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A B S T R A C T

The study of cellular Ca2+ signalling is indebted to Roger Tsien for the invention of fluorescent indicators that
can be readily loaded into living cells and provide the means to measure cellular Ca2+ changes over long periods
of time with sub-second resolution and microscopic precision. However, a recent study [1] reminds us that as
useful as these tools are they need to be employed with caution as there can be off-target effects. This article
summarises these recent findings within the wider context of confounding issues that can be encountered when
using chemical and genetically-encoded Ca2+ indicators, and briefly discusses some approaches that may mi-
tigate against misleading outcomes.

Tsien and colleagues invented numerous fluorescent indicators that
are used to monitor cellular Ca2+ [2,3]. The fluorescent indicators vary
in properties such as affinity, excitation and emission wavelengths,
cellular location, and whether they have single wavelength maxima for
excitation/emission, or can be used in a ratiometric manner [4]. These
chemical Ca2+ indicators (as they are sometimes called; hereafter re-
ferred to as ‘Ca2+ indicators’) are based on BAPTA, an aminopoly-
carboxylic acid (Fig. 1). Being charged molecules, Ca2+ indicators are
hydrophilic and therefore cell impermeant. Tsien showed that ester-
ification of the carboxyl groups conferred lipophilicity, allowing the
Ca2+ indicators to cross cell membranes [5]. Once inside cells, the es-
ters are hydrolysed, and the free acid, Ca2+-binding molecule is re-
leased. Depending on the loading conditions used, the intracellular
accumulation of Ca2+ indicators can plausibly span from micromolar to
millimolar concentrations. Where loading of esterified Ca2+ indicators
is sub-optimal, the free acid forms can be introduced into cells using
techniques such as microinjection or via patch pipettes.

The ease with which Ca2+ indicators can be loaded and monitored
has led to their use in thousands of studies that have characterised the
spatial and temporal properties of Ca2+ signals in various cell types.
Chemical Ca2+ indicators are ideal in many ways; they have rapid
Ca2+-binding kinetics, are brightly fluorescent, and are functional
within cells for long periods of time [6]. Moreover, the output from
these Ca2+ indicators can usually be readily calibrated into Ca2+

concentration [7]. BAPTA is commonly used to test, or negate, the in-
volvement of Ca2+ in cellular processes, and is often loaded to large
excess to provide stringent buffering of Ca2+ concentration. Whilst

Ca2+ indicators and BAPTA are critical tools for dissecting cellular
responses, relatively few studies have included controls for their po-
tential off-target effects.

A recent study from Maiken Nedergaard’s lab [1] highlighted an
interaction of Ca2+ indicators and BAPTA with the Na+/K+-ATPase, a
ubiquitous cellular enzyme, with consequent deleterious effects on
metabolism, signalling and cell survival. Specifically, Smith et al. [1]
observed that commonly used Ca2+ indicators (Fluo-4, Rhod-2 and
Fura-2), as well BAPTA, inhibited the Na+/K+-ATPase in several pri-
mary cell types independent of Ca2+ binding. They found that the Ca2+

indicators and BAPTA altered K+ homeostasis and caused ATP release
within the cortex of living animals, as well as reducing spontaneous
Ca2+ signals within primary astrocytes. An additional effect of Fluo-4,
Fura-2 and BAPTA was to decrease the cellular uptake of glucose. Given
the critical role of the Na+/K+-ATPase in establishing Na+ and K+

