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Abstract

Quantile regression offers an extension to regression analysis where a modified version of the

least squares method allows the fitting of quantiles at every percentile of the data rather than

the mean only. Using the well-known three-parameter generalised gamma distribution to model

variation in data, we present a parametric quantile regression study for positive univariate ref-

erence charts. The study constitutes an overall package that includes all different stages of

parametric modeling starting from model identification to parameter estimation, model selec-

tion and finally model checking.

We improve on earlier work by being the first to formulate the iterative approach to

solution of the likelihood score equations of the generalised gamma distribution in such a way

that the individual equations involved are uniquely solvable and far from being problematic as

a number of authors have suggested. We conduct likelihood ratio tests to choose the best model

within the three-, four-, five- and six-parameter generalised gamma family obtained by making

the parameters linearly (or loglinearly) dependent on a univariate covariate. Quantiles are

plotted accordingly and asymptotic theory for obtaining the expressions for confidence bands

around them is given. Based on the chi-square goodness-of-fit test, we suggest a test statistic

that checks the goodness of the generalised gamma model for given data. We validate the whole

theoretical process computationally via simulations. Lastly, we demonstrate the different steps

of the proposed modeling procedure through two main applications; one is environment-related

and the other health-related.
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In a parallel fashion, inspired by the generalised gamma distribution, we introduce an

alternative three-parameter distribution with useful statistical properties. We explore briefly

maximum likelihood estimation and asymptotic theory of the alternative distribution and we

compare it computationally to the generalised gamma.
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Chapter 1

Introduction

As the title of the thesis indicates, two main statistical elements are involved in this study:

parametric quantile regression (PQR) and the generalised gamma (GG) distribution. PQR

represents the approach followed in this study and the GG is the model used in this framework.

As for the target, it is principally to construct reference charts for positive response data

conditional on a univariate covariate.

There is a need in various fields such as pharmacology, health, econometrics and many

others to obtain reference charts that can specify the "common" range in data. Given positive

data points from a response distribution conditional on a univariate covariate, the following

questions arise: What best shape or model can be attributed to the data, and what limiting

curves define its percentiles?

In a regression equation, a dependent variable Y is modeled as a function of an indepen-

dent variable X, corresponding parameters, and a random variable error term which represents

unexplained variation in the dependent variable. Most commonly this error term is considered

as normally distributed. However, what if the unexplained variation in the dependent variable

is not symmetric? From here comes the search for distributions with parameters that control

skewness. The three-parameter GG is our proposed distribution, applicable to response data

that take positive values only.
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CHAPTER 1. INTRODUCTION 2

In regression analysis, one curve (the mean curve) is fitted to the whole data. To allow

the fitting of quantiles for reference charts, we extend our study to quantile regression (QR),

while using the GC distribution to model variation in data. As Koenker (2005) mentions:

Quantile regression is intended to offer a comprehensive strategy for completing the

regression picture.

By complementing the exclusive focus of classical least squares regression on the conditional

mean, it offers a strategy for examining how covariates influence the location, scale and shape

of the entire response distribution. The literature shows that very little work has been done on

PQR especially the part that involves using nonsymmetric distributions for model-fitting. On

that, we quote Gilchrist (2008) saying:

In contrast with the wealth of theory associated with the classical Normal-based

regression, this paper has given little theory. In fact, there is little theory available

[on parametric quantile regression]. (...) There arc a number of theoretical and

practical issues to be addressed in this topic. (...) It is recommended that regression

be revisited from these perspectives.

Driven by the aforementioned motives and the will to explore and improve on a field that has

been a subject of interest to researchers but yet needs revisiting, we perform a rounded study on

PQR using the GG distribution while passing through all different stages of parametric model-

ing. Of course, we perform model identification, parameter estimation and model selection and

we suggest a goodness-of-fit test, all of which we combine in one modeling package. Using the

concept of QR, this thesis provides an overall modeling package that can be applied to positive

univariate data with a single covariate.



CHAPTER 1. INTRODUCTION 3

For given positive univariate regression data, our overall modeling package involves:

1. Specifying the GG PQR model by linking its parameters to the covariate.

2. Estimating the three-, four-, five-, and six-parameter GG using maximum likelihood (ML).

3. Selecting the best subset from within the GG family using the likelihood ratio test (LRT).

4. Providing expressions for the corresponding quantiles and plotting them.

5. Providing expressions for the confidence intervals (CIs) around the quantiles and plotting

them.

