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THE ROLE OF SUBGROUPS AND SUB-POPULATIONS IN 

DRUG DEVELOPMENT AND DRUG REGULATION 

Andrew Garrett, BSc, MSc, CStat 

THESIS ABSTRACT 

This thesis addresses the role of subgroups and sub-populations in drug development and 

regulation and includes the critical appraisal of regulatory guidance. 

Chapter One introduces clinical trial methodology and describes the current regulatory 

environment. 

In Chapter Two, randomisation is reviewed in relation to unbiased estimation of treatment 

differences and the impact of data exclusion to form subsets is described. 

Simpson's paradox (SP) is considered in Chapter lbree. Randomisation is shown to 

protect against SP, while a treatment by factor interaction is not required. Balance is re

defined for the odds formulation leading to identical unconditional and conditional 

parameters. The chances of SP (and less extreme inconsistencies) occurring are quantified 

using simulation, with varying sample size. 

Chapter Four considers treatment by subgroup interactions. Suggestions regarding the 

magnitude of a clinically relevant interaction are presented while a simple Bayesian 

approach to evaluate interactions using margins for the interaction parameter is applied to 

published data. 



Chapter Five considers non-inferiority in relation to sub-populations and covariate 

adjustment for binary outcomes. It is shown that the Per Protocol popUlation is not 

necessarily conservative and simulation is used to demonstrate the impact on the type I 

and II errors. Using simulations it is shown that an increase in the type I error occurs if an 

important covariate is excluded from the logistic model when testing for non-inferiority. 

Chapter Six is directed towards the sub-population of children. The impact of off-label 

treatment is discussed in relation to the ethics of placebo-controlled trials, together with 

the importance of randomisation in evaluating long-term safety. 

In Chapter Seven, a therapeutic area is selected to ilJustrate the challenges raised during 

the previous chapters and wording changes to current regulatory guidelines are proposed. 

The thesis closes with personal thoughts regarding the future potential for individualised 

treatment. 
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PREFACE 

We'll drink a drink a drink 

To Li~v the Pink the Pink the Pink 

The saviour of the human race 

For she invented medicinal compound 

Most efficacious in every case 

Gonnan, MCGear and MCGough, 1968 

The Scaffold, Parlophone 

Copyright Noel Gay 1968, Publisher Noel Gay Music Co Ltd 

Around the world, the development of new phannaceutical treatments is subject to strict 

regulatory control, and the accretion of evidence to support their approval for the treatment 

of patients takes many years. The culmination of research effort, costing in the region of 

$80Om (Tufts CDD, 200 I), is the creation of a so-called Common Technical Document 

(CTD). which is used by phannaceutical companies to summarise their evidence (lCH M4, 

2000). 

Regulatory authorities regard robustness as an important property of the evidence 

presented in the CTD. The adjective robust means strong. uncompromising and vigorous, 

and is derived from the Latin word rohustus meaning oaken. solid. firm and hard. The 

Oxford dictionary ( 1993) includes a description of robust that captures the essence of the 

pharmaceutical companies' challenge when presenting their evidence: designating a result 

where the result is large~v independent of certain aspects of the input. This description 

highlights the dual requirement to study a new treatment under a broad range of conditions, 

and furthermore to evaluate the data generated for consistency of effect under these various 

conditions - for instance, across sub-populations and subgroups. As such. the generation 

of robust evidence does not simply equate to the accumulation of ever increasing amounts 
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of similar data. Indeed Hempel (1966) wrote that the confirmation of a hypothesis depends 

not on~v on the quantity of the favourable evidence available. but also on the variety: the 

greater the variety. the stronger the resulting support. Variety is therefore a key 

component in the generation of robust evidence and to the development of safe and 

effective treatments. 

Now, variety can be introduced and carefully controlled at the design stage of a study. 

Drug developers set the range of inclusion and exclusion criteria for patients and select the 

countries and study centres to conduct the investigations. The duration, dose and 

frequency of drug administration are chosen and also the type of control treatment. 

Furthermore the study procedures will be carefully detailed in the study protocol. 

However the investigation of variety occurs once the data are collected - that is, at the 

analysis stage. 

In drug development the ideal scenario for a new treatment is that it is uniformly safe and 

efficacious in a particular disease area. Unfortunately, this is rarely the case and re!:,'lliatory 

authorities need to be made aware of the circumstances under which modification or 

restriction of use is required. (For example, the analgesic effect of codeine is almost 

absent in around 7% of Caucasians (FDA, 2002) due to the lack of a specific liver enzyme 

which is required to convert codeine to its active metabolite, morphine.) Such 

modifications and restrictions are discovered through the estimation of treatment effects 

through various slices of the data contained within the CTD. However the regulatory 

authorities also acknowledge the limitations of such an approach - especially with regard to 

safety. Since a typical CTD would include in the region of 1500 patients treated with the 

new drug (FDA, 2(02) - many of whom will have had only limited exposure - the 

detection and attribution of rare adverse drug reactions is unlikely therefore, regardless of 
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the degree of variety present. As a consequence, post approval monitoring is recognised as 

being important in the ongoing evaluation of safety. Nevertheless, despite the limitations 

of the safety evaluation due to its multidimensional nature, the evaluation of efficacy is 

often more informative. 

This research thesis is directed towards an investigation of some of the issues surrounding 

the generation of robust evidence to support the review and approval of new 

pharmaceutical treatments. Specifically, I will examine two related areas where the 

evaluation of consistency of effect has been of considerable regulatory interest - that is, the 

choice of patient analysis populations, and the investigation of patient subgroups. 

Accordingly. regulatory considerations will be a running theme throughout and. where 

applicable. current regulatory guidelines will be critically appraised in relation to my 

findings. 

In Chapter 1, I begin by providing the reader with the necessary background information to 

place this research effort in context. Firstly, pharmaceutical research - that is, drug 

discovery and drug development - will be described to provide the reader with an 

understanding of the strictly sequential nature of the investigations and how knowledge is 

acquired and built upon through time. Secondly, the regulatory environment that has led to 

the evolution of this linear development process will be described. This section will 

include a brief history of drug regulation, explain the current regulatory structures and 

processes, and describe how attitudes have evolved in this area. Furthermore the specific 

guidelines that increasingly drive the design and analysis of clinical trials will be 

discussed. Thirdly, the randomised and controlled clinical trial (RCT) will be described. 

The RCT underpins the confirmatory phase of drug development and an understanding of 
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the basic principles of this trial design is key to explaining the roles and importance of 

patient sub-populations and subgroups in the evaluation of robustness. 

A review of the basic principles surrounding the sub-setting of clinical trial data is 

provided in Chapter 2. This will focus on randomisation as the basis for providing 

unbiased estimates of treatment effects, and explain how the exclusion of data to form sub

populations and subgroups has the potential to introduce bias into the estimation process. 

The so-called intent-to-treat principle will be reviewed and consideration given to its 

evolution, perceived conservative nature and its practical implementation. The review will 

then proceed to consider patient subgroups and the methods employed to investigate 

treatment effects within subgroups and the consistency of effect between subgroups. In 

particular, multiplicity and the risk of observing inconsistent results from subgroup to 

subgroup will be examined. 

An investigation ofSimpson's paradox (SP) in the clinical trial setting is the basis of the 

ideas developed in Chapter 3. SP describes a reversal effect whereby the differences 

between treatments from all subgroups are in the opposite direction to the overall 

difference between treatments. This phenomenon is well documented in the statistical 

literature, although it will be shown that SP does not require the presence of a treatment by 

subgroup interaction as stated previously (NeIder, 1994b). It will be shown how treatment 

estimates are protected against SP through the use of randomisation and stratification, 

while the chances of observing SP in the clinical trial setting will be quantified as being 

small through a series of simulation exercises. SP will be used to provide a general 

mechanism for observing inconsistent results including cases where the overall treatment 

difference is greater than that observed in all subgroups or vice versa. Although both 
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binary and nonnally distributed data will be investigated, focus will centre on the odds 

model fonnulation for binary data since it behaves in an unusual manner. 

Chapter 4 is a natural progression from Chapter 3, since it investigates potential 

interactions between treatments and subgroups in the clinical trial setting. Initially the 

relationship between the overall weighted treatment difference and the subgroup treatment 

differences will be examined and the correlation structure detennined. An attempt will 

then be made to present a unified approach to the evaluation of interactions. In this 

respect the approach taken to distinguish interactions of a qualitative or quantitative nature 

will be compared to the approach of estimating the magnitude of the interaction parameter. 

This will lead to suggestions for detennining the magnitude of a clinically relevant 

interaction effect. It will then be shown that for the primary endpoint, a superiority trial 

will a priori have similar power to detect the pre-specified treatment difference, as it will 

have to detect a qualitative interaction. Finally, a Bayesian approach to evaluate and 

interpret interactions, using margins for the interaction parameter (along similar lines to 

equivalence studies), will be presented and applied to some published clinical trial data. 

Chapter 5 switches tack and focuses upon a current controversial topic in the clinical trial 

methodology - the issues of therapeutic equivalence and non-inferiority. This chapter 

investigates how the areas of sub-populations and subgroups impact the evaluation of 

equivalence and non-inferiority. After describing the methodological, philosophical and 

regulatory background of equivalence and non-inferiority, some initial work is undertaken 

to highlight the problems with current methods of margin specification. In particular, 

there will considerable focus on the odds ratio for binary outcome data. Sub-populations 

will then be considered and it will be shown that the Per Protocol (PP) population is not 

necessarily conservative from a regulatory perspective, as some have stated, while the 

x.v 



impact of using the PP population in comparison with a the full population will be 

quantified in a series of simulations. Finally subgroups will be considered in terms of the 

impact on the estimate of the treatment difference of including a two-level prognostic 

factor in the logistic regression model. A series of simulations will be used to demonstrate 

modest inflation of the type I error rate, when testing for non-inferiority, in cases where an 

influential factor is excluded from the model. Consistency issues will also be highlighted, 

in relation to sub-populations and covariate adjustment, when switching hypotheses in the 

same study from non-inferiority to superiority or vice versa. 

In Chapter 6. I have selected a specific patient population for investigation that has been 

described in the past as the therapeutic orphan (Shirkey, 1968). Children represent around 

one hal f of the world' s population of six billion persons but drug labelling frequently 

discourages the use of drugs in this paediatric population. This is not necessarily because 

the drugs are unsafe, but rather as an indirect consequence of inadequate clinical trials 

research in this area. This situation is now being rectified and clinical trials in the 

paediatric population is now an integral part of the drug development process. However 

these trials provide a unique set of challenges and in this chapter I will highlight some of 

these, including the design of studies where unapproved treatments are regarded as 

standard care, and the investigation of the long-term effect of treatment on child 

development. 

Chapter 7 brings together the findings presented in earlier chapters and discusses their 

relevance to the generation of robust evidence for new pharmaceutical treatments. In this 

respect, I have selected a specific therapeutic area where some practical solutions will be 

proposed to the specific challenges raised. Modifications to the text of current regulatory 

guidance will also be proposed. Consideration will then be given to the potential use of 
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genetic infonnation to tailor treatments to individual patients. In particular, I will caution 

against the over optimistic belief that that we will move from a stochastic to a detenninistic 

approach to drug treatment. Finally I will consider the generalisation of clinical trial 

outcomes to the future treatment of patients and question the future direction of drug 

development. 
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CHAPTER ONE: BACKGROUND 

Mr Frears 

Had sticky-out ears 

And it made him av.fu/ shy 

And so the:", gave him medicinal compound 

And now he's learning how to fly. 

1.1 INTRODUCTION 

The intention of this introductory chapter is to provide the background infonnation 

necessary to place this research effort in context. When considering sub-populations and 

subgroups in clinical trial research, it is important to understand the building blocks of the 

drug development process and to appreciate the prevailing climate of drug regulation. 

Accordingly, phannaceutical research will be described from drug discovery through to 

drug approval, and the strict sequential nature of the investigations will be highlighted. 

Next, the evolution of the linear development process will be described from a regulatory 

perspective. The current regulatory structures and processes will be discussed while the 

structure and hierarchy of the current guidance documents that increasingly drive the 

design and analysis of clinical trials will be presented from a statistics perspective. 

Furthennore an insight into the current regulatory climate will be provided with regard to 

the representation and evaluation of specific subject types. Finally in this chapter, the 

randomised and controlled clinical trial (RCT) - which underpins the confirmatory phase 

of drug development - will be introduced. The roles of sub-populations and subgroups are 

intrinsically interwoven with the properties of the RCT, and a description of the basic 

principles of this design is key to explaining the direction of this research effort and the 

importance of data sub-setting in the evaluation of robustness. 
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1.2 DRUG RESEARCH 

J.2. J Dmg discovery 

At the earliest stage, phannaceutical research begins with drug discovery. That is, the 

identification of lead compounds that show specific biological activity indicative of 

therapeutic potential. One approach to drug discovery is mass screening - a somewhat 

indiscriminate process whereby a large number of compounds from the general inventory 

are subjected to routine tests of biological activity. An alternative more direct approach is 

targeted screening. In this case, compounds are selected or prepared for specific screening 

based on an understanding of disease intervention leading to judgements about which 

classes of compound are most likely to have biological activity (Schultz et ai, 1988). Once 

a compound with activity has been identified, attempts are made to modify the known 

molecular structure with the express aim of producing a more active or selective molecule. 

This process is called synthesis. Alternative processes include isolation from natural plant 

or animal tissues or the modification of microbiological fermentation (Bohidar and Peace, 

1988). Later the solubility and stability of the modified compound are evaluated with the 

aim of establishing a form suitable for humans and consideration is also given to the scale

up process since sufficient quantities of the compound are required for use in clinical trials. 

The formulation process can markedly influence the performance of the compound and 

consideration needs to be given to both the compound itself and the inactive excipients 

used - such as binding agents, which are used to hold tablets together. 

1.2.2 Pre-clinical dmg development 

To manage the risks associated with giving a new product to humans, the product must 

first undergo rigorous pre-clinical (or non clinical) safety testing in a number of animal 

species (for instance the rat, mouse, dog and monkey). In general, limited exposure in 

humans is permitted once short-term animal studies have been completed satisfactorily 
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while longer term animal studies are required to lengthen the duration of human exposure. 

This process is well established and structured, and study designs are usually randomised 

and controlled. Considerable effort is also directed towards phannacokinetic 

investigations to understand the absorption, distribution and elimination of a drug in 

various species. Single dose studies are followed by multiple dose studies of limited 

duration with exposure up to 90 days. Long term studies - particularly in rodents - are 

typically conducted for the life span of the animal concerned, with the aim of evaluating 

tumour development and associated malignancy (carcinogenicity studies). Reproductive 

studies are also conducted to evaluate the effects on the embryo, foetus and new-born. All 

these in vivo studies are complemented by a series of short-term in \'itro or test tube tests 

(Selwyn, 1988). 

1.2.3 Clinical drug de\'elopment 

In the clinical stage, the typical chain of events starts with one or more phase I studies in 

relatively few healthy volunteers to establish safety limits of exposure (toxicity evaluation) 

and to study the distribution of the drug within the body (phannacokinetic evaluation). 

Characterising the absorption and subsequent elimination of the drug from the human body 

has important implications for the selection of dose levels and dosing frequencies in later 

clinical trials. Researchers typically plan dosing schedules with the express aim of 

avoiding unwanted peaks in drug concentrations since toxic effects will often be related to 

the presence of excessive amounts of drug in the body. However a balance needs to be 

maintained between the management of toxicity and the desire to achieve the required 

therapeutic effect (with potentially high drug concentrations). Treatments for which only a 

restricted range of drug concentrations achieves the required balance of therapeutic benefit 

with acceptable toxicity are said to have a narrow therapeutic window. Indeed in some 

cases a window is never established and the development of the new drug is stopped. 

- 3 -



As a general rule, the concentration of the drug at the site of action detennines the strength 

of effect, and drugs act by either stimulating or blocking receptors on or within cells. (In 

some cases it is the cells of bacteria or parasites that are targeted - for instance, drugs used 

to treat infectious diseases act in this way.) Drug effects are usually reversible and 

diminish as the drug is eliminated from the body - most commonly via the liver (hepatic) 

or kidneys (renal). At a particular point in time, the balancing effects of actual drug 

absorption and elimination determine the drug concentration within a subject, and 

variability exists both within and between subjects. Within a subject, external factors such 

as food, pregnancy, physical activity and concurrent drugs can have a significant impact on 

drug concentrations, while genetic factors most notably affect drug concentrations between 

subjects through differences in drug metabolism. These differences between subjects in the 

metabolism of drugs are typically due to differences in enzyme expression - indeed in 

some cases subjects may not express a particular enzyme at all. The impact of genetic 

variation is most obvious when differential effects are associated with physical 

characteristics such as race and gender. Other common factors that can impact drug 

concentrations are age, weight and concurrent disease. Indeed the doses of many 

treatments are calculated on the basis of body weight to account for this specific source of 

variation - a feature that is particularly relevant to the treatment of paediatric subjects. 

After completing phase I, the next step is to administer the drug to a modest number of 

patients (that is, subjects with the disease) and to evaluate efficacy alongside safety for a 

limited period of exposure. These phase II studies will usually evaluate more than one 

dose level of the test drug and will include one or more control groups to establish relative 

dose effects. However efficacy endpoints in these studies may simply be surrogates for 

long-term target outcomes - such as increased survival - and follow up is often short-term. 
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Once signs of efficacy are established. the clinical trial programme moves to the 

confirmatory phase (phase III) where the challenge is to produce - through the generation 

ofa substantial amount of high quality data - robust evidence to support the approval of the 

drug in specific disease indications. It is to these large studies that most clinical regulatory 

guidance is directed and as such the design, conduct and reporting of these studies must 

satisfy strict requirements. These studies typically have a broad geographic spread of 

investigator sites and less restrictive entry criteria compared with phase II trials - not least 

to be able to recruit the substantial number of subjects required. These studies also present 

the first real opportunity to investigate differential treatments effects across subgroups of 

subjects, and in some cases these investigations will be driven by previously observed 

differences in the pharmacokinetic profile of the drug. 

1.3 DRUG REGULATION 

J .3. J History of drug regulation 

Beginning with the Pure Food and Drug Act in 1906, drug regulation has been driven 

primarily from the US, and although many countries and geographic regions have 

developed their own regulations, most are based upon the guiding principles established in 

the US over the last 100 years or so. The 1906 Act was actually a response to growing 

concerns in America about the practice of adulteration and misbranding of food and drugs 

- a concern which centuries earlier had led to the first food law in England. (The Assize of 

Bread was proclaimed by King John in 1202 and prohibited the adulteration of bread.) 

However rather than being directed at drug approval, the primary focus of the Act was 

drug labelling with the resulting prohibition of interstate commerce with regard to 

unlawful food and drugs. In this respect, drugs that did not conform to documented 

standards of strength, quality and purity could only be sold if the specific variations were 
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clearly stated on the label. Furthennore the label could not contain false or misleading 

information. The actual requirement for regulatory approval prior to marketing came into 

force much later with the 1938 Food, Drug and Cosmetic Act. This act obligated 

companies to prove the safety of new drugs before they could be sold, although it was an 

amendment to the Act in 1962 (Kefauver-Harris Amendments) which eventually added the 

requirement for proof of efficacy (FDA History, 2002). Importantly this amendment also 

included the requirement to submit substantial evidence to support regulatory approval and 

for this to originate from adequate and well-controlled investigations. In many ways this 

was the defining moment for statistics in drug development, and as Anello (1999) states, 

More than any other lav .. or regulation. this law made sound statistical methodology an 

integral part of the regulatory process. In the modern era of drug regulation, the thorough 

statistical evaluation of clinical trial data plays a crucial role in determining both drug 

approval and the subsequent label content since all claims regarding a drug must be 

substantiated. Importantly pharmaceutical companies may only market drugs within the 

limits of the agreed label - although individual physicians are still at liberty to prescribe an 

approved drug outside of these limits. (This so-called otT-label usage is a particular 

concern for the treatment of children since often no evidence regarding the safety and 

efficacy of drugs approved for the treatment of adults is available for the paediatric 

population. ) 

Overall, the history of drug regulation can be viewed as a series of responses made to 

either notable tragic events - such as thalidomide related birth defects (1962 Kefauver

Harris Amendments) - or to growing concerns regarding the activities of the 

pharmaceutical companies - such as a reluctance to conduct paediatric studies (2002 Best 

Phannaceuticals for Children Act). These responses have now become the embodiment of 

the regulatory process. However, it is also important to note that regulatory requirements 
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are not limited to establishing that a new drug is safe and effective for intended use prior to 

regulatory approval. Considerable control is also directed toward pre-approval activities 

with the aim of protecting the subjects who participate in clinical research and who are the 

source of the evidence contained within the regulatory submission for approval. For 

instance, drugs must be thoroughly tested in animals prior to being tested in humans, 

subjects must give their informed consent prior to entering a clinical trial, and regulatory 

authorities must approve the use of new drugs in clinical trials. An integral part of the 

commitment to protect subjects enrolled in clinical trials is the regular reporting of data to 

the regulatory authorities from ongoing clinical trial programmes. 

From a US perspective, Chow and Pong (] 998) give an overview of the regulatory 

approval process while Johnson (] 988) provides a more detailed history of drug regulation. 

Pocock (] 983) describes the corresponding developments in the UK. 

1.3.2 Current regulatory structures and guidance 

The most influential regulatory body is the world is the US Food and Drug Administration 

(FDA). From humble beginnings in ]862 when a single chemist - Charles Wetherill- was 

employed by the Department of Agriculture it has grown to have over 9000 

multidisciplinary staff in 2002. Regulatory functions were added to the FDA in 1906 with 

the passing of the Food and Drugs Act, and these complemented the original scientific 

undertakings leading to what is now regarded as the modem era of the FDA - although the 

current name was not established until 1930 (FDA History, 2002). 

For a new drug to be used in a clinical trial, a pharmaceutical company must first submit 

an IND (Investigational New Drug) application to the FDA and unless otherwise notified 

may commence a trial within 30 days of receipt of their application. A central feature of 
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the IND application is an account of the proposed clinical trial program but detailed 

infonnation regarding the evidence acquired to date to support the experimentation in 

humans must also be provided. The requirements apply for the complete duration of the 

clinical trial program and effectively permit the collection of efficacy and safety data to 

support a NDA (New Drug Application) whilst providing exemption to the company from 

the law that disallows interstate commerce for an unapproved drug (Chow and Pong, 

1998). Once the agreed clinical trial program is complete and if the data are believed to 

support the approval of the new drug, then the phannaceutical company submits the NDA 

to the FDA for review. 

In Europe, a new centralised system of drug regulation was implemented in 1995 with the 

creation of the European Agency for the Evaluation of Medicinal Products (EMEA) based 

in London, UK. The EMEA is essentially the focal point for a network agency based on 

co-operation amongst the national competent authorities of the Member States of the 

European Union - for example, the UK's Medicines and Healthcare products Regulatory 

Agency (MHRA) - fonnerly known as the Medicines Control Agency (MCA). In this 

respect, the EMEA co-ordinates the scientific resources made available. The principal 

scientific body of the EMEA in relation to human medicines is the Committee for 

Medicinal Products for Human Use (CHMP) and the EMEA is able to support the 

European Commission regarding harmonisation tasks within Europe and between regions 

at the international level. (Note that the CHMP was previously named the Committee for 

Proprietary Medicinal Products (CPMP) and most of their guidelines continue to use the 

CPMP acronym. As a result the CHMP will mostly be referred to as the CPMP within this 

research thesis to avoid confusion.) 
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The European Union Directive 2001120/EC implemented on IS
\ May 2004 simplified and 

harmonised the process across Member States in Europe with regard to the administrative 

procedures governing clinical trials and in particular the implementation of Good Clinical 

Practice. In terms of clinical trial initiation, pharmaceutical companies (The Sponsor) are 

now required to submit a clinical trial authorisation (CT A) prior to commencement and 

each trial is assigned a EudraCT number so that it may be entered on the a clinical trial 

database that contains information on all interventional clinical studies of medicinal 

products in the EU (MHRA, 2004). An initial assessment is undertaken within 30 days but 

all trials must also receive ethics committee approval prior to commencement. The 

harmonisation effort has been far reaching and, for instance, prior to implementation of the 

Directive, healthy volunteer studies in the UK were actually unregulated. If a CTA is 

awarded the Sponsor is responsible for reporting serious unexpected adverse events 

(SUSARs) to the regulatory authorities and relevant ethics committees (one per country in 

which the trial is undertaken) within an agreed timeframe and provide annual safety 

reports. 

In terms of drug evaluation, the European system provides two potential routes. Firstly, 

the centralised route, whereby applications are submitted directly to the EMEA. A 

scientific committee then performs the evaluation that is then transformed by the 

Commission into a single authorisation applying the European Union as a whole. 

Secondly, the decentralised procedure that is based on the principle of mutual recognition 

of national authorities. In this case marketing authorisation granted by one Member State 

is extended to one or more other Member States identified by the applicant. In cases of 

disagreement between Member States then the EMEA acts as arbitrator. Single national 

authorisations still remain an option to pharmaceutical companies, however. 
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Most importantly however in the context of global drug development, there has been a 

major initiative over recent years to harmonise regulatory requirements across regions - in 

particular involving the US, Europe and Japan. The so-called International Conference on 

Harmonisation (ICH) process has brought together representatives from regulatory 

authorities and experts from within pharmaceutical industry with the express aim of 

making recommendations regarding the technical requirements for new pharmaceutical 

products. The first conference was held in Brussels in 1991 (ICH 1) while the sixth 

meeting took place in Osaka, Japan in November 2003 (ICH 6). In the way that regulation 

in the US evolved from the requirement to ensure consistency from State to State, ICH is 

an attempt to ensure consistency between regions. The recently introduced Common 

Technical Document (CTD) is a prime example of this harmonisation effort (ICH M4, 

2000). Pharmaceutical companies use the CTD to summarise their evidence on a new 

treatment to regulatory authorities and it represents the culmination of research effort, 

costing in the region of $800m. The CTO provides companies with a common structure 

and format to submit their evidence and replaces the previously tailored approaches 

required by specific countries or regions. The CTD is modular in format and its breadth is 

extensive - although the actual content requirements can still differ somewhat between 

countries and regions. The CTO became mandatory on 1 SI July 2003. 

The chief benefit of the ICH process has been the generation of guidelines covering a wide 

variety of topics relevant to drug development. Regional authorities such as the FDA, 

CHMP and Japan's Ministry of Heath and Welfare have then adopted these ICH guidelines 

leading to a common set of standards. (In the case of the FDA, these guidelines are 

incorporated into the Federal Register.) The most pertinent document from a statistics 

perspective is the ICH E9 guideline entitled Statistical principles for clinical trials which 

was adopted by the CPMP in Europe in March 1998. (Other ICH documents that are 
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directly relevant to statisticians are: E3, Note/or guidance on structure and content 0/ 

clinical study reports (CPMP/ICH/137/95); E6, Guideline/or good clinical practice 

(CPMP/ICHII35/95); and E 1 0, Choice 0/ control group in clinical trials 

(CPMP/ICH/364/96).) ICH E9 specifically targets the design, analysis and reporting of 

clinical trials, although many other ICH guidelines also refer to statistical issues and 

contain related text in assorted sections. {The content of ICH E9 was heavily influenced 

by the earlier Notefor Guidance (III/3630/92-EN) produced by the CPMP in 1994 entitled 

Biostalislical Methodology in Clinical Trials in Applicationsfor Marketing Authorisations 

for Medicinal Purposes (Lewis et ai, 1995) Other relevant contributing documents 

included the FDA's 1988 Guidancefor the Format and Content o/the Clinical and 

Statistical Sections of a New Drug Application and the Japanese Ministry of Heath and 

Welfare's 1992 Guideline on the Statistical analysis ~lClinical Studies.) In Europe, ICH 

E9 is supported by a series ofCPMP points to consider documents (termed guideline in the 

case of the most recent issue) that address specific statistics topics in more detail while 

many of the therapeutic points to consider documents also address statistical issues 

specifically related to their area. The current list of points to consider documents that 

address statistics topics includes the following documents: 

Reference CPMP Document Adopted 

CPMP/EWP/908/99 Points to Consider on Multiplicity issues in Clinical Trials Sept 2002 

CPMP/EWP/2863/99 Points to Consider on Adjustment for Baseline Covariates May 2003 

CPMP/EWP! 1776/99 Points to Consider on Missing Data Nov 2001 

CPMP/2330/99 Points to Consider on Application with 1.) Meta-analyses May 2001 

and 2.) One Pivotal study 

CPMP/EWP!482/99 Points to Consider on Switching between Superiority and Jul2000 

Non-inferiority 

CPMPIEWP!2158/99 Guideline on the Choice of Non-Inferiority Margin Jul2oo5 
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There is one other relevant document in preparation. 

Reference CPMP Document Status 

CPMP;'EWP/2459/02 Concept Paper on the Development of a CPMP Points Concept 

to Consider on Methodological issues in Confinnatory 

Clinical Trials with Flexible Design and Analysis Plan 

CHMpJEWP/83561!2005 Guideline on Clinical Trials in Small Populations Draft 

The ICH E9 guideline represents an important development in the design and analysis of 

clinical trials since for the first time, world-wide regulatory expectation with regard to 

statistically related issues has been clarified. This has the potential to raise standards and 

promote consistency whilst providing pharmaceutical companies with a range of issues 

that they should address proactively when planning the design. analysis and reporting of 

clinical trials. Within the regulatory framework there are still, of course, opportunities to 

discuss planned clinical trial designs with regulatory staff - including statisticians -

although this process is more formalised in the US than elsewhere - particularly with 

regard to statistical advice (Lewis, 1995). In the US, the statistical review of new drug 

applications has been at the heart of the drug approval process and a substantial number of 

statisticians have been directly employed at the FDA for many years. Indeed statisticians 

at the FDA will actually perform their own independent analyses on the data presented in 

the CTD. However European authorities have historically been much slower in 

recognising the need for permanent statistical expertise and in fact, in the UK, the MHRA 

did not recruit its first statistician to the Licensing Division until 1994 (Lewis, 1996) after 

receiving pressure from a group of eminent medical statisticians in the UK (Pocock et aI, 

199 I). (The Committee of Safety of Medicines, that advises the UK licensing authority, 

and the Medicines Commission, that advises government ministers in relation to the 
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Medicines Act of 1968, have traditionally had eminent academic statisticians as members 

however (Lewis, 1996». Sweden and Germany employed permanent statistical statT 

earlier than this but today many countries still rely on external experts to provide advice 

when required. Independent statistical analysis by regulatory authorities in Europe is 

therefore restricted to simple analyses of transcribed data and it is more likely that a 

European regulatory authority will ask the pharmaceutical company to undertake 

additional analyses on their behalf 

Notwithstanding the availability of detailed guidance documents to aid pharmaceutical 

companies in the design and analysis of clinical trials, a number of papers have been 

published recently describing statistical shortcomings and issues in licence applications. 

These include articles originating from statisticians employed by the MHRA (Lewis, 1995; 

Lewis, 1996; Lewis and Facey, 1998; Brown, 2003), FDA (Anello, 1999), Germany's 

Federal Institute for Drugs and Medical Devices (Rohmel, 1999), and all regions combined 

(Lewis et ai, 2001). Of note is that the recurrent themes and areas ofconcem include the 

topics covered in this research thesis - that is, the choice of analysis populations, subgroup 

analyses, multiplicity and the interpretation of equivalence trials. In contrast, Pong and 

Chow (1997), Phillips et al (2000) and Phillips and Haudiquet (2003) highlight the 

practical issues and challenges of applying the ICH E9 guideline from the pharmaceutical 

industry'S perspective. 

1.3.3 Current regulatory climate 

In recent years the regulatory climate has changed somewhat. Following drug failures 

such as thalidomide, drug regulation had been directed towards limiting the exposure of 

subjects to the etTects of experimental treatments but in recent years this age of 

protectionism has been replaced by the age of inclusion ism (Johnson-Pratt and Bush, 
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1996). That is, an emphasis on the broadening the inclusion criteria for clinical trials. 

Interestingly the main driving force for this change was the perception that specific subject 

types were being denied the potential benefits from medical research, while it was also 

clear that the information available regarding the effects of drugs in some sections of the 

community - particularly children - was simply inadequate. 

The focal point of the debate on adequate representation was the inclusion of women in 

clinical trials and the widely held view was that the treatment of women in society was 

actually based on evidence from clinical trials with men. Concerns were identified in 

relation to both the female physiology (such as the impact of the menstrual cycle and 

menopause [Refer to Figure 1.1], and of factors such as weight, fat content and general 

hormone levels) and possible interactions with other drugs (such as oral contraceptives and 

hormone replacement therapy). 

Figure 1.1. Some lower level subgroups within the female subgroup. 

Sex 
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Indeed it was certainly true that women of childbearing potential had systematically been 

excluded from early phase clinical research in all but the most severe diseases

predominately as a means of protecting the foetus and future reproductive potential 

(Bennett, 1993). There was also increased awareness of the more general need to 

individualise treatments for the optimum treatment of subjects, and to consider dose 

adjustment on the basis of factors such as concurrent disease, subject characteristics and 

concomitant medications. In this respect the emphasis began to shift towards the 

investigation of the resulting data from clinical trials rather than adequate representation 

perse. 

In 1993, the FDA issued specific guidance in relation to women in clinical research. 

namely the Guidelinefor the Study and Evaluation of Gender DUferences in the Clinical 

Evaluation of Drugs. This guideline stated the FDA's revised expectations regarding both 

the representation of women in clinical trials and the subsequent investigation of the data 

generated for potential between gender differences - including an assessment of potential 

differences in the pharmacokinetic profile. In addition, the FDA modified its 1977 policy 

that had effectively excluded women of childbearing potential from early phase trials. The 

rationale for the change was theview that risks to the foetus could be actively managed in 

early phase studies. For instance, these studies often require just a single dose of drug that 

could be administered after a negative pregnancy test and contraception usage would be 

concurrent. Furthermore it was noted that if gender differences could be demonstrated 

early on with regard to the pharmacokinetic profile of the drug in these studies then later 

phase studies could be designed more effectively. In a similar vein, the NIH Revitalisation 

Act was signed in the US in 1993 and included a requirement that NIH trials were designed 

and carried out in a manner su.fficienlto providefor a valid ana~ysis of whether the 

variables being studied in the trial affect women or member of minority groups, as the case 
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may be. difJerent~v than other subjects in the trial (NIH Revalisation Act, ]993). The 

consequences of this Act led to considerable debate within the US scientific community 

and in particular with regard to the perceived constraint that future trials required the 

female quotas. However it was later shown by Meinert and Gilpin (2001) that despite the 

concerns that had led to the Act, over the period 1975-1995, there had actually been a 

sizeable excess of female-only trials and the perception that women had been understudied 

was misrepresented. (Merkatz et al (1993) give more detail of the sex specific issues in 

drug development and give a range of examples where differences have been observed 

between male and females with regard to specific drug effects.) 

Similarly, earlier concerns had been expressed regarding the representation of elderly 

subjects in clinical trials and the requirement to investigate potential differences in drug 

effects between older and younger subjects. As a result the FDA issued the Guideline/or 

the Study of Drugs Likely to be Used in the Elder~v in 1989. In 1995. the FDA 

subsequently set forward a broader requirement for the presentation of effectiveness and 

safety data for the demographic characteristics sex, age and race and further subgroups 

defined by other pre-randomisation factors such as disease severity and renal impairment 

(Federal register, 1995). The FDA stressed that the aim was not to require the enrolment 

of specific subject numbers in individual studies or even the clinical trials program as a 

whole - rather the focus would be on the presentation of the data collected. Indeed the 

reference to a program of clinical trial trials is important since the FDA requires a drug 

application to include so-called integrated summaries of efficacy (ISE) and integrated 

summaries of safety (ISS). These summaries combine data from similar study designs 

included in the clinical trial program and are aimed at investigating consistency of effect 

across important subgroups. With the advent of the CTD these remain a FDA requirement 

although the emphasis has moved to describe these summaries move accurately as 
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integrated analyses. To date, fonnal summaries across studies are not an EMEA 

requirement although it is unlikely in practice that these will be removed from the CTD for 

European drug submissions. 

Most recently regulatory focus has been directed towards paediatric clinical trials, or rather 

the lack of such trials. Again regulatory developments in this area have been driven from 

the US, and the effectiveness and safety of new treatments must now be established in the 

paediatric population if the product is likely to be used in a substantial number of children 

or if meaningful therapeutic benefit over current treatments is likely. Indeed standard 

labelling for drugs often prescribed for children such as "safety and effectiveness in 

paediatric patients have not been established" is now considered unsatisfactory following 

the rules that took effect in April 1999. 

The ICH process has also addressed specific subject types, and has issued their own 

guidelines in the areas of geriatrics, paediatrics and ethnic factors although interestingly no 

guideline directed towards gender has ever been issutd. Details of these guidelines are 

given below: 

CPMP Referen~e 

CPMP/ICHJ289/95 

ICU Document 

E5: Ethnic Factors in the Acceptability of Foreign 

Clinical Data 

CPl\IP Adopted 

Mar 1998 

CPMP/ICH/379/95 E7: Clinical Trials in Special Populations: Geriatrics Mar 1994 

CPMP/ICHI2711/99 Ell: Clinical Investigation of Medicinal Products in Jul 2000 

the Pediatric Population 

With regard to representation, the ICH guideline for geriatrics is more prescriptive than the 

FDA guidelines and actually recommends a minimum target of 100 elderly subjects 

- 17 -



(defined as 65 years or older) to allow for the detection of clinically important differences. 

It also encourages the inclusion of subjects aged 75 years or older and the avoidance of 

upper age cut-offs. However, apart from the definition of an elderly subject and the sub

division of paediatric subjects into five subgroups, there has been little direction from the 

regulators regarding how the effectiveness and safety data should be summarised or 

analysed. 

1.4 THE RANDOMISED AND CONTROLLED CLINICAL TRIAL 

1.4.1 Randomisation and control 

In simple terms a clinical trial is a planned experiment with the essential characteristic that 

one uses results based on limited sample oj patients to make inJerences about how 

treatment should be conducted in the general population oj patients who will require 

treatment in the Juture (Pocock, 1983). However it is the introduction of the randomised 

control that brings true scientific rigour to the clinical trial and which creates the 

framework for reliable interpretation. Concurrent control is essential in the confirmatory 

setting since within the defined experimental environment it enables an observed effect to 

be attributed to the experimental treatment alone - rather than to the impact of one or more 

concurrent external factors. It is then the instrument of randomisation that ensures that 

experimental and control treatments are allocated without bias and provides the 

probabilistic basis for treatment comparisons. Indeed it is the method of choice to control 

for potential confounding factors since random assignment provides the basis for causal 

inference (Breslow, 2001). 

RA Fisher developed the randomised experiment between the World Wars, although 

ultimately it is Bradford Hill who is credited with introducing the concept to clinical 

research in the 1950's (Silverman, 1991). The randomised clinical trial is now firmly 
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embedded within medical research culture where it has been described by some as the 

most important scientific advance of the last century - a view supported by the fact that 

over ~ million randomised clinical trials had been published during this period 

(Harrington, 2002). 

Randomisation is widely held to have three important functions in the clinical trial setting. 

It provides protection against selection bias in the assignment of treatment to subjects by 

the Investigator. Over all randomisations, it generates treatment groups that are balanced 

with regard to factors - known and unknown, measured and not measured - that influence 

outcome but are independent of the treatment assignment (Gillings and Koch, 1991). (Note 

that a treatment group can also refer to a sequence of treatments. Indeed cross-over 

designs (Senn, 1993), where treatments are compared within rather than between subjects. 

are of particular importance in early phase clinical development.) Finally, given that the 

randomisation procedure was not violated, it enables test statistics to be generated for 

treatment comparisons (Fisher LD et ai, 1990). Some authors regard protection against 

selection bias as the most important property of randomisation (Fisher LO et al. 1990) 

while others choose its probabilistic basis for comparability (Koch and Sollecito, 1984). 

Harrington (2002) describes the ReT as one of the deligh(ful ironies of modern science 

since the action of introducing chance variation into a strictly controlled experiment 

provides the very means of accounting for both observed and unobserved heterogeneity. 

For further discussion on reasons to randomise - in particular in relation to blinding - refer 

to Senn (1994b). 

1.4.2 Blinding 

Although randomisation affords an unbiased assignment of treatments to subjects, other 

important sources of bias remain and these must be carefully managed to ensure that 
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treatment comparisons are not distorted. Knowledge of the treatment assignment on the 

part of the subject or the investigating team has the potential to influence the conduct and 

interpretation of a trial markedly. For instance, this information can influence compliance, 

dose modification decisions, study continuation, the recording of adverse events, the 

assessment of efficacy and the use of other medications; it can even influence the 

recruitment of further subjects into the study (Pocock, 1983). However, susceptibility to 

these different forms of unintentional and intentional bias will vary from study to study. 

For example, compliance will be less of an issue in a single dose study compared with a 

12-month study with dosing three times a day. Similarly a hard outcome such as survival 

in oncology will be less easily influenced than the completion of a psychological 

measurement scale in an area such as depression. To address these sources of potential 

bias it has become standard practice to mask as many persons involved in the conduct of a 

clinical trial, as is practically possible. This design feature is called blinding and a variety 

of terms have been introduced to describe the degree of blinding implemented and 

maintained during a study. In terms of minimising bias, double-blind masking is the 

optimal approach since all persons involved in the conduct of the study are unaware of the 

treatment assignment for the complete duration of the study. Single-blind refers to cases 

were the subject is unaware of the treatment assignment but the investigator is unblinded -

although it not uncommon to have, in addition, blinded central evaluations of outcome 

based on source documentation in these circumstances. Finally open-label refers to cases 

where both the subject and investigating team are unblinded to treatment and again blinded 

central evaluations may feature. It is also standard practice to mask the data management 

and statistics teams until such time that the database is signed off as consistent and 

complete. 
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In many cases, blinding is a matter of practicality - although regulatory authorities expect 

pharmaceutical companies to be implement the highest degree of masking possible or 

address issues of un blinding with alternative procedural control. (For example, to 

minimise selection bias in an open-label study - comparing an oral drug with an 

intravenous comparator, say - a central randomisation procedure might be used whereby 

the investigator must first register the subject as eligible for inclusion in the study before 

receiving the treatment assignment.) The exact nature ofthe masking challenge depends 

upon the study hypothesis being tested and can be broadly divided into studies designed to 

investigate absolute or incremental treatment effects compared with studies designed to 

investigate relative treatment effects. In the former case, these studies are designed to 

show the superiority of a test treatment versus no treatment and effective blinding requires 

the use of the so-called placebo control. A placebo is identical in appearance and taste to 

the corresponding test drug but contains an inert substance that has no pharmacological 

effect. As such subjects are randomised to either test treatment or placebo control, and the 

subjects who are assigned to placebo follow an identical regime as the subjects assigned to 

the active compound. Similarly add-on studies compare a test treatment to a placebo in the 

presence of another treatment that both groups of subjects receive concurrently (Senn, 

2002). In contrast, studies designed to investigate relative treatment effects involve an 

active control treatment where the hypothesis is either to test for superiority of the test 

treatment over the reference treatment, or alternatively to demonstrate non-inferiority (or 

equivalence) of the test treatment versus the reference. In these cases blinding is more of a 

challenge since it is difficult to make a different active treatment look and taste the same 

without changing the properties of the formulation (e.g. the absorption of the drug). 

Although encapsulation of drugs is undertaken in practice, the most common solution is to 

employ a double-dummy technique whereby subjects receive both the active drug (either 

test or reference) and the correspondingly matched placebo. Of course, the actual 
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phannacological effects of a treatment can unblind an individual subject and this is a 

particular problem for drugs with a unique toxicity profile. However this is perhaps more 

of a perceived problem and often subjects and investigators who think they know the 

treatment assignment are later proved mistaken. Finally, since no knowledge ofthe 

treatment assignment is required to create a conclusion of equivalence - this can be 

achieved by simply assigning a random response to all subjects, regardless of treatment 

allocation - the real power of randomisation and blinding is to strengthen a conclusion that 

the treatments differ (Senn, 1991). 

1.4.3 Stratification, multiple centres and blocking 

An unrestricted randomisation that assigns subjects to test treatment or alternatively to a 

control in equal proportions simply allocates subjects on the basis of a coin toss. (Unequal 

assignments are also used although ratios in excess of 2: 1 are relatively uncommon due to 

an accelerated increase in the type II error.) However, in practice most designs incorporate 

some measure to limit the chances of a large imbalance occurring in the realised 

randomisation and random assignment is often restricted by the use of blocks and 

stratification. Fixed blocks contain a strict sequential number of random assignments such 

that within each block the treatment assignment ratio is enforced. For example, a block 

size of six for a trial that plans to randomise an equal number of subjects to each of two 

treatments would include 3 assignments per treatment group. Blocks are therefore a 

method of facilitating balance on an ongoing basis by ensuring that the proportion of 

subjects assigned to each treatment is close to the planned proportion, no matter if the trial 

is stopped early or randomises more subjects than planned. In multi-centre studies it is 

common practice to assign multiples of complete blocks to each centre that in effect 

stratifies the study by centre. Stratification is a method of ensuring that the proportion of 

subjects assigned to each treatment within each pre-defined stratum is close to the planned 
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proportion, and is equivalent to creating a separate randomisation schema for each 

stratifying factor or stratum. Stratification can also be used to address representation. That 

is, it can be used to ensure that specific quotas of subjects with a pre-randomisation 

characteristic - such as gender or disease severity - are randomised into the study. 

One important implication of restricted randomisation is that all factors used to stratify the 

design - including study centre, where appropriate - should be included in the statistical 

model in the subsequent analysis (ICH E9, ) 998). Inclusion of the blocking factor itself in 

the model is rare and is not a regulatory requirement. In cases where there are few subjects 

randomised per centre, then centres are often grouped together by country (or by using 

some other pre-specified rule). 

1.4.4 Eligibili~v 

A clinical trial protocol defines the intended study population through detailed inclusion 

and exclusion criteria. These criteria are applied at a screening visit prior to randomising 

the subject into the study and in some designs there is a screening or run-in period where 

subjects must satisfy criteria at both entry and completion of this period. Screening 

periods can also be used to determine potential compliance; withdraw current treatments or 

add new ones, train subjects and investigators in terms of specific procedures or tests; 

provide additional baseline measurements to control variability; and determine within 

subject variability. 

Inclusion criteria can generally be regarded as referring to factors that affect the 

assessment of efficacy. Typically these criteria define the presence and severity of the 

disease under study. They will also be used to define the broad population under study in 

terms of the demographics, age and sex, and as such sets out the opportunities for different 
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subject types to be represented in the study. Agreement to participate in the study by the 

subject is also included here - that is, informed consent. In contrast, exclusion criteria are 

generally specified to avoid the inclusion of subjects who could be at risk from any of the 

study treatments. Typical examples include: pregnant women or women not using a 

suitable form of contraception; subjects with hepatic or renal dysfunction for whom safety 

data are not yet available; subjects taking concomitant medication for which there are no 

data on the possibility of interaction with one or more of the study treatments; and 

concurrent illnesses which may make the assessment of safety and efficacy difficult. One 

important feature of eligibility criteria is that they are usually applied prior to 

randomisation and as such are independent of the treatment assignment. The exclusion of 

ineligible subjects - who have been randomised in error - from subsequent analyses on the 

basis of not meeting these criteria cannot introduce bias in terms of treatment group 

comparability. However it should be noted that unduly restrictive inclusion and exclusion 

criteria risk selecting a trial population for study that is no longer representative of the 

intended target population for treatment. In this respect the danger would be that an 

unbiased estimate of the wrong parameter would result. 

1.5 DISCUSSION 

Drug development is essentially a well-established, step-wise process whereby knowledge 

is accumulated through time until such time that the aggregated evidence either supports 

drug approval or alternatively the discontinuation of deVelopment activity. Increasingly, 

the world of drug regulation is becoming a more standardised and well-defined 

environment, where the application of statistical methodology and thinking plays a key 

role in design, analysis and interpretation of clinical trial programs. Accordingly specific 

statistical guidelines have been created to define regulatory expectation although, 

according to the regulators, problems remain and many submissions fail to address key 
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issues in a satisfactory manner. Alongside the developments in statistical guidance, the 

regulatory focus has been on inclusionism, and the identification of differential treatment 

effects across subgroups with the aim of determining the need for dose adjustment in cases 

where a drug is not uniformly safe and efficacious in a particular disease area. In this 

respect robust evidence is key to a successful regulatory submission and it is perhaps no 

coincidence that the regulatory statisticians have highlighted the analysis and reporting of 

subgroups and sub-populations as particular problem areas. Therapeutic equivalence has 

also been identified as a problem, and specific issues relating to analysis populations and 

subgroups are also relevant here. Drug development has been sorely neglected in the 

paediatric population and drug labelling has more frequently excluded their use in children 

rather than addressing the real issue that the paediatric population requires treatment 

options that have been shown to be safe and effective. Although the regulatory authorities 

are now remedying this situation, clinical trial research is not well developed and unique 

challenges exist which must be overcome. 

In Chapter 2, the basic principles of data sub-setting will be examined in more detail. In 

particular, the exclusion of clinical trial data to form sub-populations and subgroups will be 

investigated and the impact on the estimated treatment difference evaluated. 
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CHAPTER TWO: (SUB)DIVIDE AND RULE(S) 

Brother Tony 

Was notab(v bony 

He would never eat his meals 

And so they gave him medicinal compound 

Now they move him round on wheels. 

2.1 INTRODUCTION 

The aim of this chapter is to illustrate some of the practical challenges faced when 

constructing sub-populations and subgroups in the reporting of clinical trial data. Firstly, 

the basic principles of sub-setting clinical trial data will be discussed. The focus will be on 

randomisation as the basis for providing unbiased estimates of treatment effects, and it will 

be shown how the exclusion of data has the potential to introduce bias into the estimation 

process. Secondly, regulatory guidance in relation to populations and sub-populations will 

be reviewed with specific emphasis on the practical challenges of implementing the intent

to-treat principle. Thirdly, approaches taken to investigate treatment effects within 

subgroups will be discussed together with issues surrounding multiplicity and the risk of 

observing inconsistent results from subgroup to subgroup. Finally, some examples of 

biased sub-populations and subgroups will be presented from a variety of therapeutic areas. 

Now, sub-populations and subgroups both involve data sub-setting, although sub

populations tend to be based on composite criteria (such as all subjects who meet all the 

inclusion criteria) whereas subgroups are typically constructed or partitioned based on a 

single criterion (such as male subjects). However despite being closely related in tenns of 

construction, sub-populations and subgroups play different roles in the quest for robustness 

in support of drug approval. 
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The selection of subject sub-populations revolves around issues of accountability and 

generalisability, and is of a philosophical nature. (Accountability refers to the general 

desire to account or incorporate all subjects from the trial in the subsequent statistical 

analysis while generalisability is directed towards determining the scope of extrapolation.) 

The modus operandi is that data exclusion creates a subset of the original complete 

population of all randomised subjects, and the revised estimate of the treatment difference 

in this subset is compared, not with the corresponding complement sub-population, but 

with the original complete population. In this respect the approach can be considered 

hierarchical - purist to interventionist - whereby beginning with the all randomised 

subjects, ever increasing amounts of data are excluded to form sub-populations 

increasingly less representative of the original complete population. As a result, one can 

investigate how sensitive the study conclusions are to such data exclusions, and if 

consistent results are achieved across all analysis populations, the conclusions drawn are 

considered robust. 

Essentially there are three main reasons why one might to exclude data from the original 

complete population of all randomised subjects to form a sub-population in a ReT. Firstly 

there may be problems associated with the randomisation procedure itself. Secondly, some 

subjects may have been randomised who were actually ineligible for inclusion into the 

study - for instance, subjects without the required disease severity. Thirdly, subjects may 

not - within limits - conform to the procedures of the protocol or may be prematurely 

withdrawn. For instance, a subject may not take the treatment as requested and may be 

viewed as being non-evaluable. Sub-populations that account for these types of exclusion 

are often referred to as per protocol (PP) populations since the subjects included are 

deemed protocol compliant. 
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Now, while the specification of various analysis populations or sub-populations is a well

accepted feature of confinnatory studies, only a single population is usually selected to 

secure the primary investigation of the primary efficacy endpoint - a procedure that 

effectively controls for multiplicity. Furthennore, the make-up of this primary population 

will, in most instances, be as close to the original complete population of all randomised 

subjects as is practically possible - a practice that ensures that results are broadly 

representative of the subjects taking part in the study. However, rather than direct 

extrapolation of the results to a precisely defined subject population, generalisation is 

directed mostly towards simply demonstrating that the test treatment is broadly effective in 

practice. 

In contrast, subgroup analyses lend themselves to precisely defined treatment comparisons 

either within or between subgroups although they are usually considered to be of 

secondary importance in an individual clinical trial or of an exploratory nature. The 

primary aim of such analyses is to investigate consistency of effect across clearly defined 

subgroups either within a study or across a series of related studies. Again the approach 

can be considered somewhat hierarchical - an initial overall treatment comparison followed 

by a treatment comparison within each subgroup. If the within subgroup differences are 

similar, and consistent with the overall treatment difference, then the overall difference is 

considered robust and broadly applicable to all subgroups. Multiplicity, for instance, can 

be addressed through closed testing procedures that exploit the hierarchical nature of the 

investigations or through tests for treatment by subgroup interaction. 

In the next section of this chapter, it will be shown how randomisation is fundamental to 

the unbiased estimation of treatment differences. Furthennore, the impact of different 
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types of data exclusion will be considered regarding the potential to introduce bias into the 

comparison of randomised treatments within analysis populations. 

2.2 POPULATIONS AND SUB-POPULATIONS 

2.2.1 The role o/randomisation 

As described in Chapter One, in terms of experimental design, over all randomisations, 

randomisation balances treatment groups for treatment independent factors - known and 

unknown, measured and not measured - that may influence outcome (Gillings and Koch, 

1991). (The qualifier is included because imbalance in the distributions of factors that 

have no influence on outcome can be considered irrelevant to the treatment comparisons.) 

It follows that if treatment groups are balanced in this way, then any observed difference 

between the treatments groups with regard to outcome must be attributable to either the 

treatments themselves or random variation. Accordingly, it is in this context that a 

statistical analysis that includes all randomised subjects is described as unbiased. More 

precisely, randomisation leads to an unbiased distribution of subjects to treatment groups. 

However, note that the observed randomisation for a particular study will exhibit some 

imbalance with respect to these factors, although clearly the extent of the imbalance can 

only be assessed for those factors for which data have been recorded or measured. The key 

element is that observed imbalance is not of a systematic nature, and statistical techniques 

account for imbalance either unconditionally or conditionally (Senn, 1994) - the latter 

approach involving additional assumptions regarding model structure. 

Conversely, the exclusion ofrandomised subjects to form a sub-population or subgroup - if 

not based on a mechanism independent of randomised treatment - has the potential to 

introduce bias through the systematic imbalance of factors across treatment groups. 

Accordingly, to maintain an unbiased distribution of subjects to treatment groups, the exact 
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nature of exclusions must be determined when forming sub-populations or subgroups. 

Factors generally regarded as being independent ofthe treatment assignment are those 

belonging to subjects at the time of randomisation. That is, factors for which values were 

recorded - or could have been recorded - up until the point of randomisation. Exclusion of 

subjects on the basis of these factors does not introduce systematic imbalance and the sub

population or subgroup remains unbiased in this regard. 

In the following sub-sections, three well-defined areas of data exclusion are examined in 

relation to the impact on treatment group comparability. These areas are problems 

associated with the randomisation procedure; ineligibility of subjects; and procedural non

compliance post-randomisation. In a fourth sub-section, the broader impact of data 

exclusion on treatment effect estimation will be discussed in terms of the relationship 

between treatment-independent factors and outcome. 

2.2.2 Exclusions based on problems associated with the randomisation procedure 

Problems associated with the randomisation process are not uncommon in randomised 

clinical trials although these are usually limited to at most a handful of subjects per study. 