gradients (which are critical for the membrane potential, secondary
active transport, ionic transport and cell volume regulation), it is not
surprising that inhibition of this enzyme would influence many down-
stream processes. For example, the Na+/K+-ATPase is the primary
mechanism for extracellular K+ buffering in the brain; the archetypal
function of astrocytes, and critical for overall regulation of the excit-
ability of the central nervous system [8]. Moreover, the Na+/K+-AT-
Pase can function within cellular microdomains that include other
transporters and signalling moieties including Src kinase, phospholi-
pase C-γ and inositol 1,4,5-trisphosphate (IP3) receptors [9]. Long-term
inhibition of the Na+/K+-ATPase leads to altered gene transcription
[10] and prevents autophagic cell death (autosis) [11]. Rhod-2
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appeared to have a further negative effect on mitochondrial ATP pro-
duction since it stimulated glucose uptake and glycolysis to compensate
for reduced respiration. Although some labs use Rhod-2 to monitor
cytosolic Ca2+, due to its delocalised positive charge Rhod-2 accumu-
lates within the mitochondrial matrix and has been used extensively to
monitor mitochondrial Ca2+ sequestration [12]. Further work is
needed to establish how Rhod-2 alters mitochondrial function, but
other rhodamine-based compounds have been shown to affect the
electron transfer and the F1F0-ATPase [13], and the adenine nucleotide
translocase [14].

A number of studies have noted that Ca2+ indicators and BAPTA
have Ca2+-independent off-target actions and may not be freely

diffusible within cells (Fig. 2 and Table 1) [15]. Although more work is
needed to understand how these compounds affect cellular targets, a
direct interaction is plausible since they are known to bind to cellular
proteins [16,17]. In fact, it has been estimated that the majority of
Fura-2 molecules within a cell may be bound by cytosolic proteins, even
if the Ca2+ indicator is injected as the free acid [17]. Within muscle
cells, typically > 80% of Ca2+ indicator molecules are bound to cel-
lular components [18], leading to changes in the indicator’s fluores-
cence properties [19,20]. Non-specific binding of Fura-2 to proteins is
enhanced in environments with an acidic pH [21].

Smith et al. [1] observed that the inhibition of Na+/K+-ATPase by
Ca2+ indicators and BAPTA was retained in cell membrane

Fig. 1. Chemical structure of BAPTA and ana-
logues, and complexation of Ca2+. Panel A,
BAPTA free acid (deprotonated). Panel B, sty-
lised representation of the Ca2+:BAPTA com-
plex showing binding by the carboxyl groups,
with participation also from the ester oxygen
and nitrogen atoms. Panel C, BAPTA-AM ester
form. Panel D, Difluoro- or dibromo-BAPTA-
AM analogues.

Fig. 2. Reported cellular interactions of BAPTA and/or Ca2+ indicators. The figure does not show an exhaustive list of the off-target effects of BAPTA/Ca2+

indicators, but points out some of the key interactions reported by Smith et al. (1), as well as other reported outcomes.
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preparations that had been incubated in a lysis buffer for several hours.
Under such conditions any freely diffusible molecules would have been
lost from the cells. Whilst these data suggest a long-lasting interaction,
it is unclear whether the Na+/K+-ATPase is directly targeted by Ca2+

indicators and BAPTA, or if their effects are mediated by accessory
factors. Ouabain, a naturally occurring inhibitor of the Na+/K+-AT-
Pase, binds to the enzyme at an extracellular site with nanomolar af-
finity [22], although other binding sites have been proposed [23]. It
remains to be shown if, and where, BAPTA and Ca2+ indicators bind to
the Na+/K+-ATPase. Because BAPTA and Ca2+ indicators inhibit the
Na+/K+-ATPase when loaded into cells it is likely that they access the
enzyme from its cytosolic aspect. Given the resemblance of the Na+/
K+-ATPase to the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA),
responsible for Ca2+ uptake into organelles, it is possible that other P-
type ATPases may be affected by Ca2+ indicators and BAPTA [22,24].

There is insufficient evidence to draw robust conclusions relating to
the structure-activity profile of either BAPTA or chemical Ca2+ in-
dicators. The required libraries of structurally diverse analogues have
not been systematically tested against these recently identified targets,
and it is therefore difficult to make assumptions as to the parts of the
molecular framework responsible for their interactions with proteins.
The structure of BAPTA (the parent compound) is shown in Fig. 1 as the
free acid, the AM ester form and, in a complex with Ca2+. BAPTA can
be a planar molecule, but it can also rotate around the ether bonds that
link its two halves, thereby permitting a degree of flexibility that may
allow it to adopt conformations that facilitate its interaction with pro-
teins. The off-target effects of BAPTA are commonly reported to be
independent of the Ca2+-binding carboxyl groups, which may indicate
other parts of the molecule are involved. For example, analogues of
BAPTA stimulated the production of prostacyclin with an inverse re-
lationship to their affinity for Ca2+ [25]. However, altering the length
of the ether chain linking the aromatic groups, substitution of nitrogen
atoms, or altering the position of the benzene rings changed their po-
tency for inducing prostacyclin production.

