competition ELISA to dissect out antibodies to allele

specific epitopes and peR to genotype parasites, and found little evidence of allele-specific 

protection. 
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Alleles of AMAl do not cluster into major allelic families like the other antigens analyzed 

here and a different set of analyses were applied for this antigen. In Chapter seven I used 

several definitions of'haplotypes' of AMAl alleles to investigate whether particular alleles 

were over-represented among children presenting with mild or severe malaria, but found 

no evidence for this. 

In Chapter eight I used molecular population genetics analyses to identify regions of amal 

that were under balancing selection from alleles sequenced from Kenyan isolates. In 

agreement with previous studies, I identified a strong signature of balancing selection 

within domains I and III of the surface-exposed ectodomain. The signal of selection was 

strongest in domain III and I investigated whether this was immune-mediated by 

conducting humoral and cellular assays. As had been previously observed, I found little 

evidence of antibodies targeted to domain III. However, my preliminary study provides 

some evidence that T-cell responses may drive the selection observed in domain III and 

this will be pursued in comprehensive studies. 

Chapter nine briefly summarizes the key findings. 
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1. INTRODUCTION 

1.1 THE GLOBAL BURDEN OF DISEASE 

In high-income countries non-communicable diseases such as depressive disorders and 

cardiovascular diseases are the leading causes of morbidity and mortality, and mainly 

affect adults. In contrast, in low-income countries communicable diseases, perinatal 

conditions and malnutrition are largely responsible for the burden of morbidity and 

mortality, and apart from HIV / AIDS, these affect children predominantly. This translates to 

a high infant and childhood mortality with low-income countries accounting for over eighty 

percent of all global deaths in children under the age of five years. These deaths are largely 

attributable to preventable infectious diseases such as malaria, measles, pertussis, 

HIV / AIDS, pneumonia, diarrhoeal diseases and tetanus. In Sub-Saharan Africa (SSA), the 

three leading causes of disease are HIV / AIDS, lower respiratory tract infections and 

malaria, with each ofthese accounting for 17%, 10% and 8.5% of total disability-adjusted 

life years (DALY), respectively (Lopez and Mathers 2006) (Figure 1.1.1). Malaria deaths 

alone (excluding morbidity and disability) are responsible for almost 3% of the world's and 

greater than 10% of Africa's DALYs (Breman, Alilio et al. 2004). 

DALY: Disability Adjusted Life Years - the number of healthy years of life lost due to 

premature death and disability 
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Figure 1.1.1 The burden of disease 

The 10 leading causes of the burden of disease, measured in disability-adjusted life years 

(DALY) in sub-Saharan Africa in 2002 (DALY figures taken from Lopez 2006) 
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1.2 THE GLOBAL BURDEN OF MALARIA 

1.2.1 FACTS AND FIGURES 

Four species of Plasmodia are responsible for causing disease in humans and include P. 

malariae, P. ovale, P. vivax and P. Jalciparum. The most severe forms of malaria are caused 

by P. Jalciparum, and nearly one-third (2.5 billion people) of the worlds' population is 

exposed to this parasite. Estimates of the population at risk (PAR), which take into account 

the effects of human population density on malaria risk, indicate that South East Asia has 

the highest PAR with 1.25 billion people exposed to P.Jalciparum in 2005. This is followed 

by the African region where 500 million persons were exposed to P.Jalciparum during the 

same period. Other exposed populations include the Western Pacific (400 million), the 

Eastern Mediterranean (245 million), and South America (50 million) (Guerra, Snow et a1. 

2006). Although South East Asia has the highest population at risk of falciparum malaria, 

70% of disease episodes attributable to this parasite occur in Africa (Snow, Guerra et al. 

2005). The reasons are unclear but are likely to include environmental, as well as parasite 

and host factors. Notably, malaria deaths in Africa account for 86% of global malaria 

mortality with an estimated three million people dying each year (Breman, Alilio et al. 

2004). These figures are nearly three times higher than the World Health Organisation 

(WHO 2002) estimates because they take into account both the direct and indirect effects 

of malaria, long-term effects, as well as it's effect on enhancement of the severity of other 

childhood diseases. Malaria has extensive effects on health and has been shown to 

significantly increase all-cause mortality in children under the age of five years (Snow, 

Korenromp et al. 2004). 
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1.2.2 TRENDS IN MALARIA MORTALITY IN SUB-SAHARAN AFRICA 

At the turn of the 21st century, it was clear that malaria mortality in Africa was on the 

increase. The proportion of deaths attributable to malaria had risen from 18 - 37% in the 

preceding twenty years. Malaria mortality in East and Southern Africa was up from 6.5 per 

1000 child-years between 1982 and 1989 to 11.9 per 1000 child-years between 1990 and 

1998 (Korenromp, Williams et al. 2003). Concurrent declines in all-cause child mortality 

and non-malaria mortality, indicated that factors specific to malaria were responsible for 

this rise. Failing drug efficacy, (at that time chloroquine resistance) was widely believed to 

be the main explanation for the observed trends and continues to pose a significant threat 

to people living in malaria-endemic areas (White, Nosten et al. 1999). At present, anecdotal 

reports that the prevalence of malaria is declining in many parts of Africa are widespread, 

conceivably due to the intensified global efforts to control the disease. Published data on 

trends in malaria mortality since the year 2000 are scarce because of the time it takes to 

introduce interventions, scale-up and evaluate coverage, before finally assessing efficacy. 

Additionally, for effects on mortality to be detected, populations need to be exposed to 

interventions for a reasonable period of time (Rowe, Steketee et al. 2007). However, there 

is some indication that the anecdotal reports are true. Paediatric malaria admissions in 

three district hospitals along the Kenyan coast declined by as much as 63% between 

January 1999 and March 2007. Non-malaria paediatric admissions at the same time 

increased, or remained constant, showing that this decline was unique to malaria. The 

change was attributed to expansion in the coverage of interventions, such as the use of 

insecticide-treated bed nets and availability of anti-malarial medicines (Okiro, Hay et at 

2007). 
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1.2.3 MALARIA MORBIDITY 

The clinical effects of malaria are far-reaching and include acute clinical manifestations, 

with accompanying short- and long-term sequelae, as well the effects of chronic 

parasitization on health and productivity. More recently, co-existence of severe malaria and 

other serious co-morbidities in African children have become apparent (Berkley, 

Mwarumba et al. 1999) with the growing realization that malaria is an important risk 

factor for other childhood morbidities (Snow, Korenromp et al. 2004). Figure 1.2.1 

summarizes the major effects of acute and chronic malaria in children and pregnant 

women, many of which overlap. Malaria-induced anaemia causes more deaths than any of 

the other manifestations of the disease (Murphy and Breman 2001). Perinatal mortality 

rates in malaria-endemic areas are nearly three times higher than they are in non

malarious countries, even after controlling for socio-economic status (van Geertruyden, 

Thomas et al. 2004). The long term neuro-cognitive effects of severe malaria, including 

severe motor deficits, behavioral difficulties and epilepsy have been documented, with 

estimates indicating that between 1300 and 7800 children will develop neurologic 

sequelae following cerebral malaria each year in areas with stable endemic malaria 

(Mung'Ala-Odera, Snow et al. 2004). Pregnant women co-infected with HIV and malaria 

have consistently more peripheral and placental malaria, higher parasite densities, more 

febrile illnesses, severe anaemia, and adverse birth outcomes Oow birth weight, 

prematurity, intra uterine growth retardation) than HIV uninfected women (ter Kuile, 

Parise et al. 2004). 
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Figure 1.2.1 The consequences ofmalarla 

A summary of the maj or manifestations and consequences of acute and chronic malaria 

(Adapted from Breman 2004) 

1.2.4 ECONOMIC COSTS OF MALARIA 

Nations affected by malaria are the poorest in the world. The average gross domestic 

product (GDP) per capita in 1995 for countries affected by malaria was $1,526, compared 

to $8,268 in malaria-free countries. Economic growth in malarial countries is five times 

lower than that in malaria-free countries. At a national level, malaria reduces annual 

economic growth of African countries by 1.3% and is estimated to cost African 

governments $12 billion annually (Gallup and Sachs 2001). At the household level, direct 

and indirect costs of malarial illness ranged from 2 - 6% of household income across Africa 

and Asia. The poorest families are the hardest hit, and in the lowest socio-economic groups 

the average total cost burden is often catastrophic (defined as greater than 10% of annual 

income) (Russell 2004). It is a vicious cycle, with poverty causing disease, and disease 

causing poverty. 
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1.3 MALARIA CONTROL STRATEGIES 

1.3.1 TRANSMISSION DYNAMICS 

Malaria is transmitted through specific mosquitoes of the Anopheles species. The Anopheles 

gambiae complex and Anopheles Junestus are the most efficient vectors for P.falciparum 

and are widespread throughout tropical Africa, where warm temperatures, heavy rainfall 

and high humidity make ideal conditions for mosquito breeding. In order to interrupt 

transmission and thus eradicate malaria, the basic reproduction rate (Ro) - the number of 

infections transmitted in a non-immune population from each infected person - needs to be 

reduced to less than 1. However, the sigmoid relationship between Ro and malaria 

prevalence (Figure 1.3.1) means that in areas of high malaria transmission where Ro is 

high, large reductions in Ro lead to only modest declines in malaria prevalence. In contrast, 

in areas with intermediate to low transmission intensity, reductions in Ro lead to more 

substantial drops in malaria prevalence. This partly explains why eradication programs in 

SSA have been less successful than those in the areas with low to intermediate 

transmission (Walther and Walther 2007). Moreover, successful malaria eradication 

requires a well designed and managed health infrastructure at a regional level within 

countries, detailed logistical organization and financial resources to ensure sustainability 

(Beales and Gilles 2002), all of which are lacking in SSA. Consequently, more emphasis is 

currently placed on malaria control, as opposed to eradication. 
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Figure 1.3.1 Malaria prevalence and the basic reproduction rate 

The sigmoid relationship between malaria prevalence and basic reproduction rate eRo). 

Compared to areas with moderate to low malaria transmission, in areas with a high 

transmission intensity (and high Ro) show only modest reductions in malaria prevalence 

following large reductions in Ro. (Figure taken from Walther 2007) 

1.3.2 CURRENT MALARIA CONTROLS STRATEGIES IN AFRICA 

1.3.2.1 Insecticide treated bed nets (lTNs) 

The efficacy of ITNs in reducing severe and uncomplicated malaria, as well as all-cause 

childhood mortality in children under the age of five years is not in doubt (Lengeler 2004). 

Similar gains have been realized in pregnant women, with ITNs significantly reducing 

morbidity and adverse birth outcomes (Miller, Korenromp et al. 2007). In spite of this, ITN 

coverage in malaria endemic countries has been extremely low with the median proportion 

of children sleeping under an ITN being just 3% across 34 countries (WHO 2005). Cost has 
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been one of the main barriers to widespread ITN use with many arguing strongly for the 

free provision of bed nets to rural communities (Curtis, Maxwell et al. 2003; Roberts 2007), 

and others for 'social marketing' where advertising campaigns promote bed-net use and 

local manufacture is encouraged (Lines, Lengeler et al. 2003). In a recent study in Kenya, 

the benefit of providing free ITNs was clearly demonstrated. When ITNs were only 

available via the commercial sector, 7% of children under the age of five-years, across four 

districts in the country slept under ITNs. This improved to 24% when subsidized nets 

became increasingly available through government health clinics. Importantly, the largest 

increment in coverage of 66% was observed following a free ITN distribution campaign 

(Noor, Amin et al. 2007). Increased coverage translates to a reduction in mortality, with an 

estimated seven deaths averted for every 1000 ITNs distributed (Fegan, Noor et al. 2007). 

1.3.2.2 Indoor Residual Spraying (IRS) 

IRS has historically been successful mainly in areas oflow to moderate transmission, 

discrete, accessible communities such as islands and refugee camps, as well as in 

epidemics. In Africa pilot projects undertaken to eradicate malaria between the 1950s and 

1970s demonstrated that it was possible to reduce but not to interrupt transmission in 

high transmission areas. To-date, although the WHO recommends its widespread use, 

including in high transmission areas, few African countries have taken up IRS (WHO 2006). 

Challenges include funding, sustainability and infrastructure necessary for this tool to be 

effective in high malaria transmission areas (Kolaczinski, Kolaczinski et al. 2007), not to 

mention environmental concerns regarding the use of chemicals such as dichloro-diphenyl

trichloroethane (DDT)(Rogan and Chen 2005). 

38 



1.3.2.3 Malaria Treatment 

1.3.2.3.1 Home treatment of fevers 

For most sick children in Africa, treatment begins at home with shop-bought brand name 

drugs, often with incorrect or sub-optimal dosing regimens (Marsh, Mutemi et a1. 1999). 

This realization has prompted efforts to train local mother co-ordinators (Kidane and 

Morrow 2000), or shopkeepers (Marsh, Mutemi et a1. 1999) to teach mothers how to 

correctly administer anti-malaria medications. In Kenya, the shopkeeper training program 

that was initiated in Kilifi district was found to be highly effective in terms of cost per DALY 

averted (Goodman, Mutemi et a1. 2006), and has since been successfully implemented in 

several other districts within the country (Ahuya, unpublished). 

1.3.2.3.2 Hospital treatment of fevers 

For sick children arriving at health facilities in SSA, the WHO has introduced the Integrated 

Management of Childhood Diseases (lMCI). This is a strategy for integrated case 

management of the five most important causes of childhood mortality; acute respiratory 

infections, malaria, measles, diarrhoeal disease and malnutrition (Nicoll 2000). It also 

includes prompt referral of children with danger signs, which is particularly important for 

malaria where most deaths occur within the first 24 hours of arriving to hospital (ldro, 

Aketch et a1. 2006). Recognition and treatment of other serious childhood infections that 

co-exist with severe malaria will also lead to improved case management (Berkley, 

Mwarumba et a1. 1999). 
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1.3.2.3.3 Intermittent preventative treatment 

Intermittent preventative treatment (lPT), where a therapeutic course of an anti-malarial 

drug is administered at pre-determined intervals regardless of infection, is a promising 

option for malaria control. It is effective in reducing both the maternal and foetal adverse 

outcomes that arise due to malaria in pregnancy (Shulman, Dorman et al. 1999; ter Kuile, 

van Eijk et al. 2007). Similarly in infants, IPT appears to be effective although its protective 

efficacy estimates against clinical malaria (22% to 63%) vary considerably in the studies 

reported to date (Munday 2007). Few studies have reported the effects of IPT in older 

children but even in this age-group, it appears that IPT will be of benefit with a protective 

efficacy against clinical malaria of up to 83% (Cisse, Sokhna et al. 2006; Greenwood 2006). 

The main challenges facing the widespread use of IPT are the choice of drug, the 

development of resistance (discussed below) and the uncertain effects that IPT in infants 

and children may have on the development of natural immunity, particularly given that the 

mechanism(s) by which it prevents malaria are not fully understood (Munday 2007). 

1.3.2.3.4 Anti-malarial drug resistance 

Wherever anti-malarial drugs are administered, either as prophylaxis or for treatment, or 

for the treatment of bed-nets, drug resistance continues to be a major challenge. It arises 

and spreads by the evolutionary selection of spontaneously arising mutants that are drug

insensitive. At the molecular level, the principal mechanism employed by P. Jalciparum 

appears to be point mutations in genes that directly affect drug binding or transport with 

consequent changes in drug accumulation or efflux within the erythrocyte, or reduced drug 

affinity for the target molecule (Hyde 2007). The understanding ofthe molecular basis of 
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drug resistance is facilitating the rational development of new drugs, and enabling the 

engineering of older ones to regain their efficacy (Nzila 2006). Resistance to chloroquine is 

widely blamed for the rise in malaria mortality that was seen in SSA in the 1980's and 

1990's. Resistance to sulphadoxine-pyrimethamine, which replaced chloroquine in many 

countries in SSA spread even faster (Sibley, Hyde et al. 2001). Recommended first-line 

treatments in most countries are currently based on combination therapies, to help delay 

or prevent resistance. These usually include a rapidly acting drug (quinine or artemisinin) 

and a slower acting drug that often has a different mechanism of action Oumefantrine, 

tetracycline) (WHO 2005). However, many argue that resistance will inevitably develop 

even to artemisin-based combination therapies (ACTs) whose use is currently widely 

promoted (Duffy and Sibley 2005; Hastings and Ward 2005). One of the major concerns is 

the over-diagnosis of malaria in endemic countries which is not surprising, as they 

commonly lack basic laboratory facilities and equipment (Makani, Matuja et al. 2003; 

Reyburn, Mbatia et al. 2004). Presumptive treatment of all acute childhood fevers with an 

anti-malarial in areas of high malaria endemicity as recommended by the WHO 

unfortunately, further compounds this problem (Hastings, Korenromp et al. 2007). 

1.3.2.4 Environmental management 

Larval control aims to reduce malaria transmission indirectly by reducing the vector 

population density near human habitations. It includes environmental modification 

(drainage, land leveling and filling), environmental manipulation (changes to the aquatic 

environments in which larvae develop, including chemical and biological larvicides) and 

modification of human habitations or behaviors. Although it is a well proven preventive 
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method, it is not currently being implemented in most of SSA. Major issues include a 

paucity of information about the distribution and behavior of vector larvae which varies 

between species and even within different populations of the same species, the wide range 

of larval habitats and an upsurge of human activities leading to an increase in human-made 

breeding habitats particularly in growing urban centres, around dams and irrigations sites 

A recent review highlighted the substantial gaps in the scientific literature, both in control 

of malaria vector larvae and on the larval ecology of African vectors, information critically 

needed for designing effective control programs based on these approaches. Nevertherless, 

the limited research indicates that interventions against larval anophelines are beneficial in 

SSA, particularly when implemented hand in hand with other control tools targeting adult 

mosquito vectors (Walker and Lynch 2007). 

1.3.2.5 Initiatives to combat malaria 

Over the past twenty years there has been a proliferation of international, multi-lateral 

initiatives to co-ordinate and consolidate the efforts to control malaria. Roll Back Malaria 

(RBM) was launched by the WHO, World Bank, the United Nations Children's Fund and 

other partners and aims to reduce the malaria burden in halfby 2010 mainly through 

treatment and prevention strategies. The Global Fund aims to fight AIDS, Tuberculosis and 

Malaria and to reduce poverty. The Multilateral Initiative on Malaria (MIM) was created to 

promote greater research and leadership in Africa through capacity building and the 

facilitation of global collaboration. Medicines for Malaria Venture (MMV) is a private

public partnership whose goal is to develop at least one new affordable anti-malarial drug 

or drug combination. The Malaria Vaccine Initiative (MVI) speeds up the development of 
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promising malaria vaccine candidates. The African Malaria Network (AMANET) focuses 

on regional training and organization of clinical and vaccine trials within the continent. 

These, and other partnerships against malaria not mentioned here reflect the growing 

global commitment to significantly reduce the burden of malaria (Alilio, Bygbjerg et al. 

2004). 

1.4 MALARIA VACCINES 

1.4.1 INTRODUCTION 

Vaccines are the most effective, cost-effective and logistically feasible public health 

interventions against infectious diseases (Andre 2003). This is exemplified by the 

eradication of small pox, the near-eradication of polio, and the achievements of the 

Expanded Program of Immunization (EPI) in resource-poor countries (Ada 2005). 

Immunization is currently estimated to save the lives of three million children every year 

(Andre 2003). Although an increased number of tools for the control of malaria are now 

available, the majority of these are at best, partially effective and require substantial 

training and resources to implement at national levels (Greenwood and Mutabingwa 2002). 

Many malaria control experts argue that effective vaccination against malaria is in fact, the 

only realistic long-term solution for resource-poor countries (Tongren, Zavala et al. 2004). 

To date, in spite of many years of dedicated and high quality research, there is still no 

effective malaria vaccine but optimism that it is "just round the corner" remains high. Most 

efforts to develop a malaria vaccine are focused on P. Jalciparum (Figure 1.4.1) as it is 

responsible the most severe forms of the disease. The belief that it will be possible to 
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develop an effective vaccine for malaria stems from three principal observations. First, 

complete protection against experimental sporozoite challenge has been achieved in 

rodents (Nussenzweig, Vanderberg et al. 1967), non-human primates (Collins and Contacos 

1972) and humans (Clyde, Most et al. 1973; Hoffman, Goh et al. 2002). Second, individuals 

living in endemic areas naturally acquire non-sterile immunity to malaria in which they are 

protected from severe illness and death, while remaining susceptible to infection (Marsh 

1992). Third, in classic experiments, passively transferred antibodies from malaria 

'immune' individuals were effectively used to treat both children and adults with severe 

malaria (Cohen, McGregor et al. 1961; McGregor and Carrington 1963; Sabchareon, 

Burnouf et al. 1991). In spite of this compelling evidence that an effective malaria vaccine 

should be possible, numerous challenges need to be overcome. The parasite expresses 

over 5500 proteins, many of which are stage specific, vary between parasite 'strains', and 

even within a single 'strain' through antigenic variation. Protective immunity is poorly 

understood and may be mediated by different immune mechanisms at different points in 

the life cycle. To further compound matters, the host response to the parasite is extremely 

variable, with manifestations ranging from asymptomatic infection and mild clinical 

episodes to severe, life threatening disease and death. The factors governing this range of 

outcomes are not well understood but undoubtedly include both parasite and host 

determinants. These challenges notwithstanding, two main strategies for malaria vaccine 

development are currently being pursued, largely in parallel; the sub-unit approach and the 

whole organism approach. 
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1.4.2 SUB-UNIT VACCINES 

The rationale behind these vaccines includes the ability to block the molecular interactions 

(eg receptor-ligand binding) that are known to occur between the host and parasite, for 

example, during invasion of hepatocytes and erythrocytes by sporozoites and merozoites, 

respectively. It also includes the ability of single antigens to induce protective cell- or 

antibody-mediated immune responses. For example, antibodies that block the binding of 

merozoite surface proteins (MSPs) which mediate invasion of red blood cells could halt the 

proliferation of blood stage parasites, thereby preventing disease. Sub-unit vaccines can be 

made up of single or multiple antigens, and can target a single stage of parasite 

development or target multiple stages. Alternatively, they can be designed as multi-epitope 

vaccines, containing a string of immuno-dominant epitopes from a combination of antigens. 

Stage-specific vaccines can be classified as pre-erythrocytic, erythrocytic and sexual-stage 

based on the antigens they contain. This classification provides a logical approach to 

vaccine design though in reality it is increasingly clear from studies of the parasite genome, 

transcriptome and proteome, that many antigens are expressed in multiple stages (Florens, 

Washburn et al. 2002; Hall, Karras et a!. 2005) . 
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1.4.2.1 Pre-erythrocytic vaccines 

A pre-erythrocytic vaccine aims to completely prevent blood stage infection by blocking 

the invasion ofhepatocytes by sporozoites, and/or preventing liver stage parasites from 

developing to maturity. This would be an ideal vaccine, preventing clinical symptoms that 

are generated by blood stage parasites, as well as disease transmission, in effect creating 

"sterile immunity" which is rarely, if ever, observed in nature. Research in this area came 

to the fore by serendipity. P. gallinaceum sporozoites from a carton of infected mosquitoes 

that had been left under ultra-violet (UV) light lost their infectivity to chickens but induced 

strong protection against subsequent challenge with virulent sporozoites (reviewed in 

(Druilhe and Barnwell 2007)). Although challenges remain, it is now well established both 

in mice and humans that immunization with radiation-attenuated sporozoites confers 

sterile protection against subsequent challenge with infectious sporozoites (Nussenzweig, 
l.. 

Vanderberg et al. 1967; Hoffman, Goh et al. 2002). The mechanisms by which .. his 

protection is achieved are not completely understood but have been shown to involve cells 

(primarily non-cytolytic CD8+ T cells, but also CD4+ and yo T cells), cytokines (principally 

IFN-y, but also other others), antibodies and free oxygen radicals (Doolan and Martinez-

Alier 2006). Similarly, the target(s) of immune responses at this stage are not well 

elucidated and in theory could be sporozoites, intra-hepatic paraSites, or both. 

Transcriptome and proteome analyses of P. !a!ciparum indicate that there are numerous 

proteins expressed in the pre-erythrocytic stages (Florens, Washburn et al. 2002; Hall, 

Karras et al. 2005). The majority of these proteins have yet to be studied in detail but 

nonetheless, they could all be potential targets of protective immune responses. This fact 

was well illustrated when 16 of 27 putative P. falciparum proteins identified by 
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multidimensional protein identification technology (MudPIT) were recognized variably by 

antibodies in sera from volunteers immunized with irradiated sporozoites (Doolan, 

Southwood et al. 2003). Nevertheless, the best characterized antigens to-date include the 

circumsporozoite protein (CSP) which coats the sporozoite (also the first malaria antigen 

to be identified and cloned) (Ozaki, Svec et al. 1983) and the liver stage antigen 1 (LSA-l) 

which is expressed in the hepatic stages (Guerin-Marchand, Druilhe et al. 1987). 

Of all the sub-unit pre-erythrocytic vaccine candidates currently under development 

(Figure 1.4.1), the one based on the CSP shows the most promise. In the RTS,S/AS02 

vaccine, the central tandem (aparagine-alanine-asparagine-proline, NANP) repeat and 

carboxy-terminal regions of CSP are fused to the S antigen of hepatitis B virus (HBsAg) and 

co-expressed in yeast with un-fused HBsAg. The resulting complex is formulated with the 

-
adjuvant AS02 (GlaxoSmithKline Biologicals) which contains an oil-in-water emulsion and 

immuno-stimulants. In phase IIa trials, RTS,S had a protective efficacy of 41 % (95% 

confidence interval (CI) 22-56%, p = 0.0006) against experimental sporozoite challenge of 

malaria-naive volunteers (Kester, McKinney et al. 2001). In a phase lIb trial in Gambian 

adults, it had a modest protective efficacy against time to first infection of 34% (95% CI 8-

53%), though this protection appeared to be short-lived (Bojang, Milligan et al. 2001). 

In African children however, the results of both phase I and lIb trials have been 

incrementally encouraging. In this population, RTS,S has been shown to be safe, well-

tolerated and immunogenic both in older children aged 1-4 years (Alonso, Sacarlal et al. 

2004; Bojang, Olodude et al. 2005; Macete, Aponte et al. 2007; Macete, Sacarlal et al. 2007) 
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and in infants (Aponte, Aide et al. 2007). Although its reported vaccine efficacy against 

clinical disease has been modest (30-35%), its protective efficacy against severe disease 

has been substantial and sustained, 58% (95% CI 16-81%) at 6 months, 49% (95% CI 12-

71 %) at 18 months (Alonso, Sacarlal et al. 2004; Alonso, Sacarlal et a1. 2005). Large-scale, 

multi-centre phase III trials are now planned (Bojang 2006). 

Some are skeptical about RTS,S, in part because its precise mechanism of action remains 

unclear (Snounou, Gruner et a1. 2005; Druilhe and Barnwell 2007). While there is evidence 

that it induces high levels ofIFN-y producing CD8+ (non-cytolytic) and CD4+ T cells, as well 

as antibodies, particularly in the presence of key adjuvants, these immune responses have 

not consistently correlated with protection (Lalvani, Moris et al. 1999; Sun, Schwenk et al. 

2003). Others have shown using transgenic parasites that sterile protection against 

malaria can be obtained independently of immune responses to CSP. Mice immunized with 

irradiated wild type P. berghei were completely protected against challenge with parasites 

in which P. berghei CSP had been replaced with that of P. Jalciparum, a result which could 

not be accounted for by cross-reactivity of responses to CSP (Gruner, Mauduit et al. 2007). 

From a separate viewpoint, unlike other malaria vaccine candidates, there is little evidence 

that immune pressure from the human host has driven the polymorphisms observed in CSP 

in natural infections (Kumkhaek, Phra-Ek et al. 2005; Weedall, Preston et a1. 2007), neither 

is there evidence that RTS,S-induced immune responses select for parasites bearing 

divergent CSP alleles (as opposed to those contained in the vaccine) as might have been 

anticipated (Enosse, Dobano et al. 2006). These reports not-withstanding, there is little 
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doubt that RTS,S has provided the most promising results of any malaria vaccine trial 

conducted in the field to date. 

1.4.2.2 Erythrocytic stage vaccines 

Clinical symptoms of malaria manifest during the blood-stage of the infection when the 

asexual-stage parasites multiply exponentially within red blood cells. Erythrocytic or 

blood-stage vaccines therefore aim to prevent disease or to reduce the severity or 

complications of disease, including death. They are predominantly being developed for 

children and pregnant women living in malaria-endemic areas. The cornerstone of 

research on blood-stage vaccines is the demonstration that the passive transfer of 

antibodies from semi-immune adults in malaria-endemic areas to malaria-infected patients 

resulted in both clinical and parasitogical resolution of the disease, both in children and 

adults (Cohen, McGregor et a!. 1961; McGregor and Carrington 1963; Sabchareon, Burnouf 

et a!. 1991). Neither the mechanism(s), nor the target(s) of these 'protective' antibodies 

have been conclusively demonstrated, although many have been proposed (reviewed in 

(Marsh and Kinyanjui 2006; Schofield and Mueller 2006)). Two leading mechanisms 

include the inhibition or blocking of obligate receptor-ligand interactions, such as are 

required for merozoite invasion (Cowman and Crabb 2006), and antibody-dependent 

cellular inhibition (ADCI), in which antibodies mediate their inhibitory effects in 

conjunction with other immune effector cells (Bouharoun-Tayoun, Attanath et a!. 1990). 

Potential antibody targets are numerous, and include merozoites (or merozoite proteins 

involved in red cell invasion) (Cowman and Crabb 2006), as well as parasite-derived 

proteins located on the erythrocyte surface (Bull, Lowe et a!. 2002). 
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Many erythrocytic-stage vaccines are currently under development (Figure 1.4.1). The 

furthest along the line of vaccine development are based on MSP-1, -2, -3, apical 

membrane antigen 1 (AMA-1) and glutamate rich protein (GLURP) (Genton and Reed 

2007). The first field trial of an asexual blood-stage vaccine was that of the Combination B 

vaccine, which contains MSP-1 (a 175 amino acid fragment from the relatively conserved 

blocks 3 and 4 of the K1 parasite line), MSP-2 (the 307 allelic type, nearly full length 

protein), CSP (a T cell epitope), and the ring-infected erythrocyte surface antigen (RESA, 

containing 70% of the native protein from the C terminal end of the molecule). In a phase 

1-2b trial, 120 children in Papua New Guinea were randomized to receive either vaccine or 

placebo. The 60 children in each arm were further randomized into two equal groups, one 

with pre-treatment with sulphadoxine-pyrimethamine (SP) to clear parasites at the start 

ofthe study (n= 30), and the other to no-SP treatment (n=30). Although this vaccine had no 

effect on clinical disease, parasite densities were lower in the vaccine group compared to 

the placebo group (vaccine efficacy 62% (95% CI 13 - 84)), but only in children who were 

not pre-treated with SP (n=30). Interestingly, during the follow up period (weeks 8 to 76 

post vaccination), compared to the placebo-group, symptomatic episodes in this sub-group 

ofvacinees were more likely to be caused by parasites bearing the FC-27 allele ofMSP-2 (as 

opposed to the 307 allele contained in the vaccine). Fifteen (15) children in the vaccine 

group had parasites bearing the FC-27 MSP-2 alleles, compared to 8 children in the placebo 

group. Eleven (11) children in the vaccine group had parasites bearing 307 MSP-2 alleles 

compared to 7 in the placebo group. Clearly, the sample sizes in this study preclude the 

drawing of any firm conclusions from the data. No such differences were observed in the 

vaccinated but SP- pre-treated group (n=30). Based on these results, the authors 
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concluded that the MSP-2 component of the vaccine had a specific effect on parasite growth 

and multiplication, and moreover had induced selection pressure on the parasites (Genton, 

Betuela et al. 2002). In the same study, high 3D7-specific antibody titres were obtained 

post vaccination in both the SP and No-SP pre-treatment groups, casting doubt on the 

mechanism by which vaccine-induced antibodies reduced parasite densities only in the 

latter group (Fluck, Smith et al. 2004). Although widely quoted, this combination B vaccine 

study provides remarkably weak evidence in support of arguments to include the major 

allelic types of antigens in blood-stage malaria vaccines. 

At present, in endemic countries, the most advanced malaria vaccines have entered phase I 

and II clinical trials in multi-centre studies. These are based primarily on pre-erythrocytic 

or erythrocytic stage antigens, singly, or in combination. The map of Africa below (Figure 

1.4.2) shows the countries in which malaria vaccine trials are currently being conducted, 

or recently completed, as listed in the worldwide registry of clinical trials 

(http://www.clinicaltrials.gov). Although at least thirty one different trials can be counted, 

the actual vaccines are comprised of two pre-erythrocytic antigens (CSP and ME-TRAP), 

and three erythrocytic antigens (AMA1, MSP-3 and GLURP), administered on different 

platforms, with different adjuvants, in semi-immune adults, or in infants and children. 
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Figure 1.4.2 Phase I and II malaria vaccine trials in Africa 

Malaria-endemic countries in which Phase I and II malaria vaccine trials are being 

conducted. Colors indicate the countries, while numbers indicate the number of trials 

being conducted in those countries. Adapted from http://www.clinicaltrials.gov. 
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1.4.2.3 Sexual stage vaccines 

In contrast to the pre-erythrocytic and erythrocytic stages, sexual-stage vaccines aim to 

block malaria transmission from infected hosts, thereby providing a herd benefit for future 

exposed populations. They would be targeted to people of all ages, particularly in areas 

with relatively low malaria transmission, as part of long-term, integrated malaria control 

programs. The concept of transmission blocking vaccines began with the observation that 

chickens immunized with P. gallinaceum gametocytes generated antibodies that failed to 

kill circulating gametocytes within the host but efficiently eliminated parasite gametes in 

the mosquito following a blood meal (reviewed in (Saul 2007)). Targets of such antibodies 

include Pfs 48/45 and Pfs 230 which are expressed by the parasite while within the 

vertebrate host and also exposed on the free-living gamete. As with other stages of the 

parasite life cycle, genomic information will lead to the identification of many new potential 

vaccine candidates (Florens, Washburn et al. 2002). The only published study on 

transmission blocking vaccines in humans has been conducted for P. vivax malaria, where 

vaccine induced antibodies to Pvs25 (a protein found on the surface of ookinetes) induced 

significant transmission blocking activity as detected by the membrane feeding assay 

(Malkin, Durbin et al. 2005). 

1.4.2.4 Multi-stage, multi-component vaccines 

Vaccines combining several key antigens from multiple stages would have the potential to 

interrupt the life cycle of the parasite at multiple points. In a mUlti-antigen, multi-stage 

vaccine for instance, parasites that survived the range of immune responses induced by 

pre-erythocytic antigens, would then have to contend with those induced by blood stage 
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antigens. The different antigens could be selected to target discrete pathways essential to 

parasite survival within each stage, and ideally induce both antibody- and cell-mediated 

immunity. In addition, the antigens could be sufficiently diverse to overcome the genetic 

restriction of the host immune response and polymorphism of critical target epitopes. 

While attractive conceptually, few human trials with multi-stage, multi-component 

vaccines have actually been performed. 

The first synthetic malaria vaccine (SPf66) to be tested in malaria-endemic areas contained 

mUltiple components from both the pre-erythrocytic and erythrocytic stages of P. 

Jalciparum (Patarroyo, Romero et al. 1987). Despite initial promise, a recent meta-analysis 

of ten trials conducted in malaria-endemic areas found no evidence of protection conferred 

by vaccination with SPf66 (Graves and Gelband 2006). Of the many lessons that could be 

learned from the 'failure' of Spf66 (Snounou and Renia 2007), perhaps the most important 

is the need to understand the mechanism(s) by which future vaccines exert their anti

malarial effects. Improvements to Spf66 were precluded in part, by a lack of understanding 

of its' mode of action (Gilbert and Hill 1998). Indeed, vaccine induced total IgG antibodies 

to Spf66 did not correlate with the ability of sera to inhibit growth, or with partial clinical 

protection (Ferreira 1996). 

In a separate attempt, vaccination with NYVAC-Pf7, a pox-vectored malaria vaccine that 

contained seven antigens from all three stages of the parasite life cycle within the human 

host (CSP, PfSSP2, LSA1, SERA, AMA1, Pfs25), also yielded disappointing results when 

volunteers were challenged (Ockenhouse, Sun et al. 1998). Potential explanations include; 
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the emphasis of the investigators on the induction of pre-erythrocytic cell-mediated 

immunity, the ethical constraints of the study design, precluding the investigation of blood

stage immunity, and probably a poor combination of antigens, delivered SUb-optimally. 

This is an area that needs further study and development 

1.4.3 WHOLE ORGANISM VACCINES 

The whole organism vaccine approach shares the same foundations as the pre-erythrocytic 

vaccines ie, the demonstration of sterile immunity following immunization with radiation

attenuated sporozoites. In early studies in humans, this was achieved by a lengthy and 

potentially dangerous process. Volunteers were infected with P.falciparum and were 

treated with doses of chloroquine sufficient to suppress but not eradicate the parasites. 

Gametocytes were allowed to develop and then mosquitoes were fed on the volunteers 

(Clyde, Most et a!. 1973). This approach was Simplified with the advent of methods to 

culture P. falciparum in vitro (Trager and Jensen 1976), produce gametocytes in culture 

(Campbell, Collins et a1. 1982) and infect mosquitoes from in vitro gametocyte cultures 

(Chulay, Schneider et a!. 1986). More recent studies have confirmed that the method works 

in principle, but requires 1000 or more infective mosquito bites, making it logistically 

impractical to implement on a large-scale (Hoffman, Goh et a!. 2002). Live sporozoites have 

to be used for immunization as the induction and maintenance of protective immune 

responses depends upon the presence of viable, but developmentally arrested liver stage 

parasites (Scheller and Azad 1995). As such, irradiation of sporozoites has to be carefully 

and reproducibly titrated, to allow effective immunity to develop, without permitting 

break-through parasites that could lead to potentially lethal infections (Mellouk, Lunel et a!. 
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1990). A further limitation is the inability to define the effects of irradiation at a molecular 

level, to ensure that the vaccine contained well defined parasites. Remarkably many of 

these logistic and technical challenges are being overcome and efforts to develop radiation

attenuated sporozoites that can be practically administered, produced in sufficient 

quantities and meet regulatory, potency and safety requirements (Luke and Hoffman 2003) 

are coming to fruition, with human trials with attenuated sporozoites planned in the 2009. 

An alternative strategy for the whole organism approach is the use of genetically

attenuated parasites. In place of radiation, genetic engineering is used to attenuate 

sporozoites such that they remain viable, are able to infect hepatocytes, but unable to 

develop into mature pre-erythrocytic forms. Importantly, this can be reproduced 

consistently and in a standardized fashion. In a mouse model infected with P. berghei, 

inactivation of liver-stage specific genes, u/S3 and UIS4 (up-regulated in infective 

sporozoites) or the sporozoite-specific gene P36p, render parasites incapable of 

completing their intra-hepatic development, but induce immune responses that confer 

sterile protection when challenged with wild type infectious sporozoites (Mueller, Camargo 

et a1. 2005; Mueller, Labaied et al. 2005; van Dijk, Douradinha et al. 2005). The immune 

mechanisms underlying this protection continue to be elucidated, with early studies 

conducted in immune-deficient mice indicating that adaptive T and B cells, as well as 

interferon-y may be important (Mueller, Deckert et a!. 2007). 
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1.4.4 THE CHALLENGES 

It is clear that numerous hurdles lie ahead for malaria vaccine development, both for sub

unit vaccine, as well as whole organism vaccines. The situation is not made easier by the 

poor understanding ofthe mechanisms underlying naturally acquired immunity, which 

could strategically inform vaccine design and guide vaccine improvement (Marsh and 

Kinyanjui 2006). The lack of relevant animal models in which to dissect out protective 

immunity is an additional setback Immune mechanisms in mice and primate models of 

malaria do not reliably generalize to the human immune system (Druilhe 1997). The lack 

of immune correlates of protection means that candidates for vaccine development are 

selected on the basis of supportive data rather than formal evidence of a protective role in 

humans, and protective efficacy will only truly be established in vaccine trials in malaria

endemic countries. 

1.5 NATURALLY ACQUIRED IMMUNITY TO MALARIA 

1.5.1 DEFINING IMMUNITY TO MALARIA 

In populations continuously exposed to malaria, several types or levels of immunity against 

P. Jalciparum co-exist Immunity to severe and life threatening clinical episodes (including 

cerebral malaria, severe anaemia, metabolic acidosis, and other severe manifestations) is 

observed in older children and adults, is acquired relatively early (usually complete by the 

age of five years), and lasts for life (Marsh 1992; Baird 1995). Immunity to mild clinical 

episodes takes longer to establish. Young adults remain susceptible often until their 

middle to late twenties. Sterile immunity to infection with parasites is rarely, if ever, 
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observed. Indeed, the prevalence of P. Jalciparum parasitaemia increases steeply in early 

childhood, remaining high for a period of time after, immunity to severe and mild disease is 

well established (Figure 1.5.1). Thus, the expression of the acquisition of immunity 

appears to be sequential, with the ability to limit parasite growth and multiplication, 

followed by essentially complete protection against severe and then mild clinical disease, 

and culminating with partial protection against infection. Of particular interest are children 

under the age of five years, who paradoxically are at risk of severe disease and death 

caused by malaria parasites, while at the same time, able to harbo~ large numbers of 

parasites without showing any obvious symptoms (Baird 1998; Marsh and Kinyanjui 

2006). It is not immediately apparent from these epidemiological descriptions whether the 

children who proceed from asymptomatic infection, through mild to severe and life

threatening malaria are a distinct sub-set of a larger pool of children who are able to 

control their parasites or whether in-fact, under similar environmental conditions, all 

children under five years of age are equally at risk of clinical episodes. , 
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Figure 1.5.1 Population indices of immunity to malaria 

50 

Population indices of immunity to malaria, taken from representative studies conducted in 

Kilifi, Kenya. The age pattern of asymptomatic parasite prevalence and the period 

prevalence of both severe and mild clinical malaria are shown in relation to maximum ia 

prevalence. Immunity to severe malara is established at a time when asymptomatic 

parasite prevalence is rising and susceptibility to mild malaria is constant (Taken from 

Marsh 2006). 
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1.5.2 MEASURING IMMUNITY TO MALARIA 

The first point in any discussion of immunity must be the definition of the outcome against 

which this immunity is directed. Infection with malaria ranges from being asymptomatic, 

to mild febrile episodes, through to severe and life-threatening clinical disease. However, 

for any of the possible 'outcomes' or 'end-points' of infection with malaria parasites, there 

are no robust immune correlates of protection. Two fundamental issues contribute to this. 

The first relates to the identification of individuals that are 'protected' from any given 

outcome. The standard approach used to identify protective immune responses involves 

longitudinal monitoring of cohorts in malaria endemic areas for defined periods of time, to 

identify those that are protected (Marsh, Otoo et al. 1989). Logistical and financial 

constraints often dictate that such studies are conducted for limited periods oftime. 

Immune responses detected against the malaria antigen of interest are then compared 

using a wide range of statistical analytical strategies, among protected and susceptible 

individuals, "during the period of observation". Such studies have often produced 

conflicting results when repeated in different malaria endemic populations, as illustrated 

by studies of the effect of antibodies to the best characterized merozoite surface protein, 

MSP-h9. Antibodies to this antigen have been associated with protection in some studies, 

but not in others (Riley, Allen et al. 1992; Hogh, Marbiah et al. 1995; al-Yam an, Genton et al. 

1996; Egan, Morris et al. 1996; Branch, Udhayakumar et al. 1998; Dodoo, Theander et al. 

1999; Conway, Cavanagh et a1. 2000; Cavanagh, Dodoo et al. 2004; Perraut, Marrama et a1. 

2005). The key limitation of this approach is that it introduces a misclassification bias at 

several levels, leading to an underestimation of the potential protective effects of 

antibodies. First, individuals protected during follow-up could actually have been 
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identified as susceptible, had the period of observation been longer. Second, it is never 

absolutely certain that each person identified as protected, was actually challenged during 

the observation period. Third is the fact that most assays are conducted at a single time 

point, and do not take into :iccount the ability of individuals to respond had they been 

challenged, termed 'immune-responsiveness' (Marsh and Kinyanjui 2006). This effect is 

well demonstrated, especially for antibody responses to malaria antigens, where the 

proportion of responders and antibody amounts are consistently higher in individuals who 

were parasitaemic at the time the serum sample was collected, even though individuals 

probably move frequently between being parasitized and non parasitized (Muller, Fruh et 

al. 1989; Fruh, Doumbo et al. 1991; Tolle, Fruh et al. 1993; Polley, Mwangi et al. 2004; 

Polley, Conway et al. 2006; Osier, Polley et al. 2007). 

The other fundamental problem is the poor understanding of how immunity to any given 

outcome of malaria is acquired in nature. Assuming that protected and susceptible 

individuals for a particular outcome had been indisputably identified, what measure of 

immunity should then be made? What are the mechanisms that lead to protective 

immunity? Are there different mechanisms for the range of clinical outcomes, and are they 

detectable at any given time? Do the same mechanisms that operate in adults, similarly 

function in children? Why are children who are susceptible to death from severe malaria 

nevertheless able to asymptomatically tolerate much higher parasite burdens compared to 

adults in the same area? What role does continuous exposure to diverse malaria parasites 

and other infections have on these mechanisms? Do the mechanisms vary under different 

intensities of malaria transmission? The rest of the discussion will review what we know, 
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or think we know, about the key mechanisms underlying natural acquired immunity to 

malaria. 

1.5.3 HUMORAL IMMUNITY AGAINST MALARIA 

1.5.3.1 Key evidence 

The central evidence for the role of antibodies in mediating protection to malaria is that 

obtained from studies on the passive transfer of immune antibodies (discussed above). 

These studies are often interpreted as demonstrating that immunity (prevention of the 

unfavorable outcomes that could arise from infection with malaria parasites) can be 

passively transferred. This principle of the passive transfer of antibodies is supported by 

epidemiological observations that infants born to mothers in malaria-endemic areas are 

protected in the first few months of life (Brabin 1990), even though the evidence that this 

protection is antibody-mediated is weak. Placentally transferred malaria specific 

antibodies were associated with a lower risk of clinical disease in only one of four studies 

(Hogh, Marbiah et al. 1995; Achidi, Salimonu et a1. 1996; Kitua, Urassa et al. 1999; Riley, 

Wagner et al. 2000), and with a lower risk of infection in one small study where twenty 

infants were monitored longitudinally (Branch, Udhayakumar et al. 1998). It is often 

overlooked that what the passive transfer studies actually did show is the therapeutic 

ability of immune antibodies. This is an important distinction, as the recipients of the 

immune sera were never challenged with malaria parasites at that time. It is conceivable 

that the mechanisms responsible for preventing disease in the first place, are distinct from 

those involved in controlling already established disease. This does not however exclude 

the possibility that antibodies mediate protection in both directions, ie preventing disease 
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and controlling established pathological disease processes. It is unknown whether 

passively transferred immune antibodies would prevent disease in proven susceptible 

individuals upon challenge. Another fact often overlooked is that the doses of human 

immunoglobulin that were required to achieve control of the disease and infection were 

massive (approximately half the total circulating immunoglobulin pool of the recipient), 

which might imply that immune adults actually have low titres of protective antibodies 

(Cohen, McGregor et aI. 1961). Additionally, there is some evidence that this protective 

effect was not limited to anti-malarial antibodies per se. In experiments that attempted to 

dissect out the properties of 'protective antibodies', in comparison to serum that was pre

absorbed with a mixture of malaria antigens, non-absorbed sera was more effective at 

inhibiting parasites, as measured by reduced leucine incorporation, a finding the authors 

reported but did not discuss (Cohen and Butcher 1970). 

1.5.3.2 Potential mechanisms and supporting data from studies in malaria-endemic 

areas 

1.5.3.2.1 Invasion-inhibition 

The concept that antibodies could inhibit invasion has its origins in the work that followed 

on from the passive transfer experiments. In one of these follow-on studies (Cohen and 

Butcher 1970), it was observed that immune serum had no effect on the growth of intra

erythrocytic parasites but inhibited growth at the time of merozoite release. P. knowles; 

cultures in the presence of immune or normal serum (controls) were started at the 

trophozoite or early schizont stage and growth was monitored by the inhibition of uptake 

of labelled leucine. Neither immune, nor normal serum had any effect on parasite growth 

64 



before schizogony. In both groups, leucine uptake remained constant during schizogony. 

After schizogony, leucine uptake remained constant or decreased gradually in adequate 

concentrations of immune serum, while it increased in a linear fashion in cultures 

maintained in normal serum. The authors proposed that in vitro immune serum somehow 

neutralized parasites but could not directly demonstrate how this was achieved (Cohen 

and Butcher 1970). This neutralization effect of immune serum was lost when univalent 

Fab + Fc antibody fragments were used, but retained with bivalent F(ab)2, leading them to 

postulate, as was later demonstrated (Miller, Aikawa et a1. 1975), that antibody mediated 

agglutination of merozoites was a probable immune mechanism in vivo (Cohen and Butcher 

1970). 

With the advent of monoclonal antibodies (mAbs), it became possible to directly 

demonstrate that certain mAbs significantly reduced invasion (Freeman, Trejdosiewicz et 

a1. 1980; Epstein, Miller et a1. 1981), raising this as another potential mechanism for the 

'neutralization effect' of immune antibodies. Interestingly, to-date, complete blockage of 

invasion has not been demonstrated using antibodies to a range of malaria antigens 

thought to be targets of invasion-inhibiting antibodies and therefore malaria vaccine 

candidates (Deans, Alderson et a1. 1982; Epping. Goldstone et al. 1988; Clark, Donachie et 

a1. 1989; Blackman, Heidrich et al. 1990; Sim, Orlandi et al. 1990; Locher, Tam et al. 1996). 

The same phenomenon (reduction, as opposed to abrogation of invasion/parasite growth) 

was also observed in the studies by Cohen et al. on the properties of protective antibodies, 

and was found to be dose dependent (Cohen and Butcher 1970; Cohen and Butcher 1970). 

However, even in the highest serum concentrations tested, the inhibition ofleucine uptake 
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was never absolute, and declined gradually, suggesting that some parasites were still viable 

(Cohen and Butcher 1970). A parallel observation can be made in the passive immune

antibody transfer studies where total eradication of parasites was never achieved, in spite 

of repeated treatments (Cohen, McGregor et al. 1961; Sabchareon, Bumouf et al. 1991). 

