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ABSTRACT 

Traumatic brain injury (TBI) involves both an initial primary insult to the brain 

and a delayed secondary injury in the hours and days thereafter. The delayed 

nature of secondary brain injury leaves open the possibility for a window of 

therapeutic intervention to prevent neurodegeneration. As there are currently no 

approved drugs for the treatment and prevention of secondary injury after TBI, my 

approach has been to first identify molecular pathways associated with a 

differential outcome from injury, followed by validation of these pathways by 

targeting them with a variety of therapeutic strategies ranging from genetic 

manipulation to novel drug compounds, and dietary supplementation. The 

Apolipoprotein E (APOE) gene has three major alleles, APOE2, APOE3 and 

APOE4, the latter of which confers risk for poor outcome following TBI. Using 

quantitative Liquid Chromatography-Mass Spectrometry, large proteomic datasets 

can be generated, and the difference in protein expression in response to TBI 

between transgenic mice expressing APOE3 or APOE4 can reveal changes that 

reflect a "better" or "worse" outcome, respectively. Analyzing such datasets from 

APOE3 and APOE4 transgenic mice at a wide range of time points, we examined 

the differential response to TBI and identified several protein pathways of interest, 

including: CD40 signaling, NF-kB signaling, and APP related proteins. Optimizing 

several behavioral testing paradigms (Rotarod, Morris Water Maze, and Barnes 

Maze), we characterized spatial memory and motor function deficits resulting from 

TBI in order to quantify a "good" or "poor" response. Using a variety of targeted 

intervention strategies (CD40L knockout, administration of (-)-Nilvadipine, or 

anatabine) to modulate the protein pathways of interest, we showed improvement 

in response to TBI. Overall, these experiments provide demonstrate the 

effectiveness of using a systems biology approach to find potential targets for 

therapeutic intervention. 
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CHAPTER 1 
AN OVERVIEW OF TRAUMATIC BRAIN INJURY 

Traumatic Brain Injury 

Traumatic brain injury (TBI) is any damage to the brain caused by an 

external force. There are a nearly limitless number of possible sources of the 

injurious force, but some of the most common that result in emergency room visits 

include falling (35.2%), motor vehicle accidents (17.3%), and being struck in the 

head by an object or striking one's head against an object (16.5%) (Faul et aI., 

2010). Other causes of TBI may not result in ordinary emergency room visits, but 

may be as injurious as any of the aforementioned causes. These include injuries 

sustained in sporting events as well as blast and shrapnel exposure on the 

battlefield. These injuries can result in changes and deficits in motor coordination, 

mood, speech, word retrieval and memory. TBI severity is assessed shortly after 

injury by neurological measures such as the Glasgow Coma Scale (GCS), which 

ranks patients with scores of 3-18 based on their verbal, visual, and motor 

responsiveness to commands and stimuli. Scores less than 8 are classified as 

severe TBI, 9-12 are classified as moderate head injury, and 13-15 are classified 

as mild TBI (Teasdale and Jennett, 1976). Just as GCS classifies the neurological 

state immediately after TBI, the Glasgow Outcome Scale (GOS) classifies the 

outcome from a TBI into categories of death, vegetative state, severe disability, 

moderate disability, and good recovery (Jennett and Bond, 1975). The Rancho 

Los Amigos Level of Cognitive Functioning is another outcome measure that 

contains 8 levels ranging from no response to purposeful, appropriate, based on 

the extent of memory deficits, coherence, living skills, attention and self awareness 

(Gouvier et aI., 1987). 

These deficits are persistent and can place a great deal of strain not only on 

the victim but also the victim's family, in terms of the need for support, and the 
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changing dynamics of inter-personal relationships that can be brought about by 

the injury. Unfortunately for the patient and their family, there are no 

pharmacological treatments currently approved for use in TBI regardless of the 

cause. 

Prevalence of TBI 

A minimum of 1.4 million people sustain a TBI in the United States each 

year, contributing to 30.5% of the injury-related fatalities in the US (Faul et aI., 

2010). TBI is also a growing problem within the military population. The annual 

incidence of TBI within the military has more than doubled since the year 2000 

with a total of 178,876 known cases from 2000 to early 2010. This represents a 

significant fraction of the 1.1 million troops deployed to Afghanistan and Iraq 

during Operation Enduring Freedom (OEF) and Operation Iraqi freedom (OIF) 

since 2001 (after accounting for the 37% that were deployed at least twice) 

(Fischer, 2010). Though it is anticipated that the number of soldiers deployed to 

Middle East conflicts (where most of these injuries were sustained) will be 

decreasing in the coming years, those who were affected will continue to 

experience the consequences of their injuries. The sequelae of TBI persist long 

after the initial insult to the brain, and an estimated 5.3 million people in the US are 

currently living with the long-term effects from injury (Langlois et aI., 2006). This 

number is likely to increase since approximately 35% of hospitalized TBI survivors 

are expected to be afflicted with long-term disabilities (Brooks et aI., 1997). 

In England the TBI prevalence in 2001-2002 was 229 per 100,000, with 

112,718 patients admitted with this diagnosis (Tennant, 2005). Of those, 31% 

were aged 0-15 years, 56% were 16-74 years old, and the remaining 13% were 

aged 75+ years. It is noteworthy that these age groups accounted for 20%,72% 

and 8% of the population respectively (Tennant, 2005), highlighting the fact that 

TBI disproportionately affects the young and old of society. TBI thus primarily 
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affects those who will spend the longest time coping with the consequences, and 

those who are vulnerable to the most severe consequences following a given 

severity of injury. A UK report from 2002 stated that 280 out of 100,000 children 

spend one or more days in the hospital for TBI each year, more than 10% of those 

having moderate or severe injuries which carry the most severe consequences 

(Hawley et aI., 2002). Children permanently affected by a TBI will spend most of 

their lives coping with the consequences and the costs, both financial and 

emotional. 

Across Europe, the incident rate from TBI, whether fatal or not, is 

approximately 235 per 100,000 based on research reports from 23 European 

nations spanning 1980 to 2003 (Tagliaferri et aI., 2006). The mortality rate from 

TBI within the United States has decreased since 1980, now only 15 per 100,000, 

and therefore most of these patients will need care, possibly long term, to recover 

from the consequences of TBI. Rising healthcare costs are becoming an 

increasing concern for nations already burdened by debt, and the cost of care is 

extremely high for those living with the consequences of TBI (Thurman, 1999). 

The cost of TBI in the United States is $48.3 billion annually (Lewin, 1992), which 

does not include indirect costs such as lost earnings and productivity for both the 

victim and the victim's family. Direct and indirect costs combined add up to an 

estimated $76.5 billion/year in the US as of the year 2000 (Finkelstein et aI., 

2006). The cost of caring for a single individual with TBI can be as high as 

$1,875,000 over that person's lifetime (Brain, 1999). By comparison, cancer 

treatment, which has the highest per person cost of any medical condition in the 

US, resulted in direct costs of $95.5 billion in 2000 (Marchione, 2012.). Although 

cancer treatment costs are a frequent topic when discussing the rising cost of 

health care within the United States, traumatic brain injury is not dramatically far 

behind. 
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A study of 6484 TBI patients in the UK showed an average treatment cost of 

£15,462 per patient. 51 % of the cost was contributed by the length of stay in 

critical care while another 38% was contributed by the length of stay in regular 

care (Morris et aI., 2008). Costs were highest in patients with motor vehicle 

injuries, due to the severe nature of the injury as well as polytrauma. Mortality was 

negatively correlated with cost, so as survival rates improve due to better care and 

safety mechanisms in motor vehicles, the costs of healthcare will also increase. 

Until an effective treatment can be found to improve outcome and reduce the 

damage that results from TBI, costs are unlikely to decrease. 

Cognitive Problems after Traumatic Brain Injury 

Traumatic brain injury can induce a number of cognitive impairments that can 

severely affect the quality of life of the affected individual. These include deficits in 

motor function, working memory and amnesia. Even a mild TBI can induce deficits 

in motor function, correlating to the extent of cognitive impairment (Sosnoff et aI., 

2008). Working memory is impaired after TBI, with central executive functioning 

primarily impacted (Van der Linden et aI., 1992, Allain et aI., 2001). Amnesia after 

TBI can involve both retrograde amnesia, memory loss which affects recall of 

events that took place prior to the injury, and anterograde amnesia, dysfunction in 

the ability to create new memories after the injury. 

Motor function after TBI has been found to correlate with cognitive function 

(Sosnoff et aI., 2008), possibly due to the fact that both functional impairments 

originate from the same source, the initial TBI. Damage to the white matter tracts 

assessed by fractional anisotropy in diffusion tensor imaging has also been noted 

as correlating with the extent of motor impairment (Caeyenberghs et aI., 2011). 

This correlation has also been noted in cognitive impairments, with region-specific 

results. For instance, subjects with greater impairments in executive function have 
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been noted to have a greater amount of white matter damage in their frontal lobes 

(Kinnunen et aI., 2011). 

The central executive portion of working memory is impaired after TBI and is 

thought to be the primary impairment seen in working memory (Van der Linden et 

aI., 1992, Allain et aI., 2001) as assessed by problems with dual-task processing, 

particularly when the task is complicated (Brouwer et aI., 1989, Veltman and 

Gaillard, 1996, McDowell et aI., 1997, Park et aI., 1999, Mangels et aI., 2002). 

Common tests of central executive functioning include the Brown-Peterson 

paradigm, which tests the ability to store information in short-term memory while 

simultaneously performing a second cognitive task. The task involves arithmetic 

and reading spans, the former of which requires the subjects to perform a simple 

calculation given audibly and remember the results and their order, and the latter 

requires subjects to read several sentences out loud and remember a word from 

each sentence at a given position within the sentence (first or last word, for 

instance). A TBI patient may be able to read aloud and perform basic arithmetic, 

but when combined with time pressures and memorization, they begin to show 

deficits compared to healthy controls. 

Amnesia after TBI can be temporary in the case of mild injuries, with 

retrograde amnesia usually rectifying itself prior to anterograde amnesia during the 

post-traumatic period (Cantu, 2001). Severe injuries, however, can produce 

prolonged periods of anterograde or retrograde amnesia, even months after the 

insult (Markowitsch et aI., 1993, Levine et aI., 1998, Demery et aI., 2001). The 

Galveston Orientation and Amnesia Test (GOAT) was designed to assess post

traumatic amnesia and orientation to location and time in the post-traumatic 

recovery period. Serial measurements with the GOAT have been shown to be 

predictive of the long-term outcome (Levin et aI., 1979). The GOAT asks questions 

of patients such as the last thing they remember before and after the injury 
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occurred as well as their current location and city of birth. Depending on the injury 

severity, they may have memory loss from the time immediately surrounding the 

accident, but still be able to recall their current location and hometown, or if they 

have sustained a more severe injury they will have a greater extent of amnesia 

and be unable to give the correct answer to any of the questions. 

Review of Molecular Events Following Primary Injury 

Traumatic brain injury is characterized by both primary and secondary 

injuries. The primary injury results from the initial trauma to the brain, which can 

occur with or without penetration of the skull. Within the military, common causes 

of TBI include blast from improvised explosive devices and head wounds from 

shrapnel and bullets. Blast waves from explosions can induce head injury even 

without the person being initially aware of the damage (Shanker, 2007). Within the 

civilian population, common causes are motor vehicle accidents, falling and 

objects striking the head (Guerrero et aI., 2000). Primary injury is generally 

subdivided into penetrating and closed categories. A penetrating head wound is 

always severe in nature with severity increasing as a function of the velocity of the 

penetrating object, but a closed head injury can be mild, moderate, or severe. 

Within the realm of closed head injuries, there are two sub-types, coup and 

contrecoup. The former is caused by the initial impact, while the latter is caused by 

the brain rebounding within the skull after the initial impact, injuring the region of 

the brain opposite of the impact (Horn and Zasler, 1996). A moderate or severe 

head injury can induce post-traumatic hematomas within the dura and surrounding 

structures, compressing the brain and potentially impacting cerebral oxygen 

metabolism (Valadka et aI., 2000). 

Following primary injury to the brain, there are very acute molecular 

consequences that start a chain of events leading to further damage collectively 

known as secondary brain injury. Secondary injury occurs in the hours and days 
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following the initial insult and can even affect neurons distal to site of the primary 

injury. Secondary injury is mediated by such factors as extracellular glutamate and 

aspartate levels near the site of injury (Faden et aI., 1989), neuroinflammation 

(Morganti-Kossmann et aI., 2001), oxidative stress from free radicals (Ates et aI., 

2006), and calcium influx causing calpain activation and inhibition of mitochondrial 

respiratory chain-linked electron transfer (Mcintosh et aI., 1997, Xiong et aI., 

1997). Excitotoxicity causes the generation of reactive oxygen species such as 

hydrogen peroxide, superoxides, and peroxynitrite which overwhelm the 

endogenous antioxidant system leading to oxidative stress and damage via protein 

oxidation and interruption of the mitochondrial electron transport chain (Werner 

and Engelhard, 2007). Oxygen radicals in turn induce expression of pro

inflammatory genes (Crack et aI., 2009)and Nuclear Factor-kappa B (NF-kB) 

activation (Sun et aI., 1993). NF-kB is a transcription factor, and once dissociated 

from inhibitory IkB proteins it translocates to the nucleus and can induce the 

transcription of inflammatory cytokines such as interleukin-1 beta (IL-1 B), 

interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-Alpha) (Tak and 

Firestein, 2001). NF-kB can remain activated for at least one year after injury in 

the region of expanding ventricles as discovered in a rat model of TBI (Nonaka et 

aI., 1999a). 

NF-kB activation following TBI induces inflammatory cytokines such as IL-

1 B,IL-6, and TNF-alpha. Up-regulation of chemokine and adhesion molecule 

results in infiltration of immune cells in injured tissue (Werner and Engelhard, 

2007). As a result of inflammatory damage following TBI, the pericontusional area 

of the cortex will experience a spreading depression of electrical silencing caused 

by disrupted ion homeostasis, interrupting cortical function (Fabricius et aI., 2006). 

The disruption of ion homeostasis and cortical depression can lead to microglial 

activation (Gehrmann et aI., 1993) which may persist in patients of severe TBI for 
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at least 11 months after injury (Ramlackhansingh et aI., 2011). This activation was 

found to begin 72 hours after injury in a penetrating rat model of TBI and is thought 

to involve CD40 signaling (Williams et aI., 2007). By comparison, pro-inflammatory 

cytokines such as IL-1 B, IL-6, and TNF-Alpha are up-regulated within hours of 

injury, but the inflammatory process is both progressive and persistent. Because 

there is a delay between the primary injury and the onset of secondary injury, 

there may be an opportunity for therapeutic intervention to interrupt this sequence 

and prevent further neuronal loss. 

Risk Factors for Poor Outcome after TBI 

Genetic factors have been shown to influence outcome after TBI. In this 

regard the Apolipoprotein E (APOE) gene which confers risk for Alzheimer'S 

Disease has been the most widely investigated. Apolipoprotein E is a lipid-binding 

protein that is involved in the catabolism of triglycerides and contributes to 

cholesterol and triglyceride homeostasis with three major isoforms, APOE2, 

APOE3, and APOE4 (Kypreos et aI., 2001). Many studies have now shown that 

the APOE4 allele (E4) is not only associated with increased risk for AD but is also 

associated with a risk for poor outcome following TBI (Friedman et aI., 1999, 

Crawford et aI., 2002, Smith et aI., 2006). Of the many studies of APOE influence 

on TBI, a few have failed to demonstrate risk (Ashman et aI., 2008, Rapoport et 

aI., 2008, Hiekkanen et aI., 2009), however in a meta-analysis of 14 studies Zhou 

and colleagues found that although APOE4 is not a risk factor for worse initial 

outcome immediately after TBI, it did correlate with worse outcome six months 

after TBI (Zhou et aI., 2008). This is consistent with the conclusions of Ponsford 

and colleagues who did not see APOE genotype dependent differences in acute 

outcome as measured by GCS scores or the length of post-traumatic amnesia 

(Ponsford et aI., 2011), but suggest that the E4 allele determines long-term 

outcome after TBI. A study by Isoniemi and colleagues found that 30 years after 

23 



TBI, APOE4 carriers were at risk of greater cognitive decline than non-carriers, 

leading to dementia (Isoniemi et aI., 2006). 

Not only does APOE genotype influence the clinical outcome from TBI, it 

may also affect or even inhibit attempts at therapeutic intervention. In preclinical 

studies Wang et al. found that an ApoE mimetic peptide improved the histological 

and functional outcome of APOE2 and APOE3 transgenic mice after TBI but not 

APOE4(Wang, Durham et al. 2007). In human clinical trials, APOE genotype has 

also been shown to influence the effectiveness of Alzheimer's disease 

therapeutics. Cholinergic enhancers, reelin, rosiglitazone, and even combination 

therapies are all negatively impacted in the APOE4/4 genotype (Cacabelos, 2007, 

2008, Cacabelos and Martinez-Bouza, 2011). A retrospective analysis of a failed 

phase-II AD clinical trial of the bapineuzumab antibody against the Alzheimer's A~ 

peptide (see below) showed efficacy, but only for non-carriers of E4 (Salloway et 

aI., 2009). 

Relationship Between TBI and Alzheimer's Disease 

Epidemiological studies have shown that TBI is a risk factor for the 

development of AD later in life (Rasmusson et aI., 1995, Nemetz et aI., 1999). The 

primary pathological molecules of AD are the beta amyloid peptide (amyloid ~ 

(A~)) deposited as amyloid plaques, and hyperphosphorylated tau protein which 

accumulates as paired helical filaments that in turn aggregate into neurofibrillary 

tangles. Autopsies of TBI patients have revealed the presence of A~ plaques in 

30% of victims with survival times as short as four hours (Graham et aI., 1995). 

Patients who have sustained severe TBI and undergone decompressive 

craniectomy have been found to have amyloid plaques present in their brains. A 

study of 19 severe closed head injury patients was conducted by DeKosky and 

colleagues in 2007 and showed that patients positive for A~ plaques had a higher 

percentage of APOE4 carriers (50% vs 10%), as well as a Significantly higher ratio 
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of the longer, more toxic form of A~ (42 amino acids in length, compared to the 

most common 40 amino acid peptide) (DeKosky et aI., 2007). The A~40 level was 

similar in both groups, only the A~42 level differed significantly (p<.009). These 

results may implicate A~ production, particularly A~42, as a mechanism driving the 

differential response to injury between APOE3 and APOE4 carriers. As mentioned 

above, APOE genotype confers risk for AD, with the APOE4 allele precipitating an 

earlier age of onset (Corder et aI., 1993, Coon et aI., 2007, Sandberg et aI., 2012). 

The same allele is a risk factor for worse outcome after TBI (Bergem and Lannfelt, 

1997, Cruz-Sanchez et aI., 2000, Cui et aI., 2000, Jellinger et aI., 2001, Kay et aI., 

2003, Small et aI., 2004). Christensen and colleagues (Christensen et aI., 2010) 

have shown that the possession of an APOE4 allele is associated with an 

accumulation of A~ intraneuronally. Because ApoE4 is associated with increased 

intraneuronal A~ levels, it might help explain why APOE4 carriers are at risk for a 

worse neurological outcome following TBI. 

In addition to amyloid plaques, neurofibrillary tangles have also been 

demonstrated in human TBI pathology (Ikonomovic et aI., 2004, DeKosky et aI., 

2007). Repetitive TBI can lead to progressive accumulation of Tau

immunoreactive tangles and dementia known as chronic traumatic 

encephalopathy, commonly known as dementia pugilistica. This is characterized 

by memory impairments, motor and speech problems, and Parkinsonian tremors 

(McKee et aI., 2009, Gavett et aI., 2010). Additionally, total tau in the cerebrospinal 

fluid (CSF) has also been shown to correlate with TBI and outcome from TBI 

(Franz et aI., 2003, Ost et aI., 2006). TBI, in particular repetitive TBI, is 

increasingly recognized to be a risk factor for other neurodegenerative diseases as 

well, such as Parkinson's and amyotrophic lateral sclerosis (ALS) (Tortarolo et aI., 

2003, Goldman et aI., 2006, Gohar et aI., 2009, McKee et aI., 2009, Gavett et aI., 

2010). 
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Animal Models of TBI 

Due to the complex and diverse nature of TBI, we need to be able to model it 

within a laboratory setting where we control variables that range from age, time 

after injury, injury severity, and genetic factors. However, modeling TBI presents a 

challenge because different mechanisms and extents of primary injury can lead to 

different patterns of secondary injury and pathological outcomes. Blast injury, for 

example, induces diffuse damage that is dependent on the physics of the 

shockwave reaching the skull (Cernak et aI., 2011), and is frequently accompanied 

by polytrauma from burns and lung injury to the patient (Cernak et aI., 1999, 

Kochanek et aI., 2009). Animal models of blast injury generally utilize shock tubes 

(Long et aI., 2009), but blast injury models are still under development (Saljo et aI., 

2000, Cernak et aI., 2001). Due to the unique nature of this injury, the results from 

these models may not be directly comparable to more generalized models of TBI. 

Closed head injury (CHI) models simulate a physical impact to the head and 

are designed to create a diffuse injury leading to diffuse axonal injury with a blow 

to the head that does not fracture the skull. Traditionally this method has been 

performed using a weight dropped from a fixed height over the intact skull (Whiting 

et aI., 2006). This results in diffuse axonal injury, edema formation, and 

hypertension (Foda and Marmarou, 1994). We utilized an electromagnetic 

impactor (Brody et aI., 2007) in order to deliver a more controlled hit in a new 

model of CHI being developed and characterized in-house (for more information, 

see chapter 3). 

An alternative method is to perform a craniectomy in order to directly access 

the dura and impact the brain directly. In the fluid percussion injury (FPI) 

procedure a cannula is surgically attached through the cranial window and fluid 

pressure is applied directly to the brain to induce an injury. The injury can be 

administered centrally or laterally from the midline, and results in hemorrhaging, 

26 



cavitation, traumatic axonal injury, and cell death (Dixon et aI., 1987, Mcintosh et 

aI., 1989, Carbonell et aI., 1998, Whiting et aI., 2006). Controlled cortical impact 

(CCI) also involves a craniectomy followed by an impact over the intact dura, but 

employs an impactor rather than fluid pressure in order to deliver an impact at a 

fixed speed and depth. This offers superior precision and accuracy of the impact 

velocity and force delivered (Lighthall, 1988, Dixon et aI., 1991, Hamm et aI., 1992, 

Hall et aI., 2005). 

A role for A~, tau and APOE in TBI has also been demonstrated in laboratory 

models of TBI. A~ is known to induce inflammation in the brain through p38MAPK 

signal transduction in rats (Giovannini et aI., 2002), and mice over-expressing a 

mutant form of the amyloid precursor protein (PDAPP mutation) show a drastic 

increase in A~ as well as neuronal death within the hippocampus after TBI (Gong 

et aI., 1995, Smith et aI., 1998, Smith et aI., 2003). Genomic studies of mutant 

APP (Swedish mutation APP, APPsw) mice who received CCI also show drastic 

differences from the wild type response, most significantly with genes related to 

inflammation, immune response, and cell death (Crawford et aI., 2007). 

Tau hyperphosphorylation is also known to occur after TBI in triple 

transgenic mice (3xTg-AD) (Tran et aI., 2011). These mice develop both plaques 

and tangles since they are transgenic for the M146V mutation of Presenilin 1 

(PS 1), APPsw, and the P301 L mutation of tau. Tau hyperphosphorylation also 

occurs in wild type mice transiently after CHI, peaking at 4 hours after injury and 

subsiding by 24 hours. APOE knockout mice, by contrast, showed tau 

hyperphosphorylation prior to injury, but not 4 hours after injury, only returning at 

longer timepoints but not to the extent seen in the wild type controls' transient 

expression (Genis et aI., 2000). 

APOE knockout mice have worse cognitive and motor impairment after brain 

injury than wild type mice as well as increased blood-brain barrier permeability 
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even in the absence of brain injury (Chen et aI., 1997, Methia et aI., 2001). ApoE's 

receptor binding domain is known to decrease tau phosphorylation in vitro (Hoe et 

aI., 2006), thus wild type APOE appears to be actively beneficial in a manner that 

is not compensated for by other apolipoproteins in the absence of APOE. In an 

animal model of type 2 diabetes treated with pioglitazone, APOE3 mice showed 

differentially reduced tau phosphorylation where APOE4 mice showed no 

reduction in tau phosphorylation compared to APOE knockout and murine APOE 

mice (To et aI., 2011). APOE genotype also has an effect on Af3 after TSI; mice 

transgenic for both PDAPP and E3, E4, or knocked out for APOE were analyzed 

by pathology 3 months after a cortical impact. APOE4 transgenic mice showed a 

greater number of amyloid deposits and only E4 showed the presence of 

thioflavine-S-positive Af3 in the dentate gyrus of the hippocampus. Neither the E3 

nor E4 mice showed amyloid deposition at that age (9-10 weeks) in the absence of 

TSI. E4 mice as well as APOE knockout mice also suffer from a significantly 

greater mortality rate after closed head injury than E3 mice (Sabo et aI., 2000). 

Therapeutic Intervention Strategies 

There are currently no approved treatments for TSI, though a number of 

approaches have been attempted. Glutamate NMDA receptor antagonists such as 

selfotel, aptiganel, and eliprodil were used unsuccessfully in an attempt to prevent 

excitotoxicity after TSI and/or stroke and avert downstream oxidative stress and 

inflammation. Instead of simply preventing excitotoxicity, the blockade of synaptic 

transmission may have inadvertently reduced neuronal survival. Selfotel was the 

first such drug to enter phase III clinical trials, but the TSI clinical trial was aborted 

when a concomitant trial of Selfotel in stroke began to show increased mortality in 

the treated group. The drug also was never shown to be capable of out-competing 

glutamate at high glutamate concentrations, nor was the drug's concentration in 

the brain measured (Narayan et aI., 2002). Aptiganel was also halted in a nested 
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phase 111111 clinical trial for stroke after the treated group showed less improvement 

than placebo and showed a higher mortality rate in the high dose group (Albers et 

aI., 2001). Eliprodil also failed to show a significant benefit after TBI in phase III 

clinical trials (Maas et aI., 2008). Although glutamate is initially involved in 

excitotoxicity acutely after injury, it rapidly returns to normal levels and is important 

for cell survival (Ikonomidou and Turski, 2002). 

Another intervention strategy currently being evaluated is erythropoietin 

(EPO) to restore cerebral blood flow (CBF) after TBI. Both focal and diffuse 

injuries lead to reduced CBF and hypoperfusion in regionally-specific manners 

[Kim, 2010 #84]. It was found that treatment with EPO provided benefits including 

reduced contusion volume and hippocampal cell loss when administered within 6 

hours of CCI injury in rats (Kim et aI., 2010). It has also been shown to improve 

spatial memory and increase neurogenesis in rats when administered for 2 weeks 

after injury (Lu et aI., 2005), however chronic treatment with EPO after mild TBI 

has been found to increase the risk of post-injury seizures, cerebral hematoma 

and intracerebral hemorrhage in rats (Evans and Persinger, 2010). Preliminary 

results indicate that erythropoieSis stimulating agents reduce mortality after severe 

TBI in human trials, so they may be efficacious (Talving et aI., 2010 ), however 

most of the mortality occurred within the window of time where treatment was 

administered and raises questions as to the cause of improvement seen in the 

treated group. 