The Na+/K+-ATPase is both upstream and downstream of cellular
Ca2+ signals. Elevated levels of cytosolic Ca2+ have been shown to
inhibit the Na+/K+-ATPase [36], and conversely inhibition of the en-
zyme causes Ca2+ oscillations [37]. Inhibition of the Na+/K+-ATPase
within cardiomyocytes by cardiotonic steroids is known to cause in-
creased Ca2+ signals, and can improve cardiac performance during
conditions such as congestive heart failure [38]. It is more than a little
inconvenient that fluorescent reporters used to monitor cellular Ca2+

responses could affect the activity of the Na+/K+-ATPase, which is
involved in sensing and regulating Ca2+ signals. Moreover, Ca2+ in-
dicators have been shown to impede Ca2+ release and Ca2+-dependent

channel inactivation [35,39,40], and alter the properties of Ca2+ sig-
nals [41].

A critical question concerning the continued use of chemical Ca2+

indicators is whether it is possible to overcome, or control for, their
effects on Na+/K+-ATPase inhibition. One of the products resulting
from the intracellular hydrolysis of esterified Ca2+ indicators is for-
maldehyde, which is widely used as a tissue fixing agent. However,
Smith et al [1] found that the free acid forms of Ca2+ indicators and
BAPTA could inhibit the Na+/K+-ATPase, suggesting that products
released via ester hydrolysis were not causative. These observations
indicate that introduction of Ca2+ indicators and BAPTA via micro-
injection or patch pipettes cannot solve the issue.

An alternative to the use of chemical Ca2+ indicators is genetically-
encoded Ca2+ indicators (GECIs), which are generally based on the
fusion of Ca2+-binding proteins with fluorescent proteins [42]. In their
study, Smith et al. [1] demonstrated that the GECI GCaMP3 did not
cause inhibition of the Na+/K+ATPase, or alter the frequency of as-
trocytic Ca2+ signals. However, whilst GECIs have great utility, parti-
cularly for long-term recordings [43], they may not perform as well as
chemical Ca2+ indicators in terms of their Ca2+-binding kinetics or
sensitivity [44], and might be unsuitable in situations where cells (e.g.
cardiomyocytes) could functionally change during the time needed for
the GECI expression. As with chemical Ca2+ indicators, the use of GECIs
relies on an adequate expression level, correct localization and the
absence of deleterious cellular effects. However, it was found that fol-
lowing viral transduction, the expression level of GCaMP3 was not
stable and increased over time, reaching an expression level above the
optimum signal-to-noise ratio after 7 weeks [45]. Moreover, following
long-term expression, GCaMP3 protein was not only found in the cy-
toplasm (its intended compartment), but additionally non-functional,
N-terminally cleaved GCaMP3 accumulated in the nuclei of neurons
[46,47], and atypical responses were observed [46]. The presence of
non-functional GECI molecules resulted in an under-estimation of the
observed Ca2+ responses.

Similar to chemical Ca2+ indicators, a substantial portion of GECIs
can be bound to cellular targets (around 50% in neurons) [47], which
could lead to altered properties such as a change of Ca2+ sensitivity.
Furthermore, long-term expression of GECIs may result in prolonged
Ca2+ buffering, thereby impacting on Ca2+-regulated processes in-
cluding transcriptional regulation via NFAT or CREB. Since the ex-
pression of several Ca2+-transport systems is controlled through these
Ca2+-dependent transcription factors (e.g. inositol 1,4,5-trisphosphate
receptors and the mitochondrial uniporter via NFAT2 and CREB, re-
spectively [48,49]), GECIs might adversely affect the expression of
Ca2+ channels and transporters. Moreover, GECIs (specifically

Table 1
Ca2+-independent cellular actions of BAPTA. The effects of BAPTA, and its analogues, were considered Ca2+-independent via a variety of experimental analyses,
such as similar cellular responses being observed when using low-affinity or non-Ca2+-binding BAPTA analogues, or keeping free Ca2+ concentration the same but
changing BAPTA concentration and having an altered cellular response (i.e. the response was dependent on [BAPTA], but not [Ca2+]).