The error of most concern is when the actual treatment received is different from the 

randomised treatment, although another important concern is subjects that are randomised 

more than once into the same study. In the first case, the intuitive clinical approach to 

analyse the subject according to the treatment received is at odds with the statistical 

requirement to maintain an unbiased assignment of subjects to treatment. Similarly, in the 

second case although the clinical view might be that each entry represents a new and 

distinct course of treatment, the statistical requirement for independent data is violated if 

more than one entry is included in the subsequent statistical analysis. Examples of 

potentially less serious problems with the randomisation procedure are subjects who are 
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randomised out of sequence and subjects who are randomised from an incorrect stratum -

both of which are generally considered to be indicative of poor study conduct, although 

selection bias remains a possibility. 

In general, the primary consideration when assessing randomisation violations is to 

determine whether the disruption to the randomisation procedure was itself of a random 

nature. The introduction of another random process, by definition independent of 

treatment, will have no impact on the distribution of factors, and it follows that - over all 

randomisations - treatment groups will remain balanced. In this regard, the level of 

blinding employed in the study is important, since the deliberate and systematic 

assignment of specific subjects to known treatments by Investigators requires accurate 

prediction of the randomisation schema. Therefore to predict future treatment assignments 

in a double-blind study requires accurate prediction of both the block size and the 

treatment assigned to previous subjects. Regarding the block size, it is considered poor 

practice to specify the block length in the study protocol, although given the current 

tendency to adopt fixed blocks of short length, Investigators with knowledge of trial design 

may well be able to make educated guesses. As for previous treatment assignments, these 

can be revealed through the observation of unique adverse events or marked efficacy, 

although stochastic elements makes this less useful to the deliberate fraudster than may at 

first appear. Another direct route to unblinding is the revelation of pharmacokinetic data 

for individual subjects, and procedural steps must be taken to avoid this happening during 

a clinical trial. However, despite these potential chinks, most randomisation errors in 

double-blind studies will be independent of randomised treatment and will be a simple 

reflection of poor administration and study conduct. However, in open label or partially 

blinded studies, it is much more difficult to demonstrate that errors are independent of 

randomised treatment and convincing arguments are required. Indeed it is much more 
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important to check in these studies for missed or unused treatment assignments and for 

subjects randomised out of sequence, since once the treatment for the next assignment is 

revealed, an obvious route exists for the deliberate and biased assignment of subjects to 

treatment. In fact, this is where central randomisations have such an important role to play, 

since Investigators are required first to provide identifying information for subjects - such 

as gender and date of birth - prior to the randomised treatment being assigned. 

Furthermore, avoiding stratification by centre when using central randomisation, limits the 

potential for assignment prediction. In both blinded and open label studies, missed 

numbers may indicate subjects who were randomised but not treated, for whom no data 

have been provided. In this respect, it is important that all randomisation numbers are 

accounted for on study completion and any missed numbers queried with the investigator 

site. 

The assignment of the incorrect randomised treatment for all or just part of the intended 

treatment duration is a more likely occurrence in open label studies where the drug supply 

may not be pre-packaged with the subject number. In general, the greater the scope for an 

administration error, the more likely it is that an error will occur. Indeed since open label 

or partially blinded studies are usually only performed where blinding is impractical -

intravenous applications with different treatment schedules, for instance - additional 

complex administration involving a number of different parties may well be required in 

comparison with double-blind studies, making these administration errors more likely. 

Subjects randomised more than once into the same study represent a unique challenge, 

although it is now common for protocols to state explicitly that this should not occur. 

From a statistical perspective, the issue relates to analysing data that are not independent 

and it is self evident that subjects who have multiple entries in the same clinical trial 
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represent a subgroup of subjects who have demonstrated the ability to tolerate at least one 

of the randomised treatments previously. The specific issue of multiple entries will be 

considered in more detail through the presentation of a specific example in Chapter Seven. 

2.2.3 Exclusions based on eligibility 

A clinical trial protocol typically defines the intended subject population for study through 

detailed inclusion and exclusion criteria and, prior to randomisation, an investigator is 

required to document that the subject meets all inclusion criteria specified whilst meeting 

none of the exclusion criteria. 

Inclusion criteria can generally be regarded as referring to issues that affect the assessment 

of efficacy or outcome and typically these criteria are used to define carefully the presence 

and severity of the disease under study. These criteria wiIJ also be used to define the 

broad population under study - for instance, restrictions relating to demographic factors 

such as age, sex and race. Confirmation of agreement to participate in the study on the part 

of subject is also detailed. 

In contrast, exclusion criteria are generally specified to avoid the inclusion of subjects who 

could be at risk from one or more of the study treatments or from the study procedures. 

Typical examples include: pregnant women or women not using a suitable form of 

contraception; subjects with hepatic or renal dysfunction for whom safety data are not yet 

available; subjects taking concomitant medication for which the possibility of drug-study 

treatment interaction cannot be excluded; and concurrent illnesses which may make the 

assessment of both safety and efficacy difficult. 
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As the inclusion criteria are used to specify the type of subject who should be studied in 

tenns of efficacy, there is a greater rationale to exclude subjects who do not meet these 

criteria to form sub-populations rather than those meeting the exclusion criteria. Since 

both inclusion and exclusion criteria are applied to subjects prior to randomisation, they 

are, by definition, independent of the treatment assignment. Accordingly, the exclusion of 

ineligible randomised subjects (based on inclusion and/or exclusion criteria) to form sub

populations does not introduce bias in terms of treatment group comparability - although 

the estimate of the treatment difference is now applicable to a more narrowly defined 

population. 

During the course of the study, it is clear that if a subject has been enrolled in error and as 

a result is put at risk (typically due to a subject meeting one or more exclusion criteria), 

then randomised treatment should be withdrawn immediately. Although it is conceivable 

that the opportunistic detection of this error is in some way connected to the treatment 

received, in practice this is unlikely. Ineligible subjects not at risk are usually allowed to 

continue to study completion however when errors are detected. In tenns of forming an 

eligible sub-popUlation (based on inclusion and/or exclusion criteria), all subjects not 

meeting the sub-population criteria, regardless of their study completion status, would be 

excluded. However the interesting challenge arises when the analysis population includes 

all randomised subjects since subjects withdrawn from the study following opportunistic 

detection will mostly likely have missing data on the key endpoints. This point regarding 

missing data is discussed further in Section 2.3.3. 

2.2.4 Exclusions based on evaluability 

In addition to specifying the inclusion and exclusion criteria for entry into a clinical trial, 

the study protocol also details the procedures and expected study conduct for subjects once 
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they have been successfully randomised into the study. In this respect, protocol violation 

refers to procedural non-compliance following randomisation, and may warrant data 

exclusion. Accordingly, a subject who does not follow the protocol as planned is deemed 

non-evaluable. Typical examples of procedural non-compliance include: taking too much 

or too little of the randomised treatment; taking proscribed concomitant medication; 

missing scheduled visits; and premature study withdrawal. Since these violations occur 

after randomisation, their relationship to randomised treatment is uncertain, and data 

exclusion based on these events is therefore liable to create systematic imbalance of 

treatment groups and introduce bias. Indeed it is exclusions of this nature that raise the 

most concern for regulatory authorities. 

Perhaps the most fundamental case of non-compliance post randomisation is where a 

subject fails to take even a single dose of randomised treatment. Clearly the risk of this 

happening increases if the treatment assignment is not blinded, but it also increases the 

greater the duration between randomisation and planned treatment. In some instances the 

subject may simply die before treatment can be commenced - something that is not 

uncommon in serious indications such as, head injury, myocardial infarction and late stage 

cancer. In other instances, such as migraine, a randomised subject may not have an attack 

with the defined period of the study and may simply complete the study never having 

required treatment. Of particular importance is differential risk where randomised 

treatments take different times to set up or administer. For instance, photodynamic therapy 

(PDT) requires the injection of a photosensitive drug followed by laser treatment once the 

drug has reached the target tissue. In clinical trials, PDT and has been compared to more 

straightforward laser treatment which can be commenced without the delays associated 

with PDT. These delays can lead to withdrawals due to toxicity or even death before the 

treatment schedule is complete. Another example of delayed treatment is randomisation 
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on the basis of clinical signs and symptoms of intra-abdominal infection in the comparison 

of anti-bacterial treatments. Subsequent investigation by the surgeon may find that 

infection is not the cause of the condition and anti-bacterial treatment is not required. In all 

studies the general rule should be to randomise as close to treatment as possible but as 

these examples show the problem cannot be entirely avoided. Subjects withdrawing 

consent is a particular problem in open-label studies since although it is difficult to avoid, 

it has great potential to introduce bias. 

An important aspect of procedural compliance is that successful study conduct is by 

necessity reduced to a simple dichotomy of compliance versus non-compliance for data 

that are frequently recorded on the continuum. For instance a subject who records taking 

between 80% and 120% of the expected number of doses of randomised treatment during 

the course of the study may be defined as evaluable, and any subject outside of this range 

regarded as a violator. In this respect it is easy to see that evaluability criteria can be 

somewhat subjective and it is for this very reason that ICH E9 states that all decisions 

regarding the eligibility and evaluability of individual subjects are finalised and 

documented prior to the unblinding treatment assignment to avoid bias. 

Subject withdrawal is a special case of procedural non-compliance, and may be indicative 

of either the efficacy of the treatment received or the lack of it, it may reflect unacceptable 

toxicity while in some cases it may be completely unrelated to treatment. In all clinical 

trials, subjects are free to withdraw from the study at any time without reason (that is, to 

withdraw consent) while protocols should also state specific conditions for Investigator 

detennined withdrawal. In most cases early withdrawal will be regarded as treatment 

failure and specific analyses may be planned to allow for this in the construction ofthe 

outcome. However in many cases withdrawal simply represents a case of missing outcome 
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data and the challenge is how to include such subjects in the statistical comparison of the 

treatments. Section 2.3.3 investigates this issue further. Of primary concern to regulatory 

authorities is the case where differential withdrawal exists in a study with regard to 

randomised treatment since for the reasons outlined earlier, this has the potential to 

introduce bias if withdrawn subjects are simply excluded form the analysis population. 

(Note however, that the complete exclusion of withdrawn subjects from the analysis is 

often seen as a regulatory requirement for submissions to Japan (Frith, 2003; Christie, 

2003». 

2.2.5 The impact of exclusions beyond treatment group comparability 

Although it has been demonstrated that some specific types of data exclusion have no 

impact on the comparability of treatment groups with respect to the distributions of 

baseline factors, this is not the only aspect to consider when estimating treatment effects. 

Another important element is the relationship between data exclusion and outcome, and in 

fact this is the very aspect which is investigated with subgroup analyses. To take a trivial 

example, if all subjects with the disease under study were excluded to form a sub

popUlation, then although treatment groups would be balanced in the remaining subjects -

over all randomisations - the expected treatment difference with respect to outcome would 

be zero regardless ofthe true treatment difference in patients with the disease. 

Indeed the design of the study directly influences the estimate of the treatment difference 

through the inclusion and exclusion criteria that define the baseline factors for the subjects 

that are randomised into the study. Furthermore run-in periods have the potential to select 

subjects that favour one treatment over another. That is, there is a difference between a 

study that compares test and reference treatments under the conditions of the test treatment, 

and one in which test and reference are compared under the conditions of the reference 
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treatment. For instance, subjects may enter a run-in period during which they receive non

randomised test treatment and subjects who successfuJly complete this run-in will have 

demonstrated that they can tolerate the test treatment and consequently represent a selected 

cohort. (An example of this is given in Section 2.5.2.) Subjects will also be required to 

demonstrate procedural compliance during the run-in and this could take the form of 

showing the ability and willingness to take treatment according to a particularly 

complicated or difficult treatment regimen. Again this could favour compliance in those 

subjects subsequently randomised to a similar regimen. In general run-ins (including those 

in which subjects receive placebo) may be regarded as impacting on both the expected 

value and variability of baseline factors. 

A specific issue arises with treatment-independent exclusions based on data recorded pre

randomisation but where the results are not known until post-randomisation. The 

treatment of infections is a case in point, expanded upon through an example in Chapter 

Seven. EssentiaJly subjects are randomised and treated on the basis of clinical signs and 

symptoms of infection while a sample (urine, sputum, blood etc) is usuaJly taken from the 

infected area before or at the time of randomisation - this is subsequently sent to a 

laboratory for investigation. However since it takes a while to grow sufficient bacteria to 

allow identification of the potential pathogen, the result is often not obtained by the 

Investigator for 48 hours or more. Even then false negative and false positive results are 

relatively common. Hence although the subsequent exclusion of subjects based on a 

negative culture result (that is, no bacteriological proof of infection) will not introduce bias 

in terms oftreatment group comparability, the resulting estimate ofthe treatment 

difference may have limited applicability and will not be broadly generalisable to clinical 

practice. 
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In the next section of this chapter, the regulatory expectations regarding the choice of 

analysis populations will be discussed, and in particular the so-called intent-to-treat 

principle will be introduced which lies at the heart of clinical trial reporting. 

2.3 REGULATORY CONSIDERATIONS AND THE INTENT -TO-TREAT 

PRINCIPLE 

2.3. J The evolution of the intent-to-treat principle 

The application of sound statistical principles is the focal point of current regulatory 

guidance (ICH E9, 1998) and great emphasis is placed on the management of potential 

bias. In relation to analysis populations, one principle in particular is prominent, even 

being described as approaching the position of sacred COl'V (Armitage, 1998) - this is the 

so-called intent-to-treat (lIT) principle. Simply stated, the lIT principle is directed 

towards undertaking statistical analyses that include all randomised subjects according to 

the treatment groups to which they were originally randomised. That is, all subjects 

randomised, as randomised. According to Newell (1992), the phrase first appeared in 

Bradford Hill's 1961 edition of Principles oj Medical Statistics - although Lewis (1995) 

claims that earlier editions of the book published in the 1950's included the term. 

The lIT principle can be described as essentially a modus operandi for statistical analysis. 

It is both a means of providing an unbiased estimate of the treatment difference (in terms 

of the randomisation) and of ensuring that such estimates are representative of the 

complete sample of subjects who were randomised - and by implication generalisable to 

the broader population from which the sample was taken. Furthermore, ICH E9 (1998) 

states that under many circumstances it may also provide estimates oj treatment effects 

which are more likely to mirror those observed in subsequent practice. 
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The ITT principle uses the arguments put forward earlier regarding randomisation to 

achieve the status of unbiased analysis and can be considered to preserve the benefits of 

randomisation. However Lewis (1995) has questioned whether ITT is truly a principle 

preferring the view that ITT has arisen from a set of more basic principles laid out by 

Bradford Hill relating to sound statistical practice. These are the principles of accounting 

for all subjects who were randomised in the subsequent statistical analysis, and of giving 

careful consideration to exclusions, withdrawals and missing data. Lewis argues that it is 

this set of basic principles that should be followed rather than the lIT principle per se that 

has subsumed them. Indeed Lewis and Machin (1993) describe how - rather than ITT - it 

was the application of these more basic principles that came to the fore in the 1970's 

through the work of Peto et al (1976, 1977). These basic principles were directed to the 

disease area of oncology, and in particular to mortality studies where the long-term 

follow-up of subjects was potentially problematic. Later, it became standard practice to 

include all randomised subjects in the analysis of these studies, when comparing 

treatments with regard to mortality, and to include all recorded deaths - even those 

occurring after treatment completion in the follow-up phase of the study. However the 

application of these basic principles was not restricted to oncology and under the umbrella 

term intent-to-treat, they also became widely accepted throughout the 1980's and early 

1990's in other disease areas - including anti-infectives (British Society of Antimicrobial 

Chemotherapy, 1989) and hypnotic drugs (CPMP, 1992). Unfortunately, the simplicity 

and compelling properties of the ITT principle did not necessarily transfer well to other 

disease areas, and in particular the relative ease in which survival status could be obtained 

and analysed in oncology studies was not matched in other areas where complete 

quantitative recordings at fixed time points were required. Accordingly the statistical 

literature contains numerous papers - including Fisher et al (1990), Feinstein (1991), 
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Gillings and Koch (1991) and Ellenberg (1996) - that discuss the practical challenges 

associated with the application of the lIT principle. 

In 1998, the ICH E9 guideline introduced a new regulatory term in relation to analysis 

populations - the Full Set. The Full Set (FS) concept was a return to the more basic 

principles of Bradford Hill and its introduction most likely reflected the influence of Lewis 

in the development of ICH E9 - by now a Statistician at the MCA (now called the 

MHRA). The FS is defined as the set of subjects that is a close as possible to the ideal 

implied by the lIT principle. It is derived from the set of all randomised subjects by 

minimal andjust~fied elimination of subjects. Notably, Lewis was also highly influential in 

the development of the European (CPMP) forerunner to ICH E9, where these basic 

principles were again to the fore. For instance, this Note for Guidance (Ill/3630/92-EN, 

1995) stated that decisions concerning the ana~vsis populations should be guided by the 

principles underlying the 'intention to treat' and 'per protocol' strategies. Indeed it is 

interesting to note the difference in emphasis for lIT in this document - that is, strategy 

(i.e. plan) rather than principle (i.e. dogma). 

However, despite broad acceptance of the qualities and associated benefits of the lIT 

principle, the evolving research areas of therapeutic equivalence and non-inferiority in the 

1990's led to regulatory concerns being raised with its application in both of these specific 

areas. These concerns were documented in both the CPMP Note for Guidance (1995) and 

ICH E9 (1998). In contrast to superiority trials, where the aim is to show that test 

treatment is superior to reference treatment (usually placebo), equivalence and non

inferiority studies aim to show that - within certain pre-defined margins - a test treatment is 

the same as (equivalent) or no worse than (non-inferior) an active control. This switch of 
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objective was the source of the regulatory concerns and the choice of analysis population 

was regarded as having important implications for the control of potential bias. 

Now, from a regulatory perspective, one additional desirable property of the ITT principle 

is that the estimated treatment difference will tend to diminish as problems associated with 

the study conduct increase. (That is, problems connected with eligibility, evaluability and 

the randomisation procedure.) In this respect, the ITT principle is said to provide 

protection against over-optimistic estimates of the treatment difference for superiority trials 

(lCH E9, 1998), and it in effect penalises drug companies for poor study design and 

conduct. (Indeed Siegel (Ellenberg, 1996) has even suggested that it is actually the 

regulatory focus on ITT that encourages drug companies to make every effort to conduct 

quality trials by reducing drop-out and non-compliance.) Thus, although bias is not 

minimised per se, the direction of the bias is controlled in such a way that the estimated 

treatment difference is deemed conservative. Of course, while this is desirable for 

superiority trials, for equivalence or non-inferiority trials this property is, in contrast, anti

conservative. Indeed to reflect this point, the CPMP Note for Guidance (1995) went so far 

as to state that the 'intention to treat' strategy is insecure [for equivalence] while ICH E9 

stated that its role should be considered very carefully. Subsequently, the CPMP 

introduced the specific Points to Consider on switching between superiority and non

inferiority (2000) with the aim of ensuring the most appropriate interpretation of data at the 

time of analysis. This document addresses some of the practical difficulties faced when 

switching objectives within the same trial and the choice of analysis population receives 

special attention. It recommends that the FS is the ana(vsis set of choice for superiority 

while, in contrast to the Note for Guidance and ICH E9 guidelines, it states that the FS and 

PP populations have equal importance for non-inferiority. 
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In the following sub-section, consideration is given to the assumptions underlying the view 

that ITT is conservative from a regulatory perspective for superiority trials. A detailed 

evaluation of the choice of analysis populations in equivalence and non-inferiority trials is 

reserved until Chapter Five 

2.3.2 The conservative nature of ITT 

As described earlier, it is widely accepted that problems associated with study conduct tend 

to diminish the estimated treatment difference. Indeed it can be said to be somewhat 

intuitive that if, say, similar proportions of subjects in each treatment group failed to take 

any study treatment, the consequence of including rather than excluding these data (with an 

expected treatment difference of zero) would be to reduce the overall treatment difference. 

However to consider this phenomenon in a more formal sense, it necessary to introduce a 

framework where the impact of protocol non-compliance can be investigated when 

estimating treatment differences in all randomised subjects. 

Let Jr r be the probability of positive response (x = 1) in a population receiving a reference 

treatment. (Note the reference treatment could be placebo.) Similarly, let Jr
l 
refer to the 

corresponding probability of response for a test treatment. In each case, Jr i is estimated by 

Pi = Xi / n i ' where ni is the number of subjects randomised to each treatment, and Xi is the 

corresponding number of subjects with a positive response. 

Now, some subjects may not adhere to the protocol which could lead to outcomes that are 

not truly representative of the treatment assigned. For instance, a subject that does not 

take the treatment as directed (treatment non-compliance) during the study may not have a 

favourable outcome. In this regard, if the subject would have had a favourable outcome if 

they had taken the treatment correctly, then the observed response can be viewed as a 
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misclassification, which is a false negative. Similarly, a subject who would have failed 

treatment if they had not taken an additional proscribed treatment (concomitant 

medication) would provide an observed response that represented a false positive if they 

responded in a favourable way to the additional treatment. To represent these two cases, 

let 0i be the probability of a false negative and let fIJi be the probability of a false positive, 

with regard to the outcome for treatment i (; = r, I). (Note, this approach is adapted from 

Goldberg (1975), who applied this formulation to investigate medical screening 

techniques. ) 

Now, assume that the both the false negative and false positive rates are identical in each 

treatment group, that is, 0, = Or and fIJ, = flJr' Then when misclassification is present 

where p; is the proportion of subjects with a positive response in treatment group ;. 

It follows that the expectation of the observed treatment difference is 

that is unbiased under a standard null hypothesis of H 0 : Jr, = Jr r' However under the 

alternative hypothesis, and under the assumption that 0 + f(J ~ I , Bross (1954) concludes 

that in the presence of misclassification, E(p; - p;) must be smaller than the true 

difference. This then is the basis of the regulatory argument for binary outcomes that non

adherence to the study protocol results in misclassification and reduces the magnitude of 

the expected treatment difference. Indeed it is this type of rationale that led Lewis and 

Machin (1993) to conclude the inevitable dilution o/the treatment e.ffect in an lIT 

analysis. 
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However if the restrictions of identical false negative and false positive rates in each 

treatment group are removed, such that 0, *- Or and 'P, *- 'P r , then the corresponding 

expected treatment difference is 

which under the null hypothesis, H 0 : 7l I = 7l r = 7l , simpli fies to 

It is clear from this formulation that the expected treatment difference may be larger or 

smaller than the true treatment difference depending on the misclassification rates 

(OJ, 'Pj) in each treatment group, although note that the expected bias is independent of 1C, if 

(Or - O, ) + ('Pr - 'P,) = 0 (Goldberg, 1975). Therefore, although statistical analyses based 

on the ITT principle will remain unbiased in terms of the distribution of factors that 

influence outcome, a separate class of bias may be introduced from a different source -

that is, differential misclassification. 

Of course, the misclassification argument depends to some extent on the objectives of the 

study - that is, the true values of 7l, and J'{ r that one is designing a study to estimate. 

Schwartz and Lellouch (196 7) introduced the terms, explanatory and pragmatic, to 

distinguish between different trial viewpoints. In broad terms explanatory studies are 

aimed at estimating the difference between treatments with regard to the pharmacological 

or biological effect in a well-controlled environment, whereas pragmatic studies are aimed 

at estimating the corresponding effects of treatment when used in practice. (The Schwartz 

and Lellouch dichotomy actually extends much further than simple estimation, and its 

implications - expanded upon in great detail in Schwartz, Flamant and Lellouch ( 1980) -

are indeed far reaching.} In the context of analysis populations and misclassification, the 
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Schwartz and Lellouch dichotomy is instructive, since a study that is regarded as pragmatic 

and which estimates the effect of treatment using the lIT principle, warts and all, may not 

actually consider all forms of violation as actually constituting potential misclassification. 

That is, the aim may be to estimate the effects of treatment in practice, where such levels 

of observed non-conformity are common. 

A key element to the Schwartz and Lellouch philosophy is the expectation that individual 

studies will be designed and analysed from either the explanatory or the pragmatic 

standpoint - not both. However, Armitage (1998) takes a different view stating that the 

two attitudes are likely to co-exist, and to compete for ascendancy, in anyone trial, whilst 

acknowledging the influence of the lIT principle by stating that current practice leans 

very heavily in the pragmatic direction. Indeed this is the case, and it is common practice 

in drug development to undertake statistical analyses on both ITT and PP populations for 

regulatory submission and to compare the resulting estimates in terms of a sensitivity 

analysis. In this respect, one could argue that the lIT and PP populations are actually 

aimed at estimating different parameters and the resulting sensitivity analysis is really a 

comparison of estimates of different parameters rather than a comparison of different 

estimates of the same parameter. 

2.3.3 The practical challenges of implementing ITT 

As alluded to in previous sections, although the lIT principle is straightforward in concept, 

its implementation is not necessarily unproblematic in some therapeutic areas. In response 

to these difficulties, the umbrella term lIT has come to be interpreted very broadly and 

now encompasses a wide range of definitions - some pragmatic, others simply convenient. 

By illustration, Hollis and Campbell (1999) published a survey of all RCTs reported in the 

BMJ, Lancet, JAMA and New England Journal of Medicine during 1997 in which 119 
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(48%) reports mentioned lIT analysis. Commenting on the findings of the paper, Day 

(2002) reflected on the different and shifting combinations of subject exclusion based on 

missing data, protocol violation and early withdrawal, describing the implementation of 

ITT as many and varied. 

Some authors have attempted to formalise a practical definition of lIT, with perhaps the 

most influential in the area of drug development being Gillings and Koch (1991). Gillings 

and Koch were aware that while lIT had become widely accepted, its implementation had 

sometimes become confused. They set out to balance the clinical and statistical 

perspectives, and in particular focused on subjects who had not received randomised 

treatment or who had no post-randomisation efficacy data. They settled on the following 

practical definition of lIT: 

All patients randomised who were kno'",n to take at least one dose of treatment and 

who provided any follow-up data/or one or more key e.fficacy variables; in turn, 

lIT patients are allocated to treatments actual~y received. 

From this definition it is clear that clinical arguments were deemed to outweigh statistical 

ones in some cases. In their view, the clinical objective of a study is to determine how a 

subject responds to a specific treatment and, as such, outcome has no meaning unless at 

least one dose is administered and the subject is analysed according to the treatment 

received. (This view may be considered somewhat atypical in statistical circles.) 

Similarly, subjects with no post baseline do not add to our knowledge of the treatment 

(apart from estimation of withdrawal) and attempts to include these subjects in the analysis 

must necessarily be based on strong and un-testable assumptions. Accordingly, Gillings 

and Koch described the function of such subjects in an analysis as unclear and debatable. 

Gillings and Koch also went a step further and attempted to quantify the acceptable 

proportions of excluded subjects from a modified ITT population as no more than 5% of 
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all randomised subjects, with the additional qualifier that such exclusions should be 

verified as independent of treatment and outcome. They also suggested that a PP 

population should include at least 80% of subjects from the modified ITT population to be 

credible. (Note that for the analysis of Safety, the situation is much clearer (ICH E9, 1998) 

with regulatory expectation being that the Safety population will only include subjects who 

have received at least one dose ofrandomised treatment.) 

However, such practical definitions of ITT and of the FS, and specifically the exclusion of 

subjects who do not have anyon-treatment data, have recently proved contentious from a 

regulatory standpoint. Although ICH E9 states that in some circumstances the exclusion of 

these subjects may be reasonable, it includes the caveat that the potential for bias must be 

carefully considered in each case. (It also makes a similar statement regarding subjects 

who do not take at least one dose of randomised treatment.) For instance, Phillips and 

Haudiquet (2003) found that their ITT modification of excluding subjects with no post 

baseline data was acceptable to most - but not all - European regulatory authorities, when 

seeking regulatory approval of their pain re1ieftreatment. Now, in response to this finding, 

Brown (2003) - a statistician from the MHRA - expressed concern with the Phillips and 

Haudiquet practical definition, despite acknowledging that it is common practice in drug 

development. Understandably, Brown's main concern related to cases were the proportion 

of subjects with no on-treatment data was not small and where this could be related to 

randomised treatment - as was indeed the case with the data presented by Phillips and 

Haudiquet. In this respect, Brown's comments are actually consistent with ICH E9 and his 

stance may be viewed as a simple re-enforcement of the basic principles surrounding data 

exclusion. As an alternative to the exclusion of subjects with no on-treatment data, Brown 

states a general preference for the imputation of missing data in order to produce a 

conservative estimate of the treatment effect that includes all randomised subjects. He 
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suggests that the carrying forward of baseline data (LOCF) may in some cases be the 

appropriate method, although it is not clear that this would necessarily be appropriate here. 

For instance, it is self evident that if similar proportions of subjects in each treatment group 

had no on-treatment data, then in terms of change from baseline, these subjects represent a 

cohort with both a treatment difference and associated variance of zero. In this respect, if 

such subjects were included in an analysis population, one would expect a non-null 

treatment difference to be underestimated and the corresponding variability of the estimate 

to decrease. For superiority trials the diminished treatment difference would be 

conservative although the reduced variability would actually be anti-conservative from a 

hypothesis testing perspective. (Clearly for equivalence studies the approach would be 

anti-conservative overall). However when the proportions of subjects with no post

baseline data differ between the treatment groups it is not clear that substituting forward 

baseline data would necessarily constitute a conservative approach. 

What this exchange of views between statisticians emphasises is that the greatest practical 

challenge faced when attempting to implement the ITT principle in its purist form - from 

both clinical and statistical perspectives - is the handling of subjects with missing data. As 

suggested earlier, whereas misclassification associated with procedural non-compliance 

could be considered in some cases simply to represent the estimation of the treatment 

difference in practice, missing data are different proposition altogether, since by definition 

these do not contribute to the estimation procedure without some form of imputation. 

However, as Koch, Davis and Anderson (1998) state, the principal dilemma for missing 

data is that there is no 'clearly correct' method for managing it. 

In broad terms, two options are available - analyse only the non-missing data (that is, 

ignore the missing data), or alternatively, impute data and observe strict adherence to the 
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ITT principle. ICH E9 makes the general statement that imputation techniques, ranging 

from the carrying forward of the last observation to the use of complex mathematical 

models, may also be used in an attempt to compensate for missing data. It also highlights 

the simple dichotomization, success or failure, which can be applied to ensure that all 

subjects are included in the analysis population. However the coverage of missing data in 

ICH E9 is limited and more recently, the CPMP has produced a specific Points to Consider 

(PtC) on missing data (CPMP/EWP/1776/99, 2001). This document states that the 

statistical ana~vsis of a clinical trial generally requires the imputation of values to those 

data that have not been recorded and emphasises that bias is the most important concern 

from missing data - in terms of estimation, baseline comparability and representativeness. 

However it includes no reference to the minimisation of bias, preferring instead to refer to 

the need for conservative methods that do not favour the study objective - essentially re

enforcing the message that superiority and equivalence (or non-inferiority) trials are 

viewed differently by regulatory agencies with regard to the types of bias that affect 

interpretation. Pre-specification of the approach to handling missing data in the study 

protocol is a key component of the PtC and the expectation is that selected methods should 

be optimal - since different approaches may lead to different results and that the methods 

employed may actually introduce bias. It also recommends that the degree of missing data 

is predicted at the design stage and that a statement is made regarding the acceptable level 

of missing data. The key role of sensitivity analysis is emphasised - an approach whereby 

the influence of various methods of handling missing data are investigated by comparing 

the different results obtained - and if the results obtained are similar then the findings can 

be considered robust. In this respect, in contrast to the comparison of different 

populations, where one could argue that different parameters are being estimated, a 

sensitivity analysis for missing data is simply a case of comparing different estimates of 

the same parameter. 
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Regarding methods for handling missing data, the PtC elaborates on some of the 

highlighted approaches - although the approach of simply using observed data when some 

are missing is regarded as unacceptable for a primary analysis. In this case the PtC raises 

conflicting concerns - the potential for missing data to have been more extreme leading to 

variance underestimation versus the reduced power due to fewer observations. Regarding 

imputation, the popular LOCF approach is viewed positively if used conservatively - for 

instance, if the condition is known to improve with time and the test treatment has a greater 

proportion of withdrawals. It cautions against using LOCF for deteriorating conditions 

such as Alzheimer's disease - although conceivably the approach would be conservative if 

there were fewer withdrawals with test treatment compared with reference. In general, the 

acceptability of LOCF appears dependent upon the expected time course of the disease 

together with an assessment of differential withdrawal- including an evaluation of the 

specific reasons for withdrawal. However carrying forward baseline data is not 

specifically addressed and the suggested tactic of post hoc evaluation of unblinded data 

does increase the risk of introducing bias through the adoption of driven analysis 

conventions. (Note that according to Gillings and Koch (1991), LOCF is generally an even 

handed approach and acceptable if < I 0% data are missing.) Other imputation methods 

such as estimating single or multiple values from other study participants is discussed 

relatively favourably with the cautionary note that single imputation methods tend to 

reduce variability. Interestingly no direction is given as to which variables the imputation 

should be based on. For instance, given the ICH E9 requirement for a study to be analysed 

as it has been designed, it would also be appropriate to '"impute as designed" and include 

treatment and stratum in the algorithm as a minimum. There is also general advice to 

minimise the occurrence of missing data by making every effort to collect follow up data 

on subjects who withdraw or who violate the protocol. 
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The pte mentions the extreme imputation method whereby all subjects with missing data 

are assigned the worst outcome in the in the reference treatment group but the best 

outcome in the control group (and vice versa). However it has been shown that even with 

only modest amounts of missing data, these two approaches would be expected a priori to 

produce inconsistent results and as a sensitivity analysis is therefore relatively 

uninformative unless few subjects have missing data, in which cases all methods generally 

produce similar conclusion (Unnebrink and Windeler, 1999). 

An alternative less extreme imputation method that is commonly employed for binary 

outcomes is to assign all subjects with missing outcomes as default failures. (A similar but 

less common approach is to assign all subjects with missing data as default successes.) 

However although this method is simple and widespread, the consequences in relation to 

bias can be varied. It can be shown how bias can be introduced through the route of 

differential missingness by adapting the misclassification model (3) from before, where it 

was assumed that H 0 : 7r, = J'( r = 7r. Now, if subjects with missing outcomes are 

systematically assigned as default failures then the false positive rate for this imputation 

procedure is zero - that is, 'P, = 'Pr = o. In this case, 

and in the presence of different false negative rates, bias increases as 1C approaches one. 

Similarly, if subjects with missing outcomes are systematically assigned as default 

successes then 0, = Or = 0, and 

In this case, in the presence of different false positive rates, bias now increases as 1C 

approaches zero. It follows that unless the probability of being missing is identical in both 

treatment groups, the estimated treatment difference can be biased in either direction 
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depending on the pattern of missingness. Furthennore, the customary method of assigning 

default failure status may actuaHy maximise the potential for bias in those disease areas 

such as anti-infectives where 1C approaches one and is similar in each treatment group. 

From a regulatory perspective, it is clear that the challenges faced when addressing 

analysis populations and missing data are tightly interwoven. Moreover, in both cases the 

phrase conservative is referred to in regulatory guidance and it is interesting to consider 

this aspect further. The Oxford dictionary (1993) definition of conservative includes the 

phrases: characterized by caution. moderation; (of views. taste. etc.) avoiding extremes; of 

an estimate etc.: purpose(v low. Certainly in the general sense one would expect 

regulatory agencies to adopt a cautious approach to drug approval in their role as public 

watchdog, while at the same time avoiding extreme views. However the phrase purpose~v 

low in relation to an estimate is interesting in that it implies a deliberate attempt to control 

direction. 

Now, the focus oflCH E9 is statistical principles, and it states that many of the principles 

... deal with minimizing bias ... and maximising precision. At the design stage it is clear 

that the topics covered by leH E9 are aimed at minimising bias - for instance 

randomisation and blinding. The principle of pre-specification (directed at both the 

protocol and the statistical analysis plan) is aimed at ensuring objectivity and therefore 

minimises the chances of introducing bias at the reporting stage. Principles directed at 

study conduct (such as interim analyses and use of independent data monitoring 

committees) also minimise bias through pre-specification, maintenance of blinding etc. At 

the analysis and reporting stage however the underlying principle of bias minimisation is 

less clear despite the requirement for pre-specification. 
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Some areas are uncontroversial in this respect. The section in ICH E9 on handling outliers 

is explicit in the requirement to select a procedure such as not to favour any treatment 

group a priori. Subgroups should be pre-specified or considered exploratory only, while 

data transformation must also be pre-specified. Covariate adjustment is primarily aimed at 

increasing efficiency and for standard linear models this equates to maximising the 

precision of estimates - although if there is imbalance at baseline with regard to an 

influential covariate then covariate adjustment may also be considered to minimise the bias 

of the estimate of the treatment difference. (For other linear models (generalised)

including the logistic and proportional hazards formulations - covariate adjustment tends to 

increase the estimate of the treatment difference and decrease precision, although the 

overall impact is increased efficiency.) Again pre-specification is key to minimising the 

introduction of bias and provides protection from an approach that selects the most 

favourable model following treatment unblinding. Furthermore, the restriction of 

covariates to those recorded at randomisation (that is, pre-treatment) minimises the 

introduction of bias that could result from including covariates with values related to 

treatment. However in the related areas of analysis sets and missing data, this situation in 

relation to the minimisation of bias is less clear. 

The section pertaining to analysis sets in ICH E9 initially re-enforces the principle of bias 

minimisation. However, as described previously in Section 2.3.1, the full analysis set is 

envisaged to avoid over-optimistic estimates of efficacy and as such represents a 

conservative strategy for superiority trials, whereas for equivalence or non-inferiority trials 

it is deemed anti-conservative. The safety set could also be viewed as conservative in the 

sense that ICH E9 points to the exclusion of subjects who did received at least one dose of 

the investigational drug. In this respect the denominator for adverse event estimation is 

potentially reduced leading to higher event incidences. Although uncontroversial, it points 
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to the direction of any potential bias being more important than the potential bias 

introduced as a result of subject exclusion. In terms of missing values, ICH E9 emphasises 

the importance of pre-specification in terms of procedures/data conventions for handling 

missing data and also the requirement for sensitivity analyses. However the earlier 

illustration taken from the PtC on missing data which states: in depression. where the 

condition is expected to improve spontaneously over time. this method [LOCF] might be 

considered conservative (f patients in the experimental group tend to withdraw earlier and 

more frequently due to safety reasons, represents a direct statement to the effect that the 

term conservative would represent a scenario where the direction of the bias naturally 

tended towards shrinkage of the treatment effect. The PtC later states in relation to best or 

worst case imputation that this approach may be considered. provided it is applied 

conservative/yo It continues: These techniques may be useful to assess a lower bound of 

efficacy as a demonstration of robustness. On the other hand, the PtC discusses other 

imputation methods - such as maximum-likelihood and multiple imputation - and mixed 

models - neither of which would necessarily be conservative. Interestingly in the context 

of the pre-specification of missing value procedures, the PtC stresses that it is of particular 

importance to ensure that the selected method is a conservative approach and does not 

favour the study's working hypothesis (intentionally or unintentional~v). That is, avoiding 

underestimation with non-inferiority hypotheses whilst avoiding overestimation with 

superiority hypotheses. On balance therefore one could argue that the regulatory 

requirements in relation to the related topics of analysis sets and missing values more 

accurately represent an attempt to control the direction of the bias rather than to minimise 

it per se. 

Indeed it is for this very reason that the Points to Consider on switching between 

superiority and non-inferiority (2000) is so compelling since it brings into conflict two sets 
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of diametrically opposed approaches - one aimed at producing a conservative estimate of 

the treatment difference for superiority, the other aimed at producing a conservative 

estimate for non-inferiority. Given that the switching strategy specified in the pte is aimed 

at drawing the correct conclusion from the values of the estimated confidence limits - and 

once the data are observed it is only the conclusion that may change and not the confidence 

limits themselves - it is clear that the juxtaposed statistical conventions relating to the 

conservative analysis of both superiority and non-inferiority hypotheses must be 

reconciled. Perhaps this juxtaposition affords the opportunity to select a more neutral 

approach actually aimed at minimising potential bias - in this context the phrase optimal 

from the PtC on missing data is appealing. 

It should not be forgotten however that the role of sensitivity analyses is integral to 

regulatory review strategy and is particularly important in relation to analysis sets and 

missing values. The complementary role of sensitivity analysis ensures that the results 

from different analysis and the application of various data conventions are considered in 

their totality. In this respect attempts to control the direction of the bias through 

conservativeness actually informs the decision making process. It is also clear that the 

regulatory guidelines encourage good study conduct to minimise the impact of issues, such 

as missing values and protocol violations, on statistical analyses. 

In summary, it is s clear is that when aiming for a purist form of lIT, the management of 

potential bias - regardless of whether the aim is minimisation, directional control or 

optimisation - depends upon the observed pattern of missing data and the underlying 

assumptions that are ultimately impossible to validate. Therefore, although ITT may be 

considered unbiased in terms of the comparability of the treatment groups at 

randomisation, the practical challenge of implementation often means that the introduction 
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of other types of bias cannot be ruled out. Nevertheless, lIT and the underlying principles 

behind it represent the most coherent approach to clinical trial reporting and perhaps Fisher 

et al (1990) provide the most insightful conclusion on the choice of analysis popUlations 

when they state: We feel that the intent-Io-treat ana~vsis may not always be the best 

analysis but when it is not this usual~v indicates that (1) the experiment was designed or 

run sub-optimally and (2) the results are even more debatable. 

The next section of this chapter, the challenge of sub-setting data progresses to subgroups. 

Regulatory considerations relating to subgroups will be discussed and in particular issues 

surrounding multiplicity. 

2.4 SUBGROUPS 

2.4. J General considerations 

The primary purpose of subgroup analyses is to investigate whether treatment differences 

are consistent within a study for different levels of a factor (or combinations of factors), 

and according to Pocock et al (2002), these baseline factors should be selected on the basis 

of scientific and ethical obligation. The reference to baseline factors is important, since 

subgroups that are based on treatment independent factors - including those recorded at 

baseline - will generate an unbiased distribution of subjects to treatment groups. 

Accordingly, over all randomisations, the treatment groups will be balanced for all 

remaining factors and covariates, and standard tests of statistical significance remain valid 

within each subgroup. 

Subgroups are generally defined by a single factor - gender for instance, with the 

subgroups male and female - although subgroups may also be defined by a combination of 

distinct factors - such as gender and age (~65 years versus <65 years), say. Such 
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combinations may also be used create a hierarchy of subgroups. For instance Matcham 

(2003) describes the area of anaemia in renal failure whereby a regulatory agency not only 

requested subgroup analyses by route of administration (intravenous versus subcutaneous) 

but also separate subgroup analyses of subjects who received subcutaneous treatment by 

mode of dialysis (haemodialysis versus peritoneal dialysis). 

Pocock et al (2002) identified several issues when undertaking subgroup analyses. For 

instance, despite most studies being inadequately powered to detect treatment differences 

within subgroups, multiplicity concerns remain. This is due to the almost unlimited 

number of subgroup analyses that could be undertaken in a study, and the resulting 

vulnerability to post hoc selection of the most appealing. For example, if ten independent 

subgroup analyses were undertaken at the 5% level of significance, then under the null 

hypothesis of no treatment difference, the chance of observing at least one statistically 

significant result would be (I - 0.95 10
) = 0.40. In their view, the most appropriate 

approach to determining consistency of treatment effect across subgroups is through 

investigation of the treatment by subgroup interaction - that is, the difference between 

subgroups in terms of the treatment difference. Although such tests of interaction are 

considered as having low power, Pocock et al view this property positively stating that 

interaction tests recognize the limited extent of data available for subgroup analysis. and 

are the most effective tool in inhibiting false or premature claims of subgroup findings. 

The final issue identified by Pocock et al is the degree to which subgroup analyses should 

influence the study conclusions. 

Bennett (1993) also recommends the use of tests of interaction. He suggests a hierarchy of 

inference whereby one first estimates the overall treatment effect (main effect), then 

investigates the selected subgroup (subgroup effect). The next step is to determine whether 
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the magnitude differs between subgroups (quantitative interaction) and then whether the 

direction of effect is different (qualitative interaction). In his view inferences regarding the 

main effect and qualitative interaction have important implications informulating a 

general policy about treatment, whereas subgroup and quantitative interactions are 

important to dose selection and understanding the biology of the disease. 

Although both authors stress the importance of interaction analyses to compare subgroup 

differences, neither highlights the influence exerted by the scale of measurement when 

considering quantitative interactions. That is, a quantitative interaction observed using one 

scale of measurement can quickly disappear once transformed and vice versa (Hand, 

1 994). This point is iJIustrated in Table 2.1. In this case the odds ratio of 3 

(Test/Reference) is identical for each subgroup (as defined by Factor F) whereas the 

difference in response percentages suggests an interaction of 10 percentage points. (Note 

that some (Neider, 1994) would actually view the analysis based on the difference in 

proportions as inappropriate since unlike the logit transformation, where parameter values 

are in the real plane (-00,+00), the difference in proportions is bounded in the unit square 

(-1,+1).) Gail and Simon (1985) similarly describe how an interaction can disappear 

through the logarithmic transformation of continuous data. Indeed Gail and Simon state 

that because there is usually no self-evident(y appropriate scale of response measurement, 

quantitative interactions are to be expected, but they may not be important clinically. This 

is in agreement with Peto (1982) who expects to observe quantitative interactions when 

factors, on which the subgroups are based, are known to influence outcome. The qualifier 

referring to factors that affect outcome is important since it is the different absolute effects 

of each level of the factor that affords the opportunity for the relative treatment effect to 

differ between subgroups on some selected measurement scale. (Indeed this is the case in 
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Table 2.1.) Accordingly, ifthere is no factor effect, then the scope for observing 

differential treatment effects simply through scale modification is markedly reduced. 

Table 2.1. An example of the influence of the scale of 
h . . f' . measurement on t e mterpretatlOn 0 an mteractIon 
Factor F=I Factor F=2 

Test treatment 90% 75% 
(90/100) (75/100) 
(Odds=9) (Odds =3) 

Reference 75% 50% 
treatment 75/100 50/100 

(Odds =3) (Odds=J) 
% Difference 15% 25% 
Odds ratio 3 3 

One important feature of subgroup comparisons that is often not fully appreciated is that 

subjects' characteristics are not assigned at random (Senn, 1997). In this respect, a 

treatment by subgroup interaction may actually reflect differential sampling of subjects. 

For instance, a trial may exclude women of childbearing potential, and in this case the 

women randomised into the study may be older, on average, when compared with the 

males subjects. (Note that although the experimenter has no control over the assignment of 

individual characteristics such as gender, the actual genetic assignment [in terms of 

chromosomes] at the time of conception may actually be considered to be random.) Now, 

if the true treatment difference is related to age but not gender then an apparent gender 

difference may be observed due to the confounding. In this respect, although random 

allocation of the treatment assignment delivers causality to the overall treatment 

comparison - either conditionally or unconditionally - this does not extend to the 

determination of causality for the comparison between subgroups with regard to the 

treatment difference. Figure t.I (Chapter One) earlier illustrated a possible hierarchy of 

subgroups for the female subgroup where the effects of specific treatments may differ due 

to physiological changes or drug interactions. Other examples of potential confounding 
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factors for a number of common subgroups are gender (weight, body fat and hormones), 

race (weight and diet) and age (hepatic and renal function, and concurrent treatment) 

Another related feature of subgroup analyses is that sometimes the categorisation of data 

into unique subgroups appears somewhat arbitrary - particularly ifbased on defined 

thresholds for a continuous variable, such as age. Furthermore the number of subgroups 

formed from a factor may also be arbitrary. In this respect, decisions regarding the actual 

number of subgroups and the associated thresholds have the potential to generate results of 

a purely invented nature since power is related to both the true treatment effect and the 

sample size. Pocock (1983) provides an example of such arbitrariness when metoprolol 

was compared with placebo with regard to the percentage of deaths in the treatment of 

acute myocardial infarction (Hjalmarson et ai, 1981). Overall there was a statistically 

significant difference (odds ratio= 0.62) between the treatments (X2 test, p=0.023) although 

not surprisingly it was noted that the death rate increased with age regardless of 

randomised treatment. The treatments were compared within three subgroups dependent 

on age (40-64 years, 65-69 years and 70-74 years) to investigate consistency of effect and 

the re-calculated data are presented in Table 2.11. 

Table 2.11. Percentage of deaths in treatment of acute myocardial infarction by 
a&e 

Age Placebo Metoprolol odds ratio X2 test 
(M:P) p-value 

40-64 26/453 5.7% 21/464 4.5% 0.78 0.40 

65-69 25/174 14.4% 11/65 6.7% 0.43 0.021 

70-74 11170 15.7% 8/69 11.6% 0.70 0.48 

Note: p-values re-calculated usmg StatXact software WIth odds ratros added for c1anty 
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The largest treatment difference was in the middle (65-69 years) subgroup that singly 

achieved statistical significance. However, Pocock showed that by combining subgroups, 

apparently conflicting results and conclusions could be found. For instance the p-value for 

the combined 40-69 years subgroup is 0.030 while for the combined 65-74 years subgroup 

it is 0.023. As such, for the first combination the results show a treatment effect is 

exclusive to younger subjects while the second combination shows the opposite - that is, 

the treatment effect is exclusive to older subjects. (Note that Hjalmarson et al were careful 

not to over-interpret these data and did not claim a differential treatment effect based on 

age.) Pocock notes that if an interaction test had been perfonned then it would have been 

non significant. Indeed for completeness, Zelen's interaction test from StatXact (Cytel, 

1999) gives p=0.48 while the estimated common odds ratio adjusted for the three age 

categories is 0.63 with an exact p-value of 0.034 - almost identical to the unadjusted result. 

In the next sub-section, the current regulatory guidance in relation to subgroups will be 

explored while in the following two sub-sections, the observation of inconsistent results 

across subgroups and the issue of multiplicity will be discussed in detail. 

2.4.2 Regulatory considerations 

In recent times, regulatory authorities have begun to recognise the importance of 

presenting outcome data for particular subgroups of subjects. Indeed the ICH E3 guideline 

Structure and content of clinical study reports (CPMP/ICH/I 37/95, 1995) identifies a 

specific section - Examination of subgroups - in the ICH report template where subgroups 

should be discussed. ICH E3 gives some examples of important demographic and 

baseline value-defined subgroups that should be addressed. These are age. sex. race. 

severity or prognostic group. and history of prior treatment with a drug of the same class. 

Furthennore the expectation is that an explanation would be provided in the report if these 
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subgroup summaries were not presented. It also cautions that these ana~vses are not 

intended to "salvage" an otherwise non-supportive study. Subgroup analyses receive 

limited attention in the statistical guideline ICH E9. ICH E9 emphasises the need to pre

plan subgroup or interaction analyses for factors that are of specific interest, but also 

highlights that most analyses of this kind should be interpreted cautiously and are of an 

exploratory nature. It recommends interaction analyses, complemented by additional 

exploratory analysis within relevant subgroups of subjects. It also cautions that in relation 

to drug approval, conclusions based sole~v on exploratory subgroup ana~vses are unlikely 

to be accepted. However in 200 I, the CPMP issued the Points to Consider on multiplicity 

issues in clinical trials (CPMP/EWP/908/99, 2(01) that expands the ICH E9 guidance in 

relation to subgroups in Europe. This document addresses two specific areas in more 

detail - the acceptable circumstances for claiming a subgroup effect and the potential 

license restriction to specific subgroups. Now, the need to provide compelling evidence 

for a specific subgroup claim can be interpreted as a regulatory requirement to control the 

a error or false positive rate. In this respect, reliable conclusions leading to regulatory 

acceptance are achieved through the pre-specification of subgroups, with formal 

consideration given at the design stage to stratification and power. Furthermore the 

expectation is that the overall treatment difference would already have achieved statistical 

significance, suggesting a step-down procedure to control the a error in the subgroups. The 

alternate side of the coin, is the undesirable restriction of a licence to specific subgroups, 

and in this respect the requirement can be viewed as the need to demonstrate consistency 

or uniformity of effect across subgroups of known importance. In this case, the control of 

the p error or false negative rate is the issue of regulatory concern, and although not stated 

explicitly, it is the interaction between treatment and subgroup that is of interest in this 

regard. The document describes how strong heterogeneity of effect between subgroups 

(that is, a qualitative interaction) might lead to licence restriction. This would be the case 
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when such effect can reasonab(v be assumed but cannot be sufJicient(v evaluated with the 

observed data, but also when an unexpected effect is observed and cannot be explained - in 

both instances, further clinical data would be required to lift the licence restriction. (The 

phrases reasonab(v assumed and sufficient(y evaluated are in fact quite interesting and 

perhaps signify a well hidden regulatory desire for pre-specification of expected effect 

size, with evaluation of the observed data against this expectation - a point re-visited in 

Chapter Four.) The document also adds to the list of potentially important factors given in 

ICH E3, with the inclusion of geographic region, renal impairment, and drug absorption 

and metabolism. One further relevant guideline in relation to subgroups is the CPMP's 

Points to Consider on adjustment/or baseline covariates (CPMP/EWP/2863/99, 2003). 

This document refers to subgroups and recommends the pre-identification of subgroups 

where expectation exits that substantial interactions are likely to be present. In this case, it 

recommends that either each individual subgroup should be adequately powered to detect 

the required treatment difference or the study should be restricted to just one subgroup 

through the application of specific inclusion criteria. The PtC references ICH E9, and re

enforces the view that the investigation of treatment by subgroup interactions is regarded 

as exploratory due to limitations of power, and that non significant findings do not 

constitute evidence of no interaction. However the document cautions that the primary 

model excluding the interaction term could be invalidated in cases where the interaction is 

particularly strong or even qualitative and the results o/trial could become inconclusive. 

2.4.3 The observation o/inconsistent results across subgroups 

In this sub-section it will be shown how likely it is in practice that inconsistent results will 

be obtained across subgroups. It will also be shown how the tactic of using subgroup 

analyses to demonstrate consistency of effect is usually under-powered and arguably 

flawed. However since in practice subgroup analyses are often requested by regulatory 
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agencies for both superiority and non-inferiority studies, the tactic of using tests of 

directional advantage will be discussed as a means of providing adequate overall power. 

Peto (1982) gives a simple illustration of how inconsistent results are easily obtained when 

comparing two subgroups with regard to the difference in a continuous outcome between 

two treatments - test (t) and reference (r), say. Let the variance of the overall treatment 

difference, Var(x/ - x,) , be v, in some arbitrary units, from which it follows that the 

variance of the treatment difference, Var(xlj - X,i)' within each of two subgroups (j=S, S: 

where S' is the complement of S ) of equal size will be 2 v, while the variance of the 

interaction term, Var(Q) , will be 4 v. (Refer to Chapter Four, Sub-section 4.2.2 for further 

detail.) Furthermore, by definition, there is around a 1 in 3 chance that an observed 

interaction will be > 2..rv even though no interaction exits (that is, 0=0) since 68% of the 

Normal distribution is contained within the region 0±.J4;.. Now, it follows that if the 

observed overall difference between the treatments is 2..[;. - with a resulting p-value of 

borderline significance (that is, 0.05) - then there is also a I in 3 chance that the observed 

treatment difference in one subgroup (S, say) will be > 3..[;. and <..[;. in the complement 

(S). (This can be shown by solving the simultaneous equations (d s - d; = 2..[;.)and 

( d, ; d; ) = 2,,1v , where d, and d; are the treatment differences in the subgroups S and S' 

respectively.) In this case, the treatment difference in subgroup S will be statistically 

significant (p<0.05), while in S'the difference will be non significant. That is, 

3f- > 1.96 and 1:- < 1.96 in Sand S'respectively. This illustrates that even when no 
v2v v2v 

treatment by subgroup interaction exists, if the overall treatment difference is of borderline 

- 65-



significance, then the chance of observing statistically inconsistent differences in two 

equally sized subgroups is not insubstantial ~ that is, around 1 in 3. 

Koch (see Koch and Gansky 1996, Koch 1996, Koch 1997) has undertaken some of the 

most incisive work in the area of subgroup analysis in relation to drug development and 

regulation. As a means of investigating the prospective power of subgroup analyses for a 

continuous outcome, Koch (1997) relates this to the significance level and power of the 

overall treatment comparison, and to the chosen significance level for the corresponding 

within subgroup comparison. In this case, Za and Zp represent the I OO( I-a) and 1 OO( 1-/1) 

percentiles of the standard normal distribution and the additional subscript "s" refers to the 

subgroup comparison. (Note that for two-tailed significance tests, a is multiplied by two.) 