Research Approach to Traumatic Brain Injury 

Our approach at the Roskamp Institute has been to develop appropriate 

animal models in order to characterize the neurobehavioral, molecular, and 

pathological profile of TBI in controlled experiments. Although in vitro stretch 

models of axonal injury exist, due to the complexity of TBI it is not possible to fully 

model in an in vitro system. Our most utilized model has been the controlled 
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cortical impact (CCI) model of TBI in both wild type and transgenic mouse models. 

CCI involves performing a craniectomy under anesthesia followed by an impact 

from an electromagnetic impactor at a controlled velocity and depth over the intact 

dura in the right hemisphere. Sham operated controls only receive anesthesia and 

a craniectomy. Staff at the Roskamp Institute have recently developed a model of 

mild closed head injury (CHI). This model also employs the electromagnetic 

impactor for precise control of the impact force, but the TBI is administered on 

intact skin directly over the midline. This model produces a mild injury without 

fracturing the skull and can be repeated in order to model repetitive TBI. In the 

course of this research, after receiving TBI using one of these two models of 

injury, mice are profiled using neurobehavioral techniques in order to examine 

their motor functions and memory and quantify the deficits present in the injured 

mice compared to controls. At euthanasia, tissue samples are collected for 

biochemical (including proteomic and genomic) and neuropathological analyses, 

and plasma samples are collected for biomarker analyses by targeted antibody

based approaches or proteomic/lipidomic interrogation. 

We took a systems biology approach to identify potential target pathways for 

modulation in order to change the outcome of TBI. Proteomic analysis of dissected 

brain tissue generates profiles of large numbers of proteins, and a comparison of 

the profile of injured compared to sham control mice reveals significant TBI

dependent modulation of proteins, allowing us to generate datasets of the 

molecular pathways associated with neurodegeneration following TBI. The 

response to injury is also dependent on severity of injury, time post injury and the 

brain region being analyzed. Furthermore, in order to identify molecular pathways 

that are associated with a favorable or unfavorable outcome after TBI, we refined 

the datasets by utilizing mice genetically modified to model human risk of 

favorable or poor outcome after TBI; namely transgenic mice expressing either the 

30 



APOE3 or APOE4 alleles of the human apolipoprotein E (APOE) transgenic mice 

following CCI. Molecular pathways found to be important in this transgenic mouse 

model of differential outcome from TBI were subsequently targeted using genetic 

modulation , pharmaceutical treatment and dietary supplementation. These 

strategies were evaluated using a series of neurobehavioral tests that I had honed 

for use in TBI laboratory models. Although pathological and molecular analyses 

showed confounding results in some approaches, neurobehavioral analysis using 

the paradigms that I optimized and implemented revealed beneficial effects of 

modulating these pathways in order to alter the outcome from TBl(figure 1.1). This 

shows we have a very effective platform with which to conduct pre-clinical 

research into effective therapies for TBI. 
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Figure 1-1. Experimental Outline Flowchart. 
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CHAPTER 2 
NEUROBEHAVIORAL EVALUATION OF TRAUMATIC BRAIN INJURY 

Introduction 

Traumatic brain injury is a very complex phenomenon owing to the many 

possible sources and mechanisms of primary injury and the wide cascade of 

events that follows primary injury (Giza and Hovda, 2001). Animal models of TBI 

are required to recapitulate the full complexity of events following TBI; even within 

animal models, the complexity of the TBI being modeled is reduced by the level of 

control exerted on the variables, such as using inbred mouse strains and focusing 

on a single sex (Cernak, 2005). As outlined in chapter 1, several different animal 

models of TBI have been developed over the years, and until very recently the CCI 

model was the one most widely used at the Roskamp Institute. CCI produces 

time-dependent neurodegeneration distal to the cortical site of injury with silver 

staining showing maximal neurodegeneration within the hippocampus 48 hours 

after injury, but with degeneration still present in the mossy fiber projections at 

least 7 days after injury (Hall et aI., 2005). Initial TBI research at the Roskamp 

Institute focused on genomic analyses (Crawford et aI., 2007, Crawford et aI., 

2009), but it became clear that there was a need to be able to correlate molecular 

and pathological changes with functional outcome measures in order to identify 

the consequences of TBI that might be amenable to therapeutic intervention. 

Neurobehavioral testing of rats subjected to a moderate CCI injury show spatial 

memory deficits at both short and long timepoints after injury (11-15 days and 30-

34 days respectively) as seen by Hamm et al (Hamm et aI., 1992). The CA1 and 

CA3 of the hippocampus show dystrophic neurons up to 2 weeks after injury 

followed by cell death (Colicos et aI., 1996). This is consistent with studies of 

human TBI showing hippocampal volume loss after TBI corresponds with 

impairments of memory and executive functioning (Bigler et aI., 1997, Himanen et 
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aI., 2005, Tasker et aI., 2005). 8y studying these effects in an animal model of 

T81, we can evaluate potential therapeutic approaches in a controlled 

environment. Therefore we chose this model of TSI in order to evaluate and refine 

a series of neurobehavioral tests that would allow us to quantify impairments in 

motor function and memory resulting from TSI. 

Motor coordination impairment is a major problem following TSI in humans, 

and practicing the use of motor skills can result in their improvement over time 

(Neistadt, 1994). The Rotarod provides a rapid test of motor coordination by 

providing a task of increasing difficulty over time in order to quantify dysfunction. 

The Rotarod test consists of a rotating beam notched with grooves to enable a 

mouse to grip the beam and walk with it as it rotates beneath the mouse at a 

programmable speed. 5 slots are divided with plastic barriers so that each mouse 

is isolated and cannot see any of the neighboring mice during the test. Previous 

studies have shown that the Rotarod is a more sensitive test of motor function 

impairment than other alternatives such as the balance beam and beam walk tests 

(Hamm et aI., 1994). Rotarod performance is negatively impacted by T81 where 

an initial drop in performance is seen, followed by gradual improvement as the 

mice adapt to their impairment. A significant improvement in Rotarod performance 

corresponding to a therapeutic may suggest its usefulness in improving motor 

coordination after TSI, particularly when combined with rehabilitation therapy. 

In addition to motor coordination impairments, memory loss is another main 

consequence of T81. One way to quantify memory impairment in rodents is to 

utilize tests of spatial memory. The Morris Water Maze (MWM) is a test of 

hippocampus-dependent spatial learning and memory (Morris, 1984). The MWM 

consists of a pool filled with transparent (for pre-testing) or opaque water (for 

acquisition and probe testing) containing a platform submerged just below the 

surface of the water. Mice are naturally averse to water and immediately seek to 
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escape from the pool. This is particularly important for the mouse strain we 

utilized for all of our experiments, C57BLl6J. This strain of mouse is well 

characterized and has been shown to exhibit reduced exploratory activity after 

previous handling and testing has occurred, thus the aversion to water provides an 

important motivator for the mice to search for an escape from the maze (V6ikar, 

Vasar et al. 2004). Mice are introduced into the pool at randomly selected cardinal 

starting locations along the outer perimeter of the pool and are given a short 

period of time to locate the platform using spatial cues along each wall of the 

testing room to orient themselves. If they fail to find the platform they are guided 

to it by hand and are required to remain there for a short period of time before 

being returned to their cage. Poor performance in the water maze indicates 

spatial memory loss and is known to occur after CCI (Scheff et aI., 1997, Fox et 

aI., 1998a). Given the known effects of TBI on the hippocampus both in the CCI 

model of TBI and in human TBI, we chose MWM to study spatial memory 

impairments induced by TBI. 

The Barnes Maze (BM) is an alternative test of spatial memory performed by 

placing the mice on a 1.2 meter circular table with 18 holes around its perimeter. 

A goal box is affixed underneath one of the holes, and as with the water maze, 

spatial cues of various shapes and sizes are placed around the walls of the room. 

In order to encourage the mice to seek a way out of the maze, provided by the 

goal box, halogen flood lamps were aimed at the walls of two diametrically 

opposed corners of the room in order to drastically increase the lighting level of the 

room through indirect lighting. Mice naturally prefer a dark environment to a bright 

one and will tend to seek escape from the bright open space of the maze into the 

goal box. If they fail to find or enter the goal box they are guided to it by hand and 

required to enter the box for a short period of time before being returned to their 

cage. Like MWM, poor performance on the BM is indicative of an impairment of 
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spatial learning and memory (Fox et aI., 1998b). The ability to measure 

impairments in spatial learning and memory is vital to understanding the 

effectiveness of potential therapeutic strategies as well as the correlation between 

changes in molecular pathways in response to injury and clinical outcome. 

My goal was to establish a neurobehavioral platform with which to evaluate 

outcome after TSI in mouse models. I evaluated neurobehavioral tests, including 

MWM, that were being used at the time in the Roskamp Institute for observing 

behavioral differences in models of neurodegenerative diseases such as 

Alzheimer's disease. I then introduced two new testing paradigms to the 

Roskamp Institute, Rotarod and Sarnes maze, which I adapted in order to 

characterize the consequences of TSI under a variety of injury conditions and time 

points. Neurobehavioral confirmation of functional deficits after TSI supports our 

contention that the molecular differences between injured and uninjured mouse 

models (Chapter 3) reflect pathogenic consequences of TSI that directly relate to 

their outcome. 

Materials and Methods 

Animals 

For the TSI severity study, we utilized male and female APOE knockout mice 

(APOE-deficient on a C57SLl6J background) 20-50 weeks old (with one at 104 

weeks old) (n=7 -8). 

For the APOE study, we used transgenic mice (n=8-12) expressing different 

human ApoE isoforms (ApoE3 or ApoE4) with human APOE regulatory sequences 

on a murine-APOE deficient background (APOE-def) with C57SLl6J as the 

background strain (Xu et aI., 1996, Crawford et aI., 2009, Ferguson et aI., 2010). 

These mice exhibit behavior similar to their C57SU6J background strain, but 

exhibit difficulties during breeding including small liter size and frequent 

cannibalization of the young. A" APOE transgenic mice (originally obtained 
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through Dr. Crawford's collaboration with Dr. Allen Roses (Duke University) and 

bred in-house) were hemizygous for the human APOE transgene (either APOE3 

or APOE4) and homozygous for mouse APOE deficiency. We have previously 

evaluated brain expression levels of ApoE by ELISA (MBL International) in both of 

these mouse APOE genotypes and found no genotype-, injury-, or 

genotype*injury-dependent differences in cortex, hippocampus or cerebellum 

(p>0.19 in all analyses), demonstrating that any differential effects of TBI seen 

between mice of different APOE genotypes is not due to differences in levels of 

expression of ApoE. ~ 

For optimization of the Barnes maze, female CS7BLl6J wild type mice were 

utilized (for pilot study, n=10 for the 4 day study at 28 weeks old, n=4 for the 7 day 

study at 39 weeks old). These mice received no TBI. 

All procedures involving mice were carried out under IACUC approval and in 

accordance with the National Institute of Health Guide for the Care and Use of 

Laboratory Animals. 

Administration of TBI by CCI 

For the administration of TBI, mice were anaesthetized with 1liter/min O2; 4% 

isofluorane; once anesthetized, the isofluorane was reduced to 2% and the animal 

mounted in a stereotaxic frame in a prone position secured by ear and incisor 

bars. Temperature was monitored throughout the surgery using a rectal probe. 

Following a midline incision and reflection of the soft tissues, a Smm craniectomy 

was performed adjacent to the central suture, midway between lambda and 

bregma. The dura was kept intact over the cortex. Injury was administered as 

previously described (Crawford et aI., 2009) by impacting the right cortex with a 2 

mm diameter tip at a rate of 5 mls and depth of either 1.3mm, 1.8 mm, or 2.0mm 

using an electromagnetic impactor (MyNeuroLab) (Diagram 2-1). Sham mice for 
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the eel procedure received craniectomy without injury. After surgery, mice were 

singly housed and monitored closely for adverse events until reacquisition of their 

righting reflex. Food and water were provided in a dish for direct access by the 

mice. Adverse event monitoring continued throughout the course of the 

experiments. For the severity study mice received either a 1.3mm or a 2.0mm eel 

or sham injury; for the APOE transgenic study mice received a 1.8mm eel or 

sham injury. 
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Diagram 2-1 : Electromagnetic Impactor (MyNeuroLab) 
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Rotarod 

Three days prior (unless otherwise noted) to the administration of a CCI, 

mice were pre-trained and baseline tested for Rotarod performance. All mice were 

given 3 trials to walk on the Rotarod at a constant speed of 5 revolutions per 

minute (RPM). Mice were returned to the Rotarod bar after each fall for a period 

of 3 minutes followed by a 3 minute rest period. After pre-training, the mice were 

given a minimum of 30 minutes to fully recover before beginning their first baseline 

test. For all subsequent tests, the Rotarod was set to an accelerating speed of 5-

50 RPM over a period of 5 minutes. 3 trials were given with a 3 minute rest period 

between trials. Latency to fall and the speed of the Rotarod at the moment of the 

fall were recorded. Clinging to the Rotarod without walking was penalized by 

terminating that mouse's trial if the clinging occurred for 5 consecutive rotations of 

the bar. This is because the primary purpose of the test is to measure motor 

function, coordination, balance, and a small degree of learning; clinging to the bar 

only indicates grip strength. 

On the day following the third day of Rotarod baseline testing, mice were 

given a craniectomy followed by a CCI (excepting sham controls) and were then 

tested every other day after surgery starting on day 1 and ending on days 5 or 7. 

Post-surgery testing occurred at an accelerating speed of 5-50 RPM over a period 

of 5 minutes. 3 trials were given with a 3 minute rest period between trials. 

Latency to fall and the speed of the Rotarod at the moment of the fall were 

recorded. As before, clinging to the Rotarod for 5 consecutive rotations ended that 

mouse's trial. 
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Morris Water Maze 

A 1.8 meter pool was filled with opaque water and a platform was hidden 1.5 

mm below the surface of the water. Mice were introduced into the pool near the 

wall and could escape by finding and remaining on the hidden platform for a period 

of 30 seconds, at which time the trial was ended and the mouse was retrieved 

from the pool. Spatial cues of various shapes, designs, and colors/brightness 

were placed around the walls of the room and small strips of tape were placed 

along the inside wall of the pool to enable the mice to orient themselves and find 

the platform without seeing it. Each mouse's movement during each trial was 

recorded and analyzed using Noldus Ethovision XT software. 

All mice received pre-testing for three days prior to the start of acquisition 

trials. Pre-testing consisted of using clear water so that the platform would be 

visible to the mice. Each mouse was tested in sequence, and each received a 

total of 4 trials, each trial starting from a different randomly selected cardinal point. 

If a mouse failed to find the platform within 60 seconds, they were guided to it by 

hand and kept there for 30 seconds, preventing them from reentering the water. 

After three days of pre-testing, the water was filled and stirred with non-toxic white 

tempera paint to hide the location of the platform. Trials resumed as before, but 

now each mouse was given 1.5 minutes to find the hidden platform before being 

guided to it. On the 9th day of acquisition testing, a probe trial was given. The 

hidden platform was removed from the pool and each mouse was given one 60 

second trial starting from a novel position. The time spent in the quadrant 

containing the hidden platform location, the latency to find the hidden platform 

location, and the path length of each mouse's total movement were extracted from 

the data. 
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Barnes Maze 

Mice were introduced into the Barnes Maze using a PVC tube and brought 

into the room covered in a towel; this prevented them from seeing any of the maze 

or spatial cues before the start of the trial. When the trial began the PVC tube was 

lifted straight up and away and the experimenter then left the room. Each mouse 

was given 1.5 minutes to explore the maze and enter the goal box. If they entered 

the goal box the trial was terminated and 30 seconds were allowed to elapse 

before retrieving the goal box and returning the mouse to the home cage. The 

mouse was placed into the goal box directly and left there to acclimate for 30 

seconds if they had not already entered it on their own by the end of the trial 

period. Each mouse received 4 trials starting in front of each of 4 randomly 

selected cardinal holes for a period of 6 days. On the 7th day the goal box was 

removed and the mouse was introduced into the maze at a novel position in the 

center of the table. This probe trial was only given once to each mouse and lasted 

for 60 seconds. Each mouse's orientation and movement was recorded by Noldus 

Ethovision XT software. The number of pokes into each hole, average distance of 

the nose from the target hole, and average time spent with the nose in the target 

hole during the probe trial were extracted from the data. 

Results 

Severity Study 

We initially explored different levels of injury in the CCI model using the 

Rotarod as a measure of the functional outcome. Injury depth was set to either 

1.3mm or 2.0mm and mice were tested on days 1, 3 and 5 after surgery. Rotarod 

showed a Significant effect of injury, but only a non-significant trend towards the 

2.0 mm depth injury being more severe than the 1.3mm depth injury. Figure 2-1. 

The results of this study led to two changes in our approach. Firstly, we decided 

to extend Rotarod testing to 7 days as the results of this test pointed to an 
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increasing difference in performance between injury groups over time and we 

wished to further explore this divergence. Secondly, we found that the 2.0mm 

depth injury produced a mortality rate of approximately 25%. Since our interest is 

in studying the long term consequences of lSI survival, not mechanisms of 

mortality, this was an unacceptably high mortality rate. We subsequently reduced 

the depth of injury for the "severe" paradigm to a depth of 1.8mm in order to 

consistently achieve 100% survival. 
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Figure 2-1 Fall latency during the Rotarod in Severity Study. Injury was signififcant 
by ANOVA repeated measures (p<O.05). Error bars represent standard 
error. 
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Effects of APOE genotype on Rotarod performance after eel 

Rotarod results from the APOE cohort were analyzed by expressing each 

mouse's average fall latency as a percentage of their baseline fall latency 

average .. APOE3 mice showed a trend for superior performance compared to 

APOE4 mice. Raw fall latency showed a significantly higher fall latency in TBI 

APOE3 mice than TBI APOE4 mice (p<O.05) (Figure 2-2). This effect was not 

present when normalizing the data to baseline performance. APOE3 mice also 

recovered to their baseline performance level by day 5 after injury and recovered 

to sham performance by day 7. APOE4 mice failed to recover to either their 

baseline or sham levels within the first week after injury, and when tested again at 

3 months, immediately prior to MWM testing (see below) they required 3 days of 

testing in order to recover to sham levels. This supports previous studies in the 

literature showing that APOE4 is a risk factor for worse outcome following TBI. 

As this is primarily a test of motor function, it does not indicate that the level 

of secondary injury sustained in the hippocampus following TBI was necessarily 

worse in the APOE4 mice than the APOE3 mice. 3 months after surgery, the mice 

were given 3 additional days of testing with one rest day between each testing 

day. The results showed that motor performance of all TBI mice regardless of 

genotype returned to E3 sham levels within the three day testing period three 

months after injury. 
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Rotarod Fall Latency 
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Figure 2-2. Rotarod Fall Latency. TBI E4 mice performed significantly worse than 
TBI E3 mice (globally) by student's T -test (p<O.05) but not after 
normalizing the data to baseline performance. Error bars represent 
standard error. * indicates significance relative to the corresponding 
sham by T-test (p<O.05). 
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Morris Water Maze 

In the APOE transgenic mouse cohort, Morris Water Maze testing began 3 

months after TBI, immediately after the second period of Rotarod testing described 

above, in order to study the long term consequences of TBI on memory and the 

effect of APOE genotype on the outcome from injury. Interestingly, our MWM 

results not only failed to indicate a significant impact of genotype on the level of 

injury to the hippocampus, they also failed to indicate a significant impact of injury 

on spatial memory associated with the function of the hippocampus (figure 2-3, 

figure 2-4, figure 2-5 and Appendix A: the Morris water maze chapter of the 

supplementary DVD). This is inconsistent with our Rotarod results discussed 

above, which show APOE4 mice generally performing worse than their APOE3 

counterparts in both the sham and injury groups. In the Rotarod, APOE4 TBI mice 

performed worse on the first day of testing 3 months after injury, only recovering to 

E3 sham levels (and never to its corresponding sham) by the third day of testing, 

showing that TBI-induced deficits persist 3 months after injury. 

Our MWM results showed no statistically significant effect of genotype 

(p>O.05), but the trend shows E4 mice outperforming E3 mice in terms of time 

spent in the quadrant containing the target platform and in terms of the path length 

(which is expected to decrease as mice learn more direct ways to find the target 

platform) over the course of the testing period. Not only was genotype an 

insignificant factor, but so was the injury effect itself. Injury was only significant in 

the pre-testing trials, when the platform was visible and spatial memory was not 

required to locate it. A significant effect only during the pre-testing trials indicates 

a motor or motivation deficiency in the TBI mice, but not a difference in spatial 

memory. 
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Given that the TBI was severe, the hippocampus was expected to be deeply 

injured and a severe impairment of spatial memory compared to either sham 

group. Although no effects were seen in the MWM, the Rotarod data showed a 

significant effect of injury and a trend for worse performance in APOE4 mice than 

the APOE3 mice. This prompted me to introduce and optimize an alternative 

method of measuring spatial learning and memory. 
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Figure 2-3. Percentage of time spent in the correct quadrant during the MWM by 
the APOE cohort. No statistical significance. Error bars represent 
standard error. 

Path Length 

1600 -

1400 

1200 

1000 

E! 
S .. 
.~ 800 
C .. 
u 

600 

400 

200 

0 
2 3 4 5 6 7 8 9 

Day 

Figure 2-4. Path length during the MWM by the APOE cohort. No statistical 
significance. Error bars represent standard error. 
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Figure 2-5. Latency to the target platform during the MWM by the APOE cohort. 
No statistical significance. Error bars represent standard error. 
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Barnes Maze Optimization Pilot Cohort 

I chose the Barnes maze as an alternative to the MWM because this 

particular strain of mouse (C57BLl6J) shows a preference for less stressful 

paradigms (Harrison et aI., 2009), and this was the background strain of choice as 

the APOE transgenic mice and other mouse models of interest to us are on the 

C57BLl6J background. To optimize the Barnes maze, C57BLl6J wild type mice 

were tested for a range of times to determine the minimum acquisition period 

required. Previous work has shown the ability of this strain of mouse to develop 

spatial memory in this paradigm within 4 days of acquisition testing (Koopmans et 

aI., 2003), so we began with 3 days of acquisition testing with a probe trial on the 

fourth day. In a second cohort we also conducted acquisition testing for 6 days 

before performing a probe trial on day 7. 6 days of acquisition trials resulted in a 

smaller average distance of the nose of the mouse from the target hole during the 

probe trial. figure 2-6. This showed that the mice continued to develop spatial 

memory on the last 3 days of acquisition testing. Given these results, future tests 

using the Barnes maze would involve 6 days of acquisition trials followed by a 

probe trial on the 7th day. 
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Figure 2-6. Average distance to the target hole during the probe trial of the 
Barnes maze optimization study. Error bars represent standard error. 
No statistical significance, 
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Discussion 

Overall, our model of T81 demonstrates impairments in motor coordination 

and memory that are consistent with the symptoms of TBI seen in human clinical 

situations. Not every neurobehavioral paradigm utilized showed the expected 

effect, but we optimized alternative methods designed to assess the same 

impairments and here we demonstrate their success not only at showing effective 

learning in these mice, but significant impairments resulting from TBI. Rotarod, 

Morris water maze, and Barnes maze all require optimization and not every test is 

appropriate for every strain of mouse, but when properly applied allow us to 

quantify the level of impairment present after traumatic brain injury. With the TBI 

severity study, we did not see a significant difference between the 1.3mm and 

2.Omm depth injury, but that particular experiment lead to further optimization of 

our Rotarod protocol and because it was a pilot study it involved the use of mice 

from a wide range of ages which is a confounding factor in these mice (Serradj 

and Jamon, 2007). Future cohorts would continue to not only show the Rotarod's 

ability to distinguish CCI injury from sham, but also its ability to discriminate 

genotype and treatment differences as well (see chapters 4 and 5). 

Rotarod testing performed on our APOE cohort showed a non-significant 

trend for APOE4 performance to be worse than APOE3, whether they received 

TBI or a sham surgery. Injured APOE3 transgenic mice recovered to sham 

performance levels by day 7 after T81, while APOE4 transgenic mice showed a 

trend for worse performance even 3 months after T81. Though our results were 

not statistically significant, they were consistent with the hypothesis that APOE4 

predisposed the mice to a worse outcome from injury. The number of mice in 

each group ranged from 8-12, and it is possible that increasing the number of mice 
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to 12 per group consistently as well as confining the age and gender of the mice 

would have allowed the trends to become statistically significant. 

MWM of the APOE mice not only failed to indicate a significant impact of 

genotype on spatial memory, they also failed to indicate a significant impact of 

injury. Injury was only significant in the pre-testing trials, when the platform was 

visible and spatial memory was not required to locate it. A significant effect only 

during the pre-testing trials indicates a motor or motivation deficiency in the TSI 

mice, but not a difference in spatial memory. This may be due to stress, 

particularly once the platform is hidden by opaque water during the acquisition 

trials; Harrison and colleagues demonstrated that C57SLl6J mice show a 

significant correlation of stress level with maze performance in the water maze 

(Harrison et aI., 2009). The CCI model of TBI employed here should have shown 

significant effects on spatial learning and memory (Fox et aI., 1998b). The results 

not only contradict the findings of other experimenters studying the CCI model, but 

they also directly contradict our Rotarod data discussed above, which show a 

significant effect of injury and a trending lower percentage of baseline performance 

in the APOE4 mice than the APOE3 mice. Even 3 months after injury, our E4 

mice initially showed impairments relative to sham mice that did not resolve until 

the third day of testing. 

The difficulties encountered with the Morris Water Maze were not unique to 

this particular experiment; another pilot study showed differences between 

treatment groups on days 1 and 9, but the overall trend did not show any 

difference between the two (see chapter 5). That particular pilot study did not 

include sham mice for controls. 

Spatial memory testing is a vital tool for studying the neurobehavioral 

consequences of traumatic brain injury within a controlled animal model. Although 

MWM is frequently utilized in assessing the consequences of TBI (Hanell et aI., 
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2010, Singleton et aI., 2010, Zhu et aI., 2010), previous groups have shown a 

mouse strain-dependent effect on neurobehavioral testing. Strain dependent 

effects have been noted in the Morris water maze as well as the Barnes maze; in 

contrast to our C57BLl6J mice, CD1 mice have been reported to show superior 

performance in the Morris water maze, but poorer performance on the Barnes 

maze than C57BLl6J (Patil et aI., 2009). C57BLl6J serves as the background 

strain for mice carrying the human APOE transgene relevant to the study of 

traumatic brain injury, as well as countless other transgenes used in other models 

of disease (Hartman et aI., 2002, Crawford et aI., 2009, Ferguson et aI., 2010, 

Jiang et aI., 2010, Yao et aI., 2010), and therefore using a test suitable for that 

strain is appropriate. 

Our Rotarod results indicated a pronounced effect of injury in every cohort of 

mice tested, yet as previously mentioned, MWM was unable to show a significant 

effect of TBI three months after the initial insult. An examination of the video 

recordings of each trial showed a failure of sham mice to utilize spatial strategies, 

with most mice using systematic strategies at best to locate the platform (See 

Appendix A). Videos of the Barnes maze testing would later show sham mice 

utilizing spatial strategies to directly locate the target hole, while TBI mice would 

use systematic strategies of searching hole by hole until the correct hole was 

located (See chapter 5 and Appendix A, the Barnes maze chapter in the 

supplementary DVD). TBI mice in the Morris water maze similarly failed to use 

spatial strategies, but the difference between their performance and that of sham 

mice was evidently minimized as seen by examining both the acquisition and 

probe trial data. Time was statistically significant over the acquisition period, 

indicating that learning was occurring, but this may have been driven more by 

goal-oriented learning than spatial memory learning. Goal-oriented learning drives 

the non-spatial component of both the water maze and Barnes maze; the mice 
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must learn and remember to find and remain in the target box or target platform. 