Reagent Cell type Working concentration Effect Reference

BAPTA-AM Rat parotid cells 100 μM Reduced cellular ATP levels [26]
BAPTA-AM 3T3-L1 adipocytes 50 μM Reduced insulin-stimulated translocation of GLUT4 [27]
BAPTA-AM A6 (Xenopus), RAT2 cells 50 μM Cytoskeletal disassembly [28]

Reduced cellular ATP levels
Changes in mitochondrial morphology and distribution

BAPTA Murine brown
adipocytes

1–2mM Ca2+-independent effects on Cl− channel currents [29]

BAPTA-AM 3T3-L1 adipocytes 12.5–50 μM Decrease tubulin polymerisation [30]
BAPTA and di-bromo BAPTA Drosophila

photoreceptors
∼1–10Mm (IC50 for BAPTA
∼1mM)

Inhibition of phospholipase C [31]

BAPTA-AM, di-fluoro BAPTA-AM,
and di-bromo BAPTA-AM

Endothelial cells 0.5–50 μM Enhanced prostacyclin release. Concentration- and time-dependent
effect of BAPTA; both activation and inhibition were observed.

[32]

BAPTA-AM HEK293 cells 0.1–50 μM (IC50 ∼1 μM) Inhibition of heterologously-expressed K+ channels [33]
BAPTA-AM Liver macrophages 10 μM Inactivation of protein kinase C [34]
BAPTA Permeabilised

hepatocytes
1 μM–10mM (Kd

= 1.8 mM)
Inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ release [35]
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Table 2
Assessing, and controlling for, Ca2+-independent cellular actions Ca2+ indicators and BAPTA, and other experimental issues arising from fluorescence imaging.
Abbreviations: GECI; genetically-encoded Ca2+ indicator, IP3; inositol 1,4,5-trisphophate, 2-APB; 2-aminoethoxy diphenyl borate, U73122; 1-[6-[((17β)-3-
Methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione.

Approach Utility Notes

Application of ouabain Given that the Na+/K+-ATPase has been shown to be affected by
Ca2+ indicators and BAPTA, ouabain could be used as a control. If
ouabain replicates experimental outcomes observed using Ca2+

indicators and BAPTA, then the Na+/K+-ATPase may be involved.

It would be difficult to know exactly how much ouabain would be
needed to replicate putative Na+/K+-ATPase inhibition.

Use of low affinity BAPTA analogues Low affinity BAPTA analogues can be loaded using the same
conditions as for BAPTA. Due to their lesser affinity for Ca2+, the
analogues should not replicate the effect of BAPTA if a particular
cellular process is Ca2+ dependent.

This is potentially the simplest control to perform. However, since
the low affinity BAPTA analogues may not buffer Ca2+ to the same
extent as BAPTA, it would be necessary to show that they have
loaded into the cells by measuring increased absorption at
∼260 nm.
One potential caveat in the use of BAPTA analogues is whether
they have the same off-target effects. There is evidence that they
share the same off-target actions on the Na+/K+-ATPase [1],
phospholipase C [31] and prostacyclin release [32].

Non-Ca2+- buffering AM ester
compounds

To assess the potential effects of de-esterification of Ca2+

indicators and BAPTA within cells, it could be helpful to use non-
Ca2+-buffering, cell-permeable esters as a reference. For example,
BCECF-AM, a cell-permeable pH indicator, could be used as a
reference.

Whilst this is an easy control to perform, it might be difficult to
match the intracellular concentrations of Ca2+ indicators and
BAPTA with a reference indicator such as BCECF.
In addition, reference indicators may have their own off-target
effects.