At present, numerous proteins located on, or associated with, the merozoite surface, or 

found within its apical organelles are thought to be involved in invasion, and are therefore 

potential malaria vaccine candidates. Key evidence often quoted for each of these antigens 

is the demonstration that monoclonal or affinity purified antibodies against the specific 

targets inhibit (reduce) invasion (Deans, Alderson et al. 1982; Epping, Goldstone et al. 

1988; Clark, Donachie et al. 1989; Blackman, Heidrich et al. 1990; Sim, Orlandi et al. 1990; 

Locher, Tam et al. 1996). Interestingly, attempts to disrupt many of these genes, 

individually, have revealed a remarkable redundancy in merozoite-invasion pathways 

(Cowman, Baldi et al. 2002; Cowman and Crabb 2006). Furthermore, invasion-inhibition 

assays performed using sera from malaria immune adults, have consistently demonstrated 

wide variability (0-100%) in the ability of individual sera to inhibit invasion of a specific 

isolate, and variability even within a given sera against a range oflaboratory or field 

isolates (Brown, Anders et al. 1983; Singh, Ho et al. 1988). If a particular threshold of 

protective antibodies is required to provide immunity, it may be expected from the 

epidemiology of malaria that all immune adults would have achieved this threshold, and 

thus, one would expect the majority, ifnot all, sera to inhibit invasion ofa wide range of 

parasite strains. It is possible that methodological limitations in assays of invasion

inhibition may account for some of these discrepancies, and efforts are underway to 
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address these (Persson, Lee et at 2006). Nevertheless, this brings into the question the 

importance of invasion-inhibition as a mechanism for natural immunity. While it appears 

to be logical, given our understanding of the parasite life-cycle, and we can demonstrate it 

to varying degrees in vitro, to date, there is little evidence that it correlates with immunity 

against any outcome of malaria infection in vivo. 

1.5.3.2.2 Antibody-dependent cellular inhibition (ADCI) 

Work in this area is partly fuelled by the inability to reproduce the in vivo findings from the 

passive immune antibody transfer experiments in vitro. On the one hand, passively 

transferred immune antibodies significantly reduced parasitaemia and alleviated clinical 

symptoms in patients with malaria (Cohen, McGregor et a1. 1961; Sabchareon, Burnouf et 

at 1991), on the other, in vitro invasion-inhibition by sera from malaria immune adults is 

highly variable, some sera have no effect in the assay, others differ considerably in their 

invasion-inhibition ability, while others somewhat counter-intuitively, appear to promote 

parasite growth (Phillips, Trigg et a1. 1972; Mitchell, Butcher et at 1976; Wilson and 

Phillips 1976; Brown and Smalley 1981; Shi, Udhayakumar et a1. 1999). 

In ADCI, antibodies exert their inhibitory effects, not in isolation, but in conjunction with 

monocytes (Khusmith and Druilhe 1982; Khusmith, Druilhe et a1. 1982; Khusmith and 

Druilhe 1983). In a typical assay, parasite growth is compared in cultures containing 

immune sera with or without monocytes, and similarly, in non-immune sera, with or 

without monocytes. In the first description of this assay, effective inhibition of parasite 

growth was observed consistently only with the combination of immune serum and 
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monocytes, and was thought to be mediated via the Fc portion of immune antibodies. 

Monocytes phagocytosed mainly merozoites, as opposed to schizont-infected erythrocytes, 

and this increased with crude measures of increasing levels of immunity (Khusmith, 

Druilhe et a1. 1982). The targets of antibodies that are able to inhibit parasite growth by 

ADCI have since been identified, and at present include MSP-3 (Oeuvray, Bouharoun

Tayoun et a1. 1994), GLURP (Theisen, Soe et a1. 1998), and SERP (serine repeat protein) 

(Soe, Singh et a1. 2002), and in all these studies, the in vitro assays have correlated with 

either being susceptible or immune to clinical attacks of malaria. In spite of this, several 

unrelated groups have tried to reproduce the ADCI assay with unsatisfactory results 

(Rzepczyk, Lopez et al. 1988; Shi, Udhayakumar et al. 1999; Tebo, Kremsner et al. 2001). 

One reason for this is the fact that it is a tedious assay, requiring meticulous calibration of 

culture conditions, and therefore unusually prone to operator error. A particular issue 

highlighted in these studies (Shi, Udhayakumar et a1. 1999; Tebo, Kremsner et a1. 2001) and 

often discussed by malaria researchers, is the heterogeneity of anti-parasitic activity in 

monocytes from individual donors. 

1.5.3.2.3 Adhesion-inhibitory antibodies 

Unlike other human malarias, P. !alciparum has the unique ability to modify the surface of 

infected red cells, enabling the parasite to cytoadhere (stick) to a range of cells, including 

endothelial cells, cells from the syncytiotrophoblast, P.falciparum infected, and non

infected erythrocytes. Cytoadherence is thought to contribute directly and indirectly, to 

many of the severe clinical manifestations of P. !alciparum infection, that are not observed 

in the other human malarias (reviewed in (Miller, Baruch et a1. 2002; Mackintosh, Beeson 
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et al. 2004)). Cytoadherence is mediated by parasite proteins that are inserted onto the 

surface of infected erythrocytes by maturing parasites and collectively referred to as 

variant surface antigens (VSAs), because they are encoded by multigene families and 

undergo clonal antigenic variation. The best characterized VSA is PfEMP-1 (P.falciparum 

erythrocyte membrane protein 1) which binds to a wide range of host receptors, such as 

ICAM-1 (intra-cellular adhesion membrane protein 1), thereby contributing to disease 

pathogenesis (Deitsch and Hviid 2004). VSAs are key players in host immune evasion, 

maintaining chronic infections through clonal antigenic variation (Brown and Brown 1965; 

Butcher and Cohen 1972). At the same time, they are thought to contribute significantly to 

the pathogenesis of severe malaria, largely but not only, due to cytoadherence. Not 

surprisingly, they are also thought to be the key targets of protective antibody responses, 

which would reasonably be presumed to 'block' cytoadherence, amongst other functions 

(Hviid 2005). However, although antibodies to VSAs can be readily demonstrated in 

residents of malaria-endemic areas, and even correlated with immune status (Marsh and 

Howard 1986; Bull, Lowe et al. 1998), experiments to demonstrate their mechanisms of 

action have not yielded consistent results. 

In a model of cytoadhesion, P. falciparum trophozoite and schizont infected red blood cells 

can unquestionably be shown to 'stick' to endothelial cells of various origins, including 

those taken from humans (Udeinya, Schmidt et al. 1981; Schmidt, Udeinya et al. 1982). 

This cytoadherence can be inhibited, and even reversed by homologous immune serum 

(Udeinya, Schmidt et al. 1981; David, Hommel et al. 1983). In an experiment that yielded 

dramatic and exciting results, immune serum was transferred into two Saimiri sciureus 
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monkeys infected with a strain of P. Jaldparum that had been adapted to the squirrel 

monkey. Prior to the administration of immune serum, few trophozoite- or schizont

infected erythrocytes were seen in the peripheral blood. However, in concordance with the 

in vitro melanoma cell binding assay (MBCA), this number increased sharply within 

minutes of receiving intra-venous immune serum and only declined gradually after the first 

half hour (David, Hommel et al. 1983), raising expectations that the same effects could be 

observed in humans with cerebral malaria (thought to be caused partly by sequestration, 

as a result of cytoadherence in small capillary beds in the brain). However, when human 

immune sera were tested in the MeBA, widely varying results were obtained. Briefly, a 

minority (21 %) of sera showed significant inhibition of cytoadherence to at least one of 

five parasite strains tested, the majority of which had high titre antibodies (11/12), but 

overall, the majority of sera (36/47) containing high titre antibodies showed no significant 

adhesion inhibitory/reversal activity (Singh, Ho et al. 1988). This situation is reminiscent 

of the studies on invasion-inhibitory antibodies in immune sera from endemic populations. 

1.5.3.2.4 Summary 

Only the key or leading mechanisms thought to underlie naturally acquired immunity have 

been reviewed here, and this is by no means comprehensive. Nevertheless, a common 

theme emerges, which is, while antibodies to a range of parasite targets can often (not 

always) be demonstrated to be present, and in high titres in immune compared to non

immune individuals, the mechanisms by which they are proposed to mediate protection 

have not yielded consistent results, particularly when tested in residents of malaria 

endemic regions. Hence the lack of immune correlates of protection stems in-part, from the 
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inability to reproducibly marry immune mechanisms demonstrable in vitro, with levels of 

immunity observed in vivo. 

1.5.4 CELLULAR RESPONSES AGAINST MALARIA 

1.5.4.1 Key evidence 

Apart from the fact that T cells are absolutely essential for the switch of antibodies from the 

IgM to IgG isotype, and therefore contribute directly to the effects of antibodies, the best 

direct evidence that T cells are important for protection in malaria comes from 

experiments in murine models of malaria. These experiments established that under 

certain conditions, it was possible for protective immunity against malaria to develop in 

the absence of antibodies. In the first of these studies (Grun and Weidanz 1983), the 

development of B-cells was inhibited using repeated doses of specific antiserum (anti-~) 

which leads to a severe B-cell deficiency. The "~-suppressed" mice were then actively 

immunized using intravenous or intraperitoneal injections of parasitized erythrocytes from 

a range of Plasmodial species, (P.yoelii, P. vinckei, P. berghe;, and P. chabaudO, and the 

course of infection compared with that in control 'intact' mice (not "~-suppressed"). In "~

suppressed" mice antibody-independent immunity was demonstrated against re-infection, 

but only with homologous parasites and under certain conditions. First, following initial 

challenge, the mice had to be treated with sub-curative doses of clindamycin, as the 

protective immunity depended on the presence of chronic low grade parasitaemia. Second, 

protection depended not only on the genotype of the mouse, but also on the infecting 

species of plasmodia (i.e. protection was observed in mice of a particular genetic 

background and not others, and with some, but not all the species of Plasmodia tested). 
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Furthermore, in chronically infected mice, challenge with parasites from heterologous 

species produced variable results, with protection being observed for some combinations, 

and not others. The tables below adapted from Grun 1983, summarize the results of these 

experiments. 

Table 1.S.1 Outcome ofinfection In B-ceU deficient mice oftbe same genetic 
background 

Infecting plasmodial Host Immune status Outcome ofinfection 

species (mice) 

P.yoelii Intact Non-lethal 
B-cell deficient Uniformly lethal 

P. berghei Intact Delayed death 
B-cell deficient Early death 

P. chabaudi 
Intact Non-lethal 

B-cell deficient Non-lethal 

P. vinckei 
Intact Lethal 

B-cell deficient Lethal 

In mice of the same genetic background, varying levels of B-cell independent immunity 

were observed with some (P. chabaudi, P. vinckeI), but not all (P.yoelii, P. bergheI) 

plasmodial species. 
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Table I.S.2 Proportion ofB-cell deficient mice of different genetic backgrounds 
surviving following homologous challenge 

Infecting Mlce(%) Mice (%) Mlce(%) 

plasmodial strain CS7BL/l0 (CS7BL/l0 x BALB/c) Fl BALB/c 

P.yoelii 100% 35% 80% 

P. chabaudi 10% 0% 3% 
.. 

The proportions of B-cell deficient mice SUrvIvmg homologous challenge varied, depending 

on the genetic background of the mice. 

Table I.S.3 Specificity of antibody-Independent Immunity to malaria In B-cell 
deficient mice of the same genetic background 

Infecting Challenge with: 

species P.yoelii P. chabaudi P.berghei P. vinckel 

P.yoe/ii Resistant Resistant Resistant Acute infection* 

P. chabaudi Death Resistant Death Resistant 

P. vinckei Death Resistant Death Resistant 

Chronically infected mice were challenged with parasites from heterologous species and 

the course of infection monitored. * Mice developed significant parasitaemia but survived 

acute infection. 

Although protective immunity could be achieved under these conditions, the mice were 

unable to completely eliminate parasites and instead developed chronic relapsing 

parasitaemias (Grun and Weidanz 1983). These observations were subsequently 

confirmed in mice genetically incapable of making B cells (van der Heyde, Huszar et al. 
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1994; von der Weid, Honarvar et al. 1996). Further clear evidence comes from separate 

experiments in which protective immunity that had been induced by sporozoite 

immunization could be passed on to naive mice, by the adoptive transfer of splenic cells 

and not serum. This protection was lost if splenic cells were depleted ofT cells in vitro, 

prior to adoptive transfer, demonstrating that immunity was T cell dependent (Spitalny, 

Verhave et al. 1977). More recently, the adoptive transfer of immune T cells into naive mice 

protected against malaria in the absence of antibodies (Egan, Weber et al. 1987). 

Although it is accepted that no single mouse model replicates all the features of human 

malarias either in terms of pathology or immune responses (Stevenson and Riley 2004), 

(Druilhe 1997), this approach nevertheless allows for a dissection of immune responses 

and mechanisms in studies that are impossible to conduct in humans, and may shed light 

on processes common to both hosts. While this section aims to briefly review key aspects 

of naturally-acquired cell mediated immune mechanisms against malaria in humans, it is 

impossible not to discuss murine and rodent malarias, as well as P.falciparum sporozoite 

challenge experiments in humans, because what is currently understood in humans has its 

foundations in these experiments. 

1.5.4.2 Potential mechanisms and supporting data from studies in malaria endemic 

areas 

1.5.4.2.1 CD4+ T-cell mediated mechanisms 

Clear evidence for the protective role of parasite-specific CD4+ T cells in murine malaria is 

the demonstration that they can provide protective immunity when adoptively transferred 
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to reconstituted nude mice or those with severe combined immune deficiency (SCID) 

(Brake, Long et a1. 1988; Taylor-Robinson, Phillips et a1. 1993; Amante and Good 1997). 

These studies were conducted in mice of different genetic backgrounds, used different 

species of Plasmodia, and injected infected erythrocytes intravenously or intra

peritoneally. As such, as discussed previously, the studies may have limited relevance to 

humans naturally infected with P. Jalciparum malaria. Furthermore, although protection 

was clearly achieved, the mechanisms underlying it are unclear since the animals were 

challenged with live blood stage parasites, yet red cells do not express the major 

histocompatibility (MHC) antigens and the targets of the protective T-cells remain 

unknown. However, at present, based on these and other studies mainly on murine 

malaria, a generally accepted model for antibody-independent CD4+ T-cell mediated 

parasite killing has been developed, and is illustrated in Figure 1.5.2. Dendritic cells (DCs) 

present parasite antigens to CD4+ T cells in the spleen, activating them to promote 

phagocytosis by macrophages, and/or to produce effector molecules (tumor necrosis factor 

a (TNF-a), gamma interferon (IFN-y), oxygen and nitric oxide radicals) that in addition to 

promoting phagocytosis, also facilitate the killing of parasites within erythrocytes 

(reviewed in (Good 2001)). 

In humans however, the role of CD4+ T -cells in immunity to malaria is less well 

understood. T-cells from both exposed and non-exposed donors proliferate and secrete 

IFN-y in response to a range of malaria antigens in vitro, including those from the pre

eryrthrocytic, as well as those from erythrocytic stages (Zevering, Amante et a1. 1992; Good 

1994), (Ndungu, Sanni et a1. 2006). Potential explanations for this include, mitogenic or 
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superantigenic activation by malaria parasites (Ballet, Druilhe et a1. 1981), cross-reactive 

epitopes shared with other organisms (Currier, Sattabongkot et a1. 1992) and, the 

engagement ofT-cell receptor independent mechanisms (Ndungu, Sanni et a1. 2006). The 

responses to the pre-erythrocytic antigens are the best studied, in this regard. CD4 + T 

cells that recognize multiple pre-erythrocytic antigens are present in sporozoite immune 

human volunteers and semi-immune residents from Kenya and the Irian Jaya (Doolan, 

Southwood et a1. 2000). The frequency and magnitude of these T helper responses 

depended on the intensity of exposure to P. Jalciparum sporozoites (Doolan, Southwood et 

a1. 2000). However, until recently, there has been little evidence to suggest that these play 

an important role in providing protection in humans. Although studies have reported 

higher frequencies of lympho-proliferative CD4 + T cell responses to specific malaria 

antigens (CSP) in individuals protected from malaria compared to those who are not 

(Hoffman, Oster et a1. 1989), such cells are not cytolytic, and no specific correlation exists 

between proliferation and induction of cytokines that may mediate protection. Indeed, in a 

study ofT-cell effector functions against PfCSP in malaria-exposed individuals, it was found 

that although responses assayed by the ex-vivo IFN-y ELIspot, cultured IFN-y ELIspot and 

lymphoproliferation assay were predominantly CD4+ T cell mediated, they were not 

correlated as might have been expected for any given peptide, resulting in the conclusion 

that each assay identified unique effector mechanisms (Flanagan, Lee et a1. 2001). Perhaps 

the most credible evidence that CD4+ T cells are important in mediating naturally acquired 

immunity comes from the study of Reece et al. (Reece, Pinder et a1. 20041 where the 

cultured ELIspot assay was used to detect IFN-y secreting, central memory type CD4 + T 
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cells in response to a conserved sequence from PfCSP. The presence of such cells was 

strongly predictive of protection from infection and disease. 

Finally, in a comprehensive review of data from children, adults, pregnant women and 

neonates, infection with the human immunodeficiency virus (HIV / AIDS) was found to have 

had less impact on human malaria than might have been anticipated given the 

epidemiological overlap of the two diseases and the fact that HIV causes low CD4+ T-cell 

counts (Butcher 2005). This is in contrast to mice where, early studies demonstrated 

clearly that T-cell depletion resulted in high and prolonged parasitaemias, and often led to 

fatal severe anaemia (Brown, Allison et a1. 1968). 
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Figure 1.5.2 Antibody-independent cell-mediated immunity 

Proposed mechanism of action of antibody-independent cell-mediated immunity, occurring 

mainly in the spleen. C04+ T cells are activated by mature dendritic cells leading to 

macrophage activation, phagocytosis of parasitized erythrocytes, secretion of cytokines 

and other inflammatory mediators. IFN-y, interferon-v, IL-12, interleukin-12, MHC II, major 

histocompatibility complex class II, TCR, T cell receptor, TNF-a, tumor necrosis factor-a. 

(Good 2001) 
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1.5.4.2.2 CD8+ T-cell mediated mechanisms 

The best evidence for CD8+ T-cell mediated immunity against malaria comes from the 

sporozoite challenge experiments in rodent malaria models. The protective immunity that 

was obtained following radiation-attenuated sporozoites was lost when CD8+ T-cells were 

depleted in vivo. In these studies, protection was neither abrogated by the depletion of 

CD4+ T cells, nor affected by anti-sporozoite antibody titres, thus implicating CD8+ T cells 

as the critical effector cells (Schofield, Villaquiran et at 1987; Weiss, Sedegah et al. 1988). 

It was subsequently demonstrated that CD8+ T-cell clones raised against specific epitopes 

within the CSP protein conferred high levels of species- and stage-specific protection 

against sporozoite challenge when adoptively transferred into naive mice (reviewed in 

(Hafalla, Cockburn et al. 2006)). 

In humans, there is no direct evidence that CD8+ T-cells provide or contribute to protective 

immunity. Specific CD8 + T cells, particularly those to pre-erythrocytic stage antigens 

including, CSP, TRAP /SSP2, LSA1, and Exp-1 have been detected in humans either 

following immunization with radiation attenuated sporozoites, or following natural 

exposure (reviewed in (Doolan and Martinez-Alier 2006). However, the mere presence of 

malaria specific CD8+ T cells is not an indication that they have a role to play in providing 

protective immunity against malaria (Doolan and Martinez-Alier 2006), (HafalIa, Cockburn 

et at 2006). Nevertheless, association studies conducted in malaria endemic areas, as well 

as human challenge experiments with radiation attenuated sporozoites suggest that they 

may be important For example, the presence of parasite-specific CD8+ T -cells has been 

indirectly (via HLA-B53) associated with protection from severe malaria in Gambian 
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children (Hill, Allsopp et al. 1991). Interestingly, this association was not observed when a 

similiar study was performed in a different malaria-endemic region (Yate 1994, 

unpublished). CD8+ T cells responses to certain peptides of Pf LSA-1 have been associated 

with protection from clinical episodes of malaria in a longitudinal study Oohn, Moormann 

et al. 2004). In the attenuated P.falciparum sporozoite challenge experiments, where 

humans were immunized with thousands of infected mosquitoes, the frequency and 

magnitude of CD8+ T cells was higher than that found in naturally exposed subjects who 

are usually immunized with ten to a hundred fold fewer sporozoites (Doolan and Hoffman 

1997). The precise mechanisms by which CD8+ T -cells inhibit the growth of liver stage 

parasites are incompletely understood, but are thought to be mediated by the production 

ofIFN-Y (Doolan and Hoffman 2000). 

1.5.4.2.3 Cell-mediated immunoregulatory mechanisms 

Immunoregulatory mechanisms ensure that invading pathogens are controlled or cleared 

with minimal damage to the host, a process often described as immune tolerance. 

Regulatory T cells (Tr) which may be naturally occurring or produced in response to 

specific stimuli are the key immunoregulators. The major subsets ofTr cells include; type 

1 Tr cells (Tr1) which produce high amounts ofinterleukin-10 (IL-10) and low to moderate 

levels of transforming growth factor ~ (TGF-~); type 3 (Th3) which mainly secrete TGF-~, 

and the C04+C025+ T cells which inhibit immune responses through cell to cell contact 

(McGuirk and Mills 2002). In malaria, the roles of IL-10 and TGF-J3 in immunoregulation 

have been described as essential in mice, through experiments in which these cytokines are 

neutralized in vivo, or using mice that have the genes for the respective cytokines knocked 
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out Lack of these cytokines results in increased pathology in vivo, which has been shown 

to be mediated by an excess of pro-inflammatory cytokines (Riley, Wahl et a!. 2006). In 

both mice and humans, it is thought the variable outcomes of malaria infection are partly as 

a result of a delicate balance between pro- and anti- inflammatory cytokines (Artavanis

Tsakonas, Tongren et a1. 2003). Severe manifestations of malaria have been associated 

with imbalances between pro- and anti- inflammatory cytokines (Day, Hien et a!. 1999; 

Perkins, Weinberg et a!. 2000), while clinical immunity is associated with down-regulated 

pro-inflammatory cytokine responses (Rhee, Akanmori et a!. 2001). 

1.5.4.2.4 Summary 

Unlike antibodies which are relatively easy to study for a variety of reasons, not least that 

they are often abundant and readily accessible in peripheral blood, the study of cell

mediated immunity poses significant practical challenges. The most important cellular 

interactions occur in secondary lymphoid organs which are not accessible and cannot 

really be studied in humans infected with malaria. However, data from murine models 

suggest that although immune-effector cell populations are found at frustratingly low 

frequencies in the peripheral circulation, they are largely representative of processes in 

secondary lymphoid organs (Eunice Nduati, Phd thesis). Perhaps even more important is 

the complex interplay between cells involved in mediating protective immunity, the 

balance between the host of pro- and anti-inflammatory cytokines through which they act, 

the remarkable redundancy of various cells and cytokines in mediating their functions and 

finally the regulatory mechanisms that limit host damage. These interactions appear to be 

intricately linked and tightly regulated, and it is therefore challenging to dissect out the 
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roles of each individual molecule, and caution must be exercised in interpreting and 

drawing conclusions from such data. 

1.5.5 INNATE DEFENCES AGAINST MALARIA 

1.5.5.1 Key evidence 

The role of the innate immune system in controlling infections by pathogens has gained 

prominence in recent years, with the grOwing acceptance of the fact that this arm of 

immunity was not completely non-specific as previously thought, but in-fact, able to 

discriminate between self and a variety of pathogens (Akira 2007). In malaria, more 

attention has understandably been paid to acquired immunity, and research into innate 

mechanisms that might contribute significantly to the rapid control of a malaria infection, 

early in the pathogenesis of disease, is only beginning in earnest (Stevenson 2004). In 

children, there is growing evidence that malaria impairs the innate mechanisms that would 

not only prevent or control the acute episode but also those required for effective 

'instruction' of future adaptive immunity. 

1.5.5.2 Potential mechanisms 

1.5.5.2.1 Dendritic cells (Des) 

Dendritic cells have been described as the 'sensors' of the innate immune system, because 

of their ability to recognize microbes directly though a range of pattern recognition 

receptors (PRRs). They can also sense pathogens indirectly by detecting the inflammatory 

mediators produced by a range of other cells, including, macrophages, natural killer (NK) 

82 



cells, natural killer T cells (NKTs), mast cells and endothelial cells (reviewed in (Akira, 

Uematsu et al. 2006; Pulendran and Ahmed 2006)), the so-called 'danger' signals 

(Matzinger 1994). Dendritic cells are also thought to play an important role in the 

'programming' of all arms of the adaptive immune system, to ensure the generation, 

regulation and maintenance of adequate amounts of high quality antibody and cell

mediated responses (Pulendran and Ahmed 2006). 

Specific sub-sets of dendritic cells have been shown to induce immune responses to 

malaria parasites either via the scavenger receptor CD36 (Urban, Ferguson et al. 1999), or 

through toll-like receptor (TLR) mediated recognition of pathogen associated molecular 

patterns (PAMPs). In malaria, some of the PAMPs that induce immune responses are only 

just beginning to be identified and characterized, such as the unidentified component of 

schizont extract that binds to TLR9 of plasmacytoid DCs (Pichyangkul, Yongvanitchit et at 

2004), while more is known for a few others, such as, glycosylphosphatidylinositols 

(Gowda 2007) and haemozoin (Coban, Ishii et at 2005). With regards to haemozoin, a 

recent study showed that it was the DNA attached to it, and not haemozoin per se, that 

bound to TLR9 in DCs (Parroche, Lauw et al. 2007). 

In theory, abnormal DC function in malaria could arise as a consequence of impaired 

recognition ofPAMPs (for example via TLRs), impaired antigen uptake following 

recognition or impaired maturation and antigen presentation. Some indirect evidence 

points to the fact that toll-like receptor mediated recognition per se, may be compromised 

in DCs of individuals susceptible to malaria compared to those who are not. In separate 
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studies, common polymorphisms in TLR4 and both TLR4 and TLR9, were associated with 

severe malaria in African children (Mockenhaupt, Cramer et al. 2006) and clinical episodes 

of malaria in pregnancy (Mockenhaupt, Hamann et al. 2006), respectively. By contrast, 

other evidence drawn from studies on the transcriptional profiles of peripheral blood 

mononuclear cells (PBMCs) from non-malaria immune individuals who were challenged 

with attenuated sporozoites suggests that blood stage parasites, at least, are recognized 

immediately. In these studies numerous genes related to innate immunity (including DCs) 

had been up-regulated even before parasitaemia became patent (Ockenhouse, Hu et al. 

2006). Alternatively or additionally, the parasite may exert its effects predominantly on 

events subsequent to the initial recognition. It has been shown in vitro, that intact malaria

infected erythrocytes adhere to DCs and subsequently reduce their capacity to stimulate T 

cells (Urban, Ferguson et al. 1999). This would imply that impaired DC function may 

contribute not only to the immediate development of acute clinical episodes, but also have 

long term consequences on the secondary responses of adaptive immunity. Consistent 

with this idea, a study in Kenyan children found that compared to healthy children, those 

with acute episodes of malaria had reduced expression ofHLA-DR on the surface of their 

peripheral DCs, which may indicate functional impairment of these instrumental cell 

populations (Urban, Mwangi et al. 2001). 

1.5.5.2.2 Macrophages, Natural Killer (NK) cells and Natural Killer T-cells (NKT) 

Macrophages or mononuclear phagocytes have important roles both in innate and adaptive 

immune responses in malaria. Macrophage mediated innate defenses include phagocytic 

uptake of infected red blood cells in the absence of cytophilic and opsonizing antibodies, 
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and antigen presentation (Serghides, Smith et al. 2003). The interaction between 

macrophages and infected red blood cells is thought to be via the scavenger receptor CD36 

on the macrophage and Pfemp-l on the surface of the infected erythrocyte. The role of 

natural killer (NK) and natural killer T (NKT) cells in mediating protection from malaria 

has been studied extensively in murine and rodent models of malaria, with limited data 

from small studies in humans from malaria-endemic areas. One study of NKT cells 

indicated that they are often the first cells to respond when infected erythrocytes are 

incubated with human peripheral blood mononuclear cells in vitro, but not all donors 

tested responded by the production of IFN-y (Artavanis-Tsakonas and Riley 2002). The 

relevance of these studies with regards to NAI in humans remains to be established 

(Stevenson and Riley 2004). 

1.5.5.3 Summary 

Although by definition innate defenses are present from birth and have no 'learned' or 

memory component, there is considerable overlap between innate and adaptive immune 

mechanisms. As such, while NAI to malaria is usually concerned with adaptive immune 

responses, these cannot function without support from the innate system, and both these 

arms of immunity are intricately linked. More recently, the mechanisms by which the 

innate immune system 'senses' microbes, and vaccines, for that matter, have taken centre 

stage, particularly in the discipline ofvaccinology, with the realization that innate 

responses have a profound role on subsequent adaptive immunity. It is envisaged that an 

improved understanding of the interplay between these two arms of the immune system 

will lead to improved vaccine design, particularly with the use of adjuvants that can be 
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engineered to steer the host immune responses in desired directions to improve efficacy 

and achieve optimal and long-lived protection (Pulendran and Ahmed 2006). 
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2 MALARIA VACCINE CANDIDATE ANTIGENS 

Antigens on the merozoite surface, or those found within its apical organelles which are 

brought to it's surface at the time of erythrocyte invasion, are thought to be key targets of 

protective immune responses, particularly those mediated by antibodies. The antigens 

selected for study in this thesis are all considered to be leading malaria vaccine candidate 

molecules or antigens, based on the evidence presented below. 

2.1 MSP-1 

This was the first MSP to be described (Holder and Freeman 1981) and has been variously 

referred to as gp195, p190, PSA (polymorphic schizont antigen), PMMSA, MSA-1 

(merozoite surface antigen 1), and MSP-1. It is also the most abundant protein on the 

merozoite surface and the most extensively characterized of the merozoite surface 

proteins. It is a large protein with a molecular weight of approximately 190 kDa which is 

synthesized during schizogony, during which time it can be found on the surface of the 

mature extracellular merozoite as a complex of non-covalently linked fragments derived 

from post-translational proteolytic processing (Holder, Sandhu et al. 1987; McBride and 

Heidrich 1987). At the molecular level it can be considered as seventeen distinct ~locks, 

depending on whether the sequences within a particular block are variable, conserved or 

semi-conserved (Tanabe, Mackay et a1. 1987; Miller, Roberts et at 1993), and is illustrated 

in the schematic below (Figure 2.1.1). On the whole, MSP-1 is a dimorphic molecule, with 

variants falling into two distinct allelic families, as represented by the K1 and MAD20 
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malaria parasite 'strains'. Two regions of the gene will be discussed for the purposes of this 

thesis. The first is MSP- h 9 which is located within block 17 of MSP-1 and is largely 

conserved, containing only a few polymorphic residues. The second involves the entire 

block 2 of MSP-1 which is highly polymorphic, and variants at this locus are grouped into 

three main allelic types or families (Kl-like, MAD20-like and R033-like), based on the 

prototype of parasites in which they were described. More recently, a fourth allelic type has 

been reported called MR (thought to have a risen through recombination of the MAD20 and 

R033 sequence types), and MR-like variants have been found in diverse geographical areas 

(Takala, Branch et al. 2002). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

III III I 
Figure 2.1.1 Schematic of the mspl gene of P. Jalciparum 

Block numbers are indicated. Colors: white, conserved blocks; blue, polymorphic block; 

black, dimorphic blocks; grey, semi-conserved blocks. Figure adapted from Cavanagh 1997 

2.1.1 MSP-lt9 

2.1.1.1 Antigen discovery, location and structure 

MSP-1 is synthesized as a precursor protein that subsequently undergoes two proteolytic 

processing events. The first occurs at the time of erythrocyte rupture, and yields a complex 

of several fragments (83,42,38 and 28-30 kDa) that are held together by non-covalent 
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bonds, and secured onto the merozoite surface by a GPI anchor. At the time of erythrocyte 

invasion, a second proteolytic event cleaves MSP-142 into two fragments, MSP-i33 (shed off 

along with the other products of MSP-1 processing) and MSP-h9. MSP-h9 is the 19kDa 

fragment that remains bound to the merozoite surface and is carried into the newly 

invaded erythrocyte (Blackman, Heidrich et al. 1990). Studies on the crystal structure of 

MSP-119 reveal that it is composed of a compact, flat, disc-like structure, with two 

epidermal-like growth factor (EGF) domains that are folded back on each other in a side by 

side arrangement (Chitarra, Holm et al. 1999). At a molecular level, MSP-h9 contains 

approximately 100 amino acids, the majority of which are conserved in P.Jalciparum 

isolates from diverse geographical areas (Kang and Long 1995). However, it also contains 

six non-synonymous single nucleotide polymorphisms (SNPs), one is located at the first 

EGF-like domain and the remaining five are located at the second EGF-like domain, and at 

least 10 different alleles of MSP-119 have been reported (Takala, Branch et al. 2002). 

2.1.1.2 Antigen function and effect of gene disruption 

Although the precise function ofMSP-1 remains unknown, the fact that MSP-119 contains 

EGF-like domains which are known to have essential binding functions in other molecules 

(Kansas, Saunders et al. 1994), suggests that it has a role to play in merozoite invasion of 

red blood cells. This is supported by its location on the merozoite surface, its abundance 

and the limited diversity in the sequence of MSP-119, which is thought to indicate functional 

constraints. Attempts to knock out MSP-1 have been unsuccessful (Cowman and Crabb 

2006). However, allelic replacements in which MSP-119 from P. Jalciparum is replaced the 

corresponding sequences from P. chabaudi or P. berghei are possible, and indicate that its 
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function is maintained across distantly related plasmodium species (O'Donnell, Saul et al. 

2000), (de Koning-Ward, O'Donnell et al. 2003). Allelic replacement has also been possible 

using the corresponding double EGF-like module of MSP-8 of P. berghei even though this 

sequence shares only low homology with MSP-1 of P. Jalciparum (Drew, O'Donnell et al. 

2004). The fact that these parasites in which MSP-119 is radically altered retain the ability 

to efficiently invade erythrocytes makes it unlikely that it has a role in receptor-mediated 

binding. 

2.1.1.3 Supportive evidence that antibodies playa role in protection against malaria 

2.1.1.3.1 In vitro studies 

Early studies employed monoclonal antibodies to characterize merozoite antigens and 

examine their roles in invasion. As such, mAbs were used to characterize what we now 

refer to as MSP-1, and demonstrated that certain mAbs against this antigen partially 

inhibited merozoite invasion (Pirson and Perkins 1985). Subsequent studies mapped the 

locations of the epitopes recognized by these monoclonal antibodies, and Blackman et al. 

(Blackman, Heidrich et al. 1990) showed that mAbs to epitopes located within MSP-119 

specifically, inhibited merozoite invasion of erythrocytes. Two important points are worth 

noting with regards to the invasion inhibition using mAbs to MSP-lt9 reported in the study 
• 

by Blackman et al.. The first is that to demonstrate invasion-inhibition, high titres (up to 

SOOug/ml) ofmAbs were required, and although the amount of inhibition increased with 

increasing titre of antibodies, it never reached 100%, and it is not clear whether it 

saturated (no further increase in inhibition even with increasing concentrations ofmAb) . 

The highest degree of invasion-inhibition reported was 72% relative to control 
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immunoglobin (Ig), and using mAb12.10 at 500ug/ml against the T9-94 parasite strain 

(Blackman, Heidrich et al. 1990). The second point is that variable amounts of parasite 

inhibition were observed when the same mAb was tested against different parasite strains. 

For example, mAb 12.10 at 500ug/ml inhibited T9-96 parasites by 72% relative to control 

Ig, but only inhibited parasites ofthe T9-94 strain by 50%. It was not known at the time 

whether these two parasite strains differed as a result of sequence polymorphisms at the 

MSP-119 locus or not, and whether mAb 12.10 was directed against a conserved or 

polymorphic epitope. As such, while it is reasonable to conclude that antibodies to MSP-119 

may interrupt the asexual blood stage cycle of the paraSite, given the diversity that we now 

know exists even at the relatively conserved msp-llocus, and the fact that invasion

inhibition is variable in different parasite isolates using well defined monoclonal 

antibodies, it would seem unlikely that this is the principal mechanism by which natural 

immunity is acquired. 

However, other data demonstrate that anti-MSP-119 antibodies do contribute significantly 

to the invasion-inhibitory antibodies found in the sera of immune adults from malaria 

endemic areas. Using the parasites generated in the MSP-h9 allelic replacement study 

mentioned above (O'Donnell, Saul et al. 2000), overall, there was a significant reduction in 

invasion-inhibition of immune sera tested against the transgenic parasites (containing P. 

chabaudi MSP-h9), compared to control parasites (containing PJaldparum MSP-1t9) 

(O'Donnell, de Koning-Ward et al. 2001). Notably, although the majority of immune sera 

had demonstrable invasion-inhibitory ability, this varied widely between individuals. 

Additional variation between individual sera was observed in the amount of MSP-119 
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specific invasion-inhibitory activity, with some sera having high amounts of invasion

inhibition that could not be attributed to MSP-119 antibodies (O'Donnell, de Koning-Ward 

et al. 2001). Another important finding in this study was the fact that MSP-it9 specific 

antibodies as measured by ELISA did not correlate at all with invasion-inhibitory ability (R2 

values of 0.0003 and 0.013 for the two sets of immune sera tested), a fact that may 

contribute to the inconsistent results obtained in immuno-epidemiological studies 

designed to identify protective antibodies, as these commonly measure antibodies by 

ELISA (discussed below). A final point to raise from this study concerns the limited 

polymorphisms found within MSP-119. Ifindeed as their results suggest, it is an important 

target, it would follow that the locus was under strong immune pressure, which would be 

expected to result in greater within-locus diversity, as has been observed for other MSPs 

(Conway and Polley 2002). 

Other studies have employed different strategies to investigate the function of MSP-119 

specific antibodies. Chappel et al. (Chappel, Egan et at 1994) affinity purified anti-MSP-it9 

antibodies from immune sera containing demonstrable parasite clearing activity. These 

sera had been used in the passive antibody transfer experiments in humans, in which 

hyper-immune sera from adult West Africans was administered to successfully treat 

patients with P. Jalciparum malaria (Sabchareon, Burnouf et al. 1991). Total IgG affinity-

selected on MSP-l-EGF-l (AP-EGF1JgG) recognized the native antigen, competed with 

protective antibodies but did not prevent invasion of red blood cells by merozoites in vitro, 

suggesting that this molecule did not include the target epitopes of invasion-inhibitory 

antibodies (Chappel, Egan et at 1994). Given that previous studies using mAbs had 
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indicated that invasion-inhibitory epitopes were located within this EGF-like domain 

(Chappel and Holder 1993), the authors speculated that anti- MSP-119 antibodies induced 

by natural infection may have stimulated antibodies with different anti- MSP-1-EGF-1 

idiotypes, with only a few ofthese possessing invasion-inhibitory activity (Chappel, Egan et 

al. 1994). This was supported by subsequent studies which showed that antibodies affinity 

purified on AP-EGF1-IgG contained a mixed population of antibodies, with inhibitory and 

blocking properties (Egan, Burghaus et al. 1999). In this study (Egan, Burghaus et al. 1999), 

human antibodies affinity purified on AP-EGF1-IgG were able to compete with both 

inhibitory and blocking antibodies, while those to the second EGF-like domains (AP-EGF2-

IgG) were able to inhibit parasite growth in vitro suggesting that both EGF-like domains 

are important. 

Antibodies to MSP-1!9 are further complicated by the demonstration of variation in their 

fine specificity. Apart from invasion-inhibitory antibodies described above, other MSP-119 

specific antibodies have been shown to be inhibitory, blocking, or neutral (Uthaipibull, 

Aufiero et al. 2001). Inhibitory antibodies inhibit the processing of MSP-142 and thereby 

reduce erythrocyte invasion. Blocking antibodies compete with invasion-inhibitory 

antibodies, thereby blocking their binding and function. Neutral antibodies are neither 

inhibitory nor blocking. These variable specificities may be explained by the actual 

epitopes within MSP-119, to which the various antibodies bind, with neutral antibodies 

binding epitopes that are distinct from the overlapping ones targeted by blocking and 

processing-inhibitory antibodies (Uthaipibull, Aufiero et al. 2001). Again, the importance 
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the fine specificity of MSP-119 antibody response has been demonstrated in immuno

epidemiological studies, discussed below. 

2.1.1.3.2 Vaccination and passive antibody transfer experiments in animal models 

In animal models of malaria, vaccination with MSP-1i9 confers partial or complete 

protection against challenge with fatal P.yoelii in mice (Daly and Long 1993; Ling, Ogun et 

al. 1994; Tian, Miller et al. 1996; Hirunpetcharat, Vukovic et al. 1999; Kumar, Jones et al. 

2004) and P. falciaprum in Aotus monkeys (Kumar, Yadava et a1.1995; Kumar,Jones et al. 

2004). Protection has been associated with high anti-MSP-119 antibody titres (Kumar, Jones 

et al. 2004), although the specificity ofthe antibodies appears to be important. In one 

study the titres of invasion-inhibitory antibodies and not those of total MSP-1i9.specific 

immunoglobulin correlated with protection against homologous blood stage challenge in 

mice (de Koning-Ward, O'Donnell et al. 2003). However, in other studies vaccine-induced 

anti MSP-1i9 invasion-inhibitory antibodies did not consistently correlate with protection 

(Egan, Blackman et aI. 2000), and were present in comparable quantities in both protected 

and susceptible Aotus monkeys (Kumar, Collins et aI. 2000). These animal immunization 

data are difficult to interpret due to the small numbers of animals routinely included in 

such studies, not to mention the fact that they do not routinely assess the fine specificity of 

vaccine-induced anti-MSP-119 antibodies. 

Protective antibodies have also been shown to be conformation dependent, as the 

reduction of disulphide bonds abolishes the production of growth inhibitory antibodies 

(Locher and Tam 1993). 
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With regards to cellular responses, while it appeared that complete MSP-lt9 vaccine

induced immunity could be mediated independently of specific CD4+ T cells (Wipasa, Xu et 

al. 2002), passively transferred vaccine-induced antibodies to MSP-119 only conferred 

partial protection against challenge with P. yoelii (Tian, Miller et al. 1996), and only in 

naive immuno-competent mice (Hirunpetcharat, Vukovic et al. 1999). High titres of anti

MSP-119 antibodies failed to protect naive SCID, nude, CD4+ T-cell depleted and B-cell 

knock out mice, indicating a role for cellular, as well as humoral immune responses 

(Hirunpetcharat, Vukovic et al. 1999). 

Antibodies to MSP-lt 9 may act by inhibiting the proteolytic cleavage of MSP-142 (Blackman, 

Scott-Finnigan et al. 1994). It has therefore been of interest to determine whether vaccine

induced antibodies to MSP-142 also inhibit invasion as well as, or better than those to MSP-

119, or whether such protection is accounted for by antibodies to epitopes within MSP-119, 

MSP-133 or both. These studies have provided mixed results. Both murine and simian 

models of malaria immunized with MSP-142 have been protected from lethal challenge with 

malaria (Kumar, Yadava et al. 1995; Chang, Case et al. 1996; Stowers, Cioce et al. 2001), 

with some constructs inducing high antibody titres to MSP-119 (Chan~1996). However, in 

some studies, better protection was observed following immunization with MSP-119 than 

with MSP-142 (Kumar, Yadava et al. 1995). The opposite effect has been reported in other 

studies, with immunization with MSP-142 yielding better protection thanimmunization with 

MSP-i19 (Stowers, Cioce et al. 2001). Such differences may be partly explained by the 

different vaccination regimens, adjuvants and expression systems used to generate the 

vaccine constructs. In a direct comparison of immunization with MSP-119 versus MSP-133, 

it was found that despite generating high titres of antibodies, immunization with MSP-133 
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was not associated with protection, while immunization with MSP-h9 was (Ahlborg, Ling 

et at 2002). 

2.1.1.3.3 Population genetic analyses 

In contrast to other antigens selected for study as past of this thesis, the MSP-l19 locus is 

relatively conserved. Genotype frequencies determined at this locus from molecular 

studies from multiple locations in Africa and the Brazilian Amazon suggest that the 

observed variation arises primarily as a consequence of genetic drift and that it is not 

under strong immune selection for diversity, based on low FSTvalues (Conway, Cavanagh et 

at 2000; Silva, Silveira et al. 2000). Analysis ofMSP-119orthologs from seven species of 

Plasmodia revealed that sequences from primate (P. vivax, P. knowlesi and P. cynomolgz), 

rodent (P. chabaudi, P. berghei, P.yoeliz) and human (P.falciparum) malarias were 

relatively conserved, and could essentially be considered as chimeras of two archetype 

sequences, suggesting that the diversity in this locus had ancient origins (Saul and Miller 

2001). The authors argued that this was good news for an MSP-119 based vaccine, as 

functional constraints in the two EGF domains would restrict the generation of new 

sequence variants due to vaccine-induced immune pressure. 

2.1.1.3.4 Immuno-epidemiological studies 

The most extensively characterized and well studied merozoite surface antigen is MSP-l, 

and in particular MSP-119. I will discuss antibodies to MSP-it9 in detail, to highlight some of 

the methodological issues that make interpretation difficult, and that will apply to some 

degree to many other malaria vaccine candidates. I identified over 40 studies where 

naturally acquired antibodies to MSP-119 were investigated. I begin by highlighting the 
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differences in multiple variables of interest in these types of studies, which undoubtedly 

account for (at least in part), the discrepant results often reported from immuno

epidemiological studies of MSP-119. I raise these differences deliberately at the beginning 

of the review, rather than at the end, to allow for a careful consideration of the data and 

consequent cautious interpretation ofthe results (as opposed to suggesting them as 

explanations for the discrepant findings). It will become clear why for the maj ority of 

studies, it is difficult to make any meaningful comparison of the results, and even more 

difficult to summarize these across studies in order to draw general conclusions. 

2.1.1.3.4.1 Variation in MSP-119 antigens 

It is common practice in immuno-epidemiological studies to report the prevalence of the 

specific immune response under investigation in the population of interest This is usually 

the first indication that the response may have a role in the pattern of disease observed in 

the population. In studies on antibody responses to malaria antigens, this is further 

supported by the demonstration that the specific immune response is not detectable in 

individuals that have not been exposed to malaria (for antibody responses at least). When I 

attempted to summarize the prevalence of antibodies to MSP-119 reported from malaria 

endemic areas I found that different studies measured antibodies to MSP-119 antigens that 

varied in several ways. This was surprising as MSP-119 is not only a relatively small 

protein, but it is also largely conserved among parasite isolates in the field (Kang and Long 

1995; Qari, Shi et a1. 1998). In reviewing these immuno-epidemiological studies, five 

important sources of variation for the MSP-119 antigen itself, were noted. 
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The first is due to naturally occurring polymorphisms in the molecule, which may occur in 

either one or both of the EGF-like domains (Tanabe, Mackay et aI. 1987; Miller, Roberts et 

aI. 1993; Kang and Long 1995; Qari, Shi et aI. 1998). The second source of variation arises 

due to the different expression systems used to synthesize the recombinant MSP-119. The 

third comes from the design ofthe actual MSP-1t9 construct, with regards to the EGF-like 

molecules. The fourth source of variation comes mainly from older studies where 

antibodies were analyzed to varying fragments of the C-terminal of MSP-1. The final source 

of variation comes from studies where MSP-119 specific invasion-inhibitory antibodies are 

analyzed. 

Naturally occurring polymorphisms within MSP-l12 

Different studies have used MSP-119 antigens based on a range of parasite 'strains' that 

contain different aIIeles of MSP-1t9. The reason for choosing one MSP-119 aIIele over 

another is not commonly reported, and may range from convenience (i.e. readily available), 

to using the one that is most prevalent is the geographic location where the study is 

conducted (Egan, Morris et aI. 1996; Branch, Udhayakumar et aI. 1998). ELISA OD 

reactivities against antigens based on different MSP-it9 alleles were highly correlated in 

some studies (Egan, Chappel et aI. 1995; O'Donnell, de Koning-Ward et al. 2001; John, 

O'Donnell et a1. 2004), but not in others (Udhayakumar, Anyona et a1. 1995; Shi, Sayed et a1. 

1996). Even when good correlation is observed between different alleles, a proportion 

(minority) of sera react more strongly with one sequence than with the other (Egan, 

Chappel et aI. 1995; Shi, Sayed et al. 1996), particularly when the antigens differ in the 

sequence of the second EGF motif (Egan, Chappel et aI. 1995). 
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Variation in expression systems for MSP-112 

The same MSP-119 sequence inserted into a vector and expressed for example in yeast, as 

opposed to E. coli, can give different amounts of reactivity, when assayed by ELISA Oohn, 

O'Donnell et a!. 2004). It is thought the different expression systems give rise to antigens 

that differ slightly in their conformational epitopes. The range of expression systems 

reported for MSP-119 antigens includes, E. coli (most common), fused to GST or CAT, S. 

cervisiae (his-tagged) and baculovirus/insect cell culture (Riley, Allen et al. 1992; al-Yaman, 

Genton et al. 1996). While some studies have shown strong correlations between human 

antibodies to the same MSP-lt 9 sequence, expressed in different systems (Egan, Chappel et 

al. 1995), others have found still significant, but comparatively weaker correlations Oohn, 

O'Donnell et a!. 2004). 

Variation in the design of MSP-119 constructs 

Recombinant MSP-1t9 constructs may contain either the first, or second EGF-like domains, 

singly, or have a combination of both EGF-like domains from the same parasite line, or have 

both EGF-like domains, but with each individual one drawn from a different parasite line. 

For instance, an MSP-119 construct may have an EGF1-like domain based on the MAD20 

paraSite strain and an EGF2-like domain based on the Wellcome parasite strain (Egan, 

Chappel et a!. 1995). In a similar vein, several MSP-119 mutants have now been engineered 

in which specific epitopes are modified, for instance, the removal of epitopes to which 

blocking mAbs are known to bind (Uthaipibull, Aufiero et al. 2001). Antibody reactivities 

to the mutants can then compared to those against 'wild-type' MSP-1i9in standard or 

competition ELISAs (Corran, O'Donnell et al. 2004). Antibody reactivities to these mutants 
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which are also referred to as modified MSP-119 recombinant antigens or antigenic variants 

ofMSP-119 with double or triple substitutions, have also been analyzed in studies 

monitoring drug resistance to anti-malarial drugs (Pinder 2006). 