Now, Koch shows that the power (I - /1), for a subgroup analysis containing 

ns = f.n (0 < Is $1) subjects in each treatment group, where n is the original number of 

subjects in the treatment group, can be calculated as: 

where t5is the overall expected treatment difference and t5s is the corresponding expected 

treatment difference in the subgroup. 

Now, when Is = 0.5, t5s = t5 and Za = Zas' this reduces to 

It is then straightforward to show that a trial planned with 80% power (Z fJ = 0.84) to 

detect an overall treatment difference of t5 at the two-sided significance level of 5% 

(Za = 1.96) provides only 50% power (Z /k = 0.020::::: 0) to detect an identical treatment 
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difference of (jin a subgroup containing half the subjects. Furthennore, it follows that the 

power to achieve significance simultaneously in two subgroups is just 25%. That is, 0.5 2 
• 

Accordingly, the probability of observing an overall inconsistent result - one subgroup 

significant, the complement subgroup not significant - is 50% while the probability of 

neither result being significant is 25%. Therefore the tactic that attempts to show 

consistency of effect through individual subgroup analyses is clearly under powered for the 

typical clinical trial. 

(Note, that if the time to some event is the outcome of interest, then the number of events 

rather than the sample size per se detennine power (Sleight, 2000). In these cases, 

subgroups expected to contain few events will have dramatically less power than those 

with many events, even though the numbers of subjects expected in the subgroups may be 

similar. Furthennore for binary outcomes, the expected variability is related to both the 

sample size and the expected response proportions such that subgroups with response 

proportions close to 0 or 1 will have the greatest power to detect differences in 

proportions. ) 

Now, as a means of accounting for these substantial reductions in power, Koch suggests 

that the significance level for each individual subgroup comparison could be actually 

increased - to an extent that results in sufficient power for both subgroup analyses 

simultaneously. For instance, he suggests that adopting a one-sided as=O.l significance 

level for the subgroups when the overall comparison is planned to have 90% power gives 

85% power for each of two subgroups with simultaneous power of around 72%. 

As an indication of just how high as would need to be raised, if the aim were to plan to 

maintain power for the simultaneous subgroup analyses at the same level as the overall 
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comparison at the two-sided 5% significance level, then consider the case where 

Is = 0.5 and Os = 0, and (4) reduces to 

(5) 

Now, if the overall comparison were planned to provide 80% power, then each of two 

subgroups would require 89.4% power individually to provide 80% power simultaneously. 

As such,Z/k = 1.25, Zp = 0.84andZa = 1.96, in which case Zas = 0.73, giving a two-

sided a of 0.465 or a one-sided 0.233. 

Now, the illustration is actually quite interesting in its relation to observations and 

comments from regulatory statisticians. For instance, it has been stated informally that 

regulatory statisticians at the MHRA look for consistency of the point estimates of the 

treatment difference when reviewing subgroup analyses, and in particular concerns are 

raised when these point estimates are on the wrong side - that is when the sign of the point 

estimate is reversed in a particular subgroup (one-sided test p>O.SO). Now, this informal 

rule is broadly similar to an approach proposed by Koch. Koch suggested that to achieve 

adequate power - when aiming to demonstrate consistency of effect through the 

achievement of p~as in all subgroups for all factors investigated - then as may need to 

increase to as high as a one-sided 0.50. That is, adoption of a tactic of testing for 

directional advantage - although Koch's preference was actually not to exceed a one-sided 

0.25. In this respect, Koch's point is that analysis tactics require adequate power (~70%, 

say) so that failure to reject one hypothesis is interpretable as evidence against consistency 

of effect. Now, re-arranging (5) and setting Zas to zero for a one-sided test at the 0.50 level 

of significance, implies the power for a single subgroup would be ZPs = 1.98 - that is, 

97.6% power. Furthermore, for the simultaneous testing of more than one subgroup, such 

a tactic would provide 80.5% power for 9 subgroups (each contained 50% of subjects) 
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while ]4 subgroup investigations would provide the maximum number to meet Koch's 

criterion of;::70% power. This observation demonstrates that if the MHRA - and perhaps 

other regulatory agencies - are assessing consistency of effect through one-sided 

directional tests at the 0.50 level of significance, this approach wi)) provide reasonable 

power so long as the number of factors is few, five say, and have only two levels that 

partition the subjects equally, producing in the region of 10 subgroups. 

(Note also that there are some similarities here to the approach to the design and analysis 

of pragmatic trials proposed by Schwartz, Flamant and Lellouch (1980). They proposed 

that in the comparison between two active treatments, a study should be powered to control 

the so-called rerror - defined as the probability of reaching a conclusion with the wrong 

sign, that is, the recommendation oj an inJerior treatment. In this case, the treatment 

comparison essentially becomes a decision making challenge with a two-sided a set to I 

and pto o. That is, the treatment that is numerically superior is simply selected.) 

The directional advantage approach is also helpful in formulating how subgroup analyses 

could be interpreted in a non-inferiority study. (Recall that in such designs, a margin (-m. 

say) is pre-specified for the difference between the test and reference treatments such that 

non-inferiority can be claimed in cases were the 95% confidence interval for the treatment 

difference excludes values less than -m.) In this case the consistent approach would be to 

require that the point estimate of the treatment difference for each subgroup is >-m. Figure 

2.1 illustrates separately the nature of a successful outcome when a directional advantage 

approach is applied to superiority or non-inferiority studies. In each case the subgroups 

satisfy the directional test criterion although the lower confidence limit is to the left of the 

margin (zero for superiority, -m for non-inferiority) for Subgroup I. 
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Figure 2.1. The directional advantage approach for superiority and non-inferiority studies 

(mean treatment difference and 95% confidence interval). 
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In reference to non-inferiority trials, it has also been mooted that the MHRA expect to see 

the point estimates for subgroup analyses greater than zero rather than -m. Clearly if the 

treatments are truly equivalent then the probability of achieving this in each subgroup is 

50%. Although when conducting non-inferiority studies it is often the case that test 

treatment is considered marginally better than reference (the basis of the MHRA's case), it 

is arguable that this approach would be ultra-conservative in many cases. 

2.4.4 Multiplicity 

According to Assmann et al (2000), of all the various multiplicity problems in clinical 

trials subgroup analysis remains the most overused and overinterpreted, while in the view 

of Senn (1997), subgroup analysis ought to be taken as an admission of a lack of 

confidence in the pooled estimate. Assmann et al also recognises that most subgroup 
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claims are prone to exaggerate the truth. Now, in relation to multiplicity, Koch (J996) 

makes an extremely important observation in relation to the reporting of subgroup analyses 

to regulatory authorities. In his view, since confirmation of homogeneity of effect is the 

prime reason for performing subgroup analyses, adjustment for multiplicity is generally not 

required due to the high probability of observing inconsistent results that leads not to a 

strengthening of the conclusion but to the inevitable dilution of it. Furthermore, according 

to Koch and Gansky (1996), the most appropriate tactic is to manage the type II error by 

aiming to use a significance level of 5% as much as possible whilst also maintaining the 

significance level collectively for all assessments at 5% level. 

One approach to implement such a tactic is to use the closed test principle (Marcus et ai, 

1976) where the set of null hypotheses to be tested is required to be closed under 

intersection (Bauer 1991, Senn 1997). In this respect an individual null hypothesis can 

only be rejected at the a significance level if all other higher level hypotheses containing it 

are also rejected at the a significance level. Now, in terms of applying the closed test 

principle to subgroups, rejection of the null hypothesis that there is no overall treatment 

difference supports the claim that a treatment difference exists in at least one subgroup. 

Consequently, if a factor exists that defines two subgroups - S] and its complement S2 -

then the null hypothesis of no treatment effect can then be tested in each subgroup 

separately also using a significance level of a. Furthermore, if subgroup Sf is further sub

divided by another two-level factor producing subgroups SIT and its complement SJ2. then 

providing the null hypothesis of no treatment difference was rejected for subgroup Sf, then 

a significance level of a can also be applied to test the null hypothesis of no treatment 

difference in each of these subgroups within a subgroup. 
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In cases were a factor has more than two levels, further steps are required to adhere to the 

closed test principle. For instance, if there are three subgroups (S,. SJ. S3), then the overall 

test represents the intersection S. (\ S2 n S~ hypothesis. Now, if this overall hypothesis is 

rejected at the a level then the intermediate intersection null hypotheses, S. (\ S 2' S 2 (\ S~ 

and S. (\ S~ , must first be considered prior to testing the null hypotheses in each of the 

three subgroups (S" SJ. SJ). In this respect, to be able to test the null hypothesis in 

subgroup S, at the a level, both intersection null hypotheses S. (\ S2 and 

S. (\ S~ containing S, must both be rejected first at the a level. With a four level factor an 

additional level (or hierarchy) of testing is added, and so on. 

Koch and Gansky (1996) suggest an alternative hierarchical method to control the a level 

that avoids the intermediate step of the closed test procedure above in cases were a factor 

has greater than two levels. They describe how following rejection of the null hypothesis 

for all patients, subgroups St, S2. SJ etc. are tested in a pre-specified order (SJ, SI, S2 say) at 

the a level until such time that the null hypothesis is not rejected at the a level. Indeed 

with all methods of adjustment the important aspect is to identify the structure of decision 

making a priori such that an appropriate testing strategy can be put in place (Norwood, 

1996). 

Clearly pre-specification is also an important aspect of controlJing the type I error even 

when analyses are regarded as exploratory in nature, although as Sleight (2000) highlights, 

pre-specification should include not only the factor of interest but should also extend to 

stating the expected result. This approach has clear advantages when attempting to explain 

the biological plausibility of the findings at the reporting stage. 
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In cases where factors have not been pre-specified, adjustment may be appropriate even in 

a regulatory setting. For instance, it is not uncommon for regulatory agencies to request 

additional subgroup analyses following initial review of the CTD. One simple approach to 

adjustment when more than one factor is used is to create subgroups is to employ a 

Bonferroni correction (Holm, 1979). The Bonferroni correction controls the overall a 

error at or below a predefined level, typically 5%, by testing all k hypotheses at the alk 

level of significance. This method is extremely simple to apply, and indeed if the number 

of subgroups analysed has been specified, reviewers may make this correction manually 

themselves. (Note that alk is actually an approximation, and the exact nominal 

significance level is given by I - exp{ ~ In(1- a 0) }, where ao is the overall a error, usually 

5%.) However the Bonferroni correction is generally conservative in practice (although 

perhaps less so than for some other areas of multiplicity since subgroups are typically 

independent), and later adaptations of the approach control the overall a error whilst 

providing great power. For instance, Holm (] 979) uses sequential rejection whereby 

hypotheses are rejected one at a time until failure to meet the rejection criteria occurs, at 

which point testing terminates. In this case the n ordered p-values (smallest p-value first) 

are tested at the alk, a/(k-I), ... a levels of significance. 

Another area where adjustment for multiplicity may be appropriate is in the evaluation of 

interaction tests. Unlike individual subgroups, the issue is not a case of observing 

inconsistent results for different levels of factor. Rather, tests of interaction are often 

judged in isolation and if numerous tests are performed then some adjustment may be 

prudent using the approach of Holm, say - particularly if factors are chosen as a matter of 

routine rather than biological plausibility. 
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In 1983, Pocock observed that Unfortunately, with qualitative data interaction tests are 

complicated to peiform and hence one may prefer to use them only when there is a strong 

indication that a genuine interaction might exist. This point made in his influential book is 

revealing since it perhaps explains why subgroup analyses have to some extent prevailed 

when more appropriate methods for determining subgroup consistency are available 

(Pocock el ai, 2002). That is, subgroup analyses are considered straightforward to perform 

since they represent a simple repeat of the overall statistical analysis in fewer subjects. 

Assmann et al (2000) reviewed 50 consecutive clinical trial reports published in four of the 

most respected medical journals (NEJM, The Lancet, JAMA and BM.!) during 1997. 

Assmann et al found that 35 reports (70%) included subgroup analyses, of which 7 were 

descriptive summaries, 13 provided within subgroup significance testing but less than a 

half(J 5) included tests of treatment by subgroup interaction. (Interestingly, in the same 

investigation, Assmann et al found that the fundamental building block for rational 

subgroup analysis - that is, pre-specification - receives less careful attention than one 

would like.) Of course, in the 21 SI Century, software advances have made interactions tests 

much more straightforward to undertake, and perhaps the true challenge now is to persuade 

researchers that this is the most appropriate method to assessing consistency of effect. 

To complete this Chapter, some common examples of biased sub-popUlations and 

subgroups will be presented to illustrate the potential pitfalls of forming subsets that are 

simply intuitively appealing. 

2.S INHERENTLY BIASED SUB-POPULATIONS AND SUBGROUPS: SOME 

EXAMPLES 

In this section, a selection of inherently biased sub-populations and subgroups are 

presented that are commonly reported. 
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2.5.1 Randomised cohort designs 

Phase I drug development provides an interesting example where treatment groups are 

sometimes combined during the statistical analysis in a way that violates the randomisation 

principle. In a randomised cohort design, an initial cohort of subjects (perhaps eight 

subjects) is selected at a single centre, and these subjects are randomised to test treatment 

or placebo according to an unequal ratio (3: 1, say). A low dose of test treatment is selected 

and the aim is to demonstrate that this dose is safe, and that an incrementally higher dose 

can be used in a second cohort containing different subjects to the first (that is, a cohort 

independent of the first). The placebo subjects are included to provide some limited 

control data to eliminate gross experimental effects at the study centre that could lead to 

premature tennination of dose escalation procedure due to toxicity concerns - for instance, 

a virus causing diarrhoea or flu-like symptoms in all subjects in the cohort. A limit (say 

four or five) is placed on the number of cohorts and the study is terminated when either the 

maximum tolerated dose is observed or the final planned cohort is complete. In this 

respect each cohort can be regarded as a separate subgroup determined by sequential entry 

into the study - that is, detennined by a time cut-off in each case. Now, at the reporting 

stage it is not uncommon to find that the safety profiles of each dose of test drug are 

compared not only with each other but also with a composite placebo group that includes 

all subjects from all cohorts. In fact both types of comparison violate the randomisation 

principle since this only holds within a cohort. Such pseudo dose response analyses are 

particularly vulnerable to seasonal effects and causality is impossible to determine. Apart 

from the valid within cohort analyses, one valid analysis that includes all cohorts is to fit a 

model that includes both cohort and treatment group (active versus placebo) - although 

note that this simply compares test treatment, across all dose groups, with placebo. 

Interestingly these randomised cohort designs have sometimes been employed for proof of 
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concept efficacy studies (Phase II). Despite the flawed nature of the dose response 

evaluation these studies have been conducted in substantial numbers of subjects in the 

multi-centre setting. 

2.5.2 Duration ofresponse 

This category is a very fruitful area for the reporting of biased sub-populations/subgroups 

and examples from three different therapeutic areas - migraine, gastro-intestinal disease 

and oncology - will be discussed. 

Migraine is a therapeutic area where interest is centred not only on whether an initial 

response to treatment is observed but also on whether the response is maintained. In these 

studies it is standard practice to require subjects to classify an emerging headache severity 

on a four-point scale as none, mild, moderate or severe. Once a headache has reached 

grade moderate or severe severity then it can be treated with randomised treatment and 

subjects are then required to evaluate the resulting severity in diary cards for a period 48-

hours post treatment. A response to treatment is defined as a change in headache severity 

from severe or moderate to mild or none, and a positive response to treatment is 

maintained until such time that the headache returns or increases in severity from mild to 

moderate or severe (CPMP/EWPI788/0 1, 2002). For the primary analysis, treatments are 

typically compared with regard to the proportion of subjects with a response at fixed time 

points - 2 hours post-treatment, for instance. However maintenance of response is also 

important and typically the treatments have been compared with regard to the proportion of 

responders at 2 hours who relapse within 48 hours of treatment. However since response 

is not independent of treatment, this sub-population will be biased and so will be the 

estimated treatment difference. An alternative analysis is to consider treatment failure as 

the outcome and to retain all treated subjects - even those subjects that did not have a 
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response at 2 hours. This approach preserves the benefits of the randomisation, and in this 

case treatment failure is defined as the earliest of either no response to randomised 

treatment, the use of rescue medication or relapse during the 48-hour post treatment period. 

(However note that since subjects are randomised based on previous migraine frequency, 

some subjects will complete the study without treating a migraine attack and these subjects 

are excluded from the analysis population without the introduction of bias.) 

The second example is from the study of gastric or duodenal ulcers. In the initial acute 

phase of these studies, high dose randomised treatment is usually assigned with the aim of 

healing the subjects' ulcers within 8 weeks of randomisation, say. Once healed, subjects 

then enter a long-term (perhaps 12 months) maintenance phase with a lower dose of the 

original randomised treatment. In a similar manner to migraine, it was common practice to 

analyse these studies as if they were two independent trials - an acute healing phase and a 

maintenance phase investigating relapse that excluded subjects who were not healed within 

the acute treatment phase. However this analysis is biased, as acute healing is not 

independent of treatment and hence unhealed exclusions are treatment related. An 

alternative appropriate analysis, that preserves the benefits of the randomisation, is to 

regard all unhealed subjects as treatment failures in the maintenance phase, with the time 

to relapse equal to zero. An alternative design has been used where all subjects receive test 

treatment in the acute phase but are randomised to treatment on commencement of the 

maintenance phase. Although this design is unbiased in terms of the randomisation, it can 

be criticised for selecting test treatment responders for the randomised maintenance 

treatment phase and in this respect it can also be considered biased. Another alternative 

design is to randomise subjects to acute treatment and then re-randomise healed subjects to 

maintenance treatment using acute treatment as a stratification variable. This is perhaps 
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the most even-handed design for both treatments and in this case the analysis of the 

maintenance phase includes acute treatment as a factor in the model. 

The final example is from oncology where subjects are assigned to a number of cycles of 

randomised treatment. In simple terms, if a subject shows a defined reduction in tumour 

volume (partial response PR) or the tumour disappears altogether (complete response CR) 

then this is defined as an overall response (PR or CR). The treatment groups are compared 

with respect to overall response but in addition the duration of response is also 

investigated. In this respect, tumour progression is defined as a set increase in tumour 

volume or tumour re-appearance for a PR and CR respectively. Now, duration of response 

is often reported and analysed (Marty, 1997) and indeed this approach is supported by the 

WHO handbook for reporting results of cancer treatment (1979). This handbook states, 

that when advanced breast cancer is being treated, it is necessary to determine the 

proportion of responders, the duration of responses, as well as survival. However the 

analysis of duration of response is biased in terms of the randomisation since non

responders are excluded. An alternative valid analysis is to include all randomised subjects 

and compare the treatments with regard to time to progression. Subjects who do not 

respond will eventually progress as their tumour volume increases, and so are easily 

incorporated in the analysis of all randomised subjects. 

2.6 DISCUSSION 

It has been shown in this chapter how randomisation provides the basis for producing 

unbiased estimates of treatment differences from clinical trials, and how in order to retain 

this important attribute, data exclusion to form sub-populations or subgroups must be 

judged to be independent of the treatment assignment. Indeed examples have been 
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provided from a wide variety of therapeutic areas where this criterion has not been met and 

where the resulting estimates should be considered unreliable as a result. 

From regulatory perspective, many of the principles expounded are directed towards the 

minimisation of bias at both the design and analysis stage. However while the stated aim 

is often to limit or minimise bias (ICH E9), there are specific areas at the analysis and 

reporting stage where perhaps the aim would more accurately be described as control of 

the direction of the bias such that estimated treatment differences are conservative for their 

intended purpose. In this context sensitivity analyses play an important and integral 

regulatory role since the assumptions behind the data conventions are typically 

unverifiable. Indeed this is why the Points to Consider on switching between superiority 

and non-inferiority (2000) is so compelling, as it brings to a head the different 

recommended approaches to be adopted for studies designed to show superiority compared 

with those designed to show equivalence or non-inferiority. In this respect has been shown 

that the accepted view that the lIT principle necessarily leads to a diminished estimate of 

the treatment difference is based on a series of strong assumptions regarding non

differential misclassification. 

Despite concerted efforts to replace it, the lIT principle still proves popular and remains a 

convenient term to use, while the term Full Set has yet to fully establish itself despite the 

overall impact of ICH E9 on statistical practice. Indeed Simon Day (2002) - Lewis's 

replacement at the MHRA - has gone so far as to propose an end to the term ITT, which he 

regards - along with Per Protocol - as culpablefor iIl-thought-out sensitivity ana(vses of a 

less than ideal study design. Day's chosen emphasis now relates to the importance of 

pragmatic trials rather than the importance of ITT analyses or populations. However 

given the far reaching implications of the Schwartz and Lellouch philosophy regarding 

-79 -



pragmatic studies, including the absence of fonna! statistical analyses for the studies, it is 

unclear how this would fit into the requirements of drug regulation. 

With regard to subject subgroups, regulatory guidance has been reviewed from a number 

of separate guidelines. In particular it has been shown how regulatory concerns regarding 

multiplicity can be addressed though the through pre-specification of subgroups together 

with more fonnal statistical approaches - such as the step-down procedure. It has also 

been highlighted how quantitative differences between subgroups with regard to the 

treatment effect may simply reflect the scale of measurement employed and that by 

implication qualitative interactions are of greater importance - particularly with regard to 

treatment policies. It has also been shown how subgroup inconsistencies are to be 

expected in the presence of modest overall treatment differences. As a consequence the 

investigation of differential treatment effects in subgroups is most rationally conducted 

through interaction analyses. In particular pre-specification of both the factor and the 

expected differential treatment effects in the resulting subgroups is important to reduce the 

opportunity for spurious findings and conclusions. In the next chapter (Chapter Three), the 

theme of observing inconsistent results when conducting subgroup analyses will be 

continued with the specific investigation of Simpson's paradox in randomised clinical trials 

- a reversal effect whereby the differences between treatments from all subgroups are in the 

opposite direction to the overall difference between treatments. In the following chapter 

(Chapter Four), the unifonnity of treatment effect across subgroups will be considered 

through the investigation of treatment by subgroup interactions. 
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CHAPTER THREE: SIMPSON'S PARADOX AND 

RELATED INCONSISTENCIES 

Old Ebeneezer 

Thought he was Julius Caesar 

And so they put him in a Home 

Where they gave him medicinal compound 

And now he's Emperor of Rome. 

3.1 INTRODUCTION 

Although rather rare, cases have appeared in the literature where the results of all 

subgroup analyses have indicated differences between treatments that are in the opposite 

direction to the overall difference between treatments (Julious and Mullee, 1994). This 

observation is known as Simpson's paradox (SP) after EH Simpson who discussed the 

problem in his paper The interpretation of interaction in contingency tables in ] 95 ] 

(Simpson, ] 951). However, according to Aldrich (1995), Karl Pearson and colleagues 

identified the phenomenon over fifty years earlier in their consideration of spurious 

correlations (Pearson K et ai, 1898). As Aldrich points out, rather than considering 

reversals of sign in dependence their focus was directed towards the mistaking of 

independence for dependence. Since 1951, numerous publications have appeared on the 

topic of SP - most notably Blyth (1972), Lindley and Novick (1981), Zidek (1994), 

Aldrich (1995) and Pearl (2000). However reported cases of SP relate exclusively to 

observational studies and experiments that have employed randomisation appear 

untouched by the phenomenon. This chapter examines the potential for observing SP in 

the clinical trial setting and then uses the framework developed as a vehicle to examine 

less extreme - but related - inconsistencies that are more likely in randomised trials. As 

such, this chapter is about balance - the impact of baseline imbalance between treatment 
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groups when estimating treatment differences and the definition of balance itself. In 

contrast, this chapter is not about interactions; indeed the frameworks chosen deliberately 

exclude them. This is not to say that interactions are unimportant - although they are 

sometimes a simple artefact of the chosen scale of measurement - rather that their 

inclusion here would detract from the main theme. Instead treatment by subgroup 

interactions are addressed separately in the next chapter (Chapter Four). 

In Section 3.2 of this chapter, the features of SP are described by way of an example. 

Simple probability theory is then used to provide a more formal framework to study the 

paradox. The potential for observing SP in the clinical trial setting is discussed in Section 

3.3 and in this context the impact of randomisation and stratification are examined. In 

Section 3.4, a general mechanism for observing inconsistent results is presented. In 

Section 3.5, the more general case where the treatment effects in the subgroups are either 

all greater than or an less than the overall treatment effect is considered. The odds ratio 

model is given special focus and the impact of underestimation in the unconditional model 

is considered as is are-definition of the concept of balance that restores the additive nature 

of the model. Finally, the results of some simulation exercises - aimed at establishing the 

chances of observing SP and related inconsistencies when randomisation is employed - are 

reported in Section 3.6 to support the earlier findings. 

3.2 EXPLAINING SIMPSON'S PARADOX 

Simpson's paradox is best described by considering an example from the literature. Table 

3.1 presents a historical comparison of two methods of kidney stone removal reported by 

Charig et af (1986). Overall, the percutaneous nephrolithotomy method (PN) of removal 

has a higher proportion of successes compared with the open surgery method (OS). 

However a comparison of the methods within each of two stone diameter subgroups 
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shows what appears to be a paradoxical result - that is, the OS method is more successful. 

Two features of the data are worth noting. Firstly, regardless of method of removal, a 

higher proportion of subjects with a stone diameter <2 cm is classified as a success and 

secondly the PN method was applied to a higher proportion of the subjects with a stone 

diameter <2 em compared with the OS method. The explanation of this second feature in 

this historical comparison is that the choice of method is influenced by the stone diameter 

of the subject. For a randomised study, however, where subjects would be randomised to 

the method of removal, this explanation would be implausible. 

T bl 3 I A a e .. n example 0 fS' d Impson· s para ox 
Method of Stone diameter Total 
removal <2cm >=2cm 

Open surgery, 81/87 192/263 273/350 
1972-80 = 0.93 = 0.73 = 0.78 

Percutaneous 2341270 55/80 289/350 
nephrolithotomy, =0.87 =0.69 = 0.83 
1980-85 

Simpson's paradox can be illustrated using simple probability theory as described by Hand 

(1994). Let there be two treatments (T=I,2), two possible treatment outcomes (X=I,2) 

and two possible levels of a factor (F= 1,2) such that two mutually exclusive subgroups can 

be defined. 

Using basic probability axioms it is simple to show that for T= I: 

P(X=lIT=l) = P(X=lIF=l, T=l) P(F=lIT=I) + p(X=1IF=2, T=l) p(F=2IT=I) (1) 

Similarly for T=2: 
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p(X=1IT=2) = P(X=lIF=l, T=2) p(F=1IT=2) + p(X=1IF=2, T=2) p(F=2IT=2) (2) 

Now, SP describes the situation where p(X=lIT=l) < p(X=1IT=2) but both p(X=lIF=l, 

T=l) > p(X=lIF=l, T=2) and p(X=1IF=2, T=l) > p(X=1IF=2, T=2). (Or alternatively, 

where P(X=lIT=l) > p(X=1IT=2) but both P(X=lIF=l, T=l) < p(X=lIF=l, T=2) and 

p(X=IIF=2, T=l) <p(X=IIF=2, T=2». 

The apparent paradox can easily be explained by considering the weighting system 

employed. Equations (1) and (2) can be re-written with weights {J)j and (J)2 corresponding 

to the probabilities p(F=lIT=I) and p(F=1IT=2) respectively. 

P(X=lIT=l)=P(X=IIF=I, T=l) (J)I + p(X=1IF=2, T=l)(l- (J)I) , (3) 

p(X=IIT=2)= P(X=lIF=l, T=2) (JJ2+P(X=IIF=2, T=2)(1- (J)2) (4) 

If {J)2» (01 and both p(X=lIF=l, T=l»> P(X=IIF=2, T=l) and p(X=lIF=l, T=2»> 

P(X=1IF=2, T=2) then the term p(X=lIF=l, T=2) (J); will dominate and lead to a reversal 

ofthe overall treatment difference compared with the treatment differences within the two 

subgroups. This can be shown numerically by substituting the data from Table 3.1 in 

equations (I) and (2) to give: 

p(success lOS method) 

p(success I PN method) 

= 0.93 x 0.25 + 0.73 x 0.75 = 0.78 

= 0.87 x 0.77 + 0.69 x 0.23 = 0.83 

The paradox can easily be avoided by using identical weights ({J)I = (J); = (0) when 

calculating each treatment effect. This produces an overall treatment difference that is in 
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the same direction as the within subgroup treatment differences. That is, the difference 

p(X = IIT= 1) - P(X = IIT=2) which is calculated as: 

[p(X=IIF=I, T=l) - p(X=IIF=I, T=2)]w +[P(X=IIF=2, T=I) - p(X=IIF=2, T=2)](1-w) 

must be negative if 

P(X=IIF=l, T=l) < P(X=lIF=l, T=2) and p(X=IIF=2, T=l) < p(X=IIF=2, T=2) 

The simplest weighting system to employ is to use w = (1 - (u) = 'h that weights each 

subgroup equally and consequently takes no account of the number of subjects in each 

subgroup. Using the data from Table 3.1 again and employing the weights (t) = (I - w) = 'h 

shows how the paradox can be avoided. 

p( success I os method) 

p( success I PN method) 

= 0.93 x 0.5 + 0.73 x 0.5 = 0.83 

= 0.87 x 0.5 + 0.69 x 0.5 = 0.78 

Perhaps the most common method is to use weights such that the variance of the contrast 

is minimised. That is, woc nil n21/(nll + n21) and (l - w) oc nl2 n;n/(nll + n12) where nil 

represents the number of subjects in each combination of treatment (i=1 ,2) and factor 

(j=1,2). The choice of which weights to use, to combine the parameter estimates from the 

separate subgroups, relates directly to the question posed and is not arbitrary (Hand, 1994; 

Lane and Nelder, 1982). Arguably the first consideration is whether the question posed is 

a conditional one, and if it is, then the second consideration is the exact nature of the 

conditional question. Thus if interest lies in the unconditional effect of treatment then the 

weights WJ and W2 are simply the probabilities p(F=IIT=l) and p(F=1IT=2) as described in 
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the earlier example. In this respect each subject is weighted equally and the factor is 

ignored. Alternatively if a conditional question is posed then the weights applied will 

need to be directed towards the specific fonnulation of the problem. For instance, if one 

were interested in the effect of treatment in a defined population then weights would be 

selected according to the know proportions in the population with regard to the factor of 

interest. Other alternatives could include using the observed proportions in the data, or 

equal weights for each level of the factor (for instance to predict the effect of treatment 

had all centres randomised the same number of subjects). Such approaches are common in 

epidemiology and demography where the tenn standardisation is used to describe factor 

adjustment (Lane and Neider, 1982). The choice of weights is discussed further in Section 

3.8 in the context of prediction. 

3.3 THE IMPACT OF RANDOMISATION AND STRATIFICATION 

As described in Chapter Two, in the clinical trial setting, one aim of randomisation is to 

balance treatment groups for treatment independent variables or factors - known and 

unknown, measured and not measured - which may influence outcome (Gillings and 

Koch, 1991). It follows that randomisation allows valid inference over all possible 

random assignments and this is the principle that underpins the randomised and controlled 

trial (ReT). Furthermore, subgroups formed on the basis of treatment-independent 

factors, generate treatment groups that will - over all randomisations - still be balanced 

and in this context treatment comparisons within these subgroups are unbiased. Tests can 

be performed within subgroups as though randomisation had been performed separately 

within those subgroups (Lachin, 1998), the resulting test statistics are independent and as 

such can be combined across levels of a factor as if stratification had been performed. 

That is not to say, however, that the formation of subgroups has no impact since it 

modifies the populations to which the results apply and in these different subgroups the 
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effects of the treatments may indeed differ. To examine the influence of randomisation in 

generating consistent results when overall and subgroup analyses are compared it is useful 

to adopt the probability framework described in the preceding section. 

Consider a RCT with unrestricted randomisation where r is the odds of assignment to 

treatment 1 compared to treatment 2. That is, P(T=l) = r p(T=2). Factor F is recorded for 

all subjects prior to randomisation and can take one of two values. As assignment to 

treatment is independent of factor F then p(T=l) = p(T=IIF=I) and P(T=2) = p(T=2IF=I) 

which leads to p(T= IIF= 1) = r p(T=2IF= 1). It is then simple to show using Bayes' 

theorem that P(F=lIT=l) = p(F=1IT=2). That is, the paired weights WI and 002 from (3) 

and (4) are equal producing a theoretical basis for randomisation providing protection 

against SP. 

Prospective stratification by F in an RCT effectively forces balance with regard to F and 

limits the scope for variability around the expectation, since subjects are randomised 

separately for each level of F using fixed or variable length blocks. That is, p(T= IIF= 1) = 

r p(T=2IF= 1) is well controlled with the result that P(F= IIT= 1) = p(F= IIT=2) is also 

controlled. Consequently stratification effectively eliminates the chance of observing SP 

when subgroup analyses are generated from prospectively stratified factors. 

These findings can be contrasted with those expected from other types of medical research 

such as epidemiology where the independence of treatment and factor can not be 

guaranteed in the typical situation where randomisation has not been employed. In these 

cases, confounding can be a real concern and serious bias can result. It is not surprising 

therefore that reported occurrences of SP have been reserved for non randomised, 

observational studies. 
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Pearl (2000) considers SP in relation to causality and introduces a distinction between 

seeing and doing. In this respect, Pearl's do-operator represents the causal condition, 

given that we do, which can be contrasted with the more usual condition, given that we 

see. It follows that the inequality, P(E I C) > P(E I-,C) , where C refers to cause (test 

treatment, say), E to effect, and -,C to the complement of C (reference treatment say), is 

not actually stating that C is a positive causal factor of E. Rather, although C is positive 

evidence for E, confounding factors may in fact be causing both C and E. Instead, to 

represent C as the positive causal factor it is necessary (according to Pearl's terminology) 

to write the inequality as P(E I do(C» > P(E I do( -,C». Now, it is clear that in a properly 

conducted RCT, such potential confounding factors cannot influence the assignment of 

randomised treatment and it is appropriate to use the do-operator. Indeed in relation to 

causality, this is why the RCT is so powerful since it is the long run balancing of treatment 

groups with regard to factors through randomisation that enables cause and effect to be 

assigned to treatment with confidence. (Note that Pearl actually regards randomisation as 

a causal concept as opposed to a statistical one, such as likelihood or conditional 

independence.) That is not to say that the do-operator is automatically applicable to 

subgroups in a RCT since randomisation can not balance groups for variables or factors 

that are not independent of treatment - for example, subgroups constructed on the basis of 

drug compliance. (This point - that subject exclusion on the basis of treatment dependent 

data can introduce bias - was discussed extensively in Chapter Two.) Furthermore, Pearl 

highlights the problem of intermediate events that also reside on the causal pathway in 

clinical trials. An example of this would be the sub-grouping of a long-term primary 

outcome measure in HIV/AIDS, such as survival, by a short-term surrogate marker of the 

disease, such as a post-treatment level of the CD4 count. In this case, since randomised 

treatment affects the post-treatment CD4 count, randomisation provides no protection 
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against SP and the unconditional estimate ofthe treatment difference is the most 

appropriate. 

3.4 A MECHANISM FOR OBSERVING INCONSISTENT RESULTS 

Although over all randomisations treatment groups will be balanced in terms of the 

distributions of pre-randomisation or baseline factors, observed randomisations will 

exhibit at least some imbalance and as a consequence it is important to examine the 

potential impact of such imbalance on estimates of the treatment difference. The 

following section describes a mechanism for observing inconsistent results between 

overall and subgroup analyses in the presence of observed imbalance when the outcome 

variable (y) is continuous. To illustrate the mechanism a linear model is used which 

includes terms for factor and treatment but assumes no treatment by factor interaction. 

As in the previous illustrations, consider a ReT with two treatment groups, T=I and T=2 

and a factor F that can be used a posteriori to form two subgroups, F= 1 and F=2. It is 

assumed that a subject (h) is subject to the effects of treatment r; (i=l ,2) and factor tP j 

(j= 1,2) and that there is also a background level, represented by the constant term a. This 

leads to a model ofthe form: 

where the errors E ijh are independent and identically distributed with constant variance and 

where to estimate the parameters, constraints must be applied to their estimates (Neider, 

I 994a). In this respect the parameters T i and ~ can be regarded as expected values for the 

effects of treatment and factor respectively and an individual can also be thought of as 

having an expectation equal to a + T; + tP j • 
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The impact of factor imbalance on the estimates of the treatment difference can be 

examined by working with the expected value for each subject. Table 3.11 gives the 

expectation (a + 'i +,pj) for a subject classified to each one of the four treatment by 

factor combinations together with the resulting number of subjects (nij) in each 

combination following unrestricted randomisation to treatment. 

Table 3.II. Expected outcome values for two 
trtmtt fit d· ea en, wo ac or eSlgn 

Factor F=l Factor F=2 

Treatment T= 1 a + 'I +;1 a + 'I +;2 
(nil) (nI2) 

Treatment T=2 a + '2 +;1 a + '2 +;2 
(n2J) (nn) 

To estimate the treatment difference in each subgroup the mean value for T=2 in the given 

subgroup is subtracted from the corresponding mean value for T=) which gives ('I - '2). 

In contrast, an overall estimate ofthe treatment difference which ignores factor F is simply 

calculated by subtracting the mean score across all (n2J + nn) observations for T=2 from 

the mean score across all (nil + n12) observations for T=l. This is given as follows: 

(5) 

What this simple illustration shows is that in the presence of factor imbalance the 

unconditional estimate of the treatment difference will be contaminated by a proportion of 

the difference between the effects ofF=1 and F=2. The term "contamination" has been 

coined to distinguish this effect from the term bias. Bias is a systematic effect on a 

parameter estimate whilst in this context contamination can be thought of as a non 
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systematic effect which would not lead to bias since over all randomisations the 

expectation of the coefficient K would equal O. This reinforces the point that the overall 

(unconditional) estimate of the treatment difference is unbiased and that imbalance 

manifests itself in terms of the variability of the estimate (Senn, 1994). 

For an observed randomisation, contamination will be zero in this framework if one or 

both of the following conditions hold: 

• Factor F has no influence on outcome. That is, (fjJ 1- fjJl) = O. 

• In each treatment group, the observed proportion of subjects with characteristic F=l is 

identical such that K= O. That is, nll/(n" + nIl) = nll/(nll + nll). 

These results correspond to those obtained earlier but enable the impact of imbalance to be 

quantified in a meaningful way for continuous outcomes. To assess the actual impact of 

imbalance it is worth constructing a simplified example where (z)% of subjects in T=l and 

(100 -z)% of subjects in T=2 have characteristic F= 1 and where the number of subjects 

randomised to each treatment group is equal. This leads to the simplified conditions, nIl = 

nn and nll= nll in which case Kin (5) reduces to (nll- nd/(n" + nil). This allows one to 

work with one measure of imbalance, 12z - 1001%, in both treatment groups such that K= 

12z - 1001/100. Some examples of the values of K that are produced for increasing degrees 

of imbalance are given below. For instance a modest imbalance of 10% leads to K= 0.1 

which would produce contamination equal to 10% of the differential effect of factor on 

outcome. 

Imbalance 
(z)% versus (l-z)% 

50% versus 50% 
55% versus 45% 
65% versus 35% 
80% versus 20% 
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In this framework, for SP to exist it is a necessary condition that the differential effect of 

factor F is greater than the differential effect of treatment T. That is, 1 t/J 1- ¢21 > 1 'I - '21, 

although note in this respect that variability in the realisations of ,and ¢ is deliberately 

ignored here. Also, unless the factor imbalance is dramatic then the differential effect of 

the factor must be substantially greater than the differential effect of treatment. As such, 

randomised studies that employ an active control or reference group and are designed to 

show therapeutic equivalence (such that 1 'I - '21 <t5, where 8 is considered to be clinically 

unimportant) would, a priori, seem to be the most vulnerable to SP. 

Consistency between the individual subgroup differences and the overall treatment 

difference can be achieved by adopting a suitable set of weights to combine the estimates 

from each subgroup in a similar manner to that described in section 3.2. The simplest 

approach is to weight the differences between treatments from the subgroups equally such 

that 00 == (1 - (i) = Yl. An alternative system is to use weights that minimise the variance of 

the contrast such that 00 oc nil n2//(nl/ + n2/) and (1 - (i) oc n/2n22/(n/2 + n22). This system 

gives the most weight to the treatment difference for the subgroup that contains the 

greatest number of subjects and within each subgroup the weight is maximised when the 

treatment groups have an equal number of subjects assigned. It is interesting to note that 

for the earlier illustrations where (z)% of subjects in T= 1 and (100 -z)% of subjects in T=2 

had characteristic F== 1 , and where n IJ = n 12 and n /2 = n 2/, then the two weighting systems 

would lead to equivalent results since the total number of subjects and the degree of 

imbalance in each subgroup is identical in each case. (See Table 3.111 later for an 

example.) 

From a computing perspective, the system of equal weights corresponds to the system 

employed by the SAS procedure GLM (SAS, 1989) when, in addition to the main effects 
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of factor and treatment in the model, an interaction term between treatment and factor is 

also included in the model statement and type III sum of squares (SS) is requested. The 

weighting system that minimises the variance of the contrast is also available in SAS and 

can be obtained in a number of ways. If the model includes just factor (specified first in 

the model statement) and treatment then the type I SS option will produce the required 

output. Alternatively types II, III or IV SS produce an identical result with the same 

model statement but in this case the ordering of the two terms is unimportant. Neider 

(1994a) provides a thorough review of the SAS procedure GLM and in particular a highly 

critical review of type III SS option. 

In the context of the binary outcome model, Nelder (1994b) has indicated that SP always 

requires an interaction term in the model since the margins do not provide an adequate 

summary of the content ofthe table. The context of his comment is not entirely clear and 

Neider may have simply been referring to a log linear model formulation. Nevertheless, 

what this formulation shows is that for continuous outcomes, this is not necessarily the 

case and that SP (and other less extreme inconsistencies) could be explained adequately 

with a model excluding an interaction term and consequently one that satisfies the 

parsimony test. This is also true for binary data when the logistic regression model is 

applied. 

This formulation also shows that it is just as likely that imbalance would lead to inflation 

of the estimate of the treatment difference as it is that it would lead to a reversal of the 

treatment effect as in SP. This would occur if the observed imbalance were in the opposite 

direction. Indeed the mechanism described above can be used to assess the effects of 

factor imbalance in a general manner and this is discussed in the following section. 

- 93 -



3.5 LESS EXTREME INCONSISTENCIES 

It is a commonly held view - see for instance Peto (1982), Koch (1996) and Senn (1997) -

that if the treatment difference were observed to be larger in one subgroup of subjects 

compared to the overall treatment difference then the treatment difference in the 

complement subgroup would be smaller. Indeed, Koch describes this as one reason for 

not adjusting the p-values from subgroup analyses for multiplicity. The reasoning is that 

the regulatory authorities who assess drug applications look for homogeneity of effect and 

subgroup analyses are likely therefore to lead to a weakening of the treatment conclusion 

rather than a strengthening of it. (For instance, if the overall treatment effect is 

statistically significant hut inconsistent results are observed across subgroups in terms of 

statistical significance, support for the conclusion of homogeneity of effect is reduced.) 

Whilst it is typically observed that the overall result lies in between the subgroup results, 

the assertion assumes that there is no notable imbalance with regard to treatment 

assignment in each subgroup and as a consequence the point lends itself to examination 

using model (5). First consider a fictitious example where this does not happen. 

Consider a RCT where outcome is diastolic blood pressure (DBP) recorded following 

treatment with either active or placebo treatment. The results of trial are given in Table 

3.III where mean DBP [mmHg] is summarised by treatment and also by two age 

subgroups. The number of subjects in each cell is given in parenthesis. The difference 

between the treatment means (placebo - active) is 10 mmHg in both subgroups whereas 

the overall treatment difference is 8 mmHg, 2 less than the subgroup differences. There is 

no evidence of an interaction between treatment and the age classification but there is an 

imbalance in the proportion of subjects aged <65 years in the treatment groups. 
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Table 3.111. An example where the treatment effect in 
b th b . I h 11 ftl 0 su ,groups IS arger t an overa treatment e ect 

<65 years ~65 years Total 

Active 90 100 96 
(N=40) (N=60) (N=100) 

Placebo 100 110 104 
(N=60) (N=40) (N=100) 

Using model (5) it is simple to see that if the form of the model is appropriate - in that it is 

considered to provide an adequate description of the data - then the apparent 

inconsistency, as given in Table 3.111, should not be unexpected. That is, in the absence of 

an interaction but in the presence of an imbalance (0< 1« I), if treatment and factor have 

independent effects on outcome (I TJ - T21 > 0 and I¢I- ¢21 > 0) then the expected treatment 

difference for both subgroups would differ from the overall result to the same extent and 

in the same direction. Of course this formulation ignores the inherent variability 

associated with the outcome variable which leads to a reduction in the chances of this 

phenomenon occurring in practice. 

3.6 RANDOMISATION AND THE ODDS MODEL 

Now, consider the odds model for binary outcome data. It has been shown that even a 

balanced design, where a factor is perfectly balanced across treatment groups, does not 

lead to identical conditional and unconditional estimates of the treatment difference. That 

is, balance actually leads to underestimation of the unconditional treatment effect if the 

factor excluded from the analysis has an independent impact outcome. In this case the 

odds ratio shrinks towards unity. 

Gail (1986) gives a general formula for the approximate asymptotic bias of the treatment 

effect for the exponential family of models including the logistic model. As an illustration 

consider Table 3.lV where for each treatment by factor combination the proportion of 
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successes is presented together with - in parenthesis - the associated odds. The trial is 

perfectly balanced in the traditional sense in that there is an identical number of subjects 

(N=loo) for each combination of treatment and factor. 

Table 3.1V. An example of underestimation of the 
d . f I dd . h . I h rfi b I uncon Ilona 0 s ratIo w en a tna as pe ect a ance 

Factor F=1 Factor F=2 Total 

Treatment 90/100 751100 165/200 
T=1 (9) (3) (4.71) 

Treatment 751100 50/100 125/200 
T=2 (3) (1) (1.67) 

Odds ratio 3 3 2.83 

Within each subgroup the odds ratio (T= IIT=2) is 3 indicating a constant treatment 

difference with no treatment by factor interaction, but despite the apparent balance of the 

trial the overall odds ratio of 2.83 is smaller. (Note that the same table was used in Chapter 

Two (Table 2.1) to illustrate how an apparent treatment by factor interaction can disappear 

through transformation of the scale - in this case from proportions to odds.) 

It is straightforward to derive a simple formula for calculating the unconditional odds ratio 

('I') from a combination of the four separate odds (A.ij) ifit is assumed that the number of 

subjects in each treatment (i=I,2) by factor (j=1,2) combination is identical. (Refer to 

Appendix A for the derivation.) This gives, 

that produces a value of2.83 when the four odds from Table 3.IV are substituted into (6). 

For a given treatment effect, underestimation increases as the size of the factor effect 

increases. Furthermore, the extent of the underestimation diminishes as the treatment odds 
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ratio approaches either the relative risk (HI/HZ) or the inverted reverse relative risk (1-

HZ)/(] - HI) and due to the symmetric nature of the odds ratio, this occurs as the odds 

approach either zero or infinity. (Further detail relating to underestimation of the odds 

ratio is provided in Chapter Five, Section 5.5.) However since the relative risk (ratio of 

proportions) behaves in a similar way to model (5) for continuous data, as the odds ratio 

approaches the relative risk (or inverted reverse relative risk) the additive nature of the 

unconditional analysis returns. Indeed, in epidemiological research the odds ratio is often 

regarded as an approximate relative risk since incidence and prevalence rates are 

frequently low and denominators are large. However in drug development this is usually 

not the case. 

That is not to say that the randomisation principle does not hold for the odds model since 

the true treatment difference is simply reduced rather than eliminated. Furthermore, under 

the null hypothesis of no treatment effect, the expected value of the odds ratio remains I 

regardless of whether a factor effect exists or not. Of course, in practice, observed 

imbalance can impact overall analyses in much the same way as previous models - that is, 

it can lead to both under and over estimation of the true treatment difference. 

Interestingly, it is possible to achieve consistent results with the odds model but this 

requires are-definition of the concept of balance. Consider the case where balance is re

defined in terms of the proportion of successes with characteristic F= I in each treatment 

group rather than proportion of subjects per se. (Note that due to symmetry considerations 

this condition could also be defined in terms of the number of failures.) Table 3.V 

provides an example where this balance redefinition criterion is met. For treatment T= I, 

the number of successes with characteristic F= I as a proportion of the total number of 

successes for treatment T=I is 0.455 (50/110). Similarly for T=2 the corresponding 
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proportion is 0.455 (75/165). Iffailures are considered instead, then the proportions are 

again identical- that is, 0.667 (400/600) and 0.667 (200/300) for T=l and T=2 

respectively. As the data in Table 3.Y demonstrate, the odds ratio in each subgroup is 

identical to the overall odds ratio despite factor F having an independent effect on 

outcome. The proof of this result is shown in Appendix B. 

Table 3.Y. An example of consistency between the 
unconditional odds ratio and subgroup odds ratios when 

balance is re-defined 
Factor F=l Factor F=2 Total 

Treatment T= 1 50/450 60/260 110/710 
(0.125) (0.3) (0.183) 

Treatment T=2 75/275 90/190 165/465 
(0.375) (0.9) (0.550) 

Odds ratio 3 3 3 

Unfortunately this re-definition is not helpful in the practical sense since no mechanism 

exists which could provide this balance for all factors which could impact on outcome 

since it involves balancing the outcome which is unpredictable rather than the baseline 

variables which are known at the time of balancing. 

At this stage, and for completeness, it is useful to consider some weighting systems that 

are employed to combine the individual estimates of the odds from subgroups to form an 

estimate of the common treatment odds ratio that avoids SP. The first example actually 

combines odds ratios from the subgroups that have been transformed using natural 

logarithms to form an estimate of the common odds ratio. For the case were there are two 

treatments (i=I,2) and a factor with two levels (j=1,2) the common odds ratio (If') is 

estimated as follows: 

wL +wL 
10g(lI') = I I 2 2 

WI + w2 
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In this case the reciprocal of the weight (Ij w) )is the squared standard error of Lj and it 

follows that the larger the standard error, the smaller the weight. 

A popular alternative estimate of the common odd ratio, proposed by Mantel and Haenszel 

(1959), does not in fact actually weight the individual odds ratios. Rather identical 

weights are assigned to each set of terms PI} (1 - P2j) and P2j (1 - Plj)' These terms are 

the summed across all levels of the factor prior to forming the required ratio. This is 

illustrated below, 

'I' = W;lPll (1 - P2I)]+ (0; [P12 (1- Pn)] 

W;lP21 (1- PII )]+ w; [Pn (1- PI2)] 

It is straightforward to imagine examples where some observed proportions are either zero 

or one, in which case the Mantel-Haenszel and back-transformed log odds ratios will 

obviously differ since the former is able to utilise more information. As such the Mantel-

Haenszel approach has been recommended for cases were the number of subgroups (or 

strata) is large but the number of observations in each subgroup is relatively modest 

(FJeiss, 1986). (For instance when investigator site is the strata and few subjects are 

randomised at each site.) In contrast, the logarithmic approach is recommended in cases 

were the number of subgroups is small and number of observations within each subgroup 

is large - in this instance it is deemed to perform better, or at worst, only a little poorer 

than the alternatives. It also has the advantage that it is easily extended to multi-treatment 
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and multi-factor problems through the logistic model. (Refer to Chapter Five, sections 5.3 

and 5.5 for further discussion of the logistic model.) 

Fleiss (1986) provides further details ofthis and other methods of estimating a common 

odds ratio and also gives comprehensive details of the weights that can be used for 

differences in means and differences in proportions. 

3.7 SUPPORTING SIMULATIONS 

To examine the behaviour of the overall difference between two treatments relative to that 

of the subgroup treatment differences in a RCT setting a series of simulations were 

performed. A Normally distributed outcome was considered initially. This was followed 

by the more complex situation regarding a binary outcome. 

Each simulation assigned subjects at random to one of two levels of a factor F using a 

binomial distribution. However since in practice most randomisation schema are blocked 

to ensure an approximate equal number of subjects to each treatment group, assignment of 

subjects to treatment was on a simple alternating basis. This simulated a parallel group 

study with two treatment groups and blocked randomisation. Each simulation was 

conducted on 5,000 trials using a random number generator from the uniform distribution 

in SAS to assign the subject to one of two levels of the factor F using the 0.5 cut-off. 

The resulting incidence percentages have been reported to two decimal places since it was 

important to identify any occurrence of SP under the conditions tested. In this respect, a 

reduction in the number of decimal places would have meant that some combinations 

would have been reported as having an incidence of zero even though SP had been 

observed. To aid interpretation, standard errors (SE) calculated using the Normal 

approximation to the binomial distribution are given below for a range of values - since the 
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magnitude of the Monte Carlo error varies according to the value of the parameter being 

estimated. Note that in cases where a zero incidence was observed, the exact 95% 

confidence interval (StatXact software: Cytel, 1999) was 0 to 0.07%. Further details are 

provided in the Simulation Note at the end of this Research Thesis. 

Incidence % 0.02 0.1 0.2 0.5 1.0 2.5 5.0 7.5 10 20 30 40 50 

SE % 0.020 0.045 0.063 0.10 0.14 0.22 0.31 0.37 0.42 0.57 0.65 0.69 0.71 

3. 7. J Normally distributed olltcome 

For the normally distributed case, subject outcome was determined through the assignment 

of a Normal distribution to each of the four treatment by factor combinations. The 

parameters of Normal distribution were chosen such that both treatment and factor had an 

independent effect on outcome. That is, the treatment difference for F=I was identical to 

the treatment difference for F=2. With regard to standardised treatment differences - that 

If) - f21 
is, , Cohen (1997) suggests a range of 0.1 to 1.0 where 0.2 might represent a small 

(j 

effect and 0.8 a large effect. Therefore, in this series of simulations the effects ranging 

from zero to 2.0 (0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0 and 2.0) have been selected in order to 

provide a broad coverage of plausible differences. Identical treatment and factors effects 

have been chosen to provide symmetric comparisons in each case. The first six effects 

range from zero to 0.5 in increments of 0.1 to cover a range of small to medium size 

effects, including no effect. The last two effects of 1.0 and 2.0 represent large and very 

large effects respectively to investigate the impact at the limit of plausibility. For instance, 

Machin and Campbell's (1987) sample size tables for the difference between two means 

terminates at 1.5. A reference mean was selected which fixed the mean for the T= 1, F= I 

combination of treatment and factor at 0 while the standard deviation was fixed at 1 for all 

4 combinations. For example, for a treatment effect of 0.3 and a factor effect of 0.2 the 

following Normal distributions (NTF) were selected: N 11(0, 1), N 12 (0.2,1), N21(0.3,1), 
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N22(0.5,I). The effect of sample size was also investigated using three different scenarios 

corresponding to small, medium and large sized clinical trials. That is, 40, 200 and 1000 

subjects. Forty subjects is most likely to represent a small phase II study while 200 

subjects could represent a large phase II or small phase III study. The large study with 

1000 subjects (500 per treatment group) represents a substantial phase III study - although 

some phase III studies are certainly larger than this. These three scenarios resulted in a 

total of 192 (8x8x3) simulations being performed. 