Use of pharmacological reagents to
verify the involvement of Ca2+

An adjunct to the use of BAPTA to investigate the role of Ca2+

signals in a cellular response could be pharmacological reagents
that target specific Ca2+ transport processes. For example,
U73122, 2-APB and xestospongin B could be used to implicate IP3
signaling and/or Ca2+ influx [53–55], or mitoxantrone may be
used to examine the role of the mitochondrial Ca2+ uniporter [56].

Pharmacological tools are sometimes ideal for acute experiments,
and when the effective concentrations of the reagents are known.
However, it can be difficult to definitively say that there are no
off-target effects of a particular reagent, even when used at a low
concentration.
Some pharmacological tools have genetic correlates that can be
used in parallel. For example, xestospongin B and 2-APB can be
used in conjunction with the IP3 5’-phosphatase, or a high-affinity
IP3 sponge, to inhibit IP3-mediated Ca2+ signals [57,58].
Pharmacological approaches should ideally go hand-in-hand with
genetic approaches. Knocking out specific Ca2+ transport systems
is accessible using techniques such as siRNA and CRISPR/Cas9.

Use of chelators to rule out effects of
heavy metals

Chemical Ca2+ indicators all show varying degrees of affinity for
heavy metal ions like Mn2+ and Zn2+ [59]. If changes in the
concentration of heavy metal ion concentrations occur, these
might be interpreted as changes in the Ca2+ concentration without
appropriate controls.

Whether a response is due to changes in Ca2+ or heavy metal ions
can be tested by the use of heavy metal ion chelators like TPEN
[60], although TPEN itself can affect Ca2+ indicators [61]. An
alternative compound with a lower Kd for Ca2+ is phenanthroline
[62–64]).

Effects of pH and experimental reagents
on Ca2+ indicators and their
calibration

The spectral characteristics and affinities of many chemical Ca2+

indicators (and GECIs) is pH dependent. The affinity for Ca2+ is
usually not affected within the physiological cytosolic pH range,
but can be reduced at acidic pH [65].

If the cytosolic pH is expected to change substantially during an
experiment, or Ca2+ measurements in an organelle with a low pH
is planned, the Kd of the Ca2+ indicators (or GECIs) should be
calibrated for the appropriate pH range as described in [68–70].

The fluorescence of Ca2+ indicators may be affected by
experimental reagents such as caffeine [66] and resveratrol [67].

The effect of experimental reagents on Ca2+ indicators can be
tested using solutions of the indicator free acid. If an effect is
observed, caution will be needed in interpreting experimental
results and calibration.
Whilst the principles of calibrating the output of Ca2+ indicators,
and transforming fluorescence recordings into Ca2+

concentration, are relatively straightforward there are several
potential pitfalls. For example, it may be difficult to obtain
maximal and minimal fluorescence signals or the correct Kd

values, and there may be Ca2+-insensitive or compartmentalised
forms of Ca2+ indicators within cells. Some of these issues, and
their solutions, have been discussed previously [7,71–73].

Expression of GECIs and Ca2+-binding
proteins

GECIs and Ca2+-binding proteins can be used for the same
purposes as chemical Ca2+ indicators and BAPTA providing that
they can be expressed within the cells of interest.

GECIs are a growing method for monitoring cellular Ca2+ signals.
They can be targeted to specific cellular regions/structures and are
available in different colour variants. GECIs can be expressed in a
stable or transient manner.
The impact of GECI expression should be monitored, as they may
not be entirely benign [44,51,74].
Ca2+-binding proteins may need to be very highly expressed to
have the same potency as BAPTA in buffering Ca2+-signals.

Mitigating potential pitfalls of chemical
Ca2+ indicators

There are a number of issues that can arise when performing
fluorescence experiments: chelation of heavy metals, indicator
bleaching, production of reactive oxygen species (ROS),
compartmentalisation/extrusion of fluorescent reporters, and
varying affinities of reporters for Ca2+ in different cellular
environments [73].

There are suitable controls and tests for most of these issues. For
instance, compartmentalisation and extrusion of fluorescent
reporters can often be avoided by loading AM esters at room
temperature before warming cells to 37 °C, and by using ABC
transporter inhibitors such as sulphinpyrazone [76].