Variation in the size of C-terminal MSP-l fragments 

In general, in older studies (performed in the late 1980's and early 1990s), antibodies were 

measured to various sized fragments of the C terminal ofMSP-l (including MSP-142), many 

of which contain antibodies to MSP-119 (Muller, Fruh et aI. 1989; Fruh, Doumbo et aI. 1991; 

Tolle, Fruh et aI. 1993; Shai, Blackman et aI. 1995; al-Yaman, Genton et aI. 1996). The 

contribution of anti-MSP-1t9 antibodies to the overall MSP-l or MSP-142 response in these 

studies cannot be ascertained. 

MSP-112 specific invasion inhibitory antibodies 

Several studies have now reported on MSP-1t9 specific invasion inhibitory antibodies 

(O'Donnell, de Koning-Ward et al. 2001; de Koning-Ward, O'Donnell et al. 2003; John, 

O'Donnell et al. 2004; Perraut, Marrama et al. 2005). Here, P. Jalciparum MSP-119 is 

replaced with the homologous region of P. chabaudi (most common) (O'Donnell, de Koning

Ward et al. 2001) or P. berghei (de Koning-Ward, O'Donnell et aI. 2003). These constructs 

enable the estimation of invasion-inhibitory antibodies that can be accounted for by 

antibodies specifically targeted to MSP-1t9. A recent study suggested that fetal 

sensitization to MSP-l, as a result of maternal malaria in pregnancy, affected the 

development of MSP-119 specific invasion-inhibitory antibodies (Dent, Malhotra et aI. 

2006). Other studies have described the fine specificity ofhuman antibodies to various 
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constructs of MSP-119, and how this might relate to protection against malaria, but these 

will be discussed separately, below. 

2.1.1.3.4.2 The prevalence of antibodies to MSP-119 

Bearing these differences in mind, the reported prevalence of total IgG antibodies to MSP-

119 in malaria endemic populations ranges from as low as 4% (Dodoo, Theander et a1. 

1999), to as high 96% (Hogh, Marbiah et a1. 1995), depending on the population under 

study, and the specific construct of MSP-h9. Apart from differences in the MSP-h9antigen 

already discussed, I found at least seven other distinct factors may affect, or account for 

this wide variability in antibody prevalence. The first four relate to the study participants, 

their age, whether they were healthy or acutely ill with malaria, the clinical syndrome of 

malaria (eg cerebral malaria versus severe anaemia) and whether they were parasitaemic 

or aparasitaemic at the time the serum sample was collected. The remaining three relate to 

malaria transmission intensity, seasonal variation and methodological issues in measuring 

the antibodies. 

In general, the prevalence is higher when data are reported from adults than from children, 

and although some studies have found that antibody prevalence increased significantly 

with age (Egan, Chappel et a1. 1995; Egan, Morris et a1. 1996; Perraut, Marrama et a1. 2003; 

Perraut, Marrama et al. 2005), many have not (Dodoo, Theander et al. 1999; Kitua, Urassa 

et al. 1999; Cavanagh, Dodoo et al. 2004; John, O'Donnell et al. 2004; Okech, Corran et al. 

2004) (Osier 2008). Antibody prevalence is also higher at the time of an acute episode, or 

in convalescence, compared to samples taken when children are well. In a study on infants, 

Branch et al. reported a prevalence of 77%, when they were acutely ill, compared to 59%, a 
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month prior to the same clinical episode, McNewmar P = 0.003 (Branch, Udhayakumar et 

a1. 1998). Children presenting with severe malarial anemia (SMA) or uncomplicated 

malaria (UM) had a lower prevalence and titre of antibodies to MSP-119 compared to those 

with cerebral malaria (CM), p <0.05 for SMA vs CM, and p < 0.01 for UM vs CM, although 

this was also observed for other malarial antigens (Dobano, Rogerson et a1. 2008). In a 

case-control study, the prevalence of antibodies to MSP-119 was lower in cases (severe 

malaria), compared to controls (uncomplicated malaria), and it differed significantly within 

sub-groups of severe mal~ria, though for this latter analysis antibodies to MSP-119 were 

assessed in combination with those to two other malaria antigens and the numbers in each 

of these sub-groups were small (TM, Elbashir et a1. 2008). In yet another study where 

cases of severe malaria were matched to controls with mild malaria, the prevalence of 

antibodies to MSP-119 was comparable in both groups, in samples collected at the time of 

the acute episode, and three weeks later, but was higher in the severe malaria group six 

months later (healthy phase sample) (Kohler, Tebo et a1. 2003). 

As has been found with other malaria antigens, prevalence is also higher in children who 

are parasitized at the time the sample is collected, than in those who are not (Tolle, Fruh et 

a1. 1993; Polley, Mwangi et a1. 2004; Polley, Conway et a!. 2006; Osier, Polley et a1. 

2007)(Osier 2008). This is important because antibody responses to MSP-119, and other 

malaria antigens, are known to be $hort-lived (Cavanagh, Elhassan et al. 1998; Kinyanjui, 

Conway et a!. 2007; Akpogheneta, Duah et al. 2008). Antibody prevalence is predictably 

higher in areas with intense malaria transmission, compared with areas of lower 

transmission or episodic malaria (Drakeley, Corran et al. 2005),(Braga, Barros et al. 2002; 

John, Moormann et a!. 2004; John, Moormann et a!. 2005). Similarly, prevalence is also 
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higher when samples are collected during, or at the end of a malaria transmission season, 

as opposed to at the end of the dry season (minimal malaria transmission) (Cavanagh, 

Elhassan et al. 1998). However, in at least one study, no seasonal variation in antibody 

responses to MSP-it9 was observed (Dodoo, Theander et al. 1999). This lack of seasonal 

variation in antibody prevalence has also been reported for antibodies to MSP-142 (Riley, 

Morris-Jones et al. 1993). 

Methodological issues, or the lack of standardized protocols for measuring antibodies have 

been raised previously Oohn, Moormann et al. 2005), and also contribute to the variation in 

reported results. A good illustration is provided by the studies conducted by Cavanagh et 

al., and Dodoo et al. (Dodoo, Theander et al. 1999; Cavanagh, Dodoo et al. 2004). They both 

measured antibodies to exactly the same antigen, in the same set of plasma samples of 

children from Ghana. However, Cavanagh et al. found an MSP-119 antibody prevalence of 

56%, which was significantly affected by season, while Dodoo et al. reported one of 31 %, 

and this did not change significantly in samples collected before or after the malaria 

transmission season. In the study by Cavanagh et al., sera were tested at a 1/500 dilution, 

while in that by Dodoo et al., they were tested at a 1/1000 dilution, which may partly 

account for the differences. 

2.1.1.3.4.3 IgG sub-class responses to MSP-119 

The predominant IgG sub-classes against MSP-119 is IgGl (Egan, Chappel et al. 1995; Egan, 

Morris et al. 1996; Branch, 0100 et al. 2000; Cavanagh, Dobano et al. 2001; Diallo, Spiegel et 

al. 2001; John, O'Donnell et al. 2004; Tongren, Drakeley et al. 2006), followed by IgG3 

(Branch, 0100 et al. 2000; Cavanagh, Dobano et al. 2001; Diallo, Spiegel et al. 2002; John, 
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O'Donnell et al. 2004; Tongren, Drakeley et al. 2006). IgG2 and IgG4 have been detected in 

African populations in only a minority of studies (Shi, Sayed et al. 1996; John, O'Donnell et 

al. 2004). In studies from Brazil, the frequency and amount ofIgG2 and IgG4 antibodies to 

MSP-119 and other malaria antigens is higher than that observed in African populations 

(Ferreira, Kimura et al. 1998; Scopel, Fontes et al. 2005; Scopel, Fontes et al. 2006). As 

reagents are not standardized across studies, it remains possible that the observed 

differences could be explained by the mAbs (mouse, rabbit, goat, sheep e.t.c.) used to detect 

the human IgG subclasses. 

The MSP-119 IgG sub-class distribution does not appear to be affected by whether 

individuals are not infected, asymptomatically infected or acutely ill with malaria (Scopel, 

Fontes et al. 2005). Similarly, the pattern ofIgG isotype antibodies to MSP-h9 does not 

seem to vary with age or seasonal changes. Infants, children and adults display a similar 

distribution oflgG isotypes to MSP-1I9 (Egan, Morris et al. 1996; Branch, 0100 et al. 2000; 

Cavanagh, Dobano et al. 2001), and the same pattern was observed when antibodies to 

MSP-142 were analyzed in neonates (Metenou, Suguitan et al. 2007). Although antibody 

levels are higher at the end of a malaria transmission season, IgG1 antibodies are still the 

predominant IgG isotype at this time (DiaIIo, Spiegel et al. 2002). 

2.1.1.3.4.4 Fine specificity of antibodies to MSP-119 

Naturally-acquired antibodies to MSP-119 have different specificities, and can be 

functionally inhibitory, blocking, or neutral, as discussed above. Few studies have 

examined the fine specificity of anti-MSP-119 antibodies in immuno-epidemiological studies 
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(Nwuba, Sodeinde et al. 2002; Corran, O'Donnell et al. 2004; Okech, Corran et al. 2004). The 

specificity is usually defined by the ability of human antibodies to compete for binding to 

recombinant MSP-119 with panels ofmAbs of previously determined specificity (Blackman, 

Scott-Finnigan et al. 1994). Alternatively, or in addition, the fine specificity can be defined 

by testing the binding of sera to recombinant MSP-it9 mutants, in which epitopes targeted 

by blocking mAbs have been disrupted (Uthaipibull, Aufiero et al. 2001). In a longitudinal 

study, the fine specificity of antibodies to MSP-119 was associated with protection from 

malaria infection and high-density parasitaemia. Children whose antibodies were able to 

compete with the blocking mAb lEl were less likely to become infected with malaria than 

those than those wose antibodies did not compete (p = 0.04) (Okech, Corran et al. 2004). 

2.1.1.3.4.5 Antibodies to MSP-119 and associations with protection from malaria 

Definition of 'protection' from malaria 

Although antibodies to MSP-119 have been frequently associated with protection from 

malaria, this has not been a consistent finding. In order to compare the results from 

different studies, it is necessary to consider the definition of 'protection', in the context of 

malaria. Once an individual has been infected with malaria parasites, he/she could 

manifest one or more of several outcomes; asymptomatic infection, mild or severe clinical 

disease. The definition of protection is based on these outcomes or end-points. In addition, 

the absence of infection, particularly following drug treatment to clear (all) parasites at the 

beginning of a study (treatment re-infection studies), is also commonly used to define 
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protection. Meaningful comparisons can only be made when the outcome of interest is 

shared between the studies. 

Cross-sectional studies often report protective assodations that are based on presence or 

absence of parasitaemia, with individuals free of parasites considered to be protected 

(from infection). Whether in cross-sectional or longitudinal studies, when parasitaemia is 

used as an end-point, it can be further classified into being oflow, moderate or high density 

(not consistent between studies), and protective associations are sought (and reported!) 

within these strata (Corran, O'Donnell et al. 2004; Okech, Corran et al. 2004). On the other 

hand, longitudinal studies generally use clinical episodes (mild or severe malaria) (Hogh, 

Marbiah et al. 1995; Dodoo, Theander et al. 1999; Kitua, Urassa et al. 1999; Polley, Mwangi 

et al. 2004)(Osier 2008), or time to re-infection (in the treatment re-infection study 

design) (Perraut, Marrama et al. 2003; John, O'Donnell et al. 2004; John, Moormann et al. 

2005) as their study end-points. As with parasitaemia, various classifications can be 

employed for mild or severe malaria, for instance, protection may be reported against 

anaemia (Branch, Udhayakumar et a1. 1998). 

Some longitudinal studies have analyzed mUltiple endpoints, simultaneously (Perraut, 

Marrama et a1. 2003), while others make the reasonable argument that the lack of parasites 

may imply that individuals were simply not challenged during the period of observation 

and thus, this data cannot he reliably used to identify protected individuals. This has led to 

protection in some longitudinal studies being defined as the presence of parasites (obvious 
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challenge), but the absence of clinical manifestations (Egan, Morris et a1. 1996; Dodoo, 

Theander et a1. 1999). 

In an interesting concept, protection is assessed in the context of studies designed to 

monitor drug resistance to anti-malarial drugs. Here, it is hypothesized that recovery from 

uncomplicated malaria in patients carrying drug resistant parasites is a measure of 

functional immunity that may be antibody-mediated. Antibodies to specific antigens were 

more common, or present at higher levels in successfully treated children (clinical and 

parasitological cure) compared to those with treatment failure (Mawili-Mboumba, 

Borrmann et al. 2003),(Aubouy, Migot-Nabias et al. 2007), or amongst children with drug 

resistant parasites who nevertheless recovered (assessed at different levels of residual 

parasitaemia), compared to those who did not (Pinder, Sutherland et al. 2006). 

Other sources of variation in studies on 'protection' from malaria 

Apart from the definition of protection, the study design, and the details of the MSP-119 

antigen itself, attention must also be paid to the MSP-119immune response measured, and 

how it was measured. A whole range of assays have been used to detect and/or quantify 

antibodies to MSP-119. Simple measurements include total IgG, subclass IgG or IgM and a 

wide range of different reagents, in particular secondary anti-human antibodies are used to 

detect these. Total IgG to MSP-h9 are most commonly assayed using routine standardized 

ELISA protocols, but can also be measured using microarrays (Sundaresh, Doolan et at 

2006; Gray, Corran et a1. 2007), suspension array technology (Fouda, Leke et a1. 2006), 

microspheres and flow cytometry (actually measured murine MSP-142 in this report) (van 
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der Heyde, Burns et al. 2007) and immunoblots, particularly in older studies. More 

sophisticated measurements reported include; MSP-it9specific invasion inhibition using 

transgenic parasites (O'Donnell, de Koning-Ward et al. 2001; de Koning-Ward, O'Donnell et 

al. 2003); fine specificity of MSP-119 antibodies (determined using competition ELISA with 

varying panels of MSP-119 mAbs (Blackman, Scott-Finnigan et al. 1994), competition ELISA 

using panels of MSP-119 mutants (Uthaipibull, Aufiero et al. 2001) and invasion-inhibition 

using human antibodies affinity-purified on MSP-it9 (various constructs) (Egan, Burghaus 

et al. 1999). 

As such, though many studies report protective associations, it is nearly impossible to 

compare them because the majority have used diverse assays, to measure diverse 

specificities of antibodies to a wide range of slightly differing MSP-119 antigens. 

Furthermore, some studies are conducted in sera drawn from adults, children, or both. 

Other studies are conducted in pregnant women and resulting mother-infant pairs (Hogh, 

Marbiah et al. 1995; Branch, Udhayakumar et al. 1998). Protective associations have been 

detected from particular age-groups in some studies, but not in others (Shi, Sayed et al. 

1996), with particular MSP-119 constructs in certain populations, but not in others (Egan, 

Morris et al. 1996). Other issues that have been raised previously which are pertinent to 

consider in studies reporting protective associations are the different transmission 

settings, the timing ofthe sampling (wet or dry season), the status of individuals at 

recruitment (whether healthy and aparasitaemic, having asymptomatic parasitaemia or 

acutely ill) and, an important subject to discussed later on in the thesis, the analyses 

employed to detect protective associations. 
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Antibodies to MSP-lt9 in longitudinal studies 

I identified eleven longitudinal studies including twelve distinct populations, that had 

clinical episodes of malaria as the outcome. All the studies were adequately powered, had 

sufficient levels of follow-up with individuals monitored at least once weekly, had clear· 

methodology for the measurement of antibodies and robust statistical analyses. In these 

studies regardless of the differences discussed above, antibodies to MSP-119 were not 

significantly associated with protection against clinical episodes of malaria in eight distinct 

cohorts from the Gambia (Conway, Fanello et al. 2000), Ghana (Dodoo, Theander et al. 

1999; Cavanagh, Dodoo et al. 2004), Sierra Leone (Egan, Morris et al. 1996), Senegal 

(Perraut, Marrama et al. 2003), (Roussilhon, Oeuvray et al. 2007) and Burkina Faso (Nebie, 

Diarra et al. 2008). In contrast, in three other studies from separate cohorts in the Gambia 

(Egan, Morris et a1. 1996), Senegal (Perraut, Marrama et a1. 2005) and Liberia (Hogh, 

Marbiah et a1. 1995) antibodies to MSP-119, and particularly high titres (Hogh, Marbiah et 

al. 1995; Perraut, Marrama et al. 2005) were associated with a reduced risk of clinical 

malaria. 

Summary 

While the optimist could, with some justification decide to ignore the fine print, and 

conclude that overall, there was a reasonable body of evidence to suggest that on the 

whole, anti- MSP-it9 antibodies were protective, the pessimist could equally make a strong 

argument that responses to MSP-119 have not been studied systematically enough for any 

firm conclusion to be reached regarding their role in protection against malarial disease. 

Perhaps more importantly, for the future, concerted efforts need to be made to harmonize 
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studies to allow clear evidence on protection, or the lack of it, to accumulate. Considerable 

resources will have gone into the studies reviewed here, and we may be none the wiser for 

it. Malaria researchers urgently need to improve the design of studies, standardize the 

antigens and assays employed, standardize the analytical approaches, agree on the end

points for different designs and then conduct adequately powered studies in multiple 

malaria endemic areas. 

2.1.1.3.5 Vaccine trials in humans 

A malaria vaccine containing MSP-142 (the 3D7 variant) has been successfully tested in 

multiple phase I safety and immunogenicity studies in North American (Ockenhouse, 

Angov et al. 2006) and Kenyan adults (Stoute, Gombe et al. 2007), and in a dose-escalation 

phase Ib trial in Kenyan children (Withers, McKinney et al. 2006). Concerns that vaccine

induced anti-MSP-142 antibodies may not induce antibodies to capable of reacting with 

mUltiple variants at this locus were allayed by the finding of cross-reactive responses with 

homologous proteins derived from the FVO and CAMP /FUP parasite 'strains' (Thera, 

Doumbo et al. 2006). In spite of this, anxiety persists over the possibility that an MSP-119 

based vaccine may induce allele-specific antibodies, and therefore, fail to protect, if the 

MSP-11 9 variant included in the vaccine differed from the prevailing variants in the vaccine 

trial site (Takala, Coulibaly et al. 2007). 

110 



2.1.2 MSP-1 BLOCK 2 

2.1.2.1 Antigen discovery, location and structure 

A search for mAbs against MSP-l that could inhibit parasite replication in vitro led to the 

discovery of CE2 and EB2, mAbs specific for the variable tri-peptide repeat region of the N

terminal 83kDa protein that is shed at the time of erythrocyte invasion (Locher, Tam et al. 

1996). It was surprising that mAbs to this region would inhibit invasion, firstly because 

this N-terminal fragment had been shown to be discarded at invasion (Holder, Lockyer et 

al. 1985), and secondly because invasion was thought to be dependent upon the cleavage of 

MSP-142 into MSP-h9 and MSP-i33 (Blackman, Ling et al. 1991). The authors (Locher, Tam 

et al. 1996) speculated that CE2 and EB2 interfered with merozoite release and/or binding 

to erythrocytes, or perhaps caused merozoite agglutination. They did not exclude the fact 

that the observed inhibition was an artifact of the in vitro growth inhibition assay, 

especially because it could only be detected when the mAbs were used at very high 

concentrations (500ug/ml), which were unlikely to occur in nature (Locher, Tam et al. 

1996). 

Although the mechanism by which CE2 and EB2 inhibited erythrocyte invasion was not 

clear, this effect was nonetheless dose-dependent and interestingly, the mAbs were 

targeted to polymorphic epitopes (Locher, Tam et al. 1996). Subsequent studies sought to 

determine whether allelic variation at this locus resulted in antigenic polymorphism with 

consequent effects on the specificity of antibody responses (Cavanagh and McBride 1997). 

Recombinant MSP-l block 2 antigens were found to be immunogenic and contained 

conserved and type-specific epitopes, which could be distinguished by sera from humans 

naturally exposed to malaria (Cavanagh and McBride 1997). 
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At the molecular level, block 2 is the most polymorphic locus of the MSP-l gene. Sequence 

variants at this locus can be classified into three main allelic families or types (Kl-like, 

MAD20-like and R033-like), after the prototypic parasites in which they were first 

described (Holder, Lockyer et a!. 1985; Certa, Rotmann et a!. 1987; Tanabe, Mackay et a!. 

1987). More recently, a fourth allelic family (MR) has been reported, and is thought to have 

arisen as a result of intragenic recombination between MAD20 and R033 alleles (Takala, 

Branch et a!. 2002). Parasites bearing MR alleles have been detected in isolates from 

Kenya, India, Thailand and Venezuela (Takala, Escalante et a!. 2006)~ The Kl-like and 

MAD20-like types contain different centrally located tri- or hexa-peptide repeat sequences, 

which also vary in length. These repeats are flanked by type-specific, non-repetitive 

sequences. The R033-like variants do not contain any repetitive sequences and are largely 

conserved (Certa, Rotmann et a!. 1987). Although the different repeated amino acid motifs 

in both Kl- and MAD20-like alleles vary considerably in length, the size ofthe block is 

largely maintained (maximum of approximately 90 amino acids), suggesting that this is 

functionally constrained (Tetteh, Cavanagh et a!. 2005). Unlike several other merozoite 

proteins thought to inhibit erythrocyte invasion, including MSP-119, the crystal structures 

of the MSP-l block 2 antigens have not been determined (Bentley 2006). 

2.1.2.2 Antigen function and effect of gene disruption 

The function of MSP-l block 2 proteins remains unknown, but the fact mAbs to this region 

inhibit merozoite invasion of erythrocytes suggests that they have a role to play in invasion 

(Locher, Tam et al. 1996). The K1- and MAD20-like variants contain repeat sequences 

which on the one hand are thought to impair the development of protective immunity to 
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malaria (Anders 1986; Schofield 1991), and on the other, have been associated with 

protection both from infection (Bojang, Milligan et al. 2001; Kester, McKinney et al. 2001) 

and clinical disease (Polley, Tetteh et al. 2003). Attempts to knock out or disrupt MSP-1 

block 2 specifically, have not been reported. 

2.1.2.3 Supportive evidence that antibodies playa role in protection against malaria 

2.1.2.3.1 In vitro studies 

The only in vitro study that suggests antibodies to MSP-1 block 2 may playa role in 

protection against malaria is that already described above by Locher et a1. (Locher, Tam et 

al. 1996). In a separate study that aimed to map the epitopes of MSP-1 that were targeted 

by human immune antibodies, octapeptides that corresponded to the N-terminal repeats 

were found to give the strongest reactivity by ELISA (Lyon, Carter et al. 1997). However, in 

the same experiment, antibodies dissociated from immune clusters ofmerozoites (a 

potential mechanism for inhibiting merozoite dispersal) failed to recognize both the 

recombinant fragments and octapeptides from block 2 of MSP-1 (Lyon, Carter et al. 1997). 

2.1.2.3.2 Vaccination and passive antibody transfer studies 

The majority of vaccination studies in animal models of malaria have been performed using 

the entire MSP-1 protein, or various C- terminal portions of it, such as MSP-142 and MSP-h9 

(discussed above). Only one study was identified where synthetic peptides corresponding 

to the N-terminal83kDa protein ofMSP-1 were used to immunize Saimiri monkeys 

(Cheung, Leban et al. 1986). Although monkeys immunized with these peptides had very 

low anti-malarial antibody titres, following challenge, three of the four immunized 
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monkeys had lower parasitaemias than control animals and recovered without therapy 

(Cheung, Leban et al. 1986). 

2.1.2.3.3 Population genetic analyses 

Molecular population genetic studies have found evidence of balancing selection in block 2 

of MSP-l, using different methods. The number of non-synonymous amino acid 

replacements was found to exceed that of synonymous amino acid replacements in three of 

eleven regions of six MSA-l alleles suggesting that positive selection was favouring 

diversity at these sites, one of which was region 3 which is currently referred to as block 2 

(Hughes 1992). The Ewens-Watterson test is one in which allele frequencies in a 

population sample are determined and used to calculate an observed F statistic which is 

compared to that expected under neutrality. The F statistic represents the homozygosity in 

a gene which would exist in a diploid under Hardy-Weinberg equilibrium and is equal to 

the sum ofthe squared allele frequencies. For malaria parasites this is achieved by 

sampling blood stage parasites which are haploid. This test was applied to three malaria 

antigens, MSP-l, MSP-2 and GLURP in a population sample ofl00. Fwas found to be lower 

than expected under neutrality for all antigens although this was only significant for MSP-2 

and GLURP(Hughes 1992; Conway 1997; Conway, Cavanagh et at 2000). The strongest 

evidence comes from the study by Conway et al., where ten loci within the msp-l gene of P. 

!alciparum were analyzed in large population samples from seven malaria endemic 

countries from East, West and South Africa. This study employed Wright's F statistic (FST) 

which is a measure of the proportion of overall diversity that is attributable to differences 

between populations. When allele frequencies are very similar different populations, i.e. 
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very low FST , this suggests that balancing selection is maintaining the alleles. In 

comparison to the rest of msp-l, they found strong evidence of balancing selection within 

Block 2, which was subsequently supported by data from immuno-epidemiological studies 

(Conway, Cavanagh et al. 2000). 

2.1.2.3.4 Immuno-epidemiological studies 

2.1.2.3.4.1 Introduction 

By far the majority of immuno-epidemiological studies on MSP-1 have focused on its C

terminal regions (described above). However, early studies indicated that various N 

terminal regions of the molecule were also targets of naturally acquired immune 

responses, and thus could playa role in protecting against malaria. These studies included 

children and adults, and analyzed antibodies to a variety of N-terminal fragments of MSP-1, 

in samples drawn both from cross-sectional surveys (Chizzolini, Dupont et al. 1988; Muller, 

Fruh et a1.1989; Fruh, Doumbo et al. 1991), and longitudinally monitored cohorts (Tolle, 

Fruh et al. 1993). The N-terminal fragments of MSP-1 analyzed were not as well 

characterized as they are currently, and so the studies cannot be directly compared with 

more recent ones. Nevertheless, antibodies to particular N-terminal fragments were 

relatively common, prevalence being higher in adults compared to children, and associated 

with lower parasitaemias (analyzed at various thresholds) (Chizzolini, Dupont et al. 1988; 

Muller, Fruh et al. 1989; Fruh, Doumbo et al. 1991; Tolle, Fruh et al. 1993). Antibody 

reactivity was higher against dimorphiC, compared to conserved epitopes, and appeared to 

reflect the genotypes of parasites prevalent in the study location, although only a handful of 

parasite isolates (n=8) were actually genotyped (Tolle, Fruh et al. 1993). 
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2.1.2.3.4.2 The prevalence of antibodies to MSP-1 Block 2 antigens 

With the advent of new, well characterized MSP-1 block 2 antigens (Cavanagh and McBride 

1997; Polley, Tetteh et a!. 2003), studies conducted in multiple locations can now be 

directly compared. In addition, several studies have analyzed antibody responses using 

synthetic peptides corresponding to the different block 2 allelic families Oouin, Rogier et a!. 

2001; Ekala, Jouin et a1. 2002). In general, the prevalence of antibodies to recombinant, E. 

coli-expressed MSP-1 block 2 antigens has ranged from 5 to 35% in children, depending on 

the specific antigen (MawiIi-Mboumba, Borrmann et a!. 2003; Cavanagh, Dodoo et a!. 2004; 

Osier, Fegan et a!. 2008). However, in a cross-sectional survey among school children in 

Cameroon, the prevalence was unexpectedly high (close to 60% for some antigens) in one 

of four schools (Kimbi, Tetteh et a!. 2004). The reasons for this were unclear, especially 

since neither the prevalence of P. Jalciparum parasitaemia, nor that of multiple clone 

infections, was different across the schools (Kimbi, Tetteh et a!. 2004). Prevalence was also 

unexpectedly low among children presenting to hospital with severe malaria anaemia 

(1.7%) or uncomplicated malaria (3.7%), compared to those with cerebral malaria 

(10.3%), for antibodies to the R033 type, although this is not a representative population 

sample (Dobano, Rogerson et a!. 2008). Antibody prevalence was observed to increase 

with age in some (Mawili-Mboumba, Borrmann et a!. 2003; Cavanagh, Dodoo et a!. 2004), 

but not all studies (Osier, Fegan et a!. 2008), and to be higher at the end, as opposed to the 

beginning, of a malaria transmission season (Cavanagh, Dodoo et a!. 2004). 
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The predominant IgG isotype response to MSP-l block 2 antigens is IgG3 followed by IgGl, 

in both adults and children (Cavanagh, Dobano et al. 2001; Cavanagh, Dodoo et al. 2004), as 

well as symptomatic and asymptomatic P. Jalciparum infections (Scopel, Fontes et al. 2005), 

though this pattern (lgG3>IgGl) appeared to be reversed in one study from the Brazilian 

Amazon (Da Silveira, Dorta et a1. 1999). The prevalence of antibodies to MSP-l block 2 was 

also higher in an area of higher malaria transmission (Chonyi) compared to one with lower 

transmission (Ngerenya) (Conway, unpublished). As with other malaria antigens, the 

prevalence (and levels) of antibodies to MSP-l block 2 antigens was higher in children who 

were parasitaemic at the time of sampling, compared to those who had no detectable 

parasites (Osier 2008). Finally, like IgG antibodies to other malaria proteins (Kinyanjui, 

Conway et a1. 2007), those to MSP-l block 2 are typically short-lived (Cavanagh, Elhassan 

etaI.1998). 

2.1.2.3.4.3 Allele- and type-specificity of antibodies to MSP-l Block 2 

Polymorphism is widely considered to be a mechanism by which parasites evade 

protective immune responses (Conway 1997). Given that block 2 is the most polymorphic 

locus of the mspl gene, it has been of interest to investigate the relationships between the 

genotypes of infecting parasites and the corresponding allele-specific antibody responses. 

In the first immuno-epidemiological study using MSP-l block 2 antigens, Cavanagh et al. 

found that in general, the antibodies were type-specific, and correlated with the PCR typing 

of paraSites present at the time of infection (Cavanagh, Elhassan et al. 1998). While a 

similar trend has been found in some studies (Kimbi, Tetteh et al. 2004), and, in particular 
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with cytophilic antibodies (Da Silveira, Dorta et al. 1999), others have found no 

relationship between the allele-specific antibodies detected and the genotypes present in 

the concurrent infection Oouin, Rogier et a1. 2001; Ekala, Jouin et a1. 2002). 

2.1.2.3.4.4 Antibodies to MSP-1 block 2 and associations with protection 

With regards to protection, antibodies to MSP-l block 2 have been analyzed largely in two 

contexts. The first is in traditional longitudinal studies, where individuals are monitored 

for the development of clinical disease over a defined period of time. The presence and/or 

levels of antibodies (measured at the start of the observation period), are then compared 

among 'susceptible' and 'protected' individuals. The second is the more recent approach, 

where antibodies are analyzed in studies primarily designed to monitor drug resistance 

(described above). A range of comparisons can be made from the latter studies, at mUltiple 

time points, between specific IgG and clinical and/or parasitological outcome. As such, in 

longitudinal studies where the outcome was defined as clinical episodes of malaria (fever 

plus a parasitaemia threshold), antibodies to MSP-l block 2 were associated with 

protection in some (Conway, Cavanagh et al. 2000; Polley, Tetteh et al. 2003; Cavanagh, 

Dodoo et al. 2004), though not all studies (Osier, Fegan et a1. 2008). Similarly, in a study on 

the efficacy of amodiaquine in the treatment of uncomplicated P. falciparum malaria, a 

significantly higher proportion of children with antibodies to more than 2 variants of the 

K1 block 2 type was found in the cured, compared to the treatment failure group. These 

data are contradictory because the authors also report that the prevalence of antibodies to 
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block 2 antigens, in particular to Kl-like antigens was similar in both groups of children 

(Mawili-Mboumba, Borrmann et a1. 2003). 

2.1.2.3.5 Vaccine trials in humans 

Although no vaccine trials have been conducted (at least not published) with MSP-1 block 2 

antigens, an interesting concept with regards to the design of such a vaccine has been 

proposed. Tetteh et al. analyzed the complex polymorphism arising as a result of repeats 

within the predominant Kl-like variants, and constructed a composite antigen (K1-like 

Super Repeat), incorporating diverse deduced epitopes, and able to induce broad 

specificity following immunization (Tetteh, Cavanagh et a1. 2005). This approach could be 

extended to include sequences from the other major allelic types of block 2, and thus 

potentially overcome the challenge of including multiple, diverse alleles into an MSP-l 

block 2 based malaria vaccine. 
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2.2 MSP-2 

2.2.1 ANTIGEN DISCOVERY, LOCATION AND STRUCTURE 

MSP-2, previously referred to as MSA2, gp35-56, or GP3, appears to have been identified by 

several distinct groups at about the same time. The earliest report was made by Stanley, 

Howard and Reese (Stanley, Howard et a1. 1985), who used hybridomas from mice that had 

been repeatedly injected with disrupted schizonts and merozoites of P. Jalciparum. They 

demonstrated that the antibodies secreted by these hybridomas bound to the merozoite 

surface, and immuno-precipitated a 56kDa molecular weight protein (Stanley, Howard et 

a1. 1985). In subsequent studies, several methods were employed to arrive at the same 

antigen. In what was considered to be a novel approach at the time, Smythe et al. used 

temperature dependent phase separation with the non-ionic detergent Triton X-114 to 

isolate integral membrane proteins which they then blotted onto nitrocellulose. Human 

antibodies were subsequently affinity purified on these immobilized antigens, and used to 

identify eDNA clones (from a phage expression library) encoding the corresponding 

peptides. Thus, they isolated a 45kDa protein (Smythe, Coppel et a1. 1988), and established 

using mAbs that it corresponded to the 55kDa antigen described by Epping et al. (Epping, 

Goldstone et a1. 1988), as well as the 45kDa protein reported as GYMMSA by Ramasamy et 

aT. (Ramasamy 1987), and possibly to the 56kDa protein described by Stanley et al. 

(Stanley, Howard et aI.1985), above. In a separate study, Miettinen-Baumann et al. isolated 

a 46kDa protein by extracting freshly harvested merozoites of P. /alciparum, subjecting the 

extract to gel electrophoresis and electroelution. They showed that this protein was 

present in late ring, trophozoite, schizont and segmenter stages, and could be localized to 
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the surface of the merozoite at the end of schizogony (Miettinen-Baumann, Strych et al. 

1988). MSP-2 was also identified by immuno-precipitating the proteins targeted by mAbs 

known to inhibit erythrocyte invasion (Clark, Donachie et al. 1989), or those eluted from 

immune clusters of merozoites (ICM) (Thomas, Carr et al. 1990). 

At the molecular level, numerous alleles of MSP-2 have been described, which can be 

grouped into two main families, 1C-1-like and FC27-like, based on the prototype parasites 

in which they were described. This classification has not changed in essence, since it was 

first put forward, based on the analysis of far fewer alleles than have been subsequently 

reported (Thomas, Carr et al. 1990; Smythe, Coppel et al. 1991) and was supported by 

serological analyses (Fenton, Clark et al. 1991). For simplicity and consistency, IC-1-like 

MSP-2 alleles and antigens will be referred to as type A alleles and antigens, and similarly 

FC-27-like MSP-2 alleles and antigens will be referred to as type B, in a similar fashion to 

Fenton et al. (Fenton, Clark et al. 1991). MSP-2 sequences contain a central domain 

comprised of repeats that vary in number, length and sequence, flanked in turn by non

repetitive variable sequences, and by conserved N- and C-terminal domains. Dimorphic, 

non-repetitive sequences internal to the N- and C- termini distinguish the two main allelic 

families, as illustrated in Figure 2.2.1. The central repeats define individual alleles. Type B 

alleles have a 32 residue motif that is repeated one to four times, followed by a 7-mer 

residue sequence, and by one to five tandem copies of a variable 12-mer sequence. Type A 

alleles are characterized by shorter repeats of 3 to 10 residues. In addition, further 

diversity arises as a consequence of point mutations, which occur in all regions of the gene. 
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Structurally, MSP-2 is reported to have the characteristics of an intrinsically unstructured 

protein, and can form amyloid-like fibrils in its recombinant form, the latter lending 

support to a role in invasion (Low, Chandrashekaran et al. 2007). Knowledge of the 

structure of MSP-2 is relevant for vaccine development, as the monomeric form and fibrils 

may have different antigenic properties (Low, Chandrashekaran et al. 2007) 
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Schematic of the msp-2 gene illustrating the locations of the constant domains, family-

specific domains and allele-specific repeats. Taken from Felger 2003. 

2.2.2 ANTIGEN FUNCTION AND EFFECT OF GENE DISRUPTION 

Attempts to knock out MSP-2 have so far been unsuccessful (Cowman and Crabb 2006) and 

its precise function has yet to be determined. 
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2.2.3 SUPPORTIVE EVIDENCE THAT ANTIBODIES PLAY A ROLE IN PROTECTION AGAINST 

MALARIA 

2.2.3.1 In vitro studies 

Several murine mAbs known to inhibit erythrocyte invasion have been shown to bind to 

epitopes within MSP-2, such as 8G10/48 and 9E3/48 (Epping, Goldstone et al. 1988), mcab 

13.4 (Clark, Donachie et al. 1989),(Ramasamy 1987; Miettinen-Baumann, Strych et al. 

1988). Such experiments support the idea that MSP-2 has a role to play in merozoite 

invasion of erythrocytes. It is not clear whether these mAbs were effective at inhibiting 

invasion-inhibition of multiple parasite strains, or only the strains used to generate them. 

In studies where actual invasion-inhibition experiments were performed, only one parasite 

strain was tested (Epping, Goldstone et al. 1988; Miettinen-Baumann, Strych et al. 1988). 

However, an early suggestion that the observed invasion-inhibition was 'strain-specific' 

came from the study by Stanley and colleagues. Monoclonal antibodies generated from 

hybridomas created using the FVO strain reacted with the same FVO strain and the Geneva 

strain in IFAT (Indirect Fluorescence Antibody Test) and immuno-precipitated a 51kDa 

protein, but failed to do the same with four other parasite strains (Stanley, Howard et al. 

1985). Similar results were subsequently reported in another study but with different 

parasite strains (Epping, Goldstone et al. 1988). 

2.2.3.2 Vaccination and passive antibody transfer studies 

As MSP-2 has no homologues in other Plasmodium species, limited studies have been 

carried out in animal models of malaria. In one study, mice immunized with peptides from 
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the conserved N- and C-termini were partially protected from challenge with P. chabaudi, 

suggesting that a similar protein existed in this rodent malaria parasite (Saul, Lord et al. 

1992). However, although mice immunized with such peptides produced antibodies at 

levels that were comparable with those generated in response to vaccination with full 

length MSP-2, the specificities of the two types of antibodies differed significantly 

(Lawrence, Stowers et al. 2000). In a separate study, MSP-2 peptides were part of a cocktail 

used unsuccessfully to immunize Saimiri monkeys (Pye, Edwards et al. 1991). 

2.2.3.3 Population genetic analyses 

Varying levels of evidence suggest that MSP-2 is under positive natural selection. Hughes 

and Hughes analyzed non-synonymous and synonymous mutations in eight polymorphic P. 

falciparum genes. In four out of eight genes, including msp-2, an excess of non-synonymous 

over synonymous mutations was found (Hughes and Hughes 1995). In a separate study as 

previously described, msp-2 was one of three genes for which the F statistic from the 

Ewens-Wattersons test of neutrality was significantly lower than that expected under 

neutrality (Conway 1997). However relatively weaker evidence was found in a third study. 

Although significantly more synonymous than non-synonymous mutations were found in 

msp-2 suggesting positive selection, two additional tests for selection, Tajima's D and 

McDonald-Kreitman, failed to identify positive selection (Escalante, Lal et al. 1998). These 

additional tests of selection will be described in detail in a subsequent chapter. 
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2.2.3.4 Immuno-epidemiological studies 

2.2.3.4.1 Variations in MSP-2 antigens 

Antibodies to MSP-2 are common in populations exposed to malaria, and absent in those 

never exposed to malaria. However, as with antibodies to MSP-119, different studies have 

analyzed antibodies to different fragments of MSP-2, either as recombinant proteins, 

commonly expressed in E. coli, or, as synthetic peptides. The difficulties these differences 

pose in reviewing such data have already been discussed at length. Nevertheless, a few 

examples are given to illustrate the case with regards to MSP-2. The reported E. coli

expressed antigens may represent the full-length antigens (Polley, Conway et al. 2006; Sarr, 

Pelleau et a1. 2006; Osier, Fegan et al. 2008), varying lengths of polymorphic, or conserved, 

parts of the gene, or both (Taylor, Smith et al. 1995; Taylor, Allen et a1. 1998; Metzger, 

Okenu et al. 2003). Some portions of the gene may be missing, e.g. the central repeats (al

Yaman, Genton et al. 1994; al-Yaman, Genton et al. 1996; Ranford-Cartwright, Taylor et al. 

1996). 

On the other hand, synthetic MSP-2 peptides contain amino acids which mayor may not be 

consistent between studies, from the conserved N- and C-termini, (Aucan, Traore et a1. 

2000; Kohler, Tebo et al. 2003), from the central repetitive regions (these repeats vary in 

length and sequence) (Zhou, Xiao et a!. 2002), or from multiple locations within the gene 

(Ntoumi, Ekala et a1. 2002). In one study, short MSP-2 peptides were synthesized from 

undisclosed 'antigenic determinants' of the gene, with no information on how these were 

determined (Ayisi, Branch et al. 2003). As such, in considering the prevalence of antibodies 
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to MSP-2 in malaria-endemic populations, attention needs to be paid to the nature of the 

antigen being tested. 

2.2.3.4.2 Prevalence of anti-MSP-2 antibodies 

From published reports, the prevalence of antibodies to MSP-2 from adequately sized 

cross-sectional surveys ranges from as low as 3% in rural Amazonians with little malaria 

exposure (Scopel, da Silva-Nunes et al. 2007), to as high as 100% among Kenyan (Polley, 

Conway et al. 2006) or Gambian adults (Taylor, Allen et al. 1998), with a wide range in 

between. In these three studies, this wide variation in prevalence is explained in part both 

by differences in the nature of the antigen tested, as well as differences in the transmission 

intensity of malaria (Taylor, Allen et al. 1998; Polley, Conway et al. 2006; Scopel, da Silva

Nunes et al. 2007). In particular for MSP-2, antibody prevalence is higher for polymorphic 

as opposed to conserved epitopes (Taylor, Smith et al. 1995; Metzger, Okenu et al. 2003), 

and in general, the prevalence and levels are highest when measured against the full-length 

antigens (Taylor, Smith et al. 1995). Other factors affecting the prevalence of antibodies 

are similar to those already described for antigens to MSP-119 and MSP-1 block 2. 

Anti-MSP-2 antibodies are found more commonly in adults, as compared to children 

(Polley, Conway et al. 2006), in pregnant mothers in their third trimester compared to their 

infants (Riley, Wagner et a1. 2000), and in parasite positive compared to parasite negative 

children (Polley, Conway et al. 2006) and adults (Tami, Grundmann et al. 2002). The 

prevalence of antibodies to MSP-2 was comparable in HIV+ and HIV- mothers and their 
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respective infants (Ayisi, Branch et aI. 2003), and among children with the sickle trait 

(HbAS) compared to those with normal haemoglobin genes (HbAA). However, in one 

study, individuals with adaptive hemoglobin variants (HbC or HbS) have higher antibody 

levels to MSP-2 compared with individuals who have normal hemoglobin (Verra, Simpore 

et aI. 2007). Higher antibody levels to an MSP-2 antigen of unspecified provenance were 

reported in children and adults from Sudan with uncomplicated malaria, compared to 

those with severe malaria, although this was significant for only one of the MSP-2 alleles 

tested (TM, Elbashir et a1. 2008). In a different study from Malawi, antibody levels to a 

conserved C-terminal fragment of MSP-2 were lowest in children with severe anaemia, 

followed by those with uncomplicated malaria, and highest in children with cerebral 

malaria (Dobano, Rogerson et aI. 2007). Somewhat similar findings were found in Gabon, 

where at three time points (acute, convalescent and healthy), the prevalence of antibodies 

to a peptide from the conserved N-terminal of MSP-2 was significantly higher in children 

with severe malaria compared to those with mild malaria (Kohler, Tebo et a1. 2003). 

However, the epidemiology and clinical spectrum of malaria differ considerably in these 

three settings (Sudan, Malawi and Gabon). 

Given the differences in the MSP-2 antigens, and in the design of the studies, the study 

participants and epidemiological contexts, it is difficult to make a simple summary of the 

prevalence of antibodies to MSP-2. 
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2.2.3.4.3 IgG isotype antibodies to MSP-2 

The predominant IgG isotype responses to MSP-2 are IgG3, followed by IgG1 (Taylor, Smith 

et al. 1995; Taylor, Allen et al. 1998; Cavanagh, Dobano et al. 2001; Polley, Conway et al. 

2006; Sarr, Pelleau et al. 2006; Tongren, Drakeley et al. 2006). This pattern is observed in 

infants (Riley, Wagner et al. 2000), children and adults (Taylor, Allen et al. 1998; Tongren, 

Drakeley et al. 2006), and in one study the prevalence of IgG3 to MSP-2 was observed to 

increase with age, while that of IgG1 decreased (Taylor, Allen et al. 1998). However, this 

age-dependent increase in IgG3, and decrease in IgG1 was not observed in the Brazilian 

Amazon, and was thought to depend on the pattern of cumulative exposure to malaria 

(Tonhosolo, Wunderlich et al. 2001). In a similar vein, antibodies induced in 20 adult 

travelers returning to Europe from Africa and presenting to hospital with malaria were not 

skewed towards IgG3; IgG1 antibodies were predominant (Eisen, Wang et al. 2007). 

A few studies have reported comparable levels of non-cytophilic IgG isotypes (IgG2 and 

IgG4), and cytophilic IgG1 and IgG3 isotypes (Aucan, Traore et al. 2000; Ntoumi, Ekala et al. 

2002; Ntoumi, Flori et al. 2005). The studies that detect predominantly cytophilic 

antibodies measure responses to E. coli-expressed recombinant antigens (full length or 

near full-length), while those detecting non-cytophilic isotypes measure antibodies to 

varying peptides ofMSP-2. However, in studies conducted in the Brazilian Amazon, 

antibodies detected to various E. coli-expressed recombinant antigens of MSP-2 were of all 

isotypes, although the predominant response was still IgG3 (Scopel, Fontes et al. 2006). 

Factors thought to affect the polarization of IgG isotype responses include the duration of 

exposure to malaria (Tonhosolo, Wunderlich et al. 2001; Tongren, Drakeley et al. 2006), 
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genetic factors (Stirnadel, Al-Yaman et al. 2000; Aucan, Traore et al. 2001) and intrinsic 

properties specific to MSP-2 (Garraud, Perraut et al. 2002). 

2.2.3.4.4 Allele-specificity of anti-MSP-2 antibodies 

Efforts to determine whether sequence polymorphisms within MSP-2 result in functionally 

important antigenic changes that might indiciate a possible parasite strategy for immune 

evasion have not yielded clear-cut results. Several studies have analyzed naturally 

acquired antibodies to MSP-2 in relation to concurrent infecting parasite genotypes. This 

type of analysis can be envisaged in two directions. The first is whether the infecting 

parasite msp-2 genotype determines the concurrently or subsequently detected antibody 

response. The second is whether allele-specific responses to MSP-2 prevent infection or 

clinical disease with parasites bearing the corresponding msp-2 genotypes. The former 

analysis is complicated by, among other things, pre-existing antibodies from previous 

infections, and the lack of certainty in most if not all studies regarding the onset of current 

infections, and hence the timing of sampling with regards to generation of primary or 

secondary antibodies. This potentially leads to a misclassification bias, but this is probably 

minimized by the fact that sampling is random across studies. The latter analysis requires 

a longitudinal study design in which antibody concentrations can be measured in a healthy 

cohort and related to subsequent risk of developing malaria disease with paraSites bearing 

particular msp-2 genotypes. A similar approach has been reported from treatment

reinfection studies, where antibodies to MSP-2 were assayed at first presentation when the 

patient was treated and parasite evaluated later at re-infection (Weisman, Wang et al. 

2001). For both types of analysis, it is hard to distinguish whether detected antibodies 
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were stimulated by the infecting parasite genotype, or were actually partially protective 

(definitely not fully protective or they would not have been detected!). 

As will be discussed below, many studies have been largely descriptive, analyzing 

genotypes and corresponding antibodies in small numbers of patients, often in sub-group 

analyses, and thus lacking the power for definitive conclusions to be drawn. Other factors 

that appear to affect the results of such analyses are the study location (e.g. Africa versus 

South America), the ages of the individuals tested, and the particular proteins used (E. coli

expressed antigens versus synthetic peptides). An equally important and related question 

is whether antibodies are cross-reactive, allele-specific (between main allelic types) or 

variant-specific (within type). These issues will now be highlighted with specific 

examples, before general conclusions are made. 

Does the infecting parasite genotype determine the specificity of the concurrent antibody 

response (i.e. a type A or type B response)? Polley et al. analyzed data from 146 children and 

adults from Kenya and found that sera from individuals who had a majority of parasites 

with type A alleles had significantly lower antibody levels to the type B antigen, Z = 3.130, P 

= 0.002. Similarly, individuals with a majority of type B parasites had lower levels of the 

discordant antibodies, although the statistical evidence for the latter was weak, Z = -1.799, 

P = 0.072 (Polley, Conway et al. 2006). Parasites were genotyped and the predominant or 

majority alleles were determined semi-quantitatively by viewing PCR products on agarose 

gels (Polley, Conway et al. 2006). Three South American studies also support the idea that 

parasite genotype determines the antibody specificity, although the strength of the 
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evidence varies (Tami, Grundmann et al. 2002; Kanunfre, Leoratti et al. 2003; Sallenave

Sales, Faria et al. 2007). The best evidence comes from Tami et al., who analyzed samples 

taken from two large cross-sectional malaria surveys, although parasite prevalence was 

low (eg 43/708,6% in the survey of 1995/1996 and 12/925, 1.3% in the survey of 1997) 

(Tami, Grundmann et a1. 2002).They genotyped parasites from both surveys, obtained from 

participants of all ages, and analyzed antibodies to recombinant MSP-2 antigens in all the 

samples. Parasite diversity was low. The majority of individuals had single clone infections. 