6. Suggesting a goodness-of-fit test for our GG model using the concept of quantiles.

The overall study was validated using a grand simulation study involving various data sets from

different cases of the GG distribution. It is also illustrated through applications of reference

charts to two data sets. The first data set involves an environmental issue that studies the

effect of flux on water table depth, while the second one addresses a health issue where weights

of individuals are analysed for given heights. All these ideas are put together in eight chapters

starting with the current introduction. Chapter 2 offers some basic definitions and properties of

the three-parameter GG distribution along with maximum likelihood estimation (MLE) of the

parameters. The GG distribution is put in a QR context in Chapters 3 and 4. Chapter 3 offers

general definitions and a literature review related to QR. GG quantile shapes are also discussed

thoroughly in the presence of a covariate. In Chapter 4, we present MLE of the four-, five-

and six-parameter GG along with the asymptotics. We explain how we use LRTs to choose the

best GG model, we give expressions for the CIs around the estimated quantile and we suggest

a goodness-or-fit test. Chapters 5 and 6 present respectively a simulation study that validates

some of the theory in the thesis and applications to real data sets. An alternative generalised

gamma distribution is introduced in Chapter 7. Chapter 8 presents a final set of conclusions.



Chapter 2

The Univariate Generalised Gamma

Distribution

The GG distribution is a key ingredient in this thesis from which the whole story begins. We

consider the univariate continuous three-parameter GG distribution applicable to data that take

positive values only. Being a distribution that encompasses many of the life distributions as

special cases, the GG has the additional property that allows it to target especially skewness in

data. It has two shape parameters that control both tails of the distribution. These parameters

allow the density function to have various interesting shapes and hence to model different

aspects in data.

In this chapter, we present the basic definitions and properties related to this useful

distribution such as the probability density function (pdf), the cumulative distribution function

and the moments which we cover in Section 2.1. In Section 2.2, we list some of its most popular

special cases and we discuss random variate generation from the GG. Section 2.3 offers a

literature review on previous researchers' attempts at estimating the GG parameters followed

by our contribution to the MLE of the GG in Section 2.4. This is validated via simulations in

Section 2.5. Finally, asymptotics of the ML estimators are given in Section 2.6 and asymptotic

correlations between parameters are discussed.

4



CHAPTER 2. UNIVARIATE GC DISTRIBUTION 5

2.1 The Generalised Gamma Density Function, Cumu-

lative Distribution Function and Moments

Let us start by defining the gamma function at a point z by

We also define the first derivative of the logarithm of the gamma function at a point z to be

A selection of four of the most significant versions of the CC pdfs introduced by researchers

is summarised below. These pdfs will be referred to later in the thesis according to their

corresponding version.

• Version 1, GG(O,a, (3), by Stacy (1962):

where e is a scale parameter and a and {3 are shape parameters. {3, a, and t are all

positive.

Setting k = a] (3, we get:

• Version 2, GC(O, k, (3), by Stacy and Mirham (1965):

f(t) = {3 tk{J-I -(!)(j t > 0
()k{Jr(k) e ,

where () is a scale parameter and k and f3 are shape parameters. k, (3, 0, and t are all

positive.

• Version 3, GG('y, a, q), by Prentice (1974):

Iorl~L2) exp {WIq-2 - eW1
} if q =J 0

f(y) =

0$ exp {_!(~)2} if q = 0,
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location parameter related to the parameters in Version 2 by "I = log 0+ J..L*//3, CT is a scale

parameter CT= q/ /3, and q is a shape parameter. Wt, "I and q E IRwhile CT is positive .

• Version 4, GG(J..L, CT,k), by Lawless (1980):

kk-1
fey) = CTr(~) exp { .;kw - ke7k } ,

where w = (y - J..L)/ CT and y = log t E 1R. J..L is a location parameter related to the

parameters in Version 2 by J..L= logO+ logk//3, CT is a scale parameter CT= l/(/3Vk), and

k is a shape parameter. wand J..LE lRwhile CT and k are positive.