As the relative sizes of the treatment and factors effects varied, two features were 

examined. First the potential for observing SP, and second the proportion of cases where 

the overall difference between the treatment means was either greater than or less than the 

treatment differences for both subgroups. The results of the simulation are given in Table 

3.VI. 
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Table 3.VI. Simulation 1: Nonnally distributed outcomes: Percentage where overall 
treatment difference> or < treatment effect in both subgroups (% Simpson's paradox) 

. h' I' WIt varytng samp. e sIze 
Mean factor difference 

Mean Total 0 .1 .2 .3 .4 .5 1.0 2.0 

treatment sample 
difference size 
0 40 7.84 8.44 9.74 10.74 12.38 15.84 28.28 49.22 

(0.30) (0.48) (0.66) (0.72) (0.90) ( 1.00) (3.46) (8.88) 
200 3.88 4.24 6.84 9.36 ]2.94 15.54 29.90 50.72 

(0.08) (0.] 2) (0.12) (0.32) (0.70) (1.02) (3.18) (8.48) 
1000 1.46 2.76 6.46 9.82 12.88 15.98 29.90 49.50 

(0.08) (0.20) (0.38) (0.64) (1.06) (2.86) (7.94) 
.1 40 7.22 7.68 9.64 ]] .20 13.58 15.68 28.48 48.76 

(0.56) (0.40) (0.38) ( 1.06) (0.84) (1.16) (3.78) (8.] 8) 
200 3.88 4.58 6.52 9.16 11.92 15.82 30.00 48.54 

(0.06) (0.12) (0.26) (0.38) (0.46) (0.74) (2.72) (7.68) 
1000 1.56 3.32 6.]2 9.10 11.74 15.66 29.44 49.62 

(0.02) (0.08) (0.08) (0.20) (0.24) (0.92) (5.56) 
.2 40 8.28 7.96 9.52 11.72 12.98 15.78 28.44 48.18 

(0.38) (0.26) (0.38) (0.54) (0.58) (1.24) (3.22) (7.90) 
200 3.48 3.88 6.64 9.38 11.80 16.14 28.64 49.24 

(0.02) (0.18) (0.12) (0.22) (0.54) ( 1.32) (5.64) 

1000 1.80 3.26 6.16 9.38 12.56 15.12 29.04 49.58 
(0.04) (0.04) (0.08) (0.94) 

.3 40 7.78 8.02 9.70 10.16 12.62 15.00 28.80 48.40 
(0.32) (0.30) (0.44) (0.44) (0.66) (0.82) (2.58) (7.04) 

200 3.48 4.24 6.44 9.12 13.44 15.34 29.06 48.74 
(0.02) (0.06) (0.04) (0.04) (0. ]2) (0.92) (3.44) 

1000 1.66 3.24 6.82 9.78 12.22 15.]2 28.88 50.46 
(0.06) 

.4 40 7.82 8.30 9.]2 1] .40 13.08 15.28 27.96 49.34 
(0.06) (0.06) (0.10) (0.42) (0.58) (0.66) (2.00) (6.36) 

200 3.52 4.12 6.90 9.32 12.40 15.76 29.76 48.52 
(0.02) (0.02) (0.02) (0.10) (1.46) 

1000 1.34 3.32 6.22 9.28 12.16 15.18 29.32 50.56 

.5 40 7.80 8.16 9.72 10.40 13.68 15.94 28.34 49.08 
(0.04) (0.20) (0.18) (0.12) (0.22) (0.46) (1.30) (5.70) 

200 4.02 4.84 7.00 9.22 12.34 15.12 29.76 50.16 
(0.02) (0.02) (0.02) (0.48) 

1000 1.40 3.18 6.28 9.28 12.02 15.32 29.10 48.80 

1.0 40 8.46 8.48 9.14 10.60 12.36 15.96 28.58 48.46 
(0.02) (0.02) (0.04) (0.72) 

200 3.68 4.68 6.58 9.40 13.50 15.68 30.12 49.10 

1000 1.54 3.12 6.40 8.64 11.72 16.04 28.70 48.68 

2.0 40 7.72 8.60 9.10 10.62 13.40 15.42 28.30 47.52 

200 3.60 4.08 6.52 9.36 12.44 15.28 30.08 50.34 

1000 1.80 3.60 5.86 9.50 12.66 16.22 28.42 47.96 

5000 simulated data sets With randomly assigned to F (p=0.5) but With balanced treatment groups 
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Simpson's paradox 

As expected, the incidence of SP was low under the range of conditions selected with the 

maximum incidence (8.88%) occurring at the limits of the conditions investigated - that is, 

no treatment difference, the largest factor effect (2.0) and the smallest sample size (N=40). 

For a given treatment difference (table row), the incidence of SP increased with increasing 

size of factor effect - although when the treatment difference were high (2.0) and / or for 

larger sample sizes, SP was sometimes not observed for the range of factor effects 

investigated. For a given combination of treatment and factor effect, the incidence of SP 

decreased with increasing sample size, while for a fixed factor effect (table column) and 

fixed sample size, the incidence of SP decreased with increasing treatment difference. 

When the treatment and factors effects were identical (table diagonal bolded), the 

incidence of SP generally decreased with increasing standardised effects. That is, as 

Ii. - i 21 and I;. - ;21 increased. However the trend was not entirely clear-cut with an 
(T (T 

indication that the incidence of SP may have increased initially before decreasing again -

perhaps a result of the interplay between the increasing factor effect that increases the 

chances of SP and an increasing treatment effect that in contrast reduces them. 

Under the condition of a non-zero treatment difference, the subgroups were most likely to 

show the correct direction of the treatment difference - rather than the unconditional 

treatment difference - when the factor effect was large and so was the sample size. For 

example, when the treatment difference was 0.1 and the factor difference was 2.0, then 

251 of the 278 cases ofSP observed showed the correct direction of the treatment 

difference in the subgroups when the sample size was 1000. However, as the both sample 

size and factor effect decreased, the assignment of correct direction became more balanced 

between the subgroups and the unconditional treatment difference. 
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Overall effect greater than or less than both subgroups 

When the more general inconsistency, of the overall treatment effect being either greater 

than or less than both subgroups, was investigated it was found that as expected the size of 

treatment difference appeared to have no influence on observed incidence. However both 

the size of factor difference and the sample size did have an influence. As with SP, the 

incidence increased (table row) with increasing factor difference - indeed when the factor 

difference was at its maximum for the conditions investigated (2.0), the incidence reached 

was as high as 50%. When the factor effect was small, increasing the sample size reduced 

the incidence of this inconsistency. However for factor differences of 0.4 or greater, the 

incidence appeared largely unaffected by sample size for the range of values investigated. 

In contract to SP, when the treatment and factors effects were identical (table diagonal), 

the incidence of the more general inconsistency clearly increased with increasing 

standardised effects. In this cases the increasing factor effect increasing the chances of the 

inconsistency with the increasing treatment effect having no impact. 

3.7.2 Binary distributed outcome 

To examine the corresponding behaviour of the overall odds ratio relative to that of the 

subgroup odds ratios a further series of simulations were undertaken. For each subject, a 

binary outcome was determined through the assignment of a response rate (binomial 

distribution) to each of the four treatment by factor combinations. The response rates were 

chosen such that both treatment and factor had an independent effect on outcome using the 

odds ratio model. That is, the odds ratio (T=2ff= I) for F= I was identical to the odds ratio 

for F=2. 
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The range of values selected for the odds ratios for both the treatment and factor effects 

were 1, 1.25, 1.5, 2, 3 and 4, which generated a set of 36 basic combinations. In addition a 

reference odds was defined which fixed the odds for the T= 1, F= 1 combination of 

treatment and factor that enabled the odds to be defined for each of the 36 basic odds ratio 

combinations. The reference odds took the values 0.5 and 1, which resulted in 72 (36x2) 

different combinations for the odds. For a reference odds of 1, an odds ratio of 1.25 would 

correspond to a treatment (or factor) difference of around 5 percentage points (5.6%) 

whilst an odds ratio of 4 would correspond to a 30% difference. The effects 1.5, 2 and 3 

would correspond to differences of 10%, 16.7% and 25% respectively. In this respect, 

these differences (in addition to no effect) were seen to represent the range of plausible 

effects in the clinical trial setting. The reference value of 0.5 was employed to ensure that 

some combinations contained odds which were both < I and> 1. The table with the highest 

odds was for the combination where both the odds ratios were 4 and the reference odds 

was 1. This gave the following 2x2 table of odds and response percentages: [1 = 50% 

(T=1 & F=I); 4 = 80% (T=1 & F=2); 4 = 80% (T=2 & F=I); and 16 = 94% (T=2 & F=2)]. 

For a given odds, binomial distributions were assigned to each treatment by factor 

combination using the relationship J( = A./(1 + ,.i). The effect of sample size was also 

investigated using the three identical scenarios used for the Normally distributed 

outcomes. That is, 40, 200 and 1000 subjects. As a result, a total of216 (36x2x3) 

simulations were performed. 

In cases where either all or no subjects for a particular combination were assigned a 

success then 0.001 was added to both the number of successes and the number of failures 

to enable the odds to be defined. The rationale for selecting 0.001 was that with 500 being 

the maximum number of subjects per treatment group then a maximum odds would be 

(500.001/0.001) which would always be greater than (499/1). However this adjustment 
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was really only needed when the sample size was 40 - and in particular when the odds for 

a specific combination of treatment and factor was relatively high. 

Two aspects of the odds model were examined. Firstly, an investigation of the potential 

for observing SP as the relative sizes of the treatment and factors effects, and sample size, 

varied. Secondly, an investigation of the potential for observing cases where the overall 

odds was either greater than, or smaller than, the ratio odds ratios for both subgroups. In 

this later case, the two different observations [>than and <than] have been reported 

separately to investigate the additional feature of unconditional odds ratio underestimation. 

In this respect, the expectation was that the respective proportions would be asymmetric in 

cases where the treatment and factor effects were not null. The results of the two series of 

simulations (2a and 2b) are presented in Tables 3.VII (reference odds = 1) and 3.VIII 

(reference odds = 0.5). 
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Table 3.VII. Simulation 2a: Binary outcomes: Percentage where overall treatment 
difference> or < treatment effect in both subgroups (% Simpson's paradox) with varying 

sample size (A/I = 1) 
Treatment Total sample %> or< and Factor OR ( "'F) 
OR(II'r> size %SP ] 1 1.25 11.5 12 13 14 
] 40 > 4.14 4.10 4.56 5.62 7.74 9.12 

< 4.10 4.44 4.82 5.84 8.36 9.52 
SP (0.06) (0.14) (0.16) (0.20) (0042) (0.64) 

200 > 1.80 2.38 3.52 5.96 8.88 9.58 
< 1.80 2.06 2.86 5.44 8.00 9.92 
SP (0.02) (0.02) (0. ]8) (0.68) (1.16) 

1000 > 0.70 1.56 3.16 4.94 7042 9.94 
< 0.84 1.32 3.42 4.92 8.20 10.26 
SP (0.02) (0.18) (0.46) (0.98) ( 1.42) 

1.25 40 > 3048 4.16 4.26 4.70 6.98 8.36 
< 4.66 5.38 5.18 6.32 9048 ]0.84 
SP (0.04) (0.08) (0.14) (0.16) (0.48) (0.74) 

200 > 1.86 2.48 3.22 4.24 6.36 7.30 
< 2.24 2.64 3.66 6.56 9.90 13.44 
SP (0.06) (0.02) (0.22) (0.56) (0.72) 

1000 > 0.66 1.56 2.28 3.42 3.90 5.38 
< 0.82 2.12 4.10 6.88 12.56 ]6.78 
SP (0.08) (0.28) (0.52) 

1.5 40 > 3.]4 3.40 3.70 5.44 5.84 7.]4 
< 4.88 4.98 S.S4 6.36 9.42 1l.70 
SP (0.06) (0.]2) (0.08) (0.28) (0.46) (0.46) 

200 > 1.26 2.08 2.78 3.54 4.94 5.40 
< 2.06 2.98 4.02 7.08 11.24 ]5.66 
SP (0.02) (0. ]6) (0040) (0.54) 

1000 > 0.56 1.14 1.84 2.58 2.62 2.68 
< 0.96 2.44 4.30 9.40 17.04 22.44 
SP (0.02) (0.06) 

2 40 > 2.70 3.18 2.94 3.82 5.38 6.34 
< 4.90 5.18 5.76 7.52 11.36 13044 
SP (0.06) (0.04) (0.08) (0.14) (0.22) (0.60) 

200 > 1.78 1.56 2.16 2.84 3.56 3.86 
< 2.04 2.88 4.36 8.20 13.74 18.30 
SP (0.08) (0.06) 

1000 > 0.68 1.08 1.44 1.52 1.06 1.02 
< 1.14 2.54 5.98 12.68 23.44 32046 
SP 

3 40 > 2.52 3.18 3042 3.60 5.02 5.56 
< 5.22 6.54 7.18 8.54 12.94 ]5.68 
SP (0.06) (0.06) (0.10) (0.08) (0.08) 

200 > 1.12 1.40 1.30 1.92 2.16 2.16 
< 2.86 4.12 5.66 9.26 16.12 23.08 
SP 

1000 > 0.62 0.80 1.06 0.68 0.38 0.18 
< 1.12 3.30 7.32 16.80 29.34 42.72 
SP 

4 40 > 2.62 2.98 4.20 4.44 6.92 7.56 
< 6.14 6.46 6.58 8.58 13.12 17.06 
SP (0.02) (0.02) (0.02) (0.02) (0.14) 

200 > 1.04 1.24 1.32 1.82 1.24 1.46 
< 3.40 3.68 5.60 10.42 18.40 24.42 
SP 

1000 > 0.50 0.38 0.52 0.58 0.16 0.16 
< 1.30 3.00 7.18 17.20 33.80 43.76 
SP 

5000 simulated data sets with randomly assigned to F (p=0.5) but WIth balanced treatment groups 
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Table 3.VlII Simulation 2b: Binary outcomes: Percentage where overall treatment 
difference> or < treatment effect in both subgroups (% Simpson's paradox) with varying 

sample size (All = 0.5) 
Treatment Total sample %>or<and Factor OR ( IpF) 

OR(Ipr) size %SP 1 1 1.25 1 1.5 12 13 14 
I 40 > 3.48 3.88 4.36 6.26 9.10 9.96 

< 3.74 4.28 4.20 6.16 9.54 10.50 
SP (0.06) (0.04) (0.121 (0.241 (0.5~ (0.8~ 

200 > 1.98 2.34 3.62 4.80 8.48 10.78 
< 1.76 2.32 3.20 5.30 8.22 10.78 
SP (0.02) (0.06) (0.30) (0.84) ( 1.40) 

1000 > 0.90 1.84 3.46 4.92 8.36 10.14 
< 1.08 2.08 2.92 5.76 8.72 8.74 
SP (0.06) (0.08) (0.34) ( 1.14) ( 1.20) 

1.25 40 > 3.82 3.76 3.74 5.62 7.96 8.72 
< 4.14 4.32 5.46 6.86 10.04 12.60 
SP (0.02) (O.O4) (0.10) (0.18) (0.58) ( 1.16) 

200 > 1.90 1.74 2.56 4.34 6.16 8.30 
< 1.84 2.46 3.48 6.46 10.04 14.34 
SP (0.18) (0.50) (1.1 0) 

1000 > 0.80 1.44 2.44 3.42 4.46 4.80 
< 0.76 1.94 3.42 8.24 13.48 18.64 
SP (0.02) (0.12) (0.32) (0.36) 

1.5 40 > 3.38 3.68 4.34 5.30 6.38 7.42 
< 3.66 4.98 6.30 6.70 9.92 12.70 
SP (0.04) (0.06) ~0.20) (0.30) (0.40) (0.80) 

200 > l.50 1.78 3.02 4.04 4.76 5.30 
< 2.28 2.94 4.58 7.32 13.04 17.70 
SP (0.02) (0.04) (0.14) (0.26) (0.46) 

1000 > 0.78 1.42 1.96 2.76 2.26 2.18 
< 0.76 2.48 4.78 9.36 20.22 27.12 
SP (0.021 (0.04) 

2 40 > 2.56 3.10 3.34 4.52 5.38 6.28 
< 5.28 5.54 6.68 8.62 12.40 15.82 
SP (0.08) (0.08) (0.16) (0.22) (0.54) 

200 > 1.44 1.80 2.42 3.00 3.38 3.28 
< 2.24 3.02 4.84 8.84 17.26 22.16 
SP (O.O~ (0.08) (0.121 

1000 > 0.82 1.30 1.56 1.42 0.96 0.48 
< 0.84 3.16 6.34 12.86 28.88 39.52 
SP 

3 40 > 2.24 2.68 2.60 3.62 3.56 4.22 
< 6.48 6.34 7.90 10.06 14.58 18.20 
SP (0.04) (0.04) (0.08) (0.12) (0.22) 

200 > 1.08 1.10 1.74 2.02 1.92 1.38 
< 2.40 3.50 5.76 11.48 21.14 28.82 
SP 

1000 > 0.54 0.68 0.56 0.68 0.22 0.02 
< 1.44 3.52 7.38 ]8.66 40.22 54.44 
SP 

4 40 > 2.38 2.16 2.26 2.78 2.92 3.82 
< 7.34 7.24 8.78 11.64 15.60 20.82 
SP (0.02) (0.04) (0.042 ~O.I~ 

200 > 1.10 1.00 1.24 1.12 1.36 0.92 
< 3.52 4.16 6.64 13.28 23.54 32.22 
SP 

1000 > 0.44 0.44 0.70 0.24 0.10 
< 1.38 4.06 8.86 22.94 45.48 61.90 
SP 

5000 simulated data sets Wlth randomly assigned to F (p=O.5) but Wlth balanced treatment groups 
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Simpson's paradox 

The incidence ofSP was again low under the range of conditions selected. The maximum 

incidence (1.42%) occurred when there was no treatment difference (odds ratio =1), the 

reference odds was I and the factor effect (4) was at it greatest, although in contrast to the 

Normal distributed outcome case the sample size was at the highest limit of the conditions 

investigated (N= 1 000). When the reference odds was 0.5, the maximum incidence 

(1.40%) also occurred when the treatment difference was zero and the factor effect was 

four - although in this case the sample size was 200. 

As expected, for a given treatment difference (table row), the incidence of SP increased 

with increasing size of factor effect while the incidence decreased with increasing size of 

treatment effect when the factor difference was fixed (table column). SP was not observed 

for many of the combinations - in particular, when the sample size was 1000 and the 

treatment odds ratio was >1 .5. 

For a given combination of treatment and factor effect, the incidence of SP decreased with 

increasing sample size when the treatment odds ratio was> 1. However when the 

treatment odds ratio was one, the incidence of SP actually increased with increasing 

sample size at the higher factor effects. For instance, when the reference odds was one 

and the factor effect was four the incidence of SP increased from 0.64% to 1.16% to 

1.42% for the sample sizes 40, 200 and 1000 respectively. Two additional simulations for 

5000 and 25000 subjects confirmed this trend with incidences of 1.42% and 1.50% 

respectively. Furthermore, when the reference odds was 0.5, sample sizes of 5000 and 

25000 produced incidences of 1.88% and 1.74% respectively - both higher than those 

generated for sample sizes of 40 (0.86%), 200 (1.40%) and 1000 (1.20%). At these higher 

sample sizes the observed odds ratios tended to be close to one so, although there was a 
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higher proportion of reversals, the differences between the overall and subgroups odds 

ratios were less pronounced than those that typically occurred with the lower sample sizes. 

This would be expected as the precision of the cell estimates increase with increasing 

sample size. 

Regarding the pattern of SP when the treatment and factors odds ratios were identical 

(table diagonal bolded), it is worth noting that unlike the Normal case, the variability does 

not remain constant but instead changes dependent upon the observed response 

proportions. When the sample size was 1000, the incidence of SP was zero (for both 1 and 

0.5 reference odds) for all cases were the treatment and factors odds ratio were identical. 

Similarly there were few occurrences of SP when the sample size was 200. When the 

sample size was 40, it was difficult to discern a trend although perhaps there was a 

tendency for an increased incidence of SP as the treatment and factor odds ratios 

increased. 

When the treatment odds ratio was greater than one, the subgroups were most likely to 

show the correct direction of the treatment difference - rather than the unconditional 

treatment odds ratio - when the factor effect was large and so was the sample size. For 

example, when the treatment odds ratio was 1.25, the factor odds ratio was 4 and the 

reference odds was 0.5, then 12 of the 18 cases of SP observed showed the correct 

direction of the treatment difference in the subgroups when the sample size was 1000. 

However, as per the Normal case, when both the sample size and factor effect decreased, 

the assignment of correct direction became more balanced between the subgroups and the 

unconditional treatment difference. 
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Overall effect greater than or less than both subgroups 

As discussed earlier, when considering the more general inconsistency, it was important to 

distinguish the two conditions (greater than both subgroups [>than] and less than both 

subgroups [<than]) in this sub-section as a result of the known underestimation of the 

unconditional non-unity odds ratio in the balanced non-unity factor case. Indeed, as will 

be described below, marked asymmetry of effect was observed, justifYing this approach 

for the simulations. 

As with SP, the incidence of both conditions (>than and <than) increased with increasing 

factor effect (table row). However as the treatment effect was increased, the gradient of 

the increased incidence was much more apparent for the <than condition than for the 

>than. Indeed when the factor effect was 4 and the sample size was high there was an 

indication that the incidence for the >than condition was actually beginning to decrease. 

When the factor and treatment effects were both 4 and the reference odds was 0.5, then at 

a sample size of 1000 there were no occurrences of>than while the incidence of <than 

was 61.90%. That is, the unconditional odds ratio was less than both subgroup odds ratios 

for over 60% of trials and was not greater than both subgroup odds ratios a single time. 

When the reference odds was I the respective proportions were 43.76% and 0.16%. 

Interestingly in contrast to the Normal case, increasing the sample size when the factor and 

treatment effects were high only served to increase the total incidence (>than + <than) 

whilst increasing the difference between the two combinations. 

For a fixed factor effect and sample size (table column), increasing the treatment effect 

reduced the incidence of >than but increased the corresponding incidence of <than. In 

general the overall incidence (>than + <then) increased also, although increase was more 

marked at the higher factor effects investigated. 
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Increasing the sample size for a given combination of treatment and factor effects reduced 

the incidence of>than but increased the incidence of <than when the factor effect was 

large. However when the factor effect was small the incidences of both inconsistencies 

decreased with increasing sample size. 

When the treatment and factors effects were identical (table diagonal), the overall 

incidence of the inconsistency (>than + <than) increased. In particular the <than incidence 

clearly increased although the >than incidence appeared to increase then decrease in most 

cases. 

When comparing the two different reference odds, 1 (Tables 3.VII) versus 0.5 (Table 

3.VIII), it was notable that the difference between the incidences «than minus >than) for 

a particular combination of factor, treatment and sample size was smallest for the 

reference odds of I. This would be expected since in this case the odds ratios would be 

closer to the relative risk and as such greater symmetry would be expected. 

3.8 DISCUSSION 

Observed imbalance is an integral part of randomised studies and it is this imbalance 

which leads to the application of statistical techniques that account for the resulting 

variability. The chapter focuses upon the impact of factor imbalance on observed data. In 

order not to detract from the main focus of this chapter, all of the examples have been 

deliberately constructed so as to avoid interaction terms. That is not to say that 

interactions are not important - although ones of a quantitative nature are sometimes a 

simple artefact of the chosen scale of measurement (Gail and Simon, 1985) - rather that 

the potential impact of simple imbalance in a ReT should not be understated. 
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Simpson's paradox is a useful starting point when considering the impact of factor 

imbalance in relation to the effect on estimated treatment differences since two key aspects 

of the data are present. These are a factor that has an independent influence on outcome 

and imbalance in the distribution of this factor between the treatments. Indeed these are 

the only two data features required for SP. (Although SP could be generated from a 

model that contained a treatment by factor interaction, it has been shown that this is, by no 

means, a necessary condition.) As such, SP may simply reflect imbalance between 

treatment groups with respect to a factor that in general has a greater impact on outcome 

that the differential effect of the treatments being compared. 

Although it has been shown that randomisation provides a theoretical basis for avoiding 

SP when subgroups are defined appropriately, the simulations have shown that SP can still 

occur in a ReT when the conditions are right. For the simple additive model selected, the 

most favourable conditions to observe SP were an equivalence (or non-inferiority) design 

with no treatment difference where an independent factor existed that had a large influence 

on outcome. That being said, SP also occurred when the treatment difference was not 

unity. In these cases, when SP was observed it was more likely that the estimated 

treatment differences in the subgroups showed the true direction of the treatment effect 

compared to the corresponding unconditional estimate. This was particularly the case 

when both the factor effect and sample size were set towards the top end of their 

respective ranges. In terms of choosing between estimates, since the observed treatment 

differences are likely to be on the small side if SP is observed, the overall interpretation is 

in fact unlikely to be influenced by the choice. This is particularly so with modest to large 

sample sizes. That being said, if the factor is based on post-randomisation data (such as 

compliance) then it is clear that the unconditional estimate is the most appropriate one to 
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select. In contrast, if the factor is a design feature - that is, a priori stratification by the 

factor has been undertaken - then the conditional estimate is the most appropriate. For 

other pre-randomisation factors that are known a priori to influence outcome then 

conditional estimates are again appropriate. The more challenging situation is post hoc 

stratification for factors whose impact on outcome is unknown. These tend to form part of 

an exploratory analysis and as such a conditional estimate based on these factors should 

not be primary. 

Notwithstanding, SP is likely to be a rare event in the randomised clinical trial setting and 

when it does occur it is most likely that it would go unnoticed or unreported. As the 

simulations demonstrate, the results tend not to be too dramatic and the overall 

unconditional treatment difference is likely to be small. Under the range of conditions 

investigated in the simulations, the highest incidences were 8.88% for Normally 

distributed outcomes and 1.42% for binary distributed outcomes. Perhaps a reason for SP 

going unnoticed is that frequently just the estimated unconditional and conditional 

treatment differences are presented and not the individual subgroup data. In this respect a 

change in sign between the two estimates may indicate a potential SP. With the growth in 

non-inferiority studies and the current regulatory interest in subgroups it is indeed possible 

that cases of SP may come to light in the future even in the ReT setting. (Superiority 

studies of unpromising test treatments may also provide a hunting ground for such effects 

- although negative superiority studies are seldom formally published!) 

Using SP as a vehicle, it has also been demonstrated that compared to the overall 

treatment difference, it is a misconception that an increase in the size of estimated 

treatment difference in one subgroup must lead to a corresponding reduction in the other. 

For Normally distributed outcomes, the incidence of either observation «than or >than) 
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reached 50% under the conditions investigated, with symmetry of the proportions, <than 

and >than, as expected. However with the odds model it is much more likely that the 

difference between treatments will be larger in both subgroups than overall, rather than 

vice versa. Under the conditions investigated in the simulations, the incidence reached 

60% for the observation that the odds ratio was larger in both subgroups compared to 

overall - in contrast there was no occurrence of the reverse phenomenon for the identical 

condition. These observations serve to highlight another potential pitfall in the 

notoriously difficult task of interpreting subgroup analyses. In particular one should not 

assume that if the odds ratio in one subgroup is observed to be larger than the 

unconditional estimate then the odds ratio in the complement subgroup will necessarily be 

smaller. 

Overall the series of simulations illustrate that when randomisation is employed to assign 

treatments, there is a complex interplay between the sometimes-opposing effects of 

treatment, factor, sample size and underlying variability that can sometimes produce 

apparent inconsistencies of small or modest effect. Indeed it has been shown that 

increasing the sample size does not necessarily reduce the chances of these inconsistencies 

occurring and under some conditions the chances of an inconsistency are actually 

increased. Furthermore the impact of changing a condition does not necessarily lead to the 

same effect on SP as it does on the more general inconsistency «than and >than). For 

instance, in the Normally distributed outcome case, increasing the treatment difference 

reduces the incidence of SP but has no impact on the general inconsistency. 

The increased interest now being given to particular subjects subgroups by the regulatory 

authorities suggests that emphasis is moving away from simply reporting average 

treatments effects towards providing more specific treatment effect information for 
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particular subgroups. Relevant guidelines include the ICH documents (E3; E5; E7; E9; 

Ell) and the CPMP Points to Consider (multiplicity issues in clinical trials; adjustment for 

baseline covariates). Hand (1994) states that much statistical analysis and design is 

misdirected. That is, it is important to establish which questions to ask and to answer 

these appropriately. In particular one should avoid providing the right answer to the 

wrong question. Lane and NeIder (1982) describe model selection, model fitting and 

prediction in the context of generalised linear models. They describe prediction not in 

terms of future events rather a case of what would have happened in the experiment if 

other conditions had prevailed. In this context NeIder (1994a) explains how parameter 

estimates can be used to construct quantities of interest using weighting schemes that are 

appropriate to the questions posed. Indeed, in the reporting of clinical trial data in the 

pharmaceutical and biotechnology industries little thought is currently given to prediction 

and almost all reporting activity is directed exclusively to describing what actually 

happened in a particular study or series of studies. For clinical trials, prediction could 

easily relate to the standardisation of results to the overall diseased population where the 

proportions of subjects with defined characteristics - such as sex and race - are obtained 

from national health statistics, and providing estimates of the treatment difference in 

specific subgroups is an important first step. But this approach is not without its own set 

of problems. As highlighted by Senn (1997), subjects can not be assigned at random to 

their characteristics. For instance, the females included in a particular trial may not be 

representative of females in the disease population in general - as highlighted earlier in 

Chapter Two. In this case, the estimated difference between the male and female 

subgroups may actually represent the exclusion of an important subgroup of subjects -

such as pregnant women or those of child bearing potential - rather than a difference 

between the sexes per se. This point is particularly relevant to prediction in that one has to 

ensure that the data warrant generalisation to the broader population. 
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Nevertheless, it makes sense to use the parameter estimates from confirmatory clinical 

trials, where restrictions to enrolment are becoming less strict, to construct quantities of 

interest in an effort to provide specific answers to targeted questions regarding the impact 

of new treatments. Indeed, one such question might be directed towards determining 

whether treatment differences are uniform across specific subgroups, and this is the theme 

of the following chapter (Chapter Four). That is, the investigation of quantities of interest 

for the interaction between treatments and subgroups. 
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APPENDIX A. FORMULA FOR UNCONDITIONAL ODDS RATIO 

A simple fonnula for calculating the unconditional odds ratio ( '1/) from a combination of 

the four separate odds (A ij) can be derived if it is assumed that the number of subjects in 

each treatment (i=1 ,2) by factor (j=1 ,2) combination is identical. Consider Table 3.A.I 

which gives the numerators and denominators for the 4 treatment by factor combinations 

and for the two treatments combined across the two levels of factor F. 

Table 3A.I. Observed outcome proportions (x ij / n ij) for a two 
t t t t fi t d . rea men , wo ac or eSlgn 

Factor F==I Factor F=2 Total 

Treatment T= 1 xl//nl/ XU/ n I2 (x 1/ + X 12 )/ (n 1/+ n 12) 

Treatment T=2 Xn/n21 x 21/ n 22 (x 21+X u)/(n 2/+ n 22) 

Using the notation above, the unconditional odds ratio ('1/) is defined as: 

Now, the odds for each treatment by factor combination is given by Aij = Xii /(nij- xij) and it 

follows that xij = nij Ai; /( 1 + Ai;) and (nij - xu) = nij /( 1 + Aij). 

Substituting the specific tenns, Xu and (nu - Xi;) into (A 1), for each of the four combinations 

treatment by factor combinations (i == 1,2; j= 1, 2) and further assuming complete balance 

(nJ/ = nl2 = n21 = nu = n), gives 'l/which is independent ofn: 
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APPENDIX B. REDEFINITION OF BALANCE FOR THE ODDS MODEL 

Proof that a redefinition of the concept of balance for the odds model enables consistency 

to be achieved between the results of overall and subgroup summaries. 

Using the notation given previously in Table 3.A.I it is possible to show the result more 

formally. If the proportion of failures is identical in each group then: 

which can be re-arranged to give: 

(B2) 

Further, if the odds ratio is identical for each level of factor F then: 

Substituting (B2) into (B3) gives: 

XII = Xu X21 / Xn (B4) 

Now, from Appendix A (A I), the unconditional odds ratio is defined as: 

Substituting (B2) and (84) into (A I) gives: 
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XI2 (nn - Xn) / Xu (nl1- xd 

which is identical to the odds ratio when F=2. 
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CHAPTER FOUR: DIFFERENT DIFFERENCES 

Johnny Hammer 

Had a terrible ss .. ss .. ss .. ss .. ss .. ss .. stammer 

He could hardly s .. s .. say a word 

And so they gave him medicinal compound 

Now he's seen (but never 'eard)! 

4.1 INTRODUCTION 

In general, an interaction can be described as the case where the effect of one factor, 

depends upon the level of another factor (Pocock, 1983), and in the clinical trial setting, it 

is the impact of factors on the relative effects of treatment that is of interest. In this 

respect, different levels of a factor form mutually exclusive subgroups and treatment by 

factor interactions equate to differences between the treatment differences amongst 

subgroups - the presence of which may have important implications for the treatment of 

patients. This point has not been lost on US regulatory authorities who require 

pharmaceutical companies to determine the level of support provided by their data for the 

proposed dose schedule of a new treatment across specific subgroups (FDA, 1988). 

Indeed when taken alongside developments in the area of genetics, interactions will 

undoubtedly remain an area of great interest to researchers and regulators alike. 

There are many challenges to be faced when evaluating interactions in clinical trials. 

Firstly, the relative power ofthe traditional hypothesis test approach is low. As introduced 

in Chapter Two, the standard error for the estimate of the interaction parameter is not only 

larger than the standard error for the overall treatment difference but it is also larger than 

the standard error for the treatment difference in each of the subgroups. As such, a lack of 

statistical significance may not provide robust support for the conclusion that no 

interaction exists. Second, the size of effect that constitutes a clinically relevant 
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difference is not well established for interaction parameters and while the distinction 

between a qualitative and a quantitative interaction (first introduced in Chapter Two) may 

have important treatment implications, this information is not fully captured by the value 

of the interaction parameter. Third, the interpretation of unexpectedly large interactions is 

difficult - particularly those of a qualitative nature - and as a result there is a need to place 

such findings in context, based on our current state of knowledge. 

The aim of this chapter is to explore each of these aforementioned challenges in more 

detail and, where appropriate, to propose alternative approaches to the evaluation and 

interpretation of treatment by factor interactions. Section 4.2 presents a general overview 

of treatment by factor interactions. The impact of the scale of measurement on interaction 

interpretation is described and the relative precision of the estimate of the interaction 

parameter in relation to the corresponding main and subgroup effects is investigated. The 

important distinction between qualitative and quantitative interactions is discussed in 

detail and the statistical tests that have been developed in this area are reviewed. In 

section 4.3, regulatory guidance is reviewed, and then in Section 4.4, a framework is 

developed to consolidate methods of evaluation based on the value ofthe interaction 

parameter with those aimed at distinguishing between interactions of a quantitative and 

qualitative nature. Different approaches to determining what size of effect might be 

considered clinically relevant are also discussed. In Section 4.5, a simple Bayesian 

approach to the evaluation of interactions is considered while in Section 4.6 an example is 

presented to illustrate this Bayesian approach and how it could be applied to interpret 

some real clinical trial data in practice. Finally in Section 4.7, the findings of this chapter 

are discussed. 
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4.2 GENERAL CONSIDERATIONS 

4.2.1 Quantitative versus qualitative interactions, and data transformations 

As introduced in Chapter Two (Section 2.4.1), Peto (1982) distinguishes between two 

types of interaction - qualitative and quantitative. A quantitative interaction is one where 

the true direction of the treatment difference is the same in the subgroups but the 

magnitude of the difference is different. This is illustrated using hypothetical data in 

Figure 4.1 by comparing the relative treatment effect for the subgroup of males with that 

of the subgroup of females as represented by the two middle columns. In this case, the 

response percentage is 20% higher with Test treatment compared with Reference in the 

subgroup of males whereas in the subgroup of females the response rate is still higher with 

Test treatment, but the difference is now only 10%. 

% 

Males 

Figure 4.1. Quantitative versus qualitative interaction 

Femtles 
t 

Femtles 
t 

Quantitative Qualitative 

10 __ 1 

o Test treatIre'-

In contrast, a qualitative interaction is one where the true direction of the treatment 

difference is different amongst subgroups. In Figure 4.1 , this is illustrated by comparing 

the males with the subgroup of females represented by the final two columns where the 
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response percentage is actually 20% higher with the Reference treatment. (Note that Gail 

and Simon (1985) substitute the terms crossover and non-crossover for qualitative and 

quantitative interactions respectively - and use the term quantitative to describe 

interactions of any kind. To avoid confusion the Peto terminology will be used throughout 

this chapter and research thesis.) 

Now, in cases where a factor is known to influence outcome, Peto expects a priori that a 

quantitative interaction with treatment will exist - regardless of whether one is observed or 

not. In a similar vein, Gail and Simon (1985) expect quantitative interactions because 

there is usually no self-evidently appropriate scale of response measurement but highlight 

that these may not be clinically relevant. The rationale for this view is that a quantitative 

interaction is sometimes a simple artefact of the chosen scale of measurement (Hand, 

1994; Gail and Simon, 1985). For instance, as illustrated in Chapter Two, Table 3.1, what 

may appear to be an interaction when evaluating proportions can disappear when the data 

are summarised in terms of odds (or vice versa). Similarly, as noted also in Chapter Two, 

Gail and Simon (1985) illustrate how the logarithmic transformation of continuous data 

can lead to the disappearance of an apparent interaction. (That is, y = ea eP transfonned 

to log .. y = a + P .) 

An interaction of the qualitative type cannot be transformed to the quantitative type (or 

vice versa) when moving between the difference in proportions, relative risk and odds 

ratio (OR). (This is easily proved, since if PI - p,. > 0 then!2 > 1, and since the OR can 
Pr 

be written ~( 1 - PrJ, then since also 1 - P, < 1 - P r , the OR must also be greater than 
Pr 1- PI 

one.) However in the case of continuous data, some data transformations do actually have 
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the potential to transfonn a quantitative interaction to a qualitative one (or vice versa). 

Consider Table 4.1 that illustrates the common "change from baseline"" endpoint and 

compare thi s with a transfonnation to "percentage change from baseline"". 

a e .. so ute an percentage c ange T bl 4 I Ab I d h om ase me companson fr b r 
Factor F= I Factor F=2 

BL FU FU- % BL FU FU-BL % 
BL 

Test Subjects 1 2 +1 + 100 2 1 -1 -50 
Mean +1 + 100 -I -50 

Reference Subjects 1 2 + 1 + 100 2 1 -1 -50 
20 18 -2 -10 20 18 -2 -10 

Mean -0.5 +45 -1.5 -30 
Test - Reference + 1.5 +55 +0.5 -20 
BL=Baselme: FU=Follow-up 

In thi s simple example, with just six subjects and a factor with two levels, the differences 

between treatments (Test - Reference) with regard to the mean absolute change from 

baseline (to a treated follow-up visit) are + 1.5 for factor F= I and +0.5 for factor F=2, 

indicating a quantitative interaction. However, the difference between treatments with 

regard to the mean percentage change from baseline is +55% for factor F= 1 but -20% for 

factor F=2, indicating a qualitative interaction. In this illustration, the paradox is due to 

the wide range of baseline scores between subjects taken alongside the small range of 

absolute changes from baseline. That is, the impact of the different weighting of the 

changes from baseline in each case. 

Now, Peto is highly sceptical about the presence of qualitative interactions unless good 

prior reasons exist. However in equivalence or non-inferiority trials there may be a case 

for being much less sceptical. For example in septicaemia, a new anti-infective could be 

more effective than a reference treatment in subjects with Escherichia coli bacteria, but 

less effective in subjects with Staphylococcus aureus bacteria, giving rise to a qualitative 

interaction. Indeed the very nature of anti-infective treatments is that they tend to have 
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varying degrees of success against different bacteria. In many cases, according to Pan and 

Wolfe (1997), a slight qualitative interaction is both natural and expected when 

comparing a test treatment to an effective reference treatment. (They quote the example of 

non-prescription painkillers, where no treatment is universally more effective than the 

others over the full range of pain indications.) Clearly the most likely conditions for 

observing a qualitative interaction are when active treatments with different modes of 

action are being compared, and where the average effects in a wide population are broadly 

similar. In contrast, qualitative interactions are much less scientifically plausible in 

placebo controlled studies unless an active treatment has a detrimental effect in a subgroup 

of subjects. 

4.2.2 Relative precision and power 

It is widely accepted that traditional hypothesis tests directed towards interaction 

parameters have low power relative to tests of overall treatment differences - a view based 

on the relative precision of the estimates of the corresponding parameters. Indeed the 

CPMP expresses the following concern: Testsfor interaction usual~y lack statistical power 

and the absence of statistical evidence of an interaction is not evidence that there is no 

clinically relevant interaction (Points to Consider on adjustment for baseline covariates 

[CPMP/EWP/2863/99,2002]). Now, to understand the basis for such a view, the simple 

case of a continuous outcome variable will be presented in terms of the relative precision 

of the estimates of specific parameters. 

Consider a randomised and controlled clinical trial (ReT) with two treatment groups - test 

(t) and reference (r) - and a baseline factor (F) with two levels such that subjects belong to 

one of two mutually exclusive subgroups (F=l, 2). For each treatment by factor 

combination let the mean value for some continuous outcome be J1ij with corresponding 
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estimate x if. Also, let the mean values be JLt and JLr for the test and reference treatments 

respectively when factor F is ignored and let t5be the corresponding overall treatment 

difference, JL, - JLr • 

Factor 

F= 1 F= 2 

Treatment 
T=t ~ ____ JL_I_I ____ ~ ____ P_12 ____ ~ 
T= r _ Pri pr2 

The interaction (Q) between the treatment and the factor can then be written as (PII- Prl)-

(Pl1- pd· That is, the difference between test and reference treatments for F=] minus the 

corresponding difference for F=2. The estimate of the interaction parameter (Q) is 

Now, as introduced in Chapter Two, if the variance of the overall treatment 

difference, Var(x, - xr ), is v, in some arbitrary units, then the variance of the treatment 

difference, Var(xij - x,}), within each of two subgroups of equal size is 2 v, while the 

variance of the interaction term, Var(Q) , is 4 v (Peto, 1982). Although Peto (1982) does 

not provide further detail it is straightforward to prove the relationship as follows: 

Let the variance of the overall treatment difference be Var(x, - x,-) = u 2 
/ 2n = v. Now, 

the variances of the treatment differences in each subgroup will be equal, but instead of 

being based on 2n observations, these are based on n observations each leading to 

variances of Var(xij - x rj ) = v 2 
/ n = 2v. It follows that the variance of interaction is the 

variance of the difference between the treatment differences from the two subgroups; that 
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is, Var{{.x,. - Xr.) - (X,2 - Xr2 )}. As such, Var(Q) = Var(x,1 - xrI ) + Var(x,2 - X,.2); that is, 

2u2 
/ n = 4v. 

For completeness, since the overall weighted treatment difference - which gives equal 

weight to each treatment by factor combination - can be written: 

(1), 

it follows that the variance of the estimate, Var( A), is also v. That is, 

'" {(X'I-XrI) (X'2- Xr Z)} I", ( __ ) IT? ( __ ) "ar + =-~ "ar X,I-X,.. +-~ yar X,2 -xr~ =V, 
2 2 2· 2· . 

It is then simple to see, that in this case where the numbers of subjects in each subgroup 

are equal, 4Var(8) = 4Var(A) = 2Var(xtj - x rj ) = Var(Q). Hence, the precision of the 

interaction (defined as the inverse of the variance) is half that of the subgroup treatment 

difference and a quarter that of the overall treatment difference. 

At this point it is worth highlighting why the Var(A) '* Var(Q) given that both are based 

on contrasts involving the parameters 11,1,11,1,11,1,11,1' but with varying si!,'I1s. The 

difference arises because, as shown in (l), the parameters, l1ij, are all multiplied by a factor 

of 1/2 for E(A) and since in general Var(bx) = b 2Var(x) this leads to a multiplication 

factor of 1/4 when estimating the corresponding variance, Var( A) . 

Now, (1) can be re-arranged: 

2A = 11,1 - I1rl + 11,2 - I1r2 (2), 

while the interaction, n, can also be re-arranged: 
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(3). 

Combining (2) and (3) gives: 

Q = 2(A - P t 2 + P," ) 

which can be re-arranged: 

(4) 

Now, Var(Q) can also be written in the form: 

from which it follows that the covariance, Cov( x,2 - xr2 ,A), is also v. This leads to a 

. 
• COVet,. - x .,A) 

correlation coefficient, p(xlj - x rj ' A) = ~ ~"A ' of .h which illustrates the 
Var(xlj - xr} ).Var(A) < 

positive relationship between the treatment difference in the subgroup and overall 

weighted treatment difference. 

If the numbers of subjects in each subgroup are unequal then the relative precision of the 

estimates differ but the general findings remain valid. For instance if one subgroup (F=], 

say) were to contain three times as many subjects as the complement subgroup (F=2) then 

the variances would be 1 t v and 4 v respectively, while the variance of the interaction 

would be the sum of the two - that is, 5 tv. The variance of the overall weighted 

difference, Var( A.), is 1 t v which is now larger than the corresponding unweighted 

difference. The covariance terms for each subgroup also differ. For F=] the covariance is 

now f v with a correlation coefficient oft, whereas the corresponding values for F=2 are 

2 v and .If respectively. (Note this implies a stronger correlation between the weighted 

treatment difference and the subgroup with fewer subjects compared with the subgroup 

with more subjects.) 
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In the more general case of multiple treatments and multiple subgroups (from a single 

factor) then the model may take the form }lij = a + T j + (lj + (T(I)ij leading to (i-l)(j-l) 

interaction parameters to estimate. (For instance three treatments and three subgroups 

generate 4 parameters to estimate and very quickly the overall picture becomes much more 

difficult to interpret.) However the focus in this chapter will be on the simple two 

treatment, two subgroup case where one interaction parameter is of interest. 

4.2.3 Influential work in the area o/interactions 

Gail and Simon (1985) in their seminal paper introduced the first test aimed at 

distinguishing between qualitative and quantitative interactions. Their likelihood ratio 

(LR) test - based here on the notation ofPiantadosi and Gail (1993) - considers 

independent and normally distributed estimates (Dj) of the treatment differences in j= I, 

2, ... , J subgroups (with mean 4 and known varianceaJ). The two sided null hypothesis 

takes the form H 02 : /l E 0 + U 0 - where /l is the vector of parameters (4), and 0+ and 0" 

represent two orthants such that all the parameters contained therein are either ~o (o+) or 

::;;0 (0"). (Note that these two orthants include zero treatment effect and that a qualitative 

interaction is indicated in the remaining 2J
"\ orthants.) In this respect the null hypothesis 

(of no qualitative interaction) considers the case where either all the treatment differences 

(4) are non negative or all are non positive, and is rejected ifboth 

Q- == L {(D~ /a~ ~(Dj > o)}> C2a 

Q+ == L KDJ laJ ~(Dj < o)}> C2a 

where C2a represents the critical value (a. level) for the test and I is an indicator variable 

which equals one if the condition is true, otherwise zero. Gail and Simon (1985) also 

present a one sided null hypothesis (HoI: fl E 0+). In this case the null hypothesis is that 
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test treatment is at least as good as the reference treatment in a11 subgroups, which is 

rejected if: 

where Cia > C2a . In practice, consistent estimates of the unknownuJ (that is, sJ) are used 

in the formulae and result in valid asymptotic significance tests. 

As a simple alternative to the LR test, Piantadosi and Gail (1993) formally introduced the 

standardised range (SR) test that rejects H 02 at the a level ifboth the fo11owing conditions 

are met: 

Similarly HOI is rejected if 

max{Dj / u j } > C;a 

min{D j / U j} < -C;a 

(Note that Piantadosi and Gail actually credit Robert Tarone with devising the SR test.) 

Again C;a and C;a represents the respective one and two sided (test specific) critical 

values at the a level. 

Piantadosi and Gail (1993) compared the LR and SR tests with regard to power and 

concluded that for two or three subgroups there was very little difference. For greater than 

three subgroups the SR test was more powerful when reversal of treatment effect was 

present in very few (in particular one) subgroups but less powerful when the reversal was 

contained in several subgroups. (Note that power is a function, in this case, of 8 j / a j .) 

Therefore, from the perspective of drug development, where - apart from centre or country 

- subgroups tend to be few, the choice of test is to some extent unimportant, with perhaps 

the standardised range test being preferable in terms of its simplicity. 
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More recently, Pan and Wolfe (1997) published their simultaneous confidence interval 

approach - in effect an extension to the standardised range test. In simple terms, 

confidence intervals are constructed for each subgroup treatment difference and the null 

hypothesis is rejected if at least one confidence interval exists wholly greater than zero and 

at least one exists whoHy less then zero. Each confidence interval is constructed using the 

foHowing fonnula: 

(L.,U)= D-z -- a.,D+z -- a. , ( ( 
1 - PE ) ( 1 - PE ) ) 

J J J 2 J J 2 J 

I 

where PE = 2(l-a)1-1 -1, is the confidence coefficient and z is the upper critical point of 

the standard nonnal distribution. In essence, as the number of subgroups increase, the 

width of the confidence interval increases to take this into account. Pan and Wolfe (1997) 

also extend their method to consider an indifference region where, in effect, some sma)) 

degree of qualitative interaction (d) is a))owed for in the nu)) hypothesis. As a result, the 

modified nuH hypothesis is rejected if at least one confidence interval exists whoHy greater 

than d and at least one whol1y less then -d. Other variations on a theme include Yan 

(2004) and Wel1ek (1997). Yan builds upon the confidence interval approach of Pan and 

Wolfe by introducing a so-caned tuning parameter that requires more than one pair of 

confidence intervals to fall wholly above d and below -d to reject the null hypothesis. 

Yan's approach is specifically directed towards treatment by centre interactions where the 

number of centres is large and a reversal of treatment effect is required in more than one 

centre to be clinically relevant. Wellek recognises the similarity of the problem with the 

issue of demonstrating equivalence and switches the hypotheses such that the alternative is 

now that no qualitative interaction exists. (Note that Wenek uses the extreme-value 

statistic approach as per the SR test and also introduces an indifference zone.) 
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Interestingly the concept of an indifference zone was noted originally in the Gail and 

Simon (1985) paper and was perhaps an early acknowledgement that the simple 

quantitative versus qualitative distinction does not completely address the clinical 

relevance of an interaction. 

4.3 REGULATORY CONSIDERATIONS 

Surprisingly, none of the recently issued regulatory guidance discusses the magnitude of 

the interaction effect despite comments directed towards inadequate power. Furthermore, 

there is no mention of methods to distinguish between quantitative and qualitative 

interactions and specifically no mention of formal hypothesis testing approaches such as 

those described by Gail and Simon (1985) and others in Section 4.2. 

The Points to Consider on Adjustmentfor baseline co variates (CPMP/EWP/2863/99, 

2003) essentially views the issue as being addressed in the earlier ICH E9 guide1ine. It 

simply highlights that in cases where an interaction is not, a priori, expected, the primary 

analysis should only include the main effects for treatment and covariate. In contrast, 

where an interaction is expected then stratified randomisation and/or subgroup ana~yses 

should be pre-planned, and the study should be powered to detect treatment differences 

within the separate subgroups. The investigation of interactions is considered to be very 

much an exploratory procedure although in an apparent change in emphasis states that the 

consistency of the treatment difference is an important consideration in the construction of 

convincing evidence of a clinically useful effect. The pte notes that interaction tests often 

lack power and states that failure to reject the null hypothesis is not necessarily evidence 

of a clinically important interaction, while conversely, a statistically significant result 

should not be used in isolation to conclude clinical relevance. As such, its emphasis is that 

the evidence should be examined carefully and the primary analysis (excluding the 
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interaction) should be interpreted cautiously if the evidence points to an interaction. 

Indeed if the interaction is large or qualitative, the PtC deems that the interpretation of the 

primary analysis may become impossible. 

The Points to Consider on Multiplicity issues in clinical trials (CPMP/EWP/908/99, 

2002), addresses the specific issue of interactions to an even lesser extent, simply 

highlighting that the evaluation of uniformity of treatment effects across subgroups is a 

general regulatory concern. In addition it states that a license may be restricted (f 

unexplained strong heterogeneity is found in important sub-populations. or if 

heterogeneity of the treatment effect can reasonably be assumed but cannot be sufficient~v 

evaluated for important subgroups. So again, like the Adjustmentfor baseline covariates 

PtC, the message appears to be that the p-value resulting from a simple interaction test is 

almost superfluous due to concerns regarding power and that a more subjective approach 

is required. 

In the context of treatment by centre interactions, ICH E9 points out that the inclusion of 

an interaction term in a model when the treatment effect is homogenous across strata is 

inefficient in terms of the evaluating the main effect of treatment. However when the 

effect is heterogenous across strata, ICH E9 describes the interpretation of the main effect 

as controversial. Specific advice is provided regarding treatment by centre interactions 

but actually very little in the general area of treatment by factor interactions. It states that 

where interactions are anticipated or are of particular prior interest, then the planned 

confirmatory analysis should include either subgroup analyses or the modelling of 

interactions. If interactions are not anticipated then such analyses are instead considered 

exploratory and involve the systematic addition of interaction terms to the primary model 

with complementary subgroup analyses. In these cases the results should be interpreted 
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cautiously and claims of a treatment effect based solely on this evidence are unlikely to be 

accepted by regulatory authorities. 

In many respects it somewhat disappointing that the current guidance places so much 

emphasis on the perceived lack of power of interaction tests whilst ignoring the obvious 

point that power is irrelevant without consideration as to the magnitude of a clinically 

relevant interaction effect. Indeed the wishy-washy view that caution needs to be 

exercised almost regardless of the p-value, devalues any modelling approach to the 

problem. Surprisingly there is no mention of estimation and confidence intervals. An 

attempt at redressing this imbalance is presented in the next section when the clinical 

relevance of the interaction parameter is considered. 

4.4 CLINICAL RELEVANCE OF THE INTERACTION PARAMETER 

It is established good practice in clinical trial design that a primary study objective is 

specified and that the sample size is justified in terms of providing the power to detect a 

specific difference between treatments with respect to the primary endpoint whilst 

controlling the type I error. There are of course variations in approach depending on the 

design employed but the general principles of pre-specification and sample size 

justification apply. Determining the magnitude of the treatment difference often requires 

recourse to the scientific literature and in some cases regulatory guidelines. Although 

pragmatic solutions are frequently required the process - in all but new therapeutic areas -

is mostly straightforward, if not a little subjective. Although determining a clinically 

relevant or plausible difference between treatments is certainly challenging it is however 

many times simpler than determining the difference between treatment differences that is 

clinical relevant. 
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As discussed earlier, the distinction between qualitative and quantitative forms of 

interactions does appear at first glance to have important treatment implications. For 

instance, if a treatment by factor interaction is present, and is quantitative in form, then the 

expectation when treating patients without regard to the level of this factor is that a patient 

will not be detrimentally impacted (with regard to the specific endpoint). That is, there is 

no expected loss. (Recall that the Gail and Simon (1985) orthants allow for zero treatment 

effects in one or more subgroups in the null hypothesis.) However if a qualitative 

interaction is present then the rational treatment of an individual patient must include 

consideration of the level of factor present. 

As described by Gail and Simon (1985), when performing a statistical analysis of a ReT, 

instead of applying a pre-specified clinically relevant value for the interaction parameter it 

is more common simply to test for a statistically significant interaction and generate a p

value. (In fact it is extremely rare to find confidence intervals presented.) If the null 

hypothesis of no interaction is subsequently rejected then the logical next step is to test 

further in an attempt to rule out a qualitative interaction - although this could hardly be 

described as a universal approach in drug development as indicated by the absence of any 

mention in the regulatory guidance. However, as illustrated earlier, the traditional 

hypothesis testing approach (H 0 : n = 0) may be uninformative, and a non significant 

result may not preclude the presence of a clinically relevant difference between the 

treatment differences. The obvious conclusion therefore is that current approaches to the 

evaluation of treatment by factor interactions are unsatisfactory. 

Given the potentially important distinction between qualitative and quantitative 

interactions it would actually be useful if the interaction parameter itself could be used to 

facilitate the evaluation. Although the interaction parameter does not fully capture the 
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required distinction it is possible to set post hoc boundaries for the estimate that serve this 

purpose, as will be shown below. 

Recall equation (4) that related the interaction parameter to the subgroup treatment 

difference and the overall weighted treatment difference: 

From this it can be determined that the interaction will be qualitative iflnl > 21AI ' and that 

the corresponding boundaries for the transitions from quantitative to qualitative interaction 

are (-2A,+2A) as illustrated in Table 4.11 below. (Note also that these boundaries also 

hold when specified in terms of subgroup F=l - that is,n = 2(P" - flr')- 2A .) 