However, in both parasite-positive, and parasite-negative individuals, the proportion of 

sera recognizing type A or type B MSP-2 antigens corresponded with the msp-2 alleles 

present in the population at the time. Thus there was concordance at a population level, 

and whether this was also true at the individual level was not analyzed or reported (Tami, 

Grundmann et al. 2002). The remaining two South American studies involved considerably 

fewer individuals (all adults), recruited on presentation to hospital with uncomplicated 

malaria (Kanunfre, Leoratti et al. 2003; Sallenave-Sales, Faria et al. 2007). In both these 

studies, there is evidence for concordance between infecting parasite genotype and 

corresponding antibodies at the individual level in the majority of samples, although there 

is also clear evidence for the opposite scenario in a minority of samples (Kanunfre, Leoratti 

et a1. 2003; Sallenave-Sales, Faria et a1. 2007). 

In a separate study, to avoid the confounding effect of pre-existing antibodies on the 

analysis, Felger et al. analyzed data from primary infections in 48 non-immune travelers 

with no previous history of malaria (Felger, Steiger et al. 2003). Sera were tested against 

14 type A and 5 type B E.coli-expressed antigens based on the msp-2 alleles isolated from 
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the patient samples. Concordant genotype-antibody relationships were observed in the 

majority of paired samples, but not all. Sera from hosts of type A parasites recognised a 

higher number of type A antigens (5.8/14) than those with type B parasites, while those 

from hosts with type B parasites reacted with a mean of 1.9/5 type B antigens. Although 

the number of sera from hosts of type A parasites recognizing type B antigens is not 

reported, and vice-versa, logistiC regression analysis was used to reject the null hypothesis 

that the ratio of numbers of type A:type B antigens recognized was independent of the 

infecting parasite genotype, likelihood ratio chi-squared =4.5, 1 degree of freedom, P = 0.03 

(Felger, Steiger et al. 2003). Similar findings were reported more recently, albeit in a much 

smaller study (n=20) (Eisen, Wang et al. 2007). 

Two other studies failed to find a clear relationship between the infecting parasite 

genotype and the corresponding MSP-2 antibodies at the individual level (Weisman, Wang 

et al. 2001; Ekala, Jouin et al. 2002). Both are relatively small, and differ fundamentally in 

design, from the studies discussed up to this point. Weisman et al. analyzed msp-2 

genotypes and antibodies to near full-length recombinant antigens, and various truncated 

versions in 15 teenagers from an area of Vietnam where malaria is highly endemic 

(Weisman, Wang et al. 2001). Serum samples were collected at the time of infection and 

radical drug treatment (To), at the first re-infection (T1). when they were also treated, and 

28 days later (T2s). They found conflicting results between individual patients at different 

time points, and between different patients apparently infected with parasites bearing 

similar genotypes. There was also no relationship between antibody response and time ·to 

re-infection and they reasonably concluded that H there was no clear relation between the 
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infecting form of MSP-2 and the ensuing antibody response" (Weisman, Wang et al. 2001). 

Ekala et al. on the other hand performed a sub-group analysis on 25 Gabonese residents of 

all ages, using a panel of 12 biotinylated MSP-2 synthetic peptides (Ekala, Jouin et al. 2002). 

The main study involved patients presenting to hospital with uncomplicated malaria 

(n=45), who were compared with asymptomatic subjects (n=45) from the same area. 

Although the prevalence of antibodies to MSP-2 had increased seven days post treatment, 

concordant genotype-antibody relationships were found in only 44% of symptomatic 

patients at day 7 (following treatment at presentation to hospital), and 24% in all samples 

at day 0 (Ekala, Jouin et al. 2002). From all the studies presented so far, the balance of 

evidence favours the idea that the infecting parasite genotype does determine the 

specificity of the concurrent antibody response, particularly in areas with lower malaria 

endemicity. 

This leads to the next linked set of important questions. Do sequence po!ymorphisms result 

in antigenic changes that can be detected by measuring reactivity in ELISA assays? Are anti

MSP- antibodies cross-reactive within type, between types or both? These questions are 

answered most directly and clearly in the studies of Franks et al. and Ranford-Carwright et 

al. (Ranford-Cartwright, Taylor et al. 1996; Franks, Baton et al. 2003). Briefly, Ranford

Carwright et al. showed differential antibody recognition of type B repeats, by testing sera 

from Gambian children against a panel of type B recombinant antigens that contained 

varying numbers of repeats (Ranford-Cartwright, Taylor et a1.1996). In a study of13 

Ghanaian children, Franks et al. found evidence of cross-reactivity within but not between 

types (Franks, Baton et al. 2003) . This was confirmed in a larger set of Gambian sera 
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(n=201), but counter-intuitively, cross-reactivity was most evident for type A antibodies, 

even though sequence diversity is most pronounced in type A compared to type B alleles 

(Franks, Baton et a1. 2003). They also excluded the possibility that this apparent cross

reactivity could be explained by concomitant exposure to non-cross reactive proteins 

(distinct variant-specific antibodies) by performing competition ELISAs (Franks, Baton et 

a!. 2003). Other studies have also demonstrated the lack of cross-reactivity between type A 

and B antibodies (Taylor, Smith et a1. 1995) and the presence of cross-reactivity between 

variant-specific antibodies within either type (Tonhosolo, Wunderlich et a1. 2001), 

although parasite genotypes from the corresponding samples were not determined. 

Are antibodies to MSP-2 associated with protection from malaria? In all but one identified 

study, antibodies to MSP-2 have been associated with protection from malaria. The earliest 

immuno(sero)-epidemiological study that assessed protection from malaria by naturally

acquired antibodies to MSP-2 was conducted in Papua New Guinea by AI-Yaman and 

colleagues (al-Yaman, Genton et a1. 1994). Using a cross-sectional survey, they 

demonstrated that antibodies to full-length or near full length recombinant MSP-2 antigens 

were associated with a history of fewer fever episodes and less anaemia (al-Yaman, Genton 

et a1. 1994). Although there were clear deficiencies in the study design and particularly in 

case definition, this study nevertheless suggested that MSP-2 was worth investigating 

further. AI-Yaman and colleagues then conducted a longitudinal study which showed that 

antibodies to MSP-2 were indeed associated with a lower risk of subsequent clinical 

malaria, in a different set of children from Papua New Guinea (aI-Yam an, Genton et al. 

1995). Only antibodies to the two type A antigens (3d7 and d3d7), and not to the type B 
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antigen (FC27) were associated with protection. This no doubt contributed to the inclusion 

ofthe MSP-2 3D7 allele in the malaria vaccine that was later tested in Papua New GUinea, 

and will be discussed below (Genton, Anders et al. 2003). 

Two other studies subsequently showed that antibodies to MSP-2, particularly of the IgG3 

isotype, were associated with a lower risk of clinical episodes to malaria (Taylor, Allen et al. 

1998; Metzger, Okenu et al. 2003). Although both studies were conducted in rural villages 

in the Gambia, with presumably similar malaria endemicities, the results were slightly 

different. Around Basse, antibodies to both type A and type B antigens were associated 

with protection (Metzger, Okenu et al. 2003), whereas around Farafenni, only antibodies to 

the type A antigen were associated with protection and IgG1 antibodies to the type B 

antigen were in fact associated with an increased risk of clinical disease (Taylor, Allen et al. 

1998). In a Kenyan study, high levels of antibodies to both types of antigens were 

associated with a lower risk of clinical malaria in a high (Chonyi), and low (Ngerenya), 

malaria transmission region, although this did not reach significance for all the categories 

of antibody levels tested (Polley, Conway et al. 2006). The one study in which antibodies to 

MSP-2 were not associated with protection was that conducted in Gambian infants by Riley 

et al. (Riley, Wagner et al. 2000). Maternal antibodies measured in infants at birth, and 

monitored for 20 weeks, were not associated with resistance to malaria infection (not 

clinical episodes as in the other studies discussed previously) (Riley, Wagner et al. 2000). 

All the studies on protection discussed so far have tested antibodies against similar full

length, or near full-length recombinant MSP-2 antigens, expressed in E. coli. In at least one 
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study where peptides from the N - and C- termini of MSP-2 were assayed, children were 

monitored for a year to detect clinical episodes (Aucan, Traore et al. 2000). The results 

from this study are strikingly different from those using E. coli-expressed full-length MSP-2. 

IgG2 antibodies which are rarely detected in the studies using E. coli antigens measured at 

the end a/the transmission season were associated with a low risk of infection, while IgG4 

antibodies were associated with an increased risk of malaria attack The analytical 

strategies employed in this study, and the style of data presentation make it difficult to 

interpret the results (Aucan, Traore et al. 2000). Overall, it is reasonable to conclude that 

antibodies to MSP-2 are associated with protection from clinical episodes of malaria. 

2.2.4 VACCINE TRIALS IN HUMANS 

The first mention of MSP-2 in a human vaccine trial comes from a phase I safety and 

immunogenicity study conducted in Swiss volunteers. In a move to trial multi-component, 

multi-stage malaria vaccines, instead of mono-component ones, MSP-2 was included in 

vaccine formulation together with a CS protein (Sturchler, Berger et al. 1995). Although 

this vaccine was safe and immunogenic, it offered no protection against infection 

(Sturchler, Berger et al. 1995). In further phase I studies conducted in medical and 

veterinary school volunteers, the combination of MSP-1, MSP-2 and RESA was tested in two 

vaccine trials that aimed to address antigenic competition between the antigens, as well as 

provide further data on safety and immune response, as a function of both dose, and timing 

of vaccinations (Saul, Lawrence et al. 1999). Rather disappointingly, as had been found 

with other malaria antigens, vaccine-induced antibody responses to this combination were 
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much weaker than those obtained in experimental animals. Nevertheless, minimal 

antigenic competition was reported, except for one MSP-1 antigen when groups receiving 

mixture versus individual antigens were analyzed, and the immune response was dose

dependent (Saul, Lawrence et al. 1999). There was concern however that the vaccine could 

induce different responses in people already exposed to malaria, a concern the authors 

pointed out, could only be addressed by conducting challenge experiments in persons 

living in malaria endemic areas. Notably, none of the measured vaccine-induced immune 

responses correlated with parasite growth rates (Lawrence, Cheng et al. 2000). 

Nevertheless, these studies led to the phase 1-2b combination B vaccine trial in Papua New 

Guinea that has already been discussed (under erythrocytic malaria vaccines ) (Genton, 

Betuela et al. 2002; Genton, AI-Yaman et al. 2003). 
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2.3 MSP-3 

2.3.1 ANTIGEN DISCOVERY, LOCATION AND STRUCTURE 

MSP-3 was identified using different techniques by two independent groups of researchers 

at about the same time. McColl and colleagues described an antigen which they named 

SPAM (secreted polymorphic antigen associated with merozoites) (McColl, Silva et al. 

1994). SPAM was a 43.2kDa protein identified by screening a P.falciparum cDNA library 

using immune serum from Papua New Guinea (McColl, Silva et al. 1994). Simultaneously 

and independently, Ouevray and colleagues identified a 48kDa protein that they named 

MSP-3, which was recognized both by non-cytophilic antibodies of individuals exposed but 

not protected against malaria, and by cytophilic antibodies of individuals resistant to 

malaria (Oeuvray, Bouharoun-Tayoun et al. 1994). Subsequently, sequence comparisons 

indicated that SPAM and MSP-3 were identical, and the name MSP-3 was retained (McColl 

and Anders 1997). The one thing that differed in the descriptions of MSP-3 from the two 

groups was its location. McColl et al. held that MSP-3 lacked the C-terminal GPI anchor 

signal, and a stop transfer sequence and therefore was not an integral membrane protein. 

However, it appeared to be secreted into the parasitophorous vacuole of the mature 

parasite, although a small proportion of the protein remained associated with the 

merozoite surface at schizont rupture (McColl, Silva et al. 1994). Ouevray et al. on the 

other hand, used several techniques to show that MSP-3 was indeed located on the 

merozoite surface and was not present at any other stage of the parasite's life cycle 

(Oeuvray, Bouharoun-Tayoun et al. 1994). It is unclear whether these differences have 

been resolved, and the matter is largely un-discussed in subsequent publications on MSP-3. 
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Structurally, MSP-3 contains 3 blocks of four heptad repeats of the type AXXAXXX, a 

hydrophilic region, followed by a putative leucine zipper sequence at the C-terminus. The 

heptad regions have hydrophobic residues which result in helical bundles or coiled-coil 

structures in proteins (Mulhern, Howlett et al. 1995). At the sequence level, MSP-3 is 

polymorphic in its N-terminal, but largely conserved in the C-terminal. N-terminal 

variations arise through substitutions and deletions in non-repetitive sequences within and 

flanking the alanine-heptad repeat domains (McColl and Anders 1997). Huber et al. 

genotyped parasites from diverse geographical locations around the world at the msp-3 

locus and found a distinct dimorphism, with parasite isolates falling into two major types; 

3D7 -like or K1-like, as shown in Figure 2.3.1 (Huber, Felger et al. 1997). 
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Figure 2.3.1 Amino acid sequences ofmsp3 genes 

An alignment of the amino acid sequences of msp3 genes from a panel parasite isolates 

obtained from diverse regions of the world. Light grey areas indicate complete 

conservation among isolates tested. Intermediate and dark grey shading indicates the two 

alternative dimorphic forms. Non-shaded amino acids indicate substitutions that do no 

follow a dimorphic pattern. Figure taken from Huber 1997. 

2.3.2 ANTIGEN FUNCTION AND EFFECT OF GENE DISRUPTION 

The precise function of MSP-3 is not known, but it is thought to have a role in merozoite 

invasion of erythrocytes. Disruption of msp-3 interfered with the trafficking of the protein 

to the parasitophorous vacuole and its interaction with the merozoite surface. 

140 



Additionally, gene disruption of msp-3 also led to the loss of another merozoite surface 

protein, ABRA (acidic-basic repeat antigen), and led to reduction in invasion efficiency, 

supporting a role in invasion (Mills, Pearce et a1. 2002). 

2.3.3 SUPPORTIVE EVIDENCE THAT ANTIBODIES PLAY A ROLE IN PROTECTION AGAINST 

MALARIA 

2.3.3.1 In vitro studies 

The best evidence for the protective role of anti-MSP-3 antibodies has been demonstrated 

in the ADCI assay (described previously), which also led to its discovery (Oeuvray, 

Bouharoun-Tayoun et a1. 1994). Pooled hyper-immune serum from adults in the Ivory 

Coast (n=180) that conferred passive protection when administered to Thai patients with 

severe malaria (Sabchareon, Burnouf et a1. 1991) was affinity-purified on three synthetic 

peptides of MSP-3, MSP-3a, MSP-3b, and MSP-3c. These are 24 to 28 mer overlapping 

peptides derived from a conserved section of MSP-3. Only antibodies affinity-purified on 

MSP-3b, significantly inhibited the growth of cultured erythrocytic parasites. This was true 

both for human antibodies, as well as for sera from mice immunized with MSP-3b 

(Oeuvray, Bouharoun-Tayoun et a1. 1994). 

Subsequent studies have confirmed these findings (Badell, Oeuvray et a1. 2000; Singh, Soe 

et al. 2004; Theisen, Soe et al. 2004). In an in-vivo model in which P.falciparum infection 

and growth can be monitored in immuno-deficient mice, only the combination of hyper-

immune immunoglobulin and monocytes, and not either of the two components singly, was 
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effective in controlling and in some cases, completely clearing parasitaemia. This was 

observed with total hyper-immune serum, and hyper-immune serum affinity-purified on 

MSP-3b, but not on RESA (ring erythrocyte surface antigen). When antibodies affinity

purified on MSP-3b were used, parasite clearance was faster than that observed with total 

hyper-immune serum, and as fast as that induced by treatment with chloroquine, although 

the data for the latter were not shown (Badell, Oeuvray et al. 2000). 

In a separate study, Singh et al. took pooled serum from 30 hyper-immune adults from the 

Ivory Coast, and affinity-purified it on a wider panel of overlapping peptides from the 

conserved C-terminal ofMSP-3 (MSP-3a to t) (Singh, Soe et al. 2004). They confirmed the 

previous findings that antibodies to MSP-3b were effective in ADCI. In addition they found 

that antibodies to MSP-3c, d, and f were similarly effective in ADel, were of the cytophilic 

IgG sub-classes, and controlled parasitaemia in-vivo in a previously described immuno

compromised mouse model (Singh, Soe et al. 2004). Murine antibodies raised against a 

GLURP-MSP-3 chimeric protein were also effective in ADCI (Theisen, Soe et al. 2004). In a 

different approach, mRNA from peripheral blood leukocytes of clinically immune 

individuals from Senegal (n=13) was used as a source of Fab (fragment antibody genes), 

which were then used to make a Fab-phage display library from which three distinct anti

MSP-3 antibodies were isolated by panning. The three antibodies thus identified were 

produced in CHO cells (IgG1 and IgG3), and were shown to recognize the native parasite 

protein, and importantly, one ofthem (RAM1), was effective in ADCI (Lundquist, Nielsen et 

al. 2006). 
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2.3.3.2 Vaccination and passive antibody transfer studies 

Passive antibody transfer studies have only been conducted in the immuno-compromised 

mouse model, described above (Badell, Oeuvray et al. 2000; Singh, Soe et al. 2004). Several 

vaccination studies have been conducted in Aotus and Saimiri monkeys (Hisaeda, Saul et al. 

2002; Carvalho, Oliveira et al. 2004; Carvalho, Alves et al. 2005). In the first trial, although 

full-length MSP-3 (FVO strain) was expressed in both S. cerevisiae and P. pastoris, there 

were significant differences in the protein yield of MSP-3 by species, as well as its 

electrophoretic mobility on SDS-page gels. As such, only P. pastoris derived MSP-3 was 

used to immunize New World Aotus monkeys because of its higher yield, purity and the 

fact that its electrophoretic migration more closely resembled that of native MSP-3 

(Hisaeda, Saul et al. 2002). In comparison to five of seven control monkeys, only one of 

seven monkeys immunized with MSP-3 developed an acute infection that required 

treatment to control parasitaemia. Additionally, protection correlated with pre-challenge 

titres of anti-MSP-3 antibodies (Hisaeda, Saul et al. 2002). 

In another study, six different MSP-3-adjuvant combinations were tested in a total of 15 

Saimiri scire us monkeys. The best results were obtained in the immunization regimen with 

MSP-3212-380-AS02, where one of two monkeys completely controlled parasite growth, 

while the other showed a delay in the appearance of para sitae mia. This was contrast to the 

two control monkeys which showed fast rising parasitaemias that required treatment 

(Carvalho, Oliveira et al. 2004). In a follow-up to this study, Saimiri scire us were 

immunized with a hybrid GLURP /MSP-3 protein, with three different adjuvants with 
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disappointing results. All groups of immunized monkeys (5 monkeys per adjuvant group) 

required treatment, although this was delayed in some monkeys, in some groups. Overall, 

they were able to detect a statistically significant association between high antibody titres 

and partial protection and proposed that the induction of high antibody titres was the key 

to successful vaccines based on these antigens (Carvalho, Alves et al. 2005). 

2.3.3.3 Population genetic analyses 

The initial evidence that msp-3 was under selection was weak. In the study previously 

described by Escalante and colleagues, msp-3 was one of eight P. falciparum genes analyzed 

for evidence of positive selection. Similar to msp-2, although non-synonymous amino acid 

replacements significantly exceeded synonymous replacements, two additional tests failed 

to detect positive selection in msp-3. However, the value of the Tajima's D was close to 

significance (Escalante, Lal et al. 1998). Better but still relatively weak evidence for 

selection was subsequently obtained from later studies. MSP-3 has homologues in P. vivax 

(Galinski, Corredor-Medina et al. 1999), P. knowlesi (Hudson, Miller et al. 1983), 

P.reichenowi (Okenu, Thomas et al. 2000) and P. cynomolgi (Galinski, Ingravallo et al. 

2001). In a study that analyzed five alleles ofmsp-3 from P.falciparum and that of its most 

closely related species, P. reichenowi, the ratio synonymous to non-synonymous (dN/dS) 

amino acid replacements was found to differ between the species, though the difference 

was not statistically significant This would indicate that selection was acting to maintain 

alleles within one species relative to the other. This analysis was complemented with other 

tests for selection, the D index of Tajima and Fu and Li, both of which were positive, 
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suggesting balancing selection, but not reaching significance (Okenu, Thomas etal. 2000). 

The best evidence comes from large molecular population studies in which 100 msp-3 

alleles were sampled from Nigeria and Thailand. Tajima's D was significantly positive in 

both populations suggesting that balancing selection was acting to maintain alleles. These 

findings were supported by immunological assays showing that antibodies to both alleles 

of MSP-3 were associated with a reduced risk of clinical episodes of malaria (Polley, Tetteh 

et at 2007). 

2.3.3.4 Immuno-epidemiological studies 

2.3.3.4.1 Variation in MSP-3 antigens 

Compared to the antigens discussed up to this point, far fewer immuno-epidemiological 

studies have been conducted for MSP-3. In general, two types of studies can be identified 

in the literature; those that analyze antibodies against long or short synthetic peptides of 

MSP-3 (MSP-3b, discussed above), or those that have assayed antibodies to E.coli

expressed full-length MSP-3, or a C-terminal fragment of MSP-3 that was similarly 

expressed in E. coli. A few exceptions to this include studies that have in addition to MSP-

3b, analyzed antibodies to overlapping fragments of the conserved region of MSP-3 (MSP-

3a to t) (Singh, Soe et al. 2004). Reported antibodies to MSP-3b include those that have 

been tested against a long synthetic peptide MSP-3blS4-249 (Meraldi, Nebie et al. 2004), and 

a shorter peptide MSP-3b184-210 (Singh, Soe et al. 2004; Soe, Theisen et al. 2004; Roussilhon, 

Oeuvray et al. 2007). Antibodies have also been measured against synthetic MSP-3 

peptides that span slightly different but overlapping epitopes around MSP-3b, such as MSP-
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3181-276 (Nebie, Diarra et at 2008; Nebie, Tiono et at 2008). Full-length MSP-3 antigens 

(307 and K1) are alternative versions of MSP-3 (Polley, Tetteh et at 2007), which 

represent the dimorphism observed at this locus in world-wide isolates (Huber, Felger et 

at 1997). Immunization of mice with full-length MSP-3 induced predominantly type

specific antibodies, which are also common in humans naturally exposed to malaria (Polley, 

Tetteh et at 2007). The E. coli-expressed conserved C-terminal fragment described by 

Polley et al. (Polley, Tetteh et at 2007) does not share epitopes with MSP-3b (Osier, Polley 

et al. 2007). 

2.3.3.4.2 Prevalence of anti-MSP-3 antibodies 

The prevalence of total IgG against MSP-3 antibodies from cross-sectional surveys 

conducted in malaria-endemic areas ranges from as low as 21.3% at the beginning of a 

malaria transmission season, in a region oflow malaria-endemicity in Burkina Faso (Nebie, 

Tiono et al. 2008), to as high as 97.2%, in a highly endemic area of Senegal (Roussilhon, 

Oeuvray et al. 2007). Part of this variation in prevalence is undoubtedly accounted for by 

differences in the specific MSP-3 antigen being tested, as has been described. Additional 

factors include: the intensity of malaria transmission, with prevalence not surprisingly 

being higher in areas with higher, as opposed to lower malaria transmission (Nebie, Tiono 

et al. 2008); the age of the study participants, with prevalence being higher in older 

children and adults, compared to children (Meraldi, Nebie et al. 2004; Osier, Polley et al. 

2007); the timing of sampling, with prevalence being higher at the end, compared to the 

start, of a malaria transmission season in an area of low malaria transmission, but 
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remaining stable over the two time points, in an area with higher malaria transmission 

(Nebie, Tiono et al. 2008). 

In studies using E.coli-expressed MSP-3 antigens, prevalence was higher against full-length 

antigens (including polymorphic and conserved epitopes), compared to the conserved C

terminal fragment; and against allele-specific epitopes (determined by competition ELISA), 

compared to conserved epitopes (Osier, Polley et al. 2007; Polley, Tetteh et al. 2007), and in 

individuals who were parasite-positive, compared to those who were parasite-negative at 

the time of serum sampling (Osier, Polley et al. 2007). Antibodies to both the synthetic 

peptides and E. coli-expressed full length antigens are predominantly of the cytophilic IgG 

sub-classes (lgG1 and IgG3) (Meraldi, Nebie et al. 2004; Osier, Polley et al. 2007). 

2.3.3.4.3 Associations of anti-MSP-3 antibodies with protection 

Antibodies to both MSP-3 peptides and full-length recombinant antigens have been 

associated with protection to malaria in five out of six studies where it has been tested. In 

studies conducted in Myanmar, South East Asia (Soe, Theisen et al. 2004), Burkina Faso 

(Meraldi, Nebie et al. 2004), (Nebie, Tiono et al. 2008) and Senegal (Singh, Soe et al. 2004), 

antibodies to MSP-3, particularly those of the IgG3 sub-class were associated with reduced 

clinical episodes of malaria. In perhaps the longest and most detailed follow up for clinical 

episodes that has been conducted to date (six consecutive years), IgG3 antibodies to MSP-

3b were strongly associated with protection from clinical malaria (Roussilhon, Oeuvray et 

al. 2007). However, in a separate longitudinal study conducted in Senegal, antibodies to 
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MSP-3181-276 (similar to MSP-3b) were not associated with a lower risk of clinical episodes 

(Nebie, Diarra et al. 2008). On the other hand, antibodies to full length MSP-3 have been 

associated with protection from clinical disease in all the studies reported to date (Osier, 

Polley et al. 2007; Polley, Tetteh et al. 2007; Osier, Fegan et al. 2008), although in one study 

protection was only observed with allele-specific responses to K1-, and not 3D7-MSP-3 

(Osier, Polley et al. 2007). Sero-positivity to the C-terminal fragment of MSP-3 was 

associated with protection in the Gambian (Polley, Tetteh et al. 2007), but not the Kenyan 

study (Osier, Polley et al. 2007). 

2.3.4 VACCINE TRIALS IN HUMANS 

The long synthetic peptide of MSP-3, MSP-3b, has entered the phase I trial stages of vaccine 

development When tested in a malaria vaccine trial in Swiss volunteers, it was found to be 

safe and immunogenic, although unacceptably reactogenic when combined with a 

Montanide adjuvant (Audran, Cachat et al. 2005). In a publication that unusually preceded 

that ofthe actual phase I trial by Audran et al., vaccine-induced antibodies to MSP-3b were 

shown to inhibit P. Jalciparum erythrocytic growth in a monocyte-dependent manner. This 

inhibition was in the majority of cases as high, or higher than that observed in hyper

immune sera from West Africa, 'and was still present 12 months after vaccination (Druilhe, 

Spertini et al. 2005). A phase Ib trial of the same antigen has since been conducted in adult 

male volunteers in Burkina Faso, where the vaccine was well tolerated (Sirima, Nebie et al. 

2007). Although humoral responses to MSP-3 were comparable in both the vaccine and 

placebo groups, cellular responses appeared to increase significantly compared to the 

controls, following the second vaccine dose ofMSP-3 (Sirima, Nebie et al. 2007). 
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2.4 AMAl 

2.4.1 ANTIGEN DISCOVERY 

AMA1 was first described in P.knowles;, in experiments designed to identify protective 

antigens from blood-stage parasites (Deans, Alderson et al. 1982). Monoclonal antibodies 

specific for P. knowles; were raised by fusion of rat myeloma cells with spleen cells of rats 

immunized with the W1 parasite strain. Of the 28 mAbs raised in this fashion, only two 

inhibited parasite growth when fully purified from ascetic fluid or bulk hybridoma culture 

supernatants (both of which had undefined factors inhibitory to parasite growth). Both of 

these mAbs bound to a 66kDa polypeptide, which appeared to be a minor parasite 

component, as it was not readily detectable on SDS page gels of total parasite antigen 

preparations (Deans, Alderson et al. 1982). The name AMA1 was actually coined by 

Peterson et al., when they reported a 'novel' blood stage antigen of P. Jalciparum, that had 

the characteristics of an integral membrane protein, and was localized to the apical 

complex (Peterson, Marshall et al. 1989). It appears that Peterson and her colleagues were 

not aware at the time, that this 'novel' antigen was the analogue of that previously 

described by Deans et al. (Deans, Alderson et al. 1982), as no mention of the latter is made 

in their report (Peterson, Marshall et al. 1989). Interestingly, a separate research group 

had also identified P.Jaldparum AMA1 (an 83kDa protein) and presented their findings at 

the '3rd International Congress on Malaria and Babesiosis' in 1987, but did not publish their 

results (Thomas, Deans, Waters, Chulay, reported by Narum and colleagues (Narum and 

Thomas 1994)). In any case, sequence data subsequently revealed that amal was 

conserved across at least three Plasmodial species, v;vax, Jalciparum and knowles; (Waters, 

Thomas et al. 1990). Other studies have since described homologues of amal from P. yoe/ii 
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(Kappe and Adams 1996), P. berghei (Kappe and Adams 1996), P. chabaudi (Marshall, 

Peterson et al. 1989), P. cynomolgi bastianelli (Dutta, Malhotra et al. 1995) and P. 

reichenowi (Kocken, Narum et al. 2000). 

2.4.2 ANTIGEN LOCATION AND PROCESSING 

Early studies indicated that as was the case for P. knowlesi, AMA1 in P. Jalciparum was 

expressed in late-stage schizonts , with at least seven or eight nuclei. The 83kDa protein 

was then proteolytically cleaved to a 66kDa molecule, and both of these were initially 

localized within the merozoite apex before merozoite release. Following schizont rupture, 

while the 83kDa protein remained apically restricted, the 66kDa processed form spread all 

over the surface of the merozoite (Deans, Thomas et al. 1984; Narum and Thomas 1994). 

These early findings have since been confirmed and extended in several studies (Howell, 

Withers-Martinez et al. 2001; Healer, Crawford et al. 2002; Bannister, Hopkins et al. 2003; 

Howell, Well et al. 2003; Howell, Hackett et al. 2005). In particular, AMA1 was definitively 

located in the micronemes (Healer, Crawford et al. 2002; Bannister, Hopkins et al. 2003). 

The current understanding of the synthesis and processing of AMA1 is illustrated in Figure 

2.4.1. AMA1 is synthesized as an 83kDa precursor protein with a signal peptide (A) that 

allows transport through the endoplasmic reticulum, from where it traffics to the 

micronemes (Healer, Crawford et al. 2002). The micronemes are translocated from a single 

Golgi-like cistern near the nucleus of the merozoite, to its apex, and dock close to the 

rhoptry tips (Bannister, Hopkins et al. 2003). The N-terminal pro-region sequence is 

cleaved in the micronemes (B), and the mature 66kDa peptide is translocated out of the 

micronemes (C), via the neck of the rhoptry to the merozoite surface before further 
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proteolytic processing (Healer, Crawford et al. 2002). On the merozoite surface, the 66kDa 

protein is cleaved (D) into two soluble fragments of 44 and 48kDa, that are released, 

leaving behind a 'stub' (Howell, Well et al. 2003), which can be detected in young ring stage 

parasites (Howell, Hackett et al. 2005). 
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Figure 2.4.1 AMA1 synthesis, translocation and processing 

The letters A-D indicate sites of proteolytic cleavage (Taken from Healer 2002) . 

2.4.3 ANTIGEN STRUCTURE 

The arrangement of disulphide bonds in AMA1 suggest that the ectodomain is comprised of 

three sub-domains (Hodder, Crewther et al. 1996), which are commonly referred to as 

domain I, II and III. These disulphide bonds define conformational epitopes that are 

essential for inducing protective immune responses (Crewther, Matthew et al. 1996; 

Anders, Crewther et al. 1998). The crystal structure of AMA1 for P. vivax has been 
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resolved, and domains I and II were found to contain a PAN-like motif, which defines a 

superfamily of protein folds that are associated with receptor binding functions (Pizarro, 

Vulliez-Le Normand et at 2005). Detailed NMR spectroscopy studies have also been 

conducted separately for 011 (Feng, Keizer et al. 2005) and 0111 (Nair, Hinds et at 2002) of 

P. Jalciparum, and while the details of such studies are beyond the scope of this review, it is 

apparent that in general, the disulphide bonds are not only key structural components of 

the individual domains, but also stabilize the entire ectodomain. At the sequence level, 

although amal is highly polymorphic, it does not contain repeat sequences commonly 

found in other merozoite proteins. Diversity between alleles of amal is characterized by 

numerous single point mutations scattered throughout the ectodomain, with the majority 

of polymorphic sites falling within domain I. In a population sample of 51 amal alleles 

from Nigeria, although polymorphic sites were found across the entire ectodomain, 38 of 

them were located within domain I, while domains II and III contained only 9 polymorphic 

sites each (Polley and Conway 2001). An illustration of the structure of AMA1 is shown in 

Figure 2.4.2. 
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Figure 2.4.2 The ectodomain of PfAMAl 

Schematic of the ectodomain of PfAMA1, showing the three separate domains I, II and III. 

The location of eight di-sulphide bridges found within the molecule is shown in blue. 

Residues in red represent the mutations occurring in 11 P. !a!ciparum isolates. Nand C 

indicate the N- and C-termini. Figure taken from Nair 2002 
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2.4.4 ANTIGEN FUNCTION AND EFFECT OF GENE DISRUPTION 

Although the precise function of AMA1 is unknown, several lines of evidence suggest that it 

plays an important role in invasion of erythrocytes and hepatocytes, by merozoites and 

sporozoites respectively. Attempts to disrupt the gene using 'knock-out' plasmids have 

been unsuccessful, suggesting that it is essential to parasite survival (Triglia, Healer et al. 

2000). However. it is possible to complement the function of P.Jalciparum amal by 

targeting the gene via homologous recombination with the divergent transgene from P. 

chabaudi. Expression of this transgene in P. Jalciparum led to more efficient invasion of 

murine erythrocytes. supporting a role in invasion (Triglia, Healer et al. 2000). In an 

extension of this approach. Healer and colleagues generated a panel of chimeric P. 

JalciparumjP. chabaudi transfection constructs. where they substituted different sub

domains of amal across the two species in an attempt to identify those that were critical 

for erythrocyte invasion (Healer. Triglia et al. 2005). In invasion-inhibition assays using the 

parasites expressing chimeric AMA1 proteins, they demonstrated that chimeras from each 

domain were able to complement the function of PfAMA1 (Healer. Triglia et al. 2005). 

Invasion of red blood cells involves several steps including, primary recognition, followed 

by reorientation. and the formation of a tight junction which moves from the apical. to the 

posterior pole of the merozoite. the shedding of the merozoite coat and finally invasion. via 

the formation of a parasitophorous vacuole (Cowman and Crabb 2006). AMAI is thought to 

be required at the re-orientation step. after the initial attachment of the merozoite to the 

erythrocyte (Mitchell, Thomas et al. 2004). This was demonstrated by incubating P. 
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knowles; merozoites with red cells in the presence of a rat mAb raised against a known 

invasion-inhibitory epitope ofPkAMA1, and fixing the material for ultra-structural analysis. 

In striking results, they found that in comparison to control cultures lacking inhibitory mAb 

or containing a non-inhibitory antibody, these merozoites bound to red cells normally, but 

failed to re-orientate, and did not invade (Mitchell, Thomas et al. 2004). 

Other studies also lend support to the role of AMAl in erythrocyte invasion. Fraser et al. 

expressed a range of P.yoelii AMAl domains singly, and in varying combinations, in COS-7 

cells, and tested these for binding to erythrocytes. They found that domains I and II, in 

combination, gave the best results in erythrocyte binding and mediated adhesion to mouse 

and rat erythrocytes, but not to human erythrocytes (Fraser, Kappe et al. 2001). In a similar 

approach, Kato and colleagues expressed domains of P. /alciparum AMAl on the surface of 

CHO-Kl cells and demonstrated that domain III bound to the red cell membrane protein Kx 

on human erythrocytes, but only following treatment with trypsin (Kato, Mayer et al. 

2005). In a different approach, Urquizo et al., tested short synthetic peptides spanning the 

entire ectodomain of P. /alciparum AMAl for binding to human erythrocytes, and found 

that 8 of 31 peptides, scattered throughout the ectodomain, bound with high affinity and 

inhibited erythrocyte invaison (Urquiza, Suarez et al. 2000). Recent studies indicate that 

AMAl is also expressed in sporozoite stages and antibodies to AMAl inhibit sporozoite 

invasion ofhepatocytes (Silvie, Franetich et al. 2004). 

155 



2.4.5 SUPPORTIVE EVIDENCE THAT ANTIBODIES PLAY A ROLE IN PROTECTION AGAINST 

MALARIA 

2.4.5.1 Antibody-mediated invasion-inhibition in vitro 

2.4.5.1.1 Anti-AMAl monoclonal antibodies 

In several species of malaria, a large number ofmAbs to AMAl have been indentified which 

inhibit erythrocyte invasion, and these are presumably targeted to diverse epitopes within 

the molecule. Indeed, as was previously discussed, AMAl was discovered by characterizing 

the targets of two rat mAbs that inhibited erythrocyte invasion of P. knowlesi merozoites 

(Deans, Alderson et al. 1982). Similar mAbs have been described for AMAl in other 

plasmodial species, including P./alciparum (Coley, Campanale et al. 2001i Coley, Parisi et al. 

2006). Invasion-inhibition has been performed with intact mAbs, as well as monovalent 

Fab fragments (Fab) and divalent F(ab12 fragments. Early studies with P. knowlesi showed 

that these fragments enhanced invasion-inhibition, when compared to intact IgG (Thomas, 

Deans et al. 1984). These studies indicated that invasion inhibition could not be explained 

simply by that fact that antibodies caused merozoite agglutination, and suggested that 

merozoite binding to red cells was blocked via specific receptors (Thomas, Deans et al. 

1984). Similar findings have been demonstrated more recently for P./aiciparum, where 

purified Fab fragments of the mAb 4G2 were more efficient at invasion-inhibition, 

compared to the intact mAb (Collins, Withers-Martinez et al. 2007). 
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2.4.5.1.2 Mapping of epitopes targeted byanti-AMA1 invasion inhibitory mAbs 

Several approaches have been employed to map the precise locations of the mAbs that 

inhibit merozoite invasion, in attempts to better understand their strain-specificity, and 

thus identify residues that are critical for this function. In addition, such studies help to 

understand the structural requirements within AMA1 that are necessary for high affinity 

bindin~ to mAbs. One technique entails the use of phage display of antigen fragments to 

identify the location of the epitopes, followed by the use of random peptide libraries 

displayed on the phage to accurately identify the amino acids actually involved in the 

epitope. Epitopes thus identified are subsequently verified using phage display of mutant 

fragments, thus confirming the role of each residue in the epitope. This technique was used 

to show that mAb 5G8 bound to a short linear epitope within the pro-domain of P. 

Jalciparum AMA1, while the epitope for mAb IF9 was located within domain I (Coley, 

Campanale et al. 2001). The better studied mAb 4G2, binds to epitopes within domain II of 

AMA1 (Pizarro, 2005, Collins 2007). In more detailed studies, site-directed mutagenesis 

was used to define the precise single polymorphic residue which defined the strain

specificity observed in invasion-inhibition experiments with the mAb IF9 (Coley, Parisi et 

al. 2006). The same approach (site-directed mutagenesis) has also been used to show 

conclusively, that another mAb, 4G2, bound exclusively to epitopes with domain II (Collins 

2007). In Figure 2.4.3 below, the locations of two well-studies mAbs, 4G2 and IF9, are 

shown in a three-dimensional structure. 
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Figure 2.4 .3 X-ray structure of AMAl domains I and II of P. Jalciparum (307) 

The location of residue 197 (dark blue), which is critical for the binding of mAb IF9 is 

indicated. In light blue is the 57 -residue fragment of domain I that reacts with the mAb IF9. 

In red are the residues required for the binding of mAb 4G2. In yellow, is a hydrophobic 

cleft that appears to be flanked by epitopes for both mAbs, 4G2 and IF9, supporting the idea 

that this is an important site for receptor-ligand interactions. Figure taken from Coley 

2006. 
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2.4.5.1.3 Proposed mechanisms for antibody mediated invasion-inhibition 

Several plausible mechanisms have been proposed to explain how antibodies, in general, 

mediate erythrocyte invasion by merozoites, but not all have been demonstrated 

specifically for anti-AMA1 antibodies. One of these is merozoite agglutination, and as 

previously discussed, early studies showed that this was unlikely to be the only mechanism 

since single Fab fragments from anti-AMA1 antibodies could inhibit invasion as well as, or 

more effectively than intact IgG (Thomas, Deans et al. 1984). Antibodies may also work 

through the direct blocking of specific receptors required for invasion both for the parasite 

and the host erythrocytes. This has not been demonstrated directly for any parasite 

antigen, including AMA1, to-date. However, anti-AMA1 antibodies have been shown to 

disrupt the proteolytic processing and redistribution of AMA1 on the merozoite surface. 

When used at high concentrations, anti-AMA1 antibodies inhibited invasion and this was 

accompanied by a concurrent decrease in the 48 and 44kDa products, suggesting that 

proteolytic cleavage had been interrupted (Dutta, Haynes et al. 2005). Furthermore, soluble 

AMA1 fragments were cross-linked by bivalent IgG, thereby inhibiting its circum-merozoite 

redistribution and shedding (Dutta, Haynes et al. 2005). 

2.4.5.1.4 Small peptides (mimotopes) that bind to AMA1 and thereby inhibit invasion 

Random phage display peptide libraries have been used to identify peptides (mimotopes) 

that bind to AMA1, and thus inhibit merozoite invasion of host erythrocytes. In these 

studies it is proposed that a better understanding of the molecular interactions between 

AMA1 and peptides thus identified, and their structures, will aid in the development of 
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novel malaria vaccines. Several such peptides have been described, such as R1 (Harris, 

Casey et al. 2005), as well as F1 and F2 (Li, Dluzewski et al. 2002). These peptides can then 

be used as immunogens that mimic functionally important epitopes. In one study, a mAb 

(4G2dc1) was used to screen a phage display library of>108 individual peptides. The three 

most reactive peptides identified were then used to immunize rabbits, and elicited 

antibodies that not only recognized the peptide immunogen, but also bound to 

recombinant and native AMA1 (Casey, Coley et al. 2004). Both human and rabbit antibodies 

specific for two of three peptides just mentioned were able to inhibit merozoite invasion of 

P. Jaldparum erythrocytes (Casey, Coley et al. 2004). In subsequent studies, the structures 

of these peptides have been determined using NMR spectroscopy, and analogues designed 

that bind to an AMA1 invasion-inhibitory mAb (4G2), with greater affinity (Sabo, Keizer et 

al. 2007). 

2.4.5.2 Vaccination in animal models of malaria and allele-specific anti-AMA1 

antibody responses 

Immunization with purified native AMA1. or correctly folded recombinant AMA1, or even 

the passive transfer of anti-AMA1 antibodies, has been shown to confer complete or partial 

protection against challenge with malaria parasites, particularly of the homologous strain, 

in many studies (Deans, Knight et al. 1988; Collins, Pye et al. 1994; Crewther, Matthew et al. 

1996; Anders, Crewther et al. 1998; Narum, Ogun et al. 2000; Stowers, Kennedy et al. 

2002). However, it is well established both from in vitro assays (eg invasion inhibition) 

and in vivo experiments (challenge following vaccination, or passive transfer of anti-AMAl 

antibodies) that vaccine-induced anti-AMA1 immunity is 'strain'-specific, with Significantly 
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better invasion-inhibition, or clinical protection, observed with homologous, as opposed to 

heterologous parasites (Crewther, Matthew et a1. 1996; Hodder, Crewther et a1. 2001; 

Kennedy, Wang et a1. 2002; Kocken, Withers-Martinez et a1. 2002). In vitro, this is best 

detected using functional assays, as simple recognition of parasites containing allelic 

variants of AMA1 (for example by immuno-fluorescence) may appear similar, while a clear 

difference between the two antibodies becomes apparent when invasion-inhibition assays 

are performed (Kocken, Withers-Martinez et a1. 2002). However, the breadth of antibody 

specificity can be increased, without compromising the efficacy of the antibodies by 

vaccination with more than one allelic variant (Kennedy, Wang et al. 2002). 

More direct evidence that sequence differences between AMA1 alleles have important 

functional consequences has been obtained in studies using transgenic parasites (Healer, 

Murphy et al. 2004). Here two parasite lines (3D7 and W2mef) were selected which 

differed in their susceptibility to the invasion-inhibitory activity of polyclonal anti-AMA1 

antibodies. The sequence of amal in these two parasite 'strains' also differs, particularly in 

domain I. TransgeniC parasites were constructed that expressed the heterologous AMA1 

proteins separately, or a chimera of the two AMA1 proteins. They then compared invasion

inhibition in parasites expressing homologous versus AMA1 proteins, or the chimera and 

demonstrated clearly that sequence differences in AMA1 resulted in differential invasion

inhibition,lending support to the idea that polymorphisms are selected by variations in the 

protective immune response (Healer, Murphy et al. 2004). 
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2.4.5.3 Population genetic analyses 

Different approaches have been l:lsed to support the idea that polymorphisms within AMA1 

arise as a result of immune pressure, and that this is a strategy employed by the parasite to 

evade protective immune responses. While the strengths and weaknesses of these 

different approaches are debatable, there is little doubt from all the studies that amal is 

under positive natural selection. In an early study, Escalante et al. compared the 

polym~rphisms within 10 loci of potential P.falciparum vaccine candidates, to determine 

whether or not they were under positive selection (Escalante, Lal et al. 1998). From their 

analyses, am~ ~as one of four genes for which there was clear evidence of positive 

selection (Escalante, Lal et aL 1998). However, this was based only on the excess of non-

synonymous over syno~ymous amino acid replacements, with no evidence from the 

Tajima's D and McDonald-Kreitman test as previously discussed. In a different approach, 

Verra et al. compared the ratio of synonymous to non-synonymous mutations in 

immunogenic (pre-defined T-cell epitopes) versus non-immunogenic regions of amal and 

concluded that there was evidence of positive selection favoring genetic diversity within 

the T-cell epitopes (Verra and Hughes 1999). 

In a separate study polymorphisms within amal were compared between P. reichenowi 

and 12 laboratory isolates of P. falcip~r.um, and Significant evidence for selection-

maintaining polymorphisms within the P. fa lcip arum alleles was detected using the 

McDonald-Kreitman test (Kocken, Narum et al. 2000). Alleles of amal have also been 

sampled from several large population studies from all over the world including, Nigeria 
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(51 alleles) (Polley and Conway 2001), Thailand (SO alleles) (Polley, Chokejindachai et al. 

2003), Papua New Guinea (168 alleles) (Cortes, Mellombo et al. 2003), and India (157 

alleles) (Garg, Alam et al. 2007), and though not all studies analyzed the entire ectodomain, 

it is clear overall that there is strong evidence of balancing selection maintaining 

polymorphisms, particularly within domains I and III. 

Two other studies have analyzed amal alleles from smaller population samples (Escalante, 

Grebert et al. 2001; Rajesh, Singamsetti et al. 2008). In the study by Escalante et ai., 

diversity in amal was 20-30% higher in the alleles from Kenya (n=12), compared to those 

from SE Asia (n=10), and Venezuela (n=10) (Escalante, Grebert et al. 2001). Unlike all the 

. other studies discussed so far, in a study of 13 amal alleles from India, Rajesh and 

colleagues found the highest degree of polymorphism within domain II, although the 

signature of selection was evident throughout the gene (Rajesh, Singamsetti et al. 2008). 

2.4.5.4 Immuno-epidemiological studies 

2.4.5.4.1 Overview 

Antibodies to AMAl in malaria-endemic regions have been studied using a variety of AMAl 

antigens, including, the full ectodomain, single sub-domains, combinations of domains I and 

11,1 and III, or II and III, and a range of different mer synthetic peptides from various 

regions of the gene. The full-length and sub-domain constructs have been expressed in a 

range of systems including E. coli, P. pastoris and Baculovirus, using the sequence of AMAl 
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from different parasite lines, including 307, FVO, HB3, 7G8, and 010. These differences will 

be highlighted in the discussion on antibody prevalence below. 

2.4.5.4.2 Prevalence of antibodies to full-length AMAl antigens 

Considering initially data from adequately large cross-sectional studies that were 

representative of the malaria-endemic population in which they were carried out, the 

prevalence of antibodies to full-length AMAl (entire ectodomain) ranges between 67% and 

100% (Thomas, Trape et al. 1994; Johnson, Leke et al. 2004; Polley, Mwangi et al. 2004; 

Cortes, Mellombo et al. 2005). In these four studies, antibodies were analyzed for full

length AMAl expressed in baculovirus, based on the 7G8 parasite 'strain' (Thomas, Trape 

et al. 1994; Johnson, Leke et al. 2004), or in E. coli, based on the 307 strain (Polley, Mwangi 

et al. 2004; Cortes, Mellombo et al. 2005) or the HB3 and 010 paraSite strains (Cortes, 

Mellombo et al. 2005), or in P. pastoris, based on the FVO strain (Polley, Mwangi et al. 

2004). In the Kenyan study, a tight concordance was found between antibodies to AMAl 

based on the FVO sequence and expressed in P. pastoris, and that based on the 307 strain 

and expressed in E. coli, suggesting cross-reactivity between antigens from the two 'strains' 

(Polley, Mwangi et al. 2004). Similarly, in the study from Papua New Guinea, very high 

correlation coefficients (>0.90) were found between antibodies to AMAI based on three 

different allelic forms (HB3, 010 and 307), all expressed in E. coli (Cortes, Mellombo et al. 

2005). Antibody levels increased with age in all four studies, except that by Thomas et al. 