Goal-oriented learning and memory is independent of dorsal hippocampal 

functioning, but is moderately impacted by damage to the ventral hippocampus. 

Spatial-memory, unlike goal-oriented memory, is dependent on the functioning of 

the dorsal hippocampus (Levita and Muzzio, 2010). Early in the acquisition testing 

mice had not yet learned the non-spatial goal portion of the task; that the hidden 

platform was the only way to escape the pool, so they did not remain on the 

platform for the required 3 seconds even when accidentally encountering it. 

Harrison et ai, demonstrated that this strain of mouse, C57BLl6J, show water 

maze performance that is significantly inversely correlated to stress as measured 

by corticosterone levels. Corticosterone levels were most elevated during water 

maze testing, but were also evaluated during the Barnes maze and although still 

significantly elevated (though to a lesser extent than in MWM) and were not 

correlated with performance (Harrison et aI., 2009). 

If stress is the main driver of Morris water maze performance in this strain of 

mouse, then it may be masking other spatial memory impairments such as TBI. 

We optimized the Barnes maze as a test of spatial memory by performing 

acquisition testing for 3 days followed by a probe trial on day 4 and compared this 

to 6 days of acquisition testing followed by a probe trial on day 7. Due to limited 

numbers of mice available for the 7 day comparison study, we only had an n of 4 

and the mice were 11 weeks older than the mice used for the 4 day study. In spite 

of these limitations, both groups showed similar standard error and the mice from 

the 7 day study had a smaller average distance from the target hole. Though the 

results were not statistically significant due to the small n of the 7 day group, the 

consistency shown and the relatively small amount of standard error was a 

remarkable result, particularly compared to our previous MWM results. This gave 

us confidence in the power of the Barnes maze to discriminate between groups 
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with different levels of spatial memory. The probe trial of the Barnes maze is 

performed after approximately 20 hours have elapsed from the final day of 

acquisition testing (day 6), making it a much better indicator of long term spatial 

memory retention (Appendix A, the Barnes maze chapter of the supplementary 

DVD). This shows that the Barnes maze is capable of discriminating injury and 

long term spatial memory loss as well as spatial memory learning. The dramatic 

differences seen between the Barnes maze and Morris water maze outcomes 

confirm previous studies showing that high stress levels experienced during Morris 

water maze testing negatively impact C57BLl6J performance. For our purposes 

therefore, in modeling TBI in the laboratory, the Barnes maze is more suitable for 

this strain of mouse and produces results that correlate with hippocampus

dependent spatial memory functioning. With the Rotarod and Barnes maze tests, 

we can now properly quantify the neurobehavioral outcome from injury, and the 

large differences seen between TBI and sham groups provides sufficient power to 

discriminate between treated and untreated TBI mice showing any evidence of 

improved outcome after injury. 
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CHAPTER 3 
MOLECULAR CHARACTERIZATION OF TRAUMATIC BRAIN INJURY AT 

ACUTE AND LONG TERM TIMEPOINTS 

Introduction 

As previously discussed in chapter 1, traumatic brain injury consists of both a 

primary injury directly caused by the forces acting on the brain, as well as a 

secondary delayed injury caused by conditions and processes within the brain in 

the hours and days after the primary insult. The delay between the primary insult 

and secondary injury involves a cascade of events where intervention may be 

capable of reducing or preventing additional neuronal damage. Unfortunately, the 

exact mechanisms of secondary injury are not fully understood, in particular what 

processes occurring within secondary injury result in a better or worse patient 

outcome. In order to elucidate mechanisms of secondary injury important to 

determining outcome and thereby identify potential targets for therapy, the 

Roskamp Institute Proteomic Core Lab utilized high throughput proteomics to 

profile proteome-wide changes occurring after TBI in APOE3 and APOE4 

transgenic mice. As described in chapter 1, the presence of at least one APOE4 

allele is associated with worse outcome from traumatic brain injury in humans and 

mice (Friedman et aI., 1999, Sabo et aI., 2000, Crawford et aI., 2002, Smith et aI., 

2006). Because APOE genotype influences outcome from TBI, differential 

proteomic responses in mice transgenic for human APOE3 and APOE4 over a null 

mouse APOE background may reveal molecular pathways involved in determining 

the relative outcome from TBI. I analyzed the data generated from our proteomic 

analysis in order to find molecular pathways that were associated with the 

differential response of APOE3 and APOE4 transgenic mice to TBI. 

In order to study molecular changes occurring after TBI in an unbiased 

manner, we utilized a state of the art proteomic platform suitable for analysis of 

complex biomatrices (Le. hippocampal and cortical brain tissue). Traditionally 
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proteomic analyses was performed using two-dimensional gel electrophoresis, 

separating proteins first by their isoelectric point, then by their molecular mass. 

Separated proteins are then resolved as discrete spots on the gel and 

densitometry is used to compare their relative amounts. The individual spots may 

then be extracted from the gel and analyzed by mass spectrometry in order to 

identify the protein. This technique is imited, however, as low abundance proteins 

are lost and proteins with extremes of charge or mass are not resolved (Gygi et 

aI., 2000). To overcome these limitations, the preferred contemporary approach 

utilize multidimensional liquid chromatography combined with mass spectrometry 

to separate proteins in a liquid phase without losses from gel transfers and limited 

gel resolution (Link et aI., 1999). Though this improves resolution and the ability to 

detect lower abundance proteins, there are still limitations; because this is not a 

fixed array such as a gene chip with pre-defined probes for specific proteins, you 

do not detect the same set of proteins each time. Nevertheless, this technique 

provides superior separation to gel techniques. Liquid chromatography/mass 

spectrometry (LC/MS) techniques are currently employed by the Roskamp 

Institute Proteomic Core lab in order to separate complex mixtures of proteins from 

a diverse range of sources including human and mouse plasma, cell culture and 

dissected brain tissue from mouse models of human conditions, including our 

mouse modes of TBI. 

The proteomic pipeline begins with the isolation of soluble and insoluble 

fractions from the protein sample, and digestion with an appropriate protease, 

typically trypsin. Tryptically digested peptides are then separated through 

multidimensional liquid chromatography before elution into the MS instrument. 

Mass spectrometric analysis and identification of proteins begins by receiving 

tryptically digested peptides as they elute from liquid chromatography, followed by 

electrospray ionization (ESI). Mass spectrometry works by measuring the mass to 
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charge ratio of each ion (mlz), forming a spectra of ions with differing abundances 

and mlz ratios. As peptides are isolated by MS based on their mlz ratio in the full 

scan, they are then fragmented by high energy collision with gas (collision induced 

dissociation or CID) and then the mlz spectrum of the fragmented peptide is 

generated in a second MS scan (MS/MS). The CID spectra are then compared 

using an algorithm for matching not only the CID spectra, but also the full scan 

spectra against the known spectra of tryptically digested peptides (for review, see 

(Aebersold and Mann, 2003)). The ability to separate and identify many different 

peptides present in our samples allowed us to take a very broad look at a wide 

portion of the proteome in each sample studied. Not only does this technique 

identify the peptide, but the CID spectra also contain the abundances of reporter 

ions that each have mlz ratios unique to the sample they originated from. 

For quantitative proteomics we use a method termed Isobaric Tagging for 

Relative and Absolute Quantitation (iTRAQ) (Ross et aI., 2004). iTRAQ uses 

covalent labels to tag peptides for simultaneous identification and quantitation of 

samples in a multiplexing manner. Because the samples are labeled in an 

isobaric manner, the fragmentation spectra for identification form single peaks 

from all samples. Each sample to be compared is labeled with one tag with a 

specific mlz ratio, allowing for the comparison of 4, 6, or even 8 samples 

simultaneously. Fragmentation releases the reporter ions, which have masses 

unique to each sample, allowing for quantitation of each sample simultaneously 

(yVu et aI., 2005). Combined with the separation and identification power of LC

MS/MS methods, this approach enabled in depth proteomic analyses of APOE3 

and APOE4 transgenic mice after TBI at multiple timepoints and severities. 

We utilized the CCI animal model of TBI (as described in Chapter 2) at 

different injury depths to induce what we termed for the purposes of this 

experiment a "mild" and "severe" injury, though both injuries model a penetrating 
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head wound and are more severe than a non-penetrating head injury. The "mild" 

injury used a 1.3mm depth while the "severe" injury used a 1.8mm depth level to 

examine the differences in the proteomic response between different primary 

injury severities. Since secondary injury is also a delayed and prolonged process, 

we profiled the proteomic response over time in order to examine temporal 

changes in molecular profiles. Molecular response to injury was investigated in 

cortex and hippocampus of the ipsilateral hemisphere at 24 hours, 1 month, and 3 

months in severely injured mice, and at 24 hours and 1 month in mildly injured 

mice with both APOE3 and APOE4 mice for a total of 10 datasets (See flow chart 

figure 3-1). To the best of our knowledge, no one has yet carried out such a 

detailed characterization of the consequences of TBI in an animal model, let alone 

including differential outcome as an additional variable. The long-term clinical 

consequences for TBI in human APOE4 carriers relative to non-E4 carriers are 

known (Friedman et aI., 1999, Crawford et aI., 2002, Smith et aI., 2006), and 

similar observations have been made in APOE mouse models (Sabo et aI., 2000, 

Hartman et aI., 2002); thus the underlying hypothesis is that proteomic profiles of 

APOE4 mice after injury correlate with unfavorable outcome compared to APOE3. 

Analysis of our proteomic data revealed many different injury-dependent 

cellular responses, as well as responses that were significantly different in APOE3 

versus APOE4 mice. Among these, the importance of nuclear factor kappa B (NF

kB) related proteins after TBI was evident, as well as cellular inflammation. In 

order to identify early markers of later outcome, particularly at timepoints more 

acute than 24 hours, we focused on potential early responders from inflammatory 

mechanisms and examined mouse brain tissue at 1, 6, 12, 24, 48 hours after 

injury. Because NF-kB itself is such a fast responder to TBI and previous groups 

have shown that it has already peaked in response in 4 hours or less after TBI 

(Sanz et aI., 2002), we targeted cytokines downstream of NF-kB including 
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interleukin-6 (IL-6), interleukin-1 B (IL-1 B), and monocyte chemotactic protein-1 

(MCP-1) expecting that these inflammatory molecules would be up-regulated at 

acute timepoints after TBI and provide a rapid panel of markers that could be 

correlated to outcome at later timepoints. Previous studies have shown that these 

markers can become elevated very quickly after TBI (Morganti-Kossmann, 

Cristinia et al. 2002) IL-6 expression is activated by NF-kB in cooperation with c

Jun (Xiao et al. 2004) and its concentration in serum is thought to correlate with 

the severity of injury (Kalabalikis et aI., 1999). NF-kB also induces transcription of 

IL-1 B (Cogswell et aI., 1994) and studies have shown that reducing IL-1 B after TBI 

may be neuroprotective (Clausen et aI., 2011). MCP-1 is also regulated by NF-kB 

(Donadelli et aI., 2000) and is involved in macrophage recruitment in TBI (Semple 

et aI., 2009). In this acute study, in addition to the CCI and sham controls we also 

included a CH I model recently developed in-house, as a model of mild 

TBI/concussion as this is increasingly recognized to be a major health concern. 
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24 hours post E3 FA 1 month post E3 FA 3 months post E3 
injury mjury injury 

MtldTBI n=3 n=3 MildTBI n=3 n=3 Severe TBI n=3 

SevereTBI n=3 n=3 Severe TBI n=3 n=3 Sham n=3 

Sham n=3 n=3 Sham n=3 n=3 

-HIppocampI -Hippocampi -Hippocampi I 
B 

-Corbces 

Total of 96 ruppocampal and cortical 
samples for MS analyses** 

-Cortices 

II~ 

-CortIces 

iTRAQ labeling 
Three 4-plex per comparison, 30 in total 

11 5 11 6 11-

FA 

n=3 

n=3 

APOE3 
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APOE3 
TBI 

[A PO"'] 
Sham 

[APOE'] 
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Statistical 
Analysis 
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Proteins sIgnificant for 
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"Same sham injured animals were used to compare with mild and severe mjwy 

Figure 3-1 . Proteomic analysis outline flowchart. 
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Time Tissue TBI Number of significantly modulated Number of 
proteins significantly 

modulated 
canonical 
pathways 

Injury Genotyp Interaction Tota Injury Interactio 
e I n 

24 Cortex Mild 131 23 20 156 37 2 
hours 
1 Month Cortex Mild 31 25 31 69 3 29 

24 Hippocampus Mild 47 17 23 62 38 30 
hours 
1 Month Hippocampus Mild 15 10 18 36 4 14 

24 Cortex Sever 27 15 11 42 8 8 
hours e 
1 Month Cortex Sever 35 51 32 91 21 12 

e 
24 Hippocampus Sever 24 19 19 46 10 10 
hours e 
1 Month Hippocampus Sever 34 24 40 75 61 26 

e 
3 Cortex Sever 10 10 9 19 9 22 
Months e 
3 Hippocampus Sever 19 15 24 42 10 15 
Months e .. 

Table 3- 1 Breakdown of significantly modulated proteins wlthm the proteomlc 
datasets 

Materials and Methods 

In order to elucidate the mechanisms driving the APOE-genotype dependent 

response to TBI, a mild or severe (n = 3 per group) controlled cortical impact 

(CCI) or sham injury was administered to APOE3 and APOE4 hemizygous 

transgenic mice (described in Xu et a11996) as described in chapter 2. Mice were 

then euthanized at 24 hours, 1 month, or 3 months (severe only) after injury for 

proteomic and immunohistochemical analysis of dissected regions of the brain, 

including the cortex and hippocampus. Mice were euthanized by isoflourane 

followed by intracardial PBS perfusion. For the ELISA studies, mice were 

euthanized at 1, 6, 12, 24, or 48 hours after CCI using the same protocol. 

Sample Preparation for iTRAQ 

At euthanasia, mouse brains were perfused with chilled 1X PBS. Brains were 

dissected into hemispheres, then cortices, hippocampi and cerebella at 4°C, and 

snapfrozen in liquid nitrogen (cerebellar and contralateral samples have been 

stored for future analyses). The entire hippocampus and cerebrocortex from the 
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ipsilateral hemisphere were dissected for analyses; not a specific region relative to 

the injury impact site. For all mice, soluble proteins from the ipsilateral hippocampi 

and cortices were extracted by sonication of tissue samples in 500IJI chilled 1X 

PBS, supplemented with a protease inhibitor cocktail (Roche) and centrifugation at 

100,000 x g (adapted from the methodology employed in (Abdullah et aI., 2011)). 

The soluble fraction was quantified using the BCA assay, and verified by SDS

PAGE. There were a total of 96 samples to analyze - with 3 mice per group, 2 

genotypes (APOE3, APOE4); 3 types of injury (sham, mild, severe); 3 timepoints 

(24hr and 1 month for all three injuries; 3 month for sham and severe) and 2 brain 

regions (cortex and hippocampus). For further details see appendices Band C. 

Mass Spectrometry 

Mass spectrometry analyses were carried out by the Roskamp Institute 

Proteomics Core Team. We used 4-plex iTRAQ with each plex containing one 

APOE3 sham, one APOE4 sham, one APOE3 TBI and one APOE4 TBI sample for 

direct comparison. Thus with three biological replicates per group there were 

three 4-plex for each comparison. Within each plex samples were from one brain 

region and one timepoint. The sham samples from each timepoint provided the 

control samples for both mild and severe injury samples. A total of 30 plexes were 

run in order to complete this experiment Samples were analyzed by LC-MS/MS 

methods with iTRAQ quantitation as described in Crawford (2012) or appendices 

Band C. 

iTRAQ Data Analysis 

LC- MS/MS data were analyzed using the SEQUEST search algorithm and 

datasets were generated by the Roskamp Institute Statistical Analysis and Data 

Management Core lab for all proteins for which the variable interactive term of 

"Genotype*lnjury" was statistically significant according to ANOV A. The ratios of 
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E3 TBII E3 Sham and E4 TBII E4 Sham were calculated for each peptide and the 

arithmetic means of these ratios were reported for each protein. For further details 

see appendices Band C. 

Data Analysis 

LC- MS/MS data (*.raw) files were transferred to Bioworks 3.3.1 (Thermo 

Electron) to identify peptides using the SEQUEST search algorithm. The spectra 

were searched against the IPI,MOUSE.v3.S9 database using the following search 

criteria: maximum allowed missed cleavages for trypsin, 2; fixed modifications of 

+S7.02146 for 1M-modified cysteine residues; and variable modifications of 

+1440a for iTRAQ-labeled peptide N-termini and lysine side chains, and 

+1S.99491 for oxidized methionine. The resulting Bioworks .SRF files were then 

converted to .OUT and .OTA files in order to import the results into the Trans 

Proteomic Pipeline (TPP) v 4.2 where peptides (and their corresponding proteins) 

were quantified using the Libra feature of the TPP software, where the reference 

ions are set as 114.1, 11S.1, 116.1, and 117.1. The Peptide Prophet feature of TPP 

was used to calculate a probability value for each peptide and these probabilities 

were used to set a false discovery rate (FOR) of O.OS. Peptides with a probability 

value equal to or higher than this cutoff value were exported to Excel. The Excel 

files were imported to JMP (SAS) 8.0.2 for data cleaning and statistical analysis. 

Ions counts below 20 were zeroed, peptides that did not yield any ion count for 

any of the iTRAQ labels were deleted. Proteins identified with 2 or more peptides 

were used for the quantitative analysis, but proteins identified by a single peptide 

were only included in the analysis if the same peptide was identified in multiple 

biological replications. 

Reporter ion peaks extracted from the mass spectra in this study were 

analyzed by ANOVA using models adapted from (Hill et aI., 2008) that were 
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crafted specifically for iTRAQ experiments. All reporter ion peak intensities were 

In transformed to make intensity data additive, and the loading bias was removed 

by mean normalization on each replication and label. 

ymijklh=l-I+rm+bi+pj+fkO))+gl+sh+g*sl(h)+emijklh (1) 

where: 1-1 is the population mean; rm is the fixed effect of the iTRAQ plex; b; 

is the mouse -NID(O,cr2b), i=1 to 3; Pj is the random variable protein incomplete 

block -NID(O,cr2 p); fk(j) is the random variable peptide incomplete block 

-NID(O,cr2f); gl is the fixed variable Genotype; Sh is the fixed variable Injury; 

g*SI(h) is the fixed variable Genotype*lnjury interaction -NID(O,cr29*s); emijklh is the 

random variable error within the experiment -NID(O,cr2 e). This linear model was 

used to analyze each TBI severity and time point post-TBI combination dataset 

separately. Due to the transformation and normalization of the experiments, effect 

sizes are usually lower than other quantitative approaches such as microarray. 

Since the effect sizes that we are detecting are small, iTRAQ-based proteomic 

approaches would necessitate much larger numbers of mice than the N of 3 mice 

per group possible in this study, thus potentially some important protein responses 

will have been missed. 

We also assessed the coherence of protein expression across biological 

replicates and found that on average across all experiments proteins were 

identified in all 3 samples 55% of the time, and in 2 or more samples more than 

87% of the time. 

Datasets were thus generated for all proteins showing response to TBI, and 

ANOVA of these quantitative datasets identified proteins for which the variable 

"Injury" and/or the interactive term of "Genotype*lnjury" was statistically significant. 

Proteins that were significantly regulated with respect to Genotype alone will form 

the basis of separate analyses and reports. The ratios of E3 TBII E3 Sham and 
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E4 TBII E4 Sham were calculated for each peptide and the arithmetic means of 

these ratios were reported for each protein. 

Ingenuity Pathway Analysis 

Our datasets containing the list of proteins statistically significant for the 

interaction of "Genotype*lnjury" were uploaded to Ingenuity® Pathways Analysis 

(IPA). Each protein was mapped to its corresponding object in the Ingenuity® 

Knowledge Base. The "Network Eligible" molecules, were overlaid onto a global 

Ingenuity Systems molecular network developed from information contained in the 

Ingenuity Knowledge Base, containing 1,510,000 biological and chemical concepts 

spanning genes, proteins, and molecular and cellular processes. Over 19,600 

human, 14,700 mouse, and 8,000 rat genes are currently represented in the 

knowledgebase. Networks of "Network Eligible" molecules were then 

algorithmically generated based on their connectivity, based on interactions 

curated from the literature. IPA generates biological networks, canonical pathways 

and functional groups based on known interactions and relationships. A right-tailed 

Fisher's exact test is used to calculate a p-value determining the probability that 

each biological function assigned to a given pathway or functional group is due to 

chance alone. P-values lower than 0.05 were considered significant. 

The custom pathways represented in figures 2, 3 and 4 of this chapter are 

graphical representations of the molecular relationships between molecules. 

Molecules are represented as nodes, and the biological relationship between two 

nodes is represented as a line. All connections are supported by at least one 

reference from the literature, from a textbook, or from canonical information stored 

in the Ingenuity Knowledge Base. A bar graph beside each node indicates the 

degree of up- (red) or down- (green) regulation. Nodes are displayed using various 

shapes that represent the functional class of the gene product. Lines are displayed 
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with various labels that describe the nature of the relationship between the nodes 

(e.g., P for phosphorylation, T for transcription). 

Custom pathways were created by seeding to find all the proteins within our 

datasets that have direct or indirect interactions with CD40/CD40L, NF-kS or APP. 

The aforementioned molecules acted as the seed point, from there each dataset 

was queried to expand the network over two iterations using only molecules 

present in those datasets. Custom pathway creation allows for the exploration of 

pathways of interest within a dataset (Yaspan and Veatch, 2011). 

Tissue preparation for ELISA 

For the acute inflammatory cytokine analysis, dissected cortical tissue was 

homogenized in 500ul M-PER and 1x Halt Protease/Phosphatase Inhibitors, 

followed by centrifugation at 20,000 g for 20 minutes, then splitting into aliquots 

and then storage at _80 0 C. Protein concentration was determined by SCA assay 

and confirmed by check gel with SYPRO Ruby staining. 

Acute Timepoint ELISA Analysis 

IL-6 and MCP-1 ELISA kits from Invitrogen were run according to 

manufacturer's directions, with the exception that each of the primary incubations 

of the samples were performed overnight at 4 degrees Celsius to minimize non

specific binding. A porcine sample was included in each assay to validate the 

specificity of the kit. 150 I-Ig of protein were loaded into each well for each ELISA. 

Samples and standards were run in triplicate. Data are expressed as pg of protein 

per ml. 

Statistical analysis 

Reporter ion peaks were analyzed by mixed-model ANOVA to reveal 

proteins that were significantly different by injury, genotype, and by injury x 

genotype (interaction). See Crawford (2012). Student's T-Test was also used for 
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direct comparisons of ELISA results . All statistical analyses were performed using 

JMP 8.02 (SAS) . 

Results 

A number of proteins (227 total across all 10 datasets; see 

http://www.rfdn.org/publication-suppl/2011/brain for the full list) , were significant for 

the interactive effect of injury*genotype within each dataset (Table 3-1) , and are 

likely to be important in determining the differential outcome of APOE3 and 

APOE4 mice . Further analysis by Ingenuity Pathways Analysis (IPA) specifically 

targeted at these "interactive" proteins showed that they modulate a large number 

of different cellular functions which we assume to be critical in outcome 

determination . IPA functional groups showed a number of functions that were 

regulated across all timepoints and within both the mild and severe injury. These 

included amino acid metabolism, cellular growth, proliferation , and development, 

neurotransmitters and nervous system signaling , disease-specific pathways, lipid 

metabolism and cellular immune response. Pathways such as amino acid 

metabolism and disease-specific development did not present any targets that 

would be easily modulated for our studies, and others such as cellular growth , 

proliferation , and development may be indicative of reparative processes occurring 

after TBI. Neurotransmitters and nervous system signaling may be indicative of 

differential excitotoxicity, but given the heavy focus already paid to that aspect of 

TBI (Palmer et aI. , 1993, Gong et aI. , 1995, Obrenovitch and Urenjak, 1997, 

Raghavendra Rao et aI. , 2001 , Muir and Teal, 2005), we decided to focus our 

efforts elsewhere. Based on in-house expertise and resources, we decided to 

focus on cellular immune response and related pathways in order to find potential 

treatments . IPA canonical pathways also showed NF-kB- to be significantly 

regulated at 1 month in the cortex in the mild injury (p<0.05). Given these results I 

created custom functional pathways based on NF-kB, APP, and CD40/CD40L 
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related molecules within our datasets (Yaspan and Veatch, 2011). The datasets 

themselves were used to seed these pathways, with each of the 10 being used to 

build the network through direct or indirect effects on each of the starting 

molecules over two iterations. This allowed me to examine the direct and indirect 

response of molecules related to CD40/CD40L, NF-kB, and APP, if any, with the 

caveat of potential biasing towards these particular pathways at the exclusion of 

others. 
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Table 3-2 C f h -------- --------- --- ------ -- - --- - -------- ------r-------

Number of 
proteins Number of 
significant for CD40/CD40L 

Timepoint Tissue TBI injury * genotype related proteins 
24hr Cortex Mild 20 6 
24hr Cortex Severe 11 2 
24hr Hippocampus Mild 23 3 
24hr Hippocampus Severe 19 6 
1 month Cortex Mild 31 9 
1 month Cortex Severe 32 8 
1 month Hippocampus Mild 18 8 
1 month Hippocampus Severe 40 7 
3 months Cortex Severe 9 5 
~ months Hippocampus Severe 24 11 

Percent of Percent of 
CD40 related to Number of NF-kB NF-kB related 
total related proteins to total 

30% 4 20% 
18% 2 18% 
13% 3 13% 
32% 8 42% 
29% 9 29% 
25% 9 28% 
44% 7 39% 
18% 7 18% 
56% 6 67% 

'-------_ 46% 11 46% 
---_.- ---

Number of 
APP 
related 
proteins 

6 
7 
12 
9 
15 
13 
11 
16 
6 
18 

Percent of 
APP related 
to total 

30% 
64% 
52% 
47% 
48% 
41% 
61% 
40% 
67% 

75% 
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I 



CD40 Inuwactlve 2 Iterauons 

C~ 
~"(11 

r/~:/~t~.~ 
/~"'A "' m l~ PRt<A~ ; """ 7m ~~rxlB 

~ 
WAS .... ,o~ '""' \ "111 "II) "",) 

FABP Pfli f' o.m AlPOC I -" EFl ATP6VOOI 

I .m I """ ,,/ .,,' FASN 
I . / ~~~ 

I RTN4 (onclude. EG 57142)\~Hmgbl (incl i' EG 1000(1307) t-
~ PPP1R1B .I ~J I.", 

FABP5 / ... , NEFM / 
,.. • ~ ' 1 

" PEA15 HNRNPK / .... , HSD1784 
'~ 'O) / .,0, "'... /) "'"' , 

" / .,0, C040 ' 
OCK2 "'.. / I i .. ,0, ' .,., ~ ", ,./...:","" '~G"""'I "'-..a! \" 

, ' / • "'PI ~ " . " Gti2 
, / <II '" , ,,., I / " \ -

X I I I ' I ..... _ \ , / / A. ". l4) 

/ tu} " tLO (I) ~fII --- "\ P{4f .... (1 1 

RASSF5 /', I 3J>40~- --- ---..sMoAi P~Bl 
............. - / Y -- .I, •• , .. . ~ "'PI 

",,'0' ~ ~R/'I MARC~I"o, / ,I ",,0, 
MAPllC3ASlC9A3 (oncIud'l,EG 105243) /' " ,0) \ / 

\ 

" / .1 .,0) I. __ ~SPA5 ..... PO 

..... , / " --to;--......... ,: __ .cHU~'" 
"" , I I A --_ r.1T1E'- ' '', .1'' ~ '" PSMAS 

_----...- ,,\ II) 

CTSCT "" , " /.1 , .,0, PM3 I 
ClTA \/"..:' ''' \ 

~ 
,,\ ........ E II I ' ""I, 

"'" " /" ',f Ill ........ CAMK:2G 
, SST ~ ___ .. ... 'Gslpl ('~S01hef.) 