Note that Version 2 is a reparametrisation of Version 1, and Versions 3 and 4 are obtained by

reparametrisations and transformations applied to Version 2; in particular, Versions 3 and 4

pertain to the equivalent log-GG distribution, the distribution of Y = logT where T '" GG.

What about the relationship between Versions 3 and 4?

Prentice's Version 3 (for q > 0) is equivalent to

f(Y;"I,CT,q) = q exp {(y - "I) + J..L*q-2 - exp (q(y - "I) + J..L*)}
~(q~) ~ CT

q { y "I * -2 (yq "Iq *) }--=~--=-:-exp - - - + J..L q -exp - - - + J..L .CTr(q-2) CTq CTq CT CT=

If we let k = q-2, Lawless's Version 4 is equivalent to

fey; I}', CT, q) = 1 {(y-J..L) 1 (q(y-J..L))}
q2q 2-1CTr (q-2) exp CTq - q2 exp CT

q exp {.!.. - ..t:. -log (q2q-2) _ exp (yq _ J..Lq+ log (q-2))} .
CTI' (q-2) CTq CTq CT CT
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As a result, Versions 3 and 4 are equivalent iff the following equality holds

I ( -2) uq • ,qog q - - = f.t - -.
(J (J

We may conclude that Versions 3 and 4 are equivalent iff k = q-2 and f.t = ,+( (J / q) (log «? - f.t*).

It is now time to illustrate how the CC pdf versions actually look and how they behave for

different values of the parameters by presenting some pdf plots. Figures 2.1 and 2.2 present plots

of the CG pdf Version 1. In the former we plot the pdfs for fixed values of e and (3 and we vary

a. We take the particular case of a GG(e = 2, a, (3= 1.5) for a E {0.1, 0.25, 0.5,1,2,5, 25}. We

notice that for a < 1, the distribution rises to infinity at zero. When a > 1, the distribution

is bell-shaped with mode at e((a - 1)/(3)1/(3, and at a = 1 it decreases monotonically from

(3/ (er (1/ (3)) to zero (at infinity). Analogously, in the latter figure, we fix ()and a and we vary (3.

This time, we consider the particular GG(e = 2, a = 3, (3) for (3 E {0.75, 0.9,1,1.5,2,3, 4}. As

a > 1 (which is the more interesting two-tailed case), all pdfs are bell-shaped. The distribution

becomes more and more flat as (3 increases.

~
a=0.1

0 a=0.25
0 a=0.5

co 0 a=1c::i 0 a=2
0 a=5
0 0.=25

CD
c::i

"8'
~

~
0

N
c::i

0
c::i

0 5 10 15 20

Figure 2.1: CC pdf Version 1 plotted at seven a values for fixed e and (3.
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.....
c:i

<0
c:i ~=0.75

0 ~=0.9
It) ~=1c:i

0 ~=1.5
0 ~=2.,.
0 ~=3cia 0 ~=4

~
M

c:i

'"c:i

c:i

0
c:i

0 5 10 15 20 25

Figure 2.2: GC pdf Version 1 plotted at seven f3 values for fixed e and o.

Let us now look at the GG pdf Version 2 and 4 in Figures 2.3 and 2.4, respectively.

Figure 2.3 presents a plot of the GG(e = 2, k, f3 = 3) for k E {O.I, 0.25, 0.5,1,2,5, 25} while

Figure 2.4 plots the GG(J-t = 2, a = 3, k) for k E {O.I, 0.25, 0.5,1,2,5, 25}. In Figure 2.3, as

k increases, the distribution becomes more spiked and shifts more towards the right hand side

of the positive real line. Of course, as f3 = 3, for k = 0.1 and k = 0.25 which correspond to

Cl! < 1, the pdfs go to infinity at zero. We notice that in Figure 2.4, the pdf shape changes as

k increases and becomes more and more symmetric. Also, for large values of k the shape of

the distribution changes only slightly. In fact, it is shown in Lawless (1980) that as k tends to

infinity the distribution of the log-GG converges to the normal.
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o
N

k=O.1
o k=O.25

k=O.5
o k=1
o k=2
o k=5
o k=25

Figure 2.3: GG pdf Version 2 plotted at seven k values for fixed e and {3.