Table 4.11: Relationship between the interaction parameter and 
weighted treatment difference 

Factor A Q Interpretation 
F=l 

2 
3 
4 
5 

F=2 
2 2 
1 2 
0 2 

-1 2 

0 No interaction 
A=2 Quantitative 

2A=4 Transition QNT/QL 

3A=6 Qualitative 

Now, Figure 4.2 illustrates how estimated confidence limits for an interaction parameter-

in association with the observed weighted treatment difference - could be used to interpret 

the estimate of the interaction. 
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Figure 4.2. Basic principles underlying confidence interval approach to the interpretation 

of the estimate of the interaction parameter 

• 1. Interaction 

... --+---.. : 2. Qualitative interaction 

: ..... -+--+ 3. Quantitative interaction 

4. Equivocal 

5. No qualitative interaction 

-2A o +2A (.\ = observed weighted treatment difference) 

Estimate of interaction parameter 

To declare that the interaction is statistically significant the only requirement is that the 

confidence interval (CI) excludes zero as shown in Case 1. In this instance, the range of 

values within the CI is consistent with both a quantitative and a qualitative interaction. In 

Case 2, the upper confidence limit is less than - 2A and the interaction is purely 

qualitative. Case 3 represents a straightforward quantitative interaction where the 

presence of a qualitative interaction can be regarded as implausible. In Case 4, the range 

of the CI is consistent with all possibilities - no interaction, a quantitative interaction and a 

qualitative interaction. One might incorrectly assume that this situation always represents 

the case where the power of the test is low. However, if the treatments compared are on 

average similar, such that 2A is small, then the CI could actually be relatively narrow -

providing only a small range of plausible values for the interaction parameter. In Case 5, a 

qualitative interaction is ruled out as implausible, and the CI is consistent with either a 

quantitative interaction or no interaction. In this respect it is straightforward to see that a 

quantitative interaction effectively can only be ruled out in situations where the interaction 
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is clearly qualitative. (That is, the whole confidence interval is less than - 2A or greater 

than + 2A.) Naturally this will correspond to cases where the estimate of the interaction 

parameter is simply large but will also include the scenario where A = 0 , in which case Q 

must be either a zero or qualitative in nature. 

As IAI increases, the result is that the range of values corresponding to a quantitative 

interaction also increases. This supports the view that qualitative interactions are much 

more plausible when treatments are expected to be, on average, equivalent. Furthermore, 

it is clear that as the overall treatment difference increases, then un~er the null hypothesis 

of no interaction, the chances of observing a statistically significant qualitative interaction 

is less likely - that is, a qualitative interaction distinguished from a quantitative one. 

Now, consider the weighted treatment difference (A) again. At the design stage of a 

superiority trial, the specific treatment difference that the study aims to detect (b) may be 

considered to be a good approximation for this parameter, and as such a qualitative 

interaction would now equate to the case were Inl > 2181 leading to transition 

margins (-28,+28). Now, in terms of the Wald statistic (maximum likelihood 

estimate/estimated standard error), it is interesting to note that a test of the overall 

treatment difference, with a Wald statistic of ~ , would have identical power to a test for 

interaction when the interaction is qualitative, with a Wald statistic of ~. This 
v4v 

observation would suggest that, a priori, superiority studies would tend to be adequately 

powered to detect interactions that are qualitative, so long as the study is adequately 

powered to detect the true overall treatment difference. 
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The generalisation of the approach to factors with more than two levels is not 

straightforward since it depends upon the number of levels, the effect size for each 

treatment by factor combination, the proportion of subjects categorised to each level and 

the type of effect tested for and present in the data (Kelly et ai, 2005). (Kelly et al provide 

formulae to calculate the power and sample size for treatment by gene interactions based 

on the generalised linear model. They also adapt an alternative approach developed by 

Elston et al (1999) for binary responses to Gaussian outcomes.) For example, in terms of 

type of effect, Kelly et al illustrates a pattern of possible genotype response in terms of 

whether the different treatment-allele interaction effects are additive, dominant or 

recessive. In this case, a single diallelic locus with alleles A and a, provides three possible 

combinations: aa, aA and AA. An additive effect implies that there in an additive effect 

moving through the levels, a dominant effect implies an effect only with addition of A 

while a recessive effect implies an effect only with the AA combination. 

Returning to the generalisation of the approach above, for illustrative purposes, if a factor 

has three levels with an equal proportion of subjects assigned to each combination, then 

the variance for the interaction for the simple comparison between two levels would be 6v 

since the variance of the treatment difference in each subgroup is now 3v 2 12n = 3v . 

Similarly for four levels the variance of the interaction between a pair would be 8v. Now 

8 remains a good approximation for A, where A now represents the weighted treatment 

difference across two factor levels, so the Wald statistic for a pairwise interaction becomes 

~ and ~ for three and four levels respectively. Thus to have the same power a 
,,6v ,,2v 

priori as the test ofthe overall treatment difference, the magnitude ofthe pairwise 

interaction would need to be greater than oby a factor of ~ and J2 respectively. 

Therefore, the result - that a priori a superiority study would tend to be adequately 
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powered to detect an interactions that was qualitative - cannot be generalised to 

interactions involving factors with more than two levels. 

In the context of Figure 4.2, it is interesting to consider the views of Rohmel (1999) - a 

statistician at the Federal Institute for Drugs and Medical Devices in Germany - in relation 

to the investigation of treatment by centre interactions. Rohmel describes the usually low 

power of test for quantitative interaction and the dramatically lower power to detect 

qualitative interaction. However, as described above and as illustrated in Figure 4.2, it is 

important to make the distinction between detecting a qualitative interaction and 

distinguishing a qualitative interaction from a quantitative one. It is clear from Case 2, 

A A 

that if an interaction is qualitative (for illustration, this equates to n < -2A ), then 

A A 

compared to a smaller quantitative interaction (such as Case 3, where - 2A > n > 0), the 

power to detect a significant interaction (that is Q;t: 0) will actually be higher not lower. 

However it is indeed true, as is illustrated in Case 1, that the corresponding power to 

determine that the same interaction is qualitative and not quantitative would be much 

lower since the lower confidence limit would now need to be < -2A and not simply less 

than zero. (Oddly, Rohmel actually defines a qualitative interaction as the existence of an 

overall superior therapy and the simultaneous existence of a subpopulation of patients in 

which the globally inferior therapy is actually better. However Rohmel's definition is 

careless, since as was shown in Chapter Three, Simpson's paradox also describes the 

reversal of the overall effect in subgroups, and this does not represent a qualitative 

interaction. Rohmel's definition is only valid therefore if the claim of overall superiority 

that he refers to is based upon a stratified analysis that includes the corresponding 

subgroup defining factor.) 
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As has been illustrated, the overall weighted mean treatment difference (A) can be viewed 

as providing a convenient way of classifying the interaction parameter as either 

quantitative or qualitative. However since A cannot be determined a priori and must be 

estimated from the data, the boundaries should more accurately be described as "pseudo 

margins" as they are by their nature data dependent. An alternative and preferable 

approach would be the a priori specification of margins using a non-data dependent 

method of elicitation. Now, the concept of using pre-specified margins to evaluate 

treatment differences is well established in the area ofbioequivalence. In this respect 

regulatory authorities provide specific values for these margins when pharmaceutical 

companies design studies to compare a generic drug with an original approved drug which 

is off patent. The method of evaluation has also expanded into the clinical environment 

when assessing therapeutic equivalence - the subject of Chapter Five. In therapeutic 

equivalence, two margins are established, (-m l , +m2 ) say, which define a range of values 

for the primary endpoint within which the difference between two active treatments is 

considered clinically equivalent. Although there are no widely established values for these 

margins in equivalence methodology, a CPMP concept paper (CPMP/EWP/2158/99) has 

suggested a margin of one half to one third of the established superiority of the 

comparator to placebo. Similarly Phillips et al (2000) have proposed a margin less than 

half the difference between active and placebo. In truth this area of margin specification 

remains controversial (as will be demonstrated in Chapter Five) and the most recent draft 

guidance (Points to consider on the choice of non-inferiority margin, 

(CPMP/EWP/2158/99 draft)) is much less prescriptive than had been earlier indicated in 

the concept document. However one could borrow, or build upon, the originally 

suggested margins emanating from the area of therapeutic equivalence for the difference 

between active treatments, and apply these to the difference between the treatment 

differences. 
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The most straightforward application would be for a placebo controlled superiority trial. 

In this case, the study would have pre-specified a treatment difference at the design stage 

for the primary endpoint, t5, and so margins for the interaction could be simply defined as 

(-8/2,+8/2) or (-813,+813). However the earlier observation that a superiority trial 

could have a priori adequate power to detect a qualitative interaction might also lend 

support for margins much wider than those proposed above - that is, (-28, +28). Taking 

this one step further, when describing their indifference region (see Section 4.4), Pan and 

Wolfe (1997) assign a value of I % to d, for example, as a means of including some small 

degree of qualitative interaction in the nu)] hypothesis when comparing response 

percentages. This would point to margins of (-[28 + 1],+[28 + 1]) for data analysed on the 

percentage scale. However according to Senn (2003), the threshold for a clinically 

relevant interaction clearly cannot be larger than the clinicalJy relevant difference 

overaJl,t5, and ought to be less. This would suggest margins no wider than (-8,+8) and 

one can see from Table 4.11 that, if t5is replaced by A, then this equates to the size of 

effect in one subgroup being three times larger than the effect in the complement subgroup 

- a difference that intuitively seems worthy of note. For an active controlled equivalence 

study, appropriate symmetric margins (-m,+m) would have already been pre-specified 

and these margins could simply be applied to the interaction also. 

Rather like therapeutic equivalence and non-inferiority, perhaps it is impossible to be too 

prescriptive in terms of specifying the magnitude of the margins and instead these should 

be determined on the basis of both the specific hypothesis being tested (including the 

nature of the reference treatment) and the specific therapeutic areas. However it is clear 

that the subject would benefit from considered thought prior to study initiation. 
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Ifmargins could be established for the interaction parameter, the next step would be to 

consider how to evaluate the resulting estimate against these margins. The approach 

adopted in bio- and therapeutic equivalence is to regard the confidence interval for the 

estimate as representing a range of plausible values for the parameter. It follows that if the 

confidence interval is wholly contained within the range of the margins then it is 

considered reasonable to conclude that the interaction parameter is no greater than the 

margins and that any difference between the treatment differences is clinically irrelevant. 

However this approach is directed at evaluating primary parameters for which the study 

has been adequately powered whereas the evaluation of treatment by factor interactions is 

usually of a secondary or exploratory nature. In this respect such an approach may simply 

produce an equivocal result and show that a clinically relevant difference cannot be ruled 

out. 

An alternative approach might be to adopt Bayesian type thinking which could be applied 

to produce a more useful way of tackling the problem of estimate imprecision. Indeed in a 

more general sense, Peto (1982) stresses the importance of using prior information when 

interpreting interactions, and so a Bayesian approach also provides an opportunity to 

incorporate informative prior information to aid the interpretation of the data. This 

Bayesian approach is discussed in the next section. 

4.5 A BAYESIAN APPROACH 

4.5. J General approach 

One potential approach would be to calculate the posterior probability that the interaction 

parameter lies within the interval defined by the margins, (-c,+c) say. That is, 

P(-c ~ n ~ +c). Using a Bayesian approach the interaction parameter, n, is regarded as 

random, and this can be contrasted with the classical approach whereby the data are 
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regarded as random but the parameter, Q, is fixed but unknown (Lee, 1989). Furthermore, 

prior beliefs regarding Q are modified once data are observed to arrive at a posterior 

probability distribution using the formulation that the posterior distribution is proportional 

to the prior distribution multiplied by the likelihood (that is, the data). 

Bayesian approaches for continuous and binary outcome will now be developed in the 

next two sub-sections for the simple case of two treatments with a two-level single factor. 

4.5.2 Continuous outcomes 

Consider the linear model 

where flij = a + i; + rpj + (rrp)ij and subject (k) is subject to the effects of treatment li 

(i=t,r) and factor rp j (j= I ,2) and that there is also a background level, represented by the 

constant term a. Furthermore the errors G ijk are independent and identically distributed 

with constant variance. 

Now, the interaction between treatment and factor is the difference between the treatment 

difference for factor level F=I (J..1t1 - /Jrl) and the treatment difference for factor level F=2 

(J..1t2 - J..1d, and so can be formally specified as: 

(J..1t I - J..1rl) - (J..1t2 - /Jr2), 

or equivalently, 

J..1tl - J..1r1 - J..1t2 + J..1r2 

Furthermore, since it follows from general theory that any contrast of the means 

I; I j cijflij with I; I j Cij = 0 can be estimated by Ii I j cijxij' the estimate of the 

interaction is simply(x'l - xrl - x,2 + xrZ ). 
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Also from general theory, the variance of the contrast iS0"2 L L· c2n~l. Now, ifit is 
, J Ij Ij 

assumed that if is unknown, but equal for all four treatment by factor combinations, then 

it can be estimated as the weighted mean ofthe individual s/ as follows: 

S2 = (n,1 -I)s,~ + (n,l -1)s;2 + (n rl -1)s;1 + (nr2 -1)s;2 

(n,1 -l)+(n,z -1)+(nTI -1)+(nr2 -I) , 

I(x
k 

- X.)2 
where s~ is calculated as IJ Ij 

nij -1 

This can then be re-arranged to give, 

S2 = I(x'ik - X,1)2 + I(X'Zk - X(2 )2 + I(Xrlk - XTI )2 + I(Xr2k - Xr2 )2 

n'l + n,2 + nrl + n r2 - 4 

It then follows from the variance of the contrast (0"2 Ii I j c~nijl ) that the standard error 

of the interaction is 

S£(Q)= s2(_1 +_1_+_1_+_1_) 
n'l n,2 nrl nr2 

which follows a t-distribution with ntl + nt2 + nrJ + nrl- 4 degrees of freedom 

For each treatment by factor combination, non-trivial prior information can be expressed 

for the unknown parameter J1 in terms of the parameters '1 and ~ from a normal 

distribution, that is, 

(Note to aid clarity the subscripts (i and j) have been dropped.) Now, if n observations 

from a normal distribution have been generated then, 

2 
X - N(p. 0" ) 

but with the restriction that the variance, if, is known and, 

x - N(p,0"2 In) 
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which leads to the posterior distribution (Lee, 1989), 

where, 

;2 = ~-2 + (0- 2 
/ n t' [1 

O=.;2{q/S-2 +XI(0-2 In)}. 

These can then be re-arranged to give: 

;2 = 1 
S--2+(0-2Int 

In these fonns, the posterior precision (defined as the inverse of the variance) can be 

described as being the sum of the prior precision and the data precision while the posterior 

mean can be described as a weighted mean of the prior mean and observed mean. 

Note that for the observed data, this method assumes that the variance is known so in 

practice if is substituted by the estimate i. For s~enarios relating to the evaluation of a 

treatment by factor interaction it is likely that the sample sizes will be reasonably large -

typically resulting from large phase III confinnatory studies - so this method will be valid 

and differ little from a solution involving an unknown variance assumption. 

Accordingly, interest centres upon the distribution of the interaction but this is now a 

posterior distribution which, using general theory, is normally distributed as follows: 

Now, Simon and Freedman (1997) applied Bayesian methods to the analysis of the two 

treatment factorial design and in particular to the evaluation of the interaction between the 
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two treatments. The evaluation of interactions is a problem that the factorial model shares 

with the treatment by factor model although there are also a number of differences. In the 

two treatment factorial model, subjects are randomised to one of four treatment 

combinations representing the presence or absence of each of two treatments, and 

assumptions regarding the interaction parameter are integral to study design. In this 

context, the factorial model studies the joint effect of two randomised treatments and 

assumptions regarding the presence or absence of interaction have important implications 

for the sample size. For instance, if no interaction is assumed then the factorial model 

provides an efficient design - that is, two treatments can be studied jointly using fewer 

subjects than if each were studied separately. However if it is important to evaluate the 

effect of giving two treatments together then such a trial will be under powered to detect 

an interaction, unless the sample size is increased accordingly. Furthermore treatment 

interactions of both a positive and negative nature are possible. For instance two 

treatments may combine to produce a synergistic effect although it is quite plausible that 

the combined effect may be no greater than the individual effect of each treatment alone. 

In contrast the evaluation of treatment by factor interactions is more exploratory in nature 

and although a formal investigation of the interaction between treatment and a 

stratification factor may be planned at the design stage, many other factors might be 

evaluated in the same study. Another important distinction is that subjects are not 

randomised to a specific level of a factor - rather factors are either inherent characteristics 

of the subject (such as gender) or background features (such as disease severity). This has 

important implications since there is no guarantee that male subjects, say, have been 

sampled in the same way as females - perhaps due to protocol exclusions relating to child 

bearing potential status. Finally the concept of positive (or synergistic) and negative 
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interaction effects is not relevant to treatment by factor interactions since unlike factorial 

designs, different levels of a factor will usually have equal importance. 

Nevertheless, the factorial model proposed by Simon and Freedman (1997) is broadly 

applicable to the evaluation of treatment by factor interactions and provides an alternative 

parameterisation that has some advantages over the basic approach described earlier. 

Consider a model with two treatments (represented by different levels of T coded -lor 1) 

and a two-level factor (represented by different levels of (> also coded -lor 1) that takes 

the form: 

where the error terms & are N(O, d) and independently distributed. Now, with this 

parameterisation, the main effect of treatment is given by 2/lt the main effect ofthe factor 

by 2fJz.. and the treatment by factor interaction by 4th and it follows that maximum 

likelihood estimates of the parameters are given by the four contrasts: 

A 

/33 = (x,J - xrJ - x,2 + xr2 ) / 4, 

each with variance d/4n. 

Simon and Freedman assume a prior distribution for the vector of parameters, /3 , of the 

form N (p, L) and, in accordance with Lindley and Smith (1972), show that if 
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jJ I P - N(P,C) , then the resulting posterior distribution is PI jJ - N(BQ,B) , where 

B-1 = C-I + I-I and Q = C-I jJ + I-I JI. C = (0"2 / 4n)I, where I represents the identity 

matrix, and assuming that the prior distributions for all four parameters are independent 

As such the posterior distribution for the interaction parameter (~3) is normally distributed 

4.5.3 Binary outcomes 

Continuing with the simple case of two treatment groups and one baseline factor with two 

levels, then for some binary outcome the true proportion (proportion of responders, say) 

for each treatment by factor combination is represented by lrij with corresponding estimate 

Factor 

F= 1 F=2 

Treatment T= t 

T=r 

Corresponding prior probabilities of response can be expressed for each treatment by 

factor combination in terms of the parameters, rand qJ, of a beta distribution. That is, 

Factor 

F= 1 F=2 

Treatment T= t r /<r + m ) II 11 't'/l 
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As such, each prior has the form pelf) OC lf y
-

I (1-7l')"'-' where (0 $ If $1). Now, the beta 

distribution is conjugate for the binomial likelihood (Lee, 1989) so that the posterior also 

has a beta distribution of the form 

That is, if the prior distribution is beta, i.e. 7l'ij - Be(r ij' <Pij) then the posterior distribution 

with also follow a beta distribution, i.e. 7l'ij - Be( a ij , P ij) , where a ij = (r ij + x ij) and 

Pij = (<pi) + ni) - xij). (Conjugate refers to the general case where a family of prior 

distributions leads to the same class of posterior distributions.) 

4.5.3.1 Odds ratio 

For each treatment by factor combination the odds is defined as: 

and if 7r ij - Be(aij' Pij) then the log odds, 10g(Aij)' is close to having Fisher's z 

distribution (Lee, 1989). That is, 

From the properties ofthe z distribution it follows that, 

£(I0gA) == log{(a - t )/(p - t)} 

Var(logA) == a-I + p- I 

Hence the log odds ratio, log(A,. / Ar .) = 10g(A,.) -log(ArJ), for factor F=l also has an 

approximate Normal distribution 

or more approximately 

N(log{a,.Pr. 1 Pilar' },a,~1 + p,~1 +a;.1 + Pr-.') 

- 152 -



The approximation is likely to be reasonable if all entries in the 2x2 table are at least 5 

(Lee, 1989). Now, to evaluate a treatment by factor interaction one simply needs to 

compare the odds ratio from subgroup F=I with the respective odds ratio from F=2. The 

most straightforward approach is to simply compare the difference in the log odds ratios. 

That is, 

10g(A,1 / A,I) -log(A,2 / A,2) = {log(A,I) -log(ArJ )}- {log(A,2) -log(A'2)}' 

and this also has an approximately Normal distribution 

N(log{a,IP,IP,2a ,2 / p,la ,la ,2P,.2}' {a,~1 + p,~1 +a;11 + f3,~1 +a,-; + f3,~1 +a;~ + Pr-i}) 

4.5.3.2 Difference in proportions 

The mean and variance of a beta distribution are given by 

E(7r) = a I(a + P) 

Var(7f) = ap /(a + p)2 (a + P + 1) 

Now, ifboth a and P are at least 10 then the beta distribution can be approximated by a 

Normal distribution with the same mean and variance (Lee, 1989). It follows, therefore, 

that 7f,1 -7f,1 has a Normal distribution with mean a,/(atl + ptl)-arll(a,1 + Prl) and 

variance [atIPt/(atl + Ptl)2(a'l + P,I + I)] + [a,IPr/(a,1 + p'I)2(a'l + PrJ +1)]. Again, it is 

then straightforward to extend this to the distribution for the difference between the 

subgroup treatment differences (i.e. treatment by factor interaction), assuming that all the 

aij and Pij terms are at least 10. 

4.5.4 Incorporating prior information 

Spiegel halter et al (1994) discuss a range of prior distributions that can be applied to a 

clinical trial setting and in fact explicitly encourage a full range of prior distributions to be 

applied to data set as opposed to the assignment of a single prior. Spiegelhalter et al view 

- 153 -



this family of priors as representing a range of perspectives based upon evidence that is 

external to the current clinical trial and categorise the priors as reference, clinical, sceptical 

and enthusiastic. 

4.5.4.1 Reference priors 

The essential aim of a reference prior is to offer the least information possible such that 

the likelihood is essentially untouched. In this respect a reference prior is the least 

subjective of all priors but is to a certain extent unrealistic as a result. Spiegelhalter et al 

(1994) describe the reference prior as one that provides a baseline from which the impact 

of other priors can be judged. Lee (1989) describes a reference prior as neutral - that is, 

the views of someone who had no strong beliefs a priori. (A pragmatic alternative with 

the same aim is simply to interpret the likelihood in a Bayesian way as suggested by 

practical Bayesian statisticians (for instance, Professor Peter Freeman, personal 

communication).) 

Although simple in concept, the choice of reference priors is not necessarily 

straightforward as illustrated by the application to binary outcome data. A uniform 

distribution in which no value is more likely than another is intuitively appealing

however in many cases the density function would not integrate to 1 and would be 

described as improper. (A proper density by contrast would integrate to I.) In effect there 

are three main choices when selecting a conjugate reference prior for the binomial 

likelihood - although others have been suggested. These are the beta priors: Haldane's 

prior, Be(O,O), which is an improper density but is a uniform prior for the log odds; the 

arc-sine prior, Be(V2, V2), that is a proper density and is a uniform prior for sin -h ; and 

Bayes' postulate, Be( 1,1), that is also a proper density. Lee (1989 provides a full 
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discussion of the properties of these three priors although in practice unless the number of 

observed data is very few, the choice is irrelevant. 

4.5.4.2 Informative priors: clinical, sceptical and enthusiastic. 

Using an informative prior is essentially equivalent to simply adding data from outside of 

the trial to the data observed in the trial - and weighting the two sets of data appropriately. 

Spiegelhalter et al (1994) describe a clinical prior as one that is either based on the opinion 

of one or more well informed individuals or is derived from historical data - perhaps 

following a meta analysis. In considering the former, Senn (in the discussion of the 

Spiegelhalter et af (1994) paper) asks: Is this 'group clinical opinion' not an example of 

information which is worse than useless? Machin, in the same discussion, suggests that at 

best it will be a compound of anecdotal information, the published literature and personal 

experience and generally views such priors as representing optimistic belief. Similarly 

Evans - who would subsequently join the MeA - comments further that the beliefs that 

the clinicians have are very often entirely unsupported and that it is important to 

distinguish between belief and belief supported by evidence. Indeed in a regulatory 

environment where confirmatory evidence of effect is being presented it is hard to imagine 

the acceptability of such opinionated priors. Priors based on previous data appear less 

controversial - Evans stating that meta-analysis priors should be a requirement for part of 

the introduction to papers. Lewis - who would also subsequently join the MeA - adds: I 

want their [the investigators} views to reflect previous data. The use of historical data is 

not necessarily straightforward however and it is important that these data are not simply 

viewed as being exchangeable (that is, of equal weight) with the data generated 

prospectively from the study itself. In this respect it is usual to shrink the treatment effect 

and/or increase the variance of the distribution to allow for the potential heterogeneity of 

these data in comparison with the prospective data. Specific sources of prior information 

could also include the use of pharmacokinetic data - identifying differences in drug 
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distribution between subgroups for specific drugs - and minimum inhibitory 

concentrations - identifying which drugs had the greatest in vitro potential against 

different bacteria in anti-infective trials. In both of these cases such infonnation would be 

helpful in establishing clinical priors for evaluating a treatment by subgroup interaction. 

The sceptical prior is intended to represent belief that a large treatment difference is 

unlikely. Typically the prior distribution would be symmetric around a treatment 

difference of zero and would have a variance that represented a range of plausible 

treatment differences. Spiegelhalter et al (1994) suggest a prior equivalent to already 

having observed a quarter of the trial with a zero treatment difference and use the 

treatment difference specified for the alternative hypothesis as the basis for the calculation. 

The impact ifusing such a prior would be to dampen any observed treatment difference. 

However as pointed out by Stephen Senn (personal communication), the curious feature of 

this approach is that an increase in the planned enrolment leads to more precise prior 

infonnation. In this respect the larger the trial, the greater the prior infonnation. 

In contrast the enthusiastic prior is aimed at offsetting the impact of the sceptical prior. In 

this case the distribution would still be symmetric (with the same variance as the sceptical 

prior) but would now be centred on the treatment difference for the alternative hypothesis. 

Although many other variations are possible, Spiegelhalter et al were clearly aiming at 

establishing the concept of standard or 'off the shelf priors that would become widely 

accepted. 

In the context of treatment by subgroup interactions, the standard definitions to not 

transfer readily however. Thinking in terms of a prior for the interaction parameter itself 

(as per the model of Simon and Freeman (1997) described in Section 4.5.2), whether a 

- 156 -



prior centred on zero would represent the sceptical view would depend on whether one 

was sceptical that an intreaction was present or absent. Certainly a prior centred on zero 

would dampen the possibility of finding a large interaction when considering the posterior 

and could be appropriate for exploratory analyses such that the possibility of false positive 

findings would be reduced. However from a regulatory perspective such an approach may 

not represent scepticism. In contrast an enthusiastic prior would point to the presence of 

an interaction in a specific direction (otherwise some sort ofbi-modal distribution would 

be required that was enthusiastic in terms of a difference (interaction) in either direction 

but sceptical at the point of no interaction) and would most likely be based on historical 

data - pharmacokinetic differences between subgroups, for instance. It would also require 

an alternative hypothesis to be specified if the Spiegelhalter et al approach were followed. 

However such alternative hypothesis are seldom specified in terms of a specific magnitude 

of effect. 

4.5.4.3 MCMC methods and non conjugate priors. 

The introduction of Markov chain Monte Carlo (MCMC) methods, in particular the Gibbs 

sampler (Gem an and Geman (1984) and Gelfand and Smith (1990», has meant that many 

previously intractable Bayesian problems have become much more straightforward to 

solve - specifically in comparison with algebraic or numerical integration methods. Such 

iterative simulation of posterior distributions provides greater flexibility and practical 

implementation of the Gibbs sampler has been greatly enhanced by the introduction of 

BUGS (Bayesian inference Using Gibbs Sampling) computer software - including 

WinBUGS, Version 1.4 for the personal computer (Spiegelhalter et aI, 2001). One 

particular feature of Gibbs sampling is that the technique does not restrict the selection of 

priors to the conjugate family. For instance in Section 4.5.3, the prior distribution for the 

binomial likelihood would not be restricted to the beta distribution. Furthermore BUGS 
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software is very flexible - affording the opportuni ty to specify a range of model 

formulations and parameterizations. Indeed it may be used simply to undertake 

straightforward maximum likelihood analysis. Smith and Roberts (1993) and Gelman and 

Rubin (1996) provide overviews of MCMC methods. 

4.5.5 Further regulatory considerations in relation to Bayesian methods 

Both ICH E9 and the earlier CPMP Note for Guidance (1II/3630/92-EN) entitled 

Biostatistical Methodology in Clinical Trials in Applications for Marketing Authorisations 

for Medicinal Purposes (Lewis et ai, 1995), on which ICH E9 was based, refer to 

Bayesian methods in their introductory sections but no specific mention is made thereafter. 

The CPMP Note for Guidance states: 

Although this Note for Guidance is written largely from a classical ({requentist) 

viewpoint. the use of Bayesian or other well-argued approaches is quite 

acceptable. 

Meanwhile ICH E9 states: 

Because the predominant approaches to the design and analysis of clinical trials 

have been based on frequentist statistical methods. the guidance largely refer to 

the use of frequentist methods when discussing hypothesis testing and/or 

confidence intervals. This should not be taken to imply that other approaches are 

not appropriate: the use of Bayesian and other approaches may be considered 

when the reasons for their use are clear and when the resulting conclusions are 

sufficiently robust. 

Grieve (in the discussion ofSenn (2000» has stated that there is afeeling that regulatory 

authorities look less favourably on Bayesian approaches - and concludes that IeH E9' s 
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endorsement 0/ Bayesianism is lukewarm. Senn (2000) describes regulatory nervousness 

at the thought of officially making use 0/ subjective inputs. Earlier Grieve (in the 

discussion of the Spiegelhalter et al (1994) paper) identified an explicit acceptance of 

Bayesian Methodology in early phase drug development (that is, in the area of 

pharmacokinetics and pharmacodynamics) and indeed had himself been joint author of an 

influential paper in the mid 1980s describing the use of Bayesian methods in the 

pharmaceutical industry as applied to pre-clinical and early phase clinical trials (Racine et 

al,1986). Indeed there is increasing interest in the use of Bayesian methods within the 

pharmaceutical industry in this area - not so much in terms of providing convincing 

evidence for regulatory approval of experimental treatments but rather directed at the 

internal decision making framework (dose selection, for instance) prior to performing the 

large confirmatory studies required for registration. Spiegelhalter et al (1994) alludes to 

this point: Thus it appears completely sensible that a drug company can have its own prior 

evidence and loss/unction/or its internal decision-making. 

Spiegelhalter et al (1994) noted that since the pharmaceutical industry follows the 

regulatory lead, then the use of Bayesian methods in this context would only happen if the 

regulatory agencies actually provided some encouragement. They further suggest that the 

sceptical prior would be the choice of the regulators in their role of public watch-dog 

where a degree of scepticism is consistent with such a role. It is not clear however that 

this approach would be consistent with the desire for direct encouragement since the 

impact might be to raise the hurdle in terms of what constitutes convincing evidence of an 

effect in confirmatory trials. Lewis (in the discussion of Senn (2000» states that 

pharmaceutical industry want their technology to be non-controversial and reliable so that 

drug development plans can be executed cleanly and e.fficiently. 
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In the discussion of the Spiegelhalter et al (1994) paper in the mid 1990s, a number of 

eminent statisticians with regulatory connections commented. Lewis was keen to 

encourage the separation of results (based on data) from the interpretation (where there 

was potential for Bayesian thinking). Similarly Ellenberg (a statistician at the FDA) 

focussed on the role that Bayesian methods could have in improving and enhancing the 

interpretability of trial results - although she was doubtful whether they would replace 

current methods. She described the sceptical prior concept as intuitively appealing whilst 

highlighting that its arbitrariness that would lead to intensive discussion with Sponsors in 

terms of the size of the 'handicap '. This view was supported by Gail who highlighted that 

it was important for conventions to be widely accepted if they were subsequently to have 

widespread use. Ashby perceived an increasing willingness among statisticians involved 

in drug regulation to explore the use of Bayesian approaches - stressing a desire that 

when the statistics guidelines were updated that they provided more explicit advice in this 

area. To date this has not been the case since none of the European statistically related 

guidelines (mostly points to consider documents) issued since 2000 (as detailed in Chapter 

I, Section 1.3 .2) include any reference to Bayesian methods. This may partly be due to 

the fact that these documents (PtC) are aimed at addressing issues that have been 

identified in recent submissions and if submissions have not included Bayesian methods 

then it follows that such methods would not be the subject of clarification. Lewis and 

Facey (1998) and Lewis et al (2001) describe statistical shortcomings and submissions and 

the impact of ICH E9 respectively - yet neither includes a reference to Bayesian methods. 

However the most recent CHMP draft guideline that includes substantial statistical content 

- the Guideline on Clinical Trials in Small Populations (CHMP/EWP/8356112oo5, 2005) 

- perhaps represents a paradigm shift. This draft guideline is the first document to 

encourage actively the application of Bayesian methods in relation to the submission of 
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evidence for consideration of drug approval- with the caveat that Sponsors should seek 

scientific advice from the CHMP at the design stage. At the heart of the guideline is a 

clear acknowledgement that in rare diseases, where few subjects are available for clinical 

research, it is imperative that the most efficient and informative analytical methods should 

be used. It highlights that the use or more complex methods (including Bayesian 

modelling) usually involve extra assumptions which may not be verifiable, and as such 

stresses the importance of sensitivity analyses to assess the robustness of the conclusions. 

The complete sub-section on Bayesian methods states: 

Bayesian methods are a further source of 'adding assumptions' to data. They are 

a way to formerly [sic] combine knowledge from previous data or prior 'beliefs' 

with data from a study. IntrodUcing prior beliefs is often a concern in drug 

regulation. However, being able to use knowledge of likely effects of drugs due to 

their chemical form, likeness to other existing compounds, mechanism of action, 

and so on, is a very valuable addition to sparse data. As with sensitivity analyses 

mentioned above, a variety of reasonable prior distributions should be used to 

combine with data from small studies to ensure that conclusions are, at least, 

reasonably data-dependent and not almost entirely belief-dependent. 

Of note is the explicit reference above to the apprehension that the regulatory agencies 

have when combining prior beliefs with the prospectively collected data from a clinical 

trial. The draft guideline also presents limited details of a published example of Bayesian 

methods in practice in an Appendix. Of interest here is that a sceptical prior is defined as 

assuming that the test treatment is worse than the reference, a neutral prior assumes the 

test treatment has no effect at all and the enthusiastic prior assumes the test treatment has a 

predefined realistic effect. Although different to the definitions used earlier, the same 

principle of using a range of priors to perform a sensitivity analysis to assess robustness is 

evident. 
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Grieve (in the discussion ofSenn (2000» is now more optimistic that Bayesian methods 

will gain a greater foothold then hitherto and describes a future where data driven priors 

(and utility functions) will be detailed in study protocols with full justification. 

To illustrate how some ofthe concepts that have been raised in the previous sections of 

this Chapter could be applied in practice, some published data where an interaction was 

detected have been selected. The re-analysis of these data is the subject of the next 

section. 

4.6 AN EXAMPLE 

Swarbrick et at (1996) published the results of a comparison of lansoprazole 30mg once 

daily with ranitidine 300mg twice daily in the treatment of oesophageal stricture where the 

endpoint was the proportion of subjects requiring re-dilatation during the 12-month 

treatment period. The sample size was chosen on the basis of detecting a reduction in the 

re-dilatation proportion of 25 percentage points with lansoprazole compared with 

ranitidine, which had an expected re-dilatation percentage of 50%. 

The primary analyses followed the ITT principle and included all 158 randomised subjects 

and the following results were reported. The observed re-dilation percentages were 43.8% 

(35/80) for ranitidine and 30.8% (24/78) for lansoprazole, although the difference of 

13.0% (95% CI: -3.2, 29.2) was not statistically significant (x.2 test, p=0.092). (Note that 

the observed difference was markedly smaller than that specified in the alternative 

hypothesis.) A total of eight prognostic factors (including centre) were examined and one 

statistically significant interaction was reported - that between treatment and baseline 

drinking status (Breslow-Day homogeneity test, p=0.017) as shown in Table 4.111. 
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Table 4.111: Re-dilation proportions by treatment 
group and drinking status 

Lansoprazole 
Ranitidine 

Drinker Non-drinker 
25.6% (11/43) 37.1% (13/35) 
54.2% (26/48) 28.1 % (9/32) 

The authors had no immediate explanation for what appeared to be a qualitative type 

interaction and stated that it might simply be a chance finding. Of note is that the primary 

presentation of the re-dilation percentages is given on the difference scale (the odds ratio 

is also presented but without confidence limits), yet the interaction is investigated on the 

odds scale using the Breslow-Day homogeneity test. The interaction would appear 

qualitative on either scale, however. Swarbrick et at (1996) did not investigate the 

apparent interaction further so it is interesting to re-analyse these data using some of the 

methods described earlier in this chapter. 

Table 4.IV: Re-analysis ofSwarbrick et at (1996) 

Parameter estimated OR LogOR SE Wald 95% CI p-value 

(LogOR) (LogOR) 

Unadjusted Treatment 1.75 0.560 0.333 (-0.093, 1.213) 0.093 

Adjusted Treatment 1.72 0.547 0.334 (-0.108, 1.202) 0.10 

Drinker subgroup 3.44 1.235 0.454 (0.345,2.125) 0.0065 

Non-drinker subgroup 0.66 -0.412 0.526 (-1.444,0.619) 0.43 

Interaction (ratio of OR) 5.19 1.647 0.695 (0.285,3.001)' 0.018 
... 

Odds ratio (ramtldme/lansoprazole) 

Interaction is ratio (drinker/non-drinker) of the odds ratios (ranitidine/lansoprazole) 

Note: adjusted treatment effect is from logistic model and is not the simple weighted estimate of A 

Analyses produced using SAS procedure GENMOD (SAS. 1996) 

In Table 4.1V, estimates and confidence intervals are provided for all parameters including 

the within subgroup treatment differences and the interaction between treatment and 

drinking status. In addition to being more comprehensive, these (logistic) analyses are 
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now coherent with all parameters estimated using the same formulation (the log odds 

scale). 

The unadjusted (1.75) and adjusted estimates (1.72) of the overall treatment difference are 

similar but notably less than the odds ratio of3 specified for the alternative hypothesis. 

Both treatment groups contained a similar percentage of drinkers - that is, 60% (35/80) in 

the ranitidine group and 55% (43178) in the lansoprazole group. (As shown in Chapter 

Three, Section 3.6, underestimation of the odds ratio would be expected under the 

condition of perfect balance, if an influential factor were excluded from the model. 

However in this case the adjusted OR is actually numerically smaller. Also note that the 

standard error (SE) for the adjusted analysis is numerically larger - a topic for further 

investigation in Chapter Five.) In terms of separate subgroup analyses, the treatment 

difference for drinkers is actually statistically significant (p=0.0065) while the 

corresponding difference for non-drinkers is not significant (p=0.43). As was highlighted 

in Chapter Two (Section 2.4.3), the chances of observing inconsistent subgroup results is 

reasonably high when the overall p-value is small, so this apparent inconsistency in terms 

of significance should not in isolation be viewed as a particularly worrisome finding. The 

SE in each subgroup is, as would be expected from Section 4.2.2, larger than the 

unadjusted treatment difference SE but smaller than the SE for the interaction. 

The striking feature of the data is the magnitude of the estimate of the interaction 

parameter. Relative to the unadjusted estimate of the treatment difference, the interaction 

estimate is almost three times as large, and is also 1.7 times larger than the treatment 

difference that the study was designed to detect. (When using the odds formulation, the 

interaction parameter is not an odds ratio per se, but is in fact the ratio of the odds ratios.). 

As described in Chapter Two (Section 2.4.4), perhaps interactions analyses that are either 

exploratory or unplanned (which these most likely were) should be subject to an 
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adjustment for multiplicity. In this case, since eight factors were considered then both the 

Bonferroni and Holm (1979) corrections would compare the smallest p-value with alk -

that is, compare 0.018 with (0.05/8) =0.00625 - in which case the interaction would not 

now be statistically significant at the 5% level. 

At this stage it is interesting to investigate the interaction further by applying the standard 

LR and SR tests as described in Section 4.2.3 to the data in Table 4.111. The results are 

reported in Table 4.V while the corresponding critical values for the tests are given in 

Table 4.VI. 

Table 4.V: LR and SR test statistics for the investigation of treatment 
b b r d ·nk· t tu . t f ase me n mgsa s m erac Ion 

Statistic Log OR 
(ranitidine/lansoprazole) 

Drinker Non-drinker 

Dj 
+1.235 -0.412 

Sj 0.454 0.526 

D2 / S2 7.400 0.613 
J J 

D j 1 Sj 2.720 -0.783 

Q- 7.400 

Q+ 0.613 

max{D j 1 Sj} 2.720 

min{D j 1 Sj} -0.783 

Recall that with the LR test, the null hypothesis of no qualitative interaction is rejected if 

min(Q+ ,Q-) > C2a so given that 0.613<2.71, the null hypothesis is not rejected at the 5% 

level (p>0.20). Similarly the null hypothesis is not rejected at the 5% level when applying 

the SR test, since although 2.720 is greater than 1.64, -0.783 is also greater than -1.64. 

(Recall that rejection of the null hypothesis requires both max {D j / a j } > C;a 
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In terms of the one sided null hypothesis ( HOI : L\ E 0 + ) that lansoprazole is at least as 

good as ranitidine in both subgroups, then for the LR test, this is rejected if Q+ > CIa' In 

this case 0.613<4.23 so the null hypothesis is not rejected at the 5% level (p>0.20). 

Similarly for the SR test, HOI is rejected if min{Dj I {Ij} < -C;a and since -0.783 is greater 

than -1.95, the null is not rejected. However for both the SR and LR tests, the one-sided 

hypothesis (HoI: L\ E 0- ) that ranitidine is at least as good as lansoprazole, in both 

subgroups, is rejected at the 5% level of significance (p<0.025). 

Table 4.VI: Selected critical values for two-sided and one-sided LR and SR tests 
Test Critical Significance level 

value 0.20 0.10 0.05 0.025 0.001 
LR test C2a 0.71 1.64 2.71 3.84 9.55 

CIa 1.73 2.95 4.23 5.54 11.76 

SR test C;a 0.84 1.28 1.64 1.96 3.09 

C;a 1.25 1.63 1.95 2.24 3.29 
.. 

Cntlcal values for LR and SR tests reproduced from Table I, Gall and Simon (1985) and Table I, 
Piantadosi and Gail (1993) respectively 

These additional analyses provide further insight to the data and suggest that there is not 

strong evidence to support the presence of a qualitative interaction. Importantly, it has 

also been shown that ranitidine is not at least as good as lansprazole in both subgroups and 

therefore that lansoprazole is better than ranitidine in at least one subgroup. Furthermore, 

the evidence does not support the view that ranitidine is better than lansoprazole in any 

subgroup. In this respect a rationale dosing strategy for future patients might be to use 

lansoprazole 30mg rather than ranitidine 300mg in the treatment of oesophageal stricture, 

regardless of drinking status (since lansoprazole will not be worse). However these 

analyses make no attempt to estimate the magnitude of the interaction effect directly. 

Now, consider the specification of interaction margins to aid interpretation. Since this 

study was designed to detect a difference (b) of 25% between the treatments, then this is 
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the starting point for margin specification, and using the odds formulation, this reduction 

in the re-dilation percentage from 50% to 25% corresponds to an odds ratio of 3 

(ranitidine:lansoprazole) - which when transformed to the log scale gives 1.099. 

Following on from Section 4.4, four margins will be considered. First of all, three based 

on 6- which in increasing order of width are: (-6/2,+812); (-8,+8); and (-28,+26). 

The fourth margin is based on the observed A - that is, (-2A,+2A). Now, in terms of 

constructing margins on the odds scale, it is the log OR that is used. For instance, to 

construct the margins (-812,+6/2) , the log OR of 1.099 is divided by 2 - that is, (log: 

OR)/2 - to give ± 0.549. Since A = 0.411 on the log scale - then the corresponding 

margin (-2A,+2A) is simply ± 0.823. These margins are given in the left hand column of 

Table 4. VII below and it is worth noting that the values (± 2.197) for the margin 

. . 
(-2A,+2A) equate to a ratio of the odds ratios of9. 

The next step in the process is to compare the estimated 95% confidence limits for the 

interaction on the log odds scale - that is, (0.285, 3.001) - with these margins. It is clear 

that although the lower 95% confidence limit is greater than zero, it is less than the upper 

margin in all four cases. In this respect the range of plausible values for the interaction 

includes values that are consistent with an interaction that is not clinically relevant using 

all four criteria specified (that is, all four sets of margins). However it is also worth noting 

that the estimate of the interaction itself is greater than the upper value for three out of the 

four margins. 

Now, consider the application of the proposed Bayesian approach using the four margins 

defined above. First consider the case where a neutral prior is required and in this regard a 

Be(O,O) reference prior has been selected for each treatment by factor combination, which 
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is unifonn for the log odds. The results are shown in Table 4.VII (reference priors 

column) where the probabilities quoted are posterior probabilities that the true interaction 

difference lies within the specified margins. 

Table 4. VII: Posterior probabilities within a range of margins for the interaction 
( b d' k' ). h fi d' fi . . parameter treatment ,y nn 109 status WIt re erence an 10 onnattve pnors 

Margins Posterior probability contained within margins 
Reference Infonnative priors 
priors S/combination 10/combination 

(-8/2,+8/2) ± 0.S49 0.OS6 0.081 0.108 

(-8,+8) ± 1.099 0.21S 0.293 0.370 
(-28,+28) ± 2.197 0.786 0.874 0.928 

(-21\,+21\) ± 0.823 0.118 0.166 0.217 

The posterior probability for the margins ~ 181 points to a high proportion of the 

interaction's posterior distribution lying outside the limits of the range. This would 

suggest that the interaction is clinically relevant in relation to the treatment difference that 

the study was initiated to detect. In contrast the margins (-28,+28) include almost 80% of 

the posterior probability, although perhaps these are too wide from a practical standpoint 

since they correspond to 9 for the ratio of the odds ratios. Given that this study was 

powered to detect a difference between percentages of2S%, margins of double the 

magnitude are perhaps uninfonnative in this respect. The a posteriori margin 

(-2A, + 2A) contains only around 12% of the posterior distribution and again points to a 

clinically relevant interaction. 

The question then arises as to what infonnative prior distributions might have plausibly 

been used for this study? Clearly the authors did not expect to observe an interaction 

between baseline drinking status and treatment although we know that the study was 

designed to detect a difference of 2S%. In this respect one could argue that if asked before 

commencing the study the expected response percentages would have been 50% for both 
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combinations involving ranitidine and 25% for both combinations involving lansoprazole. 

However, the paper also references the results of a similar 12 month comparison of a 

different proton pump inhibitor (omeprazole) against a lower dose ofranitidine (that is, 

ISOmg versus 300mg). These data were published in 1994 and showed re-dilatation 

percentages of 30% (43/143) for omeprazole (same class of drug as lansoprazole) and 46% 

(66/143) for ranitidine. One could argue therefore that it is more credible to think that the 

priors would have been based on these data. Clearly any attempt to retrospectively assign 

priors is a contradiction in terms, but for illustrative purposes assume that individual 

informative priors were specified prospectively for each treatment by factor combination. 

Assume further that the researcher expects the response percentage to be 40% for 

ranitidine (since a higher dose of ranitidine is expected to reduce the re-dilatation 

percentage) and 30% for lansoprazole (on the basis that the same class of compound might 

produce a similar effect). The next question is then what weight they would have given to 

these prior beliefs in terms of the number of observations? Assume that that researcher 

assigns priors (r ij /(r ij + 'Pij» of 2/5 for each ranitidine combination and 1.5/5 (=30%) for 

each lansoprazole combination. (Note that integer values are not required.) In each case, 

no interaction with drinking status is expected and the weight given to each of the four 

priors - in terms of five subjects' worth of data - is the same. Essentially the researcher 

has added in 20 observations worth of data. Since this exercise is purely for illustrative 

purposes, consider a further case where the researcher is more certain with respect to their 

estimates and considers each to be worthy of ten subjects' data. In this case the respective 

priors for ranitidine and lansoprazole are now 4/10 and 3/10. The impact of applying 

these two sets of priors is shown in Table 4. VII above. 

As would be expected, when the researchers applies priors with the expectation that there 

is no interaction (ratio of odds ratios equals one) then a greater proportion of the posterior 
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distribution will be squeezed between the margins (which are all symmetric around zero 

on the logarithmic scale). Furthermore, the greater certainty attached to the priors, the 

higher proportion of the posterior distribution is contained within the margins as can be 

seen when comparing the ten subjects per combination priors with the five subjects per 

combination priors. In the former case, although 40 subjects' worth of data has been 

included (weighed) with observed data from 158 subjects, the overall impression has not 

changes markedly for the margins, and in particular those ~ 181. That is, a substantial 

proportion of the posterior distribution lies outside the margins. 

As described in Section 4.5.4.3, an alternative approach to the analysis could be to use 

MCMC methods - specifically Gibbs sampling in BUGS. This approach is more flexible 

than the algebraic solution presented above and the researcher would not be restricted to 

formulating priors in terms of the beta distribution (the conjugate) for the binomial 

likelihood. With the algebraic solution proposed, the approximation to the Normal 

distribution has been used and as such there is no requirement to specify prior distributions 

for the variance parameters. In this respect the nuisance parameters are assumed known. 

BUGS software is flexible in this respect and there is no requirement to include prior 

information for the variance - although of course it is an option. (A full Bayesian solution 

requires prior distributions on both effects and variances of effects.) BUGS also allows 

for different model parameterizations such that it would be possible to formulate the 

model in terms on priors for each treatment by factor combination (including priors on 

each variance), or using a generalised linear model formulation similar to Simon and 

Freeman (1997) as described in Section 4.5.2. Other parameterizations would also be 

possible -for instance, a parameterization that specified priors for the treatment difference 

within each subgroup_ 
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So in conclusion, one statistically significant interaction was observed when eight 

exploratory analyses were undertaken, but once an adjustment for multiplicity was 

performed the interaction was not significant at the 5% level. Although this interaction 

was substantial in magnitude - 1.7 times as large as the difference the trial was designed to 

detect - the hypothesis of no qualitative interaction was not rejected with the LR or SR 

tests. The one-sided LR and SR test pointed to lansoprazole being at least as good as 

ranitidine in both subgroups and better in at least one. As such with regard to the future 

treatment of patients, lansoprazole would be preferred to ranitidine - since regardless of 

drinking status it would be no worse - despite an overall significance level ofp=O.093. 

(Note that other endpoints were also analysed and in particular statistically significant 

benefits were observed with lansoprazole in comparison with ranitidine in terms of 

reducing dysphagia (a symptom of the disease) and in controlling the concurrent condition 

of reflux oesophagitis.) Clearly the study was overly ambitious given the results from a 

previous study and was most likely under powered for a more modest - but more realistic -

treatment difference. Applying a range of margins and the confidence interval for the 

interaction parameter confirmed that the data could be consistent with an interaction that 

was not clinically relevant. However the Bayesian approach pointed to a high proportion 

of the posterior distribution residing outside the margins ~ 161. This was the case even 

when informative (but retrospectively chosen) priors were applied that were centred on no 

interaction being present. As such, a definitive conclusion is not possible and the 

recommendation would be that further data are required to shed light on the issue. For 

instance, one could investigate the pharmacokinetics (PK) of the two treatments with and 

without alcohol and also re-visit any studies that investigated the PK profile under various 

levels of hepatic function. 
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4.7 DISCUSSION 

From a regulatory perspective, although the investigation of interactions is viewed 

primarily as an exploratory procedure, consistency of the treatment effect is clearly an 

important consideration when determining whether there is convincing evidence of a 

clinically useful effect. It is surprising therefore that given the limitations of the simple 

hypothesis testing approach identified in the guidelines, that estimation ofthe interaction 

parameter receives no attention. It is clear that quantitative interactions can only be ruled 

out if it can be demonstrated that a qualitative interaction is present, and in this respect 

estimation and the use of confidence intervals against pre-defined margins is an obvious 

route to clinical interpretation (with support, of course, from within subgroup estimates 

and associated confidence intervals). Indeed by stressing that all findings from interaction 

analyses should be treated with caution - both significant and non significant results - the 

regulatory authorities have implicitly introduced subjectivity and this perhaps marries 

poorly with their requirement for convincing evidence. 

It should also be noted that in regulatory submissions, the requirement is not only to 

evaluate consistency of effect for confirmatory studies individually but also to evaluate 

consistency across all these studies combined to determine the level of support for the 

proposed dose schedule across specific subgroups. In regulatory terminology, the 

evaluations can be classified into one of three groups: drug-demographic, drug-drug or 

drug-disease interactions, and in the latter two cases the interaction of treatment with 

concomitant medications and concomitant diseases is explored. Presumably the rationale 

for this requirement - essentially a retrospective evaluation on the phase III database - is 

that the power to detect treatment by factor interactions wilJ increase by combining 

studies. Again, however, power is irrelevant without consideration of what constitutes a 

clinically relevant difference. 
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As a first step the statistical guidelines could be modified to encourage the use of 

statistical procedures such as the LR and SR tests, and to promote greater thought in the 

area of a priori quantification of clinically meaningful interactions. In particular 

estimation and confidence intervals should be encouraged for both individual studies and 

when studies are combined. However given the current leaning towards subjectivity in 

assessment, the guidelines could do worse than advance formal Bayesian thinking in this 

area. 

In Chapter Five, the thesis switches tack to focus upon a controversial area of drug 

development - that is. therapeutic equivalence and non-inferiority - where margin 

specification is fundamental to the methodological approach. The role of SUb-populations 

will be investigated and the impact of adjustment for factors that influence outcome. It 

will be shown that not unlike treatment by subgroup interactions, the regulatory guidance 

in this area is also somewhat lacking and at times incoherent. 
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CHAPTER FIVE: THERAPEUTIC EQUIVALENCE: 

FALLACIES AND FALSIFICATION 

Auntie Millie 

Ran willy-nilly 

When her legs. they did recede 

And so they rubbed on medicinal compound 

And now they call her Millipede. 

5.1 INTRODUCTION 

Although much has been published on the topics of equivalence and non-inferiority

including dedicated sections in recent regulatory guidelines, such as ICH E9 (1998), ICH 

EJO (2000) and CPMP/EWP/482/99 (2000) - some areas have been neglected and a 

number of common misconceptions prevail. The aim of this chapter is to highlight some 

of these areas and to challenge some of the practices employed - particularly in relation to 

constructing sub-populations and investigating the influence of prognostic factors. 

Studies designed specifically to demonstrate therapeutic equivalence are a relatively recent 

development in pharmaceutical research. Early papers on the subject appeared in the late 

1970s - Dunnett and Gent (1977), for instance - and numerous methodological papers 

have been published since, as the approaches employed for bioequivalence were adapted 

to the therapeutic setting. In particular the concept that the confidence interval for a 

treatment difference be wholly confined within a pre-specified equivalence range 

transferred readily from bioeqivalence to therapeutic equivalence. 

The typical bioequivalence study compares a generic copy of a standard formulation of a 

drug with the standard formulation itself using a cross-over design in relatively few 

subjects. Since ostensibly the same drug is being compared, one would expect the same 
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therapeutic effect, but instead of evaluating clinical efficacy directly, these studies - which 

are typically conducted in healthy volunteers - use summary measures of the amount of 

drug present in blood through time (pharmacokinetic parameters) as indirect measures or 

surrogates of clinical efficacy. 

Simply stated, ifbioequivalence between the standard formulation and generic copy is 

demonstrated, then therapeutic equivalence is assumed by implication. The methods used 

for bioequivalence can also be applied to compare the same formulation of a drug in 

different settings such as with or without food (food interaction studies) or in between 

subject comparisons when evaluating the impact of varying degrees of renal or hepatic 

dysfunction. A detailed description of the issues surrounding bioequivalence is provided 

in European (CPMP/EWP/QWP/1401/98) and US regulatory guidelines (FDA, 2000 and 

FDA,2001). 