(Thomas, Trape et al. 1994) in a Senegalese population, where no age relationship was 

observed. Cortes et al. suggest this lack of an age-dependence of antibodies may be 

explained at least in part, by differences in the antigen, which was highly glycosylated 
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compared to native AMA1, or, differences in immuno-assay methodologies (capture versus 

direct ELISA, as performed in more recent studies) (Cortes, Mellombo et al. 2005). In the 

Cameroonian study, although the prevalence of anti-A MAl antibodies was 100% (children 

under the age of 5 were not included in the study, n = 200), antibody levels were still 

observed to rise with age Oohnson, Leke et al. 2004). Antibodies were also more common 

in individuals that were parasitaemic at the time of serum sampling, compared to those 

who were not (Polley, Mwangi et al. 2004), and acquired earlier in an area of higher 

malaria transmission compared to one with lower transmission (Polley, Mwangi et al. 

2004) and again more common in individuals with the HLA DRBl *1201 haplotype 

compared to all other haplotypes in Cameroon Oohnson, Leke et al. 2004). As is the case for 

several merozoite antigens, antibodies to full-length AMAl appear to be short-lived in 

children (Kinyanjui, Conway et a1. 2007). 

Two studies have analyzed antibodies to AMAl in cord blood from newborns, or the early 

neonatal period (Riley, Wagner et al. 2000; Metenou, Suguitan et al. 2007). In one study 

cord blood mononuclear cells from 120 Cameroonian infants were cultured and the 

supernatants tested for IgG antibodies against full-length AMA1, and were positive in 58% 

of samples, indicating that fetal lymphocytes had been primed in utero (Metenou, Suguitan 

et a1. 2007). In the other study, the majority (>80%) of paired maternal and neonatal 

samples (collected at birth, n=143), contained antibodies to full-length AMAl, with 

antibody levels being highly correlated between the pairs, presumably due to placental 

transfer of maternal antibodies (Riley, Wagner et al. 2000). Amongst individuals 

presenting to hospital with malaria, the prevalence of antibodies to AMA1 was significantly 
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lower in children in severe malarial anaemia (42.9%, n = 59), compared to those with 

cerebral malaria (71.S%, n=126), or those with uncomplicated malaria (52.5%, n=S4, 

difference not significant), although these finding were not unique to AMA1 (Dobano, 

Rogerson et al. 200S). In a study of >250 pregnant women in Malawi, the concentration of 

antibodies to full-length AMAl was significantly lower among HIV-positive women, 

compared to those that were HIV-negative, but did not correlate with viral load or CD4 

positive T cell counts, making it difficult to interpret the results (Mount, Mwapasa et a1. 

2004). 

2.4.5.4.3 Prevalence of antibodies to sub-domains and peptides of AMA1 

In general, naturally acquired antibodies appear to be more commonly directed against 

epitopes found within domain I, than those within either of the remaining two sub

domains. This conclusion is drawn from the fact that the antibody reactivity against the full 

ectodomain is much higher than that against either domain II, or domain III (Cortes, 

Mellombo et a1. 2005). When antibodies against the combination of domains II and III were 

compared with those against the entire-ectodomain, it was also apparent that a 

considerable amount of reactivity was attributable to epitopes within domain I (Polley, 

Mwangi et al. 2004). Difficulties in expressing domain I, singly, have precluded the 

examination of antibodies to this individual domain in more direct comparison (Cortes, 

Mellombo et al. 2005). Although it may be expected that reactivity to domain I would be 

highest. simply because it is larger than the other two domains and therefore contains 

more epitopes. it is clear that as AMA1 is a conformation-dependent antigen. all domains of 

the molecule contribute significantly to the detected antibody reactivity (Lalitha. Ware et 
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a1. 2004). In one study the highest prevalence reported for any single peptide (linear B cell 

epitope), out ofa panel of pep tides spread across the entire ectodomain of AMA1, was 

between 40-50% (antibodies to PL162 from domain I were analyzed at three time points, 

3-4 months apart) (Udhayakumar, Kariuki et a1. 2001). In a separate study, antibodies to 

this same peptide of AMAl (PL162) were present in nearly 100% of individuals' tested 

from an urban region of Orissa, India (Biswas, Seth et a1. 2008). The findings from this 

latter study do not seem correct as antibody responses to a panel of peptides from different 

blood stage antigens were significantly more common in individuals from the urban area 

which appears to have a lower intensity of malaria transmission, compared to the forest 

area where the malaria transmission intensity was higher (Biswas, Seth et a1. 2008). 

2.4.5.4.4 IgG isotypes of anti-AMA1 antibodies 

Naturally acquired antibodies to AMA1 are predominantly of the cytophilic IgG isotypes, 

IgGl and IgG3, with IgGl antibodies being the most common. Polley et al. tested random 

samples (n=96) that were positive for total IgG to full-length AMA1, out of a cohort 

comprising both adults and children and found a predominantly IgG1 response (Polley, 

Mwangi et a1. 2004). Similarly, culture supernatants of cord blood mononuclear cells that 

were positive for IgG to full-length AMA1 were found to contain predominantly IgG1, with a 

handful of samples (6%) being positive for IgG3, and none positive for IgG2 (Metenou, 

Suguitan et a!. 2007). It is not clear from this study whether IgG4 antibodies were analyzed 

or not as no mention of it is made (Metenou, Suguitan et a1. 2007). In the plasma of 

newborns, the prevalence of IgG1 and IgG3 antibodies to full-length AMAl was comparable 

(22 and 18% respectively), followed byIg4 (14%) and IgG2 (4%) (Riley, Wagner et a1. 
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2000). However, when IgG2 and IgG4 antibodies to AMAI were detected, the levels were 

very low, with OD values just above cut-offs defined using non-malaria exposed sera (Riley, 

Wagner et al. 2000). In children aged between 6 months and fifteen years in Burkina Faso, 

anti-AMAI antibodies were predominantly of the cytophilic classes, and though the exact 

prevalence of either IgGI or IgG3 was not reported, it appears from the figures presented 

that the levels of antibody were higher for the IgGI isotype compared to IgG3 (Nebie, 

Diarra et a1. 2008). 

2.4.5.4.5 Allele-specificity of anti-AMAI antibodies 

Although a high correlation is reported between naturally acquired antibodies to different 

allelic forms of AMAl, a proportion of these antibodies are directed against allele-specific 

epitopes. Using competition ELISAs in a sub-set of samples (n=18), Polley et al. 

demonstrated that the majority of sera (15/18) contained allele-specific antibodies (Polley, 

Mwangi et al. 2004). In a separate study using inhibition assays, Cortes et al. found that 

although most individuals had equivalent titres of antibodies to all three allelic forms of 

AMAI tested, the majority nevertheless contained a fraction of antibodies that were 

directed against allele-specific epitopes (Cortes, Mellombo et al. 2005). In addition, a 

minority of individuals (19/262) had marked differences in binding to the different AMAI 

allelic antigens, indicating allele-specificity, and the prevalence these antibodies decreased 

with age (Cortes, Mellombo et a1. 2005). 
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2.4.5.4.6 Association of anti-AMA1 antibodies with protection in longitudinal studies 

Naturally-acquired IgG antibodies to full-length AMA1 have been associated with 

protection from clinical episodes of malaria in some (Polley, Mwangi et a1. 2004; Gray, 

Corran et at 2007; Osier, Fegan et at 2008), but not all (Roussilhon, Oeuvray et at 2007; 

Nebie, Diarra et a!. 2008), longitudinal studies. In Kenya antibodies were analyzed from 

study participants from two separate villages that differ in malaria transmission intensity, 

and were only associated with protection among individuals who were parasitaemic at the 

time of serum sampling, in both villages (Polley, Mwangi et a1. 2004). Notably, this 

protection (reduced clinical episodes during a 6 month period of observation) was evident 

with either ofthe two allelic versions of AMAl (3D7 and FVO) tested (Polley, Mwangi et a!. 

2004). 

In a separate Kenyan study conducted amongst children aged between 1 and 5 years, high 

titre antibodies were associated with a lower risk of being admitted to hospital with 

malaria over an eight month period (Osier, Fegan et a!. 2008). In this Kenyan study (Osier, 

Fegan et a!. 2008), and in a separate study from the Gambia (Gray, Corran et a!. 2007), 

antibodies to AMA1, in combination with those to other merozoite antigens (MSP-2 and 

MSP-3), were more predictive of protection from clinical episodes of malaria. However, in 

a study from Burkina Faso conducted in children between 6 months and fifteen years, IgG 

antibodies to full-length AMAl were not associated with a reduced incidence of clinical 

malaria (Nebie, Diarra et a1. 2008). When the IgG sub-class antibodies were analyzed, IgGl 

to AMA1 was significantly associated with a reduced incidence of clinical malaria, though 
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the actual estimate was not remarkable (incidence rate ratio 0.S7 (95% CI 0.7S-0.97), P = 

0.013) (N ebie, Diarra et al. 200S). In the previously mentioned study where individuals 

were monitored daily for 6 years, neither total IgG antibodies to AMA1, nor the cytophilic 

to non-cytophilic ratio of IgG sub-class isotypes, were able to distinguish individuals who 

were protected from those who were susceptible to malaria attacks (Roussilhon, Oeuvray 

et al. 2007). Methodological differences between the studies, particularly in the statistical 

analyses may account for some of the differences in the results obtained. In a time-to-

infection study among 6S Kenyan adults, high titre IgG antibodies to AMA1 on their own, or 

in combination with a panel of blood stage antigens, were not associated with a shorter 

time to infection following drug clearance Oohn, Moormann et al. 2005). Similarly, the 

presence of placentally transferred anti-AMA1 IgG in newborns was not associated with a 

lower risk of infection in the first twenty weeks of life (Riley, Wagner et al. 2000). 

2.4.5.5 Vaccine trials in humans 

At least a dozen phase I and II clinical trials in which at least five separate AMA1 vaccine 

constructs have been tested have been published to date. These vaccines are based either 

on the full-length sequence of one (Saul, Lawrence et al. 2005; Polhemus, Magill et al. 2007; 

Thera, Doumbo et al. 200S), or two (Malkin, Diemert et al. 2005), allelic forms of AMA1 or 

contain the conserved loop of domain III of AMA1, singly, or in combination with pre-
, 

erythrocytic stage antigens (Genton, Pluschke et al. 2007; Okitsu, Silvie et al. 2007; 

Thompson, Porter et al. 200S), and are delivered with a range of adjuvants, on a variety of 

platforms. Numerous attempts have been made to enhance the immunogenicity of AMA1 

vaccines using new and old technologies and those will not be discussed here. However, 
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results from the vaccine trials with the AMA1 vaccine that has progressed the furthest 

along the vaccine development pipeline are discussed briefly, below. 

The AMA1 vaccine named AMA1-C1/ Alhydrogel contains an equal mixture of recombinant 

proteins based on sequences from the FVO and 3D7 'strains' of P. faldparum, expressed in 

P. pastoris and adsorbed onto the adjuvant Alhydrogel (Malkin, Diemert et a1. 2005). This 

was the first AMA1 malaria vaccine to be tested in a malaria endemic area (Mali) in a dose

escalation study (Dicko, Diemert et a1. 2007). Vaccination with AMA1-C1/ Alhydrogel 

increased titres of pre-existing naturally acquired AMA1 antibodies in a dose-dependent 

fashion, but only for the first two doses (Dicko, Diemert et a1. 2007). This was in contrast to 

what had been observed in malaria naIve volunteers, where a recall response was induced 

following the third dose of the same vaccine, albeit with a different immunization schedule 

(Malkin, Diemert et a1. 2005). In Malian adults, although broad antibody specificity to 

diverse allelic forms of AMA1 was observed following vaccination, and indeed may have 

existed pre-vaccination, antibody titres did not correlate with parasite growth inhibition in 

vivo (Dicko, Diemert et a1. 2007). Nevertheless, the vaccine was safe and immunogenic, and 

a phase I trial proceeded in Malian children (Dicko, Sagara et a1. 2008). Based on the results 

from the adult study, Malian children were vaccinated with only two of the higher doses of 

AMA1-C1/ Alhydrogel, in two instead of three doses (Dicko, Sagara et a1. 2008). Vaccine-

induced antibodies were short-lived, peaking at day 42 post-vaccination and declining to 

pre-vaccination levels by day 98 (Dicko, Sagara et a!. 2008). Functional assays on vaccine

induced antibodies were not performed, or are yet to be published (Dicko, Sagara et aI. 

2008). 
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3 OBJECTIVES, MATERIALS AND METHODS 

3.1 OVERALLAIM 

To determine whether naturally-acquired antibodies to a panel of polymorphic and 

conserved P. Jaldparum merozoite antigens are associated with protection from clinical 

episodes of malaria 

3.1.1 SPECIFIC AIMS 

1. To determine whether there is an association between both allele specific and 

conserved antibody responses for Merozoite Surface Proteins- 1 , 2, 3 and Apical 

Membrane Antigen 1 and protection from clinical episodes of malaria 

2. To test whether the magnitude of antibody responses and the breadth of antibody 

specificity are important determinants of protection 

3. To compare antibodies between children developing mild or severe clinical 

episodes of malaria 

4. In the subgroup of children who develop clinical episodes of malaria, to test whether 

pre-existing allele-specific antibodies protect against disease associated with 

parasites bearing homologous genotypes 
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5. To identify polymorphic sites within AMA1 under balancing selection and test 

whether these sites contain important B and/or T-cell epitopes. 
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3.2 MATERIALS AND METHODS 

3.2.1 STUDY LOCATION AND POPULATION 

The studies were all conducted in Kilifi, a rural district along the Kenyan coast (Figure 

3.2.1). The district is sub-divided into administrative units called locations, and the study 

areas comprise locations both to the north, and to the south of the Kilifi creek. Kilifi town, 

and the Kilifi District Hospital, which serves a population of about 250,000 people, is 

located close to the creek. Three different sampling frameworks were used for these 

studies, which were based in locations both in the north and the south, and are shown in 

more detail in Figure 3.2.2 and Figure 3.2.3. Transmission intensity is lower in the 

northern part of the district with an average entomological inoculation rate (EIR) of 

approximately 1.5 - 8 bites/person/year (Mbogo, Snow et al. 1993), while it is higher south 

of the creek, with an EIR of 20 -100 infective bites/person/year (Mbogo, Mwangangi et al. 

2003). The population belongs to the 'Mjikenda' ethnic group and consists of 

predominantly small-scale subsistence farmers. The area typically experiences two 

seasonal peaks in malaria transmission Dune to August, and, November to December). The 

majority of malaria infections are due to Plasmodium !alciparum (Mwangi, Ross et al. 

2003). 
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Figure 3.2.1 Map of Kenya showing the location ofKilift district and the study areas 
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Figure 3.2.2 Enumeration zones in the Northern study area ofKilifi 

Children in the case-control study were recruited from locations throughout the Northern 

study area. Each number on the map represents a location. 
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1 

Figure 3.2.3 Enumeration zones in the Southern study area of Kilifi 

The areas shaded brown represent Chonyi while those shaded green represent Junju. Each 

number on the map represents a location. 

177 



3.2.1.1 Chonyi Cohort 

Details ofthe study area and population are published (Mwangi, Ross et al. 2005), along 

with a description of a cohort comprising both adults and children from Chonyi village in 

Kilifi District Chonyi village lies south of the creek and has an EIR of 20 - 100 infective 

bites/person/year (Mbogo, Mwangangi et al. 2003). Following a cross-sectional bleed at 

the start of a malaria transmission season in October 2000, the cohort was monitored for 

clinical episodes of malaria in the ensuing six months. Blood collected in October 2000 was 

used to prepare thick and thin blood films for malaria parasites, before separating plasma 

and red cell pellets for storage at -800C. Participants with asymptomatic parasitaemias 

were not treated with radical anti-malarial drug therapy at the beginning of the study or 

during follow-up. Active detection of mild clinical malaria which was the outcome of the 

study was achieved through weekly visits to participants' homes. A morbidity 

questionnaire which inquired about symptoms occurring in the preceding week was 

administered to all study participants and the presence or absence of fever (temperature> 

37.S0C) was ascertained by axillary thermometer readings. Participants who were found to 

be unwell were referred for free treatment to a dedicated outpatient clinic at the local 

district hospital, where they also had open access as required at any time during the study 

(passive case detection). Clinical episodes of malaria were treated with sulphadoxine

pyrimethamine, as per the Kenyan national treatment guidelines at the time the study was 

conducted. Age-specific criteria for defining clinical episodes of malaria had been 

developed previously for this area as follows: children under one year, fever plus any 

parasitaemia; children older than one year, fever plus a parasitaemia of greater than 

2s00/~ (Mwangi, Ross et al. 2005). Participants were only included in the study ifthey 

178 



were present for at least twenty-three of the twenty-six weekly visits during the six months 

of follow-up. For analytical purposes, only the first clinical episode was counted, although 

all children continued to be monitored until the close of the study. Within the cohort, 

children aged ten years and less (n=280) accounted for nearly 90% of all the clinical 

episodes. Ethical approval was granted by the Kenya National Research Ethics Committee. 

3.2.1.2 Case-control study 

Children included in the case-control study were selected from a larger group of children, 

previously recruited into a study investigating antibodies to parasite antigens on the 

infected red cell surface (Bull, Lowe et al. 1998). Briefly, in May 1995 a large cross-sectional 

survey was conducted in a predefined area immediately surrounding Kilifi town, which had 

an EIR of approximately 1.5 - 8 bites/person/year (Mbogo, Snow et al. 1993). Details of the 

study were explained to participants and following informed consent, capillary blood 

samples were collected from 4783 children (aged 1-5 years old) at the start of a malaria 

transmission season. Serum was separated and stored (at -80oC) and microscopy was done 

on thick and thin blood films to detect parasites. Over the ensuing eight months of foIlow

up, children from this cohort who presented to Kilifi district hospital were identified 

(passive case detection, n = 165). Eighty-nine (89) of these children had malaria that was 

Severe enough to require admission to the paediatric ward, while the remainder were 

attended to in OPD. Each case of either severe or mild malaria was randomly matched to 

an average of 3 controls, using a frequency based matching method that took into account 

age and location. The controls (n = 298) were drawn from children who took part in the 
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cross-sectional survey but did not present to hospital with malaria. Thus, the case-control 

study containing 463 individuals (89 severe malaria cases, 76 mild malaria cases and 298 

healthy controls) was assembled retrospectively. Antibody assays were performed on pre

transmission season sera for all children in the case-control study (n=463). In a separate 

study of the antibody response of disease cases to clinical malaria additional sera that had 

been collected from the 165 children who presented to hospital at the time of the acute 

. episode (acute sample), and three weeks following later (convalescent sample), were also 

analyzed. Parasite isolates from the acute clinical episode were frozen at the ring stages as 

previously described (Bull, Lowe et al. 1998). Ethical approval was granted by the Kenya 

National Research Ethics Committee. A summary of the study design is presented in 

Figure 3.2.4 below. 
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Figure 3.2.4 Schematic of the study design of the case-control study 

* Some children (n=19) presented to hospital more than once during the follow-up period. 

Only data from the first episode is presented in subsequent analyses below. 

3.2.1.3 Junju adults 

A total of 26 semi-immune adults were recruited from Junju in December 2007, a sub-

location close to Chonyi. These adults had not been recruited into the main Chonyi cohort, 

described above. Malaria transmission in the area had been declining steadily since the 

year 2000 when the original Chonyi cohort was recruited, and although the actual EIR was 
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not determined, parasite prevalence in a cross-sectional survey of 363 children conducted 

in November 2007 was as low as 17% (Kilifi immunology cohort, in Junju). Recruitment 

and consenting began in October - November 2007, following an explanation of the study. 

In December 2007, transport was provided to bring the study participants to the out-

. patients department of Kilifi District hospital, for sampling and treatment of any current 

illnesses. Fifteen mls of venous blood were drawn from each patient into 15 ml Falcon 

tubes containing heparin and immediately transferred to the laboratory for processing. 

Thick and thin blood smears were prepared to detect malaria parasites. A small volume of 

blood (0.5mls) was collected in EDT A containing tubes for the determination of 

haemoglobin levels. Microscopy was done on thick and thin blood films to detect parasites. 

In the laboratory, PBMCs were separated for immediate use in the ex-vivo ELISpot assay, 

and serum was stored at -80oC for antibody assays. Ethical approval was granted by the 

Kenya National Research Ethics Committee. 

3.2.2 RECOMBINANT ANTIGENS 

All the antigens are derived from sequences of specific loci within various 'strains' of P. 

Ja/ciparum and are denoted locus_'strain'. For example, the MSP-2 antigen, based on the 

sequence of the Dd2 parasite 'strain' is denoted MSP-2_Dd2. Most of the antigens were 

expressed in Escherichia coli as GST-fusion proteins for MSP-2 (MSP-2_Dd2 and MSP-

2_CH150j9)(Taylor, Smith et at 1995), for MSP-1 Block 2 (R033, Palo Alto, 3D7, MAD20 

and Wellcome) (Cavanagh and McBride 1997), and for MSP-1t9 (Burghaus and Holder 

1994) or his-tagged for AMA1 (AMA1_3D7) (Dutta, Lalitha et at 2002) and EBA-
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175_F2_CAMP (Pandey, Singh et a1. 2002)), or as MBP-fusion proteins (MSP-3_K1, MSP-

3_307 (Polley, Tetteh et a1. 2007). RecombinantAMA1_FVO (Kocken, Withers-Martinez et 

al. 2002) was expressed in Pichia pastoris while EBA-175_F2_3D7 (Daugherty, Murphy et 

al. 1997) is a baculovirus-expressed product. The plasmids for the MSP-2 antigens and the 

clones for the MSP-1 block 2 antigens were kindly provided by Dr J ana McBride and Dr 

David Cavanagh, University of Edinburgh, and I expressed the antigens with the assistance 

of Dr Kevin Tetteh, London School of Hygiene and Tropical Medicine. MSP-11 9 was kindly 

provided by Dr Patrick Corran, London School of Hygiene and Tropical Medicine. The 

clones for the MSP-3 antigens were generously provided by Drs David Conway and Spencer 

Polley, and I expressed these antigens under their supervision at the London School of 

Hygiene and Tropical Medicine. The EBA-175 antigens, were kindly provided by Drs 

Chetan Chitnis and David Lanar, from the International Centre for Genetic Engineering and 

Biology (lCGEB), New Delhi, India and the Walter Reed Army Institute of Research 

(WRAIR), USA, respectively. The AMA1 antigens were kindly provided by Dr Alan Thomas, 

Biomedical Primate Research Centre (BPRC), The Netherlands and Dr David Lanar 

(WRAIR). Details on these antigens are provided in the Table 3.2.1. 
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Table 3.2.1 Details of recombinant merozoite antigens 

Antigen Amino acid DesCription Ref 

positions 

AMA1_FVO 25-544 Domains I, II, 111* Kocken 2002 

AMA1_3D7 83-531 Domains I,ll, III Dutta2002 
MSP-2_CH15019 1-184 Allelic type A Taylor 1995 
MSP-2_Dd2 22-247 Allelic type B Taylor 1995 
MSP-3_3D7 2-354 Full-length protein Polley 2007 

MSP-3_K1 2-379 Full-length protein Polley 2007 

MSP-1_B2_R033 54-144 R033-like type Cavanagh 1997 

MSP-1_B2_3D7 54-144 K1-like type Cavanagh 1997 

MSP-1_B2_PaloAito 54-144 K1-like type Cavanagh 1997 

MSP-1_B2_MAD20 54-144 MAD20-like type Cavanagh 1997 

MSP1-B2_Welicome 54-144 MAD20-like type Cavanagh 1997 

MSP-1 1._Wellcome 1631-1726 Wellcome strain Burghaus 1994 

EBA-175J2_3D7 461-753 F2 sub-domain Daugherty 1997 

EBA-175 F2 CAMP 447-795 F2 sub-domain Pandey 2002 

Antigens are designated 1ocus_P.falciparum strain'. *Includes prosequence 

3.2.3 ANTIBODY ASSAYS 

3.2.3.1 Total IgG Assay 

ELISAs for serum IgG reactivity against each recombinant antigen and against parasite 

schizont extract were performed according to a standard protocol as previously described 

(Polley, Mwangi et a1. 2004; Polley, Conway et a1. 2006; Osier, Polley et a1. 2007). 

Individual wells of Dynex Immunolon 4HBX ELISA plates (Dynex Technologies Inc) were 

coated with SOng of antigen in 100~ of carbonate coating buffer (1SmM Na2C03, 3SmM 

NAHC03, pH 9.3). P. falciparum schizont extract (A4 strain for the Chonyi cohort and 

Wellcome strain for the case-control study) was coated onto wells in PBS according to the 

method of N dungu et al. (N dungu, Bull et a1. 2002). Plates were incubated overnight at 4°C, 

before washing four times in PBS/Tween (Phosphate Buffered Saline/0.05% Tween 20), 
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and blocking for 5 hours at room temperature with 1 % skimmed milk in PBS/Tween 

(blocking buffer). Following this wells were washed again and incubated overnight at 40 C 

with 100~ of test sera (diluted 1/1000 in blocking buffer). Plates were then washed four 

times and incubated for 3 hours at room temperature with 100J,l1 of HRP-conjugated rabbit 

anti-human IgG, (Dako Ltd.) at 1/5000 dilution in blocking buffer before final washing and 

detection with H202 and O-phenylenediamine (Sigma). The reaction was stopped with 

25 ~ of 2M H2S04 per well and absorbance read at 492nm. Two positive control sera 

drawn from adults semi-immune to malaria were tested individually in duplicate on each 

day of the experiment, on each plate, to allow for standardization of day-to-day and plate

to-plate variation. Single dilution serum ELISA Optical Density (00) values were used as 

proxies for antibody titres as they correlate closely with full end-point antibody titrations 

when used at appropriate dilutions (Drakeley, Corran et a1. 2005; Tongren, Drakeley et a1. 

2006). 

3.2.3.2 IgG Sub-class Assay 

This assay differed from that described for total IgG only in the secondary antibody 

reagents used. To detect IgG sub-classes, HRP-conjugated polyclonal sheep antibodies 

specific for human IgGl, IgG2, IgG3 and IgG4 (The Binding Site, Birmingham, UK) were 

used at a dilution of 1/3000. 

3.2.3.3 Competition ELISA 

Given two antigens that share some antibody epitopes and not others, competition ELISA 

assays can be performed to dissect out the contribution of shared or antigen-specific 
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epitopes to the observed reactivity. I pre-incubated test sera for 5 hours with an excess of 

competing antigen (1000ng, maximum amount) before following the indirect ELISA 

protocol for bound antigen. In separate experiments, I also added increasing 

concentrations of competing antigen to test sera. Any epitopes shared between the 

competing and plate bound antigens alleles were thus blocked in the pre-incubation step. 

The resulting reactivity could then be attributed to epitopes that are not shared between 

the two antigens. The stringency of the assay was increased by performing simultaneous 

'homologous' and 'heterologous' competition assays. In the homologous assay, the 

competing antigen and the plate-bound antigen were identical, resulting in neglible 

reactivity, while in the heterolous assay, the competing antigen was different from (but 

shared some epitopes with) the plate bound antigen. The difference between the two 

assays demonstrates the reactivity to epitopes that are not shared. 

3.2.4 T-CELL ASSAYS 

3.2.4.1 Separation of PBMC 

Fifteen ml of freshly collected, heparinized whole blood was centrifuged at 1400 x g for 7 

min and the plasma separated and stored at -80oC. The cells were then reconstituted to the 

initial volume (15 ml) by topping up with RPMI 1640. This mixture was carefully layered 

onto Lymphoprep (7.5 ml of blood to 3 ml of Lymphoprep (Nycomed)) and centrifuged for 

12 min at room temperature without brakes. PBMe were collected from the interface and 

transferred into 15 ml falcon tubes for washing. Fourteen ml of RPMI 1640 was added to 

each falcon tube, before spinning at 1600 x g for 10 mins at room temperature. The 

supernatant was discarded and the washing procedure repeated, this time spinning at 
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1400 x g for 7 min. The cells were then re-suspended in Iml of RPM I 1640 for counting. 

Counting was done in a Neubauer chamber, using a 1/50 dilution of the cell suspension. 

3.2.4.2 Ex-vivo ELISPOT 

Ex-vivo ELISPOT assays were performed with freshly isolated PBMC using a well

established protocol (Flanagan 2003, Bejon 2006, Dunachie 2006). Briefly, 10 J.tl of capture 

antibody (anti-human IFNy mAb I-DIK, purified, and, anti-human IL-2 mAb IL2-I, purified, 

both from MabTech) per ml of EllS POT coating buffer (one carbonate-bicarbonate buffer 

capsule (Sigma) dissolved in 100 ml deionized water, and autoclaved), reSUlting in a final 

concentration of 10 J.tg/ml was coated onto Millipore MAIP S45 plates (Millipore, 

Massachusetts, USA) in a final volume of 50 J.tlfwell, and incubated overnight at 40C. 

Unbound catcher antibodies were flicked off and 100 J.lI of blocking buffer (10% heat 

inactivated fetal calf serum (FCS), prepared in RPMI with added penicillin and 

streptomycin) added to each well, before incubation for 1 hr at room temperature. Excess 

blocking buffer was then flicked off prior to the addition ofPBMCs. 3 x lOS PBMC's 

suspended in 10% human AB serum diluted in RPMI were then added to each well and 

incubated for 18-20 hrs at 37°C in 5% C02 with either: i) test AMAI peptides (25 J.lg/ml 

diluted in neat dimethylsulfoxide (DMSO)) in test wells, ii) media alone in a negative 

control well, and iii) Staphylococcal Enterotoxin B (SEB) (1 J.lg/ml) in a positive control 

well. Plates were washed with PBS/Tween and 1J.lg/ml biotinylated anti-human detector 

antibody (7-B6-1-Biotin for IFNy (Mabtech) or IL-2 (BD Biosciences)) added for 2 hrs. The 

plates were then washed 6 times in PBS/Tween. Streptavidin-ALP (MabTech) was added 
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next and the plates incubated for a further 1 - 2 hrs at room temperature. To develop the 

spots, 50 J.lI of development buffer (prepared from the AP conjugate substrate kit (BioRad)) 

was added to each well for 3 - 7 min. The reaction was stopped by rinsing the plates 

thoroughly in tap water. Plates were then soaked in tap water overnight, air-dried for 24 

hours, before counting with an ELISPOT reader (AID EliSpot Reader System, Stra~berg, 

Germany). The number of antigen-specific cells per 300,000 PBMC or spot forming units 

(SFU) were calculated by subtracting spot numbers in wells containing media only from 

spot numbers in peptide-containing wells (Keating 2005, Webster 2005, McConkey 2003, 

Vuola 2005). 

3.2.5 PARASITE GENOTYPING 

Frozen parasite isolates were thawed and cultured using standard techniques from the ring 

to the late-trophozoite or early-schizont stages, to bulk up parasite DNA for extraction and 

subsequent genotyping. Parasite DNA was extracted using DNA Qiamp mini-kits (Qiagen, 

UK). Parasites were genotyped by polymerase chain reaction (PCR) at three loci, MSP-l 

block 2 (Kl-like, MAD20-like, R033-like), MSP-2 (IC1-like or type A and FC27-like or type B), 

and MSP-3 (Kl-like and 3D7-like). For MSP-l block 2 and MSP-2, a nested PCR was used in 

which outer PCR primers were used to identify products at the locus, followed by nested 

family-specific primers at each locus (Snounou 2002). Only one reaction was required for 

MSP-3, using the outer primers of a previously described semi-nested PCR (Osier, Polley et 

al. 2007). The primer sequences are listed in the Table 3.2.2, below. All PCR reactions 

were performed using BioMix Red (ready-to-go 2x reaction mix containing BIOTAQ Red 
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DNA Polymerase, 1.5mM MgCl2, and dNTPs (Bioline )), in final volumes of 20~, in 96 well 

plates, with 100nM primers. Following initial template denaturation at 950C for 5 minutes, 

cycling conditions were as follows for MSP-l block 2 and MSP-2; outer PCR, 30 cycles of 

580C for 2 minutes, 720C for 2 minutes, 940C for 1 minute, with final annealing at 580C for 2 

minutes, and final extension at 720C for 5 mins; nested PCR, as for outer PCR, except that 

the initial annealing temperature was at 61oC. For MSP-3, initial template denaturation 

was at 940C for 2 minutes, and cycling conditions were as follows: 44 cycles of 940C for 1 

minute, 500C for 1 minute, and 720C for 1.5 minutes, with a final extension of 720C for 5 

minutes. PCR products were visualized on 2% agarose gels for MSP-l block 2 and MSP-2, 

while 3% agarose gels allowed for a clear distinction of alternative alleles of MSP-3. 
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Table 3.2.2 Primers used for peR 

Locus Primer Primer Primer sequence 
sets name 

MSP-1 Outer M1-0F 5'_CTAGAAGCTTTAGAAGATGCAGTATTG_3' 

Block2 PCR M1-0R 3'_CTT AAATAGTA TTCT AA TTCAAGTGGATCA_5' 

K1- M1-KF 5'_AAA TGAAGAAGAAA TT ACTACAAAAGGTGC_3' 
specific M1-KR 3' _GCTTGCATCAGCTGGAGGGCTTGCACCAGA_5' 

MAD20- M1-MF 5'_AAA TGAAGGAACAAGTGGAACAGCTGTT AC_3' 
specific M1-MR 3'~ TCTGAAGGA TTTGTACGTCTTGAA TT ACC_5' 

R033- MI-RF 5'_ T AAAGGATGGAGCAAA TACTCAAGTTGTTG_3' 
specific MI-RR 5' _CATCTGAAGGATTTGCAGCACCTGGAGATC_3' 

MSP-2 Outer M2-0F 5'_ATGAAGGT AA TT AAAACA TTGTCTATTATA_3' 
PCR M2-0F 3'_CTTTGTT ACCATCGGTACA TTCTT _5' 

IC1- M2-ICF 5'_AGAAGTATGGCAGAAAGT AAKCCTYCTACT _3' 
specific M2-ICR 3'_GATTGTAATTCGGGGGATTCAGTTTGTTCG_5' 

FC27- M2-FCF 5'_AA TACTAAGAGTGTAGGTGCARA TGCTCCA_3' 
specific M2-FCR 3'_ TTTTA TTTGGTGCATTGCCAGAACTTGAAC_5' 

MSP-3 Standard 370F 5'_ TGTACAGCTGCTTCAAAGG_3', 
586R 5' _CTCCTCCAAA TTCCCAACC_3' 

The primers used in this study are published, for MSP-1 block 2 and MSP-2 (Snounou 

2002) and for MSP-3 (Osier, Polley et al. 2007) 

3.2.6 AMAl SEQUENCING 

AMAl was sequenced from parasite DNA extracted from blood samples taken at the 

October 2000 cross-sectional survey in the Chonyi cohort and from children presenting to 

hospital in the case-control study. Sequence data on AMAl from the Chonyi cohort were 

used for population genetic analyses as described below, while those obtained from the 
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case-control study were used in analyses of allele-specificity of antibody responses, and 

compared between children presenting with mild or severe malaria. 

3.2.6.1 PCR amplification 

A 1311bp segment ofthe P.falciparum AMAl gene encoding the surface-accessible 

ectodomain of the protein was amplified using a nested PCR approach, and sequencing 

performed using three overlapping pairs of primers. All PCR reactions were performed 

using BioMix Red with primer sequences as shown in Table 3.2.3. In the first round, 1~1 of 

genomic DNA was amplified using primers 428F and 1799R. The cycling conditions were 

940C for 2 min, 940C for 45 s, 620C for 45 s, 720C for 2.5 min x 44 cycles, then 720C for 5 

min. In the second round, the PCR product was amplified in two overlapping fragments, 

using two pairs of primers. For the first fragment, 1 ~ ofPCR product was amplified using 

the primers 428F and 1477R, and similarly for the second fragment, 1 ~ ofPCR product 

was amplified using the primers 1030F and 1799R. The cycling conditions for both the 

second round reactions were 940C for 2 min, 940C for 45 s, 600C for 45 s, 720C for 1 min 30 

s x 39 cycles, then 720C for 5 mins. The resulting 1045bp and 769bp amplification 

products were then purified using QIAquick PCR Purification Kit Protocol (QIAGEN, 

Crawley, UK) in preparation for sequencing. 

3.2.6.2 DNA sequencing 

The sequencing strategy using overlapping fragments was adapted from one that had been 

previously described for the same gene (Polley and Conway 2001; Polley, Chokejindachai et 
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al. 2003). Briefly, three pairs of primers were used to sequence two DNA templates 

separately and the resulting sequence electropherograms subsequently assembled. The 

primers were chosen to allow overlap between these three fragments to avoid gaps in the 

sequence when it was assembled.The primer sequences are detailed in Table 3.2.3. Two 

pairs of primers, 428F and 1138R, as well as 936F and 1477R, were used to sequence the 

104Sbp fragment while the 769bp fragment was sequenced using one pair of primers, 

1030F and 1799R For each fragment, forward and reverse primers were used for 

sequencing employing BIG DYE v. 3.1 terminator technology (Applied Biosystems, 

Warrington, UK). Sequencing products were run on an ABI Prism 3730 capillary DNA 

sequencer (Applied Biosystems). Forward and reverse reactions from each fragment were 

aligned and the three fragments for each allele united into a contiguous sequence using 

SeqMan II (DNASTAR). For population genetic analyses isolates were excluded ifthe 

electropherogram of any of the three fragments showed evidence of there being more than 

one allele of AMA-1 (34 ofthe Chonyi cohort isolates). Thus samples that contained only 

one clear allele of AMA-1 were included in the analysis (49 of the Chonyi cohort isolates). 
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Table 3.2.3 Primers used for peR amplification and sequencing of P. falciparum 
amal 

Locus Primer sets Primer Primer sequence 
name 

AMAl OuterPCR 428F 5'_GACTTCCA TCAGGGAAA TGTCC_3' 
PCR l799R 5'_GCCTCAGGATCT AACA TTTCATC_3' 

Nested 428F 5'_GACTTCCATCAGGGAAATGTCC_3' 
PCRl l477R 5'_CACATGGGCA TTTT AAACTGTC_3' 

Nested 1030F 5'_ TTGAGTGCTICGGATCAACCT AA_3' 
PCR2 1799R 5'_GCCTCAGGATCT AACA TTTCATC_3' 

AMAl Primer Pair 428F 5'_ATGAAGGT AATT AAAACA TTGTCTA TT ATA_3' 
Sequencing 1 l138F 5'_ GACTTCCATCAGGGAAA TGTCC _3' 

Primer Pair 936F 5'_ CTGCTTT AAAAGCACCAGTGGGAAG_3' 
2 1477R 5'_CACATGGGCA TTTT AAACTGTC_3' 

Primer Pair 1030F 5'_ TTGAGTGCTTCGGATCAACCT AA_3' 
3 1799R 5'_GCCTCAGGATCT AACA TTTCATC_3' 

3.2.7 POPULATION GENETIC ANALYSES OF THE AMA1 GENE 

To detect whether polymorphic loci within amal were under positive selection, molecular 

population genetic analyses were performed on 49 full ectodomain sequences from Chonyi, 

Kenya using the DnaSP4.50 program (Rozas, Sanchez-DelBarrio et a1. 2003). These 

analyses are explained in detail below: (i) a description of the sequence diversity within the 

population, (ii) analyses of recombination and linkage disequilibrium, (iii) tests of 

neutrality (Tajima's D and Fu and Li's D and F), including coalescent simulations assuming 
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varying levels of recombination, (iv) comparisons of the ratios of non-synonymous to 

synonymous amino acid changes within and between species (McDonald Kreitman test, 

comparing with P. reichenowi), and (v) comparisons of between-population divergence 

(comparing with data from Thailand and Nigeria). 

3.2.7.1 Population sequence diversity 

AMA1 gene sequences covering the ectodomain were aligned without any gaps using the 

CLUSTAL program of MEG ALIGN (DNA Star) and the data transferred into DnaSP 4.0 

software for detailed analysis. This included identifying polymorphic sites within the 

whole ectodomain, and singly for each of the sub-domains I, II and III, as well as detection 

of di-morphic and tri-morphic sites containing two or three amino acids variants, 

respectively. In addition, calculations of average pair-wise nucleotide diversity per site ('It) 

were performed separately for each domain and for the entire ectodomain. The number of 

AMA1 'haplotypes' covering the whole of the sequenced ectodomain was also determined. 

3.2.7.2 Linkage disequilibrium and recombination 

To explore the magnitude of linkage disequilibrium (LD) within the locus two widely used 

indices, D' and R2 were determined (Lewontin 1964; Hill and Robertson 1968). The 

magnitude of LD is conventionally expressed as D, and corresponds to the difference 

between the expected and observed haplotype frequency. However, this value is affected 

by allele frequencies, and requires normalization. The index 0', is the value that normalizes 

for different underlying allele frequencies. In a population sample D' = 1 or -1 indicates 

complete LD, while D' = 0, corresponds to no LD. The other measure of LD analyzed in this 
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study is R2, the square of the correlation coefficient (R) between two alleles at two distinct 

loci. The measure R2 is thought to provide a more accurate estimate of LD than D', 

particularly when allele frequencies are low (Carlson, Eberle et al. 2004). As with D', when 

R2 =1, this indicates complete or 'perfect' LD, although this vaue is more easily given for D' 

in any case where one ofthe four di-allelic haplotypes is missing. For both indices, the 

relationship between LD and physical distance between pairs of nucleotide sites, which 

affects LD, was displayed graphically, and assessed in regression analyses. Physical 

distance is calculated as the nucleotide count from one nucleotide site to another, adjacent 

nucleotides having a distance of 1. The two tailed Fisher's exact test was used to determine 

the statistical significance of LD between polymorphic sites, * p <0.05, ** P < 0.01, *** P < 

0.001. Decline of LD with increasing distance between nucleotides is usually seen when 

meiotic recombination occurs within the region analysed, indicating that genetic exchange 

between alleles has occurred. At meiosis, the likelihood of intra-allelic recombination is 

proportional to the distance between loci. 

To assess the effects of recombination on the tests of neutrality, two measures of 

recombination were estimated. The first calculates the minimum number of recombination 

events (RM), that must have occurred to produce the alleles sampled (Hudson and Kaplan 

1985). The four gamete test (FGT) was used to calculate RM, and examines pairs of single 

nucleotide polymorphisms (SNPs) or other hi-allelic polymorphisms: for two hi-allelic loci 

with ancestral and derived alleles AlB and alb, respectively, the potential haplotypes are 

AB, Ab, aB, abo All these combinations can only be observed in a sample due to identical 

recurrent mutation (very unlikely), or recombination (the FGT scores a recombination 
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event if all four possible haplotypes occur). The second measure of recombination 

estimates recombination rate based on a probabilistic (stochastic) model of an ideal 

population, assuming a constant population size with random mating, neutrality, and 

uniformity of recombination rates across the genome. This is because historic 

recombination events cannot be counted with precision, nor can the number of preceding 

generations which are required to estimate the per-generation recombination rate be 

determined with certainty. It is expressed as the recombination parameter C, which is the 

product of the the effective populations size (N), and the per-generation recombination 

rate (r), in the formula C = 4Nr (Hudson 1987). The effective population size is the size of 

the ideal population, which remains constant, and in which the effects of random drift 

would be the same as those seen in the actual population. 

3.2.7.3 Tests of neutrality 

Several methods can be employed to detect evidence of past natural selection using DNA 

polymorphism data. Many of these methods work by rejecting the neutrality model for a 

given set ofloci when the observed data are different from expectations under a neutral 

model of evolution. Two such tests, Tajima's D, and Fu and Li's D and F, were used for this 

analysis. Tajima's D is based on the differences between the number of polymorphic sites 

and the average number of pairwise nucleotide differences within the sample (Tajima 

1989). In a constant-size population in mutation-drift equilibrium, the expected Tajima's D 

value is close to zero, because both estimates have the same expected value. If the value of 

D is too large, or too small, the neutral 'null' hypothesis is rejected. In general, large 

positive values imply selection is maintaining alleles in the population or that there has 

196 



been a temporary marked reduction in population size (i.e. a bottleneck). Large negative 

values imply population expansion or directional selection. 

Fu and Li's D and Ftests use a different approach which compares the observed number of 

singleton nucleotides in the amal sequences with those expected under neutrality, based 

on the average number of nucleotide differences between pairs of alleles (Fu and Li 1993). 

For between-species comparisons, an AMA1 allele from a closely related species, 

Plasmodium reichenowi (EMBL number AJ252087) was used as the outgroup for P. 

Jalciparum. 

3.2.7.3.1 Coalescent simulations 

Tajima's test was repeated assuming varying levels of recombination using coalescent 

simulations, to determine the effect that high levels of recombination would have on the 

estimates of departure from neutrality, in comparison with the observed estimates. Ten 

thousand coalescent simulations were performed and the 95% confidence intervals for the 

estimates ofTajima's D compared with the values observed in the data. Observed 

estimates that did not fall within the confidence limits were considered statistically 

significant (p <0.05). 

3.2.7.4 McDonald-Kreitman test 

A simple statistical test of the neutral protein evolution hypothesis compares the number 

of amino acid replacement substitutions (non-synonymous) to synonymous (silent) 

substitutions within and between species (McDonald and Kreitman 1991). A nucleotide 
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site fixed between species is a site where all sequences sampled from one species contain a 

nucleotide not found in the other species. Under neutral expectations, the ratio for fixed 

differences between species should be equal to the same ratio within species. The presence 

of significantly more fixed differences between species than within species, suggests the 

adaptive fixation of selectively advantageous mutations (McDonald and Kreitman 1991). 

The sequence of AMA1 from P. reichenowi (EMBL number AJ252087) was used for 

interspecific comparison with P.falciparum (Kocken, Narum et a!. 2000), and significant 

differences were detected by the Fisher's exact test. Radical amino acid substitutions are 

those that alter the charge of the amino acid, and are presumed to have more functional 

consequence, in comparison to conservative amino acid substitutions where the amino acid 

is altered, but charge is maintained. The proportions of radical to conservative amino acid 

substitutions across the ectodomain were compared. 

3.2.7.5 Inter-population fixation indices 

AMA1 diversity was compared between populations using previously published equivalent 

datasets from Nigeria (Polley and Conway 2001) and Thailand (Polley, Chokejindachai et al. 

2003). Wright's F~ (Wright 1950), a measure of between-population variation, was 

calculated for pairwise comparisons between the three populations. Loci with 

exceptionally low FSTcan be an indication of balancing selection maintaining similar allele 

frequencies between populations. Analyses were carried out using FSTAT version 1.2. For 

this analysis, polymorphic sites were only included in the minor allele had a frequency of 

>0.15 across the three populations. 
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3.3 DESCRIPTION OF COHORTS 

A brief description of the characteristics of individuals in each of the three cohorts is 

provided beow. 

3.3.1 CHONYI COHORT 

For the work presented in this thesis, data were analyzed only for the sub-group of 

children who were parasitaemic at the time the serum sample was collected, and this is 

explained in more detail in a chapter 4. As shown in 

Table 3.3.1, the mean age between both groups of children was comparable (p > 0.05 for 

all comparisons, Students t test). The mean parasitaemia in the 119 children who were 

asymptomatically parasitized was 10956.64 parasites/J.1l and ranged from a minimum of 

40 - 270,000 parasites/I.d. 

Table 3.3.1 Age distribution ofparasitaemic and aparasitaemic children 

Parasitaemic Aparasitaemic 

n (119) mean age (yrs) n (161) mean age (yrs) 

10 1.7 45 1.6 
24 3.6 31 3.5 
27 5.6 26 5.5 
21 7.6 37 7.6 
37 9.6 22 9.S 

Similar age distribution of children who were parasitaemic (included in the analysis) and 

those who were not parasitaemic (NOT included in the analysis) at the time the serum 

sample was collected. 
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3.3.2 CASE-CONTROL STUDY 

The characteristics of the children included in this study are shown in Table 3.3.2. 

Children who developed severe malaria were significantly younger than those who 

developed mild malaria, mean age 31.6 versus 37.3 months, p = 0.003 (Students t test). 

Bed net use was comparable in cases and controls. The prevalence of parasites in the pre-

season sample as well as the actual parasite counts, were comparable in cases and controls. 

However, the mean levels of antibodies to P.Jalciparum parasite schizont extract (a proxy 

measure of exposure to malaria) were lower in children who subsequently developed 

severe malaria, compared to those who developed mild malaria and healthy controls, 

though this was only statistically significant for the latter (severe versus mild malaria, p = 

0.05, severe malaria versus controls, p = 0.02, (Students t test)). 

Table 3.3.2 Characteristics of individuals in the case-control study 

Cases Controls 
Age (mths) Severe (n=89) Mild (n= 76) (n = 298) 
12- 24 26 14 54 
25-36 35 19 70 
37-48 17 25 76 
>48 11 18 98 
Bednet use 33.71% 34.21% 29.87% 

Slide positive1 26.97% 32.89% 29.70% 

Mean parasitaemia1 10106.6 6974.2 7242.2 

Schizont antibodies2 0.34* 0.41 0.42 

1 Parasitaemia detected in the pre-season sample. 2 Reactivity to P. Jalciparum parasite 

schizont extract, mean 00 levels. * Reactivity to schizont extract was significantly lower 

among children with severe malaria compared to controls. 
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3.3.3 JUNJU COHORT 

The baseline characteristics of the Junju adults are shown in Table 3.3.3. There were more 

females than males, and although the mean haemoglobin was 1.5g/dllower in females than 

it was in males (p = 0.01, Students t test), the average PBMC count in both groups was 

comparable. Only one individual had parasites detectable by microscopy at the time the 

sample was collected. 

Table 3.3.3 Characteristics of,unju adults recruited into the study 

Mean (95% Confidence Interval) 

Females (n = 18) Males (n= 8) 

Mean age (yrs) 26.6 (23.4 - 29.9) 23.8 (16.6 - 30.4) 

Haemoglo bin 1 (g/ dl) 11.6 (11.1-12.3) 13.1 (11.9 -14.4) 

Leukocyte count (Jill) 5140 (4280 - 6000) 5125 (4240 - 6250) 

PBMCcount2 1.46 (1.17 -1.76) x 107 1.48 (1.13 - 1.82) x 107 

Prevalence of parasites 1/18 (5.5%) 0/8 

1 Mean haemoglobin was significantly lower in females than in males (p = 0.01, Students t 

test). 2 Peripheral blood mononuclear cells isolated from 15 ml of whole blood. 
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4 BREADTH AND MAGNITUDE OF ANTIBODY RESPONSES TO 

MULTIPLE PLASMODIUM FALCIPARUM MEROZOITE ANTIGENS ARE 

ASSOCIATED WITH PROTECTION FROM CLINICAL MALARIA 

4.1 INTRODUCTION 

While large populations of the world are at risk of malaria (Snow, Guerra et al. 2005; Hay 

and Snow 2006) the brunt of mortality caused by Plasmodiumfalciparum continues to be 

borne by children in sub-Saharan Africa. It is estimated that in this region alone, nearly one 

million children under the age of five years died as a direct consequence of malaria in the 

year 2000 (Rowe, Rowe et aI. 2006). An effective vaccine is urgently needed but has 

proved challenging to obtain. In endemic areas, older children and adults develop 

naturally-acquired immunity (NAI) to severe and life-threatening malaria but remain 

susceptible to infection (Marsh 1992). Classical experiments in which passively 

transferred antibodies from immune adults were successfully used to treat children 

(Cohen, McGregor et al. 1961; McGregor and Carrington 1963) with severe P. falciparum 

malaria provide the strongest evidence that antibodies are important mediators ofNAI. 