on
c::i

o
c::i

o 2 4 6

N

c::i

0

c::i k=0.1
0 k=0.25eo 0 k=0.50

c::i 0 k=1
-" 0 k=2
~ '" 0 k=50

c::i 0 k=25

.,.
0
c::i

N
0
c::i

0
0
c::i

-20 -15 -10 -5 o 5 10 15

y

Figure 2.4: GG pdf Version 4 plotted at seven k values for fixed f..L and a.
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The regularised gamma function, as defined by Abramowitz and Stegun (1965), is given

by

(2.1)

where f(k) is the well-known gamma function and fr(k) is the incomplete gamma function. As

in Johnson et al. (1994), and referring to the pdf Version 2, the rth moments and the cumulative

distribution function of a GG distribution are respectively

and

( (t)f3) fUl(k)
F(t) = P k, (j = f(k) .

2.2 Special Cases and Random Variate Generation from

a Generalised Gamma Distribution

For particular values of the parameters, a random variable T from a GG distribution with pdf

as in Versions 2 and 4 becomes one of the known life distributions as shown in Tables 2.1 and

2.2 respectively.

Table 2.1: Special cases of the GG pdf Version 2.

Distribution Particular case of Version 2

Exponential

Gamma

,8= 1; k = 1

,8=1

k=1

0= 2; ,8= 1; k = 11/2

Weibull

Chi-square

Lognormal k -+ 00
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Table 2.2: Logged version of distributions in Table 2.1 - special cases of the GG pdf Version 4.

Distribution Particular case of Version 4

Log-Gamma (jJk = 1

Extreme value k = 1

Normal k -+ 00

A wide range of known life distributions are particular cases of the GG distribution, or simpler

versions of it. From here comes its importance and richness. As a matter of fact, one could

generate values of a GG distribution from values of some simpler life distribution (such as

the gamma distribution) by simple variable transformations as will be illustrated in the next

paragraph.

Denote by G((), k) the gamma distribution with scale parameter () and shape parameter

k. Given a random variable Z from a gamma distribution with scale parameter (}/3 and shape

parameter k, Z f"V G(()f3, k), with pdf

f( ) - 1 k-l -(671)
Z - (()!3)kr(k) z e ,

1
the transformation T = Zi3 allows obtaining a random variable T from a GG((}, k, {3) distribu-

tion with pdf

f(t) = {3 tkf3-1 -( j)13
(}k!3r(k) e .

In short, if Z f'V G(O/3, k), then Zl//3 f'V GG(O, k, (3). For example, to simulate 100 values from a

GG distribution in Version 2, e.g. GG((} = 0.5, k = 3, (3 = 2), one has to start with 100 values

of a G( ()= 0.52, k = 3) random variables and take their square roots.

In fact, it is shown by Roberts (1971) that a necessary condition for a random variable

ITIf3, (3 =1= 0, to be a G(O, k), is that the density of T be f(t) = h(t) I t Ikf3-1 exp {-(1jO)ltlf3}

where h(t) + h( -t) = If3I(ljO)k jr(k) is a constant for all t E IR. Also, Johnson and Kotz (1972)

studied power transformations of G((}, k) that generate the Stacy (1962) GG distributions.
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As we just explained, the GG is a three-parameter univariate unimodal continuous life

distribution that takes as special cases some of the known life distributions such as the expo-

nential, lognormal, Weibull, and gamma distributions. Being a rich family of distributions, it

was a subject of interest to several researchers. We present now a literature review on what

some researchers, through history, have done for the purpose of estimating its parameters.

2.3 The History of the Generalised Gamma Distribution

In this section, we go through the history of the GG distribution, in particular that concerning

parameter estimation. We divide the history into three main subsections, the first displaying

the birth of the GG distribution and the earliest contributions, the second highlighting the two

most significant works of Prentice (1974) and Lawless (1980) that we have used and extended,

and the third explaining the most recent contributions.

2.3.1 From Amoroso (1925) to Stacy (1973)

The basic story really begins with Stacy (1962) whose main concern was to introduce a gener-

alisation of the gamma distribution. The specific form was suggested by Liouville's extension

to Dirichlet's integral formula. In this form it may also be regarded as a special case of a

function introduced by Amoroso (1925) and studied further by D'Addario (1932). The latter

fitted such a distribution to a data set of income rates. Little interest was taken between 1925

and 1962 in this family of distributions until Stacy (1962) suggested the basic pdf form of what

became known as the GG distribution. The pdf of the GG as first introduced by Stacy (1962)

is Version 1 of Section 2.1. It is the density of the distribution of random variable T:

t > 0, (2.2)
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where () is a scale parameter and 0 and {3are shape parameters. (), {3and 0 are all positive.