Therapeutic equivalence offers unique challenges, however. In contrast to bioequivalence, 

the effects of different drugs are usually compared and the primary endpoint is typically a 

direct measure of therapeutic benefit. Equivalence methodology has also been used to 

compare different formulations of the same drug - for instance the statutory requirement 

to replace CFCs in inhaled asthma treatments led to studies being conducted for a range of 

drugs. However opportunities for strict equivalence studies tend to be limited and 

pharmaceutical research objectives are more often directed towards the one-sided case 

where the conclusion "'at least as good as the reference treatment" is sought. This is 

referred to as non-inferiority and will form the main focus of this chapter. 

Both equivalence and non-inferiority studies are typically large confirmatory trials that 

employ a randomised parallel group design with an active control group. Some trials also 
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include a placebo control group - where ethically feasible - to both validate the study and 

to demonstrate superiority of the test treatment to placebo. These trials that include both 

active and placebo controls are most likely to be conducted in less severe chronic disease 

areas. However, non-inferiority methods are frequently used in more serious, acute and 

sometimes life threatening indications such as oncology and infectious diseases. In these 

cases the primary endpoint is most often a binary outcome measure and in some cases the 

trial objective will incorporate a time to event evaluation. With this in mind, binary 

outcomes will be the central feature of this chapter when issues relating to non-inferiority 

are discussed. 

Section 5.2 of this chapter provides a general overview of therapeutic equivalence 

methodology. The design and analysis of these studies are discussed and compared with 

superiority trials. In Section 5.3, consideration is given to the different model 

formulations that may be employed for the comparison of binary outcomes. In particular, 

the standard difference in proportions is compared with the odds ratio as a measure of the 

relative treatment effect. In Section 5.4, the choice of the most appropriate subject 

population to employ is discussed and the conservative nature of the per protocol 

population is questioned. Strategies for validating equivalence trials will also be appraised 

here. In Section 5.5, covariate adjustment will be considered and in particular the 

behaviour of the odds (logistic) model will be examined. Finally, in Section 5.6, 

consideration will be given to sample size calculation and the perception that non

inferiority studies require a greater number of subjects in comparison with superiority 

studies. The inclusion of covariate information will also be discussed. In all sections, 

reference will be made, where applicable, to the current regulatory guidance that exists for 

drug development. 
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5.2 AN OVERVIEW OF EQUIVALENCE METHODOLOGY 

Bristol (1999) provides a historical review of the development of equivalence 

methodology while Senn (1991) addresses the philosophical issues. In 2000, the 

Committee for Proprietary Medicinal Products (CPMP) produced a specific Points to 

Consider document (CPMP/EWP/482/99) which gives details of many of the practical 

issues associated with therapeutic equivalence and non-inferiority with an emphasis on 

estimation rather than hypothesis testing. 

The methodologies for both equivalence and non-inferiority revolve round the pre

specification of equivalence margins (-01, +02) that are selected on the basis of defining 

the largest difference between test and reference treatments that would be clinically 

acceptable, and against these margins, plausible values for the true treatment difference 

are judged. Although these margins are commonly symmetric with respect to zero, it is 

noted that asymmetric margins may be appropriate in certain circumstances. 

For equivalence, the formal hypothesis testing formulation involves the establishment of 

two sets of one-sided hypotheses. That is, 

against the corresponding alternatives, 

HAl: J.1test - J.1refercnce> -{)I and HA2: J.1test - J.1reference < +02. 

It follows that the null hypothesis (HOI or H02) can be rejected at the a level in favour of 

the alternative (HAl and HA2) if simultaneously both HOI and H02 are rejected at the same a 

level. For non-inferiority, the approach reduces to a single one-sided test of the null 

hypothesis at the selected a level. That is, 

Ho: J.1test - J.1reference ~ -0 I. 
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against the alternative, 

Recall that the conventional hypothesis testing fonnulation for superiority controls the 

probability of incorrectly rejecting the null hypothesis of equality (Ho: 8 =0) whereas for 

equivalence or non-inferiority it is the probability of incorrectly accepting the (alternative) 

hypothesis of equivalence or non-inferiority (which includes equality) which is controlled. 

The direct use of confidence intervals provides an alternative approach. Specifically, 

confidence limits can be used to provide boundaries for the plausible treatment differences 

since they are taken to represent quantitative estimates of the minimum and maximum 

estimated effects of a test treatment relative to a reference. Confidence intervals are 

operationally equivalent (ICH E9, 1998) to the use of one-sided tests and also provide a 

simple and effective way of communicating the results. A detailed comparison of the 

main approaches is given in Senn (200)). 

For equivalence and non-inferiority studies it is recommended (lCH E9, 1998; 

CPMP/EWP/482/99, 20(0) that the a (or type I) error is set to 2.5%, leading in both cases 

to 95% confidence intervals. This approach promotes consistency with the general 

approach of estimating treatment effects in superiority studies, although note that in 

bioequivalence, 90% confidence intervals are the established standard. To maintain 

consistency with the referenced regulatory guidelines, the remainder of this chapter will 

now focus on the confidence interval interpretation of the problem. 

Figure 5.1 illustrates how confidence limits for an estimated treatment difference - in 

association with equivalence margins - can be used to provide an appropriate clinical 
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interpretation of the trial results. Note that in the figure a treatment difference of zero 

could refer to either a difference in percentages or a difference in the log odds (equating to 

an odds ratio of 1) for binary outcomes. 

For equivalence, interest is focused on both the upper and lower confidence limits and 

equivalence can only be declared if the entire confidence interval is contained within the 

margins as shown in Case 1. Even if the estimated treatment difference is zero, a 

conclusion of equivalence can not be drawn unless this condition holds. Case 2 provides 

an example where the conclusion is ambiguous~ i.e. the treatment difference is equivocal. 

Figure 5.1. Basic principles underlying confidence interval approach to equivalence/non-

: 

-0, 
Reference better 

• 

• I 

o 

inferiority 

I. Equivalent 

2. Equivocal 

3. Non-inferior, no worse than reference 

4. Non-inferiority not demonstrated 

5. Test superior 

6. Reference superior 

+°2 
Test better 

In contrast, for non-inferiority, the primary interest is in the lower confidence limit only. 

To claim non inferiority the only requirement is that the lower confidence limit is greater 

than the lower equivalence margin as shown in Case 3. Ifthe lower limit is below the 

margin then larger differences in favour of the reference treatment can not be ruled out and 
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non-inferiority has not been demonstrated (Case 4). Cases 5 and 6 represent apparent 

contradictions. In both examples the whole CI is contained within the margins yet both 

would yield a statistically significant p-value against a traditional null hypothesis of no 

difference. Now, for bioequivalence, there are well-established equivalence margins 

(CPMP/EWP/QWP/1401l98, 2001; FDA, 2000; FDA, 2001) and these are rigidly applied 

by the regulatory authorities. If a confidence interval were to exclude the point of no 

difference then this would be of little concern and bioequivalence would still be accepted. 

However for therapeutic equivalence and non-inferiority, margin specification is less well 

developed and in particular if the margins applied were wide, then acceptance of the claim 

may prove more difficult to achieve for Case 6. Taking the argument a step further, if the 

endpoint were survival or response in a major life threatening disease it might be 

unreasonable to conclude anything but inferiority in Case 6 while in Case 5 it would seem 

reasonable to claim superiority of the test treatment (R6hmel, 200 I ). The argument here 

is that with survival the risk/benefit is usually clear and even a small but precise difference 

is clinically relevant. Situations like cases 5 and 6 rarely occur in practice. 

In relation to Case 5, it is considered acceptable to first test for non-inferiority and if this is 

demonstrated to test for superiority using a null hypothesis of no treatment difference 

(CPMP/EWP/482/99,2000). Due to the closed test nature ofthe testing procedure, there 

is no multiplicity issue (Morikawa and Yoshida, 1995) although one should be cautious of 

unexpected positive findings. The reverse situation of interpreting a superiority trial as a 

non-inferiority one is not quite so straightforward since it is unlikely that a non-inferiority 

margin would have been pre-specified to enable an objective determination to be made. 

For these switching strategies to be valid there must also be consistency with regard to 

both subject analysis populations and confidence interval coverage. For instance, if a 
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reduced per protocol type population were used for non-inferiority then the closed testing 

procedure would not hold if an intent-to-treat type population were subsequently used for 

superiority. Similarly, if would be inappropriate to use a 95% confidence interval for 

superiority but switch to a lower 90% confident limit for non-inferiority (since historically 

90% was used for many non-inferiority protocols). As such, full details of switching 

strategies should always be pre-specified in the study protocol. 

Fina))y in this overview, it is important to highlight the issue of trial validity. Senn (1991 ) 

coined the phrase competence to describe the ability of the trial to detect a difference in 

treatments ifit exists. (The term 'assay sensitivity' is also sometimes used to describe this 

attribute [ICH ElO, 2000].) The dilemma faced with equivalence is that if a study 

achieves its objective - that the two treatments are equivalent - it is not possible to show 

that the study was competent. Note that randomisation and blinding only strengthen a 

study conclusion if that conclusion is that the treatments differ since no knowledge of the 

treatment allocation is required to create a conclusion of equivalence (Senn, 1991); this 

can be achieved by simply assigning a random response to all subjects. To address the 

issue of competence, some designs have incorporated a placebo arm where this is 

considered ethically acceptable; by showing superiority of the test treatment against 

placebo a degree of competency is shown and as such the comparison of test with 

reference is validated. 

5.3 SPECIFICATION OF EQUIVALENCE MARGINS 

The primary aim of this section is to demonstrate that the odds ratio is the most rational 

measure for assessing therapeutic equivalence and non-inferiority for binary outcomes and 

that there are clear advantages to expressing margins in terms of the odds ratio. A useful 

starting point is to review the current regulatory stance with regard to these margins. 
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Rohmel (1998) has previously reviewed non-inferiority criteria and in particular two anti

infective guidelines (FDA, 1997; CPMP/EWP/558/95, 1997) that attempt to provide 

tangible guidance for binary outcome measures. (Anti-infectives is an area where non

inferiority methodology has been widely employed in recent years following the 

introduction of a number of specific regulatory documents. It is particularly appropriate in 

this indication since placebo controlled studies are considered unethical and response rates 

with current treatments are relatively high leaving modest scope for improvement.) Non

inferiority criteria dependent upon the highest of the two observed response percentages 

being compared were initially given in a draft guideline issued by the FDA (1997) 

although these criteria were withdrawn in 2002. Specifically, a margin of 10% (that is, ten 

percentage points) was reserved for responses of90% or higher, while 15% was specified 

for responses of at least 80% but less than 90%. Finally, a 20% margin was to be applied 

to responses <80%. A striking feature of this convention was that a more stringent 

criterion was created for the test treatment that performed well in an individual clinical 

trial. For instance, if a response of 89% were observed for the reference treatment then a 

response of 91 % for the test would require a margin of 10% for the lower confidence limit 

of the difference whereas a response of 88% would require a margin of 15%. 

In contrast, in a guideline issued by the CPMP (CPMP/EWP/558/95, 1997), a fixed non

inferiority margin of about 10% for many non serious infections - regardless of the 

percentage response for the reference treatment - is specified. The statement that for very 

high responses a smaller margin will be needed, qualifies this rule. 

Rohmel (1998) criticises both these anti-infective rules and argues that, from both a 

statistical and clinical perspective, the margin should vary with the response of the 
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reference treatment, but that unlike the FDA criteria, the transition should be smooth 

rather than a step function. R6hmel (2001) subsequently proposed a margin of -0.223 

V p(l - p} , where p is the observed proportion for the reference treatment. However a 

fixed margin for an odds ratio provides the most obvious solution to both problems. 

Recall that the odds ratio provides a measure of the difference between treatments that is 

stable over a wide range of conditions such that the overall proportion is arbitrary (Cox, 

1970). (This is not the case for the difference between proportions that is restricted to a 

range of values for the individual proportions generated from each treatment.). As such, it 

is possible to specify one value for the lower margin, 0.5 say, that is applicable to broad 

range of reference responses. In this respect it is similar in philosophy to the 

bioequivalence rule specified by the regulatory authorities (CPMP/EWP/QWP/1401/98, 

2001; FDA, 2000; FDA, 2001) that requires the 90% confidence interval for the ratio of 

the area under the curve for the reference drug to the test drug to be wholly contained 

within the boundary 0.8 to 1.25. In the case of therapeutic equivalence or non-inferiority, 

a constant odds ratio margin would correspond to smaller differences in proportions as the 

reference treatment proportion approached either 0 or 1. This is consistent with the 

philosophy of both the FDA and CPMP rules and with usual clinical trials design practice. 

Furthermore, an odds ratio margin would provide a smooth transition when mapped to the 

difference in proportions as the reference proportion changed and would avoid the step 

like function of the FDA rule. As a result, the reductions in power that occur at the FDA 

defined thresholds would be avoided in cases where the highest observed response was 

higher than anticipated. 

Figure 5.2 shows the CPMP and FDA rules for reference proportions ranging from 0.5 to 

0.9. For simplicity it is assumed that for the FDA rule, the reference proportion is at least 
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as high as that for the test treatment. Superimposed onto the figure is an odds ratio lower 

margin of 0.5 - translated into a difference in proportions for each reference proportion - to 

illustrate the features described earlier. A simple value of 0.5 appears to embody the 

philosophies of both the FDA and CPMP rules and for most reference proportions 

provides a compromise between the two in terms of the difference in proportions. Against 

the backdrop of the FDA rule, Tu (1998) has proposed a value of 0.43 and although 

equa]]y valid, it can be seen from Figure 2 that Tu's margin would be less strict than both 

regulatory margins for some reference proportions and would always be less strict than 

0.5. It does however follow the route of the FDA rule and would provide a simple 

alternative. In the more general context, Senn (2000) has suggested 0.55 (as illustrated in 

Figure 5.2). Senn's suggestion was made on the basis of a regulatory agency that may 

wish to ensure a maximum possible inferiority of O. 15 when considering the difference in 

proportions. However in the context of anti-infectives, it would be more stringent than 

both the FDA and CPMP rules at fairly modest reference response rates and beyond 

(>0.833). Rohmel's formula (Rohmel, 2(01) is based on the observed reference 

proportion but appears to work well. It intersects the FDA and CPMP rules when the 

observed reference proportion is 0.90 and is contained within a narrower band when 

compared with both the odds ratio rules and the FDA rule. However since it uses the 

difference scale it would be likely to lead in many cases to margins which appeared 

somewhat contrived. For instance an observed reference proportion of 0.80 leads to a 

margin of 0.121 (12.1%). The advantage of the odds ratio is that, on its chosen scale, the 

margin is constant. 
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Figure 5.2. Non-inferiority margin for difference in proportions for CPMP, FDA, odds 

ratio and Rohmel rules 
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As far as the author is aware, no regulatory documents exist which propose margins for 

the odds ratio. Indeed, it is interesting to note that the CPMP points to consider document 

(CPMP/EWP/482/99, 2000), issued as recently as July 2000, provides no guidance 

whatsoever as to which margins should be adopted. It does however reference a concept 

paper (CPMP/EWP/2158/99, 1999) that expresses the intention of the CPMP to address 

this issue, although the concept paper does not itself constitute guidance. Indeed, the 

paper notes that the difficulties surrounding the issue mean that definitive guidance about 

how to choose non-inferiority margins may not be possible. It briefly describes some of 

the more common practices such as the use of one half to one third of the established 

superiority of the comparator to placebo, and it acknowledges that mortality studies 

represent a unique challenge. It also refers to anti-infective studies where the margin may 

vary according to the expected response rate to the standard treatment. In 2004, the 

CPMP fina1Jy replaced the concept paper with a draft Points to consider on the choice of 

non-inferiority margin (CPMP/EWP/2158/99 draft, 2004). However this document 

proved to be less prescriptive than had been earlier indicated and in many places ventured 

into new and, most likely, untested territory, and as a result has proved highly 
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controversial. Indeed in an apparent break with tradition, it even suggested that model 

formulation should depend upon the observed responses. For instance, for binary 

outcomes it proposed that the margin should be specified on both the odds ratio and 

difference in proportions scales with the most conservative chosen a once the data have 

been collected. Since model formulation is the first step in quantifying the primary 

hypothesis to be tested, this proposal appeared at best bizarre and it did not seem sensible 

for the null and alternate hypotheses to depend upon the observed data. (In fact as will be 

shown later in this chapter in relation to factor adjustment (and as illustrated in Chapter 

Four in terms of interactions), if a stratified design has been employed such that the 

primary analysis is also stratified (lCH E9, 1998), then there are important differences 

between the odds ratio and difference in proportions formulations.) In July 2005 the final 

document was issued as a guideline entitled Guideline on the choice of the non-inferiority 

margin (CPMP/EWP/2 I 58/99, 2005) with this section on formulation switching deleted 

following comments received during the consultation period. (Note that the author"s 

comments pertaining to this specific point were included as part of the PSI [Statisticians in 

the Pharmaceutical Industry] response to the CPMP.) 

Others have suggested a margin less than half the difference between active and placebo 

(Phillips et aI, 2000). However as highlighted earlier, the most recent guidance has 

brought a less prescriptive approach and methodological research (Rothmann et ai, 2003) 

is now being directed towards techniques that aim to compare the estimated confidence 

interval for test minus reference with the confidence interval for the reference effect 

(based on a meta analysis of historical data comparing reference treatment to placebo). In 

effect a new two-stage hierarchical procedure has been introduced through the Guideline 

on the choice of the non-inferiority margin (CPMP/EWP/2158/99, 2005). The first step (a 

minimum requirement) is to establish that test treatment is more effective than placebo 
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while the second step (conditional on the fist step being passed) is to establish that a 

deficit, in terms of a pre-specified proportion of the reference treatment effect, is 

implausible. (Ideally the first step would be achieved by including a concurrent placebo 

control in the study design although as noted previously this is not always possible.) 

In this respect it has been highlighted that the fixed margin approach of Phillips et al 

(2000) does not guarantee that the first step is satisfied and as a result the guideline does 

not endorse this method. 

Rothmann et al (2003) re-iterate the non prescriptive approach to margin specification and 

note that margins need to be quantified on a case by case basis. Specifically they describe 

the dual requirement for clinical judgment (in terms of determining the proportion of the 

reference effect to be retained to support a claim of non-inferiority) and statistical method 

(in terms of estimating the reference effect from historical data). As an illustration they 

note that if the reference effect is large (for instance the treatment of bacterial infection, 

lymphoma and leukaemia) then there would be a requirement to retain a high proportion 

of the reference effect and as such the margin would be chosen primarily on the basis of 

clinical judgment. In contrast if the effect of reference were small then the clinically 

relevant difference could conceivably be greater than the reference effect. In this case 

showing that the difference between test and reference was less than the clinically relevant 

difference would not actually demonstrate that the test treatment was effective. 

Finally, it is important to note that a further advantage to using the odds ratio is that odds 

is easily incorporated into the generalised linear model framework of Nelder and 

Wedderburn (1972) through the logit transformation of the proportion. This leads to 

parameter values in the real plane rather than in the unit square (Cox, 1970). With the 

logistic regression model it is simple to adjust the estimate of the treatment effect for the 
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impact of one or more important covariates (although as will be shown later in Section 5.5, 

this process of conditioning is not quite so straightforward as one might think). 

For completeness, the relative risk (ratio of proportions) and the number needed to treat 

(NNT, defined as the inverse of the difference in proportions) are discussed briefly. Lack 

of symmetry is a major disadvantage for the relative risk formulation while on the 

difference scale the margins become wider as the reference proportion approaches l, 

which seems counterintuitive. For instance, if the lower margin for the relative risk were 

0.5, then on a difference scale this would equate to a lower margin of 25% for a reference 

proportion of 0.5 but 45% for a reference proportion of 0.9. A further important 

consideration (Cox, 1970) is that if success and failure are interchanged, the difference 

between groups is altered for the relative risk whereas the odds ratio is invariant in this 

respect. Tu (1998) discusses the relative risk formulation in more detail but ultimately 

recommends against it. NNT is the average number of subjects needed to be treated with 

one treatment to achieve one additional positive response compared with another treatment 

and has proved to be a popular summary measure for some in evidence-based medicine. 

However it is severely limited in terms of statistical modelling as it is a non-monotonic 

function with singularity for zero treatment differences. This can lead to a disjoint 

confidence interval, for instance. Hutton (2000) provides a highly critical review ofNNT 

stating that it at best conveys only the same information as the difference in proportions. 

5.4 SUBJECT ANALYSIS POPULATIONS 

5.4. J The per protocol population 

It has become increasingly common to exclude protocol violators (PV) from the primary 

subject population when analysing equivalence and non-inferiority trials. The dominance 

of the per protocol type population (PP) has to a large extent been driven by publications 

(Lewis and Machin, 1993) and guidelines (CPMP III/3630/92-EN, 1995; ICH E9, 1998; 
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CPMP/EWP/482/99, 2000) that state that intent to treat (ITT) type populations tend to 

dilute the estimated magnitude of any treatment difference. For binary outcomes, the 

argument for dilution presumably originates from the misclassification type models 

presented earlier in Chapter Two (Sub-section 2.3.2.) It is argued therefore that the 

exclusion of PV' s produces a refined subject population that is more capable of 

distinguishing treatments - that is, is more sensitive to treatment differences. At the same 

time, these exclusions lead to an increase in the standard error of the estimated treatment 

difference leading to a conservative approach from a regulatory perspective. However, as 

PVs are typically determined not only on the basis of pre-randomisation information but 

also post-randomisation recordings, such as compliance, there is potential for the 

introduction of bias when these subjects are excluded since independence of a post

randomisation measurement in relation to the randomised treatment is uncertain. Indeed 

this is the very point that led to the pre-eminence of the lIT type populations in the 

reporting of superiority trials, since - over all randomisations - the treatments groups will 

be balanced, whereas for the PP type populations this will not necessarily be the case. 

To examine the potential impact of employing PP-type populations for non-inferiority 

determination, an approach adapted from Choi and Lu (1995) has been adopted. Choi and 

Lu studied the impact of missing data under conditions where the mechanism for 

observing the missing data was not completely at random (Little and Rubin, 1987). For 

binary outcome data, the probability of a response being missing for a specific treatment 

group was assumed to be related to the population probability of response in that treatment 

group. A similar approach is applied here with the probability of a violation replacing the 

probability of a response being missing. 
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Let l£r be the probability of response (x = ]) in a population receiving a reference 

treatment. Similarly, let l£t refer to the corresponding probability of response for the test 

treatment. If e I is the probability of a subject being a PV when the response would have 

been 1 and eo is the probability of a subject being a PV when the response would have 

been 0, it follows that the probability of not being a PV in the reference group is given by: 

Ar = 1tr (l - e I) + (1 - l£rH 1 - eo) (1) 

As such, the expectation of the sample proportion (p'r) for the reference group excluding 

the PV's is given by: 

E(p'r) = l£r (I - e .)/A.r 

Similarly for the test group, E(p't) = l£t (l - e I)/At 

The expected difference between the test and reference groups in the PP population is 

then: 

with variance 

(I - e 1)(1 - eo) n- I {1£r( 1 - 1tr)/A/ + 1tt (1 - 1t t)lA.t
3} 

where n is the number of patients in each treatment group in the full population without 

violators. 

To illustrate the impact of these results on the evaluation oftherapeutic non-inferiority 

Figure 5.3a compares the expected treatment differences and 95% confidence limits from 

a PP population with those from a full population (with no violators) for reference 

proportions ranging from 0.2 to 0.9 and for (1£ t - 1£ r) = -0.1. (This effectively limits the 

proportions to between 0.1 and 0.9.) Figure 5.3b shows the corresponding cases when the 

difference in the population proportions is zero, that is, (1t t -1£ r) = O. In both figures the 

confidence limits have been constructed using the Normal approximation to the binomial 

- 190 -



distribution, and the range of proportions has been selected such that this approximation 

remains valid. 

Figure 5.3a. Difference in proportions for full data set and per protocol population: 200 

subjects per treatment, (8 I = 0.1; 8 0 = 0.4; 1tt - 1tr = -0.1) 
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Figure 5.3b. Difference in proportions for full data set and per protocol population: 200 

subjects per treatment, (9 I = 0.1; 9 0 = 0.4; 1tt - 1tr = 0) 
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Figure 5.3a illustrates how bias can influence the estimate of the population treatment 

difference in both directions depending upon the reference proportion. In the case shown 

where 9 1< 9 0, the difference between treatments is underestimated for high reference 

proportions but overestimated for low ones. When e I> 9 0 the direction of the bias is 

reversed. However, as described earlier, the focal point for non-inferiority is the lower 

confidence limit. For the PP population, the value for the lower confidence limit is 

determined by three factors: potential bias in the estimate of the difference in proportions; 

the resulting number of subjects for each treatment; and the individual p'(l - p') terms for 

each treatment. The latter two factors influence the standard error of the estimate. As 

shown in Figure 5.3a, these factors can combine to produce an effect that is actually anti

conservative for the PP population. For reference proportions from around 0.6, the bias 

dominates the lower limit. The example chosen has 400 subjects in the full data set, but 

since bias is independent of the number of subjects whilst the standard error is inversely 

proportional to it, the relative importance of the bias ~ilI increase as the number of 

subjects increases. As such, if the number of subjects in the trial were to be increased then 

the cross-over point in Figure 5.3a would move towards the left and the region of anti

conservativeness would increase. 

Figure 5.3b illustrates the expected finding that when there is no difference between the 

treatments the confidence interval for PP is generally wider, reflecting the reduced sample 

size. However, for high responses the influence of the terms p't (1 - p't) and p'r (I - p'r) 

counteracts the reduction in subjects in both groups since E(p't) > 1tt and E(p'r) > 1tr . As 

9 1< 9 0, more potential failures than potential successes are excluded to form the PP 

popUlation and as a result the expected observed proportions are higher in both treatments. 

When e I> eo. a similar effect is observed but this time for the small population 

proportions. 
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Interestingly, with this particular fonnulation of the PV mechanism, the odds ratio for the 

PP population is unbiased when the treatment difference is not unity and its conservative 

nature is entirely due the reduction in subject numbers. Consider the odds ratio for the full 

population with no PV's: 

The expectation ofthe odds ratio ('li'T) from the PP population is: 

which gives, when substituting in Ar and At using expression (1 ), 

1tt (1 - 1tr)(l - 8 0) / 1tr (l - 1tt)(1 - 8 0) = 'liT 

This feature is illustrated in Figure 5.4 where the log odds ratio and associated 95% 

confidence limits for the PP and full populations are plotted against a range of reference 

proportions. 

Figure 5.4. Log odds ratio for full data set and per protocol population: 200 subjects per 

treatment, (8 I = 0.1; 8 0 = 0.4; 1tt - 1tr = -0.1) 
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5.4.2 The eligible population 

Now, consider the subgroup of eligible subjects. Subjects who do not have the disease (or 

in some cases, do not have the required severity of disease) cannot by definition 

demonstrate a response to treatment. For instance, an ineligible subject may be one with 

clinical signs and symptoms of a urinary tract infection in a trial of an anti-infective 

treatment but in whom no pathogens or bacteria are cultured from a urine sample. The 

determination of a bacteriological response is therefore impossible. A second example is a 

subject who treats a mild migraine attack where a positive outcome is defined as a 

reduction in headache severity from moderate or severe to none or mild. Note that in both 

examples described the proportion of ineligible cases may be non-trivial. It is somewhat 

inevitable therefore that the inclusion of these ineligible subjects will dilute the treatment 

difference. 

However, as disease severity in both these cases is recorded prior to receiving blinded 

treatment, no bias in terms of the randomisation is introduced by their exclusion. This is 

the case even if the values are not known until some time after trial treatment has 

commenced - samples for microbiological testing, for instance. 

As eligibility has been shown to be independent of response, the probability of a 

randomised subject being eligible in the reference group is now simply 

Ar = (l - e 2), 

where e 2 is the probability of a subject being ineligible. 

With this formulation, misclassification of response relates to the probability of a positive 

response only (that is, a response of I) since one only needs to consider the case of what 

the response would have been had the subject had the disease. 
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As such, the estimate of 1tr from the eligible population is unbiased and is given by 

Similarly for the test group, 7tt 

In contrast, the estimate of 7tr from an ITT population - which now includes both nAr 

eligible and n( 1 - Ar) ineligible subjects - is: 

Similarly for 7th E(pt) = 7tt (1 - O2) 

The estimate of the treatment difference 7tt - 7tr is given by: 

This is essentially a standard misclassification model that shows dilution of the treatment 

difference estimate in the presence of non-differential misclassification (Goldberg, 1975). 

5.4.3 Supporting simulations 

The next stage is to consider the practical implications of these observations by examining 

the probabilities of making incorrect decisions [p(non-inferior I inferior) and p(inferior I 

equivalent)] when a PP type population is used to compare two treatments with regard to 

response proportions. To do this, one needs to consider the probability distribution for the 

lower 95% confidence limit for the difference between the test and reference treatments, 

which itself is a random variable. 

Table 5.1 shows the results of some simulation exercises where the sample sizes for the 

treatments have been determined using the method of Makuch and Simon (1978) with a 

one-sided type I error of 2.5% and type II error of 20%. For illustration, consider the case 

where the reference proportion is 0.9 and the margin of non-inferiority is 0.1. When the 

test and reference proportions are identical, the power of the test is 86.7% for [0 I = 0.1, 0 0 

= 0.4] but only 48.6% for [0 I = 0.4, 0 0 = 0.1]. The reason for this can be seen in Figure 
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5.3b. When 8 1<8 0, the 95% CI is actually narrower for the PP population than for the full 

subject population when 1tr = 0.9 since more potential failures are excluded than successes, 

increasing the observed proportions with the subsequent impact on the variance. This 

impact outweighs the reduction in the number of subjects. However, when 8 1>8 0, more 

successes are excluded and both features work to increase the standard error of the 

estimate. 

In contrast, when the test proportion is 0.8 (that is, inferior to reference) the type I error is 

11.6% for [8 1 = 0.1,8 0 = 0.4] but 0.9% for [8 1 = 0.4, 8 0 = 0.1]. In both cases bias is now 

a feature. When 81<8 0 (Figure 5.3a), the bias is towards 0 which together with the smaller 

standard error leads to inflation of the type I error, whilst when 8 1>8 0, the bias is in the 

opposite direction and when combined with the larger standard error reduces the chances 

of showing non-inferiority. 

Table 5.1. Simulation 1: Impact on acceptance/rejection of non-inferiority when 
comparing full subject set to per protocol type populations for the difference in 

propo rt· Ions 
1t r 1t. 1t. -1t r % non-inferior Nper 

Full 8 1= .1, 8 1= .1, 8 1= .2, 8 1=.4, treatment 

8 0=.2 8 0= .4 8 0= .1 8 0= .1 in Full Set 

.50 .40 -.10 2.56 2.46 2.78 2.72 3.42 393 
.50 0 79.00 73.64 69.58 73.96 69.66 

.50 .35 -.15 2.26 1.64 1.68 2.26 3.94 175 
.50 0 80.14 74.52 70.36 74.26 70.62 

.50 .30 -.20 2.16 2.06 1.64 2.70 4.44 99 
.50 0 82.46 74.16 69.98 73.82 70.10 

.60 .40 -.20 2.70 2.76 3.30 2.94 3.04 95 
.60 0 79.70 75.76 75.26 72.52 64.84 

.70 .50 -.20 2.34 2.74 4.54 2.00 1.72 83 
.70 0 79.76 77.38 80.46 70.46 58.14 

.80 .65 -.15 2.22 2.70 7.04 1.46 0.96 112 
.80 0 80.14 77.16 82.96 68.96 54.24 

.90 .80 -.10 2.86 4.86 11.56 2.24 0.88 142 
.90 0 79.70 78.92 86.68 67.48 48.60 

Simulations (N=5000) usmg SAS RANUNI (SAS, 1989) to generate random vanates from a umform 
distribution. Sample sizes calculated to show non-inferiority within 10%, 15% or 20% (one sided type 
I error of 2.5% and type II error of 20%) using approach of Makuch and Simon (1978). To aid 
interpretation, the magnitude of the Monte Carlo error for the simulation is as follows: 2.5% (SE 
0.22%); 80% (SE 0.57%). Further details are provided in the Simulation Note at the end of this Thesis. 
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As illustrated by Figure 5.4, the PP population produces an unbiased estimate of the odds 

ratio with the particular formulation of the violator model chosen and the 95% confidence 

interval is consistently wider when compared with the full population. It followed that the 

PP population would always be conservative in a regulatory sense and as a consequence 

the simulation exercises were not repeated for the odds ratio. 

Interestingly there is little critical review of the empirical evidence in this area and Ebbutt 

and Frith (1998) are almost unique in publishing their actual experience of using both PP 

and ITT populations. They report on the results of II asthma trials (sample size ranging 

from 212 to 421 subjects) that employed an equivalence methodology for a continuous 

outcome measure - peak expiratory flow rate. These equivalence studies were undertaken 

in response to the decision to phase out the use of CFCs in aerosols used to deliver inhaled 

asthma treatment. The ITT populations included all randomised subjects whereas the PP 

populations excluded subjects who failed to meet the entry criteria (about two thirds of the 

PVs) or who took proscribed concomitant medication (approximately one third ofPV·s). 

The PP populations accounted for between 50% and 88% of the ITT populations (median 

75%). Ebbutt and Frith conclude that there was no evidence to suggest a consistent bias in 

either direction when comparing the treatment estimates for the ITT and PP populations. 

In all cases the width of the 90% confidence interval employed was greater for the 

associated PP population and given that the residual standard deviations were similar for 

both populations the authors conclude that the width of the CI is dominated by the sample 

sizes in the lIT and PP populations. Furthermore they suggest that it is reasonable to 

base decisions on the lIT analyses provided the PP analyses are supportive. [Following 

publication of this Chapter (Garrett, 2003), two statisticians from the FDA (Brittain and 

Lin, 2005) picked up on the points made above and reviewed 20 anti-infective studies 

submitted to the agency between 1999 and 2003. They found that in 13 trials the estimate 
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of the treatment difference was larger for the ITT population compared to the PP 

population. Furthermore, in ] 2 cases the ITT confidence interval was wider. Interestingly 

they reported that The pattern of anti-conservatism of the PP under these assumptions is 

consistent with the pattern seen with Garrett's simulation results. They concluded that we 

see no indication that the PP analysis tends to produce a larger absolute treatment effect 

than the lIT analysis in this setting, and further speculated that both analyses may often 

underestimate the pure' treatment difference.] 

5.4.4 Regulatory considerations 

The prominent use of the PP population as the primary one for both equivalence and non

inferiority in recent years is most likely a reflection of over interpretation of two related 

statements in the influential ICH E9 guideline (1998). The first states that the ITT and PP 

type populations play different roles in superiority and in equivalence or non-inferiority 

trials while the second states that for superiority trials the ITT type population is used in 

the primary analysis. Indeed the European forerunner (CPMP III/3630/92-EN, 1995) to 

this guideline went so far as to state that the ITT strategy is insecure for equivalence 

studies. However the recent CPMP points to consider document (CPMP/EWP/482/99, 

2000) states that ITT and PP populations have equal importance. Ifthis latter statement is 

interpreted as a requirement for both populations to demonstrate equivalence (or non

inferiority), then although the overall type I error rate will be controlled, the type II error 

will be subjected to inflation. The CPMP's Points to consider on multiplicity issues in 

clinical trials (CPMP/EWP/908/99, 2002) states that when accounting for multiple 

populations, no adjustment to account for multiplicity is required although no mention is 

made of the potential impact on power. Interestingly in the same document, for the case 

oftwo variables - where statistical significance is required for both - the impact on the 

type II error is noted and sample size adjustment is recommended. This recommendation 
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could also be applied to multiple populations although an alternative approach might be to 

increase power by regarding subject populations (which are based on composite criteria) 

as if they were like subgroups (which are based on a single criterion such as male 

subjects). Indeed both are used extensively to assess to the robustness of study 

conclusions. A step-down procedure could be used to control the type I error whereby the 

ITT population would be evaluated first as the primary population and if equivalence (or 

non-inferiority) were shown then the PP population would then be evaluated. This 

approach is commonly used to evaluate subject subgroups with the aim of controlling the 

type I error whilst maximising power. Also as described in Section 5.2, adopting an ITT 

population would facilitate strategies that switch objectives from non-inferiority to 

superiority (where ITT is required for the primary analysis) or vice versa. 

Regardless of issues surrounding multiplicity and power, it seems reasonable to conclude 

that bias is an issue for both PP type and ITT populations. The nature of the bias will 

depend upon the pattern of non-adherence in the first case and the pattern of missingness 

and the impact of including non-adherence in the second. However the bias may be in 

either direction and the PP population is not necessarily anti-conservative for non

inferiority. In fact, one could do worse than employ the eligible population that represents 

an unbiased (in terms of the randomisation) yet refined population. Fundamentally, 

however, the key focus of equivalence and non-inferiority studies should be to generate 

quality data such that data irregularities do not compromise the study conclusions from 

ITT type analyses. This is a point that is re-iterated by many authors (ICH E9, 1998; 

CPMP/EWP/482/99, 2000; Lewis and Machin, 1995). 
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It is worth noting that for the fonnulation presented earlier, both 9 1 and 9 0 were dependent 

upon response but independent of treatment. If different values are specified for each 

treatment then it is simple to create all nature of extreme situations. 

A final observation refers to equivalence and non-inferiority studies that incorporate a 

placebo ann. It is not uncommon to find protocols that plan to use the ITT population to 

demonstrate study competence (that is, for the comparison of test treatment with placebo) 

whilst adopting the PP population for the evaluation of equivalence or non-inferiority (that 

is, for the comparison of test treatment with reference). This is an absurd approach that no 

logical argument supports. The fact that a trial is competent for the ITT population does 

not necessarily imply that it is competent for the PP population. Furthermore, if 

competence has been demonstrated for the ITT population then why not use this to 

establish equivalence or non-inferiority? 

5.5 COVARIATE ADJUSTMENT 

5.5.1 The logistic model 

Without doubt, logistic regression is the most commonly employed technique to perfonn 

covariate adjustment for binary outcome measures in clinical trials. Indeed it is not 

uncommon to find protocols describing supportive adjusted analyses in the fonn of 

logistic regression even in cases where the primary analysis is specified in tenns of the 

difference in proportions. This practice of inconsistent model specification is easily 

hidden in a superiority framework where hypothesis testing prevails but is exposed when 

equivalence or non-inferiority margins are necessary. Although stratified analyses do 

exist for the difference in proportions these can become somewhat unwieldy for more than 

one or two factors (Smith et ai, 1998) and suffer from the restrictions imposed by the 

observed reference proportions described earlier in Section 5.3. 
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For logistic regression, it is well documented - although not widely known - that if a factor 

exists which independently affects outcome, then omitting this factor from the model leads 

to underestimation of a non-unity treatment difference measured on the odds ratio scale 

(Gail, 1986). As reported in Chapter Three (Section 3.6), this underestimation occurs 

when the treatment groups are balanced for this factor and as such the observation is 

applicable to randomised studies. In all cases, the odds ratio shrinks towards unity and the 

larger the magnitude of the factor effect in relation to a constant treatment effect the more 

severe the underestimation. 

By illustration, take a logistic model of the form, log( 1t1 1-1t) = a + 'ti + <I> j , where 'ti 

indicates the effect of test or reference treatment (i = t, r), <I> j indicates the effect of a two

level factor (j = 1,2) and the odds for each combination are given by A. ij = 1ti.j/(J - 1tij). If 

it is assumed that the number of subjects for each treatment by factor combination is 

identical, then the unconditional treatment odds ratio ('11\) - independent ofn - can be 

derived from the individual odds ('A. ij) as shown in Chapter Three (Appendix A). That is, 

'11\ = (A. II + A. 12 + 2A. t1A. 12)(2 + A. rI + A. r2) I (A. rI + A. r2 + 2A. riA. d(2 + A. II + A. 12) 

Table 5.11 shows some examples of underestimation for various combinations oftreatment 

('liT) and factor ('IIF) effect using a series of reference odds (A. d. For any particular 

combination (i.e. row), the extent of the underestimation diminishes as the treatment odds 

ratio approaches either the relative risk (1t ,11t r) or the inverted reverse relative risk (1-

1t r)/(l-1t ,) and due to the symmetric nature of the odds ratio this occurs as the odds 

approach either zero or infinity. (For example, when 'liT is 0.5 and 'IIF is 4, \1'. T is closer to 

\!IT for reference odds of 0.125 and 8 than for a reference odds of 1.) 
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Table 5.11. Unconditional odds ratios ('l'*T) produced from a balanced two 
treatment, two fi d' d f dfi fIi actor eSlgn un er a range 0 treatment an actor e ects 

Treatment Factor Reference odds (A. d 
OR (\!IT) OR (\!IF) 0.125 0.25 0.5 I 2 4 8 
0.667 1.25 0.667 0.668 0.668 0.668 0.668 0.668 0.667 

1.5 0.668 0.669 0.669 0.670 0.669 0.669 0.668 
2 0.671 0.673 0.674 0.675 0.674 0.672 0.670 
3 0.677 0.682 0.686 0.686 0.682 0.677 0.673 
4 0.684 0.692 0.697 0.696 0.689 0.681 0.675 

0.500 1.25 0.500 0.501 0.501 0.501 0.501 0.501 0.501 
1.5 0.501 0.502 0.503 0.503 0.503 0.502 0.502 
2 0.504 0.507 0.509 0.510 0.509 0.507 0.504 
3 0.512 0.518 0.524 0.525 0.521 0.514 0.509 
4 0.520 0.531 0.538 0.538 0.531 0.520 0.512 

0.430 1.25 0.430 0.431 0.431 0.431 0.431 0.431 0.431 
1.5 0.431 0.432 0.433 0.434 0.433 0.433 0.432 
2 0.434 0.437 0.439 0.441 0.440 0.437 0.435 
3 0.442 0.448 0.454 0.456 0.453 0.446 0.440 
4 0.450 0.461 0.470 0.471 0.463 0.452 0.443 

In epidemiological research the odds ratio is regarded by some as an approximate relative 

risk since incidence rates are frequently low and denominators are large. However, this is 

generally not the case in drug development and arguably odds and risks are different 

measures of outcome and neither should be considered to be an estimate of the other 

(Hutton, 2000). For the majority of indications, short-term success or failure proportions 

are frequently in the region 0.5 (1..=1) to 0.8 (1..=4) and clinical trials are typically powered 

to detect differences of between 0.1 to 0.3 - as such, treatment odds ratios >4 or <0.25 are 

relatively uncommon. For instance, two treatments with success proportions of 0.8 and 

0.5 would generate an odds ratio of 4 that is quite different numerically from the 

associated relative risk of 1.6 (or the inverted reverse relative risk of2.5). Interestingly, 

underestimation of the odds ratio has typically been studied from an epidemiological 

perspective (Gail, 1986), although it can be seen that the greatest impact is likely to be in 

the clinical trial setting. 

Now, it has also been shown for the logistic model (Robinson and Jewell, 1991; Robinson 

et ai, 1998; Lee, 1999), that the exclusion of a prognostic factor leads to an increase in 

- 202-



precision for the estimated treatment difference, rather than a reduction, as one might 

expect. However, when combined with the underestimation described earlier, there is an 

overall increase in efficiency (power) from a hypothesis testing perspective (Robinson and 

Jewell, 1991; Robinson et ai, 1998) and a strategy of covariate adjustment is therefore 

justified for superiority studies. (In terms of undertaking a hypothesis test of whether a 

parameter is equal to zero, the increase in the estimated standard error with the adjusted 

model is more than counterbalanced by the increase in the maximum likelihood estimate 

of the parameter and the corresponding Wald statistic will be larger for the adjusted 

analysis.) However, for non-inferiority, since exclusion of a prognostic factor 

underestimates a non-unity treatment effect and decreases the associated standard error, 

both forces could work together to pull the lower confidence limit within a pre-specified 

margin when compared to the corresponding conditional model. Would this lead to an 

increased risk of acceptance of non-inferiority when the test treatment was indeed inferior 

to the reference treatment? A series of simulations has been undertaken to address this 

point. First, however, it was necessary to create a series of scenarios that were 

representative of current clinical trial practice. 

5.5.2 Supporting simulations 

As described in Section 5.3, no accepted margins for the odds ratio exist. As a 

consequence it was necessary to use those previously recommended for the difference in 

response percentages and to convert these to plausible odds ratio margins. Non-inferiority 

margins of 10%, 15% and 20% were considered which translated to odds ratio margins 

(test:reference) of 0.667, 0.538 and 0.429 respectively for a reference proportion 0.5 which 

was used throughout. (Note that 0.429 is almost identical to the margin proposed by Tu 

(1998) and that 0.538 is not dissimilar to both Senn's (2000) margin of 0.55 and the 

author's proposed margin of 0.5.) A reference proportion of 0.5 is convenient since it 

enables the response proportions for each treatment by factor combination to be calculated 
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easily when varying the odds ratio for the factor effect. In each case, the response 

proportions (1trl and 1tr2) have been constructed to be symmetric around the overall 

reference response proportion (1tr) - 0.4 and 0.6, for instance - and can be detennined as 

[(\!IF- \!IF 112)(\!IF_l)] and [(1 - \!IF 1/2)(\!IF_l)] respectively by solving the quadratic, 

(I - \!IF) 1td 2 - 21tr2 + 1 =0, for a factor odds ratio> 1. It is then simple to calculate the 

corresponding response proportions for the test treatment, (1ttl) and (1t12), using the 

treatment odds ratio (\!IT) and 1trl.1tr2 respectively. 

Table s.m. Simulation 2: Impact on acceptance/rejection of non-inferiority 
when excluding a two-level factor from a logistic regression model. 

Factor OR % treatment difference when lilT =0.667 Model (N=393) % non-inferior 

(lIId OveralJ F=I F=2 per treatment lilT =0.667 IIIT=I 
I \0.0 10.0 \0.0 T 2.84 8\.86 

F+T 2.72 81.42 

2 9.7 10.1 9.4 T 3.04 81.80 
F+T 2.38 79.78 

3 9.3 9.8 8.8 T 3.86 81.20 
F+T 2.50 77.46 

4 8.9 9.5 8.3 T 5.38 82.66 
F+T 2.56 76.44 

Factor OR % treatment difference when 'I'T =0.538 Model (N= I 75) % non-inferior 

<lIId OveralJ F-I F-2 per treatment lilT =0.538 'l'T=1 
I 15.0 15.0 15.0 T 2.74 82.10 

F+T 2.58 81.94 
2 14.6 15.3 13.8 T 2.80 81.14 

F+T 2.20 79.98 

3 14.0 15.1 12.9 T 3.62 82.78 
F+T 2.52 79.86 

4 13.5 14.8 12.1 T 5.02 82.32 
F+ T 2.78 76.52 

Factor OR 0/0 treatment difference when lilT =0.429 Model (N=99 % non-inferior 

('I'd OveralJ F=I F=2 per treatment) lilT =0.429 Ij'T=1 
I 20.0 20.0 20.0 T 2.42 85.14 

F+T 2.24 83.92 

2 19.5 20.8 18.2 T 3.14 84.36 
F+T 2.76 82.48 

3 18.8 20.8 16.8 T 3.76 84.72 
F+T 2.44 80.14 

4 18.1 20.5 15.7 T 4.54 83.42 
F+T 2.56 78.50 

SImulatIons (N=5000) usmg SAS RANUNI (SAS, 1989) to generate random vanates from a 
uniform distribution. Sample sizes calculated to show non-inferiority within 10%, 15% and 
20% of a reference percentage of 50% (one-sided type I error of 2.5% with type II error of 
20%) using approach of Makuch and Simon (1978). Equal number of subjects in each 
treatment group with random assignment (p=0.5) to each level off actor F. Logistic regression 
performed using SAS procedure GENMOD (SAS, 1996). ). To aid interpretation, the 
magnitude of the Monte Carlo error for the simulation is as follows: 2.5% (SE 0.22%); 80% 
(SE 0.57%). Further details are provided in the Simulation Note at the end of this Thesis. 
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The main finding from Table 5.111 is that the type I error is inflated when an influential 

two-level factor is excluded from the model. When the factor had a large effect (\!IF = 4) 

then the type I error is approximately doubled. However, the unconditional model 

provides greater power - the probability of showing non-inferiority when the treatments 

are truly equivalent. Finally, it should be noted how, with a fixed treatment odds ratio, the 

overall percentage treatment difference becomes smaller as the factor odds ratio increases 

while the magnitude of the treatment difference within the subgroups varies reflecting the 

multiplicative nature of the logistic model. 

5.5.3 Regulatory considerations 

From a regulatory perspective the specific impact of covariate adjustment on equivalence 

or non-inferiority determination does not appear to have been considered. Guidance (ICH 

E9, 1998) of a more general nature exists - such as the inclusion of design features (such 

as stratification) in the analysis and a priori identification of covariates - but specification 

of the unadjusted analysis as primary appears to be the main recommendation. However, 

these simulations make a case for the use of conditional logistic models in therapeutic 

areas with binary endpoints, where there are known factors which impact on outcome and 

the demonstration of non-inferiority is the primary objective. 

5.6 SAMPLE SIZE CONSIDERATIONS 

It is well documented that studies designed to demonstrate equivalence or non-inferiority 

require a greater number of subjects in comparison to superiority studies. The dominant 

reason for this view appears to be that an acceptable equivalence or non-inferiority margin 

will always be smaller than the difference that a corresponding superiority trial would be 

designed to detect. Although this is undoubtedly correct, the point which is missed is that 

in drug development most test treatments that reach this stage of development are 
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considered to have at least a small advantage over existing treatments. For instance, a new 

anti-infective may cover a broader spectrum of pathogens or impact specific pathogens at 

lower concentrations. 

Referring back to Figure 5.1, if the true difference between the treatments is between 0 

and +~, then the standard error (SE) required to produce a lower confidence limit (LCL) 

greater than -81 can be considerably larger than when the true treatment difference is zero. 

In contrast the SE required to produce a LCL greater than zero - that is, to show 

superiority - must be much smaller and as such the number of subjects required is larger. 

Thus for non-inferiority, where only one margin is of interest, the sample size required in 

practice is likely to be smaller, rather than larger, than that needed for superiority. 

Interestingly, an earlier version (CPMP/EWP/482/99, 1999) of the CPMP Points to 

consider document (CPMP/EWP/482/99, 2000) was modified following the consultation 

process to acknowledge this point. (Note that the author's comments pertaining to this 

specific point were included as part of the PSI [Statisticians in the Pharmaceutical 

Industry] response to the CPMP.) 

Equivalence is different, however, as both confidence limits must lie within the 

equivalence margins and if the true treatment difference is between 0 and +82 then a 

smaller SE is required for the UCL to be less than +&:! than for the LCL to be greater than 

-81• However, as stated earlier, non-inferiority rather than equivalence is usually 

applicable to the therapeutic setting. 

It is standard practice to base the planned sample size on the PP population for 

equivalence and non-inferiority trials. This is consistent with the current trend to specify 

the PP population as primary but is also justified ifboth populations have equal standing 
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or even if the PP population is secondary since a sufficient number of subjects is required 

to enable reliable conclusions to be drawn. However, if the ITT and PP populations are to 

have equal standing (CPMP/EWP/482/99, 2000) and equivalence or non-inferiority is to 

be concluded only on the basis oj strict adherence to the margins Jor both populations 

then there is potential for an overall increase in the Type II error. Alternatively 

significance may not have to be achieved in both populations - although inevitably this 

leads back to the pre-specification of a primary population to avoid inflation of the Type I 

error. 

The final point regarding sample size calculation refers to covariate adjustment. Since the 

inclusion of a influential factor in the logistic model increases the standard error of the 

estimated treatment difference (rather than reduces it, as per ANCOVA), this has led some 

to conclude that the sample size for superiority studies must be adjusted upwards 

accordingly (Hsieh, 1998). However, as has been shown earlier, this is simply not the case 

since consideration has to be given to fact that the parameters being estimated in the two 

model formulations - unconditional and conditional - are actually different and the 

increase in SE is counterbalanced by an increase in the magnitude of the parameter being 

estimated. As such, effort to increase the planned sample size to account specifically for 

covariate adjustment for superiority trials is misplaced. In a similar vein, Whitehead 

(1993) incorrectly asserted that an increase in the sample size was required for the related 

proportional odds model. Ironically, however, variance inflation is pertinent to both 

equivalence and non-inferiority trials. When two treatments are truly equivalent, 

adjustment for a prognostic factor will inflate the standard error and reduce the probability 

of showing equivalence or non-inferiority within given margins (that is, power). As such, 

the sample size will need to be increased to maintain power at the pre-specified level. 
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5.7 DISCUSSION 

The primary aim of this chapter is to challenge conventional thinking in the area of 

therapeutic equivalence and non-inferiority. As the number of equivalence and non

inferiority trials has grown, the regulatory authorities that govern the approval of 

pharmaceutical treatments have acted quickly to provide a framework for conducting such 

studies. However, in many ways their advice remains untested and the implications of 

their advice in some instances is not fully understood. The intention of this research, 

however, is not to provide a set of specific solutions to the problems raised, rather some 

suggestions are made which could lead to a more coherent approach. 

One particular approach that could confer advantages for binary outcome measures is the 

specification of margins in terms of the odds ratio. Sound analyses begin with sound 

designs but the regulators have until very recently sorely neglected margin specification, 

which is so fundamental to the equivalence and non-inferiority methodologies. Previous 

efforts in the specific area of anti-infectives appear to have been misplaced and have led in 

some cases to data driven criteria. As described, the odds ratio has many desirable 

properties. In particular it is stable over a wide range of conditions and is easily 

incorporated into the generalised linear model framework to facilitate covariate 

adjustment. In contrast, approaches based on the difference in proportions are unwieldy 

and have many limitations. Unlike the logit transformation where parameter values are in 

the real plane (-00,+00) the di fference in proportions is bounded in the unit square (-1 ,+ I ). 

This becomes highly restrictive in cases where the reference treatment has response 

proportions approaching 0 or 1. Furthermore the Normal distribution approximates the 

binomial poorly in these cases and can lead to improper confidence limits. That being 

said, many researchers are more comfortable working with proportions and have less of an 

intuitive feel for parameters or summaries expressed in terms of odds ratios. As such, an 
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odds ratio based approach might face some resistance on the grounds that it is too obscure. 

However given that the whole concept of equivalence and non-inferiority margins is 

regarded by some to be somewhat obscure, the odds ratio may provide an opportunity to 

provide a more coherent approach to the problem. A non-inferiority margin of 0.5 would 

provide a useful starting point for further discussion since it ties in well with some original 

regulatory strategies. 

There are known concerns surrounding the choice of analysis populations for equivalence 

and non-inferiority although as has been shown it is not clear that PP type populations 

necessarily provide a solution. The perceived conservative nature of the PP population 

appears to be much more a reflection of reduced subject numbers than the presence ofbias 

while bias can be in either direction depending on the pattern of violations. It is the 

author's opinion that PP type populations should be used with caution - much more so 

than for ITT type populations. If a primary population is to be selected for equivalence or 

non-inferiority then one could do worse than choose the eligible population since this is 

unbiased in terms of the randomisation but provides a refined set of subjects who should 

be sensitive to demonstrating real treatment differences. 

At this stage it is unclear what the practical implications will be of implementing a 

regulator's rule of equal importance for the lIT and PP populations. What is clear is that 

when either switching objectives - from non-inferiority to superiority or vice versa - or 

when using a placebo group to establish assay sensitivity, the only logical approach is to 

use the same primary population throughout the sequence of analyses. Given the 

regulatory authorities' preference for ITT in the case of superiority, it is difficult to see 

how PP type populations could fulfil this role. If there is consensus, then it is that quality 
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data are of prime importance if reliable conclusions are to be drawn from equivalence and 

non-inferiority studies. 

It has been shown that modest inflation of the type I error rate could occur when an 

important factor is omitted from a logistic regression model. Inflation of the type I error 

will also occur with the hazard ratio and with the odds ratio from the proportional odds 

model, although this has not been quantified in this research thesis. Of these two models, 

this observation is likely to be more relevant to the hazard ratio since increasingly this 

parameter is being used to set margins for non-inferiority trials with long term outcomes -

for example, mortality or cardiovascular endpoints in diabetes. As such, conditional 

analyses should be recommended in cases were a study is stratified and/or a factor is 

known to have a large impact on outcome. This recommendation holds true regardless of 

whether the hypothesis to be tested relates to equivalence, non-inferiority or superiority, 

and again it is important to have consistency if there is a plan to allow the switching of 

objectives between non-inferiority and superiority within a trial. 