AMPff--"'" "''''4~ /-SKP1~SKP1P2 
__ .. ~r~ ... "" II 

NR2C2---;;;; -----LOUI -ALB 

• 2CJOG.20121ngen.;.1J' 6r"~" Inc AlA ,...,.,.. , ........ 

c_,_ 
E ..... ... ~ 
"-
U ...... ,J.~ ....... 
'-' -,-...... ,--'-.-

(") 
t--

Figure 3-1A. CD40/CD40L related protein pathway overlayed with protein changes in cortical tissue 24 hour after-mild injury from an E4 mouse 
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Figure 3-1 C -CD40/CD40L related protein pathway overlayed with protein changes in cortical tissue 24 hours after a severe injury in an E4 
mouse. 
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E4 mouse. 
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Figure 3-1 E -CD40/CD40L related protein pathway overlayed with protein changes in cortical tissue 1 month after mild injury from an E4 mouse. 
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Figure 3-2A -NF-kB related protein pathway overlayed with protein changes in cortical tissue 24 hours after mild injury in an E4 mouse. 
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Figure 3-2B -NF-kB related protein pathway overlayed with protein changes in hippocampus tissue 24 hours after mild injury from and E4 mouse, 
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Figure 3-2C -NF-kB related protein pathway overlayed with protein changes in cortical tissue 24 hours after severe injury from an E4 mouse. 
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Figure 3-2E -NF-kB related protein pathway overlayed with protein changes in cortical tissue 1 month after mild injury from an E4 mouse. 
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Figure 3-2F -NF-kB related protein pathway overlayed with protein changes in hippocampus tissue 1 month after mild injury from an E4 mouse. 
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Figure 3-2G -NF-kB related protein pathway overlayed with protein changes in cortical tissue 1 month after severe injury from an E4 mouse. 
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mouse. 



NF·kB InleraCllve E3 E4 2 Iterallons 

PEAI 5 

~ , 
\ ( (11 , , , 

RTN4 (Includes EG 57142) 

l " SRGAP3 

CAMK20 

• ~20'2 lng.nwtJ' Sr",tml IN: Ail "ant. f....-ved 

bJ 
, Pt!' 
1 

NEFM 

FABP5 RHOC 

l' ~;. RASSF5 
, E'" , , 

., R~K2 """ 

, ',011' """ \ 

FABP4 , , Gslpl (Inc\4OeS others) 

\~'I t MAP1LC3A 
• "" PI I ", . '.j 

""- _ .. , I"' ", 

~ 
VIM 

'SLC9A3 (Includes EG 105243) I ",,,,,,, 

L,
r '\ ~IN( Eli l 

pppl~i'" 

""" ",: 
"0> • I --~TSO MT1 E!'1 ---,-;;t;.. "1 

R2C2 ~ 
- '-,- " Pf"'pRKACA '-'-,- I,E", 

ElI" '-...! • 
~/~ 

' I.:( 
, /~ 

, ;' 1 
'<'11.111" I 
/ , ' ).'\tB,IJ 

HNRNPK 

\ ' 
CLTA 

'·1 

~J' EG 100(41307) 

N002 

FASN 

SKP1 /SKPl P2 

~'" PSMA2 
...--;:;: .. , 

PS~ -

enzyme 

Ion~ -UIl·"d_ .... _R_ p-
-.-
TI_R'-

Tlonopon. 

~ 

- R,,-
--R_",,-

'<""" 
en 

Figure 3-21 -NF-kB related protein pathway overlayed with protein changes in cortical tissue 3 months after severe injury from an E4 mouse . 
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Table 3-3 CD40L Pathway Protein List 

C040l Pathway 

List 

ABR 

AGRN 

ALB 

AlOOC 

AMPH 

ATP6VOOI 

AUH 

BAIAP2 

CAMK2A 

CAMK2B 

CAMK20 

CAMK2G 

CD40 

C040lG 

CHUK 

ClTA 

CTSO 

OlG4 

GA02 

GLl2 

GPT 

Gstp1 

Hmglll 

HNRNPK 

MAPlLC3A 

MAPT 

MARCKSl1 

MTlE 

PEAlS 

PIN1 

PPPIR1B 

PRKACA 

PRKAR2A 

PSMAl 
PSMA6 

PSMB1 
RASSFS 

RELB 
RHOC 

ROCa 

RTN4 

SKP1/SKP1P2 

Full Name 

Active BCR-related 

Agrin 

Albumin 

Aldoase C, fructose-bisphosphate aldolase 

Amphiphysin 

ATPase, H+ transporting, lysosomal 38kOa, VO subunit dl 

AU RNA binding protein/enoyl CoA hydratase 
--------------------~ BAil-associated protein 2 

Calcium/calmodulin-dependent protein kinase II alpha 

Calcium/calmodulin-dependent protein kinase II beta 

Calcium/calmoudlin-dependent protein kinase II delta 

Calcium/calmoudlin-dependent protein kinase II gamma 

C040 molecule, TNF receptor superfamily member 5 
--------------~ 

CD40 ligand 

Conserved helix-loop-helix ubiquitous kinase 

Clathrin, light chain A 

Cathepsin 0 

Discs, large homolog 4 

Fatty acid binding protein 4 

Fatty acid binding protein 5 
Fatty acid synthase 

Glutamate decarboxylase 2 
GLI family zinc finger 2 ---
Glutamic-pyruvate transaminase (alanine aminotransferase) 

Glutathione S-transferase pi I 

High-mobility group (nonhistone chromosomal) protein l-like 1 

Heterogenous nuclear ribonucleoprotein K 

Hydroxysteroid (17-beta) dehydrogenase 4 

Heat shock 70kDa protein 5 
Microtubule-associated protein 1 light chain 3 alpha 

Microtubule-associated protein tau 

MARCKS-like 1 

Metallothionein IE -----------
Neurofilament, light polypeptide 

Neurofilament, medium Rol peptide 

Nuclear receptor subfamily 2, group C, member 2 

Pyruvate dehydrogenase (IiRoamide) beta ------------------~ 

---------------------~ Phosphoprotein enriched in astrocytes 15 

Peptidyl cis/trans isomerase, NIMA-interacting I 

Protein phosphatase inhibitor 1, regulatory (inhibitor) subunit 1B 

Protein kinase, cAMP-dependent catalytic, alpha 

Protein kinase, cAMP-dependent, regulatory, type II, alpha 

Proteasome (prosome, macropain) subunit, alpha type, 2 
Proteasome (prosome, macropain) subunit, alpha type, 6 

Proteasome (prosome, macropain) subunit, beta type 1 
Ras association (RaIGDS/AF-6) domain family member 5 

V-rei reticuloendotheliosis viral oncogene homolog B 

Ras homolog family member C 

Rho-associated, coiled-coil containin rotein kinase 2 
Reticulon 4 

S-phase kinase-associated protein 1 
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SLC9A3 

SST 
STXlB 

TPM3 
VAMP2 

VIM 
WASFl 

Solute carrier family 9, subfamily A (NHE3, cation proton antiporter 3), 
member 3 
Somatostatin 
Syntaxin lB 

Tropomyosin 3 

Vesicle-associated membrane protein 2 (synaptobrevin 2) 

Vimentin 

WAS protein family, member 1 

Table 3-4 NF-kB Protein Pathway List 

NF-kB Pathway List 

I ABll 
ABR 

ALB 

ALOOC 

AMPH 
ARPC3 

ATP6VODl 
BAIAP2 

CAMKlA 

CAMK2B 

CAMK2D 

CAMK2G 

CHUK 

ClTA 

CTSD 
DLG4 

FABP4 

FABPS 

FASN 

GA02 

GLl2 

GPT 

Gstpl 

Hmglll 

HNRNPK 

HSOl7B4 

HSPAS 
LCP2 

MAPllC3A 

MAPT 

MTlE 

NEFL 

NEFM 

NFKBl 

NOD2 

Full Name 

Abelson-interactor 1 

Active BCR-related 

Albumin 

Aldoase C, fructose-bisphosphate aldolase 

Amphiphysin 

Actin related protein 2/3 complex, subunit 3, 21kDa 

ATPase, H+ transporting, lysosomal 38kDa, VO subunit dl 

BAil-associated protein 2 

Calcium/calmodulin-dependent protein kinase II alpha 

Calcium/calmodulin-dependent protein kinase /I beta 

Calcium/calmoudlin-dependent protein kinase II delta 

Calcium/calmoudlin-dependent protein kinase /I gamma 

Conserved helix-loop-helix ubiquitous kinase 

Clathrin, light chain A 

Cathepsin 0 

Discs, large homolog 4 

Fatty acid binding protein 4 

Fatty acid binding protein 5 

Fatty acid synthase 

Glutamate decarboxylase 2 

GlI family zinc finger 2 

Glutamic-pyruvate transaminase (alanine aminotransferase) 

Glutathione S-transferase pi 1 

High-mobility group (nonhistone chromosomal) protein l-like 1 

Heterogenous nuclear ribonucleoprotein K 

Hydroxysteroid (17-beta) dehydrogenase 4 

Heat shock 70kDa protein 5 

Lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein 
of 76kDa) 
Microtubule-associated protein llight chain 3 alpha 

Microtubule-associated protein tau 

Metallothionein 1E 

Neurofilament, light polypeptide 

Neurofilament, medium polypeptide 

Nuclear factor of kappa light polypeptide gene enhancer in B-ce lls 1 

Nucleotide-binding oligomerization domain containing 2 
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NR2C2 

PDHB 

PEAlS 

PINi 

PPPlRlB 

PRKACA 

PRKAR2A 

PSMA2 

PSMA6 

RASSFS 

RELB 

RHOC 

ROCK2 

-~-

RTN4 

SKPl/SKPlP2 

SLC9A3 

Nuclear receptor subfamily 2, group C, member 2 

Pyruvate dehydrogenase (Iipoamide) beta 

Phosphoprotein enriched in astrocytes 15 

Peptidyl cis/trans isomerase, NIMA-interacting 1 

Protein phosphatase inhibitor 1, regulatory (inhibitor) subunit 1B 

Protein kinase, cAMP-dependent catalytic, alpha 

Protein kinase, cAMP-dependent, regulatory, type II, alpha 

Proteasome (prosome, macropain) subunit, alpha type, 2 

Proteasome (prosome, macropain) subunit, alpha type, 6 

Ras association (RaIGDS/AF-6) domain family member 5 

V-rei reticuloendotheliosis viral oncogene homolog B 

Ras homolog family member C 

Rho-associated, coiled-coil containing protein kinase 2 

Reticulon 4 

S-phase kinase-associated protein 1 

_____ ----....J 

Solute carrier family 9, subfamily A (NHE3, cation proton antiporter 3), 
member 3 
SLiT-ROBO Rho GTPase activating protein 3 

Somatostatin 

5yntaxin 1B 

Tropomyosin 3 

SRGAP3 

SST 

STXlB 

TPM3 

VAMP2 

VIM 

WASH 

--~-
Vesicle-associated membrane protein 2 (synaptobrevin 2) 

Vimentin 

WAS protein family, member 1 

Table 3-5 APP Pathway Protein List 

APP Pathway List 

~B11 
ABR 

AC01 

AMPH 

APP 

ARF6 

ARPC3 

ATP6VOD1 

BAIAP2 -----
CALBi 

CAMK2A 

CAMK2B 

CAMK2D 

CAMK2G 

Full Name 

Abelson-interactor 1 

Active BCR-related 

Aconitase 1 

Adenosine kinase 

Agrin 

Albumin 

Aldoase C, fructose-bisphosphate aldolase 

Amphiphysin 

Amyloid beta precursor protein 
---~---------------~ ADP-ribosylation factor 6 

Actin related protein 2/3 complex, subunit 3, 21kDa 

ATPase, H+ transporting, lysosomal 38kDa, va subunit d1 

BAil-associated protein 2 
------~--------------------~ Calbindin 1 

Calcium/calmodulin-dependent protein kinase II alpha 

Calcium/calmodulin-dependent protein kinase II beta 

Calcium/calmoudlin-dependent protein kinase-:'I7'""1 d7"e""':"lt-a--------., 

Calcium/calmoudlin-dependent protein kinase II gamma 
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I CHUK 

CKMTlA/CKMTlB 

CllA 

COPS4 

CRYM 

CS 

CTSD 

DCC 

OlG4 

EEFlB2 

FABP4 

FABPS 

FASN 

FKBPlA 

GA02 

GANAB 

GAP43 

GLl2 

GPT 

GSR 

Gtspl 

HARS 

HBB 

HBD 

Hmglll 

HNRNPK 

HSDl7B4 ---
HSPAS 

HSPEl 

IMPAl 

IMPACT 

KHSRP 

LAP3 

MAP1LC3A 

MAPRE3 

MAPT 

MATlA 

MTlE 

NEFL 

NEFM 

NPHPl 

NR2C2 

PACSINl 

PCP4 

PDHB 

PEAlS 

PIK3CB 

PINl 

----

Conserved helix-loop-helix ubiquitous kinase 

Creatine kinase, mitochondrial1S 

Clathrin, light chain A 

COP9 constitutive photomorphogenic homolog subunit 4 

Crystallin 

Citrate synthase 

Cathepsin D 

Deleted in colorectal carcinoma 

Discs, large homolog 4 

Eukaryotic translation elongation factor 1 beta 2 

Fatty acid binding protein 4 

Fatty acid binding protein 5 

Fatty acid synthase 

FK506 binding protein 1A 

Glutamate decarboxylase 2 

Glucosinide, alpha; neutral AS 

Growth associated protein 43 

GLI family zinc finger 2 

Glutamic-pyruvate transaminase (alanine aminotransferase) 

Glutathione reductase 

Glutathione S-transferase pi 1 

Histidine-tRNA synthetase 

Hemoglobin, beta 

Hemoglobin, delta 

High-mobility group (nonhistone chromosomal) protein 1-like 1 

Heterogenous nuclear ribonucleoprotein K 

Hydroxysteroid (17-beta) dehydrogenase 4 

Heat shock 70kDa protein 5 
--------------------------------~ Heat shock 10kDa protein 1 

Inositol(myo)-1(or 4)-monophosphatase 1 

Impact homolog ---
KH-type splicing regulatory protein 

Prolyl aminopeptidase 

Microtubule-associated protein 1 light chain 3 alpha 

Microtubule-associated protein, RP/EB family, member 3 

Microtubule-associated protein tau 

Methionine adenosyltransferase II, alpha 

Metallothionein 1E 

Neurofilament, light polypeptide 

Neurofilament, medium polypeptide 

Nephronophthisis 1 

Nuclear receptor subfamily 2, group C, member 2 

Protein kinase C and casein kinase substrate in neurons 1 

Purkinje cell protein 4 

pyruvate dehydrogenase (lipoamide) beta 

Phosphoprotein enriched in astrocytes 15 

Phosphoinositide-3-kinase, catalytic, beta polypeptide 

Peptidyl cis/trans isomerase, NIMA-interacting 1 
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i PPPIR18 

PPP3Rl 

PRKACA 

PRKAR2A 

PSMA2 

PSMA6 

PTK28 

RABIA 

RASSFS 

RELB 

RHOC 

ROCK2 

RTNI 

RTN4 

SEPTS 

SKP1/SKPIP2 

SLC9A3 

SRGAP3 

SST 

STXIB 

THY! 

TPM3 

VAMPl 

VAMP2 

VARS 

VIM 

WASFl 

YARS 

Protein phosphatase inhibitor 1, regulatory (inhibitor) subunit IB 

Protein phosphatase 3, regulatory subunit B, alpha 

Protein kinase, cAMP-dependent catalytic, alpha 

Protein kinase, cAMP-dependent, regulatory, type II, alpha 

Proteasome (prosome, macropain) subunit, alpha type, 2 

Proteasome (prosome, macropain) subunit, alpha type, 6 

Protein tyrosine kinase 2 beta 

Member RAs oncogene family 

Ras association (RaIGDS/AF-6) domain family member 5 

V-rei reticuloendotheliosis viral oncogene homolog B 

Ras homolog family member C 

Rho-associated, coiled-coil containing protein kinase 2 

Reticulon 1 

Reticulon 4 

Septin 5 

S-phase kinase-associated protein 1 

Solute carrier family 9, subfamily A (NHE3, cation proton antiporter 3), 
member 3 

SLiT-ROBO Rho GTPase activating protein 3 

Somatostatin 

Syntax in IB 

Thy-l cell surface antigen 

Tropomyosin 3 

Vesicle-associated membrane protein 1 

Vesicle-associated membrane protein 2 (synaptobrevin 2) 

Valyl-tRNA synthetase 

Vimentin 

WAS protein family, member 1 

Tyrosyl-tRNA synthetase 
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CD40 signaling by CD40L is an important regulator of immune response, 

vital to class immunoglobulin (Ig) class switching and microglial activation in 

response to amyloid (Kawabe et aI., 1994, Suo et aI., 1998, Tan et aI., 1999, 

Jabara et aI., 2002, Tan et aI., 2002, Townsend et aI., 2005). I used CD40 and 

CD40L as seed molecules to generate a custom pathway of proteins present in 

the datasets that are related to CD40 or CD40L. The greatest level of overlap with 

this pathway occurred in the severely injured cortex hippocampus at 3 months with 

56% and 46% of the molecules present in those dataset participating, respectively, 

indicating that it is of ongoing importance in the differential response of APOE3 

and APOE4 transgenic mice to TBI (figure 3-1, table 3-2 and table 3-3). 

Nuclear factor kappa B (NF-kB) is also a molecule of central importance in 

regulating the transcription of many inflammatory cytokines, and NF-kB activation 

is induced by molecules like IL-1, whose pathway was seen to be significantly 

regulated in our dataset 1 month after mild injury (Malin in et aI., 1997, Takeuchi et 

aI., 2000, Tak and Firestein, 2001). I seeded a network based on NF-kB-related 

molecules and saw participation at all time points and injury levels (figure 3-2 and 

table 3-4). 67% of the molecules present in the severely injured cortex at 3 

months participated in the NF-kB-related pathway, a remarkable shift from only 

18% participation in the severely injured cortex at 24 hours, and 20% in the mildly 

injured cortex at 24 hours. By contrast, the NF-kB pathway accounted for 42% of 

the proteins present in the severely injured hippocampus at 24hrs (Table 3-2). 

Amyloid Precursor Protein (APP) processing was also significantly 

modulated as a canonical pathway in our 3 month severe cortical dataset. 

Generating a custom pathway from APP produced the largest network of 

participating proteins from all of the custom pathways and showed APP playing a 
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central role in the pathway. 75% of the proteins from the APP pathway were 

present in the 3 month severe hippocampus dataset, the highest participation level 

of any dataset in any pathway studied, and overall APP processing had the 

highest average participation rate of any pathway examined, in excess of 55%. 

(figure 3-3, table 3-2 and table 3-5) 

In order to further examine the acute inflammatory response of mice in the 

CCI model we examined IL-6 (figure 3-4), IL-1 B (figure 3-5) and MCP-1 (figure 3-

6) levels by ELISA at a range of acute timepoints after TBI. For this investigation 

we used wild type mice of the same background strain as the APOE transgenic 

mice (C57BL/6J). ELISA data for IL-6 and MCP-1 shows the acute response to 

CCI TBI in these inflammatory cytokines becomes significantly up-regulated 

compared to sham mice as early as 6 hours after injury, peaking at its highest 

concentration 12 hours after injury before gradually decreasing. Interestingly, 

there is no significant effect of TBI on any inflammatory marker at the 1 hour time 

point. With the CHI injured mice, only IL-6 was significantly up-regulated at 6 

hours after injury, and in all cases was less up-regulated than even CCI sham 

mice, demonstrating that this closed head impact is indeed a very mild injury (as 

was the intent when it was developed). IL-1 B failed to show a significant effect of 

injury overall. 
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Ipsilateral Cortex ILoS ELISA 
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Figure 3 -4 . IL-6 ELISA acute timepoint profile in wild type mice. Error bars 
represent standard error. * indicates significance compared to the 
corresponding sham (p<O.05) by T -test. 
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Ipsilateral Cortex IL-1B ELISA 
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Figure 3-5. IL-1 B ELISA acute timepoint profile in wild type mice. Error bars 
represent standard error. No statistical significance. 

Ipsilateral Cortex MCP-1 ELISA 
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Figure 3-6. MCP-1 ELISA acute timepoint profile in wild type mice. Error bars 
represent standard error. * indicates significance compared to the 
corresponding sham (p<O.05) by T -test. 
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Discussion 

Delayed secondary injury after TBI may be mitigated by therapeutic 

intervention, but so far all attempts to intervene in a clinical setting have failed. 

The molecular analyses and interpretation outlined in this chapter represent our 

approach to identifying rational targets for new therapeutic approaches. We took a 

systems biology approach to finding potential therapeutic targets for TBI. LC

MS/MS of iTRAQ-labeled samples gave us the ability to profile the response of a 

large amount of proteins simultaneously. In order to focus on protein changes that 

are associated with differential outcome from TBI, we utilized APOE3 and APOE4 

transgenic mice at 24 hours, 1 month, and 3 months after injury. As previously 

discussed in the first two chapters, E4 carriers are predisposed to a worse long

term outcome after TBI than non-carriers, therefore we focused on changes that 

occurred differentially in E3 and E4 mice after TBI across multiple timepoints up to 

three months after injury. 

Datasets were generated using only the proteins shown to be changing 

significantly by the interactive effect of injury x genotype. Functional analysis of 

these datasets using IPA revealed molecular pathway changes over time, not just 

individual protein changes. This gave a big picture view of the changes occurring 

after TBI - although individual protein changes in a mouse may not correlate 

directly to a human situation, we anticipate overlap in terms of the molecular 

pathways and functions that are modulated in response to injury, thus mouse 

analyses can provide insight into these common processes of secondary brain 

injury. For example, cellular immune response was of importance in nearly all 

cases and time points. IL-1 was also significantly regulated at the one month 

timepoint in the mildly injured cortex. The significant modulation of these 

pathways a month or longer after TBI indicates an important role for chronic 
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inflammatory processes in determining the long term outcome from TBI. The 

concept of an important role for inflammation after TBI is not a new one (Utagawa 

et aI., 2008, Lu et aI., 2009, Amor et aI., 2010, Ramlackhansingh et aI., 2011) and 

this provides validation of our approach, but our data also shows its importance in 

determining the differential outcome in APOE transgenic mice as well as showing 

the modulation of other functional pathways such as "Regulation of actin based 

motility by Rho" and "Actin cytoskeleton signaling" for which there is little or no 

prior indication after TBI. 

Inflammation has been shown to be associated with functional deficits after 

TBI (Cernak et aI., 2001, Cernak et aI., 2002, Nimmo et aI., 2004). Our data show 

that inflammation plays an important role in the differential response of APOE3 

and APOE4 mice to TBI as well, further supporting the importance of inflammatory 

responses in secondary brain injury. It is known that in glial cells, the apoE protein 

can act as an inducer of inflammation with apoE4 inducing a greater amount of IL-

1 B than apoE3 (Guo et aI., 2004). ApoE isoforms also differentially affect the 

oxidative status of macrophages (Jofre-Monseny et aI., 2007). ApoE isoforms are 

known to differentially impact the amount of amyloidogenic processing of APP (Ye 

et aI., 2005). The possibility that the influence of APOE genotype after injury is 

through its effect on APP metabolism was examined by Ezra and colleagues (Ezra 

et aI., 2003), who used targeted replacement APOE3 and APOE4 transgenic mice 

to study the levels of secreted APP after a closed head injury (CHI). Their results 

showed ApoE isoform-specific metabolism of APP following TBI. Specifically, 

APOE4 transgenic mice produce less secreted APPsa in the hippocampus 

following TBI than APOE3 transgenic mice, while sham APOE4 transgenics start 

with a higher basal level than APOE3. Secreted APP enhances neuronal survival 

(Yamamoto et aI., 1994), therefore a lack of it may playa role in the APOE-
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genotype dependent outcome from TBI. The converse effect of increased 

production of amyloid 13 after TBI (see chapter 1) can lead to microglial activation 

(Rogers and Lue, 2001) and may also contribute to the differential outcome of 

APOE3 and APOE4 transgenic mice. 

Given the in-house expertise at the Roskamp Institute, and the availability of 

relevant potential modulators and genetic models, we selected CD40/CD40L, NF

kB and APP as seed molecules with which to interrogate the datasets and 

determine if they were appropriate targets for efforts to manipulate outcome after 

TBI. CD40 signaling also increases cytokine production in the presence of amyloid 

13 and induces the activation of microglia (Suo et aI., 1998, Townsend et aI., 2005). 

NF-kB is a transcription factor that regulates the transcription of many 

inflammatory cytokines (Matsusaka et aI., 1993, Tak and Firestein, 2001). APP 

processing is impacted by TBI and leads to the production of AI3 after TBI (Loane 

et aI., 2009, Loane et aI., 2011). Based on the effects seen in our data on 

inflammation and APP processing, we generated custom pathways from the 

molecules present in the dataset that have relationships to CD40 and the CD40 

ligand, NF-kB and APP. 

Time Dependent Effects 

As discussed above, CD40 signaling is important for Ig class switching as 

well as inflammatory responses to AI3 (see chapter 4 for more detail). Custom 

pathway generation for CD40 showed that some CD40-related molecules were 

present in every one of the datasets, but CD40-related molecules comprised the 

greatest percentage of the datasets at 3 months after injury. Although CD40-

related molecules only comprised 18% of the severely injured cortex dataset at 24 

hours, it accounted for 56% of the dataset at 3 months post-TBI. Although the 

number of molecules present in each dataset at each timepoint change, driving 
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some of the above percentage changes, this still demonstrates that CD40-related 

molecules continue to be differentially modulated for long periods of time after TBI 

even as unrelated molecules become less so over time. A similar situation was 

true for NF-kB related molecules, which also accounted for only 18% of the 

severely injured cortex dataset at 24 hours, but by 3 months post-injury accounted 

for 67% of the cortical dataset. This suggests that inflammatory pathways are part 

of the initial difference in response between APOE3 and APOE4 transgenic mice 

following TBI, but in the long term become increasingly important in the process of 

secondary injury in the cortex after TBI. APP-related molecules, by contrast, were 

consistently involved in each dataset at a high percentage regardless of time after 

injury. 

Regional Dependent Effects 

Regional specific differences were also important in understanding the 

differential response of APOE transgenic mice. Within severely injured mice, there 

were consistently greater numbers of proteins significant for interaction in the 

hippocampus than in the cortex, outweighing the cortical differences by more than 

2-to-1 at three months after injury (Table 3-2). Three months after severe injury, 

24 proteins were significant for interaction in the hippocampus compared to only 9 

in the cortex. Only the mildly injured cortex at the 1 month timepoint showed a 

greater number of protein significant for interaction compared to the corresponding 

hippocampus. This is particularly fascinating since the injury itself occurs in the 

cortex, but the differential response of APOE transgenic mice is distant from that. 