An issue that is not widely considered is the induction of
autophagy when using simple extracellular solutions that do not
have growth factors or amino acids. Autophagy can induce a
change in Ca2+ transport systems [75].

The impact of bleaching and ROS may be minimised by using
short excitation exposure times and low incident light energy, or
supplementation with ROS scavengers.

(continued on next page)
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GCaMPs) change the apparent sensitivity of cells to IP3 [44]. Most
transgenic GECI mice do not show an obviously altered phenotype [47],
but profound effects of GECI expression have been observed, e.g. car-
diac hypertrophy in a mouse expressing GCaMP2 [50]. It is plausible
that mild phenotypic changes, which go undetected, could nevertheless
affect the experimental results obtained with specific cell types. For
example, a detailed study of transgenic mice expressing the troponin C-
based GECI TN-XXL revealed changes in behavioural parameters, car-
diac function and gene expression, despite the absence of a strong
whole animal phenotype [51].

It is hard to say how much the effects of Ca2+ indicators and BAPTA
on the Na+/K+-ATPase, as reported by Smith et al. [1], impinge on the
results of published studies. However, it is a reminder that the loading
of Ca2+ indicators is best kept minimal and should be controlled for.
Whilst substantial loading of Ca2+ indicators may improve signal to
noise in fluorescence recordings, it can actually lead to diminished
Ca2+ signals due to buffering. Smith et al. [1] observed that the in-
hibition of the Na+/K+-ATPase was proportional to the concentration
of Ca2+ indicator loaded. With modest concentrations of Ca2+-in-
dicator loading, there was no significant effect on the Na+/K+-ATPase
activity. It is possible that empirically establishing minimal Ca2+ in-
dicator-loading conditions may avoid deleterious effects on the Na+/
K+-ATPase and other yet unknown cellular targets. Some years ago,
Erwin Neher pointed out that both very high and very low concentra-
tions of a Ca2+ indicator, such as Fura-2, can be useful but for different
experimental purposes, and that intermediate concentrations should be
avoided as they will not give accurate results. Generally, to measure
changes in the cytosolic free Ca2+ concentration, a minimal indicator
concentration should be used to circumvent extra Ca2+ buffering,
whilst for measuring Ca2+ flux a sufficient amount of Ca2+ indicator
must be present to overcome the endogenous Ca2+ buffers in the cell
[52].

In experiments where BAPTA is used to implicate the involvement
of Ca2+ in a cellular process, it could be important to perform addi-
tional controls using low affinity versions of BAPTA such as dibromo-
BAPTA and difluoro-BAPTA (Kd values 1.6 and 65 μM, respectively,
compared to a Kd of 160 nM for BAPTA) (Fig. 1). These low affinity
Ca2+ chelators should not phenocopy the effect of BAPTA if the cellular
response involves Ca2+. Moreover, it would be ideal if the Ca2+ buf-
fering of BAPTA was tested after it has been loaded into cells. The
buffering of cytosolic Ca2+ is generally assumed after BAPTA-AM
loading, and is not routinely demonstrated in studies that use BAPTA as
a means of blocking cellular Ca2+ signalling. The effectiveness of
BAPTA could be easily tested by stimulating GECI-expressing or Ca2+

indicator-loaded cells with a Ca2+-releasing agonist (e.g. ATP). If this is
not suitable, the loading of BAPTA into cells could be verified by
measuring absorbance of the compound at ∼260 nm. Some of the ap-
proaches that may be taken to mitigate off-target effects of Ca2+ in-
dicators and BAPTA, and ancillary experimental issues, are described in
Table 2.

The study by Smith et al. [1] is a timely reminder that we need to be
cautious in our use of chemical Ca2+ indicators and BAPTA. Evidence
has been presented over many years that these compounds may have
deleterious off-target actions (Table 1). However, there are a range of
strategies that can be adopted to counteract potential confounding

effects (Table 2). Chemical Ca2+ indicators and BAPTA remain ideal
tools for certain situations, but additional control experiments may be
both necessary and prudent.
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