Interestingly the ICH E9 (1998) statistics guideline makes the general claim that covariate 

adjustment leads to an increase in precision. In fact for a whole class of models 

commonly used in clinical research - including the logistic, proportional hazards (Ford, 

1995) and proportional odds models - a reduction in the standard error of the estimate 

does not occur with covariate adjustment. Although one could argue that in general there 

is an increase in relative precision (in terms ofthe Wald statistic), to avoid potential 

confusion it is recommended that the guideline is modified to state that covariate 

adjustment leads to an increase in efficiency rather than precision. 
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Finally, although it has been shown that an increase in sample size is not needed for 

superiority studies when covariate adjustment is planned, an increase is likely for 

equivalence or non-inferiority studies when the treatments are truly equivalent to maintain 

power at the planned level. 

In the following chapter (Chapter Six), attention turns to the unique challenges faced when 

undertaking drug development in special populations - in this case, children. 
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CHAPTER SIX: THE THERAPEUTIC ORPHANS. 

Jennifer Eccles 

Had terrible freckles 

And the boys all called her names 

But she changed with medicinal compound 

And now she joins in all their games. 

6.1 INTRODUCTION 

Since children represent around one half of the world's population of six billion persons, it 

is perhaps surprising that, in relation to drug development, paediatrics is viewed as a 

special interest population. However, as long ago as 1968, Dr Harry Shirkey coined the 

phrase therapeutic orphans to highlight the fact that the labels of phannaceutical 

treatments mostly discouraged their use in children (Kearns, 1996; Cote et ai, 1995). This 

situation had arisen not because drugs were necessarily unsafe in children - but rather as 

an indirect consequence of a dearth of clinical trial data in this area. Although much of the 

regulation that had been introduced to control the marketing of drugs was in response to 

tragedies involving the treatment of children, in practice such regulation had failed to 

deliver safe and effective treatments to the very subjects it was intended to protect. 

Despite being noble in aim, the regulation had in effect discouraged paediatric drug 

development and phannaceutical companies, finding little financial incentive to conduct 

paediatric studies, side-stepped the issue for fear of liability and allegations of malpractice. 

To this day, the viewpoint of pharmaceutical executives is all too familiar - that is, in 

many instances, paediatric studies are challenging to perfonn, difficult to justify from an 

ethical standpoint, and due to the limited market size, not financially rewarding enough 

(USA Today, 20 December 2000). 
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Nonetheless children become ill and require treatment and the lack of specific labelling 

information does not mean that children do not receive drug treatment. Rather they 

receive what is described as off-label treatment. In the context of paediatric medicine, this 

phrase refers to the current world-wide practice of prescribing drugs to children for a 

different indication, or outside of the age range, for which regulatory approval has been 

granted; an act that in effect creates uncontrolled and undocumented experimentation in 

children. For instance, in 2001 the General Accounting Office (GAO) in the US stated 

that around 75% of all marketed drugs did not include labelling information for children 

(GAO, 2001). Furthermore, the younger the children, the more likely that pertinent 

information was absent from the label (Roberts et ai, 2003). In the UK, Sweden, 

Germany, Italy and the Netherlands it was observed that more than two-thirds ofthe 

children who were admitted to paediatric units received unlicensed or off-label 

medication. Furthermore, for many of the drugs prescribed no paediatric formulation 

existed and therefore prior to administration some modification to the manufactured 

product was required (Pharmaceutical Executive, 1 February 2000). In the new age of 

global bio-terrorism it will most likely be children that will be the most vulnerable due to 

their size, developing immune systems and higher respiratory rates (such that 

contaminants are breathed quicker). However the most effective treatment for anthrax 

(ciprotloxacin) is not recommended for children and there is in general a lack of research 

in the area of antidotes for children (Associated Press Newswires, 17 October 2001). This 

is not to say that off-label prescribing is necessarily considered malpractice - indeed the 

American Academy of Pediatrics has actually highlighted that the failure to use off-label 

drugs where appropriate could instead represent negligence on the part of the physician 

(Banner,2002). Indeed Budetti (2003) describes off-label prescribing as the cornerstone 

of pediatriC medical therapeutics - his argument based on the fact that restricting 

prescribing to approved drugs would deny children access to many modern medicines and 
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provide only a relatively modest pharmacopoeia. However, despite such encouragement, 

it is not the case that the use of off-label treatments has been without its problems and the 

paucity of paediatric data has led to some notable medical disasters. For instance, 

verapamil which had been used safely to treat adults for heart disease was given to infants 

during the I 980s to treat irregular heartbeat and unexpectedly caused cardiac arrest, while 

in the 1990' s, a local anaqsthetic unexpectedly caused seizures in children aged under 12 

years due to overdosing. (Although not taken directly by children, thalidomide was 

banned in 1962 after causing birth defects in nearly 10,000 children as a result of it being 

given as a sedative to pregnant women to treat morning sickness.) 

There are, however, several therapeutic areas that represent notable exceptions where 

substantial paediatric drug development has been conducted. These include the areas of 

vaccination, bacterial infections, AIDS and oncology. It has even been reported that 

around 70% of children in the US with cancer are enrolled in clinical trials (MJ Kupst 

speaking on a panel at the 200 1 American Psychological Association meeting, reported in 

The Arizona Republic, 5 September 200 I). Typically it has been the more specialised 

drugs that have been tested in children and indeed it was the development of drugs to treat 

AIDS that helped bring the paediatric drug testing issue to the fore in the 1990's. 

However it is also important to note that it is considered unnecessary to test in children 

drugs aimed at adult only indications such Alzheimer's disease, Parkinson's disease and 

breast, prostrate and lung cancers. It is also worth noting that in the broader context of 

child health it is estimated that 86% of all children are born in less developed countries, 

where 97% of all child death occurs (Schaller, 2000). (For instance, each year one million 

children under the age of five years die from malaria.) Thus although the children of the 

developing world share the same problem of off-label prescribing as those children in 
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developed countries, the more acute problem is not so much about off-label use of drug 

treatments, but with access to any drugs at all (Milne, 2000a). 

The aim of this Chapter is to illustrate some of the unique challenges that must be 

overcome in order to provide safe and effective drug treatment for the illnesses of 

childhood. Firstly, the reasons why children represent a special population and why drug 

development in children differs from drug development in adults will be presented. 

Secondly, the evolution of paediatric drug development will be discussed with particular 

focus on the initiatives introduced in the US over recent years. Thirdly, current regulatory 

thinking and guidance in the area of paediatric drug development will be reviewed. 

Finally, some challenges related to trial design will be discussed - in particular the choice 

of control group and the long-term follow up of subjects. 

6.2 GENERAL CONSIDERATIONS 

Dianne Murphy of the FDA has captured the main challenge of developing drug 

treatments for children and has illustrated why children represent a special population. 

She notes how children have historically been incorrectly treated like smaller versions of 

adults whereas in reality they represent unfinished products. Furthermore, she explains 

how children are continually developing - d~fJerent things turn on and off, different 

enzymes, different receptors become inactive or active, and because of that, their 

susceptibility and responses are different (Chicago Tribune, 1 December 2000). These 

descriptions serve to illustrate the unpredictable nature of the administrating drugs to 

children since one has to consider not only the large variability associated with what the 

child's body does to the drug (the pharmacokinetics [PKD but also what the drug and 

resulting metabolites do to the child's body (pharmacodynamics [POD. As such, one also 
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has to consider what the impact on the finished product will be when it matures in years to 

come. 

Infants, and in particular premature babies, exhibit rapid physiological change that is 

particularly challenging for safe and effective drug treatment. The adult body composition 

of 60% water is not achieved until a child reaches one or two years of age and will initially 

be more in the region of 80% (Schaller, 2000). Around the same time, renal systems 

mature (Spielberg, 1996). Renal elimination is particularly important for water-soluble 

drugs and metabolites. For instance the functional capacity of renal tubular secretion, that 

has a large impact on renal clearance, increases two-fold during the first week following 

birth and increases ten-fold over 12 months. The glomerular filtration rate typically 

reaches adult levels after 6 months - although can be highly variable up to this point 

(Reed, 1996). Relative gastro-intestinal surface area is larger in younger children although 

this does not necessarily lead to greater absorption of oral drug treatments. In this case, 

absorption is governed by gastric emptying, transit time and intestinal motility which in 

tum are influenced by dietary changes - such as the introduction of solid food. 

Furthermore the interaction between the pH of the drug in question and local gastric pH 

(which is around 7 at birth and decreases gradually to the adult level over the next two 

years) impacts the absorption of the specific drug concerned (McRorie, 1996; Reed, 1996). 

Elimination of most drugs from the body occurs as a result of biotransformation to water

soluble metabolites, and in this context the cytochromes P4S0 are the most important 

hepatic enzymes. However, hepatic expression of P4S0 enzymes is not monotonic with 

age, since although P450 activity is limited in newborns, it actually exceeds adult capacity 

in young children and only begins to decline at puberty. Furthermore inter-individual 

variability in the relative expression of specific P450 enzymes means that clinical response 
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can be markedly different since different P450's produce different metabolites from the 

same drug (Leeder, 1996). 

Formulations should be developed to ensure the safety and consistency of administration 

(Roberts, 2002) but the route of administration in children also requires careful 

consideration - especially in the very young. Intra-muscular injections may cause tissue 

injury while transdermal applications can lead to systemic toxicity from increased skin 

permeability - although three weeks after birth a full barrier will exist. From a practical 

perspective, premature infants can tolerate only small volumes of non-nutritive fluids 

(McRorie, 1996). A further consideration for children is the impact of preservatives that 

are contained in pharmaceuticals products. In particular multiple doses with the same 

preservative can lead to life threatening toxicity as illustrated by the case of the 

preservative benzyl alcohol in sodium chloride flush solutions. The oxidation and 

conjugation steps in neonates is immature and in the early 1980's this led to 16 deaths as a 

result of benzyl alcohol and benzoic acid accumulation (McRorie, 1996). 

Of course drug treatment in babies is not only limited to direct drug exposure. Babies may 

receive drugs indirectly via their mother either when in the womb or through breast milk. 

Indeed it was through the maternal route that thalidomide impacted limb growth in the 

womb while NSAIDs have been linked with persistent pulmonary hypertension (PPHN) in 

newborns (Alano et ai, 2001). 

As children develop, due consideration needs to be given not only to the impact of 

physical growth and sexual maturation on drug disposition, but also the effect of drug 

disposition on these aspects of child development - including mental development. As 

children approach adulthood, self-medication also becomes a feature as independence 
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from parental control increases. The impacts of alcohol, tobacco and illicit drugs also 

need to be considered, as do abnonnal sleeping or eating habits. From a drug development 

perspective, this movement towards active participation is important as children come to 

understand the risks and benefits of being enrolled in clinical trials and are able to provide 

informed assent - even though parental consent is also required. In contrast to small 

children where caregiver and parental assessment of response is dominant, older children 

begin to be able to provide their own assessments of efficacy and toxicity. 

Historically the standard approach to the treatment of children with adult drugs has been 

rather crude. The adult dose has generally been adjusted for weight in younger children 

while tablets have been crushed and mixed with food to facilitate ingestion. (For instance, 

the starting dose for Phase I paediatric oncology is typically 80% of the maximum adult 

dose with dose escalation in increments of 20 to 30% (CPMP Addendum on paediatric 

oncology, 2003).) However, as illustrated, there are many other factors that influence how 

drugs are distributed through the body - including ingestion with food itself. As a 

consequence, inadequate dosing infonnation and inappropriate fonnulations can limit 

efficacy (due to under dosing) or increase the risk of toxicity (due to over dosing) in 

children. (For instance, in the treatment of preadolescent girls for obsessive-compulsive 

disorder it was found that the dose of Luvox being used was at least twice as high as 

necessary (D Murphy of the FDA reported in The Wall Street Journal, 5 February 2001).) 

In this respect, the weaknesses of the old dosing habits serve to highlight two key steps for 

successful paediatric drug development - that is, appropriate fonnulation development and 

effective PK investigation. 

Age appropriate fonnulations are required for marketed products and also for experimental 

treatments to ensure accurate, reliable and suitable drug administration. (Note however 
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that weight based dosing is often preferable to age based dosing for younger children 

(under 6 months, say) where age should only be used if weight is unknown (Tan sheet, 3 

September 200 I).) Examples of paediatric formulations include chewable tablets and in 

particular liquids for children under 5 years of age. For instance to formulate an oral 

product for paediatric use, one typically dissolves or suspends a drug in a simple syrup or 

sorbitol - although some children may have fructose intolerance so care needs to be 

exercised. Needless to say when paediatric formulations are not available, physicians 

have to compromise. For instance, in a trial to treat babies for a rare but potentially fatal 

lung disorder, investigators had no other option when using Viagra experimentally than to 

crush a pill and administer part of the contents through a feeding tube (Atz and Wesel, 

1999, as reported by Associated Press Newswires, 3 August 2001). However tablet 

destruction can have a marked effect on a drug's bioavailability. Similarly, a US survey 

reported that that more than 90% of parents have had to mix drug treatments with food to 

get their child to swallow and, of these, most were unaware that such a process could 

impact efficacy (PR Newswire, 7 April 2003). According to Roberts (2002), paediatric 

formulations should be palatable and permit easy dose titration. There are also practical 

aspects such as the dosing schedule for children of school age. In this case there are clear 

advantages in developing once daily regimens of drugs that ease the burden of school 

nurses whilst reducing both the social stigma of taking drug treatments and the risk of 

drug misuse. However the development of once daily regimes is not without challenges 

either. For instance, a regulatory safety concern was raised for a once daily formulation of 

a treatment for attention deficit hyperactivity disorder (ADHD) with regard to tablet size 

and the risk of intestinal obstruction. This finally led to a contraindication relating to pre

existing severe gastrointestinal narrowing (Pharmaceutical Approvals Monthly, I January 

2001). For intravenous formulations the challenge is to provide an age appropriate 

volume. For example, in seriously ill neonates with fluid restrictions, a significant 
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proportion of their daily fluid intake can be made up of drug infusions. As such, the aim 

should be to restrict the total volume of medication to <10% of the average daily fluid 

intake while post-infusion phlebitis can be avoided by medication dilution. 

An important step in development of any paediatric formulation is the comparison in adult 

subjects of this formulation with the standard adult formulation with regard to the PK 

profile. This step then leads to the selection of an appropriate age or weight specific 

paediatric dose for further PK study in the paediatric population. In this respect the 

standard approach is to mimic the adult PK profile in children through dose adjustment 

and to extrapolate the clinical efficacy from the adult clinical studies. Indeed this 

philosophy is adopted throughout the whole clinical development process as a means of 

determining the appropriate dose in various subgroups including different ethnic groups. 

ICH ES Notefor guidance on ethnic/actors in the acceptability offoreign clinical data 

(1998) describes the process for using foreign data to support drug approval in another 

geographical region. A so-called bridging package is prepared that contains PK, 

preliminary PO and dose response data plus a bridging study actually conducted in the 

new region that allows extrapolation of the original foreign clinical data to the new region. 

In some cases, the bridging study may simply be a PK study conducted in the new region 

in the requisite ethnic population. The approach is not without some risks in the paediatric 

population since the diseases of children and adults can differ and even when diseases are 

the same, the observed adverse event profile in adults may not necessarily predict the 

profile in children (Roberts, 2002). Further considerations in determining the paediatric 

PK profile is consideration of the impact of formula milk since, before a child moves on to 

solid foods, medication is often mixed with infant formula and the stability of the drug 

needs to be demonstrated. 
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6.3 THE EVOLUTION OF PAEDIATRIC DRUG DEVELOPMENT 

Paediatric drug development is a recent phenomenon which is most advanced in the US 

where the FDA has driven a whole series of paediatric initiatives over the past 20 years or 

so. In 1979, the FDA published its first paediatric labelling regulations to correct the 

problem that many of the drugs that included a paediatric disclaimer - such as safety and 

effectiveness in children have not been established - were actually used in children. The 

regulation required drug companies to conduct adequate and well-controlled trials in order 

to produce clinical data such that appropriate information could be incorporated into the 

drug label. However the regulation was generally not regarded as a great success and the 

expected increase in activity did not materialise. 

Fifteen years later the FDA tried again and issued a new Pediatric Rule in December 1994 

that softened the previous requirements somewhat. The rule allowed the extrapolation of 

data from adequate and well-controlled adult trials to children in cases where the 

therapeutic indication was similar and the drug was expected to behave in the same way. 

These data would then be supplemented by PK and safety data from the paediatric 

population. Alongside the rule, a Pediatric Plan was published to direct attention to the 

whole drug development process in relation to paediatrics. Interestingly the rule did not 

actually require companies to conduct paediatric studies (Roberts and Maldonado, 1996). 

However it was the FDA's Modernization Act (FDAMA) of 1997 that provided the real 

impetus for the development of drugs in children since it gave pharmaceutical companies a 

direct financial incentive to conduct paediatric studies. The provision provided a further 6 

months of marketing exclusivity for companies that voluntarily undertook studies on 

approved drugs that the FDA specifically targeted for paediatric development. (Such 

marketing exclusivity essentially provides protection against the generic competition that 
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erodes profit when patents expire.) For their part, the FDA was required to publish a list 

of approved drugs that were currently used off-label in children and for which paediatric 

data were needed (Roberts et ai, 2003). A drug had to meet one of three criteria to be 

included on the list - it had to represent a significant improvement compared with drugs 

currently labelled for paediatric use; it had to be widely used in children (at least 50,000 

projected uses per year); and it had to be in a class or indication for which additional 

options were needed for children (GAO, 2001). The aim of the list was to prioritise the 

drugs for paediatric development and in practice was produced with the help of other 

learned bodies - such as the American Academy of Pediatrics. (It is intended that in 

future, the FDA will augment such advice with data on actual off-label prescribing habits 

provided by commercial databases (Pink Sheet, 22 October 200 I).) In fact, most of the 

FDA's subsequent requests for paediatric data have pertained to these lists - produced 

annually - and the 1997 provision was later renewed in 2002 through The Best 

Pharmaceuticals for Children Act. 

A number of reviews assessing the impact of the FDAMA in effecting drug development 

in children have been conducted. A GAO report issued in 2001 noted a substantial 

increase in both the number of drugs studied in children and the range of therapeutic 

classes covered since enactment, and also noted marked growth in the infrastructure 

required to conduct paediatric studies. As of April 2001, 28 drugs had been granted 

marketing exclusivity extensions while the labels of 18 drugs had been updated with new 

and useful infonnation. The GAO did observe however that there remained a requirement 

to tackle those commonly used drugs where the patent had expired (six of the top ten most 

commonly prescribed treatment were found to be off-patent in 1994) and where the 

financial incentive to undertake paediatric development did not exist. 
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A year on, Roberts el al (2003) detailed the FDA perspective of the impact of the FDAMA 

- that is, from July 1998 to April 2002. During this period, 53 drugs had been granted 

marketing exclusivity extensions while 33 drugs had had their labels updated with 

paediatric information. (Indeed the pace of progress is indicated by the fact that, as of 

January 2003, 16 more drugs have had label modifications such that the total is now 49.). 

In total, over 50,000 subjects have been enrolled in studies covering a wide range of 

conditions including, amongst others, allergies, anxiety, diabetes, epilepsy, gastro

oesophageal reflux, HIV, hypertension and rheumatoid arthritis. Of note were data from 

over 40,000 subjects that lowered the threshold for Ibuprofen in the treatment of fever 

from 2 years to 6 months. Furthermore, specific paediatric formulations had been 

developed for five drugs. Of the studies performed, 23% were safety only investigations, 

34% were classified as safety plus PKlPD, while the remaining 43% were classified as 

safety plus clinical efficacy. Interestingly, for the 33 drugs with updated labels the 

tendency has been for the new data to pertain to older (>3 years) rather than younger 

children although all but one of the label changes failed to lower the age threshold for 

which information on the label was provided. In response to this it has been suggested 

that an additional 3 months of exclusivity (in addition to the original 6 months) should be 

available to pharmaceutical companies for conducting studies in neonates (Generic line, 7 

September 2001). 

The creation of the mandatory Pediatric Rule in 1998 was, however, a less successful 

development. The intention was that this would complement the voluntary FDAMA since 

it required drug companies to conduct paediatric studies for experimental drugs currently 

being investigated in adults where the benefit or use in the same indication was likely in 

children. In October 2002, the American courts actually blocked the FDA from enforcing 

such a rule and in response The Best Pharmaceuticals for Children Act of 2002 was 
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established. This introduced a procedure to investigate drugs that were off-patent and also 

set up a research fund to conduct such studies. However in late 2003, the Pediatric 

Research Equity Act was signed which now enables the FDA to require phannaceutical 

companies to test both new and existing medications on children. 

The FDA's Pediatric Advisory Committee has also been influential in addressing specific 

issues in paediatric drug development including: the recommendation to study patients -

who may benefit from participation in a trial - rather than healthy volunteers (1999); a 

preference for the enrolment of children who are able to give assent (2000); the 

acceptability of placebo controlled trials (2000); and the protection of vulnerable 

paediatric populations (2001). Also the impact of the WHO over the past two decades 

should not be forgotten. The fact that current treatments were either not approved for 

children or in some cases unaffordable, led the WHO to develop the essential drugs 

program as early as 1981. In this respect, essential drugs are those most necessary for the 

health needs of the population and which should be made available in regular supply at 

the lowest cost (Milne, 2000b), and it is encouraging that in the first year of the FDAMA 

program, 10% of FDA's requests for paediatric studies were for drugs on the list. 

However it is clear that the US has been the leader in paediatric drug development and 

undoubtedly its series of initiatives will have a major impact on child health globally, as 

paediatric data are shared across regions. 

In the following section the latest guidelines governing paediatric drug development will 

be reviewed. 
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6.4 REGULATORY CONSIDERATIONS 

Primary world-wide guidance is provided by ICH E 11 Note for guidance on clinical 

investigation of medicinal products in the paediatric population (CPMP/ICH/2722/99) 

which was issued in 2000 with the goal of encouraging and facilitating paediatric drug 

development. The guideline emphasises the timeliness of the initiation of the paediatric 

drug development program in relation to several factors that define the risklbenefit ratio -

for example, the seriousness of the condition. Generally, unless the condition is serious or 

life threatening, or the indication exclusive to the paediatric population, then a paediatric 

program should not normally commence until safety and preliminary efficacy have been 

demonstrated in adults. However life-threatening conditions where treatment options are 

limited, or indications specific to paediatrics, warrant early initiation following initial 

safety studies in adults. 

In all cases, PK studies are seen to play an important early role - specifically in the areas 

of formulation development and dose determination. Formulation development is viewed 

as crucial in the ultimate determination of accurate dosing in paediatrics and is key to 

ensuring compliance. As a first step, studies comparing the paediatric formulation with 

the adult formulation should be conducted in adults. Then, once an acceptable formulation 

is produced, the general approach for indications common to both adults and children, is to 

determine an appropriate paediatric dose by attempting to mirror the adult PK profile (that 

has been shown to be therapeutically effective) in older children. In this respect the adult 

dose is usually adjusted for body weight (mglkg) or, less commonly, body surface area 

(mg/m2
) and the reasoning is that similar blood levels of the drug in children compared 

with adults will accordingly produce corresponding efficacy and safety. Indeed the same 

rationale is then used to extrapolate from older children to younger children further along 

the development program. It is important to note that unlike adult studies, which are 
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usually conducted in healthy volunteers, paediatric PK studies are perfonned on patients. 

Now, according to the guideline, for indications where both the disease process and the 

outcome are similar in children and adults, satisfactory PK data supplemented with 

acceptable safety data should be regarded as sufficient to extend drug approval to the age 

range of children covered by the paediatric data. However in cases where equivalent drug 

concentrations are not expected to produce similar outcomes in children, the guideline 

requires additional PO studies to be conducted. (For example, the investigation of gastric 

pH and the duration of acid suppression for drugs used to treat some gastrointestinal 

diseases.) Similarly PD studies would be required for topical fonnulations. Finally, for 

novel paediatric indications or where the disease course or outcome is expected to be 

different in children compared with adults, adequate and well and controlled clinical trials 

of clinical outcome and safety are expected before paediatric approval would be 

considered. Regarding efficacy studies, the guideline highlights the potential need to 

develop. validate and employ different endpoints for spec(fic age and development groups. 

In particular the measurement of subjective symptoms, such as pain, gets specific mention. 

However it is important to note that ICH Ell is intended for use in conjunction with many 

other ICH guidelines. As such many of the basic design, conduct and reporting guidance 

detailed in documents such as ICH E9 and ICH E 1 0 apply equally to the paediatric 

population and are not repeated in ICH Ell. Safety data are required for all scenarios with 

the acknowledgement that unique adverse events may occur in the paediatric population or 

in subgroups of the population given the diversity of maturation in children. In particular 

the long-tenn follow-up of subjects receives special mention in relation to delayed drug 

effects and the impact of chronic drug treatment on skeletal. behavioural. cognitive. sexual 

and immune maturation and development. 
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With regard to age, ICH Ell suggests five categories or strata whilst acknowledging that 

they are somewhat arbitrary and that for a specific drug, consideration needs to be given to 

developmental biology and pharmacology. The guideline also acknowledges that children 

could actually move categories during a study. The categories specified are: pre-term 

new-born infants; term new-born infants [neonates] (0 to 27 days); infants and toddlers (28 

days to 23 months); children (2 to 11 years); and adolescents (12 to 16-18 years, 

dependent on region). Some specific challenges noted include: the extrapolation from any 

other category to the pre-term new-horns; the unpredictability of oral absorption and the 

immaturity but rapid change of hepatic and renal systems (0-27 days); rapid eNS 

maturation, immune system development and total body growth (28 days to 23 months); 

renal clearance exceeding adult levels, psychomotor development and puberty in girls (2-

II years); and sexual maturation and pregnancy testing in girls (11 years upwards). 

Ethics is the final area covered by the ICH Ell guideline. It specifies that special 

measures are needed to protect the rights of participants and to shield them form undue 

risk and that ethics committees should therefore be knowledgeable of paediatric research. 

Furthermore those conducting the research should be skilled in performing procedures in 

children and be properly trained and experienced. It is noted that children cannot provide 

informed consent to participate in a clinical trial and parents or a legal guardian must 

therefore assume that responsibility - although child assent is encouraged where 

appropriate and participants sh~uld be made fully aware of their rights. It is also 

expressed that if the desired information can be obtained in a less vulnerable population 

that is able to provide consent then this population should be used instead. Minimising 

risk and distress is important and researchers are expected to be proactive in this area. 

Study procedures should be designed for children and in particular minimally or non

invasive procedures are encouraged. 
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In Europe, a Notesfor Guidance document entitled Clinical investigation of medicinal 

products in children (CPMP/EWP/462/95, 1997) was issued as early as 1997 although this 

has effectivel y been superseded by ICH Ell - since the former was incorporated into the 

latter. However there is now a growing recognition in Europe of the need for incentives to 

encourage paediatric drug development together with the need for more specific guidance 

to complement ICH Ell. Regarding the direct encouragement of paediatric drug 

development in Europe, a consultation paper was released in February 2002 entitled Better 

Medicinesfor Children. This discussed the possibility of an exclusivity programme based 

on the US model but with possibly 12 months provision. Furthermore, in relation to 

further guidance, the CPMP has issued two concept papers in 2002 stating their intention 

to generate specific guidelines on the evaluation of the pharmacokinetics of drugs used in 

the paediatric population (CPMP/EWP/968/02, 2002) and the conduct of 

pharmacovigilance activities (CPMP/PhVWP/4838/02, 2002). 

The underlying themes of the first concept paper were the use of PK studies to support 

formulation development, age specific dose recommendations and the extrapolation of 

adult efficacy data to children. The requirement for more information on design, analysis 

and interpretation was noted and issues likely to be addressed in the subsequent guideline 

included: identification of the important PK parameters in children; age classification and 

stratification; and the evaluation of PK in neonates. 

The second concept paper relating to pharmacovigilance is unusually detailed. It 

highlights that compared with adults, the clinical safety database for children is likely to 

be sparser at the time of regulatory approval - particular in rare indications. Furthermore 

long-term data are required to detect delayed toxic effects or those due to chronic 
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medication use - particularly in relation to child development; both ofthese factors 

underline the need for enhanced phramacovigilance in children. The proposed approach is 

to identify the limitations of the safety database at the time of registration and the potential 

risks of drug approval with the aim of recommending post-approval data collection 

mechanisms to minimise such risks. The two key elements are signal detection and signal 

evaluation with the spontaneous reporting of adverse events remaining the most important 

data source. The concept paper highlights that children may not effectively express 

symptoms and that parents represent an additional intermediate step in the reporting 

process such that some sort of facilitation needs to be devised. The role of Periodic Safety 

Update Reports (PSUR) in relation to children will also be reviewed, as will be the 

systematic search of the paediatric literature. Post-approval studies are classified as safety 

demonstration (large studies); new safety issue detection; and known safety issue 

evaluation. Advice will be developed in relation to when each category of study should be 

conducted and the methodologies to be used to detect the longer-term effects of treatment. 

Interestingly the concept paper will give due consideration to paediatric 

phannacovigilance activities when treatments are used off-Iabel- perhaps even providing 

tacit approval for this practice. Vaccines wi11 be given special consideration due to the 

sensitivity of administering drugs widely to large and healthy populations. The concept 

paper explains that even rare suspected adverse drug reactions following vaccination 

require concentrated investigation and that follow-up must be addressed in relation to 

delayed effects. It highlights that the size of the clinical trial programme is driven from 

the efficacy perspective and that the requirement for effective post-approval 

phannacovigilance is an inevitable consequence if safety is to be demonstrated long-term. 

Also in Europe, the idea of a Paediatric Addendum to therapeutic specific guidelines has 

recently been introduced. For example, in 2003 the CPMP issued an Addendum on 
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paediatric oncology (CPMP/EWP/569/02, 2003) to the Note for gUidance on evaluation of 

anticancer medicinal products in man. 

Further regulatory developments in the US include a draft FDA guideline issued in July 

2003 directed towards paediatric medical devices (Device and Diagnostic Letter, 28 July 

2003). Unique paediatric challenges identified in this document include the longevity of 

devices and the impact of such devices on growth and development. Proposed age strata of 

interest where given as: 0 - 1 month; 1 month - 1 year; 2 years - 12 years; and 12 years to 

21 years. Although almost identical to the strata specified in ICH Ell, it is interesting to 

note the higher upper limit of 21 years for devices compared with the 16-18 years ICH 

E II limit (dependent on region) for drugs. Other developments are likely to include a 

FDA guideline aimed at directing phannaceutical companies to assess the amount of drug 

and metabolite in breast milk in order to provide dosing recommendations for women who 

plan to breast-feed. In this respect, mothers still producing milk after having weaned their 

babies have been identified as being especially useful for collecting data (The Pink Sheet, 

30 July 2001). 

6.5 SPECIFIC DESIGN ISSUES: CONTROLS AND FOLLOW-UP 

In the modem era, the strict application of ethical principles to the participation of humans 

in clinical research was a direct result of the atrocities committed during the Second World 

War. In the early post war years (1946 - 1949) the so-called Nuremberg Code (1949) was 

introduced as a positive outcome of the successful trials of war criminals in Nuremberg, 

Gennany. The Nuremberg Code established that, within reasonably well-defined bounds, 

clinical experimentation was indeed ethical and yielded benefits to society as a whole. 

However certain basic principles needed to be observed to satisfy moral, ethical and legal 

concepts. Voluntary consent of participants was identified as absolutely essential and is 
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the first element of the ten-point code. As the same time the participant should have 

sufficient knowledge and comprehension of the elements of the subject matter so as to 

make an informed decision. Yet the Nuremberg Code was in effect superseded in 1964 by 

the introduction of the World Medical Association Declaration of Helsinki and to this day, 

this 32-point declaration remains central to the conduct of ethical clinical research - albeit 

in amended form (WMA, 2000). 

According to David Wendler of the National Institute of Health, the abuses and atrocities 

of the Nuremberg trials era had a lasting effect on the research psyche, and led to 

increased sensitivities world-wide regarding informed consent and the participation of 

vulnerable populations in clinical research - particularly children. However in his view, 

the pendulum is swinging back, with growing awareness of the need to manage not only 

the risks of clinical research but also the potential benefits (USA Today, 20 December 

2000). 

In this sub-section, two specific issues surrounding participation in paediatric clinical trials 

will be discussed in relation to informed consent and risk management. The first is the 

choice of control group while the second is the long-term follow-up of children. 

6.5.1 Control groups 

The choice of the control group raises unique challenges in paediatric drug development. 

However to understand these challenges it is important to review first the general 

considerations faced when determining the acceptability of specific types of control in 

drug development. 
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The Declaration of Helsinki (DH) is central to the conduct of clinical trials and in relation 

to control groups the recent Edinburgh revision (WMA, 2000) states the following. The 

benefits, risks, burdens and effectiveness of a new method should be tested against those of 

the best current prophylactic, diagnostic, and therapeutic methods. This does not exclude 

the use of placebo, or no treatment, in studies where no proven prophylactic, diagnostic, 

and therapeutic method exists. Now, it is immediately apparent that the expectation is that 

placebo controls should be limited to investigations where no proven treatment exists and, 

given that placebo controlled studies are often regarded as the drug development gold 

standard, this statement - if taken literally - is highly restrictive in most therapeutic areas. 

However from the perspective of paediatric drug development it opens up a separate area 

of controversy since, as described earlier, although plenty of drug treatments are used in 

children, most would hardly be described as proven. Indeed, if taken literally, the DH 

might actually be viewed as promoting the use of placebo controls to investigate many of 

the illnesses of childhood. 

However Senn (200 I) has challenged some of the basic principles stated in this 2000 

revision to the DH and has proposed an alternate system of practical ethics based on the 

following principles: 

I. The standard of care to which patients are entitled when not entered into clinical 

trials should be regarded as the standard by which the feasibility of the trial is 

judged. 

II. Patients should not be entered into clinical trials if it involves them in an expected 

loss on any of the trial treatments compared with the standard they would get 

outside the trial unless the disease is not serious, the loss is temporary, and it has 

been explained to patients that such a loss is involved. 

III. The trialist should always observe the fullest degree of consent practicable. 
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Senn's set of principles is actually aimed at encouraging a more practical approach to 

clinical trial design than that provided by the DH - particularly in relation to the use of 

placebo controls through his first two principles. In relation to current alternative 

treatments, Senn does not use the term "proven" but instead refers to the phrase standard 

of care to which patients are entitled in his first principle. This wording is quite 

interesting since it could actually prove to be more restrictive than the DH in relation to 

the use of placebo controls in paediatric trials. This would be the case if children were 

deemed to be entitled to off-label treatments and these treatments were considered to 

represent standard care. The Association of the British Pharmaceutical Industry (ABPI, 

200}) states: Many older medicines have not been tested on children, but experience over 

many years provides a sound basefor their continuing and safe use, which would appear 

to support the view that the current standard of care includes off-label treatments. Indeed 

as described in section 6.2, Banner (2002) considers it negligent not to regard off-label 

treatments as part of the paediatric pharmacopoeia. Support for off-label controls also 

comes from the FDA. As an alternative to placebo-controlled trials, the FDA has 

suggested that if an existing treatment were widely used but not proven in a particular 

indication, then this could be employed as a control but that the new treatment would be 

expected to demonstrate superiority (D Murphy of the FDA discussing solicited comments 

from the FDA's Anti-infective Drugs Advisory Committee/Pediatric Subcommittee of23 

Apri1200} as reported in The Blue Sheet, 25 April 2001). This concept of requiring new 

treatments to demonstrate superiority to off-label controls will be re-visited later in this 

sub-section. 

Now, since most treatments that have been tested in children over recent years have 

actually received regulatory approval for at least one new age category then perhaps 
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"proven in adults" is sufficient for a child to be entitled to treatment. Then again, the DH 

uses the phrase current prophylactic. diagnostic. and therapeutic methods and in practice 

the key issue with children in many disease indications will not be so much about the 

proven effectiveness of the drug but rather concerns regarding both the dose and 

formulation - that is, the method. In this respect while the treatment may have been 

demonstrated as being effective in adults perhaps it is the method that mostly remains 

unproven in children. As described earlier, under many circumstances approval of a drug 

for the treatment of children can be achieved through the simple extrapolation of adult 

clinical data to children via the conduct of an age specific PK study together with the 

accumulation of sufficient paediatric safety data. As such treatments that continue to be 

used off-label must either have not had the appropriate bridging studies conducted or the 

data must have been deemed inadequate to support a change to the label. Interestingly the 

FDA's Pediatric Advisory Committee (2000) has used yet another phrase in relation to the 

inclusion of placebo controls. The committee expressed the view that placebo controlled 

trials were acceptable if there were no approved or adequately studied therapies for 

children (Roberts, 2002). 

The American Academy of Pediatrics (AAP, 1995) in their updated Guidelines for the 

ethical conduct of studies to evaluate drugs in pediatric populations give five conditions 

under which placebo controlled studies may be conducted. The first three of these 

conditions include when there is no commonly accepted therapy for the condition or the 

commonly used therapy ... is of questionable efficacy or, where due to the safety profile, 

the risks associated may outweigh its benefits. The fourth condition relates to the 

acceptable use of placebo in add-on designs (an area that will be discussed later in this 

sub-section), while the fifth condition similarly permits placebo controls for chronic 

conditions whereby subjects have spontaneous exacerbations followed by periods of 
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remiSSIOn. However the overriding feature is that the use of a placebo control group 

should not place children at increased risk. 

Risk assessment is an important concept in the ethical conduct of clinical trials and in 

particular the weighting of the predicted harm and gain associated with participation. 

According to the American Academy of Pediatrics (AAP, 1995) benefits and risk must 

both be broadly defined when taking into account ethical considerations. For instance in 

relation to risks they suggest considering the following: discomfort: inconvenience: pain: 

fright: separation from parents or familiar surroundings: effects on growth and 

development of organs; and size or volume of biologic samples. However it is clear that 

whatever the risks and benefits identified, the weighting of these is very much an 

individual decision when it comes to trial participation. The role of the ethics committee 

therefore is simply to ensure that, for the study to proceed, a considered judgement is 

made on the basis of their considerable experience and expertise. To make this 

judgement, the ethics committee must themselves weigh the potential benefits of 

participation against the associated risks. 

Senn (2001) uses the term expected loss to describe the result of the weighting calculation 

in terms of entering a subject into the trial regardless of the treatment assigned to the 

subject. The difficulty therefore with paediatric studies is that the expected loss will 

depend greatly upon one's view as to whether a drug has to be approved in the appropriate 

age category to be included in the calculation. If one takes the view that effective and safe 

treatments already exist even if they can only be used off-label then the expected loss may 

be non-trivial with a simple placebo control (unless in relation to an add-on design). 

However, if drug approval is a prerequisite then the expected loss of comparing a test drug 

to a placebo (or even to no treatment) may be zero or one might find an expected gain. 
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Included in Senn's second principle is the phrase outside the trial and therefore the loss 

function calculation must also include any benefit or detriment accruing from simple 

participation in a clinical trial when compared to the standard of care outside of the trial. 

For instance, the FDA is reported to believe that paediatric subjects actually receive a 

direct benefit from participating in placebo-controlled trials - the result of increased 

monitoring and enhanced care «D Murphy of the FDA discussing solicited comments 

from the FDA's Anti-infective Drugs Advisory Committee/Pediatric Subcommittee of23 

April 2001 as reported in The Blue Sheet, 25 April 2001). Within a trial the balance can 

be shifted towards trial participation through the implementation of innovative methods. 

For instance, invasive procedures - such as the taking of blood samples - can sometimes 

prove restrictive to the approval of placebo controlled paediatric protocols since the risk 

can be seen to outweigh the benefits in the placebo group. However cholesterol, bilirubin 

and glucose levels can now all be measured non-invasively through the skin, rather than 

from blood samples (PR Newswire, 23 June 2001 & 13 June 2001). (Indeed placebo 

controlled studies have been reported in many varied paediatric indications including 

autism, asthma, attention deficitlhyperactivity disorder (ADHD), cystic fibrosis, epilepsy, 

ear infection, hypercholesterolemia, respiratory syncytial virus (RSY), reversible 

obstructive airway disease, psoriasis, to name just a few.) Regarding trial design, the 

FDA's Pediatric Advisory Committee (2000) provides some practical suggestions to limit 

the expected loss of participants, such as the use of DSMBs to permit early trial 

termination for serious or life threatening conditions. For less serious conditions it 

recommends the inclusion of individual subject discontinuation criteria - that is, early 

escape - to limit the exposure to ineffective treatments. The FDA has suggested the use of 

a randomised withdrawal designs to demonstrate long-term effectiveness of drug treatment 

when a long-term placebo-controlled trial would be unacceptable (D Murphy of the FDA 

discussing solicited comments from the FDA's Anti-infective Drugs Advisory 
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Committee/Pediatric Subcommittee of23 April 2001 as reported in The Blue Sheet, 25 

April 2001). Such a design has been employed in rheumatoid arthritis where a placebo 

controlled study was considered unethical. In this case, all subjects were treated with 

intravenous Enbrel for 3 months then randomised to placebo injections or Enbrel. If a 

relapse occurred (full blow flare up observed) whilst on placebo then the child was 

switched back to Enbrel (The New York Times, II February 2001) 

For non-serious diseases, Senn's second principle allows subjects to enter a study so long 

as one expects any loss to be temporary and the subjects receive an explanation regarding 

the nature of this loss. This leads into a discussion of the concept of minimal or 

acceptable risk. Now, in the US, a mechanism - based on an original classification 

developed by the Department of Health and Human Services (DHHS) - has been 

established as part of the Children's Health Act of 2000 to approve clinical trials that 

traditionally would not have met ethics committee approval criteria. Trials can now be 

approved that: 

I. Do not involve greater than minimal risk 

2. Involve greater than minimal risk but offer direct benefit to individual subjects 

3. Involve greater than minimal risk without the possibility of individual benefit but are 

likely to lead to greater knowledge about the subject's condition 

4. Are not otherwise approved but represent an opportunity to understand, prevent, or 

alleviate a serious problem affecting child health or welfare. 

In this respect, it is clear that paediatric studies can still be conducted if there is an 

expected loss - so long as it is small or is modest but can be traded off against the benefits. 

However within these assignments it is notable that there are terms that would benefit 

from greater clarity. For instance, it has already been identified (AAP, 1995) that ethics 
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committees require guidance on the definition of minimal risk. Furthermore for Category 

3, the expanded text compounds the problem with the inclusion ofthe caveat that greater 

than minimal risk must only represent a minor increase over minimal risk. Continuing 

with Category 3 and the vague terminology, the information gleaned on the individual's 

condition must be of vital importance in relation to understanding or ameliorating the 

condition. Indeed, according to the DHHS's Secretary's Advisory Committee on Human 

Research Protection (SACHRP), ethics committees are frequently finding these four risk 

categories difficult to interpret and in some cases are selecting the lower categories when 

not otherwise approvable would be more appropriate (Washington Drug Letter, 28 July 

2003) 

Once the expected loss has been established for a paediatric study, and the ethics 

committee has approved the study, the next step is to communicate this information to 

potential trial participants and their parents or guardians. In practice it will be the parents 

or guardian of the child that receives and hopefully understands the explanation and it is 

these people who provide written consent while the child - depending upon age and 

understanding - is asked to provide assent. For the case of small children therefore the 

rationale decision-making process where the expected loss is evaluated on a personal basis 

is not possible. Also one concern is that parental consent does not necessarily equate to 

parental understanding. In the US, it has been reported that in paediatric oncology trials 

around one half of consenting parents did not realise that their children where randomly 

assigned to different treatments while a quarter did not understand that enrolling in a 

clinical trial would entail anything other than receiving standard cancer treatment (D 

Drotar speaking at the 2001 American Psychological Association meeting, reported in The 

Arizona Republic, 5 September 200 1). It is perhaps because of such findings that the 

FDA's Pediatric Advisory Committee has expressed a preference for the inclusion of those 
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children in clinical trials who are able to give their assent to participate - although this 

should not preclude the development of age appropriate explanations. Senn alludes to the 

practical issues of consent his third principle. 

It is now the time to return to add-on designs. In Senn's critique of the DH, he discusses 

these designs at length. In these studies subjects are randomised to a test treatment or 

placebo control, say, but both groups also receive a concurrent base or reference treatment. 

Senn uses these designs to illustrate the inadequacy of the DH wording in relation to use 

of placebo controls and to show that the use of placebo is indeed ethical even when proven 

therapeutic methods exist. However such designs raise some issues from a paediatric drug 

development perspective. Although paediatric add-on designs have been used in areas 

such as AIDS and Bipolar I Disorder, there are inherent risks if the base treatment 

(standard of care) is off-label. Drug interactions are less predictable in children compared 

with adults and according to Leeder (1996) certain drug-drug interactions may be 

quantitatively more important at one developmental stage compared to another. 

Furthermore, if the information on the base treatment is not deemed sufficiently adequate 

to introduce appropriate paediatric drug labelling, then from the drug-drug interaction 

perspective it could hardly be viewed as providing the basis for recommending the 

additional step of having a test treatment added on. As such, a cautious approach should 

be adopted when considering add-on designs at the early stage of the paediatric drug 

development programme although according to the FDA's Pediatric Advisory Committee 

(2000) it is generally acceptable to add-on placebo to the standard of care. They add a 

caveat that the study should normally include individual discontinuation criteria although 

this requirement suggests a concern in relation to lack of efficacy rather than the 

observation of unanticipated safety concerns. 
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Now, it is clear that, in relation to the choice of control group, the range of principles 

described in this sub-section above must be interpreted carefully when directed towards 

paediatric drug development. Moreover, many different phrases have been used in an 

attempt to describe the points of reference from which placebo should be judged if it were 

to be employed as a control group. These include: proven prophylactic. diagnostic. and 

therapeutic method; standard of care to which patients are entitled when not entered into 

clinical trials; approved or adequately studied therapies; and common~y accepted/ used 

therapy. However none of these really ties down whether the availability of off-label 

treatment precludes the use of placebo as a control. Although some of the terms would 

benefit from more precise wording to increase clarity, there is perhaps a stronger case for 

the introduction of alternate or additional principles that could be applied to account for the 

currently limited paediatric pharmacopoeia. For instance, perhaps it should be stated that 

the capacity to accumulate data on experimental treatments should not be restricted by the 

presence of off-label treatment? Furthermore, perhaps it should be stated that experimental 

treatments should not be penalised for failing to show statistical superiority in comparison 

with off-label treatments in cases where a placebo-controlled study is deemed unethical? 

Is it not unfair that the burden of superiority should reside with the experimental treatment, 

that has undergone rigorous testing for efficacy and toxicity, when the reference is 

unproven and potentially unsafe? In this instance approval could instead be granted 

according to the Schwartz, Flamant and Lellouch (1980) methodology discussed in 

Chapter Two. That is, the treatment comparison is reduced to a simple a decision making 

criterion whereby the treatment that is numerically superior is deemed successful 

(assuming a two-sided a set to 1 and p to 0). The study is then powered to control the r 

error - defined as the probability of reaching a conclusion with the wrong sign - that is, the 

recommendation of an inferior treatment. 
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In practice, due to the inherent flexibility contained within the current guidance, ethics 

committees playa key role through their interpretation of the principles laid down, their 

evaluation of available information on alternatives to placebo and in their ultimate 

determination of whether a proposed design is ethical or not. In this respect whether it is 

appropriate to use otT-label controls will depend upon the wider body of evidence 

available and it is difficult to be prescriptive, in this respect. Notwithstanding this, 

placebo controlled study designs are widely employed in practice in paediatric drug 

development and as a result the accumulation of information on paediatric drugs 

accelerates daily. Indeed as more information is obtained on the use of drugs in children 

through the use of adequate and well designed trials the issue of off-label prescribing will 

be reduced greatly and as a result some of the difficulties highlighted earlier in applying 

the general ethical framework will diminish accordingly. 

6.5.2 Long term follow up 

The follow up of subjects in paediatric clinical trials is an interesting topic owing to the 

potential for some treatments to atTect child development in an adverse way. In particular, 

the detection of latent etTects on growth and sexual maturation, the uncovering of events 

such as autism for which onset is difficult to establish and the ability to identify treatments 

which may be harmful genetic triggers. Historically a one-year follow-up period has been 

considered to be long-term but this is increasingly becoming to be regarded as inadequate 

and it has been reported that the FDA now plans to require a much longer follow-up of 

paediatric subjects. In some cases the FDA have requested 10 year follow up data in the 

form of five year data plus evidence that an infrastructure has been developed for longer 

tenn follow-up (D Murphy speaking at the FDA's Anti-infective Drugs Advisory 

Committee/Pediatric Subcommittee of23 April 2001 as reported in The Pink Sheet, 7 May 

2001). (This is indeed an area where the FDA can seem unreasonably strict. For instance 
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the FDA had requested a minimum six-month study in 35 girls with familial 

hypercholesterolemia but denied paediatric exclusivity as only five girls were strictly 

treated for six months; all received the treatment - 32 for 161 days or more. However in 

the FDA 'a view the pharmaceutical company should have allowed for drop-outs and 

should have treated for at least 180 days (Health News Daily, 21 June 2001 ).) For drugs 

recently approved by the FDA under the Best Pharmaceuticals for Children Act's 

paediatric exclusivity programme, the Office of Pediatric Therapeutics is now required to 

review all adverse events reported for one year following the date that exclusivity was 

granted (FDA, 2003). 

The potential scope of long-term follow-up is directed towards investigating the effects on 

maturation including growth velocities, academic performance, and the development of 

malignancies - although in general serious events should be identifiable within the first 

two years of therapy. For instance, there is evidence to support the view that the treatment 

of some childhood cancers - like leukaemia - increases the risk of future secondary 

malignancies, such as those pertaining to the breast, thyroid and brain (Neglia JP et ai, 

200 I). Furthermore, it has been reported by the Institute of Medicine (2003) that around 

25% of children who survive chemotherapy experience delayed severe or life-threatening 

adverse events impacting areas such as growth, fertility, heart function, muscle movement 

of cognitive activity (AP Online, 26 August 2003). Also the long term use of antibiotics 

for viral infections - particularly of the middle ear which have a high prevalence in young 

children - leads to bacterial resistance. However apart from the practical difficulties in 

observing subjects over a long period of time, a further problem is the confounding effects 

of environmental and lifestyle factors together with treatment and diagnostic 

advancements that have the potential to impact both underlying disease incidence and 

child development. For example, obesity has been on the increase in the US and 
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susceptible individuals are now developing type II diabetes earlier. Obesity itself can 

increase the risk of joint problems, asthma, hypertension and gall bladder disease. 

Traditionally children have not been screened routinely for diabetes, as the disease was 

uncommon in adolescents (F Diamond speaking at the 2nd Annual Conference on Obesity 

as reported in Associated Press Newswires, 17 May 200 I). Chronic treatment usually 

provides the greatest concern from a safety perspective - although the wrong treatment at 

the wrong time can also have long term consequence. For instance in the chronic 

treatment of eczema there are long-term treatment concerns with oral and topical steroids 

(thinning of skin, growth retardation) and topical corticosteroids (cataracts, glaucoma) to 

consider (R McAlister speaking at the 58th Annual Meeting ofthe American Academy of 

Dermatology as reported in PR Newswire, 10 March 2000). In oncology, as patients with 

cancer survive longer then delayed effects of treatment become more important and 

potentially new events may be observed - some of these may occur in follow-up periods 

but some may also occur in adulthood. Identification of delayed effects is important so 

that the impact can be minimised or prevented. Suggestions in the report by the Institute 

of Medicine (2003) - an arm of the US's National Academy of Sciences - include 

developing a guideline for follow-up, linking specialist sites and primary physicians, 

raising awareness of late effects that threaten cancer survivors and increasing research to 

prevent late effects (AP Online, 26 August 2003). 

Simply investigating mean changes in height and weight has on at least one occasion been 

deemed as being inadequate by the FDA who were concerned that the analysis of one and 

two year data had not accounted for differential growth expectations with regard to age 

and gender. In response the FDA reviewer suggested an approach whereby the height and 

weight of each child is measured through time with the resultant data compared with a 

standard growth chart. Predefined criteria would then be used to determine significantly 
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altered growth velocity on an individual subject basis (Phannaceutical Approvals 

Monthly, I May 2001). Alternatively the resulting derived percentile data could be used 

to compare treatment groups using analysis of covariance. However, the use of growth 

charts (or school chart for perfonnance) is not without problems since these are usually 

constructed from cross-sectional rather than longitudinal data and at best are applicable for 

short-term follow-up. Furthennore, there are no truly internationally accepted charts and 

most are country-specific - a particular problem for International clinical trials. Even 

within a country there is sometimes no single accepted standard. For instance, the Royal 

College of Paediatrics and Child Health fonned an expert consensus group to review the 

situation in the UK. They reported that such charts such should be regarded as references 

and not standards that define an optimum growth pattern. They state that clinically, head 

circumference and weight is used most intensively in infants while height is used between 

the ages of 5 and 15 years. The group focussed on four references (Tanner and 

Whitehouse, Gairdner-Pearson, Buckler-Tanner and UK 1990) highlighting the different 

within country options available and considered which ones were most appropriate for 

different variables and age groups. There final recommendation was that for most clinical 

purposes the UK90 (Freeman et ai, 1995) was the reference of choice (Royal College of 

Paediatrics and Child Health, 2002). In the US, Paediatric growth charts have been used 

since 1977 and have been developed (and revised in 2000) by the National Center for 

Health Statistics (2003). These are based on data originating from the National Health and 

Nutrition Examination Survey and have also been adopted internationally by the World 

Health Organisation (WHO). Given the limitation of growth references, simple analyses 

of the raw data - adjusted for baseline values, age and gender - may be the most 

appropriate approach in the randomised setting. However one has to be careful with 

missing data and imputation methods such as last observation carried forward have clear 

limitations. For instance an alternative approach could be to substitute data forward using 
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country specific growth references such that the subject remains on the same percentile of 

the curve following drop out. However this approach may also have limitations in areas 

such as asthma where it has been shown that although inhaled steroids negatively impacts 

height in the short-term, in the long-term the children catch-up with if conventional doses 

of the treatments are used (Doull, 2004). Body mass index (weightlheight2
) requires 

careful consideration since the growth charts are not monotonic with age in children, and 

in this respect analysis of the derived percentile data represents the best approach. 