The generalisation (2.2) is accomplished by supplying a positive parameter (3 as an exponent

in the exponential factor of the gamma distribution which has density

h{t) - 1 to:-1-j
- ()ar(o) e, t > 0, (2.3)

and corresponds to {3= 1. The GG is also obtained by a generalisation to the Weibull distri-

but ion which has density

(t) = .ttf3-1 -(j)~9 ()/3 e , t > 0,

and corresponds to the special case 0 = (3. So the GG is a clever concatenation and extension

of two of the most popular life distributions. Distributions for some functions of independent

GG random variables are given by Stacy such as the distribution of the sum of independent

GG random variables.

Following the introduction of this promising distribution, several researchers were mo-

tivated to study it further especially regarding MLE of its parameters, a task that has been

reported to be difficult and complicated. Parr and Webster (1965) considered MLE of the

three-parameter GG distribution. This was done by the traditional way of differentiating the

loglikclihood with respect to the three parameters, setting the resulting derivatives equal to

zero, and solving for each parameter.

For a known location parameter, given tb ..., tn independent observations from a GG

distribution with pdf as in (2.2), the loglikelihood function is

n 1 n
n 10g{3- no log ()- n log r(o/ (3) + (0 - 1)L log ti - ()f3 Ltr

i=1 i=l

Maximising the loglikelihood with respect to 0, ()and {3yields

(2.4)
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(2.5)

and

where the 'IjJ function is the digamma function defined in Abramowitz and Stegun (1965) as

being the derivative of the logarithm of the well-known gamma function. Parr and Webster

(1965) suggest solving equations (2.5) and (2.6) simultaneously for a and (3 , a task that is not

always successful. They also, correctly, say that a closed form solution is not available.

Along the lines of Stacy (1962), Stacy and Mirham (1965) introduce an alternative version

of the generalisation of the gamma distribution and discuss parameter estimation using a modi-

fied method of moments technique for the distribution of logT. They consider a reparametrised

form of the pdf (2.2) whereby they set k = a/ {3 and replaced a by k. The pdf in this case is

t > 0, (2.7)

where e is a scale parameter and k and {3 are now the shape parameters. k and e are positive.

This family of distributions differs from Version 2 of Section 2.1 in that it allows negative

values for the parameter (3. Thus, it includes the distribution of T-l whenever it includes the

distribution of a random variable T. The suggested method of moments leads to simultaneous

equations for which closed form solutions were not available. A graphical solution was proposed.

Harter (1967) suggested that the addition of a location parameter, d, to the pdf form (2.7)

enhances its usefulness. An iterative procedure for MLE of the resulting four-parameter distri-

bution is developed from complete and censored samples. Iterative procedures for solving the

score equations were suggested, such as the rule of false position, the Newton Raphson algo-

rithm and the gradient method. Numerical examples were given and the iterative procedure

was applied to all four cases starting with the case where the four parameters are unknown, to
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the cases where any three parameters, any two parameters, and anyone parameter is unknown.

We note that the addition of a location parameter in this case allows the shifting of the distri-

bution to the negative real line which might not be very appropriate especially since the aim

of such life distributions is to deal with data that take positive values only.

Also, referring to the pdfform (2.7) with (3 > 0, Hager and Bain (1970) suggested another

approach for MLE of the parameters 0, {3,and k. Given t1, ... , tn independent observations from

(2.7), the loglikelihood function is

n n (to){j
nlog{3 - n log r(k) - nk{3log0 + (k{3 -1) t;tlogti - t;t ~ (2.8)

Differentiating (2.8) with respect to 0, {3,and k, in turn, yields the score equations

{3{ n (to){j}7f -nk + t;t if = 0; (2.9)

~ + k tlOg (~) - i: (~){j log (~) = 0;
(3 ,=1 ,=1

n (to)-mf;(k) + {3t;t log ~ = o.