This may be due in part to the large size of the cortex and the fact that the 

pericontusional region was not specifically extracted, whereas the hippocampus is 

directly beneath the site of injury. Nonetheless, it still shows that the differences in 
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secondary injury in APOE transgenic mice are not isolated to the site of injury 

itself. 

Severity Dependent Effects 

Injury severity was also examined; mild injury is the most common form of 

TBI and is currently under-reported. Differential responses seen in our APOE 

transgenic mice even a month after our milder form of CCI injury show that injury 

processes may be ongoing and targets may still be available for therapeutic 

intervention. In the mild injury, the CD40 and NF-kB pathways accounted for less 

than half of the amount of the dataset than in the severe injury. This may be due 

to a difference in the time course of a mild injury; while there were 23 proteins 

significant for the interactive term of injury*genotype at 24 hours in the 

hippocampus of the mild injury, only 19 were significant in the severe. At one 

month after injury, however, 40 proteins in the hippocampus were significant for 

injury*genotype in the severe injury compared to only 18 in the mild injury. At 

those timepoints, CD40 and NF-kB related molecules make up less of the 

hippocampus datasets, though both become important once again at three months 

after injury in the severe dataset. This may indicate that the differences between 

the genotypes during the mild injury begin to resolve themselves faster than in the 

severe injury, and the CD40 and NF-kB pathways appear to become increasingly 

important as these injuries start to reach that point. Even as the total number of 

proteins that are significant for genotype*injury decrease in the severely injured 

hippocampus, the number of proteins that are related to CD40 signaling and NF

kB begin to increase. This same shift was true in the mild injury as well, but 

occurred from 24 hours to 1 month instead of 1 month to 3 months. 
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APP Specific Differences 

As previously discussed, A~ is known to be increased after TBI (Roberts et 

aI., 1994, Smith et aI., 2003, Ikonomovic et aI., 2004, Loane et aI., 2009, Loane et 

aI., 2011). In our study APP-related molecules made up large portions of each 

dataset across all of the time points, both in severe and mild injury. The lowest 

percentage involvement was 30% in the cortex of mice with mild injury at 24 hours, 

but on average APP-related molecules accounted for more than 55% of each 

dataset. At 3 months after TBI, APP-related molecules accounted for 75% of the 

proteins changing differently in response to injury in the APOE3 vs APOE4 

hippocampus, showing that APP processing may be one of the primary processes 

driving the long-term differences between the APOE3 and APOE4 genotype. 

Although an acute amyloid beta spike is known to occur after TBI (Raby et aI., 

1998, Olsson et aI., 2004), APP processing may be differentially affected in 

APOE4 carriers over a much longer period of time and may be responsible for 

their poorer outcome. Mice that are transgenic for both human APOE and 

mutated APP showed accelerated neurodegeneration and increased amyloid beta 

accumulation after TBI if they possessed an APOE4 allele (Laskowitz et aI., 2010). 

APOE genotype also influences the rate of clearance of amyloid beta, with APOE4 

transgenic mice showing significantly slower clearance than either APOE2 or 

APOE3 transgenics (Deane et aI., 2008). Therapeutic strategies that target APP 

processing and clearance may reduce secondary damage and improve the 

outcome from injury. 

We also investigated the acute inflammatory response after TBI, both in a 

closed mild head injury model (CHI), and in our severe eCI model. Mild TBI is 

more common than severe, and patients may not even be aware of the injury 

initially, even in the presence of other injuries (Tolonen et aI., 2007). We profiled 
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the acute inflammatory response in CH I and CCI at 1, 6, 12, 24, and 48 hours after 

injury and compared each to an appropriate sham (craniectomy for CCI and 

anesthesia-only for CHI) which showed that IL-6 and MCP-1 were significantly up

regulated at 6 hours after injury and peaked by 12 hours. Interestingly, there was 

no significant effect of injury at the 1 hour timepoint for any inflammatory marker, 

thus there may still be time overt inflammatory reactions that result in macrophage 

accumulation, astrogliosis, and progressive expansion of the lesion volume 

(Sandhir et aI., 2004, Semple et aI., 2009). This agrees with previous research 

showing no significant increase in IL-6 or MCP-1 at 1 hour, and some studies 

showing even no increase at 4 hours after TBI compared to sham (Lloyd et aI., 

2008). Others do show a significant increase in MCP-1, but not IL-6, 4 hours after 

injury (Semple et aI., 2009). We also witnessed a significant increase in the eCI 

sham levels of IL-6 and MCP-1 over time, supporting previous findings that the 

craniectomy itself induces a mild injury to the brain (Cole et aI., 2011). Our severe 

CCI model, however, is generally a more severe form of TBI than many other 

groups utilize for their studies, so it is of interest that even in a model that has 

been optimized for maximum injury without mortality, there is still at least a one 

hour window before any significant increases in inflammatory markers are seen. 

In summary we conclude that since IL-6 and MCP-1 both show significant effects 

of injury and are easily profiled within the first 24 hours, they may be good markers 

to screen potential therapeutic compounds at acute timepoints after injury. 

Detailed investigation of the custom networks for CD40, APP, and NF-kB 

thus support each of these as potential areas to target for therapeutic intervention. 

Many other potential targets are suggested by our proteomic analyses, but were 

beyond the scope of my research for this thesis, including lipid metabolism and 

cellular metabolic pathways. Though these other targets may well be important in 
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determining the differential outcome in APOE3 and APOE4 transgenic mice after 

TBI, they did not provide easily accessible targets for therapeutic intervention. It is 

intended these additional targets will be investigated in future studies. One of the 

justifications supporting further analyses of all three of the targets selected was the 

in-house expertise at the Roskamp Institute; another was the fact that approaches 

to modulating all of these targets were available and thus enabled me to 

implement my neurobehavioral paradigms for target validation. 

The next three chapters each describe modulation of one of these targets in 

mouse models of head injury and the consequences on neurobehavioral outcome. 

The results of these analyses confirm that this overall strategy is an effective pre

clinical approach to the identification and development of novel therapeutics for 

TBI. 
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CHAPTER 4 
EFFECTS OF CD40 SIGNALING INHI81TION ON OUTCOME FROM T81 

Introduction 

As described in chapter 3, we previously analyzed the proteomic profiles of 

APOE3 and APOE4 transgenic mice following injury in a CCI model of T81. One 

of the pathways found to be modulated in an APOE isoform-dependent manner 

involved CD40-related molecules. CD40-related molecules appeared to become 

increasingly important over time in determining the differential response of APOE 

to T81, up to at least three months after injury. CD40 Signaling may therefore be 

important to determining the long-term outcome from secondary injury after T81. 

CD40 is a member of the TNF-receptor superfamily found on antigen 

presenting cells (APCs) and is essential for T-cell dependent immunoglobulin 

class switching as well as AI3 induced microglial activation (Kawabe et aI., 1994, 

Suo et aI., 1998, Tan et aI., 1999, Jabara et aI., 2002, Tan et aI., 2002, Townsend 

et aI., 2005). Activation of CD40 by the CD40 ligand (CD40L (CD154)) increases 

the production of inflammatory cytokines including IL-6, TNF-a, and MCP-1, thus 

inhibiting CD40 signaling can be expected to have anti-inflammatory effects (Chen 

et aI., 2006). CD40 is expressed not only on 8 cells, but also on monocytes, 

dendritic cells, endothelial and epithelial cells. The CD40L ligand is also 

expressed on more than just activated T lymphocytes; it can also be found on 8 

cells, natural killer cells, monocytes, macrophages, and even dendritic cells in 

some cases (Kooten, 8anchereau 2000). CD40 is also expressed by neurons and 

its activation results in p44/42 MAPK activation and the opposition of JNK 

activation (Tan, Town et al. 2002). CD40 and CD40L knockout mice both suffer 

from a deficiency in immunoglobulin class switching known as hyper-lgM 
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syndrome (Strom et aI., 1999). CD40 is also vital in the maturation of dendritic 

cells into antigen-presenting cells, thus these mice also have deficiencies in 

priming na·(ve CD4+ T cells, but also show improved outcome in models of 

transplantation rejection and autoimmune disorders (van Kooten and Banchereau, 

2000, Ponomarev et aI., 2006). This may be advantageous in reducing the 

immune response after TBI where it has been shown that activated CD4+ T cells 

can increase the amount of damage acutely after brain injury (Fee et aI., 2003). 

Involvement of CD40 in brain injury or dysfunction is already known, including 

work from our own team that demonstrated that disruption of CD40 signaling 

mitigated AD pathology in mouse models of the disease (Tan et aI., 1999). CD40 

and its ligand have been previously shown to be upregulated following cerebral 

ischemia (Garlichs et aI., 2003), and a study by Ishikawa et al (2004) also showed 

that CD40 deficient and CD40 ligand deficient mice have reduced infarct volume in 

a mouse model of ischemia. 

Given the interrelationship of AD and TBI (see Chapter 1), and that ischemic 

conditions are known to occur in the brain following TBI (Coles et aI., 2000), and 

given the APOE isoform-dependent modulation of CD40-related molecules seen at 

multiple timepoints following TBI (Chapter 3, Figure 3-1A-J), we targeted CD40 

signaling in order to modulate the response to TBI and reduce inflammation. 

Other work has shown that CD40 signaling mediates nuclear factor kappa B (NF

kB) activation through TNF receptor-associated factor 2 (TRAF2) (Rothe et aI., 

1995), thus the inhibition of downstream signaling from CD40 may also reduce 

NF-kB activation, (also identified by the work described in chapter 3), and may be 

important in determining differential outcome from secondary injury. 

We first attempted to use an antibody-based therapeutic approach to inhibit 

CD40 signaling, hoping to take advantage of blood-brain barrier permeability 
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immediately after TBI in order for the antibody to reach the injured tissue. Others 

have shown that treating with an anti-CD40L antibody may produce a therapeutic 

inhibition of CD40 signaling in some disease states such as multiple sclerosis, 

atherosclerosis and lupus (Mach et aI., 1998, Howard et aI., 1999, Wang et aI., 

2003). Our failure to detect any trace of the antibody penetrating into the brain led 

us to an alternative approach of using mice genetically knocked out for CD40L to 

disrupt CD40 signaling. CD40L knockout mice (Jackson Laboratories) were used 

to study the effect of CD40 signaling in our CCI model of severe TB I in order to 

observe the maximum effect of injury. We evaluated CD40L knockout mice in our 

CCI model of TBI using the methodology described in chapter 2 for Rotarod and 

Barnes maze testing of motor coordination and spatial memory. 

Materials and Methods 

Animals and Injury 

For the administration of TBI the same protocol was followed as described in 

chapter 2. Briefly, all mice (details of numbers and characteristics below) were 

anesthetized with isofluorane; once anesthetized, animals were mounted in a 

stereotaxic frame in a prone position secured by ear and incisor bars. Following a 

midline incision and reflection of the soft tissues, a 5mm craniectomy was 

performed adjacent to the central suture, midway between lambda and bregma. 

Severe injury was administered as previously described (Crawford et aI., 2009) by 

impacting the right cortex with a 2 mm diameter tip at a rate of 5 mls and depth of 

1.8 mm. Sham mice for the CCI procedure received craniectomy without injury. 

All procedures involving mice were carried out under Institutional Animal 

Care and Use Committee (IACUC) approval and in accordance with the National 

Institute of Health Guide for the Care and Use of Laboratory Animals. 
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Modulation of CD40 signaling 

Our initial plan was for a therapeutic approach using an anti-CD40L antibody 

to interrupt CD40 signaling. We performed a pilot anti-CD40L antibody 

experiment. It has been shown that TBI in mice induces blood-brain barrier 

permeability in the peri-contusional area, allowing Evans blue staining to infiltrate 

the brain in that region (Habgood et aI., 2007). Two mice (60 week old male 

APOE knockout) received a CCI injury followed 30 minutes later by a 100 IJI 

intraperitoneal (IP) injection of either PBS (placebo control) or 100 IJI of 1 IJg/lJ1 of 

anti-CD40L (100 IJg) (Abcam ab-65854 rabbit polyclonal). 24 hours after injury the 

mice were euthanized and the brain fixed in paraffin. Coronal sections were 

examined for intrusion of anti-CD40L into the pericontusional area using an anti

rabbit HRP secondary antibody. 

For the CD40 ligand knockout experiment, male CD40L knockout (on a 

C57BLl6J background strain) and C57BLl6J wild type mice (Jackson Laboratories) 

between 8 and 9 weeks old were given a CCI at a rate of 5m/s and depth of 

1.8mm while sham control mice received only the craniotomy (n = 12 per group). 

Naive CD40L knockout mice exhibit symptoms similar to humans with hyper-lgM 

syndrome, with impaired immune responses including a failure to undergo IgG 

class-switching in response to immunization and a failure to produce germinal 

centers (Xu et aI., 1994). 

Neurobehavioral Testing 

As described in chapter 2, Rotarod (Med Associates) was used to measure 

motor coordination. Briefly summarized, baseline testing for Rotarod occurred one 

day prior to surgery with initial acclimation trials at a fixed speed of 5 rpm for 3 

minutes followed by 3 minutes of rest in the home cage for 3 trials. Baseline 

testing was performed in the afternoon at an accelerating speed of 5-50 rpm over 
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a period of 5 minutes followed by 3 minutes of rest in the home cage. Each 

mouse was given 3 trials per day. Post-surgery testing occurred in the afternoons 

on days 1, 3, 5, and 7 after surgery using the same protocol. 

The Barnes maze was used to measure spatial memory and learning as 

described in chapter 2. Briefly summarized, all mice were given 6 days of 

acquisition trials starting on the day following the conclusion of Rotarod testing, 

and a probe trial was administered on the 7th day, as well as at 3 months following 

surgery. Two flood lamps were aimed at opposite corners of the room to provide 

bright indirect lighting as a motivator for the mice to find the escape box. For the 

acquisition trials a black box was hidden beneath a target hole in the north east 

quadrant of the board. Mice were given 90 seconds to locate and enter the target 

box, and they were required to remain in the target box for 30 seconds prior to 

retri~val. After the 30 second dwell time the target box was removed and the mice 

were returned from the target box into the home cage. 4 trials were given per day 

(with an inter-trial time of 1.5 hours) starting from 4 randomized cardinal points for 

a period of 6 days. On the 7th day the target box was removed and a single probe 

trial was given starting from the center of the maze. The probe trial lasted 60 

seconds and the target box was absent. The probe trial was repeated 3 months 

after injury (Figure 4-1). After completion of the final probe trial mice were 

euthanized and tissue was paraffinized for pathological analysis. 

Immunohistochemistry 

Pathological analyses were carried out by the Roskamp Institute Core 

Pathology lab. All animals were deeply anesthetized with isofluorane before 

being intracardially perfused by gravity drip with a heparinized PBS solution pH-

7.4 for 3 min, followed by an overnight fixation of brain samples in 4% 

paraformaldehyde and paraffin embedding. Separate series of 5-6 ~m-thick 
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sections were cut throughout the extent of the cortex and hippocampus and 

associated areas using a microtome (2030 Biocut, ReicherVLeica) and mounted 

on positively charged glass slides (Fisher, Superfrost Plus). Sections were stained 

in entire batches with antibodies (cell markers) raised against: Glial Fibrillary Acid 

Protein (GFAP) (rabbit anti-GFAP, 1 :10,000, Dako) for astrocytosis and Myelin 

Basic Protein (MBP) for myelin (goat anti-MBP, 1 :2,000, Santa Cruz 

Biotechnology). As a general principle, sections were deparaffinized in xylene and 

rehydrated in a decreasing gradient of ethanol before the immunohistochemical 

procedure. Sections were then rinsed in water, treated with endogenous 

peroxidase blocking solution, containing 0.3% hydrogen peroxide diluted in 

phosphate buffer solution (PBS) for 30 minutes. After rinsing, sections were 

treated with target retrieval solution for 8 minutes in the microwave, to induce heat 

mediated antigen retrieval. After overnight incubation with the primary antibodies, 

sections were rinsed with PBS, transferred to a solution containing the 

complimentary secondary antibody (from the Vecatastain Elite ABC Kit) for 1 hr 

and further incubated with avidin-biotin-horseradish peroxidase solution 

(Vectastain Elite ABC kit; Vector Laboratories) for a further hour. 

Immunoreactivity was visualised with 3, 3'-diaminobenzidine (DAB) 

chromogen and hydrogen peroxide. Development with the chromogen was timed 

and applied as a constant across batches to limit technical variability (in 

immunodetection) before progressing to quantitative image analysis. For the anti

CD40L antibody pilot study, the chromogen reaction was used to test for the 

presence of the antibody within the brain. The reaction was terminated by rinsing 

sections in distilled water. Finally, mounted sections were progressed through a 

graded series of alcohols (dehydrated), cleared in xylene and coverslipped with 

permanent mounting medium. Immunoreacted sections were viewed using an 
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Olympus (BX60) light microscope and photos were taken using an Olympus 

MagnaFire SP camera. 

Immunoreactivity for cell markers was measured by quantitative image 

analysis (optical segmentation). Rigorous staining protocols were applied, to 

ensure consistency of immunostaining, and accuracy of image analysis. This 

procedure was performed by blind assessment (with each slide analysed blind 

with respect to marker or animal group). Immunoreactivity for each cell marker 

was assessed within the cortex, hippocampus and/or associated regions. Optical 

segmentation of immunoreacted profiles were analysed using Image-Pro Plus 

morphometric image analysis software (Media Cybernetics). A semi-automated 

RGB histogram-based protocol (specified in the image analysis program) was 

employed to determine the optimal segmentation (threshold setting) for 

immunoreactivity for each antibody. 

Statistical Methods 

All datasets were assessed for normality using the Shapiro-Wilk test. If a 

given dataset was normally distributed, mixed model ANOVA (single time point) or 

repeated measures ANOVA (multiple timepoints) were used to assess significant 

changes due to injury. Pairwise group comparisons were evaluated using t-test. If 

a given dataset failed the Shapiro-Wilk test, data was transformed (In, log, square 

root). When transformation did not yield a normally distributed data set, we used 

the non-parametric Kruskal-Wallis test. . Pairwise contrasts were calculated using 

the Wilcoxon rank sums test. A given effect was considered significant at p<O.OS. 

Statistical analyses were performed using JMP 8.02 (SAS). 
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Rotarod Baseline Rotarod Testing Barnes Maze Testing 

·1 Day 

(TBI or Sham) 

Figure 4-1 Timeline of CD40L KO TBI neurobehavioral testing 

Results 

Antibody Treatment Approach 

Intraperitoneal (IP) injection with anti-CD40L failed to show any signal within 

the coronal sl ices of the brain , either at the site of injury or diffusely throughout the 

brain . Given that 100 ug of antibody cost $337, we had initially tested only 1 

mouse to determine if the approach was valid. Based on these results , we 

concluded that either IP injection of anti-CD40L, even immediately after CCI , was 

not capable of infiltrating the brain and was therefore not a viable option to inhibit 

CD40 signaling within the brain; or that significant cost would be expended in 

optimizing the experiment, not to mention the cost of the experiment itself. Instead 

we opted to use a genetic knockout model of CD40L to examine the effects of 

disrupted CD40 signaling on TBI outcome. 

Rotarod 

Rotarod fall latencies were expressed as a percentage of each mouse's 

baseline performance (3 trials averaged over each day) since the baseline 

performance was not significantly different when the groups were compared. 

CD40L knockout mice showed a significantly higher percentage of baseline 

performance, as compared to wild type mice, within the injury status category. 

Repeated measures ANOVA showed a significant effect of both genotype and 
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injury (p<O.02 and p<O.001 respectively) with a mean of 147% on day 7 for CD40L 

knockout sham vs 142% for wild type sham, and 136% for CD40L knockout TBI vs 

116% for wild type TBI, indicating that CD40L knockout mice show improved 

motor coordination compared to wild type controls, and that TBI injured mice 

performed worse than sham injured mice (figure 4-2). 
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Figure 4-2 Rotarod fall latency in the CD40L knockout cohort. Error bars 
represent standard error. CD40L knockout genotype was a significant factor by 
ANOVA repeat measures (p<O.05) as was injury (p<O.01). 
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Barnes Maze 

Barnes maze acquisition trials were analyzed by measuring the total distance 

of the Ethovision-determined mouse center point (30 times per second) from the 

target hole throughout the course of each trial. The distance of the mouse at every 

sample point was summed and then averaged by day to produce the cumulative 

distance measurement. Repeated measures ANOVA showed a significant effect 

of genotype as well as an interactive effect of time x injury (figure 4-3), with a 

cumulative distance of 66,279 cm for CD40L knockout sham vs 111,360 cm for 

wild type sham on day 6 (p<0.05), and 99,612 cm for CD40L knockout TBI vs 

128,555 cm for wild type TBI on day 6 (p<0.05), demonstrating improved spatial 

learning of CD40L knockout mice (108,417 cm mean cumulative distance across 

all days) compared to wild type mice (134,226 cm mean cumulative distance 

across all days), and reduced spatial learning in TBI injured mice (132,252 cm 

mean cumulative distance across all days) compared to sham injured mice 

(108,951 cm mean cumulative distance across all days). 

A probe trial was administered at two weeks after surgery, and again at three 

months after surgery. At the two week time point a Student's t-test showed CD40L 

knockout mice had a significantly reduced latency to the target hole compared to 

wild type sham mice (figure 4-4). CD40L knockout mice experienced extinction to 

wild type levels by 3 months after surgery (figure 4-5). 
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Figure 4-3. Cumulative distance to target hole during the CD40L knockout cohort. 
Error bars represent standard error. Genotype (p<O.01 ) and time*injury 
(p<O.05) were significant factors by ANOVA. T-tests did not show 
significance .. 

Two "VeekProbeLatency 

60 ~-------------------

50 +------------r---+-----

40 +---------~ 

.g 
o 30 +--------+-~ 

o CD40L KO Sham 

OJ CD40LKO TBI 

owrSham 

- wrTBI ... ... 
~ 

20 +-------i 

1 0 +------;==:::f=~ 

O +-_--1 ___ -L.II_L......lI~---
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error. 
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Figure 4-6 Velocity of CD40L knockout mice were significantly higher than that of 
wild type mice throughout the acquisition testing of the Barnes maze 
(p<O.01 ). 
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Immunohistochemistry 

GFAP staining showed a highly significant increase in astrocytic activation 

within the cortex of wild type lSI mice (p<O.001), which was completely absent in 

the CD40L knockout mice (figure 4-7). MSP reactivity showed a significantly 

higher level in wild type sham mice than wild type lSI (p<O.001) but no differences 

were seen between CD40L knockout sham and lSI mice (figure 4-8). 

Interestingly, the level of MSP was 4.5 times greater in wild type sham mice than 

CD40L knockout sham mice. 

133 



r -

1.5 

0.5 

GFAP immunoreactivity in the cortex of CD40L deficient mice after 
TBI 

* ---- ----
a wr ham 

• wrTBI 

o CD40L hom I 
CD40L TBI 

___ J 
Figure 4-7. Pathological analysis of GFAP in CD40L cohort mouse cortical tissue 

GFAP showed a significant increase in astroglial activation in wild type 
TBI mice (p<O.001), but not in CD40L knockout TBI. Error bars 
represent standard error. 
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Figure 4-8. Pathological analysis of MBP in CD40L cohort mouse cortical tissue. 
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MBP staining showed a significantly lower amount of myelin (p<O.001) 
after TBI in wild type mice, but not after TBI in CD40L knockout mice. 
Error bars represent standard error. 
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Figure 4-9 Myelin basic protein (M BP) in wild type sham (A), wild type TBI (B), 
C040L KO sham (C), and C040L KO TBI mice (0 ). 
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Figure 4-10 GFAP in wild type sham (A) , wild type TBI (B), C040L KO sham (C) 
and C040L KO TBI mice (0). ' 
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Discussion 

CD40 is a costimulatory receptor essential for a variety of immune responses 

including immunoglobulin class switching (Strom et aI., 1999) and memory B cell 

development (Banchereau et aI., 1994). Recently, studies have suggested that 

CD40 and its ligand CD40L are upregulated after acute cerebral ischemia 

(Garlichs et aI., 2003, Klohs et aI., 2008) and that inhibition of CD40/CD40L 

signaling reduces leukocyte adhesion and blood-brain barrier permeability 

following middle cerebral artery occlusion (MCAO) in mice (Ishikawa et aI., 2004). 

Given the presence of ischemia-like conditions following TBI, and the differential 

regulation of proteins related to CD40 signaling in our APOE transgenic mice 

following TBI, we targeted CD40 signaling in TBI. 

Inhibiting CD40 signaling may reduce inflammation after TBI, so we first 

administered an anti-CD40L antibody immediately after injury. 

Immunohistochemistry failed to show any sign of infiltration of the antibody into the 

brain. Previous studies have shown the potential for thromboembolic events when 

treating with anti-CD40L antibodies, as was the case with failed phase II clinical 

trials conducted by Biogen to treat multiple sclerosis, Factor VIII inhibitor 

syndrome, and islet cell transplantation (Biogen press release, 1999). Others that 

have attempted to treat animal models of multiple sclerosis have failed to show 

clinical benefits (Kawai et aI., 2000, Hart et aI., 2005). Our attempt to use an 

antibody approach to inhibit CD40 signaling was based on a desire for the 

inhibition to begin after the administration of TBI, not with the intention to take an 

antibody approach to human testing but with the intent to validate the pathway's 

importance in secondary injury. Given the extreme cost of this approach and the 

failure to demonstrate brain penetration, we sought an alternative approach. We 

proceeded to use CD40L knockout mice as an alternative approach to disruption 
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of CD40 signaling in TBI. Future studies could employ a conditional knockout 

model (if such was available) in order to study the effect of inhibiting CD40 

signaling at various timepoints after TBI. 

Rotarod results showed CD40L knockout mice performing significantly better 

than their wild type counterparts as measured by the percentage of their baseline 

fall latency, with CD40L knockout mice returning to sham performance levels by 

day 7 after TBI. This was true regardless of injury status and may indicate that 

CD40L knockout mice experience a better outcome even from the sham surgery 

itself. This may be due to the global effect that the CD40L knockout has on 

inflammation and thus the reduced susceptibility of CD40L knockout mice to 

chronic inflammation (Gavins et aI., 2011). As discussed previously in chapter 3, 

sham CCI mice (craniectomy only) are not free from inflammation after TBI; our 

acute time point cytokine study suggests that a craniectomy alone is a mild injury 

of greater severity than a single mild closed head injury. The apparent rate of 

recovery of CD40L knockouts appears to be faster than wild type mice. This is 

consistent with previous experiments showing superior performance of CD40L 

knockout mice relative to wild type controls (Ait-Ghezala pers. comm.). 

During the Barnes maze, CD40L knockout mice once again showed superior 

performance than wild type controls over the course of the testing. During the six 

day acquisition period, genotype and injury were both significant factors on the 

cumulative distance of the mouse from the target hole showing that TBI mice 

performed significantly worse than shams, but CD40L knockout mice show 

significantly better spatial learning. This appears to have been mostly driven by 

differences in sham performance; in contrast with our other studies the wild type 

. sham mice did not significantly differ from the corresponding wild type TBI mice on 

any individual day, and did not show nearly as much spatial learning as CD40L 
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knockout sham mice. It is unknown why this cohort performed in this manner. No 

other wild type controls tested on the Barnes maze using this protocol showed this 

small of a degree of separation between sham and TBI. Because the acquisition 

trials involved 4 trials per day, long term spatial memory is only important for the 

first trial of acquisition testing and only contributes to one quarter of each day's 

testing. Whether mice find and enter the target hole successfully or not during that 

first trial, the target hole's position is re-enforced by guiding mice to the target hole 

after the end of the trial. Time*injury showed a significant interaction, indicating 

that sham mice learned the task faster over time, even though the target hole's 

position was being re-enforced on each trial, thus TBI did have a significant effect 

on short term spatial learning and memory. 