Clinical symptoms of malaria result from the asexual blood stage of the infection where 

potential antibody targets include merozoite antigens involved in invasion (Cowman and 

Crabb 2006) and parasite-derived surface antigens on infected erythrocytes (Bull and 

Marsh 2002). 
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Studies on protective immunity to malaria involve monitoring of subjects in endemic 

communities for variable durations of time to measure the incidence of infection or clinical 

disease. Associations between the presence of a specific immune response to a target 

antigen and outcome determine whether an immune response to the specific antigen 

appears to be "protective-. These immuno-epidemiological studies have often provided 

conflicting data, with responses to the same antigen appearing to be protective in some 

studies but not in others (Riley, Allen et aI. 1992; Hogh, Marbiah et aI. 1995; al-Yaman, 

Genton et aI. 1996; Egan, Morris et aI. 1996; Branch, Udhayakumar et aI. 1998; Dodoo, 

Theander et a!. 1999; Conway, Cavanagh et aI. 2000; Cavanagh, Dodoo et aI. 2004; Perraut, 

Marrama et aI. 2005). Most antibody-based analyses of protection are tethered on sero

positivity (usually defined as the mean plus three standard deviations of non-malaria 

exposed sera) and do not take into account the continuous, quantitative nature of antibody 

responses. Furthermore, the majority of studies have concentrated on associations 

between responses to single, or a limited number of antigens and protection from clinical 

malaria, despite the fact that individuals living in endemic areas are simultaneously and 

repeatedly challenged with numerous malaria antigens. Few studies have examined the 

interactions between specific antibody responses against mUltiple malaria antigens 

(Meraldi, Nebie et aI. 2004; John, Moormann et aI. 2005), and whether these might be 

synergistic or antagonistic or neither with regards to protection. 

To test whether either the number of important target antigens to which antibodies are 

made, and/or the levels of such antibodies in serum, are associated with protection from 

malaria, we analyzed naturally-acquired antibodies to five leading P. Jalciparum merozoite 
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stage vaccine candidate antigens (apical membrane antigen 1(AMA1), merozoite surface 

proteins- 1,2 and 3, (MSP-1, MSP-2, MSP-3), and erythrocyte binding antigen (EBA-175)), 

as well as P. Jalciparum schizont extract, in a cohort of Kenyan children who were 

monitored longitudinally for mild (uncomplicated) clinical malaria (Chonyi cohort). We 

also examined combinations of, and interactions between, antigen-specific antibodies to 

determine the combination(s) that predicted the strongest protection from clinical malaria. 

These antigens were selected for study because of the cumulative evidence that the 

presence of antibodies to these antigens may be associated with protection (Taylor, Smith 

et al. 1995; Taylor, Allen et al. 1998; Conway, Cavanagh et al. 2000; Metzger, Okenu et al. 

2003; Polley, Tetteh et al. 2003; Cavanagh, Dodoo et al. 2004; Polley, Mwangi et al. 2004; 

Polley, Conway et al. 2006; Osier, Polley et al. 2007; Polley, Tetteh et al. 2007), backed by 

evidence that polymorphisms in their sequences are maintained by natural selection 

(Conway and Polley 2002), and their biological plausibility (Deans, Alderson et al. 1982; 

Epping, Goldstone et al. 1988; Clark, Donachie et a!. 1989; Blackman, Heidrich et al. 1990; 

Sim, Orlandi et al. 1990; Oeuvray, Bouharoun-Tayoun et al. 1994; Locher, Tam et a1. 1996). 

The analytical approaches were developed using data from the Chonyi cohort and the 

methods subsequently validated in an independent case-control study whose end-point 

was malaria severe enough to require admission to hospital. 
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4.2 SPECIFIC AIMS 

1. To determine whether either the number of important target antigens to which 

antibodies are made, and/or the levels of such antibodies in serum, are associated 

with protection from clinical episodes of malaria in the Chonyi cohort. 

2. To identify the combination(s) of antibodies that predicted the strongest protection 

from clinical malaria 

3. To validate the findings from the Chonyi cohort in the case-control study of severe 

malaria 

4.3 MATERIALS AND METHODS 

The Chonyi cohort and case-control studies have already been described, as have been the 

recombinant antigens, and ELISA assay protocol, see materials and methods, sections 3.2.1-

3. For both studies, JgG antibodies to AMA1, MSP-2, MSP-3, EBA-17S, MSP-1 block 2, MSP-

119 and P.falciparum schizont extract were analyzed. Data on antibody responses to AMA1, 

MSP-2 and MSP-3 from the Chonyi cohort had been previously published (Polley, Mwangi 

et a1. 2004; Polley, Conway et al. 2006; Osier, Polley et a1. 2007), but in this study were 

completely re-analysed from the raw data, using only the data from children under ten 

years old. For the case-control study, antibody data for all the antigens were generated 

specifically for this thesis. 
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4.3.1 STATISTICAL ANALYSIS 

4.3.1.1 Overview 

All data analyses were performed in STATA version 9.2 (Statcorp, Texas, USA). Models 

were firstly developed using data from the Chonyi cohort and subsequently validated in the 

case-control study with some modifications (below). The primary analysis was on the sub

group of 119 children from the Chonyi cohort (n=280) who were asymptomatically 

parasitized at the time of serum collection in October 2000 because in previous analyses, P. 

falciparum parasitaemia at the time of serum collection modified the effects of antibodies 

to both variant red cell surface (Bull, Lowe et al. 2002) and merozoite (Polley, Mwangi et al. 

2004; Polley, Conway et al. 2006; Osier, Polley et al. 2007) antigens on the risk of disease. 

The confounding effects of exposure on antibody responses were controlled for by 

adjusting both for age, as well as antibody reactivity to parasite schizont extract in multi

factorial analyses. 

4.3.1.2 Antibodies and the probability of a clinical episode 

The probability of a clinical episode for each antigen (and each allelic form), for given 

antibody levels was estimated by logistic regression fitting ELISA OD values for the antigen 

as a linear covariate, and adjusting for age (in 2 year categories). The logits from these 

models were converted into probabilities (Mitchell and Chen 2005), to give estimates of 

risk (Figure 4.4.1). These analyses established that for most antigens and antibodies, 

higher antibody levels were associated with a lower risk of disease and that allelic versions 

of the same antigen (or the same allelic family for MSP-1 Block 2) generally gave similar 

patterns of protection. The probability plots were used to define a threshold (cut-oft) for 
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high versus low/undetectable antibodies as the OD level above which the risk of disease 

was lower than the population's risk of 33.6% (i.e. the risk of disease assuming no role for 

any antibodies) (Figure 4.4.1 and Table 4.4.1). The suitability of the logistic model was 

checked by examining the residuals when the OD data were fitted in quintiles. The 

individual effects of high levels of each antibody on the risk of disease were then re

analyzed fitting antibody level as a factor rather than as a linear covariate (Table 4.4.2) for 

ease of interpretation, and to facilitate analyses of breadth and the interactions between 

antibodies. To avoid the lack of convergence commonly encountered in conventional 

binomial regression analyses, data were fitted to a modified Poisson regression model with 

robust error variance, which tends to provide conservative results (Zou 2004). 

4.3.1.3 Correlations between allelic versions of antigens 

Antibodies to different allelic forms of most antigens (AMA1, MSP-2, MSP-3 and the F2 sub

domain ofEBA-17S) and to the main allelic types ofMSP-1 Block 2 (K1- and MAD20-types) 

were highly correlated (Table 4.4.3) and generally gave similar patterns of protection 

(Figure 4.4.1). Consequently, high level antibodies of one allelic form of each antigen was 

selected for the analysis of antibodies to multiple antigens, using the Bayesian Information 

Criteria (BIC) to identify the allelic form with the best model fit Antibodies to MSP-1 Block 

2 (MSP-l_B2) were highly correlated only within the main allelic families, and so for this 

antigen, antibodies to one antigen from each of the three main allelic families (MAD20-like, 

Kl-Iike and R033-like) were included to give an overall MSP-1 Block 2 response (any of 

MSP-LB2_Wellcome, MSP-1_B2_3D7 or MSP-1_B2_R033). 
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4.3.1.4 Breadth of antibody specificity 

Breadth was analyzed in an age and schizont extract-adjusted modified Poisson regression 

model, that compared the risk of disease among children who had high level antibodies 

(fitted as a factor) to between one and six antigens to those who had low/undetectable 

antibodies to all six antigens. The combination of antibodies that was associated with the 

lowest risk of clinical malaria was determined by analyzing all pair-wise combinations, 

investigating interactions between antigens by fitting a model with two main effects and an 

interaction term. Interaction as presented here, refers to statistical interaction where the 

estimate of risk obtained for antibodies to two antigens is significantly lower than expected 

(ie than the product of the individual risk ratios). It does not exclude biological interaction. 

To make certain that we were not simply measuring correlated antibodies arising from 

shared exposure, we separately included antibodies to all antigens in a single regression 

model, together with age and reactivity to schizont extract, dropping each out sequentially 

in decreasing order of their P-values. Antigens that remained significant in this model at 

the P <0.10 level were MSP-2, MSP-3 and AMA1. 

4.3.1.5 Case-control study 

Data on children from the hospital cohort were analyzed essentially as described above 

with minor modifications. Models were fitted to data from the entire hospital cohort (not 

only the sub-group that were parasitaemic at the time of serum collection) because it 

appeared that frequency matching of cases and controls for location (and therefore 

exposure) successfully eliminated the interaction between the antibody's protective effect 

and parasite infection status. 
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4.4 RESULTS 

4.4.1 MAGNITUDE OF ANTIBODY RESPONSE AND PROTECTION 

The probability of developing an episode of clinical malaria for a given value of measured 

antibody level (00) was estimated for each antigen. We found that the levels of serum 

antibodies to some, but not all vaccine candidate antigens, were inversely related to the 

probability of developing malaria (Figure 4.4.1). Increasing 00 levels to MSP-2, MSP-3, 

AMAl and the MAD20-like antigens of MSP-l Block 2 (denoted Wellcome and MA020) 

were associated with reduced probability of malaria morbidity while those to MSP-!t9. 

EBA-175, or the Kl- and R033-like antigens of MSP-l Block 2, had little effect Within these 

loci (and within the main allelic families for MSP-l Block 2), the patterns were similar for 

the different allelic forms. Increasing antibody titres to whole parasite schizont extract 

were also associated with a reduced probability of clinical malaria. 
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Figure 4.4.1 Antibody levels and the risk of clinical episodes 

3.0 0.0 1.0 2.0 
All antigens 

The predicted probability of an episode of malaria in children decreases with increasing 

antibody titre for most antigens in the Chonyi cohort (n=119). Each panel represents the 

allelic antigens tested at each locus, as well as parasite schizont extract. The red horizontal 

line represents the risk of an episode without taking antibody responses to any antigen 

into account. The final panel combines antibodies to one allelic form of each antigen (and 

one antigen from each of the three main allelic families of MSP-1 Block 2). The lines from 

top to bottom represent: MSP-1_B2_ Wel1come, MSP-3_Kl, MSP-2_Dd2, Schizont extract, 
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4.4.2 PROTECTIVE EFFICACY OF INDIVIDUAL HIGH TITRE ANTIBODIES 

The probability plots (Figure 4.4.1) were used to define a threshold (cut-off) for high 

versus low/undetectable antibodies for each antigen. This threshold varied both by antigen 

and by population (the Chonyi cohort and the case-control study), ranging from relatively 

low 00 values for the MSP-1 Block 2 antigens to high values for MSP-2 (Table 4.4.1). The 

individual effects of high levels of each antibody on the risk of disease were re-analyzed 

fitting antibody level as a factor rather than as a linear covariate (Table 4.4.2) for ease of 

interpretation, and to facilitate analyses of breadth and the interactions between 

antibodies. 
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Table 4.4.1 ELISA OD cut-off values 

Antigen Chonyl cohort Case-control study 

AMA1_307 1.2990 0.9360 
AMA1_FVO 1.1820 1.0194 
AMA1_HB3 NO 0.9477 

MSP-2_CH150/9 1.3742 0.6200 
MSP-2_0d2 1.3751 0.7122 
MSP-3_K1 0.5914 0.2442 

MSP-3_307 0.7553 0.3421 
EBA-175_F2_CAMP 0.8800 0.1584 
EBA-175_F2_307 1.2534 0.5331 

MSP119 0.9015 0.5872 

MSP-l_B2_307 0.2473 0.2014 
MSP-1_B2]alo Alto 0.2660 NO 
MSP-l_B2_Wellcome 0.0160 NO 

MSP-l_B2_MA020 0.0606 0.3421 
MSP-l B2 R033 0.0586 0.1066 

ELISA OD levels (cut-offs) used to define high versus low responders to merozoite antigens 

in the Chonyi cohort and the case-control study. Cut-offs were predicted from the 

probability plots for each antigen (Figure 4.4.1) as the ELISA OD value which 

corresponded to the population's average risk of an episode. ND: Not done. 
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Table 4.4.2 Protective effects of high level antibodies to Individual antigens 

Antigens n% Risk Ratio (95% Confidence Interval) 

Univariate pvalue Age-adjusted pvalue Age and Schizont pvalue 
ana!Isls ana!Isls adjusted 

AMA1]VO 49 0.45(0.25-0.80) 0.007· 0.60(0.33-1.08) 0.093 0.65(0.36-1.21) 0.178 
AMA1_3D7 51 0.40(0.22-0.72) 0.002· 0.50(0.28-0.90) 0.021* 0.54(0.29-1.00) 0.052 

MSP-2_CH1S0/9 54 0.32(0.17-0.59) . 0.000· 0.39(0.21-0.70) 0.002* 0.41(0.22-0.74) 0.004* 
MSP-2_Dd2 54 0.28(0.15-0.53) 0.000· 0.35(0.18-0.65) 0.001* 0.36(0.19-0.70) 0.003· 

MSP-3_K1 39 0.39(0.20-0.78) 0.008· 0.50(0.26-0.95) 0.037* 0.52(0.27-1.01) 0.055 
MSP-3_3D7 40 0.58(0.32-1.04) 0.072 0.67(0.38-1.17) 0.166 0.70(0.40-1.22) 0.216 

EBA-175_F2_CAMP 34 0.72(0.40-1.29) 0.274 1.05(0.60-1.82) 0.858 1.25(0.71-2.19) 0.437 
EBA-175_F2_3D7 41 0.41(0.21-0.79) 0.008· 0.53(0.27-1.04) 0.067 0.57(0.29-1.14) 0.114 

MSP-1_B2_3D7 20 0.43(0.12-1.12) 0.085 0.56(0.20-1.50) 0.252 0.60(0.22-1.64) 0.328 
MSP-1_B2_PaloAito 18 0.93(0.47-1.83) 0.846 0.91(0.48-1.71) 0.774 0.95(0.50-1.81) 0.895 

MSP-1_B2_Welicome 19 0.33(0.11-1.00) 0.051 0.50(0.16-1.51) 0.222 0.54(0.18-1.65) 0.286 
MSP-1_B2_MAD20 23 0.48(0.21-1.12) 0.092 0.73(0.32-1.70) 0.478 0.76(0.33-1.78) 0.543 
MSP-1_B2_R033 15 . 1.40(0.77-2.53) 0.263 1.20(0.74-1.93) 0.443 1.43(0.86-2.38) 0.162 

MSP-1 19 36 1.44(0.87-2.38) 0.148 1.14(0.74-1.76) 0.544 1.59(0.93-2.74) 0.089 

Risk of developing clinical malaria with high compared to low/undetectable antibodies to 

individual antigens in a subset ofthe Chonyi cohort (n=119). Antigens are designated 

'locus_P.falciparum strain'. n% is the proportion of children with high titre antibodies 

(n=119). Risk ratios (95% confidence interval) are presented for univariate and 

multivariate analyses (adjusted initially for age, and subsequently both for age and 

reactivity to P.falciparum parasite schizont extract as a proxy for exposure). *p <0.05 

4.4.3 CORRELATIONS BETWEEN ALLELIC VERSIONS OF ANTIGENS 

Antibodies to different allelic forms of most antigens (AMAl, MSP-2, MSP-3 and the F2 sub-

domain ofEBA-17S) and to the main allelic types ofMSP-l Block 2 (Kl- and MAD20-types) 

were highly correlated (Table 4.4.3). The protective effects of antibodies to allelic 

versions of antigens were therefore analyzed in separate models, examining both their 
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individual effects as well as their interactions, to identify the alleles that best fitted the data, 

using the BIC (Table 4.4.4). For AMAl and F2 sub-domain ofEBA-175, no improvement in 

model fit was obtained when responses to both alleles versus one allele were included in 

the model, and so only the best-fitting allele was taken forward into further analyses. For 

antibody responses to MSP-2 and MSP-3, there was a modest improvement in model fit 

when antibodies to both allelic forms were included in the model. However, to keep the 

models as simple as possible, BIC criteria were employed as above to select the single 

allelic form that best fitted the data (MSP-3_Kl and MSP-2_Dd2). Antibodies to MSP-l block 

2 were correlated within, but not across the main allelic families (these sequences do not 

contain any conserved epitopes). Antibodies that gave the best fit to the data within each 

allelic family were included in an overall MSP-l Block 2 response, which was retained for 

further analysis (MSP-l_B2_Wellcome, MSP-CB2_3D7 and MSP-l_B2_R033). Thus, a total 

of six genetically (& structurally) unrelated antigens (one allelic form representing each 

antigen locus, and an overall MSP-l Block 2 response) were retained for analyses of 

breadth and combined antibody responses on the risk of clinical episodes, and included 

AMA1_3D7, MSP-2_Dd2, MSP-3_Kl, EBA-175_3D7, MSP-h9and MSP-l Block 2 (overall 

response). 
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Table 4.4.3 Correlations between antibodies to the panel of merozoite antigens 

Schizont AMA1 1 AMAl 2 MSP2 1 MSP22 MSP31 MSP32 EBA 1 EBA 2 MSPl 1 MSP12 MSPl 3 MSP1 .. MSP15 MSP16 
Schizont 1.00 
AMA1_1 0.47 1.00 
AMA1_2 0.48 0.98 1.00 
MSP2_1 0.54 0.64 0.64 1.00 
MSP2_2 0.58 0.61 0.62 0.72 1.00 
MSP3_1 0.29 0.40 0.42 0.43 0.44 1.00 
MSP3_2 0.41 0.45 0.46 0.49 0.51 0.52 1.00 
EBA_l 0.50 0.56 0.55 0.47 0.54 0.35 0.42 1.00 
EBA_2 0.51 0.65 0.65 0.50 0.55 0.39 0.42 0.82 1.00 
MSP1_l 0.41 0.14 0.14 0.22 0.24 0.11 0.08 0.24 0.27 1.00 
MSP1_2 0.22 0.19 0.20 0.28 0.25 0.16 0.11 0.08 0.16 0.22 1.00 
MSP1_3 0.22 0.18 0.17 0.25 0.22 0.14 0.09 0.08 0.15 0.27 0.93 1.00 
MSP1_4 0.14 0.16 0.15 0.21 0.17 0.19 0.20 0.14 0.15 0.10 0.19 0.21 1.00 
MSP1_5 0.15 0.24 0.22 0.28 0.24 0.20 0.21 0.23 0.25 0.08 0.18 0.19 0.72 1.00 
MSP16 0.20 0.03 0.05 0.17 0.19 0.06 0.11 0.15 0.13 0.16 0.05 0.01 0.28 0.14 1.00 

Figures are pair-wise correlation coefficients (Chonyi cohort). Antibodies to the main allelic 

forms of most antigens were highly correlated. Antigens abbreviated as follows: AMA1_1, 
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Table 4.4.4 Effects of high titre antibodies to allelic combinations of antigens on the 
probability ofa clinical episode In the Chonyl cohort 

Main effects
' 

Combination 
Antigens & Interactions2 I! value effects' I! value 

AMA1_FVO 2.46(0.71-8.47) 0.151 0.67(0.36-1.22) 0.196 
AMAC3D7 0.23(0.07-0.77) 0.017* 

X -
MSP-2_CH150/9 0.57(0.30-1.05) 0.074 0.30(0.13-0.67) 0.003* 

MSP-2_Dd2 0.48(0.24-0.96) 0.038* 
X 0.56(0.18-1.79) 0.336 

MSP-3_K1 0.55(0.28-1.07) 0.078 0.37(0.12-1.11 ) 0.077 
MSP-3_3D7 0.80(0.47-1.38) 0.435 

X 0.51 (0.13-1.92) 0.327 

EBA-175_F2_CAMP 1.61 (0.97-2.68) 0.062 0.74(0.33-1.65) 0.747 
EBA-175_F2_3D7 0.48(0.24-0.96) 0.039* 

X 1.21 (0.32-4.55) 0.768 

MSP-1_B2_Wellcome 0.55(0.16-1.87) 0.346 0.55(0.14-2.15) 0.399 
MSP-1 -B2_MAD20 0.97(0.38-2.44) 0.951 

X 0.98(0.07-13.71) 0.988 

MSP-CB2_3D7 0.48(0.19-1.16) 0.105 0.87(0.31-2.41) 0.794 
MSP-1_B2_PaloAlto 1.38(0.93-2.06) 0.102 

X -
Risk of developing clinical malaria with high compared to low/undetectable antibodies to 

combinations of allelic antigens in a subset of the Chonyi cohort (n=119). Figures are risk 

ratios (95% confidence intervals) and p values. lMain effects of antibodies to each antigen 

are adjusted for each other. 2Interaction (over and above main effects). 3Effects of 

combinations of high titre responses (combines main effects as well as interactions). "X" 

represents the estimates for the interaction between the two preceding antigens. No 

significant evidence of statistical interaction between allelic antigens was found and one 

antigen from each locus was used in subsequent analyses of the effects of high titre 

antibodies to combinations of unrelated (non-allelic) antigens on clinical episodes. 00: 

unreliable estimate due to sample size limitations *p <0.05 
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4.4.4 BREADTH AND PROTECTIVE EFFICACY OF ANTIBODY RESPONSE 

Children who had high levels of antibodies to one, two, three, four, five or six unrelated 

(non-allelic) antigens were compared with those who did not have high levels to any 

antigen to test the hypothesis that the breadth of specificities for unrelated antigens in the 

antibody response is important for protection. The risk of malaria was inversely associated 

with increasing breadth of antibody specificities in both study groups (Figure 4.4.2). None 

of the children in the Chonyi cohort who made high titre antibody responses to five or 

more antigens (17/119, 15%) experienced a clinical episode (P=0.0006 by Fisher's Exact 2 

tailed test). Similarly, in the case control study, none ofthe children who had high titre 

responses to five or more antigens (23/298, 7.7%) was admitted to hospital with severe 

malaria (P= 0.004 Fisher's Exact 2 tailed test). 
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Figure 4.4.2 Protective efficacy of high titre antibodies and breadth of specificity 

Protective efficacy increases with increasing breadth of specificity in children from the a) 

Chonyi (parasitaemic children, n=119), and b) hospital cohorts (all children, n=387). Each 

bar represents the comparison between individuals making high titre responses to In' 

number of antigens with those who make no responses to any antigen, 12% for the Chonyi 

cohort and 34% for the hospital cohort. Proportions above each bar are the percentage of 

individuals making high titre responses to In' antigens. The effect of high titre responses to 

P. !a[ciparum schizont extract is also shown. The effect of high titre responses to P. 

!alciparum schizont extract is also shown. 
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4.4.5 BREADTH OF ANTIBODY SPECIFICITY INCREASES WITH AGE AND CONCURRENT 

PARASITAEMIA 

The breadth of high titre antigen-specific responses increased with age in both groups of 

children (Figure 4.4.3). Parasite positivity at the time of serum collection significantly 

increased the breadth of the response. In the Chonyi cohort, nearly three times as many 

children who were parasitaemic at the time of serum collection had high antibody titres to 

three or more antigens, compared to those who were aparasitaemic (47% (56/119) versus 

17.3% (28/161), Pearson's chi-square 28.67, P < 0.001). This difference was more marked 

in the case-control study with over five times as many children who were parasitaemic at 

serum sampling having high titre responses to three or more antigens compared to those 

who were not (57% (102/176) versus 10.4% (30/287) Pearson's chi-square 120.77, 

P<O.OOl). 
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The breadth of antibody specificity increases with age in both the a) Chonyi cohort (n=119) 

and; b) case-control study (n=387). Older children make high titre antibody responses to 

an increasing number of antigens while younger children generally make high titre 

responses to fewer antigens. 

4.4.6 COMBINATIO NS OF ANTIBODIES AND PROTECTION 

Interactions between antibodies were investigated to determine which combination(s) 

were associated with the lowest risk of clinical episodes in the Chonyi cohort. High levels 

of antibodies to combinations that included MSP-2, MSP-3 and AMA1 were associated with 

a lower risk of disease compared to their individual effects (Table 4 .4.5). While the 

combined effect of antibodies was always greater than each of the individual effects, there 

was no statistical evidence of synergism or antagonism, i.e. more or less protection, 

respectively, than expected from the combination of the two antigens acting additively. 

The strongest protection was associated with high levels of antibodies to both MSP-2 and 
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MSP-3. Thirty three children (33/119) had high antibody levels to both MSP-2 and MSP-3 

and none of them experienced any episodes of disease (P<O.OOl by Fisher's Exact 2 tailed 

test), still highly significant after a Bonferroni correction (Bland and Altman 1995) allowing 

for multiple comparisons (P=0.003). This finding was validated in the case-control study 

where admission to hospital with malaria was the end-point Children who had high levels 

of antibodies to both MSP-2 and MSP-3 were significantly less likely to be admitted to 

hospital with malaria, odds ratio 0.26 (95 % confidence interval 0.08 - 0.81), p = 0.020, 

Table 4.4.6. 
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Table 4.4.5 Protective effects of combinations ofhigb titre antibodies 

Main effects1 Combination 
Antigens & InteractJons2 (X) pvalue effects3 pvalue 

AMA1_3D7 0 .59(0.32-1 .08) 0.091 0 .21 (0 .05-0.88) 0 .033* 

MSP-3_K1 0 .56(0.29-1 .08) 0 .085 

X 0.28(0.06-1.29) 0 .104 

AMA1_3D7 0 .66(0.35-1.25) 0 .211 0.24(0.09-0.64) 0 .004* 

MSP-2_Dd2 0.40(0.20-0.78) 0.008* 

X 0 .33(0.09-1 .17) 0 .087 

AMA1_3D7 0 .62(0.32-1 .18) 0 .147 0.61 (0.29-1 .29) 0 .199 

EBA-175_F2_3D7 0 .69(0.33-1.42) 0 .320 

X 1.90(0.34-10.46) 0.459 

AMA1_3D7 0 .58(0.31-1 .08) 0 .088 0.48(0.17-1 .38) 0 .178 

MSP-1 m 1.44(0.82-2.54) 0 .199 

X 0 .39(0.12-1 .30) 0.129 

MSP-2_Dd2 0.40(0.20-0.78) 0 .008* total protection 

MSP-3_K1 0 .62(0.34-1 .13) 0.121 n = 33 

X total protection n=33 

MSP-2_Dd2 0 .38(0 .20-0.73) 0 .004· 0.17(0.04-0.73) 0 .017· 

EBA-175_F2_3D7 0 .64(0.33-1 .22) 0 .178 

X 0 .26(0 .05-1 .27) 0 .098 

MSP-2_Dd2 0 .36(0.18-0.71 ) 0 .003· 0.52(0.21-1.30) 0 .166 

MSP-1 m 1 .55(0.92-2.61) 0 .097 

X 0 .62(0.20-1 .88) 0.402 

MSP-3_K1 0 .57(0.29-1 .11) 0.101 0 .39(0.12-1 .20) 0 .1 03 

EBA-175J2_3D7 0 .66(0.33-1 .31) 0 .240 

X 0 .71(0.17-2.97) 0.643 

MSP-3_K1 0 .48(0.25-0.93) 0.030· 0 .57(0.25-1 .31 ) 0 .191 

MSP-1 . 1 .74(1 .07-2.84) 0.024 

X 0 .65(0.19-2.27) 0.509 

EBA-175J2_3D7 0 .56(0.28-1 .11) 0.101 0 .69(0.26-1.78) 0 .445 

MSP-1 m 1 .61(0.97-2.68) 0.062 

X 0 .70(0.19-2.52) 0.586 

AMA1 -307 0 .55(0.30-1 .01) 0.055 0 .66(0.29-1.52) 0 .336 

MSP-1_B2 0 .87(0.51-1.50) 0 .636 

X 1 .13(0.36-3.56) 0 .829 

MSP-2_Dd2 0 .36(0.18-0.70) 0.008· 0.40(0.15-1 .05) 0 .064 

MSP-1_B2 1 .04(0.62-1 .72) 0.875 

X 0 .57(0.17-1 .90) 0.365 

MSP-3_K1 0.52(0.27-1 .02) 0.059 0.16(0.02-1 .13) 0.067 

MSP-1_B2 0 .87{O.S1-1.49) 0.634 

X 0.15(0.02-1 .14) 0.068 

MSP-1s 1 .61 (0.95-2.74) 0.073 0.98(0.48-2 .01 ) 0.972 

MSP-1_B2 0 .80(0.45-1 .41) 0.456 

X 0.83(0.27-2.46) 0.737 

EBA-175_F2_3D7 0 .58(0.30-1.14) 0.119 0 .85(0.36-2.00) 0 .720 

MSP-1_B2 0 .88(0.51-1 .51) 0 .656 

X 2 .11 (0 .56-7.94l 0 .265 
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Protective effects of combinations of high titre antibodies. Risk of developing clinical 

malaria with combinations of high compared to low/undetectable antibodies to individual 

antigens in a subset of the Chonyi cohort (n=119). Figures are risk ratios (95% confidence 

intervals) and p values obtained from multivariate analyses (adjusting for both age and 

reactivity to P. Jalciparum schizont extract 1 Main effects of antibodies to each antigen are 

adjusted for each other. 2Interaction (over and above main effects). 3Effects of 

combinations of high titre responses (combines main effects as well as interactions). "X" 

represents the estimates for the interaction between the two preceding antigens. In the 

majority of cases significantly more protection is obtained with high level antibodies to 

pairs of antigens, compared to single antigens (Table 4.4.2). No strong evidence of 

statistical interaction between pairs of antibodies is observed. *p <0.05 
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Table 4.4.6 Effects of combinations ofhigb titre antibodies on admission to hospital 
with malaria 

Main effects 1 Combination' 

Antlsens & Interactions' I! value effects I! value 
AMA1_3D7 0 .38{0.19-0.75) 0 .006* 0 .33{0.12-0.91 ) 0.034* 

MSP-3_3D7 0 .52{0.29-0 .95) 0 .035* 

X 0 .81 (0.22-2.91) 0 .757 

AMA1_3D7 0.38{0.19-O.77) 0 .008* 0 .20{0.08-0 .52) 0.001 * 

MSP-2_Dd2 0.49{0.28-0.87) 0 .015* 

X 0 .37{0.11-1 .15) 0 .088 

AMA1_3D7 0 .38{0.19-O.73) 0 .004* 0 .47{0.16-1 .35) 0.163 

EBA-175_F2_CAMP 0 .73{0.34-1 .57) 0.429 

X 0 .72{0.16-3.12) 0 .666 

AMA1_3D7 0.36{0.18-0.72) 0 .004* 0.38{0.10-1 .42) 0 .152 

MSP-1 -B2_R033 1.14{0.60-2.14) 0.681 

X 0.34{0.07-1 .58) 0 .173 

AMA1_3D7 0 .37{0.19-0.72) 0 .004* 0 .64{0.28-1 .45) 0.290 

MSP-1 18 0 .79{0.42-1 .50) 0.488 

X 1.30{0.38-4.43) 0 .668 

MSP-2_Dd2 0.46{0.27-0.85) 0 .013* 0 .26{0.08-0.81) 0.020* 
MSP-3_3D7 0.51 (0.28-0.94) 0.033* 

X 0 .55(0.14-2.10) 0 .387 

MSP-2_Dd2 0.47{0.27-0.82) 0 .008* 0 .12{0.01-0.92) 0.042* 

EBA-175_F2_CAMP 0.67{0.32-1 .41) 0 .296 

X 0.15(0.01-1 .24) 0 .078 

MSP-2_Dd2 0.47(0.26-0.82) 0.009* 0.63{0.27-1 .48) 0 .295 

MSP-1,. 0.76{0.39-1 .48) 0.427 

X 1.38(0.43-4.38) 0 .578 

MSP-2_Dd2 0.47(0.27-0.82) 0 .008* 0.23{0.03-1 .72) 0.156 
MSP-1 - B2_R033 0 .99(0.54-1.83) 0 .994 

X 0 .24(0.03-2.00) 0 .191 

MSP-3_3D7 0.50{0.27-0.91) 0 .024* 0.43{0.10-1 .78) 0.250 

EBA-175_F2_CAMP 0.68(0.32-1 .44) 0.327 

X 0.95(0.18-4.86) 0 .958 

MSP-3_3D7 0 .47(0.25-0.88) 0 .018* 0.45(0.11-1 .74) 0.248 

MSP-1,. 0 .68(0.35-1 .30) 0 .249 

X 0 .95{0.20-4.39) 0 .950 

MSP-3_3D7 0 .49(0.27-0.90) 0.022* total protectIon 

MSP-1_ B2_R033 0 .91 (0.48-1 .70) 0 .775 n= 13 

X complete protection n= 13 

EBA-175_F2_CAMP 0 .67{0.32-1.39) 0 .289 0 .21{0.03-1 .44) 0.113 

MSP-1 1• 0 .76(0.41-1 .40) 0.390 

X 0 .25(0.03-1 .96) 0 .189 

EBA-175_F2_CAMP 0.67(0.32-1.40) 0 .291 total protectIon 

MSP-1_B2_R033 0 .98{0.52-1 .83) 0 .953 n= 14 

X complete protectIon 

MSP-1 1• 0 .76{0.41-1 .41) 0.392 0 .81{0.21-3.04) 0.761 

MSP-1_B2_R033 0 .98(0.52-1 .86) 0 .966 

X 0.96~0 .20-4 .4°1 0 .958 
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Effects of combinations of high titre antibodies on admission to hospital with malaria. Risk 

of hospital admission with malaria with combinations of high compared to 

low/undetectable antibodies to pairs of antigens in the case-control study (n=387). Figures 

are risk ratios (95% confidence intervals) and p values. IMain effects of antibodies to each 

antigen are adjusted for each other. 2Interaction (over and above main effects). 3Effects of 

combinations of high titre responses (combines main effects as well as interactions). "x" 

represents the estimates for the interaction between the two preceding antigens. In the 

majority of cases significantly more protection is obtained with high titre responses to 

pairs of antigens, compared to individual antigens. No strong evidence of statistical 

interaction between antigens is observed. *p <0.05 

4.5 DISCUSSION 

We found that in two independent studies conducted in both high (chonyi cohort) and low 

transmission settings (case-control study) at different times, both the breadth of specifiCity 

for distinct merozoite antigens and the magnitude of antibody responses to these antigens 

provide robust predictors of immune status of children. High titre antibodies to 

combinations of three merozoite antigens in particular (AMA1, MSP-2 and MSP-3) were 

more strongly predictive of protection from clinical episodes of malaria compared to other 

putative "protective" merozoite antigens (MSP-l, EBA-17S). 
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Out of the panel of malaria vaccine candidate antigens studied here, high levels of 

antibodies to combinations including AMA1, MSP-2 and MSP-3 were the most strongly 

associated with protection. This is consistent with other studies in which naturally

acquired antibodies to each of the three antigens individually have been associated with 

protection from clinical malaria in this, and other populations (al-Yaman, Genton et a!. 

1995; Taylor, Smith et a!. 1995; Metzger, Okenu et a!. 2003; Meraldi, Nebie et al. 2004; 

Polley, Mwangi et a1. 2004; Singh, Soe et a!. 2004; Soe, Theisen et a!. 2004; Polley, Conway 

et a1. 2006; Polley, Tetteh et a!. 2007). Recently, long-term clinical protection was 

associated with IgG3 isotype antibodies to MSP-3 in Senegalese children (Roussilhon, 

Oeuvray et a1. 2007). In contrast, antibodies to MSP-1 block 2, which have been associated 

with protection in two cohorts in West Africa (Conway, Cavanagh et a1. 2000; Polley, Tetteh 

et a1. 2003; Cavanagh, Dodoo et al. 2004) were not similarly protective in the two cohorts 

we studied from Kilifi, Kenya. Antibodies to MSP-it9 have been associated with protection 

from clinical malaria in some studies, but not in others (Riley, Allen et a1. 1992; Hogh, 

Marbiah et a1. 1995; al-Yaman, Genton et a!. 1996; Egan, Morris et a!. 1996; Branch, 

Udhayakumar et a1. 1998; Dodoo, Theander et a1. 1999; Conway, Cavanagh et a!. 2000; 

Cavanagh, Dodoo et a1. 2004; Perraut, Marrama et a1. 2005). This may be explained in part 

by the finding that the fine-specificity of anti- MSP-it9 antibodies appears to be more 

important with regards to protection (Corran, O'Donnell et a!. 2004; Okech, Corran et a1. 

2004). A separate study found that individuals with high titre anti- MSP-119 specific 

invasion-inhibitory antibodies were protected from infection Oohn, O'Donnell et a1. 2004) 

and underscores the importance of developing robust functional assays for malaria. 

Antibodies to the F2 sub-domain of EBA-175 were not associated with protection from 
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· clinical disease in our studies, as has been found in other parts of Africa where this (Okenu, 

Riley et al. 2000) and other sub-domains of EBA-175 have been studied (Okenu, Riley et al. 

2000; Ohas, Adams et al. 2004; John, Moormann et al. 2005). To-date, only one study has 

reported significantly higher antibody levels to EBA-175 peptide 4 (1062 - 1103, within 

region V) in children protected from clinical attacks of malaria compared to susceptible 

children (Toure, Deloron et al. 2006). 

The importance of allele-:;pecific immunity was highlighted in the Combination B malaria 

vaccine trial in ~.apua New Guinea. Children who received this vaccine (containing a 

combination of P.falciparum ring-infected erythrocyte surface antigen (RESA), MSP-l and 

the 3D7 -allele of M$P-2) were less likely to be infected with parasites bearing the 

homologous allele of MSP-2 (Genton, Betuela et al. 2002), suggesting (as was later 

confirmed) that the vaccine had induced primarily allele-specific MSP-2 antibodies (Fluck, 

Smith et al. 2004). In the context of naturally-acquired infections, while some data suggest 

that parasites bearing specific genotypes induce allele-specific antibodies (Cavanagh, 

Elhassan et al. 1998; Kimbi, Tetteh et al. 2004; Polley, Conway et al. 2006), to our 

knowledge no studies have examined the protective effects of pre-existing allele-specific 

antibodies on subsequent disease caused by parasites bearing homologous alleles. We 

found that for most antigens tested. responses to allelic forms of each antigen had similar 

effects on the probability of mild or more severe malaria, suggesting the possibility that 

there may be significant cross-allele protection to clinical episodes. This issue is explored 

in detail in chapter 6, below. 
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In a study conducted in the Gambia, Gray et al. (Gray, Corran et al. 2007) found that while 

antibodies to a similar panel of individual antigens were only weakly correlated with 

protection, those to the combinations of AMAl and MSP-2 were significantly associated 

with protection from clinical malaria. There are two important differences between this 

Gambian study and the ones reported here from Kenya. First, k-means clustering and 

phylogenetic networks were used to investigate associations between antibody reactivity 

profiles and clinical status in the Gambian cohort. These methods independently identified 

the group of children who were asymptomatic (asymptomatic parasitaemia, splenomegaly, 

or both) at the end of the study and had not apparently experienced clinical disease. This 

end-point differs from that of the studies reported here where outcome was simply defined 

as mild (Chonyi cohort) or severe (case-control study) malaria during the period of 

observation. Second, the magnitude of responses was not taken into account mainly 

because this generates increased individual differences, impairing cluster analysis. One 

other longitudinal study, carried out among children in Burkina Faso, examined antibodies 

to a different set of blood-stage malaria antigens (glutamate-rich protein (GLURP), P. 

Jalciparum exported protein-l (PjExp-l), and MSP-3), and like our studies, they found that 

the simultaneous presence of antibodies to more than one antigen was associated with a 

lower frequency of malaria episodes (Meraldi, Nebie et al. 2004). However, in a separate 

study on protection from malaria infection as opposed to clinical episodes in Kenyan 

adults, John et al. Oohn, Moormann et al. 2005) found that high antibody titres to multiple 

blood-stage antigens were not protective (though there was evidence of protection for 

responses to pre-erythrocytic antigens). Our data suggest that the combination of blood

stage antigens analyzed in these Kenyan adults (AMA1, EBA-175 and MSP-h9) may not 
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have been optimal. While these studies are difficult to compare directly due to differences 

in study design, study populations and end-points, antigens tested and analytical 

methodologies, the picture that nevertheless emerges clearly is that antibodies to key 

combinations of mUltiple parasite targets are more strongly associated with protection 

from clinical malaria than those to individual antigens. 

With the completion of the P.falciparum genome, numerous new (and old) antigens of the 

parasite have been identified and are being characterized. High throughput assays 

employing suspension array technology (Fouda, Leke et al. 2006) or micro-arrays 

(Sundaresh, Doolan et al. 2006; Gray, Corran et al. 2007) now allow for simultaneous 

analysis of antibodies to multiple antigens using minimal amounts of sera. This technology 

has not been matched with equivalently efficient tools for identifying protective immune 

responses. Robust concurrent analyses of numerous responses in relatively small studies, 

where children have been monitored longitudinally over a limited time-period for disease 

episodes remain challenging. The pair-wise analyses of combinations of high titre 

antibodies as presented here have obvious limitations when numerous antibodies are to be 

analyzed. Other analytical techniques such as clustering and the use of phylogenetic 

networks (Gray, Corran et al. 2007) while attractive for screening of potential vaccine 

candidates, similarly become more complex when increasing numbers of responses are 

analyzed and may well obscure genuinely 'protective' responses. New strategies to identify 

protective responses in humans are urgently needed. 

Studies of associations between immune responses and clinical malaria need to take 

account of the possibility that any given response is merely a marker of cumulative 
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exposure (which is it self necessary to induce immunity) or of a response to an as yet 

unidentified antigen(s) that elicits strongly protective immunity. In our study, the fact that 

antibodies to specific antigens were more strongly predictive of protection than those to 

whole schizont extract (containing all the specific antigens and many other blood stage 

antigens) (Figure 4.4.1) suggest that specific responses do not merely reflect exposure. 

The finding that protective efficacy increased with increasing breadth of antibody 

specificity indicates that the effect of anyone apparently protective response does not 

simply result from correlation with responses to other antigens (Figure 4.4.2), and argues 

for the interpretation that these are truly protective responses. Ultimately, the critical test 

of any such hypotheses will be to achieve equivalent protection through vaccination. Our 
.. 
demonstration of strong protection against malaria associated with high antibody levels to 

AMA1, MSP-2 and MSP-3lends support to the development of vaccines based on 

combinations of these key malaria antigens. 
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5 COMPARISON OF ANTIBODIES IN CHILDREN PRESENTING WITH 

EITHER MILD OR SEVERE MALARIA 

5.1 RATIONALE 

In malaria endemic areas, the spectrum of infection with Plasmodium Jalciparum ranges 

from asymptomatic parasitaemia, through mild clinical episodes, to severe, and life

threatening disease. The reasons why some, but not all, children develop severe malaria 

are not well elucidated, but doubtlessly involve a complex interplay between host, parasite 

and environmental factors (Greenwood, Marsh et a1. 1991; Lines and Armstrong 1992; 

Marsh 1992). More recently, the appreciation that severe Jalciparum malaria is a complex 

multi-system disorder, comprising much more than simply severe anaemia or cerebral 

malaria has increased, accompanied by the realization that the pathological processes 

leading to severe clinical manifestations are no less complex (Mackintosh, Beeson et a1. 

2004). However, regardless of the underlying mechanisms, early and more recent studies 

clearly demonstrated the protective role of anti-malarial antibodies against severe malaria, 

in both children and adults (Cohen, McGregor et a1. 1961), (Sabchareon, Burnouf et a1. 

1991). 

If antibodies play an important role in controlling or resolving acute infections with 

malaria, it might be expected that there would be consistent qualitative and/or quantitative 

differences in the humoral immune responses of children experiencing diverse clinical 

syndromes of malaria. However, several studies have reported conflicting data on the 

levels of antibodies among children with severe, as opposed to milder clinical 
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manifestations of malaria. Children with severe malaria have been reported to have higher 

(Tharavanij, Warrell et al. 1984; Cissoko, Daou et al. 2006)), lower (de Souza, Todd et al. 

2002; Perraut, Diatta et al. 2005; Okech, Mujuzi et al. 2006; Dobano, Rogerson et al. 2008) 

or equivalent (Perraut, Diatta et al. 2005; Okech, Mujuzi et al. 2006) antibodies compared 

to controls with asymptomatic infections or mild malaria, and this appears to vary for 

different antigens. A potential limitation of these studies is the fact that at the time of an 

acute clinical event, the immune responses are not in steady state. On the other hand, it 

can also be argued that the acute clinical episode is in fact the ideal time point, as it 

captures children responding differentially to challenge, and therefore has greater 

potential to distinguish differences of direct clinical significance. Although it cannot be 

presumed that all malaria infections progress from being asymptomatic, to mild febrile 

episodes, before finally manifesting as severe malaria, it is reasonable to hypothesize that 

children (or adults) responding to challenge without displaying any clinical symptoms are 

making better immune responses than those who succumb to mild clinical symptoms, who 

in turn are making better responses than those presenting with severe and life-threatening 

malaria. In the previous chapter on multiple antigen responses, I found that the breadth 

and magnitude of antibody responses distinguished children who would go on to develop 

clinical episodes of malaria, from those that remained free of disease. In this study, I 

extend the previous work by exploring whether qualitative and/or quantitative differences 

in antibodies could distinguish children responding to natural challenge by developing 

either severe or mild malaria. I compare the evolution of total and sub-class IgG to the 

same panel of previously analyzed merozoite antigens, among children with the two 
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clinical syndromes in samples collected during the acute clinical episode and at 

convalescence. 

5.2 AIMS 

To determine whether there are quantitative and/or qualitative differences in antibodies 

to MSP-1 block 2, MSP-1t9, MSP-2, MSP-3,AMA1 and EBA-175 in the acute and 

convalescence samples of children experiencing either mild or severe clinical malaria 

5.3 METHODS 

The study population has been previously described (section 3.2.1.2) and comprised the 

cases included in the case-control study, 89 of whom presented with malaria severe 

enough to warrant hospital admission, and 76 of whom were treated for mild malaria in 

the outpatients' department. The recombinant antigens, and antibody assays (total IgG 

and IgG sub-class) have also been described (sections 3.2.2 and 3.2.3). 

5.4 RESULTS: COMPARISONS OF SEVERE VERSUS MILD MALARIA 

5.4.1 STUDY POPULATION 

As previously described (chapter 3.3.2), children with severe malaria were significantly 

younger than those presenting with mild malaria. As antibodies to the majority of antigens 

tested increased with age, this was taken into consideration by incorporating an age

stratified analysiS, when comparing the antibodies between severe and mild malaria. 
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5.4.2 PREVALENCE OF HIGH TITRE IGG ANTIBODIES 

The prevalence of high titre antibodies was compared amongst children presenting with 

either severe or mild malaria. In both groups of children, high titre antibodies to AMA1, 

MSP-it9 and MSP-2 were the most common, followed by those to MSP-3, EBA-175 and 

finally MSP-l block 2. For most antigens, the prevalence of high titre antibodies did not 

differ between the two groups, either in the acute (Figure 5.4.1), or the convalescence 

(Figure 5.4.2) samples. Although, high titre antibodies to the FVO and HB3 alleles of AMAl, 

as well as the 3D7 allele of the F2 sub-region ofEBA-175, were significantly more common 

in children presenting with, mild as opposed to severe malaria (Figure 5.4.1 and Figure 

S.4.2), this difference was not significant when age was taken into account in a regression 

analysis. 
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Figure 5.4.1 Antibody prevalence in children presenting with severe or mild malaria 

Prevalence of high titre antibodies to a panel of merozoite antigens in samples collected 

during the acute clinical episode of children presenting with severe (n = 89) or mild (n = 

76) malaria. 
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Figure 5.4.2 Antibody prevalence in children convalescing from severe or mild 

malaria 
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Prevalence of high titre antibodies to a panel of merozoite antigens in samples collected 

during convalescence in children presenting with severe (n = 89) or mild (n = 76) malaria. 

5.4.3 IGG ANTIBODY LEVELS 

Overall, children with severe malaria had significantly lower antibody levels to most 

antigens, when compared to those with mild malaria. However, when age was taken into 

account this difference did not reach statistical significance (Table 5.4.1). However, these 

sub-group analyses are limited by the small sample numbers in each age category, as 
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illustrated using antibodies to AMA1_HB3 (Table 5.4.2). Although antibodies to 

AMA1_HB3 were significantly lower in children with severe as opposed to mild malaria 

overall, this difference did not reach significance when an age-stratified analysis was 

conducted (Table 5.4.2). Similar results were obtained at the convalescence time point 

(Table 5.4.1). 