Equation (2.9) yields

(2.10)

(2.11)

(2.12)

Substituting this expression for 0 into (2.10) yields

-1
k = n {3 •

{3{l ""n 1 to _ Li-! tj IOgt;}
n L....i=1 og , "~tt!

L..J,=1 "

(2.13)

Substituting into (2.11) yields an equation in {3:

(2.14)

Solving this equation, we obtain the estimates e, fj, and k of (), (3, and k by iteration. Extensive

investigations of H({3) conducted by Hager (1970) in his doctoral thesis indicated that it is
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not always possible to determine if H ((3) = 0 has a root. There are conflicting reports in the

literature as to the possibility of solving 1l({3) = 0 and as to the well behaviour of the score

equations. Hager and Bain (1970) mention that they haven't been able to find meaningful est i-

mates in some cases. Nevertheless, they suggest using another technique that will be explained

in what follows. For given values of k, they report that fh and {3k can be calculated without

difficulty using the following reasoning:

• Fix k = m; the corresponding parameters are {3m and Om.

• Set w = (t/O)f3. By taking the variance of the log on both sides of this equation, and

knowing that Var(logw) = 'I/J'(m), the following is deduced

{3 - ( 'I/J' (m) ) ~
m - Var(logt) ,

where Var(log t) would be replaced by the sample variance.

• From (2.11), obtain the expression of (j as a function of {3:

O - (logt-.!I1.!!!l)
m -e 13m,

where log t = L:~=llog tdn.

Note that the estimated parameters are based on the idea that k = m is fixed. It is also

indicated that the solution for Ok and {3k is the same whether the parameter k is really equal

to m or not or unknown, so the estimates can be used as starting values when the sampling is

from a GG with all parameters unknown.

In a similar but extended approach, Stacy (1973) suggests that the score equations can

be manipulated so as to obtain equations (2.12), (2.13) and

n ( t~ )'I/J(k) -logk = n-1Llog n' f3 .
i=l L:i=l ti / n
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In his paper, Stacy (1973) suggests fixing /3 in equation (2.13) to obtain an estimate for k as

well as setting Zi = tf and A= ()f3. Consequently, the Zi values may be regarded as if obtained

from a gamma distribution where t is replaced by Z and /3 by A. This leads to a case similar

to that of the MLE of a two-parameter gamma distribution where k and Aare to be estimated

instead of k and /3. Parameter estimation depends on the fact that /3 is fixed in the first place.

2.3.2 The Prentice (1974) and Lawless (1980) Approaches

By extending and reparametrising the distribution of the logarithm of the GG random variable

of Stacy (1962), Prentice (1974) showed that its underlying models are all embraced by a single

parametric family. A regression generalisation is given. Prentice (1974) suggests that if survival

time is given by T and Y = logT, then the GG model of Stacy (1962) can be written in the

linear form y = log ()+/3-lv where the pdf of v is {1/r(k)} exp {kv - e"] and the transformation

WI = P/2 (V - 'IjJ(k)) leads to a standard normal for WI as k -+ 00. Manipulation of the model

was completed in general by setting q = k= (c being some positive constant). The resulting

density function for q = k-I/2 is Version 3 of Section 2.1,

(2.15)

where WI = (y - 'Y)a-1q + /-L*, y = logt E JR, /-L* = 'IjJ(q-2). 'Y is a location parameter 'Y =

log ()+ /-L* //3, a is a scale parameter a = q/ /3, and q is a shape parameter. WI, 'Y and q E JR

while a is positive.

MLE was studied via simulations in some special cases. Given Yll ••.,Yn random variables

from (2.15), the loglikelihood in the case q =1= 0 is

n() n {( ) }y. - 'Y q y. - 'Y
nlog Iqj- n log rr - nlog (r (q-2)) + ~ ~ + nq-21-£* - ~ exp la + 1-£* •
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It is indicated that direct manipulation of the likelihood equations (q =I 0) gives l' = y. The

loglikelihood equations for 0' and q, q =I 0, are respectively

nL {(eVi - q-2)Ui} = n
i=l

(2.16)

and

n nL {(eVi - q-2)Ui} - 20'*2q-2 L (eVi - q-2) = n, (2.17)
i=l i=l

where Ui = (Yi - y)q/O', Vi = Ui + J.1.*and 0'* = 'IjJ'(q-2), 'IjJ' being the derivative of the digamma

function known as the trigamma function. Substituting (2.16) into (2.17), we deduce that

E~l(eVi - q-2) = O. According to Prentice (1974), a simple Newton Raphson search for fT at

fixed q values along with a tabulation of the maximised loglikelihood at these values gives an

adequate determination of the loglikelihood estimates.