The probe trial also showed CD40L knockout mice performing significantly 

better than wild type controls. Both the CD40L knockout sham and TBI mice 

showed a significantly lower latency to the target hole than wild type sham mice, 

possibly due to minor effects of the sham injury which were mitigated in the CD40L 

knockout sham mice by the inhibition of CD40 signaling, similar to the effect we 

see in the CD40L knockout TBI mice. CD40L knockout TBI mice did have a 

significantly higher latency to the target hole than knockout sham mice, thus injury 

did result in impairments that were not averted by inhibiting CD40 signaling. 

Velocity was significantly higher in the knockouts than in the wild type mice, and 

this was also true during the acquisition testing (figure 4-6). This may account for 

much of the differences in performance between the two genotypes in the Barnes 

maze. Although it is primarily a test of spatial memory, motor performance can still 

be an important factor in determining outcome. A reduced velocity on the test will 

affect not only the latency to the target hole, but cumulative distance as well since 

the distance is summed over time. Clearly the Barnes maze is not as demanding 
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a task on motor performance, but in cases of extreme differences in motor 

coordination, there may be effects seen as we saw in this cohort. Future studies 

may examine a cued version of this task in order to discriminate between spatial 

and nonspatial contributors to performance as previous groups have done (Fox et 

aI., 1998b). 

In order to determine if the significant differences seen in the Barnes maze 

between CD40L knockout mice and wild type mice were entirely due to motor 

differences, or if there were significant spatial memory differences, mice were re

tested on the probe trial 3 months after surgery. As discussed in chapter 3, CD40 

signaling appears to become increasingly important to determining the differential 

outcome from injury out to 3 months after TBI. By 3 months after surgery, CD40L 

knockout mice showed extinction to wild type levels; however they also retained 

their significantly higher velocity during this delayed probe trial, showing that the 

differences seen during the first probe were not entirely due to differences in motor 

performance but did likely reflect improved spatial memory. These differences in 

spatial memory performance may be due to the lessened amount of inflammation 

within the CD40L knockouts. 

The differences in velocity and in the Rotarod are primarily consistent with 

improved cortical function. CD40L knockout mice are less prone to necrotic 

pathology (Belkaid et aI., 2000) and this may lead to a slower spreading of the 

necrosis in the pericontusional area of the cortex. In our pathology analysis we 

witnessed reduced astrocytic activation in the CD40L knockout mice (figure 4-9), 

as well as no effect of TBI on myelin within the brain, consistent with the 

hypothesis that reduced inflammation within CD40L knockout mice improved the 

outcome by reducing the amount of secondary injury. Unexpectedly, however, 

CD40L knockout mice showed very little myelin by the MBP stain in either the 
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sham or injured group compared to wild type sham mice (figure 4-10). We 

currently do not have an explanation for this difference in baseline expression of 

myelin, and it is clear that the motor and cognitive performance of these mice is 

not impaired. Inhibition of CD40 signaling effectively halts the progression of 

experimental autoimmune encephalomyelitis (Howard et aI., 1999), showing how 

important this pathway is to central nervous system (CNS) inflammatory 

pathology. 

These results show that CD40L knockout mice may have superior motor 

function as assessed by Rotarod, though the spatial learning and memory effects 

seen by Barnes maze remain unclear due to aberrant performance by the wild 

type controls. The improvement seen in Rotarod performance carried over to their 

velocity on the Barnes maze, but cannot fully account for the differences seen in 

Barnes maze performance. This may be due to reduced cytokine production in 

the CD40L knockout mice (Henn et aI., 1998, Monaco et aI., 2002, Omari and 

Dorovini-Zis, 2003). Pathology shows that the brains of these mice experience 

significantly reduced inflammation as a result of TBI, which may be reducing 

secondary injury leading to their improved results on the Rotarod and Barnes 

maze tasks. Our previous analysis of inflammatory cytokines at acute timpoints 

after injury shows that even sham mice are not spared from inflammation after 

surgery, which may be partly why they also show improvements in this cohort 

compared to wild type controls. CD40 signaling is known to be involved with 

cytokine production as well as NF-kB activation, thus additional therapies that 

seek to target both may also be useful in the treatment of TBI. As seen here, 

CD40 signaling appears to be important in the downstream consequences of TBI 

and modulation of CD40 signaling may be a potential therapeutic target for the 

treatment of TBI. 
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CHAPTER 5 
IN VIVO INVESTIGATION OF ARC031'S EFFECT ON OUTCOME FROM TBI 

Introduction 

Chapter 3 describes the proteomic identification of the impact of TBI in mice 

transgenic for human APOE3 and APOE4. Within those datasets we see 

significant effects on NF-kB and APP related pathways, suggesting that they may 

be important in determining outcome after TBI. Both of these pathways have been 

previously reported in TBI (Murakami et aI., 1998, Nonaka et aI., 1999a, Sanz et 

aI., 2002, Long et aI., 2009, Johnson et aI., 2012), but it is the significant 

interaction between APOE genotype and injury that drew our interest. The 

participation of these pathways in determining the differential response of E3 and 

E4 mice to TBI indicates that they may be important for determining outcome from 

injury. The Roskamp Institute has worked for many years on APP processing and 

inflammatory mechanisms, specifically with a focus on Alzheimer's Disease (AD), 

and so both of these areas were prime candidates for us to target with potential 

therapeutic strategies. 

As part of our AD drug discovery program the Institute has a lead compound 

- Nilvadipine - that impacts both APP processing and NF-kB signaling. 

Nilvadipine is a dihydropyridine that has been used to treat hypertension in Japan 

and Europe since 1996. Work from our laboratories has shown that nilvadipine 

promotes the clearance of amyloid beta across the blood brain barrier (Paris et al. 

2011; Bachmeier et al. 2011). Other work has shown that it is capable of inhibiting 

NF-kB-dependent transcription (Iwasaki et aI., 2004). NF-kB inhibitors have also 

been shown to decrease the production of both A~ 1-40 and 1-42 production 

(Paris et aI., 2007). Given the role played by NF-kB pathways in post-TBI 

inflammation and secondary damage, inhibition of NF-kB pathways may prove 

effective for limiting the damage posed by secondary injury in TBI. Nilvadipine 
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also decreases the beta cleavage of APP in vitro, but without inhibiting the activity 

of BACE-1 or gamma secretase, and without stimulating additional alpha cleavage 

of APP (Paris et aI., 2011). Our extensive preclinical data in vitro and in vivo in 

transgenic mouse models of AD, as well as positive results from pilot human 

clinical trials, have resulted in a Phase III trial (NILVAD) for nilvadipine in 

Alzheimer's disease, which will begin in Europe in 2012. 

Nilvadipine and related compounds have been explored in brain injury 

models. Nilvadipine has been shown to reduce the infarction area after ischemic 

injury in rats (Shiino et aI., 1991, Takakura et aI., 1994). Tissue loss is also an 

important factor in traumatic brain injury, and loss of synaptophysin expression 

may indicate a concordant decrease in synaptogenesis as well (Millerot-Serrurot, 

et al. 2007). Other groups have shown that some dihydropyridines such as 

nimodipine may be effective in improving the outcome from head injury (Langham 

et aI., 2003, Asian et aI., 2009); but the data are inconsistent (Vergouwen et aI., 

2006). In particular, Vergouwen and colleagues suggest that although the 

mortality and poor outcome statistics were no worse than placebo, nimodipine may 

be deleterious after traumatic subarachnoid hemorrhage due to its profibrinolytic 

effects which are shared with other dihydropyridine calcium channel blockers. 

Due to the threat of hypotension and hypoxia in the wake of TBI, administration of 

an anti-hypertensive may also be extremely detrimental (Stahel et aI., 2007). 

Nilvadipine is a racemic compound and enantiomers of chiral compounds 

can have biologically distinct effects from their parent racemic mixture. For 

example, racemic Equol shares the anti-cancer properties of its S-( -)-equol 

enantiomer, but the racemic mixture also possesses strong anti-genotoxic activity 

not present in the S-(-) enantiomer (Magee et aI., 2006). In exploring the effects of 

each nilvadipine enantiomer we discovered that the (-) enantiomer of nilvadipine 
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retains the anti-amyloidogenic and NF-kB inhibitory effects of its parent molecule, 

but without the anti-hypertensive effects of racemic nilvadipine. This suggests that 

higher doses, which may be necessary for APP and NFkB targeting efficacy in 

humans, could be achieved using the enantiomer, without causing adverse events 

related to blood pressure lowering. We therefore administered (-)- nilvadipine 

(termed ARC031 in our laboratories) following TBI in wild type mice to examine its 

effects on outcome as measured by motor coordination and neurobehavioral 

analyses. 

A pilot study using only CCI injured mice with or without ARC031 treatment 

(Le. no sham controls) suggested improved outcome on the Rotarod and MWM. 

Following the optimization of the Barnes maze, we conducted a full study with all 

appropriate control groups and used Rotarod and Barnes maze to evaluate the 

effects of ARC031. These data further supported the use of ARC031 for the 

treatment of TBI to prevent motor coordination dysfunction and spatial memory 

loss. 

Materials and Methods 

Animals and Injury 

All mice were wild type C57BU6J male mice. For the pilot study of ARC031 , 

mice were between 18 and 82 weeks of age. Groups were matched for average 

and range of age to within 2 weeks. ARC031 (1 Omg/kg) (n = 12) or vehicle only 

(DMSO) (100jJl) (n = 13) was administered to each group via intraperitoneal 

injection starting at 30 minutes post surgery and continuing each day at 9am for 7 

days. CCI surgery was performed as previously described (see chapter 2). Briefly 

described, mice were anaesthetized with isofluorane and mounted in a stereotaxic 

frame. Following a midline incision and reflection of the soft tissues, a 5mm 

craniectomy was performed adjacent to the central suture. Severe injury was 

administered as previously described (Crawford et aI., 2009) by impacting the right 
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cortex with a 2 mm diameter tip at a rate of 5 mls and depth of 1.8 mm by an 

electromagnetic impactor. No sham controls were used for this study. 

For the full study of ARC031, mice were all male CS7BLl6J between 11 and 

12 weeks old at the time of injury. Mice were divided into 6 groups of na'ive, sham, 

and injured mice with treatment or vehicle control. Within each injury group, mice 

received ARC031 (20mg/kg, dissolved in 100% DMSO) or vehicle only (100% 

DMSO) (n = 12 per group) administered via intraperitoneal injection starting at 30 

minutes post surgery and continuing for 7 days post-surgery at gam each morning. 

The dose was increased from the pilot study in order to maximize the effects and 

because it lacks the anti-hypertensive effect of its parent molecule, no side effects 

were anticipated. Mice received either a CCI or sham surgery (craniectomy only) 

as previously described, or only received the injections in the case of the na'ive 

group. 

Based on our acute inflammatory cytokine data from chapter 3, we decided 

to examine the effect of ARC031 at 6 hours after TBI using both the CCI and CHI 

injury models, to study ARC031's effectiveness at reducing acute inflammation 

after both a severe and a mild TBI. This timepoint was selected because it 

demonstrated a significant effect of CCI and was the only timepoint for which any 

marker was significantly increased in CHI (IL-6). Mice were divided into groups of 

TBI and sham, CCI or CHI, with ARC031 or DMSO administered 30 minutes after 

injury (n = 3 per group). For details on the CHI injury see chapter 3. The same 

parameters as described above were utilized once again for the CCI injury and the 

followtng parameters were used for the mTBI CHI model: a 5.0mm diameter flat 

face tip, Sm/s strike velocity, 1.0mm strike depth, and a 200msec dwell time. At the 

end of the procedure, mice were allowed to recover on a heating pad set at 37°C 

and, upon becoming ambulatory, returned to their cages. 
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All procedures involving mice were carried out under IACUC approval and in 

accordance with the National Institute of Health Guide for the Care and Use of 

Laboratory Animals. 

Therapeutic Administration 

Synthesis of ARC031 and analytical specifications were carried out in-house 

at the Roskamp Institute (Dr. Chao Jin and J. Reed). ARC031 was dissolved in 

DMSO and administered via intraperitoneal injection at a dose of 20mg/kg starting 

30 minutes after surgery (or by itself in the case of the na"ive group) and once each 

day at 9:00 AM for a period of 7 days to each of the groups. Control mice received 

DMSO alone. Naoive, sham, and injured groups all received injection with either 

ARC031 or DMSO. For the 6 hour acute timepoint study, only one injection was 

administered 30 minutes after surgery (Figure 5-1). 

Rotarod Testing 

Rotarod testing was performed as described in chapter 2. One day of 

baseline testing was administered on the day prior to surgery, followed by post

surgery testing on days 1, 3, 5 and 7 after surgery at a speed of 5-50 rpm over 5 

minutes. 

Morris Water Maze Testing 

Spatial memory and learning of mice in the pilot ARC031 study (n=12 

ARC031, n=13 DMSO, all having received CCI) were analyzed using the Morris 

Water Maze as previously described in chapter 2. 

Barnes Maze Testing 

For the full ARC031 study the Barnes maze was used to measure spatial 

memory and learning as described in chapter 2. This cohort was tested after I had 

established the benefits of Barnes Maze over Morris Water Maze for evaluation of 

TBI in mice. All mice were given 6 days of acquisition trials starting on the day 
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following the conclusion of Rotarod testing (day 8 post-surgery), and a probe trial 

was administered on the 7th day of Barnes maze testing (day 14 post-surgery). All 

Barnes maze trials were both videotaped and recorded with the Ethovision XT 

tracking system for analysis. 

Acute Timepoint ELISA Analysis 

IL-6 and MCP-1 ELISA kits (Invitrogen) were run as described in chapter 3. 

150 ug of protein were loaded into each well for each ELISA. Samples were run in 

triplicate. We did not assay AP levels within these mice due to the difficulty in 

assaying endogenous mouse amyloid. 

Tissue collection 

For the pilot study, mice were euthanized one month after TBI. For the full 

study, mice were euthanized two weeks post-procedure. 

For the full study, 4 mice from each group were fixed for pathological 

analysis. These animals were also deeply anesthetized with isofluorane before 

being intracardially perfused by gravity drip with a heparinized PBS solution pH-

7.4 for 3 min, followed by an overnight fixation of brain samples in 4% 

paraformaldehyde and paraffin embedding. Separate series of 5-6 JJm-thick 

sections were cut throughout the extent of the cortex and hippocampus and 

associated areas using a microtome (2030 Biocut, ReicherULeica) and mounted 

on positively charged glass slides (Fisher, Superfrost Plus). The remaining mice 

from each group were perfused with heparinized PBS solution (pH 7.4). The 

ipsilateral and contralateral hemispheres were dissected for the hippocampus, 

cortex, and cerebellum on ice and frozen at -80 C. 

For the six hour acute time point study, mice were euthanized 6 hours after 

the procedure. Euthanasia was performed by deep anesthesia with isofluorane 

followed by gravity drip with a heparinized PBS solution pH-7.4. The ipsilateral 
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and contralateral hippocampus, cortex, and cerebellum were then rapidly 

dissected on ice and frozen at -80 C. 

Immunohistochemistry 

Pathological analyses were carried out by the Roskamp Institute Core 

Pathology lab as described in chapter 3. Sections were stained in entire batches 

with antibodies (cell markers) raised against: GFAP (rabbit anti-GFAP, 1:10,000, 

Dako) for astrocytosis and synaptophysin (rabbit anti-synaptophysin, 1 :500, 

Abcam) for synaptic density. For Nissl staining, sections were deparaffinized and 

cleared in a solution of 0.005% lithium carbonate with 70% ethanol and 

counterstained with 0.25% Cresyl Violet for 20 minutes. 

All animals were deeply anesthetized with isofluorane before being 

intracardially perfused by gravity drip with a heparinized PBS solution pH-7.4 for 3 

min, followed by an overnight fixation of brain samples in 4% paraformaldehyde 

and paraffin embedding. Separate series of 5-6 !-1m-thick sections were cut 

throughout the extent of the cortex and hippocampus and associated areas using 

a microtome (2030 Biocut, ReichertlLeica) and mounted on positively charged 

glass slides (Fisher, Superfrost Plus). As a general principle, sections were 

deparaffinized in xylene and rehydrated in a decreasing gradient of ethanol before 

the immunohistochemical procedure. Sections were then rinsed in water, treated 

with endogenous peroxidase blocking solution, containing 0.3% hydrogen 

peroxide diluted in phosphate buffer solution (PBS) for 30 minutes. After rinsing, 

sections were treated with target retrieval solution for 8 minutes in the microwave, 

to induce heat mediated antigen retrieval. After overnight incubation with the 

primary antibodies, sections were rinsed with PBS, transferred to a solution 

containing the complimentary secondary antibody (from the Vecatastain Elite ABC 
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Kit) for 1 hr and further incubated with avidin-biotin-horseradish peroxidase solution 

(Vectastain Elite ABC kit; Vector Laboratories) for a further hour. 

Immunoreactivity was visualised with 3, 3'-diaminobenzidine (DAB) 

chromogen and hydrogen peroxide. Development with the chromogen was timed 

and applied as a constant across batches to limit technical variability (in 

immunodetection) before progressing to quantitative image analysis. Finally, 

mounted sections were progressed through a graded series of alcohols 

(dehydrated), cleared in xylene and coverslipped with permanent mounting 

medium. Immunoreacted sections were viewed using an Olympus (BX60) light 

microscope and photos were taken using an Olympus MagnaFire SP camera. 

Immunoreactivity for cell markers was measured by quantitative image 

analysis (optical segmentation). Rigorous staining protocols were applied, to 

ensure consistency of immunostaining, and accuracy of image analysis. This 

procedure was performed by blind assessment (with each slide analysed blind 

with respect to marker or animal group). Immunoreactivity for each cell marker 

was assessed within the cortex, hippocampus and/or associated regions. Optical 

segmentation of immunoreacted profiles were analysed using Image-Pro Plus 

morphometric image analysis software (Media Cybernetics). A semi-automated 

RGB histogram-based protocol (specified in the image analysis program) was 

employed to determine the optimal segmentation (threshold setting) for 

immunoreactivity for each antibody. 

Image Analysis 

Photos of Nissl sections stained by the Roskamp Institute Core Pathology lab 

were taken using an Olympus MagnaFire SP camera. In order to assess any 

effects of treatment on contusion volume, I measured the peri-contusional area 
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(1-3 slides per mouse, 4 mice per group) using the Nissl stained slides in coronal 

sections in an area spanning from the cortex retrosplenialis to the neocortex and 

from the neocortex across the dentate gyrus to the brachium colliculi superioris. 

This was compared to the corresponding region of the contra-lateral side of each 

mouse (3-6 biological replications). The area of this region divided by the area of 

the contralateral side was used to determine the extent of the lesion volume. 

Statistical Methods 

All data sets were assessed for normality using the Shapiro-Wilk test. If a 

given dataset was normally distributed, mixed model ANOVA (single time point) or 

repeated measures ANOVA (multiple timepoints) were used to assess significant 

changes due to injury. Pairwise group comparisons were evaluated using t-test. If 

a given dataset failed the Shapiro-Wilk test, data was transformed (In, log, square 

root). When transformation did not yield a normally distributed data set, we used 

the non-parametric Kruskal-Wallis test. . Pairwise contrasts were calculated using 

the Wilcoxon rank sums test. A given effect was considered significant at p<0.05. 

Statistical analyses were performed using JMP 8.02 (SAS). 

Severe CCI 

Rotarod on da 1, 3. 5, and 7. Barnes Maze on da s 8-14 

Treatment with anatabine (2mg/kg IP 30 minutes post TBI ... 20mg/kg orally 
for the remainder of the experiment) 

Rotarod on da 1 3 5 and 7. Barnes Maze on da s 8-14 

Treatment wtth ARC031 (20mg/kg IP 30 minutes post TBI ancJ every day for 7 days) 

Euthanasia 6 hours after TBI for acute inflammatory marker EliSAs 

Severe CCI Treatment with ARC031 (20mg/kg IP) or anatabine (2mg/kg IP + 20mg/kg/dayorally) 
starting 30 minutes after surgery 

. CHI Euthanasia 6 hours after TBI for acute inflammatory marker ELiSAs 

Mild Treatment with ARC031 (20mg/kg IP) 30 minutes after surgery 

Figure 5-1 Timeline of Therapeutic Administration Experiments for Chapter 5 and 
Chapter 6. 
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Results 

Rota rod 

Our pilot study showed ARC031 mice improving to 120% of their baseline 

average by day 7 on the Rotarod, whereas DMSO treated mice failed to return to 

their baseline levels, reaching an average of 88% of baseline performance on day 

7. Although their initial starting point after the injury was similar, ARC031 mice 

returned to baseline performance by day 5, though differences were not significant 

( figure 5-2). 

During the full ARC031 study, baseline testing on the rotarod showed a 

significant effect of intraday learning between trials; however there were no 

significant differences between cohorts (Figure 5-3). Testing 1,3, 5, and 7 days 

post-surgery showed a significant effect of intraday trial (p<O.05), injury 

(p<0.0001), and ARC031 treatment (p<0.01), however, the difference between TBI 

injured mice who received ARC031 vs mice that received DMSO alone were not 

significant. The average ARC031 TBllatency to fall exceeded the DMSO Sham 

level by day 7 post-surgery, whereas the DMSO TBI mice did not, though ARC031 

TBI and DMSO TBI were still not significantly different by t-test (p>0.2). Excluding 

TBI mice from the analysis, there was no statistically significant effect of sham 

injury compared to na"ive mice who received no craniectomy or anesthesia 

(p=0.4907). Treatment with ARC031 was still a significant factor in the sham and 

na'ive groups (p<0.05) with ARC031 treated sham and na'ive mice having a higher 

average fall latency than DMSO treated mice on days 3,5, and 7. 
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Figure 5-2. Percentage of baseline fall latency (a) and raw fall latency (b) during 
the ARC031 pilot study. Error bars represent standard error. 
Differences between groups were not significant by T -test. 
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Figure 5-3. Rotarod fall latency in the full ARC031 study. Error bars represent 
standard error. ARC031 treatment did not produce significant 
differences by T -test. 
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Morris Water Maze 

Morris water maze was only utilized for the pilot study, which did not include 

sham mice. Mice in the pilot study treated with ARC031 showed a 20 second 

improvement in their latency to the target platform from day 1 to day 9, whereas 

mice treated with DMSO showed only a 10 second improvement in latency over 

the same time period. Latencies were similar on all prior days of water maze 

testing (figure 5-4). 
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Figure 5-4. Average latency to the hidden platform during MWM testing of the 
ARC031 pilot cohort. Error bars represent standard error. Treatment 
with ARC031 did not produce statistical significance by T-test. 
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Barnes Maze 

Acquisition tests were measured by total distance, which we defined as the sum of 

the distance from the mouse center point to the target hole at each sample point at 

a rate of 30 samples per second for the entire trial. Acquisition testing showed a 

statistically significant effect of starting point, block, injury, group*injury, and 

group*treatment. On day 2 ARC031 treated TBI mice had a significantly lower 

cumulative distance from the target hole than DMSO treated TBI mice (p<0.0092). 

The treatment effect became insignificant by day 3 and remained an insignificant 

factor for the duration of the acquisition period (figure 5-4). 

A single probe trial was conducted on day 7. ARC031 sham mice 

unexpectedly showed a higher average distance than DMSO sham mice and 

analysis of the amount of time each mouse spent with its nose in the target hole 

similarly showed a greater time spent by DMSO sham mice than ARC031 shams 

(Figure 5-6a and b). To explore whether or not this discrepancy in the sham data 

(not seen in the na·ive group) was due to a failure of ARC031 treated sham mice to 

remember the location of the target hole, or due to increased exploratory behavior 

in an attempt to relocate the target box after initially discovering its disappearance 

from the arena, we measured their travel time. This was defined as the latency 

from the first walking motion of each mouse to the first nose poke into either the 

target or an adjacent hole. Failure to find either the target or adjacent hole was 

recorded as a time of 60 seconds (trial length). 3 mice that remained stationary for 

the entire probe trial were excluded from the analysis. ARC031 sham mice travel 

time was not statistically different from DMSO sham mice (p<0.5692) or ARC031 

sham mice (p<0.2128), whereas DMSO TBI mice had a significantly longer travel 
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time than DMSO sham mice (p<O.023). Figure 5-7. There were no significant 

differences between TBI mice treated with ARC031 or DMSO. 
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Figure 5-5. Cumulative distance to the target hole during acquisition testing of the 
ARC031 full cohort on the Barnes maze. Error bars represent standard 
error. Treatment with ARC031 did not produce statistical significance by 
T-test. 

a Average Distance of Nose from Target Hole 
70 .--------------------

• 
ro +----------------~---

50 +----------------

i ~ +-----------
~ 
Q 

j 30 

Q 
20 

10 

Probe Trial 

Figure 5-6a. 

159 

o Naive ARC031 

o NaiVe DMSO 

C Sham ARC031 

.ShamDMSO 

.TBIARC031 

. TBIDMSO 



b Average Duration of Nose in Target Hole 
25 ~ 

20 I 

15 1 
'" "0 

1 c: 
0 
<.) 10 <oJ 

if] 

5 

0 
Probe Trial 

o Nai've 
ARe03 1 

o aYve OM 0 

D Sham 
ARe031 

D Sham DM 0 

Figure 5-6. a) Average distance from the target hole during the probe trial of the 
ARC031 full study on day 7 and b) average duration in the target hole 
during the probe trial of the ARC031 full study on day 7. Error bars 
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Figure 5-7 . Travel time to the target hole during the probe trial ofthe ARC031 full 
study at day 7 probe trial Error bars represent standard error. * indicates 
statistical sign ificance compared to corresponding sham (p<0 .05) . 
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IL-6 and MCP-1 were assayed in the tissue of the right cortex 6 hours after 

CHI or CCI or sham surgery. As before, ARC031 (20 mg/kg) or DMSO was 

injected by IP injection 30 minutes after surgery. A clear effect of injury was noted 

in the CCI model, with a highly significant increase in MCP-1 in DMSO treated CCI 

TBI compared to CCI sham (or CHI sham) by t-test (p<0.01). However in the CHI 

model there was no effect of injury, with a non-significant trend towards greater 

MCP-1 in DMSO treated CHI TBI than CHI sham. Although ARC031 did not 

prevent the injury-induced increases in MCP-1, it did show a consistent but non

significant decrease in MCP-1 in every treated group, both in sham and TBI, in 

both the CHI and CCI models (figure 5-8). IL-6 was significantly increased in both 

DMSO and ARC031 treated CCI mice compared to shams. In this cohort, a 

significant increase was not seen in the CHI TBI mice at 6 hours, either in the 

DMSO and ARC031 treatment groups. The values for the IL-6 within the CHI 

groups are interpolated because IL-6 levels were below detection limits in every 

CHI group (Figure 5-9). ARC031 treated CHI mice showed slightly less IL-6 

expression than DMSO treated CHI mice, however the difference was once again 

non-significant. 
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Figure 5-8. MCP-1 ELISA of the ARC031 6hr acute timepoint study. Error bars 
represent standard error. Treatment with ARC031 did not produce 
statistical significance by T -test. 
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Figure 5-9 . IL-6 ELISA of the ARC031 6hr acute timepoint study. Error bars 
represent standard error. Treatment with ARC031 did not produce 
statistical significance by T -test. 
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Pathology 

Nissl stained sections were used to measure the peri-contusional area. The 

data show a signifi~ant amount of tissue loss in the ipsilateral cortex of ARC031 

T81 and DMSO T81 mice compared to their respective shams (figure 5-10), with an 

insignificant trend towards a smaller amount of tissue loss in ARC031 treated T81 

mice compared to DMSO treated T81 mice. 