Table 5.4.1 Antibody levels in chUdren presenting with severe or mild malaria 

Acute Convalescence 
Mean antibody levels Ale-adjusted Mean antibody levels Ale adjusted 

Antllen Severe Mild pvalue pvalue Severe Mild p value value 
MSP-2_CH0150 0.68 0.98 0.042· 0.173 0.66 0.84 0.156 0.346 

MSP-2_0d2 0.97 1.06 0.97 0.97 0.96 0.79 0.926 0.063 

MSP-3_K1 0.13 0.23 0.093 0.277 0.19 0.23 0.567 0.891 
MSP-3_307 0.28 0.38 0.156 0.277 0.51 0.44 0.427 0.324 

AMA1_HB3 0.96 1.32 0.014- 0.09 0.99 1.37 0 .015- 0.065 
AMA1JVO 0.82 1.11 0.009- 0.07 0.91 1.18 0.031· 0.128 
AMA1_307 0.96 1.18 0.119 0.421 0.99 1.17 0.165 0.455 

EBA-175_307 0.11 0.12 0.697 0.864 0.13 0.13 0.809 0.996 
EBA-175_CAMP 0.41 0.64 0.005· 0.047· 0.64 0.72 0.408 0.815 

MSP-1_B2_K1 0.1 0.11 0.922 0.815 0.07 0.08 0.745 0.846 
MSP-1_B2_MA020 0.22 0.28 0.42 0.428 0.11 0.17 0.223 0.296 
MSP _1_B2_R033 0.05 0.11 0.265 0.238 0.02 0.07 0.22 0.414 

MSP-119 1.16 1.27 0.534 0.726 1.01 1.02 0.936 0.845 

Mean antibody levels were compared between children presenting with severe or mild 

malaria, in a univariate analysis, and then adjusted for age. 
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Table S.4.2 Antibody levels to AMAl_HB3 In children with severe or mild malaria 

Number of children Mean antibody levels 
Age Severe Mild Severe Mild p 

1- 2 yrs 26 14 0.95 0.75 0.424 
2-3 yrs 35 19 0.79 1.2 0.117 
3-4 yrs 17 25 1.04 1.44 0.177 
>4yrs 11 18 1.35 1.7 0.396 

Antibodies to AMALHB3 were significantly higher in children with severe malaria than in 

those with mild malaria, but these differences did not reach significance when an age-

stratified analysis was performed. 

5.4.4 CORRELATIONS BETWEEN ALLELE-SPECIFIC ANTIBODIES 

The distribution of allele-specific antibodies was compared between children presenting 

with either severe or mild malaria, to determine whether antibodies to particular alleles 

were more commonly associated with either of the clinical phenotypes. Figure S.4.3 and 

Figure S.4.4 show that at all the loci tested, there was no apparent difference in the 

patterns of allele-specific antibodies generated, with children with both severe or mild 

malaria making similar responses to allelic versions of the same antigen. 
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Figure 5.4.3 Correlation between allele-specific antibodies at three loci in children 
with severe or mild malaria. 
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Figure 5.4.4 Correlation between allele-specific antibodies at two loci in children 
with severe or mild malaria 

5.4.5 IGG SUB-CLASS ANTIBODIES 

IgG subclass assays were performed on the acute and convalescence samples for antibodies 

to MSP-2, MSP-3 and EBA-175. The ratio ofIgGl to IgG3 sub-class antibodies was 

Compared for these antigens between children presenting with severe or mild malaria, and 

no significant differences were observed, Table 5.4.3. 
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Table S.4.3 IgG1:IgG3 ratios in children with severe or mild malaria 

Acute Gl/G3 Ratio Convalescence Gl/G3 Ratio 
Antigen Severe Mild p Severe Mild p 

MSP-2_0d2 1.74 1.93 0.609 N/O N/O 
MSP-2_CH0150 4 2.9 0.367 

MSP-3_Kl 2.4 14.4 0.084 3.1 3.7 0.577 
MSP-3_307 4.5 3.6 0.523 2.3 4.4 0.437 

EBA-175 F2 CAMP 2.1 2.4 0.213 2.4 3 0.3427 

Ratios oflgG1:IgG3 sub-class antibodies to merozoite antigens were compared among 

children presenting with severe or mild malaria, at the time of the acute episode and at 

convalescence. 

5.5 DISCUSSION 

In the previous analysis on antibodies to multiple merozoite antigens we found that the 

breadth and magnitude of the antigen response was a strong predictor of children who 

were protected from hospital admission with clinical malaria (chapter 4). This is in 

agreement with earlier studies that demonstrated the protective efficacy of malaria-

immune antibodies in resolving both clinical symptoms, as well as high parasitaemias, in 

children and adults hospitalized with severe malaria (Cohen, McGregor et a!. 1961; 

Sabchareon, Burnouf et a!. 1991). Here, I explored a role for antibodies in preventing the 

progression from mild to severe disease, by comparing specific anti-malarial antibodies in 

children presenting with either clinical syndrome. I measured total IgG and IgG sub-class 

antibodies to the same panel of merozoite antigens already described (Chapter 4). Children 

presenting with severe or mild malaria did not differ significantly for any of the variables 

tested, including; the prevalence and titre of IgG antibodies, the distribution of allele-
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specific antibodies at particular loci, and the ratio of cytophilic antibodies (IgG1:IgG3). 

However, when the data were adjusted for age, although the difference was not statistically 

significant, children with severe malaria consistently had lower mean antibody levels than 

those with mild malaria. 

In previous studies where antibodies were compared amongst children with severe, or 

mild malaria, conflicting results have been reported. For antibodies to GPI for example, 

three different outcomes were obtained when children with severe malaria were compared 

to those with mild or uncomplicated malaria. De souza et al. found no differences in the 

prevalence or levels of anti-GPI antibodies in Gambian children with severe or 

uncomplicated malaria (de Souza, Todd et al. 2002), while Perraut et al. (Perraut, Diatta et 

a1. 200S) and Cissoko et al. (Cissoko, Daou et al. 2006) found that children with severe 

malaria had lower, and higher levels, respectively, of anti-GPI antibodies compared to those 

with uncomplicated malaria. Other studies are difficult to compare directly because 

antibodies have been assayed to different antigens, at different time points, and the 

definitions for severe and uncomplicated malaria are not standardized (Tharavanij, Warrell 

et al. 1984; Brasseur, Ballet et al. 1990; AI-Yaman, Genton et al. 1997; Luty, Ulbert et al. 

2000; Perraut, Diatta et al. 200S; Okech, Mujuzi et al. 2006; Dobano, Rogerson et al. 2008). 

Nevertheless, no clear picture emerges, and different results are obtained for different 

antigens in the same study, and different antigens in different studies, and range from 

findings that antibody levels are comparable in severe versus mild malaria, to being higher 

in the former compared to the latter, and vice-versa. What appears to be consistent, is that 

the presen~e of parasites, regardless of the accompanying clinical phenotype, is an 
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important determinant of anti-malarial antibodies, with parasitaemic individuals often 

having higher titres of antibodies to most antigens, compared to age-matched, healthy, 

aparasitaemic controls (Luty, Ulbert et a!. 2000; de Souza, Todd et a!. 2002; Cissoko, Daou 

et a!. 2006). 

The results of my study were limited mainly by the small sample size, which neither 

allowed sufficient power for an age-stratified analysis of antibody responses, nor a sub

group analysis of the specific syndromes that comprise severe malaria, such as cerebral 

malaria, severe anaemia or respiratory distress. A further limitation was that "hospital 

admission with malaria" was the criterion used to define severe malaria, and this may not 

have allowed for a clear distinction between the two clinical phenotypes. However, even in 

the studies where the syndromes of severe malaria were reasonably well-defined, for 

instance, cerebral malaria, or severe anaemia, conflicting results were still obtained with 

regards to antibodies between these children and those with uncomplicated malaria 

(de Souza, Todd et a!. 2002; Perraut, Diatta et a!. 2005; Cissoko, Daou et a!. 2006; Okech, 

Mujuzi et a!. 2006; Dobano, Rogerson et a!. 2008). 

In conclusion, I found no evidence of a quantitative, and/or qualitative differences in 

antibodies drawn from children experiencing severe, or mild clinical episodes of malaria. 
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6 LACK OF EVIDENCE OF ALLELE-SPECIFIC PROTECTION AGAINST 

CLINICAL EPISODES OF MALARIA ASSOCIATED WITH PARASITES 

BEARING HOMOLOGOUS ALLELES. 

6.1 INTRODUCTION 

Many candidates for sub-unit malaria vaccines are polymorphic, posing considerable 

challenges for vaccine development It is not clear how many alleles of a particular 

candidate will need to be included in a vaccine, to induce antibodies with specificity broad 

enough to counter the antigenic diversity present in malaria-endemic populations, and how 

this will change with time. Natural populations of P. falciparum have high recombination 

rates (Conway, Roper et al. 1999), and the ability to readily generate further diversity with 

every meiotic recombination (Walliker, Quakyi et al. 1987; Wellems, Panton et al. 1990; 

Rosenberg, Rungsiwongse et al. 1992; Babiker, Ranford-Cartwright et al. 1994). This 

situation is exemplified by AMA1, which exhibits numerous distinct haplotypes, 

particularly among isolates from areas of high malaria transmission (Polley and Conway 

2001; Cortes, Mellombo et al. 2003; Polley, Chokejindachai et aI. 2003; Garg, Alam et al. 

2007). This is a genuine concern, as it has been shown in animal models of malaria, that 

immunization with AMA1 (Crewther, Matthew et al. 1996; Hodder, Crewther et al. 2001), 

or MSP-119 (Renia, Ling et al. 1997; Rotman, Daly et a1.1999) confers Significantly better 

protection against challenge with parasites bearing homologous, as opposed to 

heterologous AMA1 or MSP-119 alleles, respectively. The implications of this for vaccine 

development are obvious. Furthermore, there are concerns that vaccination will select for 
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parasites bearing alternative alleles, as seemed to be the case in the phase lIb combination 

B malaria vaccine trial, where immunization with the 3D7 -like allele of MSP-2, resulted in a 

preponderance of parasites bearing FC27-like alleles in a sub-group ofvacinees (Genton, 

Betuela et al. 2002). Although this was a small study, it nevertheless provides the best 

'proof-of-principle' of vaccine-induced selection of malaria parasites in a human study, and 

highlights the need for molecular monitoring of malaria vaccines which has been 

implemented in sites where malaria vaccines are being tested (Takala, Coulibaly et al. 

2007). 

Evidence from both experimentally induced malaria and epidemiological observations in 

endemic areas has often been said to support the idea that immunity to malaria is to an 

important extent "strain specificH (Covell and Nicol 1951; Contamin, Fandeur et al. 1996; 

Daubersies, Sallenave-Sales et al. 1996; Ofosu-Okyere, Mackinnon et al. 2001; Magesa, 

Mdira et al. 2002). However the concept of a malaria 'strain' is poorly defined and has been 

contentious (for an excellent historical review, see (McKenzie, Smith et al. 2008)). Allele

specificity on the other hand, is more readily defined, and refers to the genotype of a 

parasite isolate at a precise molecular locus. Allele-specific immune responses are thus 

those stimulated by parasites bearing a particular allele at a given locus, and have been 

demonstrated for antibodies to AMA1 (Polley, Mwangi et al. 2004), MSP1-block 2 

(Cavanagh, Elhassan et al. 1998), MSP-2 (Ranford-Cartwright, Taylor et al. 1996), MSP-3 

(Polley, Tetteh et al. 2007), among others. We investigated whether pre-existing naturally

acquired allele-specific antibodies to four polymorphic malaria vaccine candidate antigens 

(AMA1, MSP-2, MSP-3, MSP-1 block 2), prevented disease associated with parasites bearing 
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homologous alleles, in Kenyan children. We analyzed antibodies to proteins representing 

the main allelic families of these candidates, MSP-2 (lCI-like and FC27-like), MSP-3 (Kl-like 

and 307-like), and MSP-l block 2 (Kl-like, MA020-like, R033-like), and genotyped disease

associated parasites at the corresponding loci. For AMAl, antibodies were analyzed to 

proteins representing three available allelic versions of AMAI (FVO, 307 and HB3), and 

sequencing was performed for parasite isolates. As alleles of AMAI cannot be readily 

grouped into main allelic families, a different analysis was performed for antibodies to 

AMAI and is presented separately in chapter 7. 

6.2 AIMS 

1. To determine whether pre-existing naturally-acquired allele-specific antibodies 

to MSP-2, MSP-3 and MSP-l block 2, protect against clinical episodes of malaria 

associated with parasites bearing homologous alleles at the corresponding loci. 

2. To determine whether infections with parasites bearing specific genotypes induce 

the corresponding allele-specific antibody responses in the acute and 

convalescence samples of patients presenting with malaria 

6.3 METHODS 

The study population consisted of the cases from the case-control study (Section 3.2.1.2). 

The PCR based methods for parasite genotyping and amal sequencing, as well as the 

protocols for the ELISA antibody assays, including Competition ELISA have also been 

described (Sections 3.2.5, 3.2.6 and 3.2.3, respectively). 
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6.3.1 STATISTICAL ANALYSIS 

For MSP-1 block 2, MSP-2 and MSP-3, three sets of analyses were performed, in a similar 

fashion for the pre-season, acute and convalescence samples. To determine whether pre

existing allele-specific antibodies protected against clinical episodes with parasites bearing 

homologous alleles, the proportions of acute clinical episodes with parasites bearing 

specific alleles were compared in the pre-season sample of children with, or without high 

titre antibodies to the corresponding homologous antigen using chi squared analyses. To 

determine whether parasite genotypes induced the corresponding allele-specific 

antibodies, the proportion of antibodies detected (defined as sero-positivity) was 

compared between children who had, or did not have infections with parasites bearing the 

homologous genotype in samples taken at the acute clinical episode and convalescence. 

Similar sub-group analyses were performed among children with severe or mild malaria, 

and among children in one year age group categories. 

6.4 RESULTS 

6.4.1 STUDY PATIENTS. 

The charact~ristics of all study patients recruited into the case-control study have been 

described (Section 3.3.2). Parasite DNA was available for 138/165 (84%) individuals, 

from the first clinical episode of malaria in the eight month follow up period. Missing 

parasite isolates had either been used up in other unrelated experiments, or there had been 

difficulties in obtaining the sample when the patient presented to hospital. Antibody data 

. were missing for 20 convalescence samples as the patients did not keep their follow-up 

appointments. The baseline characteristics were comparable between children for whom 
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there were no parasite isolates (n=27), compared to those for whom parasite DNA was 

available (n = 138) (data not shown). For the analyses of MSP-1 block 2, MSP-2 and MSP-3, 

data are presented for these 138 individuals. 

6.4.2 ANTIBODY PREVALENCE AND PREVALENCE OF ALLELIC TYPES AT SPECIFIC LOCI. 

The prevalence of high titre antibodies to all the antigens tested at three time points is 

shown in Table 6.4.1. For most antigens, the prevalence of high titre antibodies was 

higher in the acute samples as compared to the pre-season samples. In samples taken at 

convalescence (three weeks after the acute episode), the prevalence of high titre antibodies 

had not significantly declined, and was comparable to that in the acute samples (Table 

6.4.1). For all antigens except MSP-1 block 2, antibody prevalence was increased with age 

at all three time points (data not shown). The prevalence of allelic types at each locus is 

shown in Table 6.4.2. The majority of infections contained parasites bearing IC-l-Iike 

alleles at the msp2locus (94.2%), and the Kl-like allele at the mspl block 2 locus (91.3%). 

At the msp3locus 70.3% and 59.4% of infections bore the 3D7- and K1-like alleles 

respectively. The highest proportion of mixed infections (containing alternative allelic 

types) was observed at the msp2locus. Although the study was not designed to detect the 

absolute number of parasite clones detected in the samples, for msp2, multiple bands were 

commonly observed within each allelic type (ie mUltiple variants of the same allelic type). 

At a population level, overall antibody levels to allelic versions of MSP-3 reflected the 

prevailing genetic allelic frequencies in the parasite population at this locus. However, this 

was not observed for either MSP-2 or MSP-I block 2. Although 94.2% of typed infections 

contained an IC-I-like allele at the msp2locus, compared to 67.4% with FC-27-like alleles, 
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antibody levels were higher against the FC-27 -like alleles, at all the sampling times. 

Similarly, at the mspl block 2 locus, the Kl-like alleles were the most commonly detected, 

followed by R033-like and MAD20-like, whilst the highest antibody levels were observed 

against the MAD20 antigen, followed by the Kl, and the R033 antigens, at all time pOints. 

Table 6.4.1 Prevalence ofhlgb titre antibodies at three time pOints 

Prevalence of high titre antibodies (%) 
Pre-season Acute Convalescence 

Antigen (n = 138) (n= 138) (n = 122) 
MSP-2_CH0150 19.57 43.48* 44.26 

MSP-2_Dd2 26.02 49.28* 42.62 

MSP-3_3D7 21.74 31.88 45.08 
MSP-3_K1 21.01 21.01 27.87 

MSP-1_B2_3D7 13.04 7.97 6.56 
MSP-1_B2_MAD20 16.67 14.49 8.20 
MSP-1 B2 R033 10.14 12.32 8.20 

* p <0.05, for comparisons between pre-season and acute. 
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Table 6.4.2 Prevalence of allelic types at three P./aldparum loci 

Locus Allele Prevalence" (n/138) 
msp-2 ICl-like 94.2 (130) 

FC-27-like 67.4 (93) 
mixed 10-& FC-27-like 61.6 (85) 

msp-3 3D7-like 70.3 (97) 

K1-like 59.4 (82) 
mixed 3D7- & K1-like 29.7 (41) 

msp-1 block 2 K1-like 91.3 (126) 

MAD2(}like 58.7 (81) 
R033-like 65.2 (90) 

all three block 2 38.4 (53) 

6.4.3 HIGH TITRE ALLELE-SPECIFIC ANTIBODIES DO NOT PROTECT AGAINST DISEASE 

ASSOCIATED WITH PARASITES BEARING HOMOLOGOUS ALLELES 

To determine whether pre-existing allele-specific antibodies were protective against 

clinical episodes associated with parasites bearing homologous genotypes, the proportions 

of specific parasite genotypes were compared amongst individuals with high or low titres 

of homologous antibodies in the pre-season serum sample. As shown in Table 6.4.3, at 

each of the three loci tested (msp-l block 2, msp-2 and msp-3), there was no difference in 

the prevalence of parasites of a specific genotype, among individuals who ~ad, or did not 

have, high titres of pre-existing homologous antibodies (chi squared test, p > 0.05, all pair-

wise comparisons). Similar findings were obtained when the analysis was repeated for 

children developing severe, or mild malaria, and for children in different age groups (one 

year categories from 1 to 4 and over). However, the sample sizes for these sub-group 
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analyses were small, and for the msp-l block 2 locus, this was further compounded by the 

low number of high titre responses to these antigens. 

Table 6.4.3 Pre-existing antibodies and clinical disease with parasites bearing 
homologous genotypes 

Locus Alleles Antibodies Preseason' 
msp-2 tCl-like MSP-2_CH0150_low 94.6 

MSP-2_CH0150_high 92.6 

FC-27-like MSP-2_Dd2Jow 69.6 
MSP-2_Dd2_high 61.1 

msp-3 3D7-like MSP-3_307 _low 67.6 
MSP-3_307 _high 80.0 

Kl-Iike MSP-3_K1_low 57.8 
MSP-3_K1_high 65.5 

Kl-like MSP-1_B2_K1Jow 90.8 
MSP-1_B2_K1_high 94.4 

MAD2D-like MSP-1_B2_MAD20Jow 58.3 
MSP-1_B2_MAD20_high 60.9 

R033-Jike MSP-1_B2_R033Jow 63.7 
MSP-1_B2_R033_high 78.6 

The proportions of individuals developing clinical episodes associated with parasites 

bearing specific allelic types at three loci were compared among individuals with pre-

existing high versus low titres of the homologous allele-specific antibodies. 1 Samples 

collected at the beginning of the malaria transmission season. 

251 



6.4.4 ANTIBODIES TO ALLELE-SPECIFIC EPITOPES DETERMINED BY COMPETITION ELISA DO 

NOT APPEAR TO PROTECT AGAINST DISEASE ASSOCIATED WITH PARASITES BEARING 

HOMOLOGOUS ALLELES. 

To confirm that the lack of protection observed with high titre antibodies was due to 

antibodies targeted specifically to allele-specific as opposed to conserved epitopes, 

competition assays were performed for allelic versions of MSP-2 and MSP-3 antigens, both 

of which have shared or conserved epitopes between alleles. For MSP-2_CH0150, 25 

children were identified who- had high titre antibodies against this allele, but nevertheless 

experienced disease episodes with parasites bearing the homologous IC1-like alleles. Of 

these, 12 children had low titre antibodies to the alternative MSP-2_Dd2 antigen (and could 

be presumed to have mainly allele-specific antibodies to MSP-2_CH0150), while 13 had 

high titre antibodies to antigens of both allelic types. Competition assays (competing out 

antibodies to conserved epitopes by pre-incubating these sera with an excess of MSP-

2_Dd2) indicated that the majority of children with high titre antibodies to MSP-2_CH0150 

(10/12 of those with low antibodies to the alternative allelic antigen, and 10/13 ofthose 

with high titre antibodies to both antigens) did in fact have antibodies directed against 

allele-specific epitopes. Similarly for children with high titre antibodies against MSP-

2_Dd2, 22 children were identified, 13 of whom had low titre antibodies to the alternative 

MSP-2_CHO antigen, while 9 of whom had high titre antibodies to both. Competition assays 

(this time pre-incubation with an excess of the alternative MSP-2_CH0150 antigen) 

likewise indicated that the majority of these (9/13 of those low titre antibodies to the 

allelic antigen, and 5/9 of those with high titre antibodies to both antigens) contained 

antibodies directed against allele-specific and not conserved epitopes. These results 
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confirm that in these children antibodies to allele-specific epitopes did not protect against 

parasites bearing those genotypes. For MSP-3 there was little evidence of reactivity to 

allele-specific epitopes among the selected samples (2/43, for both allelic types). This' 

may have been due to the fact that for most of these samples the ELISA 00 values were 

close to the threshold for high antibody titres for both allelic types, making it difficult to 

discriminate antibodies to allele-specific epitopes. Additionally, a difference of at least 0.3 

ELISA 00 units between heterologous and homologous competition assays was counted as 

substantial evidence of allele-specific reactivity. 

6.4.5 ALLELE-SPECIFIC ANTIBODIES AS A RESULT OF CONCURRENT INFECTIONS 

We determined whether allele-specific antibodies were generated by parasites bearing 

homologous genotypes in concurrent infections (acute clinical episode), and at 

convalescence (ie concordant genotype-antibody relationships). We compared the 

proportions of individuals who were sero-positive between individuals infected with, and 

without, parasites bearing homologous alleles, at the acute and convalescence time points. 

Allele-specific antibodies to MSP-3_Kl and MSP-2_Dd2 were significantly more common 

amongst individuals presenting with clinical episodes associated with parasites bearing 

homologous alleles at both the acute and convalescence time points (Table 6.4.4). The 

same was not observed for the alternative versions of these two antigens (the alleles of 

which also occur at higher frequencies in this population), and neither was it found for 

antibodies against MSP-l block 2. No differences were observed between children with 

severe and mild malaria, or between various age categories. 
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Table 6.4.4 Parasite genotypes and homologous aIIele-spedfic antibodies 

Acute episode Convalescence 
Locus Allele Allele neg. Allele pos. p Allele neg. Allele pos. p 
msp-2 IC1-like 87.5 85.5 0.869 100 93.0 0.47 

FC-27-like 71.1 92.5 0.001- 84.6 97.6 0.007-

msp-3 3D7-like 80.5 70.1 0.208 88.6 90.0 0.861 
Kl-like 23.2 39.0 0.052 40.0 58.3 0.046-

msp-l_B2 Kl-like 8.3 15.1 0.526 0 15 0.193 
MAD20-like 15.8 12.4 0.563 9.8 7.0 0.583 
R033-like 8.3 14.4 0.298 2.4 12.4 0.071 

The proportions of children sero-positive for homologous antibodies were compared 

between those with, and without the corresponding parasite genotypes, in the acute and 

convalescence samples. * p < 0.05 

6.5 DISCUSSION 

We have previously shown that high titre antibodies to some putative vaccine antigens are 

associated with protection from clinical episodes of malaria (Osier, Fegan et aI. 2008). 

These antigens are polymorphic and there is strong evidence that antigenic diversity has 

been driven by immune pressure (Conway and Polley 2002). In the current study we 

sought evidence that such protection is allele specific. For three antigens that exist in a 

limited number of major allelic forms, MSP-l block 2, MSP-2, and MSP-3, we found that pre-

existing high titre allele-specific antibodies did not differentially protect children against 

clinical episodes associated with parasites bearing homologous alleles. We obtained the 
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same results when the data were analyzed against sero-positivity, as conventionally 

defined. 

These data are striking in the light of the evidence for immune selection on parasite 

diversity (Conway and Polley 2002) and the paradigm of "strain" specific immunity being 

important in protection from malaria. In malaria-endemic areas, particularly where the 

transmission intensity is high, both children and adults harbor asymptomatic infections, 

compriSing complex mixtures of distinct parasite clones, which fluctuate over a matter of 

months, weeks, and even, days (Daubersies, Sallenave-Sales et al. 1996; Farnert, Snounou 

et al. 1997). These longitudinal studies have also shown that clinical episodes are often 

associated with an abrupt increase in parasite densities (Contamin, Fandeur et al. 1996), in 

which novel parasite clones are commonly detected (Contamin, Fandeur et al. 1996; Ofosu

Okyere, Mackinnon et al. 2001; Magesa, Mdira et al. 2002), consistent with the idea of 

'strain' -specific immunity, limiting the growth of some, but not all parasites. While the loci 

used to detect the presence of distinct parasite clones or 'strains', are often identical to 

those that encode for antigens that are considered as targets of protective immunity 

against clinical episodes of malaria (MSP-l block 2, MSP-2, MSP-3), 'strain'-specific 

immunity is not synonymous with allele-specific immunity, the latter at best being a 'sub

set' of the former. None the less, when protective antibody responses are directed to 

polymorphic antigens, it might be expected that the polymorphism is driven by immune 

pressure and that protection would be greater against disease episodes caused by 

homologous parasites. 
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Previous studies in which both the infecting parasites were genotyped, and the naturally

acquired antibody specificities to MSP-1 block 2 or MSP-2 monitored longitudinally, did not 

address the question of whether allele-specific antibodies protected against (re-)infection 

or clinical episodes with parasites bearing homologous alleles (Cavanagh, Elhassan et a1. 

1998; Jouin, Rogier et a1. 2001; Weisman, Wang et a1. 2001). In a sub-group analysis (n=5), 

Jouin et al. analyzed genotype-antibody relationships over a period of 15 months, and 

found that for all individuals, (ages 7 - 50 years), allele-specific antibodies were unrelated 

to the genotypes of previous, concurrent or subsequent infections Oouin, Rogier et a1. 

2001). In this study, antibodies were tested to a panel of overlapping 15-mer peptides 

(n=82), including allelic variants of MSP-1 block 2 Oouin, Rogier et a1. 2001), and notto 

recombinant E. coli expressed antigens, as in our study. 

Most studies in which both information on the infecting parasite genotype and 

corresponding allele-specific antibodies is available, have analyzed genotype-antibody 

relationships in concurrent samples (Da Silveira, Dorta et a1. 1999; Tami, Grundmann et a1. 

2002; Kanunfre, Leoratti et a1. 2003; Kimbi, Tetteh et a1. 2004; Polley, Conway et a1. 2006; 

Osier, Polley et a1. 2007), or in acute-convalescent pairs of samples (Weisman, Wang et a1. 

2001; Ekala, louin et a1. 2002; Ekala, louin et a1. 2002), with mixed results. In general, it 

appears that at a population level, the prevalence of allele-specific antibodies reflects the 

genetic allele-frequencies of the parasites in that population (Da Silveira, Dorta et al. 1999; 

Tami, Grundmann et a1. 2002; Kanunfre, Leoratti et al. 2003; Osier, Polley et a1. 2007) and 

this is most readily observed in areas of comparatively low malaria endemicity, such as 

Venezuela (Tami, Grundmann et a1. 2002) and Brazil (Kanunfre, Leoratti et a1. 2003). At an 
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individual level, concordant genotype-antibody relationships seem to be more readily 

detected in areas with lower (Cavanagh, Elhassan et a1. 1998; Tami, Grundmann et a1. 

2002), as opposed to those with higher malaria transmission (Polley, Conway et a1. 2006). 

Thus, in studies conducted with primary malaria infections in returned travellers, there 

was a strong, though not absolute, concordance between the infecting parasite genotype 

and the corresponding allele-specific antibodies (Felger, Steiger et a1. 2003; Eisen, Wang et 

a1. 2007). Other studies have failed to find relationships between the infecting parasite 

genotypes and the corresponding allele-specific antibodies at the individual level Oouin, 

Rogier et a!. 2001; Weisman, Wang et a!. 2001; Ekala, Jouin et a!. 2002; Ekala, Jouin et a!. 

2002; Osier, Polley et a!. 2007). In one study, the main determinant of the observed high 

prevalence of allele-specific antibodies appeared to be the high incidence of past infections, 

as opposed to the presence of, or genotypes contained within, current infections (Kimbi, 

Tetteh et a1. 2004). In our study, the levels of antibodies to MSP-2 and MSP-3largely 

reflected the allele-frequencies of parasites in the population at the time the acute and 

convalescence samples were collected, providing some evidence of the induction of allele-

specific antibodies following infection. This was particularly true for the corresponding 

. allelic types present at a lower frequency in this population. For the more common allelic 

types at these loci, such correlations are likely to be masked by a high incidence of previous 

.' 

infections with parasites bearing those alleles, as has been observed in the study from 

Cameroon (Kimbi, Tetteh et at 2004). 

The allele frequencies of the 3D7- and Kl-like alleles at the msp3locus were different to 

. 
those obtained approximately 5 years later in the same area (Osier, Polley et al. 2007), with 
. . . 
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a lower allele-frequency of K1-like types observed in the later study. Temporal variation in 

the distribution of alleles has also been observed at the mspl block 2 locus in isolates from 

the Brazilian Amazon, taken nearly ten years apart (Da Silveira, Dorta et a!. 1999). This may 

not be surprising, as high recombination rates have been reported for natural populations 

of P. Jalciparum, particularly in areas of high malaria endemicity (Conway, Roper et a!. 

1999), and for msp-l in particular, recent studies show that frequent recombination events 

generate novel alleles in high transmission areas (Tanabe, Sakihama et a!. 2007; Tanabe, 

Sakihama et a!. 2007). It is not clear whether recombination would similarly contribute to 

the altered allele frequency at the msp-310cus, or whether there is some other explanation. 

A limitation of our study was the inability to determine the dominant parasite clone. This 

relates to the peR method of genotyping, which is semi-quantitative, with the intensity of 

the band on the gel (PCR product) approximately correlating with the amount of starting 

parasite DNA. This ability of PCR to be semi-quantitative is generally lost when nested PCRs 

are performed, as in our study (Contamin, Fandeur et a!. 1995; Contamin, Fandeur et a!. 

1996; Mercereau-Puijalon 1996). As such, in mixed infections, we were not able to 

determine which parasite clone was dominant, and thus more likely to be causally 

responsible for the observed clinical episode. 

Overall the most striking result from our studies is the apparent absence of evidence for 

allele specific protection for antibodies directed against several candidate vaccine antigens 

despite the fact that overall responses to at least two of these antigens (MSP-2, MSP-3) 

were shown in same population to be strongly protective against malaria. It is noteworthy 

258 



that we have previously shown that the protective effect of these antigen specific responses 

did not depend on the allelic form of the antigen used to measure the responses. This in 

itself is not, of course, evidence against the importance of allele specific protection because 

responses to one allelic form are highly correlated with another due to sharing of 

conserved sequences. Thus in a situation where individuals have experienced several 

infections with parasites bearing different allelic versions of a key antigen, the individual 

may have high titres of antibody detected against any variant but protection in anyone 

instance may still be due to allele specific effects not detectable at the gross level of amount 

of antibody. Such effects could only be detected if one had a functional assay directly 

related to the mechanism of protection. However, it is perhaps more surprising that in 

individuals with high titre antibodies to a given allele, there was no evidence of differential 

protection against parasites bearing the homologous allele. This is in marked contrast to 

the situation in relation to antibody responses to variant surface antigens on the infected 

red cell surface (Bull and Marsh 2002). One possible interpretation is that allele diversity is 

not in fact driven by immune pressure but by other functional differences. However there 

is no evidence for this and perhaps more likely is the possibility that the differential 

protection necessary to drive diversity need only be marginal and could not be detected in 

this kind of study. If this were the case it might carry a hopeful message for vaccine 

development in that diversity may not in practice be as limiting as usually assumed. 
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7 HAPLOTYPES OF AMAl AND CLINICAL PHENOTYPES 

7.1 INTRODUCTION 

The severity of a clinical episode of malaria in an individual child is determined by a 

complex interplay of multiple factors, including those specific to the host, the parasite, as 

well as environmental factors (Marsh 1992). With regards to the parasite factors, there is 

conflicting evidence that specific allelic types of various merozoite antigens, including MSP-

1, MSP-2 and AMA-1 are found more commonly amongst individuals with more severe 

clinical manisfestations of malaria compared to those with milder presentations of malaria 

(Engelbrecht, Felger et al. 1995; Robert, Ntoumi et al. 1996; Kun, Schmidt-Ott et aI. 1998; 

Ofosu-Okyere, Mackinnon et al. 2001; Cortes, Mellombo et al. 2004). For some antigens, 

such as MSP-1 or MSP-2, allelic variants can usually be classified into between two and four 

major allelic types or families. For AMA1, the situation is not as straight-forward, as alleles 

of AMA1 do not cluster into major allelic types, making it difficult to assess the question 

whether specific alleles of AMA1 are over-represented amongst different clinical 

phenotypes of malaria. 'Haplotypes' of AMA1 can be defined at multiple levels including, 

the entire ectodomain sequence (Polley and Conway 2001; Polley, Chokejindachai et al. 

2003), sub-domain sequences (I, II, or III) (Cortes, Mellombo et aI. 2003; Garg, Alam et al. 

2007), clusters of antibody (Dutta, Lee et a!. 2007) or T-cell (Lal, Hughes et al. 1996) 

epitopes, and even as polymorphic residues at single amino acid positions (Cortes, 

Mellombo et a1. 2003). 
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In a study from Papua New Guinea, Cortes et al. compared the frequency of particular 

amino acids at specific sites within domain I, in symptomatic and asymptomatic infections, 

and found a strong imbalance, with particular residues being over-represented in alleles 

from the former, compared to those from the latter, particularly in children less than 10 

years old (Cortes, Mellombo et al. 2003). More recently, Dutta et al. analyzed the 

contribution of 24 polymorphic sites across the three sub-domains of AMA1 to invasion

inhibition, and defined specific clusters of residues that had the highest inhibitory 

contribution (Dutta, Lee et al. 2007). They hypothesized that the polymorphic sites within 

these inhibitory epitopes functioned as antigenic escape residues (AER) and proposed the 

genotyping of high impact AER as a means of monitoring the allelic effects of AMA1 

vaccines (Dutta, Lee et al. 2007). In this work, I have explored multiple definitions of AMA1 

haplotypes in isolates collected from children presenting with severe or mild malaria, and 

tested whether any of these definitions distinguished these two groups of children. I have 

also attempted to correlate antibody reactivity as detected by ELISA to sequence 

differences between AMA1 alleles in infecting parasite isolates and three AMA1 allelic 

antigens. 

7.2 SPECIFIC AIMS 

1. To genotype parasites from single clone infections at the AMA110cus using three 

definitions of haplotypes, and explore whether particular haplotypes were more 

commonly found in children experiencing more severe malaria compared to those 

with mild malaria. Haplotypes were defined as follows: i) haplotypes of the entire 
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ectodomain sequences, ii) haplotypes of the three sub-domains, individually, 

iii)haplotypes of two high impact AER as described by Dutta et al. (Dutta, Lee et a!. 

2007) 

2. To determine whether antigenic differences in parasite AMA1 alleles in individual 

infections correlated with allele-specific antibody reactivity in the individuals as 

detected by ELISA. 

7.3 METHODS 

A detailed description of the methods has been given in the main chapter on 'Materials and 

Methods'. Key points are mentioned again here very briefly. 

7.3.1 STUDY POPULATION 

The children recruited into the case-control study have already been described (Section 

3.2.1.2). Severe malaria was defined as malaria severe enough to warrant hospital 

admission. Mild malaria was defined as fever and a parasitaemia of> 2500/111. Antibody 

data are presented for assays performed on the serum sample stored from the cross

sectional survey at the beginning of the malaria transmission season in May 1995 (pre

season sample), and for children presenting to hospital at the time of the acute episode 

(acute sample) and three weeks later (convalescence sample). The entire ectodomain of 

AMAl was sequenced from parasite isolates drawn from children presenting to hospital 

with mild or severe malaria. 
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7.3.1.1 Sequence analysis 

A total of 158 DNA samples out of 184 detected clinical episodes were amplified by PCR 

and sequenced, and contiguous AMA1 sequences spanning the ectodomain were aligned 

using MegAUgn software (DNASTAR lasergene 7). Sequence data were analyzed only from 

samples in which it was clear from the electropherogram that they contained a single 

parasite clone, or one clear dominant clone, judged visually by the magnitude of individual 

peaks at points of conflict on the sequence trace. 

7.3.1.1.1 Haplotype analyses 

Entire ectodomain and sub-domain (domains I, II and III) haplotypes were defined in 

MegAUgn software (DNASTAR lasergene 7), using the sequence positions previously 

described by Hodder et al. (Hodder, Crewther et at 1996). AER were similarly defined in 

MegAlign software (DNASTAR lasergene 7), and included the non-variant amino acids 

between the polymorphic residues described by Dutta et al. (Dutta, Lee et al. 2007). 

Phylogenetic trees were used to visualize the distribution ofhaplotypes between children 

with mild or severe malaria, and were constructed using MEGA version 4 software 

(Tamura, Dudley et al. 2007). The MEGA software employs the Neighbor-Joining tree

building method (Saitou and Nei 1987). Distinct haplotypes based on the three definitions 

were identified using DnaSP version 4.5 (Rozas and Rozas 1995). 

7.3.1.1.2 Sequence distance analyses 

Sequence distances were computed in a pair-wise fashion between each AMAl allele 

obtained from patient samples, and those of the 3D7, HB3 and FVO AMA1 alleles for which 
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antibody assays were performed. Distance was calculated as number of nucleotide 

differences between pairs of AMAl alleles using a combination of sequence alignment 

software programs, including MegAlign software (DNASTAR), DnaSP version 4.5 (Rozas 

and Rozas 1995) and Bioedit (Hall 1999). Pair-wise correlations between number of 

nucleotide differences and antibody reactivity (ELISA 00) to the corresponding AMAl 

allele were then analyzed for each of the AMAl alleles assayed in standard statistical 

packages. 

7.3.2 SEQUENCING RESULTS 

Samples were processed as shown in Figure 7.3.1 below. High quality sequence data 

were obtained for 151/158 DNA samples. Of these, 58 (38%) samples contained more 

than one clone, whereas 93 (62%) samples contained single clone infections. For the 

analyses presented below, only samples from the first clinical episode of either severe (n = 

39, single clone infections (n=38) plus a clear dominant clone in a mixed infection (n=1)) or 

mild (n = 46, single clone infections (n=42) plus a clear dominant clone in mixed infections 

(n=4)) malaria were included. 
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158 I 
.. Contigs failed to assemble (2) I Poor quality DNA (2) 

154 I 
Poor quality sequence trace (3) I 

151 J 

First episode (133) I I Repeat episodes (18) 

I Severe malaria (64) I I Mild malaria (69) I 
I 

J i i J i i 
Single > 1 clone Single > 1 clone Single > 1 clone 
clones (38) (26) clones (42) (27) clones (13) (5) 

, 
i ~ ~ ~ ~ J 

Dominant Nodom. Dominant Nodom. Dominant Nodom. 
clone (1~ clone (25) clone (4) clone (23) clone (4) clone (21) 

Figure 7.3.1 Results of sequencing In the case-control study 

Numbers indicate the number of samples at each stage. Dominant clones were defined by 

visual assessment of individual peaks on the electropherograms. 
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7.3.3 COMPARING AMAl HAPLOTYPES BETWEEN SEVERE AND MILD MALARIA 

7.3.3.1 Haplotypes spanning the entire ectodomain 

A total of 57 distinct haplotypes (H) were identified from a total of 85 AMAl alleles, 

including 39 from children with severe malaria, and 46 from those with mild malaria. The 

number ofhaplotypes observed in children with severe malaria (H = 33) was similar to that 

observed in those with mild malaria (H = 32). The average pair-wise nucleotide diversity 

per site (Tt) for all 85 alleles was 0.01641, and was similar for alleles from the samples of 

children with severe or mild malaria, as shown in Figure 7.3.2, below. There were 71 

polymorphic sites across the entire ectodomain and a total of 79 mutations. Eight sites had 

multiple alleles. There were no fixed differences at any of the polymorphic sites between 

the two populations (ie no nucleotide sites at which all the sequences from children with 

severe malaria were different from those from children with mild malaria). Sixty five 

mutations were shared between samples from both severe and mild malaria. A 

dendrogram was constructed to visualize the distribution of distinct haplotypes between 

children with severe or mild malaria. Figure 7.3.3 shows that there was no clustering of 

given alleles of AMAl within either group of children. 
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Figure 7.3.2 Average pair-wise nucleotide diversity per site 

Average pair-wise nucleotide diversity per site (rr) for AMA1 alleles sequenced from 

children with mild (Pi1) and severe (Pi2) malaria. 
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Figure 7.3.3 Cluster dendrogram of AMAl alleles 

• • • 

• Mild malaria 

• Severe malaria 

Cluster dendrogram of sequence dissimilarity of AMAl alleles sequenced from children 

with severe and mild malaria. No clustering of haplotypes within either group of children 

was observed. 
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7.3.3.2 Haplotypes defined at the sub-domain level 

Table 7.3.1 shows the distribution ofhaplotypes within the three sub-domains of AMA1 in 

isolates sequenced from children with severe or mild malaria. For each sub-domain, the 

number of distinct haplotypes was comparable in sequences from severe and mild malaria. 

The distribution of distinct haplotypes for each domain, among children with severe, or 

mild malaria, are displayed in Figure 7.3.4. 

Table 7.3.1 Distribution ofhaplotypes among sub-domains of AMAI 

Sub-domains Haplotypes Haplotypes Haplotypes 
Total (n =8S) Severe (n=39) Mild (n=46) 

DI 47 27 37 

DII 22 15 18 

DIll 15 13 11 
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Figure 7.3.4 Cluster dendrograms of domain I, II and III baplotypes 
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Cluster dendrograms ofhaplotypes of AMA1 alleles from children with severe or mild 

malaria. Figures are a) domain I, b) domain II, c) domain III. In all three domains, the 

majority ofhaplotypes are equally distributed among children with either severe or mild 

malaria. 

7.3.3.3 Haplotypes defined as Antigenic Escape Residues (AER) 

Two regions of high impact AER as described by Dutta et al. were identified and AMA1 

alleles genotyped at these sites (Dutta, Lee et al. 2007). The first high impact AER region 

lies within domain I and is referred to as C1-L, while the second lies within domain 2 and is 

referred to as D2. A total of 17 C1-L haplotypes were defined, 15 being present in samples 

from children with severe malaria, and 14 being found in samples from children with mild 

malaria. For D2, a total of 19 distinct haplotypes were identified, 13 being from children 

with severe malaria, and 17 from those with mild malaria. As previously, dendrograms 

were used to visualize the sequence distances among alleles genotyped at the high impact 

AER, for children with severe or mild malaria. Figure 7.3.S shows that both high impact 

AER are equally distributed among children with severe or mild malaria, with no evidence 

of clustering. 
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• 

Figure 7.3.5 Cluster dendrograms ofCl -L and D2 haplotypes 

Cluster dendrograms of a) Cl-L and b) D2 (AER) haplotypes of AMAl alleles from children 

with severe and mild malaria. For both AER the majority of haplotypes are equally 

distributed among children with either severe or mild malaria. 
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7.3.4 GENETIC DISTANCE AND STRENGTH OF ANTI-AMAt ALLELE-SPECIFIC RESPONSE 

Antibody reactivity in the preseason, acute and convalescence samples was analyzed in 

relation to the AMAI sequences of the infecting parasite isolates associated with the 

clinical episodes. Sequence distances (similarity) were computed in a pair-wise fashion 

between each AMAI allele obtained from patient samples, and those of the 3D7, HB3 and 

FVO AMAI alleles. Correlations between number of nucleotide differences and antibody 

reactivity (ELISA OD) are shown for the 85 samples for which this paired data was 

available, at three time points. For all alleles tested, at all time points, there was no 

correlation between number of nucleotide differences and antibody reactivity as detected 

by ELISA, Figure 7.3.6. 
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Figure 7.3.6 Correlations between antigenic differences and antibody reactivity 
detected by ELISA 

7.4 DISCUSSION 

Unlike other merozoite antigens thought to have a role in invasion of erythrocytes (such as 

MSP-l, MSP-2 and MSP-3), and coded by single locus genes, alleles of AMAl do not group 

into major families or types. To determine whether particular alleles of AMAl were 
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commonly found in children experiencing more severe presentations of malaria, compared 

to those with mild malaria, I defined 'haplotypes' of AMA1, based on sequences from the 

entire ectodomain, the sub-domains, and the recently described AERs (Dutta, Lee et a!. 

2007). Using these definitions, I found no evidence of a clustering of haplotypes within 

either disease phenotype, with the majority ofhaplotypes being evenly distributed among 

children with either severe, or mild malaria. 

Previous studies have compared the prevalence of parasites bearing specific allelic types of 

MSP-2 and MSP-1 block 2, in different categories of malaria, with mixed results. In a case

control study from Papua New Guinea (n=227), children presenting to hospital with 

symptomatic malaria were more likely than those with asymptomatic infections in the 

community, to have parasites bearing FC-27-like alleles at the msp2locus (Engelbrecht, 

Felger et a!. 1995). Similar findings had been previously reported from a longitudinal study 

in Ghana, where children developing symptomatic malaria were more likely than those 

with asymptomatic infections to have parasites bearing FC-27-like msp-2 alleles (Ofosu

Okyere, Mackinnon et a!. 2001). However, in a separate case-control study conducted in 

Gabon where 100 children presenting to hospital with severe malaria were matched to 

those presenting with mild malaria (n = 100), no difference in the distribution of msp-2 

alleles between the two groups of children was found (Kun, Schmidt-Ott et a!. 1998). 

Likewise, no differences in the distribution of msp-2 alleles were found among severe 

malaria patients (n = 56) admitted to hospital in Dakar, compared to those presenting at 

the same hospital with mild malaria (n=30) (Robert, Ntoumi et a!. 1996), or, between 

symptomatic (n=63) and asymptomatic (n= 306) infections in a cross-sectional survey in 
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Papua New Guinea (Cortes. Mellombo et al. 2004). In a small study (n =34). where children 

with asymptomatic parasitaemias were monitored daily for 31 days, the development of 

clinical symptoms was associated with parasites bearing the alternative IC1-like allele of 

msp-2(Magesa, Mdira et al. 2002). 

The situation is no clearer for alleles at the MSP-1 block 2 locus, where no single allele has 

been consistently associated with a specific disease phenotype. albeit in small studies (Kun. 

Schmidt-Ott et al. 1998; Ariey, Hommel et aI. 2001; Ofosu-Okyere, Mackinnon et al. 2001; 

Magesa, Mdira et aI. 2002; Legrand. Volney et al. 2005). For reasons already alluded to, this 

kind of analysis is challenging for alleles of AMA1. Cortes and colleagues attempted to 

address these difficulties by comparing the frequency of particular amino acids at specific 

sites within domain I. in symptomatic and asymptomatic infections (Cortes, Mellombo et al. 

2003). They found a strong imbalance, with particular residues being over-represented in 

alleles from symptomatic, compared to those with asymptomatic infections, particularly in 

children less than 10 years old (Cortes, Mellombo et aI. 2003). One disadvantage of their 

approach however, is the large number of comparisons made, for each polymorphic site, 

with a consequent increase in type 1 errors, and, does not take into account any linkage 

that may be present between particular residues. Furthermore, they found that the 

diversity within the AMA110cus in their population from PNG was lower than that reported 

from Nigeria (Polley and Conway 2001). perhaps as a result of differences in malaria 

transmission. This analytical approach would probably be less robust in areas of high 

malaria transmission, where diversity within the amal locus is higher. 
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It was more difficult to assess protective allele-specific antibodies to AMA1 because alleles 

at this locus cannot be readily grouped into main allelic families or types. Vaccination 

studies in animal models of malaria indicate that allele-specific antibodies provide 

significantly better protection against challenge with parasites bearing homologous, as 

opposed to heterologous AMA1 alleles (Crewther, Matthew et al. 1996; Hodder, Crewther 

et al. 2001). However, such studies are usually conducted in 'naIve' animals, with no 

previous experience of malaria, and it is not clear how this would apply to individuals in 

malaria endemic areas, who will have been repeatedly exposed to many parasite 'strains'. 

In a phase I AMAl malaria vaccine trial conducted in Malian adults, immunization with two 

allelic versions of AMAl (307 and FVO) resulted in a significant boosting of pre-existing 

anti-AMAl antibodies, for both the vaccine alleles and a non-vaccine allele (AMA1-L32). 

However, these increases in antibody levels were not associated with significant changes in 

in vitro growth inhibition of P. Jalciparum (Dicko, Diemert et a!. 2007), and when the study 

was repeated in children from the same study site, the rise in antibodies (pre- to post

vaccination) was considerably lower than what had been observed in the adults (Dicko, 

Sagara et a!. 2008). 