The final model (2.15) can be written as Y = 'Y + aWl where the error pdf has the form

(2.18)

The effect of regression variables x = (Xb ... , xr) in loglinear form gives Y = a + xb + aWl with

WI following (2.18) and b' = (bl, ...,br) the regression coefficients. This model was referred to as

the log-gamma regression model for y by Farewell and Prentice (1977) who study applications

of the suggested model.

Lawless (1980) presented exact inference procedures for obtaining CIs or tests of sig-

nificance for the parameters, quantiles and the reliability function of the logarithm of the GG

distribution from uncensored samples when k is assumed known. The model was reparametriscd

in a way similar to the Prentice (1974) one. The proposed pdf has the form

kk-J.

fey) = (1r(~) exp { .;kw - ke7k} , yE JR., (2.19)
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where w = (y - J1) / a and y = log t E R. J1 is a location parameter J1 = log e + log k / {3, a is

a scale parameter a = l/(f3Jk), and k is a shape parameter. wand J1 E lRwhile a and k are

positive. This is Version 4 of Section 2.1. Given Y1, ... ,Yn random variables from (2.19), the

loglikelihood function is

n {-log(<7) + (k - D log(k) -logr(k) +0/~I' - ~ex{:~)t.cxpC~)}.
(2.20)

Differentiating with respect to J1 and a and setting the derivatives equal to zero resulted in the

score equations from which expressions for J1 and a as a function of k were deduced:

{

n }rT../k1 II'

eiJ= ;;;Le~
1=1

(2.21)

and

(2.22)

The estimates ('iL, (j,k) of (J1, a, k) were then obtained by taking fixed k values, then solving

equation (2.22) iteratively for a, and finally obtaining J1 from equation (2.21). As the paper

indicates, such results are important for two main reasons. The first is that good inference

procedures are difficult to obtain with k assumed unknown. Making inference conditional on

k, but doing this for a range of plausible k values, gives an informative picture. The second

reason is that often a model with a particular value of k is actually analysed. Accuracy of

some approximations from standard large sample ML methods were discussed. The method

was programmed in FORTRAN by Hogg et al. (1982) and an application to real data was

presented. Summary and further discussions were given in Lawless (1982) and later in the

2nd edition in Lawless (2003). It is concluded that asymptotic normal approximations to the

distributions of the ML estimates although somehow more convenient, produce less accurate
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results than the likelihood ratio methods which produce somehow accurate results for moderate

samples, but unacceptable results for small sample sizes.

2.3.3 Most Recent Contributions and Numerical Methods

Lcfante and Turner (1985) derive the average likelihood (defined as the integral of the likelihood

function over the parameter space) using a uniform prior when sampling from one-parameter

members of a GG distribution.

Taking a loglinear model with one covariate and a GG model for the error and a nonin-

formative prior based on the Jeffreys rule considering uncensored data, Achkar and Bolfarine

(1986) found the posterior densities for the parameters of interest. They suggest using Law-

less's (1982) approach for MLE. They claim that since many standard survival distributions

are particular cases of the GG model, their proposed Bayesian method is very useful for dis-

criminating between possible models used in data analysis.

Considering the difficulties in MLE of the GG distribution, Wingo (1987) proposed find-

ing roots for (2.14) using the Root Isolation Method. The Root Isolation Method is a process

of finding real intervals for the real roots of a function such that each interval contains exactly

one real root and every real root is contained in some interval. Using the self-contained Fortran

subroutine, ROOT, was suggested for this purpose. This subroutine returns the root intervals

each of which is of width f. Dividing the sum of the left and the right interval endpoints by two,

yields the roots of I/{(3) which is defined in equation (2.14). For each one of those roots, k{(3)

and O{(3) are easily calculated from equations (2.13) and (2.12) respectively to obtain triplets
A A

(O( A/3), /3, k( Af3J). Each of those triplets is replaced in the loglikelihood and the one that renders

the highest likelihood is considered as the ML parameter estimate. The case where H({3) does

not have root intervals is also taken into consideration.
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DiCiccio (1987), following Lawless (1980), considers for the logarithm of the GG model ad-

justments to the usual likelihood ratio methods designed to improve their accuracy, particularly

in small samples. Comparison between exact and approximate results is given.