GFAP immunoreactivity showed only a slight increase in CCI and sham mice 

compared to na'lve mice, but without any statistical significance (figure 5-11). 

ARC031 failed to show an effect on astrocytic activation in either T81 or control 

animals. 

Synaptophysin staining showed no effect of injury in the DMSO treated mice, 

but a decrease of 20-40% in ARC031 treated mice compared to their respective 

DMSO controls. Na'lve mice treated with ARC031 showed the smallest decrease 

while T81 mice treated with ARC031 showed the largest (figure 5-12). 
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represent standard error. * indicates significance relative to 
corresponding sham by T-test (p<O.05). 
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Figure 5-11 . Pathological analysis of GFAP in ARC031 full cohort mouse cortical 
tissue. Error bars represent standard error. Treatment with ARC031 did 
not produce statistical significance by T -test. 
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Discussion 

As discussed in chapter 1, there are currently no approved therapeutics 

designed to combat secondary injury after TBI. Our proteomic data from APOE 

transgenic mice di$cussed in chapter 3 suggests NF-kB and APP related changes 

may be important in determining outcome from injury. ARC031 is an inhibitor of 

NF-kB dependent transcription and is also an inhibitor of amyloidogenic 

processing, and thus presented itself as a potential therapeutic to explore in our 

TBI and neurobehavioral testing paradigms (Iwasaki et aI., 2004, Paris et aI., 

2007) (Paris personal communication). We conducted a pilot ARC031 study in 

wild type mice who received a severe CCI, but as numbers of available mice were 

limited for this study we did not include sham controls in this group. Our pilot 

utilized Rotarod and Morris water maze testing, and the data suggested that 

ARC031 might be effective for treating TBI. This prompted a full study with 

appropriate sham and na'ive controls. This full study utilized the Rotarod but used 

the Barnes maze to evaluate memory and learning (as per our conclusions from 

chapter 2) and the results from these neurobehavioral tests confirm that ARC031 

may be effective for improving motor function and spatial memory following TBI. 

Our choice of NFkB related pathways as targets is supported by research from 

other groups which have shown an immediate increase in NF-kB translocation in 

humans (Stegmaier et aI., 2008) and a prolonged increase in NF-kB binding 

activity following TBI in rodents (Nonaka et aI., 1999b, Sanz et aI., 2002, Hang et 

aI., 2005, Zhang, 2005, Chen et aI., 2008). This increased activity is known to co-

localize with the injured cortex and expanding ventricle for up to at least one year 

following injury. Mice that have sustained chemical injury to the hippocampus 

have similarly shown increases in NF-kB activity 4 and 21 days after injury 

(Kassed et aI., 2004). With regard to APP processing, amyloidogenic processing 
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has been shown to be an important part of secondary injury in transgenic mouse 

models (Uryu et aI., 2002) which correlates with a large burst of amyloid beta seen 

in the CSF after head injury in humans (Raby et aI., 1998, Olsson et aI., 2004) and 

diffuse Af3 plaques that form within the first hours after brain injury (Smith et aI., 

2003, Ikonomovic et aI., 2004). Previous research has shown that some NF-kB 

inhibitors also reduce Af340 and Af342 production (Paris et aI., 2007). 

Mice who received ARC031 showed significantly improved fall latency in the 

Rotarod task, regardless of injury group. ARC031 treatment was a statistically 

significant factor for improved fall latency, even in sham and na'lve groups, but 

there was no statistically significant interactive effect of ARC031 treatment with 

injury, suggesting an overall positive benefit of treatment on motor skills not 

specific to TBI mechanisms. Other groups have previously shown a positive effect 

of NF-kS inhibitors on the Rotarod performance of otherwise untreated and 

uninjured mice (McCall et aI., 2009). In humans, DMSO can also cause 

headaches and dizziness, and the extent to which this is true in mice is not well 

studied and may provide either enhance or diminish the effectiveness of ARC031 

on Rotarod performance. 

In the Barnes maze we saw no significant effect of ARC031 treatment on 

spatial learning over the course of 6 days of acquisition trials as measured by the 

total distance of the mouse from the target hole, except on day 2 where ARC031 

treatment gave a statistically significant effect regardless of injury. This may be 

due in part to the cessation of treatment on the day prior to the start of Barnes 

maze testing. ARC031 treated TSI mice did not show significant improvement 

compared to DMSO treated TBI mice during acquisition, but both groups had a 

significantly increased average cumulative distance to the target hole compared to 

sham and na'ive groups. 
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Despite the lack of a significant treatment effect during the acquisition trials, 

treatment by injury was a significant factor during the probe trial on day 7 as 

measured by average distance from the target hole. Additionally, ARC031 treated 

TBI mice did not have a statistically significantly higher average distance from the 

target hole than their corresponding sham, whereas the DMSO TBI group showed 

strong statistical significance compared to DMSO sham. This suggests that 

treatment with ARC031 may enable mice to better remember the location ofthe . 

target hole despite the severe TBI, and untreated mice either lack the motivation to 

find the target box or lack the spatial memory required to locate its previous 

position. To discriminate between these possibilities, we analyzed the probe trial 

in greater depth by measuring the time it took for each mouse to travel to the 

target hole from the time they began walking ("travel time"). If the deficit seen in 

the placebo treated mice were only one of motivation as opposed to memory, 

travel time should show a low latency for DMSO TBI mice as well. To further 

exclude motivation as a factor, we excluded any non-participatory mice that failed 

to register a minimum of one nose poke in any hole. During the probe trial of the 

Barnes maze we measured the travel time of each mouse in order to measure 

their spatial memory independent of motivation to participate in the task. The 

short travel time of ARC031 treated sham mice compared to their higher average 

distance from the target hole compared to DMSO treated shams shows that they 

took a more direct route to the target during the probe trial, but continued exploring 

in order to relocate the target box. A reversal experiment where the position of the 

target box is reversed at the end of the initial acquisition period may show superior 

performance by ARC031 treated mice, indicative of superior synaptic plasticity. 

Although treatment with ARC031 was only a significant effect on the 2nd day 

of acquisition testing, the memory involved in acquisition trials differs from that of 
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the probe trial; all trials during acquisition except for the initial trial of each day 

occur after re-enforcement of the target hole's position. Therefore, the probe trial 

involves longer term memory than the acquisition testing. 

Examination of the tissue from these mice showed a non-significant trend of 

decreased lesion volume in TBI mice treated with ARC031. Both TBI groups 

showed a significant loss of tissue compared to sham controls, but since the mice 

were euthanized two weeks after injury, it is possible that even a small difference 

in lesion volume between ARC031 and DMSO treated mice could diverge into a 

larger significant difference at later timepoints as the necrotic area expands. 

GFAP staining also showed a non-significant effect of treatment with ARC031 in 

the TBI mice compared to the sham mice, but its failure to show an injury effect 

may again be due to the two week timepoint after injury as well as treatment with 

DMSO which as previously mentioned is known to be neuroprotective. 

Synaptophysin data showed an effect of treatment with ARC031, but not of TBI. 

Treatment with ARC031 appeared to decrease the amount of synaptophysin in 

both injured and uninjured mice. This is in stark contrast to our neurobehavioral 

data which seems to suggest that ARC031 treated mice may exhibit superior 

synaptic plasticity, since synaptophysin is essential to synaptic plasticity and is 

involved in synaptic vesicle recycling{Janz, Sandhof et al. 1999). The decreases 

seen in ARC031 mice may be part of a denervation and reinnervation process 

during synaptic remodeling and may indicate an ongoing reparative process rather 

than degenerative processes (Masliah et aI., 2004). Future studies should 

examine the synaptic plasticity of ARC031 treated TBI mice compared to 

untreated controls and re-examined synaptophysin across multiple timepoints and 

brain regions in order to clarify these results. 
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In the acute treatment study we examined the levels of IL-6 and MCP-1 6 

hours after both severe (CCI) and mild (CHI) injury. IL-6 and MCP-1 are both 

inflammatory cytokines downstream of NF-kB, and we therefore selected them to 

study ARC031 's effect on NF-kB dependent inflammation. As discussed in 

chapter 3, profiling the acute inflammatory response of untreated wild type mice by 

ELISA after both CCI and CHI injuries we saw both IL-6 and MCP-1 significantly 

up-regulated in the CCI model. Although we saw IL-6 significantly up-regulated at 

6 hours in the untreated CHI study discussed in chapter 3, in the acute treatment 

study with ARC031, CHI levels of IL-6 were below detection limits of the kit. 

Though at first this would seem to suggest a lack of reproducibility, it is important 

to note that the placebo treated mice in this study were given OMSO, which is 

known to be neuroprotective (Oi Giorgio et aI., 2008). This may have masked the 

signal in the CHI mice in this experiment. Treatment with ARC031 at 6 hours after 

injury showed a non-significant trend towards reduced IL-6 in CHI sham and TBI 

mice (according to interpolated values) as well as CCI TBI mice, but not in CCI 

sham. ARC031 treatment also produced a non-significant decrease in MCP-1 in 

every group 6 hours after surgery. Such a slight and non-significant reduction 

does not appear to be a likely mechanism of action for ARC031 's significant 

effects on the Rotarod and Barnes maze, so it may be acting through a different 

mechanism. Alternatively, it is possible that the slight non-significant decreases 

seen after treatment with ARC031 at this timepoint become much larger 

differences after continued treatment at later timepoints. 

Our data show only non-significant effects of ARC031 treatment on acute 

inflammatory markers. Others have shown that cytokine levels correlate with 

astrocyte activation in inflammatory conditions (Hunter et aI., 1992), thus this may 

help explain why no significant effects of ARC031 on GFAP staining were seen. 
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TBI also failed to produce a robust activation of astrocytes compared to sham 

mice, but showed a trend of increase compared to na"ive. This further suggests 

that CCI sham injury is at least a mild injury to the brain and may not provide 

sufficient discrimination from TBI in all cases (Olesen, 1987, Cole et aI., 2011). 

Given that ARC031 may assist in recovering a non-injured phenotype in the 

probe trial of the Barnes maze as well as motor coordination improvements seen 

by Rotarod, this drug shows potential as a treatment for TBI. Its parent molecule 

is currently in phase III clinical trials in Europe for the treatment of Alzheimer's 

disease and it is known to have an excellent safety profile. This greatly enhances 

the likelihood that this enantiomer can move forward as a potential treatment for 

TBI as well, at least in Europe where the racemate has a history and thus the 

enantiomer is not regarded as a new chemical entity. Though the parent molecule 

has anti-hypertensive effects that may not be desirable after a TBI, ARC031 lacks 

these effects and should enable increased doses (as compared to the racemate) 

without blood-pressure lowering side effects that could be adverse. This may 

allow us to reach a therapeutic dose that could not be reached by Nilvadipine 

without inducing an excessive loss of blood pressure. 

Based on our ELISA data, it appears likely that the mechanism of action of 

ARC031 is not through any acute action on inflammatory pathways following TBI, 

though we have demonstrated anti-inflammatory activities of ARC031 in our other 

pre-clinical research into the effectiveness of ARC031 for the treatment of 

Alzheimer's disease. There may also be additional inflammatory markers such as 

TNF-a that do show the effect of ARC031 but were not examined here. 

Alternatively, it is possible that the slight trends showing a possible decrease of 

these acute markers leads to improved outcome at latent timepoints, possible 

through downstream effects not seen here. The effects of ARC031 treatment 
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noted both by Rotarod and Barnes Maze tasks occur many hours after this acute 

timepoint. The acute inflammatory profile established in chapter 3 continues to 

show a significant effect of CCI and sham surgeries, thus it may still have utility in 

examining the effectiveness of other treatment paradigms. With regard to 

ARC031 we may simply not be examining the correct markers in order to discern 

its acute effect after TBI, but the motor and cognitive outcomes are the most 

important factors in determining a potential therapeutic's efficacy. Thus we 

consider that ARC031 still warrants further preclinical evaluation as a potential 

treatment for TBI. 
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CHAPTER 6 
IN VIVO INVESTIGATION OF ANATABINE'S EFFECT ON OUTCOME FROM TBI 

Introduction 

Previous results discussed in chapter 5 targeting NF-kB activation and A~ 

production with ARC031 showed effectiveness at improving spatial memory in a 

CCI model of TBI using the Barnes maze task, and improved Rotarod fall latency 

regardless of injury status. After profiling the acute response of NF-kB dependent 

cytokine activation after CCI, and identifying a 6-hour timepoint as a peak time for 

response by IL-6 and MCP-1 (Chapter 3) we examined the effect of ARC031 

treatment at six hours after TBI on these cytokines. Although treatment with 

ARC031 showed effectiveness in neurobehavioral testing, it did not produce a 

significant decrease in inflammatory markers downstream of NF-kB. In order to 

validate neurobehavioral improvement by targeting NF-kB and A~, we sought an 

alternative inhibitor of NF-kB activation and/or A~ production to administer in the 

CCI model of TBI and evaluate with neurobehavioral testing. 

Anatabine is a naturally occurring minor alkaloid whose structure is closely 

related to nicotine. It is an MAO inhibitor and nicotinic receptor and cholinergic 

agonist. Anatabine is less potent than nicotine, possessing 4.55 times less affinity 

in the rat frontal cortex, and 2.67 times less affinity in the hippocampus. Partial 

MAO inhibition occurs in the rat liver at concentrations above 100 IJg/kg (Rock 

Creek Pharmaceuticals). Research at Roskamp Institute on the effects of 

anatabine showed it to be capable of inhibiting NF-kB activation and A~ production 

in vivo and in vitro (Paris et aI., 2011). In vitro experiments show that anatabine 

inhibits A~ production of human APP overexpressing 7W CHO cells in a 

concentration-dependent manner and also inhibits NF-kB activation stimulated by 

TNF-alpha in HEK293 and SH-SY5Y cells in a concentration-dependent manner. 

Basal levels of NF-kB were also lowered by anatabine in APP over-expressing 7W 
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CHO cells. Since NF-kB regulates expression of the ~-site APP cleavage enzyme 

(BACE-1), Paris and colleagues also tested anatabine's effect on BACE-1 

transcription when stimulated by TNF-alpha. Anatabine completely attenuated the 

increase in BACE-1 mRNA levels. Anatabine is highly concentrated in the brain 20 

minutes after injection, reaching a concentration 3.5 times higher in the brain than 

in the plasma (Paris et aI., 2011). Given the excellent bioavailability and NF-kB 

and A~ inhibitory effects of anatabine, we decided to apply it in our CCI model of 

TBI to further validate those pathways as therapeutic targets. 

Anatabine is a nutraceutical, defined as a food or naturally occurring food 

supplement that has medical or health benefits (Andlauer and FOrst 2002). 

Because nutraceuticals are naturally found in foods and are not pharmaceutical 

drugs, they do not require extensive clinical trials and possess a much faster path 

to clinical application and use than traditional pharmaceuticals. Nutraceuticals do 

not require long and expensive clinical trials and FDA approval as a drug, and as 

such they can be employed in a clinical setting almost immediately (Hanninen and 

Sen, 2008). Within the European Union, substances which can be shown to have 

physiological effects can be considered medicinal substances, though 

classification of a particular product can vary from country to country and depend 

on the nature of the product (Coppens et aI., 2006, Gulati and Berry Ottaway, 

2006). Glucosamine salts and chondroitin sulfate have enjoyed great success in 

the United States as dietary supplements since the mid-1990s (Bagchi, 2008). 

Plant sterols supplemented to orange juice have also shown efficacy at lowering 

cholesterol levels in hypercholesterolemic individuals (Devaraj et aI., 2004). 

In order to evaluate anatabine's effectiveness as a TBI treatment, we 

administered either anatabine or PBS to mice after CCI or sham injury, and 

performed the same battery of neurobehavioral testing previously used in our 
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study of ARC031 (Rotarod and Barnes maze). In a second cohort of mice, with 

the same treatment and injury groups, mice were euthanized six hours after 

surgery in order to examine the acute inflammatory profile and the impact of 

anatabine treatment (Figure 5-1). 

Materials and Methods 

Animals and Injury 

All mice were male wild type C57BLl6J male mice between 11 and 12 weeks 

old at the time of injury. 48 mice were divided into groups of sham and injured with 

and without treatment (12 mice per group). CCI was administered as described in 

chapter 2, with a 2 mm diameter tip at a rate of 5 m/s and depth of 1.8 mm. Sham 

mice for the CCI procedure received craniectomy without injury. Animals were 

housed singly after the surgical procedure. 

Two weeks after surgery, at the completion of behavioral testing (the final 

day of Barnes maze testing), a subset of mice were euthanized for pathological 

analyses (not carried out yet). 3 mice from each group (treated only, sham and 

CCI) are being kept alive and are continuing to consume anatabine for later 

pathological examination at an extended timepoint after injury (yet to be 

determined). We anticipate that these mice will be euthanized in the timeframe of 

3 months to 1 year after injury, but this will be influenced by our observations of 

the pathological analyses at the 2 week time point. Our proteomic data suggests 

that the NF-kB pathway becomes increasingly important with time after injury to at 

least 3 months post-injury, and our previous observations have found that the 

necrotic area surrounding the impact continues to expand during that time. Latent 

pathological examinations at that timepoint or beyond may reveal larger 

differences between treated and untreated groups than at a more acute 2 week 

timepoint. 
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For the acute timepoint study all mice were male wild type C57BLl6J male 

mice 11 weeks old at the time of injury. 12 mice were divided into groups of sham 

and injured with and without treatment (3 mice per group). CCI was administered 

as described above. Mice were euthanized 6 hours post-surgery and the 

hippocampus, cortex, and cerebellum were rapidly dissected on ice and then 

frozen at -80 C. 

All procedures involving mice were carried out under IACUC approval and in 

accordance with the National Institute of Health Guide for the Care and Use of 

Laboratory Animals. 

Therapeutic Administration 

Anatabine (Star Scientific) was dissolved in PBS and administered via 

intraperitoneal injection at a dose of 2mg/kg starting 30 minutes after surgery. The 

first dose was administered via IP in order to control the timing and dose of the 

first administration after injury as the mice do not immediately return to drinking 

from their water bottles after surgery. Since anatabine has excellent bioavailability 

when taken orally, for the treatment groups, .normal water was substituted with 

Anatabine treated water, which provided a continuous administration for the 

duration of the experiment without the need for further intraperitoneal injections. 

Given that mice of this age consume approximately 5 ml of water per day (Daniel 

Paris, pers. comm.), and our mice were all approximately 25g in weight, we added 

anatabine to their water to a concentration of 0.1 mg/ml for a daily dose of 20 

mg/kg. I chose this dose based on work that is currently ongoing with this 

compound in other laboratories of the Roskamp Institute. Control mice received 

PBS alone (by IP) at 30 minutes, and normal drinking water. 

For the 6 hour acute timepoint study, either 2mg/kg of anatabine or PBS was 

administered by IP injection 30 minutes after surgery. Additionally, mice were 
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provided with a dish filled with either regular water or water treated with anatabine 

at the same concentration as in their water boUle (0.1 mg/ml). This was to ensure 

ease of access to the water and maximize intake during the short six hour survival 

period. 

Rotarod Testing 

The Rotarod (Med Associates) was used to measure motor coordination as 

described in chapter 2. Briefly, all mice were given one day of baseline testing at· 

an accelerating speed of 5 to 50 rpm over a period of 5 minutes. The day after 

baseline testing, mice were given a sham or TBI, as described above. At day 1 

after the surgery, testing resumed using the same criteria as the baseline tests. 

Testing was repeated on every second day through day 7. 

Barnes Maze Testing 

The Barnes maze was used to measure spatial memory and learning as 

described in chapter 2. Briefly, all mice were given 6 days of acquisition trials 

starting on the day following the conclusion of Rotarod testing, and a probe trial 

was administered on the 7th day. The cumulative distance from the target hole 

was measured for each trial and averaged over each day. A probe trial was 

conducted on the final day of testing. The average distance of the nose from the 

target hole as well as the latency was recorded. If a mouse failed to complete the 

task the latency was recorded as 60 seconds. The table and target box were 

cleaned and disinfected after each trial on all days. All Barnes maze trials were 

both videotaped and recorded with the Ethovision XT tracking system for analysis. 

Acute Timepoint ELISA Analysis 

As described in chapter 3, we assessed inflammatory cytokines IL-6 and 

MCP-1 using ELISA (Invitrogen). Tissue for the ELISA analyses were rapidly 

dissected on ice and frozen at -80 degrees. ELiSAs were run on cortical tissue 
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homogenate prepared using M-PER and Halt Protease Inhibitors (Pierce) 

according to manufacturer's directions, with the exception that each of the primary 

incubations of the samples for the ELISA were performed overnight at 4 degrees 

Celsius to minimize non-specific binding. A porcine sample was run to validate the 

specificity of the kit. 150 J..Ig of protein from brain homogenate were loaded into 

each well for each ELISA. Samples were run in triplicate. ELISA data are 

expressed in pg/ml. 

Statistical Methods 

All datasets were assessed for normality using the Shapiro-Wilk test. If a 

given dataset was normally distributed, mixed model ANOVA (single time point) or 

repeated measures ANOVA (multiple timepoints) were used to assess significant 

changes due to injury. Pairwise group comparisons were evaluated using t-test. If 

a given dataset failed the Shapiro-Wilk test, data was transformed (In, log, square 

root). When transformation did not yield a normally distributed data set, we used 

the non-parametric Kruskal-Wallis test. . Pairwise contrasts were calculated using 

the Wilcoxon rank sums test. A given effect was considered significant at p<0.05. 

Statistical analyses were performed using JMP 8.02 (SAS). 

Results 

Rotarod 

A number of mice assigned to the anatabine treatment neurobehavioral 

testing group showed artificially deflated performance during the baseline testing 

of the rotarod due to a propensity to walk backwards on the bar. As a result, we 

used the raw fall latency values to evaluate the outcome. Since the data were not 

normally distributed, instead of ANOVA we employed the Wilcoxon signed rank 

test to analyze these results. Anatabine treated TBI mice had significantly shorter 

fall latency times compared to their respective shams on days 1 (p<0.01), 3 
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(p<O.04), and 7 (p<O.02) after surgery whereas PBS treated controls had 

significantly shorter fa" latencies compared to their shams on days 1 (p<O.01), 

3(p<O.01), and 5 (p<O.03) after surgery (Figure 6-1). The differences between the 

anatabine and PBS treated TBI mice were not significant. Anatabine did not 

appear to have an .effect on TBI mice, but did seem to significantly decrease the 

fa" latency of sham mice when expressed as a percentage of the baseline. Raw 

fa" latency were not significantly different between treated and untreated shams or 

treated and untreated TBI mice for any day after surgery (figure 6-2). 
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Figure 6-1 . Percent of baseline fall latency in the Anatabine study. Error bars 
represent standard error. * indicates statistical significance relative to 
the corresponding sham by Wilcoxon signed rank test (p<0.05). 
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differences were seen between treatment groups and the data was not 
normally distributed . Error bars represent standard error. 
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Barnes Maze 

The trial duration shows the length of time the mice spent locating and 

entering the target box during the acquisition testing in order to end the trial (figure 

6-3). The data were not normally distributed thus we couldn't use repeated 

measures ANOVA. however non parametric tests also did not yield any statistically 

significant comparison between the pairs. Although no significant differences were 

seen between any groups, a consistent trend indicated that TBI mice required 

more time than sham mice, regardless of treatment status. Treatment with 

anatabine did not produce any detectable trends in the data. 

Cumulative distance was normally distributed and the starting point and time 

were significant factors by ANOVA, the latter of which indicates learning (figure 6-

4). PBS treated sham and TBI mice showed the greatest difference during the 

acquisition trials, and therefore have the largest amount of an injury effect, but 

anatabine treated sham mice had a higher cumUlative distance than PBS sham 

mice (though the difference was non-significant). Anatabine treatment had a 

greater effect on sham mice than TBI mice in terms of velocity. As seen in figure 

6-5, sham mice treated with anatabine generally had a lower velocity than PBS 

treated sham mice, while both the anatabine treated and untreated TBI mice 

performed at a similar velocity, therefore injury*treatment was a significant 

interactive term (p<O.05) by ANOVA. During the probe trial, PBS treated TBI mice 

had a higher latency to the target hole than PBS sham mice (p<O.01) (figure 6-6) 

and had a lower duration spent with their nose in the target hole (p<O.05) (figure 6-

7). Anatabine treated TBI mice showed no difference in latency to the target hole 

compared to sham mice, and no significant differences were seen between 

anatabine treated TBI mice and shams in duration in the target hole. Treatment 

*injury was a Significant interactive effect by ANOVA (p<O.05). Neither latency nor 

181 



duration were significantly different between anatabine and PBS treated sham 

mice. Velocity did not show any significant differences between groups during the 

probe trial (figure 6-8). 
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Figure 6-3. Acquisition trial duration during Barnes maze testing of the Anatabine 
study. Error bars represent standard error. No statistical significance 
was seen by Wilcoxon signed-rank test. 
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Figure 6-4. Cumulative distance during Barnes Maze acquisition testing of the 
Anatabine cohort. Error bars represent standard error. No statistical 
significance was seen by ANOVA repeated measures with the exception 
of the start point as a sign ificant factor. 
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Figure 6-6. Latency to the target hole during the Barnes maze probe trial of the 
anatabine study. Error bars represent standard error. * indicates 
significance by T-test (p<O.05) compared to the corresponding sham .. 
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Acute Timepoint ELISA Assay 

Both IL-6 and MCP-1 showed a significant effect of injury 6 hours after TBI 

(p<0.01). Unexpectedly, anatabine treated sham mice showed a significantly 

higher level of IL-~ than untreated sham mice (p<0.05), but less than either TBI 

group (figure 6-9). Treatment was also a significant factor by ANOVA within IL-6 

(p<0.05), largely because of the aforementioned sham effect. MCP-1 did not show 

any difference between the treated and untreated shams, and no significant 

differences were seen between the treated and untreated TBI mice with either 

marker (figure 6-10). 
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Discussion 

Our results show that treatment with anatabine prevents a loss of spatial 

memory two weeks after severe TBI as demonstrated during a probe trial of the 

Barnes maze. Similar to other studies with anatabine conducted at the Roskamp 

Institute (Daniel Paris, pers. comm.), no improvement was seen during rotarod 

testing; anatabine does not appear to improve motor function after TBI in the 

manner seen after treatment with ARC031. This suggests that the effects of 

ARC031 on motor performance likely occur via mechanisms that are not impacted 

by anatabine. The results in the Barnes maze resemble the results from our 

ARC031 treatment experiment. Although no improvement was seen during the 

learning phase, a probe trial test of longer term spatial memory shows dramatic 

improvement after treatment. This is consistent with previous research which has 

shown the ability of probe trials of spatial memory tests to discriminate spatial 

memory differences not seen during acquisition testing (Petitto et aI., 2002, Lin et 

aI., 2009). 

During acquisition testing, PBS and anatabine treated sham mice had an 

identical trial duration, even though treatment with anatabine resulted in 

significantly decreased velocity. Anatabine treated shams also had a consistent 

trend for higher cumulative distance, suggesting that anatabine treated sham mice 

spent slightly more time farther from the target hole due to their lower velocity, but 

did not hesitate to enter the escape box as much as PBS treated shams. The end 

result was an identical trial length in spite of anatabine treated sham mice 

accumulating a greater cumulative distance from the target hole over the course of 

the trial. 