In one study, antibodies against the 3D7 and FVO alleles of AMAI were raised in mice 

follOwing immunization with either or both of the alleles, and then tested in invasion

inhibition assays using a panel of five P. Jalciparum strains, bearing homologous and 

heterologous alleles. This not only showed that invasion-inhibition was more efficient with 

parasites bearing homologous, compared to heterologous AMA1 alleles, but also that in the 

heterologous assay, the magnitude of invasion-inhibiton correlated negatively with genetic 
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distance (number of amino acid differences between the immunizing AMAl allele and that 

tested in the heterologous invasion-inhibition assay) (Kennedy, Wang et al. 2002). This 

does not seem to be the case for antibodies detected by ELISA. In both acute and 

convalescence samples, similarity between the AMAl allele in the parasite causing the 

clinical episode, and the sequences of three alternative allelic versions of AMA1, did not 

correlate with antibody reactivity. However, the analysis of allele-specific antibodies to 

AMAl is not straight-forward. To detect antibodies to allele-specific epitopes in AMAl 

induced by infecting parasite isolates more definitively, one would have to clone and 

express AMAl antigens from each isolate. Even if this were achieved, it is unclear how 

many competition ELISAs (and with which AMAl antigens) would be required to dissect 

out antibodies to the allele-specific epitopes. Notably, antibodies to all three AMAl 

antigens were highly correlated, consistent with high sequence conservation observed in 

the greater part of the gene. Additionally, it is well-established that protective anti-AMAl 

antibodies are conformation-dependent, and therefore, direct site by site amino acid 

sequence comparisons are probably not ideal for this type of analysis. 
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8 STRINGENT PREDICTION AND TESTING OF SITES UNDER IMMUNE

MEDIATED BALANCING SELECTION IN APICAL MEROZOITE 

ANTIGEN 1 (AMA-l) 

8.1 INTRODUCTION 

Complete sequencing of the Plasmodium Jalciparum genome revealed the presence of at 

least 5500 genes, many of which could be potential targets for protective immunity. 

However, identifying which of these genes are important in this regard is daunting, and 

molecular population genetic tools provide one way of homing in on potential candidates, 

by detecting the presence of natural selection using the variants of a nucleotide sequence in 

a population. These variants, or polymorphisms, are likely to be maintained, because they 

confer a survival advantage. In the case of pathogenic organisms, the presence of variants 

within a gene suggests that the gene codes for a protein that is either a target of protective 

immunity, or, plays a role in evading immune responses. Proof of principle for a malaria 

antigen was first provided by work on merozoite surface protein-! (MSP-l). Population 

genetic analyses on allele -frequency distributions were applied to identify the region of 

MSP-l that appeared to be under the strongest selection to maintain alleles in the 

population, predicting that this would be an important target for protective immunity. 

Predictions were supported by a longitudinal study showing that antibodies to this region 

of MSP-l (block 2) were associated with protection from clinical episodes of malaria 

(Conway, Cavanagh et al. 2000). 
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For AMA1. it is clear from large population studies. that the locus is under strong balancing 

selection. which is most evident within sub-domains I and III (Polley and Conway 2001; 

Cortes. Mellombo et al. 2003; Polley. Chokejindachai et al. 2003). In this work. I have 

extended the previous findings. by finely mapping the precise sites within domains I and III 

of AMA1 that are under the strongest selection. in a sample of AMA1 alelles drawn from a 

Kenyan population. In a set of preliminary experiments conducted within the same 

population. I have demonstrated that these specific sites contain T-cell epitopes that are 

likely to be important in mediating protection. 

8.2 SPECIFIC AIMS 

1. To determine whether there is evidence of balancing selection maintaining 

polymorphisms within a population sample of AMA1 alleles from Kenya 

2. To use the Kenyan data in conjunction with similar population data from Nigeria 

and Thailand. in an attempt to map the precise sites under the strongest selection 

across three geographically distinct populations 

3. In preliminary experiments. to test the hypothesis that this selection is immune

mediated by testing whether these sites contain important T - and/or B- cell 

epitopes that may be important components of naturally-acquired immunity to 

clinical malaria 
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8.3 METHODS 

8.3.1 STUDY OUTLINE 

The study was conducted in several discrete steps. First, amal was sequenced from 

parasite isolates drawn from individuals recruited into the Chonyi cohort, from Kilifi, 

Kenya. These isolates were selected randomly from samples that contained parasites 

either at the time of the cross-sectional survey in October 2000, or when patients from the 

cohort subsequently presented to hospital with clinical malaria. Molecular population 

genetic analyses were then perfomed on AMAI alleles from the Kenyan population, to 

identify the region(s) of the gene under the strongest selection. Once these regions were 

identified, the data were combined with similar population data from Nigeria (Polley and 

Conway 2001) and Thailand (Polley, Chokejindachai et a1. 2003), to map the sites that were 

under the strongest selection across three geographically distinct populations. Antibody 

and cell-mediated immune responses to these sites were then tested in the Kenyan 

population. Antibody responses were tested using samples from the previously described 

Chonyi cohort. Cell-mediated responses were tested in a separate set of samples Ounju 

adults), drawn from adults living close to the Chonyi location, who had not been part of the 

orgininal cohort. These adults were specifically recruited for this part of the study, as PBMC 

were not available from the Chonyi cohort to test for T-cell responses. The Chonyi cohort 

and Junju adults have already been described in detail (see Materials and Methods). I first 

present and discuss the results of the molecular population genetic analyses and then 

describe the immunological assay results. 
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8.3.2 LABORATORY METHODS 

The PCR amplification and sequencing strategy for AMA1 has been detailed in the main 

'Materials and Methods' section (Chapter 3). 

8.4 RESULTS 

8.4.1 POPULATION GENETIC ANALYSES 

8.4.1.1 Sequence diversity 

A total of 83 parasite isolates were available for sequencing. Of these, 34 (40%) had mixed 

infections and were excluded from further analyses. Forty nine (49) contiguous AMA1 

alleles were thus obtained and included in the molecular population genetic analyses. 

Previously undescribed (when the sequencing was performed in 2005) polymorphisms 

were observed in ten of these samples, and sequencing was repeated from the initial PCR 

step to verify that these were not sequencing artefacts. The polymorphic nucleotides 

sequenced from 49 Kenyan alleles of the Plasmodium [alciparum ectodomain of AMA-l and 

their distribution within the three domains are shown in Figure 8.4.1. There were 66 

polymorphic sites, 39 occurred in domain I, 10 in domain II, and 7 in domain III. There 

were 36 distinct haplotypes across the entire ectodomain, 27 of which were unique, the 

rest being shared by at least two individuals (6,5, 2, 2, 2, 2). Within the sub-domains, the 

numbers ofhaplotypes observed were 31,15, and 10, for domains I,ll and III, respectively. 
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Polymorphic nucIeotides observed in the ectodomain of P. Ja/dparum AMA1 sequenced 

from a population sample of 49 Kenyan alleles. Ten samples; C56l, CIII, C843, C597, 

C239, C443, C754, C411, C098, and C687 contained new polymorphisms. 

8.4.1.2 Linkage disequilibrium and recombination 

Linkage disequilibrium was calculated for all parsimony-informative polymorphic sites in 

the data set (ie sites that have a minimum of two nucleotides that are present at least twice, 

n = 51). Figure 8.4.2 and Figure 8.4.3 show that for both indices, LD decreased rapidly 

with increasing nucleotide distance, indicating a high meiotic recombination rate. This was 

further confirmed by the tests for recombination, which are known to provide conservative 

estimates. A minimum number of 25 recombination events (RM) were predicted to have 

occurred to give rise to the 36 haplotypes that were observed in the sample of 49 AMAl 

alleles. The recombination parameter (C) was high at 0.0931 between adjacent sites, and 

122 for the whole sequence. 
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Figure 8.4.2 LD estimated by D' and distance between polymorphic sites 

LD as estimated by D' decreases with increasing distance between polymorphic nuc1eotides 

(measured in kilobases), indicating a high recombination rate. Dots represent the value of 

0' for pairs of polymorphic sites across the entire ectodomain. Red dots: p <0.05 by 

Fisher's exact test. D', linkage disequilibrium. Sign, significant by Fisher's exact test. 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

.. '. 

;+. • +. . '. r·· ,+ • + J ••• • •• : •• +.:. • .'.. +: •• 
t •• \... ~.... •• •• •• :. 
• .,..~. ·~l • • ": •• 

~~ ••• +. .. .. • + • • t .. ! · 

o 500 

. .. 
.{ •• ~ •• I. ;,...... .... 

1000 
Nucleotide distance 

o RA2 

o Sign 

+ • 
• +. 

1500 

285 



Figure 8.4.3 LD estimated by RZ and distance between polymorphic sites 

LD as estimated by R2 decreases with increasing distance between polymorphic 

nucleotides (measured in kilobases), indicating a high recombination rate. Dots represent 

the value of R2 for pairs of polymorphic sites across the entire ectodomain. Red dots: p 

<0.05 by Fisher's exact test R2, Linkage disequilibrium. Sign, significant by Fisher's exact 

test 

8.4.1.3 Tests of neutrality 

Tajima's D was estimated for the entire ectodomain and is illustrated in the sliding window 

plot, Figure 8.4.4). It was also determined separately for each of the three domains, as 

were Fu and Li's D and F (Table 8.4.1). From both these tests, the most striking result is 

the strong signature of balancing selection detected in domain III from the Kenyan data. A 

strong signal of selection was also seen in domain I with positive values of Tajima's D, and 

Fu and Li's D and F, but this did not reach statistical significance. 
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Figure 8.4.4 Sliding window plot of Tajima's D 

Large positive values of D indicate the presence of balancing selection acting to maintain 

alleles at intermediate frequencies in the population. 
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Table 8.4.1 Tajima's D, and Fu & U's D and F for amal 

Segregating Tajima'sD Fu & Ll'sD Fu &U'sF 
sites 

Full ectodomain 66(74) 0.99286 0.39992 0.71435 

Domain I 39(45) 0.75067 0.32391 0.51692 

Domain II 10(10) 0.51416 0.01287 0.11648 

Domain III 7(7) 2.69580** 1.27840 2.06127*** 

Tajima's D, and Fu & Li's D and F (with an outgroup) for the entire amal ectodomain, and 

separately for Domains I, II and III. **p <0.01, *** P <0.05 

8.4.1.4 Coalescent simulations 

To determine the effect that high levels of recombination would have on the estimates of 

departure from neutrality in comparison with those observed, 10,000 coalescent 

simulations for Tajima's D were computed, Table 8.4.2. Observed estimates that did not 

fall within the confidence limits were considered statistically significant (p <0.05). For 

domain III, allowing for the minimum number of recombination events (RM), the observed 

value of Tajima's D is far higher than the 95% upper limit of the expected. Similar results 

are obtained when free recombination (maximum theoretical value of the recombination 

parameter) is computed, Table 8.4.2. 
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Table 8.4.2 Coalescent simulations for Tajima's D at varying levels of recombination 

Tajima'sD Ectodomain Domain I Domain II Domain III 

Observed 0.992* 0.75067 0.51416 2.6958** 

C = 0 (95% CI) -1.60 to 1.80 -1.67 to 1.81 -1.69 to 1.89 -1.71 to 1.91* 

C = 25 (95% CI) -1.0S to 0.98* -1.09 to 1.05 -1.38 to 1.49 -1.S0 to 1.69* 

Free 
recombination -0.60 to 0.62* -0.74 to 0.76 -1.28 to 1.32 -1.39 to 1.47* 

(95%CI1 

Coalescent simulations for Tajima's D allowing for variable rates of recombination. Ten 

thousand coalescent simulations were computed. Upper and lower limits (95% confidence 

interval) of the expected values are shown. For Domain III, the observed value of Tajima's D 

considerably exceeds that expected under neutrality, even allowing for free recombination. 

**p <0.01. 

8.4.1.5 Non-synonymous /synonymous (dN/dS) ratios 

The dN/dS rations were compared among fixed differences within and between P. 

Jalciparum and P. reichenowi. As shown in the Table 8.4.3, there is an excess of 

replacement polymorphisms within P.falciparum, with 98% of polymorph isms within P. 

falciparum being non-synonymous, compared with 65% of fixed differences between the 

two species, p = 0.000015, Fisher's exact (two tailed test). 
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Table 8.4.3 McDonald and Kreibnan test between and within species 

Fixed differences between Polymorphisms within P. 
species /alciparum 

Synonymous 11 1 

Non-synonymous 21 62 

McDonald and Kreitman 2 x 2 table comparing the dN/dS ratio between and within species. 

Plasmodium reichenowi was used as the outgroup for P. Jalciparum. An excess of non-

synonymous mutations was found within isolates of P.Jalciparum. Fisher's exact (two-

tailed test) P = 0.000015. 

8.4.1.6 Radical amino acid substitutions 

The proportions of radical to conservative amino acid substitutions across the ectodomain 

were compared. As shown in Table 8.4.4, significantly more polymorphisms within P. 

Jalciparum (71 %) resulted in radical amino acid changes, compared to fixed differences 

(38%) between P.Jalciparum and P. reichenowi, p = 0.02, Fisher's exact (two tailed) t test. 
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Table 8.4.4 Radical and conserved amino acid changes within and between species 

Fixed differences between Polymorphisms within P. 
species /aJdparum 

Radical 11 32 

Conservative 15 13 

Radical (altered amino acid charge), versus conservative amino acid replacements were 

compared within and between species. Plasmodium reichenowi was used as the outgroup 

for P.falciparum. Significantly more substitutions within P.falciparum were radical, 

compared to fixed replacements between species, p = 0.02, Fisher's exact (two-tailed test). 

8.4.1.7 Inter-population diversity 

Wright's Fsr index was calculated for pairwise comparisons between the three populations 

using a stringent criterion that only included polymorphic sites that had a minor allele 

frequency of>0.15 across three populations. Table 8.4.5 below shows the average FST 

index across the entire ectodomain in pair-wise comparisons of the three populations. For 

all pair-wise comparisons, interpopulation divergence accounts for less than 5% of total 

nucleotide diversity (highest Fsr = 0.041). Very low Fsr values indicate that balancing 

selection is maintaining similar allele frequencies between populations. Figure 8.4.5 shows 

• 
a site by site Fsr analysis, and reveals that the FST index was particularly low at specific sites 

compared to others, raising the possibility that these are functionally important sites. 

'. 
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Table 8.4.S Pair-wise comparisons of Wrights F~ index across three geographically 
distinct populations 

Pair-wise F~ Lower Upper Lower Upper 
comparisons (average) 95%CI 95%CI 99%CI 990/0CI 

Kenya vs Nigeria 0.025 0.013 0.038 0.01 0.042 

Thailand vs Kenya 0.041 0.02 0.067 0.014 0.077 

Thailand vs Nigeria 0.036 0.015 0.06 0.009 0.068 

Mean overall 0.034 0.021 0.049 0.017 0.054 

The average FST across the entire ectodomain in all comparisons was low, indicating that 

population divergence accounted for a small proportion «5%) of the observed nucleotide 

diversity. 
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Figure 8.4.5 Site-by-site pair-wise comparisons of Wrights FST index across three 
geographically distinct populations 

The FST index was particularly low at specific sites compared to others. TN: Thailand vs 

Nigeria, TK: Thailand vs Kenya, KN: Kenya vs Nigeria 

8.4.2 DISCUSSION: POPULATION GENETIC ANALYSES AMAl 

This study provides further evidence that AMAl is under strong balancing selection, as 

shown by the results of the tests of neutrality, the McDonald and Kreitman test, the 

preponderance of radical versus conserved amino acid changes, and the limited inter-

population diversity observed when three geographically distinct populations were 

analyzed. These findings are in agreement with those of other similar studies, where 
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alleles of AMAl were sampled from large population samples in Nigeria (Polley and 

Conway 2001), Thailand (Polley, Chokejindachai et al. 2003), Papua New Guinea (Cortes, 

Mellombo et al. 2003) and India (Garg, Alam et al. 2007), though the latter two studies 

concentrated on polymorphisms within domain I. 

Sequence diversity across the entire ectodomain was lower than that observed in a 

Nigerian population, but higher than that observed in Thailand (Polley and Conway 2001; 

Polley, Chokejindachai et al. 2003). In Kenya, 36 distinct haplotypes were observed among 

49 isolates (73%), compared to 45/51(88%) in Nigeria, and 27/50 (54%) in Thailand, and 

may reflect differences in malaria transmission intensity in the three areas. This idea is 

supported when the haplotypes within domain I are considered, with a higher proportion 

of haplotypes observed from populations in Africa (Kenya 63%, Nigeria 68% (Polley and 

Conway 2001)), compared to those from either India (36%) (Garg, Alam et al. 2007), 

Thailand (36%)(Polley, Chokejindachai et al. 2003), or Papua New Guinea (16%) (Cortes, 

Mellombo et al. 2003). As has been shown in other studies on AMAl (Polley and Conway 

2001; Polley, Chokejindachai et al. 2003), and on MSP-l (Conway, Roper et al. 1999), 

linkage disequilibrium decreased with increasing distance between polymorphic 

nucleotides, reflecting the high recombination rate within natural populations of P. 

Jalciparum. 

The results of both Tajima's (Tajima's D) and Fu and Li's (Fu and Li's F) tests, and the 

coalescent simulations based on these tests, indicate a strong signature of balancing 

selection within domain III in the Kenyan population studied here, as has been previously 

reported in the studies from Nigeria (Polley and Conway 2001) and Thailand (Polley, 
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Chokejindachai et al. 2003). This is despite the fact that in the Kenyan samples, domain III 

. had considerably fewer polymorphisms ( 7), than either domain II (10) or domain I (39), 

which would be expected to limit the the power of the analyses. These findings are further 

strengthened by the test of between population diversity (Wrights Fsr). A site-by-site 

analysis of Fsr using data from all three populations indicated specific sites at which the FST 

was particularly low «0.1), highlighting these sites as potential targets of protective 

immunity. However, in spite of all this evidence in support of domain III as being under 

strong balancing selection, to-date, the evidence that it is an important antibody target is 

conflicting, and it remains possible that the observed variation is in T-cell epitopes. 

Two studies have reported that domain III is an important target of invasion inhibitory 

antibodies. Nair and colleagues affinity purified human antibodies from Papua New Guinea 

on refolded recombinant domain III (P.falciparum 3D7 strain) and found that these 

antibodies inhibited invasion in an allele-specific manner, being more effective against 3D7 

as compared to HB3 parasites (Nair, Hinds et al. 2002). However they do not indicate what 

proportion of sera had high titre antibodies to domain III, or, had invasion-inbitory 

capacity (Nair, Hinds et al. 2002). In a separate study, Mueller and colleagues elicited 

antibodies that were capable of inhibiting parasite growth by immunizing mice with a long 

synthetic peptide from domain III Ooop 1) in a virosomal formulation (Mueller, Renard et 

al. 2003). Although loop I of domain III is semi-conserved, and therefore an attractive 

vaccine candidate, they did not report whether the observed invasion-inhibition appeared 

to be allele-specific (Mueller, Renard et al. 2003). 
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Other data on the importance of antibodies to domain III of AMA1 have been less 

convincing. In the first report of AMA1 sub-domain constructs, polyc1onal antibodies were 

raised in rabbits against the entire ectodomain, and then tested for binding to single, or 

double sub-domains (Lalitha, Ware et a!. 2004). In contrast to sub-domains I and II, sub

domain III was poorly recognized by these antibodies. However, although domain III 

specific antibodies (singly and in combination with either domain I or II). did not have a 

major contribution to growth-inhibition, optimal inhibition was achieved with antibodies 

raised to the entire ectodomain, as compared to the combination of domains I and II 

(Lalitha, Ware et a!. 2004). These findings suggested that domain III, in the context of 

immunization with the whole protein, nevertheless had a subtle influence on the 

generation of functional antibodies. In the first immuno-epidemiological study using sub

domain AMAl constructs in humans, antibodies to domain III were rare with a prevalence 

of between 0.7% and 1.3% in the two populations studied (Polley, Mwangi et al. 2004). 

However, in the same study, antibody reactivity to the full ectodomain was higher than that 

to the combination of domains I and II, again indicating that some antibody epitopes were 

present in domain III, and that these were perhaps not optimally captured in the domain III 

construct (Po]]ey, Mwangi et al. 2004). Moreover, although antibodies to the domain III 

were rarely detected, antibody reactivity to the combination of domains II and III was in 

some cases higher than that to domain II on its own, suggesting a contribution from 

epitopes within domain III (Polley, Mwangi et a!. 2004). In a separate study in Papua New 

Guinea, antibodies appeared to be more commonly directed against epitopes in domain I, 

than to those in either domain II, or III (Cortes, Mellombo et a!. 2005). In this study by 

Cortes et al.J difficulties in expressing a properly refolded domain I construct precluded a 
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more direct comparison of antibodies to the three separate domains (Cortes, Mellombo et 

al. 2005). An important consideration is the fact that protective antibodies to AMA1 have 

been shown to be conformation-dependent (Crewther, Matthew et al. 1996; Anders, 

Crewther et a1.1998; Hodder, Crewther et al. 2001), and as such important antibody 

epitopes may require the contribution of all three domains. Nevertheless, taken together, 

the evidence that protective immunity is mediated by antibodies to domain III of AMA1 is 

not particularly strong. 

The strong signature of selection observed in domain III could be a result of protective T

cell driven immunity. To-date, only two studies have examined T-cell responses to AMA1 

in malaria endemic communities (Lal, Hughes et al. 1996; Udhayakumar, Kariuki et al. 

2001). Lal and colleagues used a computer algorithm to predict putative T-cell epitopes 

which spanned the entire ectodomain, and tested whether these peptides were able to 

induce T-cell proliferation in clinically immune adults in western Kenya, and identified at 

least 9 T-cell epitopes (Lal, Hughes et al. 1996). Subsequently, a longitudinal study 

conducted in the same area of Kenya, using the same peptides, found overall that T-cell 

responses (measured by lymphoproliferation assays) were short-lived, not being 

detectable after a 3-month interval, and that lympho-proliferative responses to one peptide 

(PL191, which lies within domain I) out of eight tested, was associated with a lower risk of 

parasitaemia at subsequent follow up (Udhayakumar, Kariuki et al. 2001). 

In the second part of this study I therefore performed preliminary work to test the 

hypothesis that this strong signature of balancing selection detected in domain III in the 

Kenyan population was driven by T-cell dependent immune responses rather than humoral 
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immunity. I first began by doing competition assays with sub-domain AMAl constructs in 

an attempt to dissect out any previously undetected antibodies to domain III. I then 

designed synthetiC overlapping peptides spanning domain III, and tested these in ex-vivo T-

cell ELISPOT assays for IFN-y and IL-2. 

8.5 ANTIBODY RESPONSES TO DOMAIN III 

8.5.1 OBJECTIVES 

To determine whether antibodies to domain III of AMAl contributed significantly to the 

relatively high antibody reactivity to the combination of domains II and III, previously 

observed in the Chonyi cohort. 

8.5.2 METHODS 

Competition ELISAs were used to dissect out antibody reactivity to domain III of AMAl in 

specific sera. The presence of antibody reactivity to a panel of 8 AMAl antigens had been 

previously established within the Chonyi cohort (Polley, Mwangi et al. 2004). This panel 

included a range of sub-domain constructs, including three containing separately, domains 

II-III (pf9mH, DII-III), domain II (pfBmH, DII), and domain III (pflOmH, DIII)(Polley, 

Mwangi et al. 2004). The design of the experiment was limited by the availability ofthe 
I 

recombinant sub-domain constructs. Sera that had detectable antibody to either Oil-III or 

DIll were identified and 3 sets of competition ELISAs were performed as follows to detect 

antibody reactivity attributable to epitopes within domain III: 

i. Samples that were positive for both DII-DIII and DIll (n = 6) 
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a. ELISA plates were coated with OIl-III and increasing amounts of DIll were 

used in competition. Any reactivity detected in this fashion would be 

primarily due to epitopes within domain II as opposed to those in domain III. 

Lack of reactivity would indicate that antibodies were directed solely against 

. epitopes in domain III, with no contribution from domain II. 

ii. Samples where the measured reactivity to OIl-III was higher than that against 011 by 

>0.200 units (n =11) 

a. ELISA plates were coated with OIl-III and increasing amounts of 011 were 

used in competition. Any reactivity detected in this fashion would be due to 

epitopes within domain III as opposed to domain II. 

iii. Samples where the reactivity for OIl-III was high (this selection was limited by 

antigen amounts to sera with 00 >1.7, n= 25) 

a. ELISA plates were coated with OIl-III (SOng/100ul) and sera pre-incubated 

with an excess of DIll (1000ng/100ul) as the competing antigen. Any 

decrease in 00 would be due to epitopes within domain III. 

8.6 CELLULAR RESPONSES TO DOMAIN III 

8.6.1 OBJECTIVES 

8.6.1.1 Preliminary objectives 

To determine whether any T-cell epitopes could be identified within domain III of AMA1 in 

semi-immune adults in Kenya 
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8.6.2 METHODS 

8.6.2.1 Peptide design 

Overlapping peptides spanning polymorphic and conserved regions of domain III were 

designed as described below. The predicted amino acid sequence of domain III of AMA1 

from one Kenyan isolate is shown in 

Figure 8.6.1. A schematic ofthe amino acid sequence illustrates the overlapping peptide 

(17-20 mer) strategy Figure 8.6.2. Figure 8.6.3 shows the between population divergence 

(Wright's fixation index, FST) at the corresponding loci. The frequencies of the potential 

peptide haplotypes at each polymorphic site of domain III among the Kenyan isolates is 

shown Table 8.6.1. At each polymorphic locus, the two most common haplotypes in the 

Kenyan population were selected for the design of synthetic peptides. 

CSLYKNEIMKEIERESKRIKLND NDDEGNKKIIAPRIFISDDKDSLKCPC IlPEMVSNSTCBFFVCKC 

Figure 8.6.1 Domain III sequence from one Kenyan Isolate 

Polymorphic sites occurring at a frequency of >0.15 in three populations (Kenya, Nigeria 

and Thailand) are highlighted in bold. There are 66 amino acids in total. Domain III is 

defined by cysteines as described in Hodder et al. 1996 (Hodder, Crewther et al. 1996). 
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Figure 8.6.2 Schematic showing polymorphic sites and overlapping peptide design 

Polymorphic sites are indicated in black. Letters below the figure identify the location of 

potential peptides. * Peptide E contains a polymorphic site close to the end of domain III 

and another that lies just outside the domain. 
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Figure 8.6.3 Between population divergence at polymorphic loci within domain III 

The analysis was performed using the Wright's fixation index of inter-population variance 

in allele frequencies (FST). Populations from Nigeria, Thailand and Kenya were compared. 

TN: Thailand versus Nigeria, TK: Thailand versus Kenya, KN: Kenya versus Nigeria (Codons 
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493a and 512b lie just outside domain III). The FST value is <0.1 for the majority of the 

polymorphic sites. 

Table 8.6.1 The frequencies of potential peptide haplotypes at each polymorphic site 

Potential peptides Haplotype frequency 

Location A (20 mer) 

CSLYKDEIKKEIERESKRIK 30/49 (61%) 
CSLYKNEIMKEIERESKRIK 7/49 (14%) 
CSLYKDEIMKEIERESKRIK 12/49 (24%) 

Location B (20mer) 

ESKRIKLNDNDDEGNKKIIA Conserved 

Location C (20 mer) 

KIIAPRIFISDDIDSLKCPC 27/49 (55%) 
KIIAPRIFISDDKDSLKCPC 22/49 (45%) 

Location D (17 mer) 

DSLKCPCDPEMVSNSTC 28/49 (57%) 
DSLKCPCAPEIVSNSTC 10/49 (20%) 
DSLKCPCDPEIVSNSTC 9/49 (18%) 
DSLKCPCAPEMVSNSTC 2/49 (4%) 

Location E (20mer) 

NSTCRFFVCKCVERRAEVTS 20/49 (41%) 
NSTCNFFVCKCVEKRAEVTS 16/49 (33%) 
NSTCRFFVCKCVEKRAEVTS 10/49 (20%) 
NSTCHFFVCKCVERRAEVTS 3/49 (6%) 
NSTCNFFVCKCVERRAEVTS 1/49 (2%) 

The frequencies of the potential peptide haplotypes at each polymorphic site of domain III 

found in the Kenyan isolates. The two peptide haplotypes which occurred at the highest 

frequencies at each location were selected for testing in cellular assays. 
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8.6.2.2 Peptide synthesis 

Peptides were synthesized using Fmoc chemistry and a solid support resin (Sigma Genosys, 

Haverhill, UK). Peptide composition was verified by the MALDI-TOF (matrix-assisted laser 

desorption/ionization - time of flight) method. Peptide purity was checked by HPLC (high 

performance liquid chromatography) and was confirmed to be > 95% for all the peptides. 

The peptides situated at location E proved difficult to synthesize and thus were not 

available for the study. As such, a total of 7 AMA1 peptides were tested in the preliminary 

assays, and included a peptide spanning a conserved region of domain III, and 3 pairs of 

peptides that spanned polymorphic sites within the domain. The T cell assays and the 

cohort Ounju adults) in which they were performed have been described (Section 3.2.1.3). 

Antibody responses to full-length ectodomain constructs of AMA1 (3D7, HB3 and FVO) 

were also tested in standard indirect ELISA assays in the same individuals. 

8.6.3 RESULTS 

8.6.3.1 Antibodies to domain III 

The individuals recruited into the Chonyi cohort have already been described (Section 

3.2.1.1). A total of 42 specific samples were selected for this part of the study. The mean 

age of these individuals was 16.7 years, range (4 - 58 years), and 26/42 (62%) were 

parasitaemic at the time the serum sample was collected. 

303 



8.6.3.1.1 Antibody reactivity to both DII-III and DIll 

In all sera that had reactivity to both DII-III and DIll, reactivity to DII-I11 could not be 

competed out with an excess of DIll, indicating that the detected reactivity was mainly due 

to epitopes in domain II as opposed to domain III (Figure 8.6.4). 
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Figure 8.6.4 Competition ELISA in sera with reactivity to both DII-III and DIll 

In all cases competition with increasing concentrations of DIll did not compete out 

reactivity to 011-111 indicating that the antibodies were mainly directed to epitopes within 

011. 
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8.6.3.1.2 Antibody reactivity to OIl-III greater than that to 011 

In sera that had higher 00 values to OIl-III than to 011 alone, two patterns of reactivity 

were seen in the competition ELISA assays. In 4/11 sera reactivity to 011-111 was competed 

out with increasing concentrations of 011 indicating that the reactivity was due to epitopes 

in domain II (Figure 8.6.5, C763, C067, C189 and C244). In the remaining 7/11 sera 

competition with increasing amount of 011 did not compete out the reactivity to OIl-III, thus 

demonstrating the presence of reactivity to epitopes within domain III (Figure 8.6.5, C149, 

C027, C141, C450, C338, C282 and C689). 
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Figure 8.6.S Competition ELISA In sera with reactivity to DII-I11 that was higher than 
that to DII 
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8.6.3 .1.3 High antibody reactivity to Oil-ill 

For the last set of sera that had high antibody reactivities to DIII, pre-incubation of test sera 

with high amounts of 0111 did not decrease the reactivity detected to 011-111 as shown in the 

left panel of Figure 8.6.6, in contrast to homologous competition as shown in the right 

panel of the same figure. This indicates that antibodies in these sera were directed at 

epitopes within domain II. 
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Figure 8.6.6 Competition ELISA in sera with high antibody reactivity to domain III 

Antibody reactivity to 011-111 is compared to that obtained following competition with 

excess amounts of 0111 (heterologous competition, left panel) and 011-111 (homologous 

competition, right panel) 
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8.6.4 T-CELL RESPONSES TO DOMAIN III 

8.6.4.1 Study population 

The baseline characteristics of the Junju adults have been described (Section 3.3.3). 

Previous studies have shown that PBMCs taken from individuals never exposed to malaria 

are able to respond to some malaria peptides (Zevering, Amante et a1. 1992; Good 1994), 

(Ndungu, Sanni et a1. 2006). Therefore, to gauge the responses of individuals with minimal 

exposure to malaria, PBMCs were taken from non-immune volunteers visiting Kilifi, Kenya 

(n=6). At the time of sampling, these visitors had been in Kilifi for between 3 days and 6 

weeks. All but one of these visitors had previously travelled to malaria endemic countries, 

always on prophylaxis, and never had a confirmed episode of malaria. 

8.6.4.2 IFN- Y T-cell responses to domain III peptides 

The IFN-y T-cell responses to all seven AMA1 peptides from domain III are shown in figure 

9.9. A positive response was defined as at least one spot per 300,000 PBMC, and was 

derived by subtracting spot numbers in wells containing only media from those containing 

peptides (McConkey, Reece et a1. 2003; Keating, Bejon et a1. 2005; Vuola, Keating et a1. 

2005; Webster, Dunachie et a1. 2005). All samples showed strong IFN-y T-cell responses to 

the positive control, SEB. Positive responses were detected for all seven domain III AMA1 

peptides tested, with prevalence for each peptide ranging between 73.1% to 96.2%, 

amongst Junju adults (n =26). Interestingly, individuals with 'minimal' exposure to malaria 

(n=6), also made IFN-y responses to the AMAl peptides, with a prevalence of 50 -100%. 

However, it is clear from Figure 8.6.7 that the magnitude of responses was higher in the 

308 



Junju adults, compared to the visitors. Notably, the log transformed mean responses are 

comparable in both groups for some peptides (Table 8.6.2). This is because the number of 

non-responders (y axis =1, Figure 8.6.7) among the Junju adults is higher than that among 

the visitors. In 5 (3%) of 169 wells, for three different peptides, the IFN-y T cell response 

was as strong as the positive control rendering enumeration of spots impossible. In these 

wells, an arbitrary value of 1000 spots per 300,000 PBMC was allocated. This value was 

chosen as it was greater than the highest enumerable spot count obtained for any peptide 

for either IFN-y or IL-2 responses which were 355 and 455 respectively. For all the graphs, 

values of 0 were converted to 1 to enable visualization of the data on a logarithmic scale. 

Table 8.6.2 IFN-y T cell responses to peptides from domain III 

Peptide Peptide Prevalence (%, Mean response1 

abbrev. Junju adults Visitors Junju adults Visitors pvalue 
CSLYKDEIKKEIERESKRlK A_OK 80.8 83.3 1.74 0.68 0.010· 

CSLYKNEIMKEIERESKRIK B_NM 80.8 50 1.12 0.51 0.137 

ESKRlKLNDNDDEGNKKIIA C_Cons 96.2 100 1.25 0.52 0.047* 

KIIAPRIFISDDIDSLKCPC 0_1 73.1 66.7 0.89 0.67 0.491 

KIIAPRlFISDDKDSLKCPC E_K 88.5 66.7 1.16 0.38 0.016* 

DSLKCPCDPEMVSNSTC F_OM 80.1 83.3 1.01 0.65 0.242 
DSLKCPCAPEIVSNSTC G AI 80.7 83.3 0.95 0.71 0.509 

Prevalence and magnitude of IFN-y T cell responses to peptides from domain III 

of AMAl, in 26 adults from Junju and 6 visitors with minimal exposure to malaria. 

1 Students t test used to compare the means of the log transformed IFN - Y T-cell responses 

between the two groups. * p < 0.05 
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Figure 8.6.7 IFN-y T-cell responses to peptides from domain III of AMAl 

Dotplot showing individuallFN-y T-cell responses to peptides from domain III of AMA1. 

Actual values are shown on a logarithmic scale. Black and red dots indicate responses of 

Junju adults and non-immune volunteers with minimal exposure to malaria, respectively. 

Horizontal lines indicate medians amongst Junju adults. 

8.6.4.3 IndividuallFN-y T-cell responses to domain III peptides 

Figure 8.6.8 shows the profile of each individuals' IFN-y T-cell responses to all seven 

peptides from domain III of AMA1. The majority of individuals made moderate to strong 

responses to one or more peptides, and weak or no responses to the others. Although not 

clearly visible on the graph, in two of the Junju adults, less than one IFN-y producing T-

cell/300,OOO PBMC was detected, for any of the seven peptides. 
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Figure 8.6.8 IndividuallFN-y T-cell responses to domain III pep tides from AMAl 

Each colored line represents an individual. The key to the peptides is as follows: 1 - A_OK, 
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8.6.4.4 IL-2 T cell responses to domain III peptides 

The IL-2 T-cell responses to all seven AMAl peptides from domain III are shown in Figure 

8.6.9. As for IFN-y, a positive response was defined as at least one spot per 300,000 PBMC, 

and was derived by subtracting spot numbers in wells containing only media from those 

containing peptides (McConkey, Reece et al. 2003; Keating, Bejon et al. 2005; Vuola, 

Keating et al. 2005; Webster, Dunachie et al. 2005). A strong IL-2 T-cell response to the 

positive control SEB was observed in 25/26 samples from Junju adults, and the results of 

the sample where it was negative were excluded. As with the IFN-y, positive IL-2 

responses were detected for all seven domain III AMAl peptides tested, with prevalence 

for each peptide ranging between 53.9% to 80.8%, amongst Junju adults (n =25). 

Individuals with 'minimal' exposure to malaria (n=6) also made IL-2 responses to the 

AMAl peptides, with a prevalence of 16.7 - 66.7%. However, the magnitude ofresponses 

was consistently higher among the Junju adults, compared to the non-immune volunteers 

(Figure 8.6.9). Although the means of the log transformed responses appear comparable, 

as with the IFN-y, the numbers ofnon-reponders in the Junju adults is greater than that 

among the visitors (Table 8.6.3). In three wells, the IFN-y T cell response as strong in 

intensity to the positive control rendering enumeration of spots impossible. In these wells, 

as previously, an arbitrary value of 1000 spots per 300,000 PBMC was allocated. 
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Table 8.6.3 IL-2 T-cell responses to peptides from domain III of AMAl 

Peptide Peptide Prevalence(%) Magnitude1 

abbrev. Junju adults Visitors Junju adults Visitors p value 
CSLYKDEIKKEIERESKRIK A_DK 68 66.7 1.18 0.71 0.331 

CSLYKNEIMKEIERESKRIK B_NM 72 50 0.88 0.42 0.228 

ESKRIKLNDNDDEGNKKIIA C_Cons 80 66.7 1.01 0.39 0.086 

KIIAPRIFISDDIDSLKCPC DJ 64 33.3 0.48 0.05 0.065 

KIIAPRI FISDDKDSLKCPC E_K 56 50 0.43 0.12 0.209 

DSLKCPCDPEMVSNSTC F_DM 56 50 0.6 0.15 0.152 

DSLKCPCAPEIVSNSTC G AI 52 16.7 0.24 0 0.172 

Prevalence and magnitude of IL-2 T-cell responses to peptides from domain III of AMA1, in 

25 adults from Junju and 6 non-immune volunteers with minimal exposure to malaria. 

1 Wilcoxon rank sum test was used to compare the magnitude of responses in both groups. 
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Figure 8.6.9 IL-2 T-cell responses to peptides from domain III of AMAl 
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Dotplot showing individual IL-2 T-cell responses to peptides from domain III of AMA1. 

Actual values are shown on a logarithmic scale. Black and red dots indicate responses of 

Junju adults and medical students with minimal exposure to malaria, respectively. 

Horizontal lines indicate medians amongst Junju adults. 

8.6.4.5 Individual IL-2 responses to domain III peptides 

Figure 8.6.10 shows the profile of each individuals' IL-2 T-cell responses to all seven 

peptides from domain III of AMA1. As for IFN-y, the majority of individuals made moderate 

to strong responses to one or more peptides, and weak or no responses to the others. In 

four of 25 Junju adults, less than one IL-2 producing T-cell was detected per 300,000 PBMC, 

against any of the seven peptides. For two of these four individuals, IFN-y T cell responses 

were similarly not detected. 
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Figure 8.6.10 Individual IL-2 T-cell responses to domain III peptides from AMA1 

Each colored line represents an individual. The key to the peptides is as follows: 1 - A_DK, 

8.6.4.6 Correlation between responses to IFN-y and IL-2 

In general, no correlation was found between IFN-y and IL-2 T-cell responses for all the 

peptides analyzed, Figure 8.6.11. 
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Figure 8.6.11 Correlation between responses to IFN-y and IL-2 

• 
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IFN-y and IL-2 T-cell responses to peptides from domain III of AMA1 were not correlated. 

Graphs are plotted on a logarithmic scale. 

8.6.4.7 T-cell responses to peptides spanning the same polymorphic sites 

The magnitude of both IFN-y and IL-2 T-cell responses to peptides spanning the same 

polymorphic sites was compared. Figure 8.6.12 shows that the majority of individuals 

made responses of greater magnitude to one of two peptides from the same polymorphic 

site, suggesting that these polymorphisms affected T-cell epitopes that are commonly 

responded to. 
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Figure 8.6.12 T-cell responses to allelic peptides 

IFN-y (left panel) and IL-2 (right panel) T-cell responses compared for pairs of pep tides 

spanning the same polymorphic sites, For the majority of comparisons, higher responses 

appear to be made to one peptide of the pair. 
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8.6.4.8 Correlation ofT-cell responses to antibody responses 

The antibody responses to full-ectodomain antigens of AMAl were tested among all 26 

Junju adults, as domain III specific reagents were not available. Given this limitation, the T

cell and antibody responses cannot be compared directly. Nevertheless, it was interesting 

to observe that the individuals making the highest IFN-y and IL-2 T-cell responses to 

domain III also had high titres of antibodies to full-length AMA 1 (data shown in Figure 

8.6.13 for IFN-y). Conversely, three individuals who were sero-negative for antibodies to 

full-length AMA1, had detectable IFN-y and IL-2 T-cell responses to peptides within domain 

III (data not shown). None of the controls with minimal exposure to malaria had detectable 

antibodies to the full-length AMA1 although nearly half of them made low grade T-cell 

responses to both IFN-y and IL-2. 
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Figure 8.6.13 Correlation ofT-cell responses to antibody responses 

Antibody responses to full-length ectodomain allelic versions of AMAl (left panels) and 

corresponding IFN-y T-cell responses to AMA1 peptides from domain III of AMA1. 

Individuals with the highest antibody levels tended to have the strongest T-cell responses. 

Note: the scale is different in each of the panels on the right. 
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8.7 DISCUSSION 

In this descriptive study, little evidence of reactivity specific to domain III of AMAl was . 
detected by competition ELISA, except in a few sera. High titre antibodies to OIl-III were 

mainly directed at epitopes within domain II, as opposed to those in domain III. These 

findings extend the previous observations of the low prevalence of antibodies to domain III 

of AMAl in this population (Polley, Mwangi et al. 2004), and are in agreement with studies 

from other areas (Cortes, Mellombo et al. 2005). Epitopes that induce anti-AMA1 

antibodies capable of inhibiting erythrocyte invasion ofmerozoites, or protect animal 

models from challenge with parasites bearing homologous AMAl alleles, are known to be 

conformation sensitive (destroyed on reduction of disulphide bonds) (Crewther, Matthew 

et al. 1996; Anders, Crewther et al. 1998; Hodder, Crewther et al. 2001). It is possible that 

the recombinant domain III is not optimally folded, or that the important epitopes within 

this domain are conformationally dependent on domains I and II. Alternatively, cellular 

immune responses may be responsible for the selection observed in domain III. 

In the preliminary experiments conducted here, all seven peptides were shown to contain 

T-cell epitopes. The precise number of actual epitopes is not possible to determine with 

certainty, due to the overlapping strategy employed in the peptide design. Furthermore, at 

three locations within domain III, three pairs of peptides that were identical save for the 

polymorphic loci were tested. Nonetheless, these are the first ex-vivo ELISPOT data on 

peptides from AMAl to be reported, and suggest that cell-mediated responses may be an 

important component of naturally-acquired AMA1-mediated immunity. 
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Lympho-proliferative T-cell responses to peptides from AMA1 have been reported in 

immune adults from Western Kenya (Lal, Hughes et al. 1996; Udhayakumar, Kariuki et al. 

2001). Although the methodology used to select, as well as test the AMA1 peptides in these 

studies differs from that used in my study, it is still worth noting that they detected 

Iympho-proliferative T-cell responses to peptide PL172 (FPCSLYKDEIKKEIERESKR). This 

peptide is located within domain III, and save for 2 N-, and 1 C-, terminal amino acid (s), 

shares close to 100% sequence similarity with peptides A_DK and B_NM, of the present 

study. As such, for at least two of the seven peptides tested, there is independent evidence 

ofthe presence ofT-cell epitopes. However, this needs to be interpreted with caution, as it 

is known from previous studies that the results of ex-vivo ELISPOT and lympho

proliferation assays do not correlate, and probably identify distinct sub-populations ofT

cells (Hagiwara, Abbasi et al. 1995; Flanagan, Lee et al. 2001; Pinder, Reece et al. 2004). In 

any case, in the longitudinal study by Udhayakumar et al., only responses to PL191 (a 

peptide spanning a polymorphic epitope within domain I) were associated with a 

subsequently reduced risk of infection with P. /alciparum (Udhayakumar, Kariuki et al. 

2001). 

In a recent phase 1 malaria vaccine trial in malaria naive volunteers, immunization with a 

virosome-formulated synthetic peptide containing loop 1 of domain III (49 mer), failed to 

induce significant responses to IFN-Y responses as assayed by the ex-vivo ELISPOT, pre

and post-vaccination (Peduzzi, Westerfeld et a1. 2008). However, in the same study, 50% of 

volunteers made significant lympho-proliferative T-cell responses. This 49 mer synthetic 

peptide spanned the region encoded for by peptides A_DK/B_NM, C_cons, and DJ/E_K in 

the present study, for which strong IFN-Y and IL-2 T-cells responses were observed. Apart 
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from the fact that this study focused on vaccine-induced immunity, and measured 

responses to a long synthetic peptide that may not have been optimally presented to T

cells, the threshold for positivity was high at 100 SFU/I06 PBMC, with a minimum 

difference of 75 SFU/I06 PBMC between stimulated and un-stimulated cells (Peduzzi 

2008). They also report that the SFU of PBMCs incubated without stimulus ranged from 0 -

140 SFU/106 PBMC (Peduzzi, Westerfeld et al. 2008). This seems unusually high, as fewer 

than 1/103, or 0.001/106 PBMC have been shown to spontaneously secrete IFN-y or IL-2 

(Hagiwara, Abbasi et al. 1995), and suggests that the ELISPOT assay had not been 

sufficiently optimized. Nevertheless, the definition for positivity for ELISPOT assays, which 

markedly affects interpretation of data. as illustrated by the study of Peduzzi et al., needs 

development For vaccine trials where ELISPOT assays have been used extensively, the 

issue of a threshold does not often arise, as SFUs are compared pre- and post- vaccination, 

the magnitude of change being the more important outcome. However, for naturally

acquired immunity to malaria for instance, a range of thresholds have been used by 

different investigators (Flanagan, Lee et al. 2001; Lee, Flanagan et al. 2001; Malhotra, 

Mungai et al. 2005), with no clear consensus emerging. For vaccine studies in malaria, the 

consensus, as has been applied in this preliminary work, appears to be the subtraction of 

the SFUs in the negative well from those in the peptide-containing wells (McConkey, Reece 

et al. 2003; Keating, Bejon et al. 2005; Vuola, Keating et al. 2005; Webster, Dunachie et al. 

2005). Notably, these studies are all conducted by the same laboratory. 

Individuals with minimal exposure to malaria also made 'low-grade' T-cell responses to the 

seven peptides from domain III of AMA1. This is not surprising as previous studies have 
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documented that PBMCs taken from individuals never exposed to malaria are able to 

respond to some malaria peptides (Zevering, Amante et al. 1992; Good 1994), (Ndungu, 

Sanni et al. 2006). Interestingly, in the T-celllymphoproliferation assays with AMA1 

peptides, the stimulation index (measure ofT-celllymphoproliferation) using PBMC from 

individuals never exposed to malaria was always below the positivity threshold (Lal, 

Hughes et a!. 1996). The lack of truly non-malaria exposed donors in this study precludes 

the drawing of firm conclusions, based on this data. 

For some individuals, the magnitude of IFN-y and IL-2 responses was nearly as high as that 

detected to the positive control antigen, SEB. Interestingly, the four individuals that made 

this type of IFN-y response, were distinct from those making similarly strong IL_2 

responses, and overall, there was a poor correlation between IFN- y and IL-2 T-cell 

responses. This is in keeping with reports that the number of unstimulated T-cells 

secreting either of these two cytokines are not correlated (Hagiwara, Abbasi et al. 1995). 

However, both naturally-acquired and vaccine-induced ex-vivo IFN- y and IL-2 T-cell 

responses to the pre-erythrocytic malaria antigens, CS and ME-TRAP, were highly 

correlated (Bejon, Keating et a!. 2006). In general, although direct comparisons cannot be 

made, for some individuals, the magnitude ofT-cell responses observed with these AMA1 

peptides is considerably higher than that reported for peptides from MSP-1 (Lee, Flanagan 

et al. 2001; Malhotra, Mungai et al. 2005) and EBA-175 (Malhotra, Mungai et al. 2005). In 

this preliminary work, the data is deliberately presented as SFU/300,OOO PBMC to enable 

the raw data to be viewed, without the enhancement introduced by presenting data as 

SFU/million PBMC. 
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In conclusion, although this study is small, it provides new albeit preliminary data on T-cell 

responses to short synthetic peptides from domain III of AMA1, and provides proof of 

principle, that there are T-cell epitopes in this region, as predicted by the population 

genetic analyses. The hypothesis that T-cell responses to these epitopes are important 

mediators of protection from malaria needs to be tested in longitudinal studies. 
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9 CONCLUDING REMARKS 

The work presented in this thesis contributes significantly to the understanding of 

naturally acquired immunity to clinical malaria in several important ways. First is the 

finding that the amount of antibody, and not simple sero-positivity as has often been used 

in the past, is a better predictor of children who are protected from clinical episodes of 

malaria. Second was the finding that increasing breadth of specificity of high titre 

antibodies to a carefully selected panel of merozoite antigens correlated with increasing 

protective efficacy of the antibodies against clinical episodes of malaria. Thirdly, high titre 

antibodies to particular combinations of antigens, MSP-2, MSP-3 and AMA1, were more 

strongly predictive of protected children, than other combinations, in two separate groups 

of children. Fourthly, antibodies to allelic versions of the same antigen were equally 

predictive of the risk of clinical episodes, suggesting that in practice, the inability to include 

multiple allelic versions of highly polymorphic antigens into malaria vaccines may not be as 

limiting to vaccine efficacy as previously thought. This was supported by the findings that 

allele-specific antibodies did not appear to protect against clinical episodes associated with 

parasites bearing homologous alleles. All these findings have important implications for 

malaria vaccine development that's modeled on naturally acquired immunity. 

The studies on AMAl conducted here provide further evidence of the diversity at this locus, 

and confirm the presence of strong balancing selection acting to maintain these 

polymorphisms within natural populations of P. falciparum. Preliminary experiments 

using peptides from Domain III of AMAl suggest that T-cell mediated immune responses 

may contribute Significantly to the signature of selection detected within this domain. This 
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work opens up an area of research into naturally-acquired T-cell mediated immune 

responses against AMAl that has previously received little attention. 
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