Public sensitivity to the long-term (or delayed) effects of drug treatment in children should 

not be underestimated as illustrated by the current debate regarding the safety of the 

measles-mumps-rubella (MMR) vaccine. Introduced to the UK in 1988, MMR was 

implicated in 1998 by Dr Andrew Wakefield as a cause of autism (and inflammatory 

bowel disease) leading to a dramatic reduction in vaccine uptake. This was despite the 

results of a Finnish long-term follow-up study in 1.8 million subjects (who had received 

three million MMR doses) that showed no link and found that serious causally related 

adverse events were rare. The authors of the study concluded that the risks were greatly 

outweighed by the benefit of disease avoidance (Patja et ai, 2000). Indeed autism is a 

useful vehicle to highlight many of the pitfalls and problems associated with assessing 

long term safety. Autism is more common in boys and generally appears before the age of 

three years. Affected children have trouble communicating and interacting with others -

for instance they may not respond to their names, fail to make eye contact and engage in 

repetitive behaviour such as rocking and head-banging. In severe cases, children become 

aggressive or injure themselves. Autism has been recognised as a syndrome since 1943 but 

changes in diagnosis criteria - together with greater awareness - may have led to milder 

cases being identified over the years. These factors may be partly responsible for the 

increased disease prevalence that has been noted since the 1960s when the prevalence was 
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reported to be between 4 and 5 in 10,000 persons. In contrast, recent studies estimate the 

prevalence as 10 in 10,000 persons (Committee on Children with Disabilities, 2001). It 

has been suggested that the increase over the past decade in the UK is due to a change in 

the diagnosis of behavioural disorders. That is, while the number of children diagnosed 

with autism has increased per annum there has been a corresponding reduction in the 

number diagnosed with behavioural disorders. For instance, the inability to recognise faces 

may prove to be an objective early indicator of autism in children and may lower the limit 

of detection from 2 years of age to one (G Dawson speaking at the Annual Meeting of the 

Society for Research in Child Development (2001) as reported in Associated Press 

Newswires, 17 April 2001) 

Now, it is clear that autism has a genetic component since the rate of autism is about 0.2% 

or less but for siblings of person with autism it increases to about 3% while for identical 

twins the rate is 60% or more (Associated Press Newswires, 28 January 2001). However, 

rather than a single flawed gene (as is the case with Huntington's disease or cystic 

fibrosis), it seems more likely that a combination of genes together with one or more 

environmental factors increases susceptibility. It has also been suggested that autism may 

be caused by a defect in metal metabolism that leads to impairment in brain development 

with resulting hypersensitivity to toxic environmental substances (WJ Walsh, AUsman 

and J Tarpey speaking at the American Psychiatric Association Annual Meeting 2001 as 

reported in PR Newswire, 10 May 2001) 

Interestingly some vaccines (although not MMR) use thiomersal as a preservative which 

contains ethyl mercury, and since methyl mercury is known to cause traits similar to 

autism there was initial concern that this may be an environmental trigger. It also became 

apparent that the schedule of infant vaccination could lead to a cumulative exposure to 
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ethyl mercury that was in excess of the accepted threshold for methyl mercury. As a 

result, a review of the evidence was undertaken by the Global Advisory Committee on 

Vaccine Safety (GACVS) which advises the WHO. The GACVS concluded that since the 

halflife of ethyl mercury was very much shorter (1.5 hours) compared with methyl 

mercury (1.5 months) then relative exposure would be much reduced, and as a result the 

current data did not support concerns that the ethyl mercury contained in vaccines was 

unsafe. The GACVS did however encourage further research in this area (WHO, 2003). 

Interestingly thiomersal is to be excluded from all new vaccines in the US. 

In relation to vaccination, the Institute of Medicine Immunisation Safety Review 

Committee has suggested five factors that should be considered when investigating the 

link with autism. These are: evidence of causality; biological plausibility of the adverse 

event hypothesis; the likelihood of competing alternative hypotheses; the trade off 

between societal benefit and individual risk of vaccination; and the level of public concern 

about vaccines (K Stratton speaking at the Healthcare Resources and Service 

Administration's Advisory Commission on Childhood Vaccines (2000) as reported in 

Health News Daily, 8 December 2000). The debate is likely to continue for many years to 

come but it would come as no surprise to find that toxins of a metallic nature - from 

perhaps a number of sources - are among the environmental triggers. 

Randomisation is a key component in vaccine trials. As early as 1954, the Salk 

poliomyelitis vaccine was evaluated in the US using a hybrid trial design (Francis et aI, 

1955) that incorporated what was at the time a controversial randomised component 

«Meldrum, 1998). The trial was essentially split into two; a randomised design in over 

600,000 children in the first three grades of school (that is, aged 6 to 9 years) who were 

randomised to either vaccine or placebo; and an observed control design in over one 
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million subjects where children in the second grade (aged 7 to 8 years) received vaccine 

while children in grades two and three were followed up as untreated controls. Sites from 

II US states participated in the randomised study while sites from 33 states participated in 

the observed control study. 

The CHMP Notes for guidance on the clinical evaluation of vaccines 

(CHMP/VWP/I64653/2005, 2005) reinforces the importance ofthe RCT in evaluating 

vaccines. In this respect the control group could represent placebo or another vaccine. As 

usual the greatest degree of blinding should be incorporated that is practicably possible. 

However the regulatory authorities do not necessarily require the demonstration of 

protective efficacy - for instance, in conditions such as diphtheria and tetanus where 

immunological data are known to be predictive of infection protection. In other cases 

protective efficacy is simply not practicable - for instance, smallpox which was declared 

eradicated by the WHO in 1980, diseases for which the incidence is too low (such as 

brucellosis and Q fever) or disease outbreaks that are unpredictable or short-lived. (Note 

that the CPMP has issued specific guidance for the development of second generation 

vaccines for smallpox: Note for guidance on the development of vaccinia virus based 

vaccines against smallpox (CPMP/I100102, 2002). In this case the formation of a pock of 

appropriate size at the site of inoculation - that subsequently crusted over and scarred -

was historically the correlate with protection.) Some topical areas are particularly 

challenging in terms of demonstrating protective efficacy - for instance, protection against 

anthrax where there is no established immunological correlate with protection but where 

there exists the spectre of 'bio-terrorism induced' disease on a mass scale. Farrington and 

Miller (200 I) review the methods to evaluate vaccines in humans - including methods for 

post -registration studies. 
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Post-authorisation evaluation of vaccines is an important consideration for vaccines in 

terms of both efficacy and safety. Indeed the effectiveness of a vaccine can result from 

both direct protection of the individual and from indirect protection of the unvaccinated 

through herd immunity. (The effectiveness of a vaccine in the general population is 

governed by the uptake rate and if this is suitably high then the infectious agent will be 

unable to spread and then even those not vaccinated will be protected (Senn, 2003).) 

Consideration of efficacy also relates to duration of immunity. In terms of safety, one 

concern is simply that since such a large tranche of the community will be vaccinated, rare 

adverse events can translate into a not insubstantial frequency of individual occurrences. 

Furthennore since uptake is typically high and widespread within the target population, 

identifying controls retrospectively when potential safety concerns are raised is difficult. 

Pre-authorisation, the minimum requirement is that the CTD should be sufficient to 

reliably determine the nature and frequency of local and systemic adverse events 

occurring at afrequency > 1/1.000 (CHMPNWP/164653/2005, 2005). However it is 

acknowledged that a CTD based only on immunogenicity studies is unlikely to be able to 

identify rare events. 

Consequently there is a need to manage the introduction of new vaccines in a controlled 

manner to provide some framework for ongoing and future safety evaluation - that is, 

beyond the assessment of short-tenn events such as fever and injection site reactions. 

(Indeed the regulatory authorities have identified the need to have a Pharmacovigilance 

Plan to evaluate post-authorisation safety in a prospective manner 

(CHMPNWP/164653/2005,2005).) One potential design option is to use a "stepped

wedge" design. This design has been attributed Louis Molineaux, who introduced the 

concept around 25 years ago in the context of infant mortality and the assessment of anti

malarial treatments (Smith and Hayes, 1991). Essentially the idea is to randomise units to 
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vaccine in a stepwise manner such that each randomisation group has an incremental delay 

in receiving the vaccine. In effect, a crossover design where the time of crossover is 

randomised and the crossover is in one direction only - that is, no vaccine to vaccine. 

Typically the unit is a cohort of subjects - for instance, based on geographic region, 

investigator site, school etc., and in this respect there are similarities to cluster 

randomisation designs. In fact this design was used when the hepatitis B vaccine was 

introduced in the Gambia to 60,000 infants over a four-year period in the 1980s (Gambia 

Hepatitis Study Group, 1987). In this instance, there was a need to demonstrate the effect 

of vaccine on chronic liver disease, yet since the disease typically only manifests itself 20-

30 years following infection, the quandary was how to generate controlled data without 

delaying mass vaccination for decades. A national surveillance system was implemented 

with the aim of identifying new cases of hepatocellular cancer - and other chronic liver 

diseases - over a follow-up period of 40 years, while the ethical dilemma of restricted 

vaccination was negated since the vaccine was expensive and insufficient vaccine would 

have been available in the short-tenu to treat all newborns. In tenus of the randomisation 

procedure, every 3 months one of the existing 17 vaccination teams was selected at 

random (without replacement) to introduce the vaccine to their specific region, and the 

procedure continued until all teams had been selected. (The randomization was also 

stratified by ecological zone). In tenus of analysis it was envisaged that for the first 3 

month period, the I st cohort would be compared with the 2nd - 17th cohorts. Similarly for 

the 3-6 month period, the 1 st - 2nd cohorts would be compared with the 3 rd - 17th cohorts, 

etc. (Other potential analysis methods could include mixed models and generalized 

estimating equations.) 

The staggered introduction of vaccines in developed societies would be more controversial 

due to issues surrounding the denial of vaccine protection. However, vaccine uptake has 
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decreased in recent years - in particular following the controversy surrounding MMR. In 

a society where increasing numbers of parents are becoming more informed about clinical 

research and making their own judgements in terms of risklbenefit, it could be that a 

program of staggered vaccination would be deemed morally acceptable by many -

particularly for very rare diseases, or those only likely to appear through acts of 

bioterrorism. It might also be appropriate for vaccines against generally non life

threatening diseases such as chickenpox. In this respect although chickenpox vaccines 

exist and are routinely used in the US, their introduction in the UK has been much more 

more limited. Although such vaccines might prove popular if a mass programme were 

introduced in the UK, uncertainty over the risklbenefit ratio might provide an environment 

where staggered introduction was ethically acceptable using GP surgeries or regional 

health authorities. 

A non-randomised approach sometimes used to investigation of safety of vaccines is the 

use of case control designs. In this respect these are effectively a comparison of vaccine 

adopters versus non-adopters (Kirkwood et ai, 1997). However confounding is an issue as 

the groups may differ in many key aspects. Such investigations are also more suited to the 

investigation of specific events rather than multi-factorial safety investigations and are 

more retrospective in nature. 

In summary, the primary tool available for assigning cause to effect is randomisation -

even for delayed adverse events. With so many other factors potentially impacting long 

term outcome, the use of uncontrolled investigation is seriously flawed. Controlled 

investigation provides baseline data and prospective monitoring using precisely defined 

tools that enable direct comparisons to be made. Of course due to the almost infinite type 

of unrelated events that could occur once treatment has commenced - and in acute cases 
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once treatment has completed - false positive findings are a distinct possibility and the 

subsequent responsibility to investigate the biological plausibility of such findings should 

not be underplayed. However alternate solutions can only ever be presented as poor 

imitations of a casual solution. 

6.6 DISCUSSION 

Although paediatric drug development provides a series of unique challenges, the 

underlying requirements for well designed, well controlled and well conducted clinical 

investigation, remain key. Randomisation remains the best tool at the researchers' disposal 

to assign cause to effect and, in the absence of alternate approved treatments, placebo has 

a key role to play in determining the absolute effect of the test treatment and in advancing 

knowledge in relation to the paediatric pharmacopoeia. In many ways it is simply the case 

that the challenges of conducting drug development in adults are accentuated - doses 

levels and formulations need more careful thought. Furthermore the choice of control is 

more complicated while study conduct and follow-up is prolonged. Wilson (1996) lists 

four principles that all paediatric strategies should follow and it is difficult to argue with 

his view. Wilson's principles are: if a drug is to be used in children, then it must be tested 

in them; a dose for the child is central to paediatric therapeutics; immature clearance 

impacts on drug dose and hence on efficacy and toxicity in children; and clinical 

investigation of drugs in pediatrics applies a controlled trial in the study design. However 

from a pragmatic perspective, a key success factor in paediatric drug development is 

obtaining access to both paediatric experience and knowledge and also to the associated 

infrastructure. Driven from the US, a paediatric infrastructure is now spreading and the 

hope is that the therapeutic orphan will soon find a home. Indeed as a sign of the changing 

times, even thalidomide is being investigated again and this time in the paediatric 
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population - the indication, a rare immune system disease called Langerhans Cell 

Histiocytosis (Associated Press Newswires, 28 February 2001). 
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CHAPTER SEVEN: DISCUSSION 

Li(V the Pink. she 

Turned to drink. she 

Filled up with paraffin inside 

And despite her medicinal compound 

Sadly Picca-Lily died. 

Up to Heaven 

Her Soul ascended 

All the church bells they did ring 

She took with her medicinal compound 

Hark the herald angels sing. 

7.1 INTRODUCTION 

In the following section of this Discussion chapter, a problematic therapeutic area has been 

selected to illustrate some of the practical challenges faced when addressing sub

populations and subgroups. This chosen area is the treatment of subjects with febrile 

episodes of neutropenia. In this section, the findings and ideas developed during the 

course of this Research Thesis will be used to offer solutions that are regulatory compliant 

and that would enable reliable and robust conclusions to be drawn from the clinical trial 

data. These solutions will cover both design and analysis. In the third section of this 

chapter, modifications to the text of current regulatory guidance will be proposed based on 

the observations made in earlier chapters - in particular chapters 4 and 5. In this respect 

the aim is to identify omissions, improve consistency and increase clarity. The fourth 

section looks to the future and the challenges facing drug developers in the areas of sub

populations and subgroups - specifically in relation to the use of genetic infonnation. In 

the fifth and final section, some concluding thoughts will be offered in relation to the 

generalisation of clinical trial data to clinical practice. In this respect individualised 

treatment will be contrasted to universal remedies. 
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7.2 A CASE STUDY: NEUTROPENIA 

Febrile neutropenia is a particularly difficult therapeutic area and, from a statistical 

perspective, is fraught with many of the challenges highlighted earlier in this Research 

Thesis in relation to analysis populations, subgroups and the control of potential bias. In 

this section the aim is to identify some of the challenges and to propose tactics for valid 

and robust statistical analyses. 

7.2.1 Background 

Neutropenia is characterised by haematological abnormalities in the blood due to 

underlying disease, treatment regimen or congenital abnormality. Subjects are formally 

diagnosed as being neutropenic if they have <500 polymorphonuclear leukocytes/mm3 in 

their blood or if the neutrophil count is between 500 and 1000 neutrophils/mm3 but the 

count is expected to drop to <500 because of antecedent therapy (Hughes et ai, 1992). 

Such subjects are susceptible to infection and a febrile episode in the neutropenic subject is 

defined as the presence of fever - that is, temperature >38.3 °C. Broad-spectrum anti

infective treatments (often given via the intravenous route) have been found to reduce 

morbidity and mortality markedly - despite the fact that around 50% to 75% of cases are 

categorised as fever of unknown origin where a pathogenic cause is never identified 

(Hughes et ai, 1992). That is, no pathogen is detected in the various blood samples taken 

from the subject. With regard to confirmatory clinical trials, it is standard practice to 

employ an active control group due to the serious nature of the disease and these studies 

are designed to show non-inferiority of the test treatment to a reference treatment. Both 

clinical and bacteriological responses are considered important and both are reduced to a 

straightforward dichotomous outcome - that is, treatment success or failure - for the 

purpose of treatment comparison. 
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With regard to guidance, the Report of a Consensus Panel from Immunocompromised Host 

Society (Consensus Panel IHS, 1990) makes particular interesting reading from a statistical 

perspective. This report published in 1990 was an attempt to address standards in the 

design. ana~vsis and reporting of clinical trials on the empirical antibiotic management of 

the neutropenic patient. The report was subsequently used as the basis for the document 

entitled General guidelines for the evaluation of new anti-infective drugsfor the treatment 

offebrile episodes in neutropenic patients (Hughes et ai, 1992) which was sponsored by 

the FDA. Although broader anti-infective guidance was later published, these documents 

provide an interesting insight into the contrast between clinical and statistical thinking -

much of which still remains today. 

7.2.2 Blinding 

Whilst recognising the value of blinding the IHS did not regard blinding as a mandatory 

requirement - taking the view that this was often complicated and impractical, and ifused 

required an unblinded observer to monitor safety. As highlighted above, studies in febrile 

neutropenia employ an active control group rather than placebo - although perhaps there 

has been under use of placebo add-on studies. Blinding is indeed a challenge in these 

studies since competing treatments are often given intravenously and dosing frequency can 

differ. However blinded or partially blinded studies are possible, and it is important that 

safety is assessed without knowledge of the treatment received, whilst ensuring that 

provision exists for emergency unblinding. If for practical reasons a blinded study cannot 

be undertaken, central randomisation is key to ensuring control of selection bias in the 

assignment of subjects to randomised treatment. 
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7.2.3 Fac/ors known to influence outcome 

The IHS identifies the degree and duration of neutropenia as affecting the risk of infection 

but actually recommends stratification by underlying cancer (leukaemia versus sold 

tumour) and age (paediatric versus adult subjects) since these two variables are associated 

with degree and duration and are more reliably recorded pre-randomisation. Other 

potential factors are also indicated. although baseline pathogen presence and species -

although naturally appealing - are impractical since these are not usually known prior to 

the start ofrandomised treatment (as discussed in Chapter Two). The IHS warns against 

over-stratification and a particular problem is stratification by study centre since individual 

centres frequently randomise just a few SUbjects. Another factor to consider is that 

confirmatory studies for world-wide drug registration usually require centres from multiple 

countries and in these different countries the type and resistance potential of pathogens 

varies. (Indeed this is the very reason for conducting multi-centre studies in neutropenia -

that is. to ensure that the conclusions are geographically applicable in a broad sense - and 

in recent years the advent of Good Clinical Practice (lCH E6. 1996) in developed countries 

has even led to the FDA agreeing to accept pivotal data generated outside the US. In fact it 

is now commonplace in the European Union to conduct pan-European studies extending to 

countries such as Israel. Russia. Poland, Turkey - and even as far as to Australia and South 

Africa. In some cases. US and European centres are included in the same study although it 

is rare to find countries from the Far East - such as Japan and China - combined with 

European or US centres in the same trial.) Hence one appropriate design tactic is to 

stratify a study by underlying cancer and country but not centre. (Note that Paediatric 

studies are usually conducted separately and require additional stratification by age 

category as discussed in Chapter Six.) 
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7.2.4 Randomised more than once 

One of the more bizarre recommendations of the IHS is the encouragement of the inclusion 

of multiple episodes of febrile neutropenia originating from the same subject in a clinical 

trial. That is. it recommends protocols that allow subjects to re-enter the trial and be re

randomised an unlimited number of times. Their view is that each episode of neutropenia 

is clinically independent of the last. For instance, neutropenia is often associated with the 

effects of chemotherapy in cancer, where each cycle of chemotherapy has a short-term 

impact on the immune system resulting in increased vulnerability to bacteria. In this 

respect, an infection may occur before a subject's immune system recovers but the 

invading species of bacteria may well differ from episode to episode. Although clearly 

independent to some extent, factors such as the pharmacokinetic profile of the drug in the 

subject. susceptibility to toxic events, and the simple fact that the subject survived the first 

episode. is evidence enough that the response second time around will not be independent 

of the first result. (Indeed in one study the author was involved with, a subject was re

entered 8 times giving 9 separate randomisations!). However from a clinical perspective, a 

study that does not allow the re-entry of subjects generates independent data but fails to 

represent true clinical practice. To reconcile the clinical and statistical perspectives some 

solutions have been proposed including the re-entry of subjects without re-randomisation. 

In this case the subject receives the same randomised treatment each time but only the first 

randomised episode is included and the primary analysis population - subsequent treated 

episodes providing valuable information on consistency of response and the development 

of bacteriological resistance. Other options include randomising subjects to a sequence of 

treatments such that re-entered subjects cross-over providing in addition an informal subset 

of subjects who have received both treatments. 
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7.2.5 Primary ana~vsis populations/sets 

In addition to the issues discussed in Sub-section 7.2.4, neutropenia - and indeed anti

infective indications in general - raise some interesting challenges regarding the definitions 

of analysis populations (or to use the ICH E9 term, analysis sets). For Clinical response, 

the primary analysis population is reasonably straightforward and according to the 

arguments presented in Chapter Five for non-inferiority, the ITT principle can be used (as 

described in Chapter Two) to define the Full Set. In this respect, the analysis population 

would be the strict "all subjects randomised, as randomised". 

In Chapter Five. a recommendation was made regarding the use of an eligible analysis 

population for non-inferiority and this approach is directly applicable to the corresponding 

Bacteriological response which is derived from the individual pathogen data. Although 

blood samples are taken from subjects prior to randomisation in febrile neutropenia, the 

results are not usually available for 48 hours (for it takes this long to culture the bacteria). 

It is nol uncommon therefore to find that no pathogen has been cultured for a randornised 

subject and as such it is impossible to assign a bacteriological response to treatment. (This 

can be further complicated if subjects receive prophylactic antibiotics prior to 

randomisation since these can mask a pathogen present in the sample and can increase the 

risk that no baseline pathogen is identified.) This very issue was the subject of world-wide 

debate in the early 1990' s during which time there was growing recognition of the need to 

consider clinical and bacteriological responses to treatment separately. As a result a 

consensus was reached that clinical outcome should be evaluated using all randomised 

subjects using the ITT principle, while bacteriological response would be evaluated in the 

sub-population of subjects who had at least one pathogen identified from the baseline 

sample (sometimes referred to as a modified ITT population). The use of the ITT principle 

for clinical outcome recognised the fact that if in practice subjects were treated on the basis 
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of clinical signs and symptoms of infection then there was a need to answer the pragmatic 

question as to how the treatments compared in practice. In contrast the analysis of 

bacteriological outcome was viewed as an explanatory question - comparing treatments 

with regard to microbiological effect. Interestingly, Gillings and Koch (1991) have 

recommended a further restriction in relation to resistant pathogens. According to their 

position. including subjects in an lIT analysis with pathogens known to be resistant to 

randomised treatment is not useful. However it is not clear why Gillings and Koch hold 

this view since resistance is clearly treatment related and subjects are usually randomised 

prior to having knowledge of the type of pathogen present. Furthermore, one could argue 

that restricting the analysis population to only those subjects who have pathogens present 

that are susceptible to both study treatments (test and reference) is to some extent 

uninformative since both treatments should perform well in these cases. Indeed it is the 

very fact that some newer treatments have a broader spectrum of activity than older 

treatments that is of interest in the early treatment of high-risk subjects in whom a 

pathogen has yet to be identified. 

7.2.6 Protocol "iolations and missing data 

Due to the complicated nature of these clinical trials, procedural non-compliance, subject 

withdrawal and missing data are relatively common. In particular, subjects who are not 

responding to randomiscd treatment will tend to have another antibiotic added by the 

Investigator within a short timeframe. In this eventuality, subjects are regarded as 

treatment failures according to protocol. Another feature is that although short-term 

response (72 hours post randomisation, say) is evaluated, long-tenn response is considered 

to be of greater importance. with the increased risk of loss to follow up. Inevitably 

therefore, a pnx.-OOure needs to be employed to account for, and handle, missing data. One 

approach has been to categorise subjects with missing outcomes as failures and, from 
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Chapter Two (Sub-section 2.3.3), it can be seen that this approach will lead to an increase 

in bias in the presence of differential misclassification when tr, = tr, = tr and 1f ~ 1 (as is 

the case in anti-infective studies), since E(p; - p;) = tr(B, - B,). However, from a 

regulatory perspective, this may be viewed as advantageous since it is likely to maximise 

the difference between treatments and may make it harder to demonstrate non-inferiority -

unless of course the misclassification rate is higher in the reference treatment group, in 

which case the bias will actually favour the test treatment. An alternative approach is to 

carry forward the response assigned at short-term follow-up to long-term follow-up. This 

again highlights the importance of blinding to ensure that the long-term follow-up of 

subjects is unbiased, and the need for sensitivity analyses to ensure that the conclusions are 

largely unaffected by the data conventions chosen. 

7.2.7 Statistical ana~vsis - including interactions and subgroups 

In sub-section 7.2.3, underlying cancer (leukaemia versus sold tumour) and age (paediatric 

versus adult subjects) were identified as baseline factors that are known to influence the 

risk of infection - although the expectation is that, in practice, paediatric subjects would be 

the subject of a separate study. Country was also highlighted as a potential source of 

influence as bacterial resistance patterns can vary from country to country. Furthermore, 

although it was shown that a priori it was not possible to stratify by pathogen status (at 

least one identified pathogen versus no pathogen identified), retrospective stratification is 

feasible. Indeed it would be expected that the response to treatment would be influenced 

by whether a pathogen was confirmed to be present or not. The objective of the study 

would most likely to be to demonstrate non-inferiority of the test treatment to the reference 

treatment and a non-inferiority margin would have been pre-selected to compare the 

treatments with respect to the proportion of successes or cures. As shown in Chapter Five, 

the most appropriate model to compare treatments is the odds ratio formulation, since 
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conditioning on covariates is straightforward and the log odds ratio is not bounded like the 

difference in proportions. Therefore using a margin specified in terms of the log odds ratio 

the primary analysis would be performed using a logistic model including the design 

features country and underlying cancer - and potentially pathogen status also for Clinical 

response. Non-inferiority would then be investigated by comparing the lower 95% 

confidence limit for the odds ratio with the selected margin and if the limit were greater 

than the margin then non-inferiority would be claimed. (Refer to Chapter Five for details 

of the underlying statistical methodology.) 

The primary investigation of the consistency of treatment effect within pre-specified 

subgroups - that is, underlying cancer and country - would be achieved by fitting a 

treatment by factor interaction tenn to the model - separately for each factor. Now, 

although the overall study objective is non-inferiority, the test for the difference between 

the treatment differences essentially has a null hypothesis of no interaction. However as 

documented in Chapter Four, a preferable approach when investigating treatment by 

subgroup interactions might be to apply a symmetric equivalence margin for the interaction 

parameter. For instance a margin log(m) equal to one half of the selected non-inferiority 
2 

margin, m, on the log scale. Now, the interaction between treatment and underlying cancer 

would be quite straightforward since the factor has just two levels. However for the 

interaction between treatment and country, the number of levels could be quite large and 

an arbitrary base country would be required to enable estimates of the parameters to be 

constructed. As suggested in Chapter Four (Figure 4.1), it would be informative to present 

the data graphically (estimate of interaction parameter with 95% confidence interval versus 

the two interaction margins). For each estimate, if the confidence interval did not include 

zero then the given contrast would, of course, be statistically significant at the two-sided 

5% level. (Note, that the likelihood ratio or standardised range test, could be used to 
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detennine whether a statistically significant interaction were qualitative and quantitative.) 

However, as suggested in Chapter Four, a more informative approach might be to calculate 

the posterior probability that the interaction parameter is contained within the symmetric 

margins ( - 10g~m) ,+ 10g~m) ). This would show the level of support for the conclusion 

that the treatment effect is consistent between pairwise levels of the factor. 

To supplement these interaction analyses, it would also be appropriate to construct a 95% 

confidence interval for the log odds ratio within each subgroup and to present this 

alongside the overall treatment comparison with the non-inferiority margin as a point of 

reference. (Note that the estimate and confidence interval for the overall treatment 

comparison should be adjusted for the factor concerned since, as shown in Chapter Five, 

the unadjusted estimate of the log odds ratio will tend to be diluted towards zero if the 

factor impacts outcome.) Figure 7.1 shows how this might be presented. Now, if the 

lower confidence limit for each subgroup is actually >-Iog(m), then this would indeed 

provide robust evidence that the test treatment was non-inferior to the reference treatment 

in all subgroups. However this is an unrealistic expectation - particularly as the number of 

levels of the factor increase. The directional advantage approach discussed in Chapter 

Two is an alternative tactic or perhaps even a second level step in determining the degree 

of robustness. In this case, each subgroup must satisfy the directional advantage criterion 

such that the point estimate must be >-log(m); as is the case in Figure 7.1. 
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Figure 7.1. Presentation of subgroup data for non-inferiority study (log odds ratio and 95% 

confidence interval). 
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In the next section of this chapter, the observations of earlier chapters - in particular 

chapters 4 and 5 - will be considered in relation to modification of specific sections of 

current regulatory guidance. 

7.3 GUIDANCE AMENDED 

Throughout this research thesis, reference has been made to regulatory guidance and in a 

number of instances, omissions and inconsistencies have been highlighted. In this section 

modifications to the text of specific sections of the statistics regulatory guidelines will be 

proposed (bolded text), beginning with ICH E9: Statistical principles for clinical trials. In 

this case proposed modifications relate to the impact of covariate adjustment on estimate 

precision for the broader class of generalised linear models together with an 

acknowledgement of the impact on non-inferiority trials, the role of analysis sets, and the 

importance of confidence intervals in the interpretation of interactions. 
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Section 1.2: Scope and Direction 

CURRENT: Many of the principles delineated in this guidance deal with minimising 

bias (see Glossary) and maximising precision. 

PROPOSED: Many of the principles delineated in this guidance deal with minimising 

bias (see Glossary) and maximising efficiency. 

Section 5.2: Analysis Sets 

CURRENT: Decisions concerning the analysis set should be guided by the following 

principles: 1) to minimise bias, and 2) to avoid inflation of the type I error. 

PROPOSED: Decisions concerning the analysis set should be guided by the following 

principles: 1) to control the direction of bias, and 2) to avoid inflation of 

the type I error. 

Section 5.2.3: Roles of the Different Analysis Sets 

CURRENT: The full analysis set and the per protocol set play different roles in 

superiority trials (which seek to show the investigati.onal product to be 

superior), and in equivalence or non-inferiority trials (which seek to show 

the investigational product to be comparable, see section 3.3.2). In 

superiority trials the full analysis set is used in the primary analysis (apart 

from exceptional circumstances) because it tends to avoid over-optimistic 

estimates of efficacy resulting from a per protocol analysis, since the non

compliers included in the full analysis set will generally diminish the 

estimated treatment effect. However, in an equivalence or non-inferiority 

trial the use of the full analysis set is generally not conservative and its role 

should be considered very carefully. 

PROPOSED: In superiority trials the full analysis set is used in the primary analysis 

(apart from exceptional circumstances) because it tends to avoid over

optimistic estimates of efficacy since the non-compliers included in the 

full analysis set will generally diminish the estimated treatment effect. 

However, in an equivalence or non-inferiority trial (which seek to show 

the investigational product to be comparable, see section 3.3.2) the use of 

the full analysis set is generally not conservative and its role should be 

considered carefully. In particular the exclusion of subjects from the 

fuD analysis set on the basis of pre-randomisation violations - such as 
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subjects without the specified disease severity - should be considered 

to further the opportunity to detect true treatment differences. The 

per protocol set is typically used in a supportive role for both 

superiority and equivalence or non-inferiority trials since it is open to 

bias through subject exclusion - the direction of which is difficult to 

predict. 

Section 5.3: Missing Values and outliers 

CURRENT: None 

PROPOSED: Addition of text from the Points to Consider on Missing Data (CPMP, 

200 I): It is considered of particular importance to ensure that the 

selected method is a conservative approach and does not favour the 

study's working hypothesis (intentionally or unintentionally). 

Section 5.5: Estimation. Confidence Intervals and Hypothesis Testing 

CURRENT: A description should be given of any intentions to use baseline data to 

improve precision or to adjust estimates for potential baseline differences, 

for example by means of analysis of covariance. 

PROPOSED: A description should be given of any intentions to use baseline data to 

improve relative efficiency or to adjust estimates for potential baseline 

differences. Careful consideration in the randomised setting should be 

given to the distinction between models (such as analysis of 

covariance) where covariate adjustment tends to increase the 

precision of the estimate and those (such as logistic regression) where 

precision is decreased, but efficiency is increased overall. 

Section 5.7: Subgroups. Interactions and Covariates 

CURRENT: Pre-trial deliberations should identify those covariates and factors expected 

to have an important influence on the primary variable(s), and should 

consider how to account for these in the analysis in order to improve 

precision and to compensate for any lack of balance between treatment 

groups. 

PROPOSED: Pre-trial deliberations should identify those covariates and factors expected 

to have an important influence on the primary variable(s), and should 
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consider how to account for these in the analysis in order to improve 

efficiency and to compensate for any lack of balance between treatment 

groups. 

Section 5.7: Subgroups, Interactions and Covariates 

CURRENT: The treatment effect itself may also vary with subgroup or covariate - for 

example, the effect may decrease with age or may be larger in a particular 

diagnostic category of subject. In some cases such interactions are 

anticipated or are of particular prior interest (e.g. geriatrics), and hence a 

subgroup analysis, or a statistical model including interactions, is part of 

the planned confirmatory analysis. In most cases, however, subgroup or 

interaction analyses are exploratory and should be clearly identified as 

such; they should explore the uniformity of any treatment effects found 

overall. In general, such analyses should proceed first through the addition 

of interaction terms to the statistical model in question, complemented by 

additional exploratory analysis within relevant subgroups of subjects, or 

within strata defined by the covariates. 

PROPOSED: The treatment effect itself may also vary with subgroup or covariate - for 

example, the effect may decrease with age or may be larger in a particular 

diagnostic category of subject. In some cases such interactions are 

anticipated or are of particular prior interest (e.g. geriatrics), and hence a 

subgroup analysis, or a statistical model including interactions, is part of 

the planned confirmatory analysis. In most cases, however, subgroup or 

interaction analyses are exploratory and should be clearly identified as 

such; they should explore the uniformity of any treatment effects found 

overall. In general, such analyses should proceed first through the addition 

of interaction terms to the statistical model in question, complemented by 

additional exploratory analysis within relevant subgroups of subjects, or 

within strata defined by the covariates. For both planned and 

exploratory analyses, confidence intervals are an important aid to the 

interpretation of subgroup and interaction analyses. 

Section 5.7: Subgroups, Interactions and Covariates 

CURRENT: None 
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PROPOSED: In contrast to analysis of covariance models, the inclusion of 

covariates associated with the outcome for some commonly used 

generalised linear models (e.g. logistic and proportional hazards 

models) will tend to decrease the precision of the estimated treatment 

difference rather than increase it. However efficiency will tend to 

increase since the corresponding estimate of the treatment difference 

will tend to increase and more than counterbalance the corresponding 

decrease in precision. 

Addition of the following text from the Points to Consider on Adjustment 

for Baseline Covariates (CPMP,2003). In such models the adjusted 

parameters and unadjusted parameters have different interpretations: 

it is essential that in any presentation of adjusted analyses, the 

applicant clearly and precisely explains the meaning of the estimated 

effect size. 

Careful consideration should be given to the use of such models in 

non-inferiority designs where a decrease in precision but increase in 

the estimate may impact the interpretation of the confidence limits in 

comparison with an unadjusted analysis. 

The second regulatory guideline considered is the Points to Consider on Adjustment/or 

Baseline Covariates (CPMP, 2003) where proposed modifications relate to the absence of 

a reference to non-inferiority designs, the impact of covariate adjustment on estimate 

precision for the broader class of generalised linear models, and the use of confidence 

intervals to interpret interaction analyses. 

Section 11.1: Association with the Primary Outcome 

CURRENT: Adjustment for such covariates generally improves the efficiency of the 

analysis and hence produces stronger and more precise evidence (smaller 

p-values and narrower confidence intervals) of an effect. 

PROPOSED: Adjustment for such covariates generally improves the efficiency of the 

analysis and hence produces stronger evidence (smaller p-values) of an 
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effect. 

Section 111.1: General considerations 

CURRENT: The nature and the number of covariates included in the analysis may 

affect the interpretation ofthe analyses, especially in non-linear models. 

In such models the adjusted parameters and unadjusted parameters have 

different interpretations: it is essential that in any presentation of adjusted 

analyses, the applicant clearly and precisely explains the meaning of the 

estimated effect size. 

PROPOSED: The nature and the number of covariates included in the analysis may 

affect the interpretation of the analyses, especially for the broader class 

of generalised linear models - including logistic regression and Cox

regression. In such models the adjusted parameters and unadjusted 

parameters have different interpretations: it is essential that in any 

presentation of adjusted analyses, the applicant clearly and precisely 

explains the meaning of the estimated effect size. 

For logistic and Cox models, adjustment for covariates associated with 

the outcome will tend to decrease the precision of the estimate of 

treatment difference although efficiency will tend to increase overall 

since the corresponding estimate of the treatment difference will 

increase. Careful consideration should be given to non-inferiority 

designs where a decrease in precision but increase in the estimate may 

impact the interpretation of the confidence interval in comparison 

with an unadjusted analysis. 

Section IV.3: Treatment by covariate interaction 

CURRENT: Tests for interaction often lack statistical power and the absence of 

statistical evidence of an interaction is not evidence that there is no 

clinically relevant interaction. Conversely, an interaction cannot be 

considered as relevant on the sole basis of a significant test of interaction. 

Assessment of interaction terms based on statistical significance tests is 

therefore of little value. 

PROPOSED: Tests for interaction often lack statistical power and the absence of 

statistical evidence of an interaction is not evidence that there is no 
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clinically relevant interaction. Conversely, an interaction cannot be 

considered as relevant on the sole basis of a significant test of interaction. 

Assessment of interaction tenns based on statistical significance tests is 

therefore of little value and confidence intervals should be used to aid 

clinical interpretation. 

The third regulatory guideline considered is the Points to Consider on Switching between 

Superiority and Non-inferiority (CPMP, 2000) where proposed modifications relate to the 

choice of analysis sets. 

Section IV .1.4 and Section IV .2.3: Choice of analysis set 

CURRENT: In a superiority trial the full analysis set, based on the ITT (intention-to

treat) principle, is the analysis set of choice, with appropriate support 

provided by the PP (per protocol) analysis set. In a non-inferiority trial, 

the full analysis set and the PP analysis set have equal importance and their 

use should lead to similar conclusions for robust interpretation. A switch 

of objective would require this difference of emphasis to be recognised. 

PROPOSED: Since the 9S% confidence interval for the treatment difference is 

central to the interpretation of the trial, and once the data are 

observed it is only the conclusion that that may change and not the 

confidence interval itself, it is important to address prospectively the 

statistical conventions (e.g. handling missing data) used to construct 

the confidence interval. Typically it is important to ensure that the 

selected conventions produce a conservative approach that does not 

favour the study's working hypothesis. However switching the 

objective of the comparison from non-inferiority to superiority (or 

vive versa) leads to a juxtaposition that must be recognised. 

In a superiority trial the full analysis set, based on the lIT (intention-to

treat) principle, is the analysis set of choice while in a non-inferiority 

trial the use of the full analysis set is generally not conservative and its 

role should be considered carefully. In particular the exclusion of 

subjects from the full analysis set on the basis of pre-randomisation 
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violations - such as subjects without the specified disease severity -

should be considered to further the opportunity to detect true 

treatment differences. The per protocol set is typically used in a 

supportive role for both superiority and non-inferiority trials since it 

is open to bias through subject exclusion - the direction of which is 

difficult to predict. 

Carefully chosen analysis sets should be selected anticipating a 

possible switch in objective, and confidence intervals produced from 

these sets should lead to similar conclusions for robust interpretation. 

The Points to Consider on Missing Data (CPMP, 2001) and Points to Consider on 

Multiplicity issues in Clinical Trials (CPMP, 2002) are considered adequate and no text 

modification is proposed. The Points to Consider on Application with 1.) Meta-analyses 

and 2.) One Pivotal study (CPMP, 2001) is less relevant to this research thesis and is not 

considered in the context of the observations made in earlier chapters. 

In the fourth section of this chapter the focus switches to future challenges facing drug 

developers - in particular the investigation oftreatment differences based on genetic make-

up. 

7.4 THE BRAVE NEW WORLD OF GENETICS 

The next logical step with regard to the subdivision of subjects and the investigation of the 

consistency of effect between subgroups is inevitably the use of genetic infonnation in 

drug development. In this respect it is important to distinguish phannacogenetics - which 

investigates the potential for interaction between specific genes and drug treatments - from 

phannacogenomics - which targets the inheritable response to drugs over the entire 

genome. According to Reidenberg (2003), Science is continuing to take patients with a 

disease. to stratify them into smaller and smaller groups of increasingly more 
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homogeneous individuals, and then to develop drugs specific for these smaller groups of 

more homogeneous individuals. Such homogeneity implies genetic homogeneity - weB at 

least on a specific gene or two! For instance, it is has been estimated that genetic 

differences that encode the metabolising enzymes, transporters and targets of drugs may 

produce between 20% to 95% of the variation in drug response between subjects -

although typically it is the actual interplay between many genes that is key (Evans and 

McLeod, 2003). However according to Senn (1999), we commonly underestimate pure 

random within patient variation and such within-patient variation cannot, by definition. be 

genetic - and in order to identify the relevant components of variation, cross-over designs 

using multiple periods must be used. Indeed with parallel group designs Senn (200 I) 

shows that it is impossible to distinguish the main effect of subject from both the subject 

by treatment interaction (in effect the upper bound for the genome by treatment 

interaction) and the within subject error. (Investigating subgroup effects (sex or a factor 

based on a specific gene, for instance) can separate out some of the variation in relation to 

subject and the subject by treatment interaction, however.) 

The real goal of the many proponents of such genetic sub-division is in fact individualised 

treatment; a Promised Land where specific drugs are developed for specific patients and 

where all effects are known - efficacy without toxicity, war without tears. Perhaps, even a 

land without statisticians, where the likelihood, P(evidence I hypothesis), becomes purely 

deterministic [P(e I h) = 1] and there is no need for parallel group designs let alone ones of 

the multi-period, cross-over variety. However the element that is frequently lost in this 

debate is best illustrated by considering the challenges faced when developing drug 

treatment for children. As described in Chapter Six, notwithstanding the formulation 

issues, the appropriateness of a particular drug regimen varies enormously according to the 

age and developmental maturity of the subject. Although this variability is at it greatest 
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when the child is very young, the modification of dose and indeed treatment continues into 

old age - when liver, renal and other functions deteriorate. Drugs also interact with others 

drugs and concurrent diseases - they interact sometimes with what you eat and when you 

eat it. Physical activity, exposure to infectious diseases and viruses can all have an impact. 

However during a life a constant physiological change and environmental bombardment 

the one thing that remains a constant is your genetic make-up. In essence therefore, drugs 

treatments are already somewhat tailored throughout life in the absence of genetic 

variability, and the use of genetic information simply represents a further opportunity for 

refinement. Indeed if any technique can be used to tailor treatment to individual subjects it 

is the use of pharmacokinetic monitoring in these treated subjects. A couple of other notes 

of caution are required for those seeking the Promised Land. Firstly, since cause and effect 

are related to how quickly a drug is absorbed into the body and how quickly - and in what 

form - it is subsequently removed, subjects that achieve greater efficacy may also be at risk 

of greater toxicity. This is particularly the case for drugs with a narrow therapeutic 

window - as described in Chapter One. Secondly from a purely practical standpoint, 

hospitals and surgeries find it difficult enough to prescribe or administer the correct drugs 

and doses for even straightforward regimens. For instance, over 6 months, 616 (5.7%) 

mistakes out of 10,778 written medication orders for children were detected at two US 

hospitals - the most common being a misplaced decimal place (Kaushal et ai, 2001). 

Individualised treatment therefore represents an added level of complexity that current 

administrative systems would find seriously challenging. 

Perhaps the initial utopian view is changing however, with sanity and realism beginning to 

return to drug development. According to Roses (2000), The goal of pharmacogenomics is 

to account Jor and minimize interindividual variability in drug response, thus allowing 

clinicians to enhance the efficacy and minimize the toxicities associated with drug therapy. 
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By considering the role of multiple genes, the field of pharmacogenomics seeks to divide a 

given population into smaller, less variable, more predictable subgroups, which enables 

clinicians to individualise drug therapy. Furthennore, from the regulatory perspective the 

expected potential for the incorporation of genetic information in drug development is 

expressed through the thoughts of Janet Woodcock from US's Center for Drug Evaluation 

and Research (CDER). She states that: Through pharmacogenetics, hopefillly, we will 

predict who will respond well to a drug. In addition, we want to be able to weed out 

people who will have serious side effects. (Washington Drug Letter, 30 June 2003). The 

aim, therefore. is to establish links between specific genetic sequences and specific drug 

reactions that are. according to Woodcock, dependable andfully researched. These more 

pragmatic statements suggest therefore that rather than expecting new tailored-made 

treatments for individuals to be developed, the expectation is that only simple refinements 

to the labelling of current treatments is envisaged. 

Of course statisticians have been using genetic information routinely in clinical research 

for many years through the investigation of the differential effects of gender. Furthermore, 

drug labelling has sometimes been adjusted to account for these observed differences. 

However it is true to say that there is indeed evidence of the increasing influence of 

genetics in drug development and labelling. For instance, the treatment of leukaemia with 

6-mercaptopurine (6MP) can lead to severe myelosuppression at standard doses in the one 

in 300 people who have an extreme deficiency in the enzyme TPMT. The labelling will be 

amended as a result to state that a genetic test exists to identify those subjects who carry 

the gene on both chromosomes and that significant dose reduction and close monitoring is 

advised. For those heterozygous subjects (one in ten who carry the TPMT deficiency on 

just one chromosome) who produce less TPMT than normal, standard doses remain 
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acceptable (Pediatric Oncology Subcommittee of the FDA's Oncologic Drugs Advisory 

Committee (July 2003) as reported in Washington Drug Letter, 21 July 2003). 

Like gender, race is an interesting area in relation to genetics since it is know that 

treatments sometimes have different effects in different races. For instance, two asthma 

drugs containing salmeterol required labelling changes to highlight an increased risk of 

life-threatening asthma attacks and death with these drugs in African-Americans (FDA as 

reported in The Wall Street Journal, 15 August 2003). However even though race is 

clearly of a genetic nature, confounding genes may actually prove to be a better predictor 

of outcome. For example, it has been found that the response to J3-blockers varies with 

genotype and that the most responsive genotype is more widespread in Caucasians (42%) 

than in the Black population (18%). As such, although on average the Black population 

may have a poor response to J3-blocker treatment, an individual Black person with the 

responsive genotype is likely to respond well. Indeed in the early 1990's, it was generally 

perceived that ACE inhibitors and J3-blockers were ineffective in the Black population 

following results of the large Veterans Affairs Co-operative Study (Materson et ai, 1993)

an observation that may now require refinement (JA Johnson speaking at the Annual 

Meeting of the American Society for Clinical Pharmacology and Therapeutics (2003) as 

reported in Clinical Psychiatry News, I July 2003). Similarly, in relation to the hepatic P-

450 enzymes, around 75% of whites and 50% of blacks have a genetic inability to express 

functional CYP3A5 - part of the CYP3A family. Now, the effects of this difference are 

usually obscured since many drugs are metabolised by the universally expressed CYP3A4 

- although this does lead to large between subject differences in the overall CYP3A 

activity. The clinical importance is as yet unclear but the potential for large differences in 

effect for specific drugs remain (Evans and McLeod, 2003). 
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Perhaps the goal of individualised treatment, afforded by developments in the area of 

genetics, should simply be viewed as a return to the values of the early 1900's as embodied 

by the Hippocratic ideal - that is, treatment of the patient-as-a-person (Porter, 2003). For 

instance Porter quotes Sir William Gull: Never forget that it is not pneumonia, but a 

pneumonic man who is your patient. (Ironically this movement was actually a reaction 

against the increasingly scientific approach being adopted by the Universities at the time 

and reflected a desire that healing should remain an art.) Reidenberg (2003) argues that 

current trends are simply a refinement of previous efforts by 18th Century physicians such 

as Wi11iam Withering who tailored the use of digitalis to eliminate excess fluid. Indeed 

prior to 1900, few drug treatments were actually effective in anyone. Notable exceptions 

were digitalis itself (heart stimulation) together with quinine (malaria), opium (analgesic), 

colchicum (gout), amyl nitrate (angina) and, of course, aspirin (Porter, 2003). According 

to Reidenberg, adjusting drug therapy to the individual has evolved from dose adjustments 

based on clinical effects to dose adjustments made in response to drug levels and now to 

dose adjustments based on deoxyribonucleic acid sequences of drug metabolizing enzyme 

genes. This is indeed the pragmatist's view - with pharmacogenetics providing an 

opportunity for further refinement in our investigation of consistency of treatment effects. 

In the final and concluding section of this Chapter and Research Thesis, focus will tum to 

the generalisability of the evidence that is accumulated from clinical trials and other 

sources. Some thoughts on the future for drug development are also presented. 

7.S GENERALISABILITY AND ROBUSTNESS 

The true worth of the evidence generated from the clinical trial method is in its ability to 

make informed judgements regarding the treatment of future patients and it is in this 

context that the generalisation of results needs to be considered. According to ICH E9 
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(1998), generalisability is defined as the extent to which findings of a clinical trial can be 

reliably extrapolated from the subjects who participated in the trial to a broader patient 

population and a broader range of clinical settings. In this context, representation in 

clinical trials is an important aim and in relation to confirmatory trials, ICH E9 states that 

subjects should closely mirror the target population. According to Chatfield (2002). 

Randomization is the means. but representativeness is the goal. However as discussed in 

Chapter Two, simply ensuring a broad coverage of subjects is in itself insufficient to 

enable broad generalisation of results. According to Koch and Sollecito (1984), there are 

three areas to be considered when judging generalisability. Firstly, the coverage provided 

by the range of subjects encompassed by the target population; secondly, the 

demonstration that treatment differences are homogenous across investigators and the 

range of variation of demographic and pre-treatment characteristics; and thirdly, the 

replication of findings through multiple investigators. 

Koch and Sollecito regard the basis for generalisability as strengthened when the coverage 

is as broad as possible in terms of geographic, demographic and pre-treatment 

characteristics. In terms of consistency of effect, they state: When the treatment 

differences tend to be in the same direction and similar magnitude across the ranges of 

variation of such factors. the results of a study can be interpreted as having minimum 

dependence on the processes by which investigators and patients were selected to be 

included in it. This brings in the concept of robustness which according to ICH E9, refers 

to the sensitivity of the overall conclusions to various limitations of the data. assumptions, 

and analytic approaches to data analysis. In other words, according to Koch and Sollecito, 

robustness supports generalisability. Finally, in relation to replication, support is provided 

for generalisability when similar findings are observed across multiple investigators. More 

broadly, the reproducibility of valid conclusions in sufficiently many controlled settings 
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reasonably supports generalization from judgementally defined study populations to a 

more extensive target population of conceptually similar patients. 

Now, although both representation and consistency of effect have been discussed 

extensively in this Research Thesis, the concept of replication has not been raised 

previously. However before turning attention towards this concept it is informative to 

consider some other thoughts on the topic of generalisability. Davis (1994) discusses 

generalisability in wider terms and, in her view, data from seven different types of study 

are necessary to assess generalisability: laboratory (basic science); animal; genetic (if 

applicable); observational; clinical; epidemiological; and other RCTs with similar settings 

or treatments. One could argue that to this list should be added pharmacokinetic studies as, 

has been shown in Chapter Six, these are key to extrapolating data from adults to children. 

Lewis (1995) also argues that the range and limits of generalisability should be covered by 

medical and scientific considerations. That is, our understanding of the disease process 

and drug action will usually permit satisfactory extrapolation of clinical trial results. 

provided the trial in question is soundly conducted and its results are convincing. The 

view of Cowan and Wittes (1994) is that, the closer an intervention is to a purely 

biological process. the more confident we feel in extrapolating beyond the types 0.( patient 

studied. 

In relation to replication, there has been great debate regarding the need for more than one 

confirmatory study to support regulatory approval. The FDA's requirement for more than 

one study was based on the principle that one should be able to replicate findings. In was 

in addition to the FDA's established requirement for substantial evidence and the desire to 

be able to make generalisations to additional populations. (Note that some drugs have in 

fact been approved by the FDA with just one confirmatory study in cases were replication 
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was considered unethical.) Ifresults were replicated - the argument went - then this 

demonstratedfuture replicability (Peck and Wechsler, 2002). Of course, replication can 

actually be achieved internally within a study through using multiple centres, countries and 

regions as described by Koch and Sollecito (1984) - it is simply a case of investigating 

consistency of effect. External validation, it is argued however, must come from other 

confirmatory studies - although Lewis (1995) has questioned whether this type of external 

replication is appropriate to pharmaceutical development. He argues that by the time phase 

III is reached a confirmatory trial is just that - confirmatory of all the work which has gone 

before. Chatfield (2002) considers replication as good scientific practice. That is, 

statisticians need to give more emphasis to collecting more than one data set wherever 

possible. as that is the route to scientifically valid and generalizable results. However, if 

generalisability is the real issue then the real requirement is for more varied evidence rather 

than more of the same. This view is supported by Howson and Urbach (1989) who state: 

When an experiment's capacity to generate confirming evidence has been exhausted 

through repetition. further support would have to be sought from other experiments. 

moreover. experiments of different kinds. And later: Evidence that is varied is often 

regarded as offering better support to a hypothesis than an equally extensive volume of 

homogenous evidence. Indeed Robert Temple of the FDA has acknowledged that the 

actual intention is that a second study would not be an exact repetition of the first (Peck 

and Wechsler, 2002). In fact the development of drugs in the paediatric population can be 

considered to fit well into this philosophy. That is, a study undertaken in children - by 

definition not an exact copy of what has gone before - has the potential not only to provide 

data for paediatric labelling but also adds to the weight of evidence to support the overall 

efficacy and safety of the drug in question. The real emphasis in drug development 

therefore should not be replication - which should be abandoned as a concept - but the 

accumulation of robust evidence in different subgroups, sub-populations and populations. 
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In this respect, drug development should be a systematic process of information gathering 

where studies (including PK investigations) begin with low risk groups and move to higher 

risk groups - paediatrics, the elderly, pregnant women, etc. Labelling then evolves through 

time as new and varied information is brought to the regulatory authorities. Of course such 

labelling could include dosing recommendations based on genetic information but the 

overall development task should not be deemed complete until all sections of society are 

covered. In this respect, labelling contraindications and exclusions should be based on 

actual scientific data rather than the absence of data. This concept is key to generating 

robust evidence and to the development of safe and effective treatments for society as 

whole. 

Bailey (1994) states: If all human beings were at the same risk and experience the same 

benefit from a given treatment, then we could generalise the results of a trial to any 

conceivable subset of people to the entire human population. This, of course, would truly 

represent the Promised Land - a land of universal remedies. Indeed the idea of universal 

remedies has always been able to catch the public's imagination. Lydia E Pinkham's 

Vegetable Compound, which was sold from 1873, made Lydia Pinkham America's first 

millionairess. In fact "Lily the Pink", as she was known, was even celebrated in a song of 

the same name by the Liverpool band The Scaffold - For she invented medicinal 

compound, Most efficacious in every case. In the UK, Thomas Beecham manufactured his 

Pills and famous powders while James Morrison made a fortune from vegetable pills 

(Porter 2003) - although it is not known whether either of these was ever similarly feted by 

the rock and pop community. 

Only time will tell whether the search for individualised drug treatment in the 21 st Century 

proves to be as fruitless as the quest for universal remedies by Lily the Pink and others in 

the 19th Century. What is clear however, is that treatments that are broadly effective at a 
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single dose level are highly desirable in any society. It is likely therefore that current 

emphasis on generalisability of data across broad subject populations will continue in drug 

development and regulation - and it is hard to imagine this being satisfied without the 

accumulation of robust evidence covering all sections of society. In this respect thoughtful 

construction of analysis populations and subgroups will continue to playa key role for 

many years to come and it is hoped that this research thesis provides an insight as to how 

sub-setting might be used effectively such that the accumulation of robust evidence is 

achieved. Perhaps, therefore, the real challenge in the 21 S\ Century is to develop safe and 

effective treatments that can be shown to be independent of genetic make-up and other 

external factors, and which can be administered both unifonnly and simply - that is, most 

efficacious in every case. I'll drink a drink a drink to that! 
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SIMULATION NOTE 

For pragmatic reasons, the simulations reported in chapters three and five were undertaken 

using 5000 trials. (Each individual simulation took in the region of 20 minutes to 

complete.) For this reason it is important to provide an indication of precision for the 

range of parameters estimated. As such exact 95% confidence intervals (Clopper-Pearson 

method) produced from StatXact (Cytel, 1999) together with standard errors (SE) 

calculated using the Normal approximation to the binomial distribution are given in the 

table below. 

Percentage Exact 95% CI SE (Normal approximation) 

0 o to 0.07 Not defined 

0.02 o to OJ I 0.020 

0.1 0.03 to 0.23 0.045 

0.2 0.10to 0.37 0.063 

0.5 0.32 to 0.74 0.10 

1 0.74 to 1.32 0.14 

2.5 2.09 to 2.97 0.22 

5 4.41 to 5.64 0.31 

7.5 6.78 to 8.27 0.37 

10 9.18 to 10.87 0.42 

20 18.90 to 21.14 0.57 

30 28.73 to 31.29 0.65 

40 38.64 to 41.37 0.69 

50 48.60 to 51.40 0.71 

80 78.86 to 81.10 0.57 
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In the presentation of the simulation results, the data have been reported to two decimal 

places and the infonnation above may be used to aid interpretation. Note that for the 

simulations of Simpson's paradox (SP) in Chapter Three, one aim was to identify any 

cases of SP under the conditions tested. As such, a reduction in the number of decimal 

places would have meant that some combinations would have been reported as having an 

incidence of zero. 
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