This also suggests a lower stress level in the treated mice and resulting 

superior performance in the goal-oriented learning portion of the task (entering the 
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escape box after locating the target hole). Harrison and colleagues (Harrison et aI., 

2006) suggest that verification of the escape hole's location lowers the stress level 

of the mice and allows them to continue exploring the rest of the maze once they 

are assured of their ability to escape, but in our observations the escape box itself 

causes hesitation and apprehension of the mice who spend a great deal of time 

examining the escape box from the edge of the hole without entering before they 

are finally confident enough to enter without being prompted at the end of the trial. 

Over a few days of testing we see that mice begin to properly associate the target 

hole with escape from the maze and do not hesitate to enter the box, but the 

above data suggest that anatabine treated mice form the association faster. The 

differences seen in our experiment versus others such as the aforementioned 

Harrison study may be due to the construction of our Barnes maze, which places 

the black escape box directly under the hole, as opposed to separating the escape 

box from the target hole by way of an acrylic ramp. 

The probe trial showed no impairment in the spatial memory of the anatabine 

treated sham mice in spite of their trend for a higher cumulative distance, thus 

their spatial memory is equivalent to PBS treated shams. Treatment with 

anatabine did not significantly alter the velocity of the mice during the probe trial, 

most likely due to the novel starting location and the absence of the escape box. 

These provided new stimuli to the mice and encouraged fresh exploratory 

behavior. The disappearance of this velocity difference in the probe trial suggests 

that it is not being driven by motor impairment, but rather by overall differences in 

stress; the groups equivalent performance in the time to escape the arena during 

acquisition shows an equivalent motivation to complete the task. 

Treatment with anatabine completely prevented any deficit of spatial memory 

during the probe trial. As was noted before, acquisition testing involves re-
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enforcement of the target hole's location and is mostly a test of short-term 

memory. The longer term task of the probe trial and the novel starting location 

revealed a significant effect of treatment x injury, showing that although anatabine 

does not change the performance of sham mice, it significantly improved the 

performance of IBI mice. Although anatabine did not show beneficial effects in 

improving motor coordination on the Rotarod, it does show significant effects at 

improving long term spatial memory in the Barnes maze in a manner similar to 

ARC031. 

ELISA analysis of acute markers of inflammation showed no significant effect 

of anatabine treatment on TBI mice, either on IL-6 or MCP-1. Sham mice showed 

a greater amount of IL-6 after treatment with anatabine, though MCP-1 levels were 

equal in both sham groups. The failure of anatabine to reduce the acute 

inflammatory response may indicate that like ARC031, it is acting through some 

other mechanism to protect spatial memory, such as a reduction in delayed 

inflammatory response, which we did not profile by ELISA. Alternatively, the 

therapeutic effect may be specific to the hippocampus and may require profiling 

the hippocampal response to injury as well as how anatabine modulates that 

response. Due to the comparatively small amount of tissue recovered from the 

hippocampus and the large amounts of protein consumed by our ELISA assays, 

we have thus far focused on the cortical tissue with the aim of later assaying the 

tissue from the hippocampus using the most responsive and consistent marker 

found during our cortical investigations. Based on our results from these acute 

timepoint studies, future investigations will profile the IL-6 response in the 

hippocampal tissue and we may then be able to discriminate the treatment effect. 

Previous studies have shown a differential response of cytokines in the 

ipsilateral hippocampus compared to the ipsilateral cortex in mice after CCI 
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(Harting et aI., 2008). It may also be necessary to examine the entire timepoint 

profile previously established in chapter 3 (1, 6, 12,24, and 48 hours after injury) 

in order to contextualize the results of these treatment paradigms. Treated mice 

may exhibit a steeper decline in cytokine levels despite high initial inflammation, 

which itself may be beneficial while the blood-brain barrier is compromised. Others 

have shown that mice with genetic knockdown or knockout of various cytokines 

may have a higher mortality rate than wild type controls, though the extent of 

blood-brain barrier compromise and intracranial cell death is not directly impacted 

(Stahel et aI., 2000). It is therefore not desirable to completely inhibit cytokine 

activation, but rather simply attenuate it. It is possible that moderation of the acute 

inflammatory response is occurring with timepoints or brain regions that have yet 

to be explored in these anatabine treated mice. 

Currently unpublished data generated by Roskamp Institute staff shows an 

effect of anatabine on spatial memory in mouse models of Alzheimer's disease 

(Daniel Paris pers. comm.), but we believe the work described in this chapter 

represents the first exploration of the effects of anatabine on spatial memory in a 

mouse model of TBI. Previous animal studies have examined the effect of related 

alkaloids like nicotine for treating brain injury. A study by Hralova et al (2011) 

showed no effect of a single administration of nicotine at 0.75 mg/kg or 1.0 m/kg 

on spatial learning and memory in rats. Nicotine, however, has a much shorter half 

life than anatabine. Our study also involved continuous oral administration rather 

than a single IP injection alone. Chronic administration of nicotine is known to 

improve spatial discrimination in rats with septal lesion-induced deficits (Decker et 

aI., 1992). Chronic administration was also studied in a paradigm of pre- and post

treatment following CCI resulting in improved spatial learning and memory on the 

Morris water maze (Verbois et aI., 2003). A study of human patients of 
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subarachnoid hemorrhage who were receiving nicotine replacement therapy 

versus those who did not suggested a neuroprotective effect for nicotine as seen 

by a lower mortality rate at 3 months, however further study is needed (Seder et 

aI., 2011). 

Future studies of anatabine will examine its effectiveness at preventing 

spatial memory loss in a new repetitive mild (mTSI) model of closed head injury 

(CHI) being developed and characterized by Roskamp Institute staff. This model is 

a repetitive form of the CHI injury utilized in chapter 3 during our acute 

inflammatory timepoint profile. If anatabine shows effectiveness at reducing or 

preventing deficits in the repetitive mTSI model, then it could find immediate 

application; for example as a supplement in sports drinks to help offset cognitive 

impairments induced by chronic head injury in high contact athletics such as 

American football, boxing, and other activities where head injury is common and 

risk of head injury can be anticipated. Other nutraceuticals such as rosiglitazone 

and curcumin have been shown to be neuroprotective after TSI (Wu et aI., 2006, 

Yi et aI., 2008), so there is support for the idea that dietary supplementation can 

provide neuroprotection. Anatabine provides an exciting alternative that is non

addictive and has excellent bio-availability when administered orally, and it offers a 

faster prospect for clinical application than pharmacological alternatives. Dietary 

supplementation may be a safe and simple method to reduce cognitive deficits 

after TSI. 
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CHAPTER 7 
CONCLUSIONS 

Traumatic brain injury is now recognized to be a major problem for both 

military and civilian populations. The devastating consequences of head injuries in 

sports (American football, boxing, rugby, etc) have become the subject of 

increasingly frequent news and health reports.Additionally, the current conflict in 

Afghanistan has named T81 "the signature wound" of that war (Martin et al 2008). 

In the US, the number of emergency department visits increased from 1.25 million 

in 2002 to 1.43 million in 2006 (Faul et aI., 2010). The survival rate increased 20% 

from 1980 to 1994 (Thurman, 1999), and with the overall incidence of T81 currently 

increasing, many more patients are now living with the long term consequences of 

T81 (more than 3 million people in the US alone) (Zaloshnja et aI., 2008). 

T81 involves a diverse set of events that regulate secondary injury, for which 

there is currently no treatment (Faden, 2001). Mechanisms of this secondary injury 

include excitotoxicity (Palmer et aI., 1993) and inflammation (Morganti-Kossmann 

et aI., 2002) and within these complex molecular pathways may lie appropriate 

targets for therapeutic intervention. In order to dissect the molecular pathways 

important to the pathogenesis of secondary injury after T81, we utilized a 

laboratory animal model combined with state-of-the-art proteomic technology in 

order to reveal the global protein changes occurring in response to injury. 

Moreover, to further hone in on proteomic changes that correspond to differential 

outcome from injury we used APOE transgenic mice to reveal changes after T81 

that are occurring in a APOE genotype dependent manner. Given that 

apolipoprotein E isoforms are associated with differential outcome from injury in 

humans (with E4 genotype conferring poorer outcome than E3), we hypothesized 

that the proteomic response of mice transgenic for different human APOE isoforms 

may reveal molecular pathways that specifically contribute to this differential 
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outcome after T81 and which are amenable to therapeutic intervention. In order to 

effectively evaluate outcome after injury in our mouse models, I refined and 

implemented neurobehavioral tests of cognitive and motor function (Chapter 2). 

We generated datasets of the proteins significant for the interactive effect of 

genotype*injury and analyzed these to determine the pathways critical to 

determining differential outcome from injury (Chapter 3). Using this approach, I 

targeted three pathways whose response to injury was APOE genotype 

dependent; CD40 signaling, APP metabolism, and NF-k8 signaling. These 

pathways were targeted using three different intervention strategies, genetic 

manipulation, novel drug administration, and dietary supplementation (Chapters 4-

6). Neurobehavioral testing shows that each of the strategies provide benefits 

specific to the treatment used. However some treatments provide an easier 

approach to clinical translation than others. 

Proteomic profiling of the APOE genotype dependent response to T81 

revealed the differential modulation of many pathways and networks of related 

proteins. In clinical applications, to date proteomics has most frequently been 

employed in the study of cancer, where it is often used to find potential biomarkers 

(Chang et aI., 2001, Zhang et aI., 2004, 8ai et aI., 2011). Recently, proteomic 

approaches have been applied to begin to identify therapeutic targets for cancer in 

addition to biomarkers (Skvortsov et aI., 2011, Wu et aI., 2011). For example, Wu 

et al. (2011) used kinase-centric chemical proteomics of 34 head and neck 

squamous cel/ carcinoma (HNSCC) cel/lines and found significant intercel/line 

differences in a number of kinases involved in cel/ survival and proliferation. 

Inhibiting EGFR and EPHA2 kinases reduced the viability of cel/lines that showed 

high expression of these kinases, pointing to the possibility of using kinase 

inhibitors capable of inhibiting those kinases as a possible treatment. 
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The research presented here is a very early demonstration of applying state 

of the art global profiling technology combined with neurobehavioral validation to 

the identification of pathogenic mechanisms and therapeutic targets of TBI. To 

identify targets for therapeutic intervention, particularly in a condition as complex 

as TBI, a systems biology approach is desirable to highlight groups of related 

proteins involved with the disease process rather than focus on individual protein 

changes which would be a more suitable approach for a biomarker search. 

Ingenuity Pathway Analysis provided an excellent tool for arranging the datasets 

into groups of related proteins and for examining the functional significance of the 

data (Abdullah et aI., 2009, Crawford et aI., 2009, Baraibar et aI., 2011, Julien et 

aI., 2011, Sandberg et aI., 2012). It also allowed for the creation of custom 

networks of proteins present in the dataset that are known to be interact with each 

other directly or indirectly. These relationships are derived directly from a curated 

search of the literature. Custom networks were created using the proteins present 

in each dataset. This allowed us to isolate specific groups of related proteins that 

were changing differently in response to injury in APOE3 and APOE4 transgenic 

mice at multiple timepoints after TBI, indicating prolonged differences in response 

that presumably correlate with outcome. 

Being able to view the patterns of response in large proteomic datasets 

allowed us to find potential targets for intervention that may not have been 

revealed by more narrow molecular approaches. Often when such functional 

groupings or networks are examined there is an evident nidus (or several nidi) 

whose modulation would obviously impact the entire grouping. Using multiple time 

points spanning one day to three months after injury allowed us to focus on 

specific pathways which showed changes occurring over long periods of time, 

possibly indicating that intervention at an acute time pOint after injury could have 
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long lasting effects that would otherwise result in long term deleterious processes. 

The data also indicated that even at extended timepoints post-injury (3 months in a 

mouse) there was significant APOE-genotype dependent cellular response, 

suggesting that later interventions might yet prove valuable. Proteomic studies that 

examine the broad array of protein changes occurring after TBI give us insight into 

molecular pathways that may not have been previously anticipated to be of 

importance to head injury, such as CD40 signaling, Rho signaling, and metabolic 

pathways such as alanine and aspartate metabolism and butanoate metabolism. 

For this research we focused on pathways that appeared to be easily targetable 

with therapeutic strategies that could be implemented in-house such as CD40 

signaling, APP metabolism, and NF-kB signaling. 

To validate whether or not these pathways playa central role in determining 

the degree of secondary injury or are peripheral consequences of secondary 

injury, it is necessary to modulate these pathways and observe the outcome. In 

vitro models cannot capture the full complexity of the in vivo situation. In vitro 

models of TBI such as the axonal stretch model are excellent examining a specific 

aspect of injury in detail. The axonal stretch model itself has revealed the 

importance of calpain proteolysis of voltage gated sodium channels in causing 

calcium influx in axonal injury (von Reyn et aI., 2012). In vitro hippocampal slice 

models have also shown how chemokine up-regulation precedes the spreading of 

tissue injury during secondary brain damage (Fahlenkamp et aI., 2012). Traumatic 

brain injury induces a wide array of changes, not all of which can be antiCipated, 

as seen in our datasets. A cell culture model cannot replicate this level of complex 

and ongoing interaction; neurodegenerative processes that begin in the cortex 

near the site of injury at a 24 hour timepoint may lead to downstream effects in the 

hippocampus that are not seen until 1 month after injury or longer. In order to test 
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our therapeutic strategies properly, we need to utilize an in vivo animal model of 

TBI which recreates the full complexity of the TBI process. 

We applied a variety of intervention strategies in order to modulate each of 

the three target pathways selected from our proteomic data; knockout of CD40L to 

modulate CD40.signaling; treatment with an AI3 inhibitor/AI3 clearance/anti

inflammatory chemical to impact APP and NF-kB signaling; treatment with an anti

inflammatory dietary supplement to impact NF-kB and other inflammatory 

mechanisms. I evaluated the consequences of each of these strategies with the 

neurobehavioral paradigms that I optimized, in order to examine both the motor 

and memory outcomes after TBI. I have focused on neurobehavioral outcome as 

the most critical outcome measure for these studies, and to that end refined and 

implemented tests of cognitive and motor function for their specific application to 

these mouse models of TBI. Future studies should naturally seek to understand 

the molecular and pathological outcomes of treatment, but if the neurobehavioral 

outcome is no better or worse than that of an untreated animal, then its clinical 

utility is extremely questionable. Both motor and cognitive impairments are primary 

problems facing victims of TBI (Caeyenberghs et aI., 2011, Kinnunen et aI., 2011, 

Leunissen et aI., 2012), so we tested both. 

The Rotarod is a test of motor coordination and balance, and in our 

experience it provides a more sensitive measurement of impairment than the 

traditional balance beam combined with grip strength testing. The latter primarily 

reveal impairments in balance and neuromuscular health, but does not depend on 

motor coordination as much as Rotarod does. Rotarod testing repeated on 

alternating days after injury shows an immediate and dramatic impairment due to 

injury followed by gradual recovery within the week after injury as the mice adapt 

to the task. Though their gait on the Rotarod appears to remain altered, CCI 
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injured mice learn to adapt to the impairment and remain walking on the bar for 

increasingly longer periods of time in spite of it. 

Rotarod performance varies with age, and as the experiments performed 

here were all conducted with young mice around 10-12 weeks of age, the task was 

optimized to provide a challenge with a minimum of baseline testing time in order 

to minimize ceiling effects. Rotarod provided excellent discrimination of the initial 

injury, with large deficits seen at the first day within injury groups followed by a 

gradual return to sham levels. The ability of the Rotarod task to produce such a 

large degree of separation between sham and injured mice allows treatment 

effects to become readily visible over the recovery period. A large number of trials 

can be conducted in a short period of time, which allows for many technical as well 

as biological replicates within the data, minimizing uncertainty and maximizing 

statistical power. Rotarod discrimination of motor skill does not necessarily 

translate to differential movement velocity in less strenuous conditions. However, if 

differences in velocity are noted in other tests, for example the Barnes maze, then 

we can consider that in our evaluation of the Rotarod results. 

Mice improved in their performance in the Rotarod over time, particularly 

after a severe TBI which induces large deficits. In my observations of Rotarod 

testing, I have noted that some mice have an altered gait while performing the task 

the day after surgery. Though I am blind to group assignment while testing, these 

mice invariably are ultimately revealed to have received a severe TBI. Though 

they improve over time through compensation using their contralateral side, their 

altered gait remains and this may affect their velocity even in less strenuous 

conditions like the Barnes maze. Although CD40L knockout mice showed superior 

performance to wild type mice on the Rotarod as well as increased velocity on the 

Barnes maze and though wild type controls showed abnormal results in spatial 
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memory, their motor performance on the Rotarod was consistent with previous 

results. ARC031 treated mice showed a significant effect on the Rotarod without a 

corresponding increase in velocity on the Barnes maze. Conversely as we saw 

during treatment with anatabine, significant velocity differences during Barnes 

maze testing do not necessarily correlate to a significant increase in fall latency 

during Rotarod testing. Rotarod is therefore a vital test to unambiguously 

determine the presence or absence of motor impairment. Spatial memory tests, 

though they involve the use of motor functions, do not always correlate with 

Rotarod performance. 

Spatial memory is a hippocampal dependent neurobehavioral function. Loss 

of spatial memory is associated with secondary injury after traumatic brain injury. 

Although controlled cortical impacts cause primary injury to the cortex, in the 

weeks that follow the lesion volume will expand and hippocampal volume will 

decrease. In testing spatial memory we found the Barnes maze to be a superior 

test to the Morris water maze for our C57BLl6J mouse strain, consistent with 

previous reports (Patil et aI., 2009). All three of our treatment strategies showed 

effectiveness in various measures during the probe trial compared to wild type 

untreated mice. Acquisition testing relies heavily on short term memory and goal

oriented learning, whereas the probe trial is a more specific test of long term 

spatial memory. During the probe trial, CCI injured mice typically perform 

significantly worse than sham or na"lve mice, whereas sham mice showed no 

significant difference from na"lve. Inexplicably, in the CD40L study, the injury effect 

was only evident in the CD40L knockout mice, which also showed superior latency 

to the target hole than wild type mice regardless of injury. However, with both of 

the actual "treatment" studies, (ARC031 and anatabine), we observed that 

untreated mice did show the effects of injury and treated injured mice did not differ 

200 



significantly from uninjured mice. Mice treated with ARC031 had a travel time to 

the target hole that was not significantly different from sham mice. Anatabine 

treated TBI mice showed no difference compared to their corresponding shams at 

all during the probe trial, indicating that long term spatial memory was rescued by 

its use. 

Although neurobehavioral testing effectively distinguished injured and 

uninjured groups, as well as treated and untreated groups, it requires large group 

sizes and time to conduct. Although pathological examination of outcome from TBI 

does not require as many mice to conduct, it may require examining long' 

timepoints after injury to see significant differences with some markers. For 

instance, within this body of research some of the clearest pathology data showing 

significant differences between treated and untreated groups with an injury effect 

present was within the CD40L knockout experiment. For that cohort, the brains of 

the mice were analyzed months after the TBI and we see a significant effect of 

injury on astroglial activation by GFAP in the wild type mice not seen in the CD40L 

knockout mice. In our ARC031 and anatabine cohorts where the brains were 

extracted at a two week timepoint, we failed to detect an unambiguous effect of 

injury. These analyses carried out by the Roskamp Institute Pathology Core team 

are essential to fully understanding TBI and the effects of treatment as well as 

validating our TBI models' clinical relevance, but do not provide a rapid method for 

assessing outcome. 

Given the time and mice required to conduct neurobehavioral and 

pathological testing, and focusing on the inflammatory responses that were 

evident from our proteomic datasets, I explored the acute cytokine response to 

TBI, correlating profiles with injury severity and time post injury. The idea behind 

this approach was that by characterizing an acute profile of response to injury that 
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correlated with later demonstration of neurobehavioral dysfunction, this profile 

could be used as a surrogate biomarker of "response to treatment". Thus 

additional therapeutics could be screened in future studies by this rapid test, 

avoiding the necessity for the time, labor and mouse-intensive neurobehavioral 

studies for all but the top therapeutic candidates. 

Acute mediators of inflammation after TBI may suggest a potential strategy 

for therapy and a time window for such therapy. We examined IL-6, IL-1 B, and 

MCP-1 in cortical tissue at an array of acute timepoints after TBI using ELISA. IL-6 

and MCP-1 showed significant effects of time after surgery, even sham surgery 

produced an up-regulation, though to a lesser extent than with TBI mice. A closed 

head injury model produced less up-regulation than sham surgery, only showing 

significance in one cohort at 6 hrs after injury by IL-6. These cytokines distinguish 

not only time after injury but injury severity as well. This suggests that the CHI 

model may involve distinct mechanisms of injury from CCI, and different forms and 

severities of head injury may require different therapeutic strategies. The results 

also suggest that the craniectomy administered to "sham" mice in the CCI 

procedure is itself a mild form of injury, consistent with previous results from other 

groups reporting sham surgery as a distinct brain injury (Cole et aI., 2011, Xing et 

aI., 2011). Though neurobehavioral testing is still necessary to truly validate the 

effectiveness of a potential therapeutic at reducing the neurobehavioral sequelae 

from TBI, the ability to pre-screen compounds and select the leads will accelerate 

the drug discovery process. Profiling the acute inflammatory response after injury 

may also indicate the maximum window of time available for the administration of 

any treatment designed to pacify this response. 

Inflammatory cytokine levels peaked within 6-12 hours after injury, showing 

that some of the first signs of inflammation after TBI still only appear after a delay 

202 



greater than at least one hour. ARC031 and anatabine treatments showed 

effectiveness in neurobehavioral paradigms when applied 30 minutes after 

surgery, though they were apparently not acting on these markers of inflammation. 

Future studies may look at more latent timepoints to explore the window of time 

where these treatments show efficacy. Alternatively, we may also look at applying 

anatabine as a prophylactic. Anatabine supplementation is viable for individuals at

risk for head injury, as it is a nutraceutical. In our study, even administration 30 

minutes after injury shows efficacy but previous studies of potential 

neuroprotective compounds have employed pre-administration schemes 

(Marklund et aI., 2001, Noh et aI., 2005). 

New chemical entities (NCE) face a long, difficult route to clinical application 

involving large expenses that smaller organizations cannot afford on their own 

(Claeys and Dodd, 2011). A wealth of supporting pre-clinical data and toxicology 

has to be carried out, together with application submission and approval by the 

appropriate regulatory authority (FDA, EMEA) before entering human clinical trials; 

in order to pass all three phases of clinical trials, a drug must prove not only its 

safety, but also its efficacy in a human population (Friedman et aI., 2010). 

ARC031's parent molecule, Nilvadipine, is known to be safe for human use as an 

anti-hypertensive and is currently beginning phase III clinical trials in Europe for 

use in Alzheimer's disease. ARC031 did show efficacy at improving motor 

coordination during Rotarod testing regardless of injury status, and in the Barnes 

maze, showed improved spatial memory in injured mice, but it failed to show a 

significant reduction in any cytokine response. A trend towards reduced 

inflammation was visible in IL-6 and MCP-1, but this did not reach statistical 

significance and was less pronounced than expected, thus we conclude that 

ARC031 may be acting through a mechanism other than NF-kB inhibition. It 
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remains a promising potential treatment for TSI, however, especially given that the 

clinical history with Nilvadipine would likely expedite ARC031's path to clinical 

application. More potent inhibitors of NF-kS dependent transcription and A~ 

production may also offer therapeutic benefits after TSI. The dietary supplement 

anatabine is not burdened by the same restrictions as pharmacological 

compounds. Rigorous scientific study of the effects of treatment with dietary 

supplementation can lead to beneficial breakthroughs with immediate public 

access (Hu and Cassano, 2000, Reginster et aI., 2001, Shah and Shah, 2007). 

We have shown that treatment with anatabine starting 30 minutes after injury 

effectively prevents any loss of spatial memory two weeks after severe TSI. Future 

studies will examine the long term pathogenesis of severe TSI with and without 

anatabine supplementation. We will also examine the effectiveness of continuous 

anatabine supplementation in a model of repetitive mild head injury. Our mouse 

model of mild TSI demonstrates sustained neurobehavioral deficits in repetitively 

vs singly injured mice (Crawford pers. comm.) and other work has shown that 

repetitive injuries produce cumulative consequences including accelerated amyloid 

beta deposition and cognitive impairment in APP transgenic mice (Tg2576) (Uryu 

et aI., 2002). Demonstrating effectiveness in our model of mild TSI would open up 

the possibility for application of this supplement in a wide array of situations as 

mild TSI is the most prevalent form of TSI and some individuals have a persistent 

risk of head injury (e.g. soldiers and certain athletes). Dietary modification provides 

a simple, safe, direct route to improving outcome that can be initiated even prior to 

the primary injury, if it can be anticipated. The benefit to risk ratio is very high in 

this situation. Just as efforts are made with improvements in helmets and safety 

equipment to prevent or reduce primary injury both in athletics and on the 
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battlefield, efforts can potentially be made to reduce second injury preemptively 

with dietary supplementation and modification. 

These results collectively show the effectiveness of adopting a systems 

biology approach to finding therapeutic targets after TBI. The differential response 

to injury within an APOE transgenic model of TBI over timepoints spanning one 

day to three months provided insight to potential targets for therapeutic 

intervention, some of which have now been validated using neurobehavioral 

testing. Molecular characterization of the acute response to injury now provides 

markers that are known to correlate with the extent of injury and can be used to 

screen potential therapies at timepoints that are measured in hours instead of 

weeks. Future studies may examine the effects seen on lipid metabolism within 

our proteomic dataset, and work is currently underway at the Roskamp Institute to 

study the lipidomic response after TBI. The lipid content of the brain is extremely 

high, and disrupted lipid metabolism is implicated or involved in a host of eNS 

disease states ranging from Niemann-Pick diseases to bipolar disorder (Adibhatla 

and Hatcher, 2008). ApoE itself is a cholesterol transporter, and since outcome 

from brain injury is ApoE isoform-dependent, lipid metabolism is likely to be a key 

factor in the secondary injury process. Another likely target is Tau; as mentioned in 

chapter 1, phosphorylation of Tau is now known to be key in TBI pathogenesis 

(Liliang et aI., 2010, Johnson et aI., 2012) and we observed evidence of 

modulation of Tau related pathways in our proteomic datasets. Other possibilities 

include finding therapies to reduce mitochondrial damage after TBI; within our mild 

TBI dataset, energy metabolism was significantly modulated in both the cortex and 

hippocampus and glycolysis/glucogenesis was also significantly affected by injury. 

Previous research has shown that mitochondrial damage can result in oxidative 

stress and neurodegeneration after TBI (Mazzeo et aI., 2009, Mustafa et aI., 
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2010). Our proteomic results suggest a role cellular mechanisms and functions 

that are supported by previous research, but also identify novel areas and provide 

new insights into possible targets for therapeutic intervention of TBI that have not 

been previously attempted. The therapeutic strategies attempted here based on 

our proteomic data have all shown improved outcome from TBI by various 

measures. Thus this work provides a foundation of pre-clinical research upon 

which a translational TBI program will be built. 
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APPENDIX A 
MORRIS WATER MAZE AND BARNES MAZE VIDEOS 

Chapter 1 

https:llvimeo.com/45337069 

Password: roskamp 

Chapter 2 

https:llvimeo.com/45337068 

Password: roskamp 
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