Cohen and Whitten (1988) considered the loglikelihood function (2.8), while replacing the

scale parameter () by an alternative 8 = ()f3. With this change, the loglikelihood function is

1 n n
nlogj3 - n log r{k) - nk log d - 'J L t~+ (k/3 - 1) L logti·

i=1 i=1

(2.23)

Differentiating (2.23) with respect to 8, k, and /3 in turn, yields the score equations

nk 1Ln
f30=--+- t··

8 82 "i=1

(2.24)

n

0= -nlog8 - m/J(k) + /3Llogti; (2.25)
i=1

1 n n

o = ~ - J Lt~logti + k Llogti.
i=l i=1

(2.26)

Equation (2.24) yields

cS = E~-l t~.
nk (2.27)

Substituting this expression for 8 into (2.26), yields

~t~ _ nkE~1 t~logti = 0
~ I n k~n I .
i=1 73 + L..ti=1og ti

(2.28)

Equation (2.25) yields

/3= nlog!+mp(k).
Ei=llogti

(2.29)

Cohen and Whitten (1988) indicated that a solution does not exist in closed form and suggested

the following:

1. Set D{8, k, /3) = -n log cS - mp(k) + /3E~=llog ti•

2. Start with a first approximation /31 for /3.
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3. For given {31! compute an approximation k, for k from equation (2.28).

4. Substitute k1 and {31 into equation (2.27) to obtain the corresponding approximation &1

for s.

5. Substitute the three approximations {31, kl' and &1 into equation (2.29). If the equation is

satisfied, then J = &1. k = k1' jj = {31 and the calculations are complete. Otherwise, select

a second approximation {32, and repeat steps (2), (3) and (4) until a pair of approximations

{3i and (3j are found in a sufficiently narrow interval such that

D(~,~, A) > 0 > D(8;,~,~)

or

D(~,~,A) < 0 < D(8;,~,~) .

.-......... ..............l.
6. Finally, use the obtained estimates {3 and & to calculate ()= & {J •

Later contributions include the work by Rao et al. (1991) who designed expressions for

moments of order statistics from the GG distribution. More recent research was made in this

regard such as the contribution by Balakrishnan (1995) using order statistics as a basis of

estimation.

Wong (1993) presented two computational approaches for the MLE method suggested by

Stacy and Mirham (1965) and developed computer programs for the computational procedures.

In the first approach, two of the score equations are used for parameter estimation, whereas in

the second one, an attempt to find all solutions to the system of three equations is presented.

Taking into account the computational difficulties in estimating a GG model, Hirose (2000)

mentions that often enlarging the parameter space makes the numerical estimation more stable.

A reparametrisation of the four-parameter Harter (1967) model is given. The reparametrisation
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involves a new set of parameters (o,p,q,s) such that k = q-2, {3 = lis, d = o-p/lqsl and

() = p/lqsl. The new model was called the extended four-parameter GG distribution. The

continuation method in Allgower and Georg (1990) was suggested for solving the likelihood

equations.

Tsionas (2001) considers a Bayesian analysis of the generalised four-parameter gamma

distribution. Posterior inference from the pdf given in Stacy and Mirham (1965) was performed

using numerical methods organised around Gibbs sampling.

Similarly to the work of Farewell and Prentice (1977), Ghilgaber (2005) analyses survival

data from a GG perspective. The paper has a number of purposes. It describes how a range

of parametric models such as the exponential, Weibull, and lognormal may be embedded in

a single parametric framework, and how each competing model may be assessed relative to a

more comprehensive one. Cox's proportional hazard estimation was also described. The final

form of y in Farewell and Prentice (1977) was referred to as the extended generalised gamma

EGG. Five models for t were included as special cases of the EGG model. Likelihood ratio

statistics corresponding to various tests for special cases of the EGG model were presented. A

natural question arises as to which procedure to use when one is confronted with a specific data

analysis problem.

Balakrishnan and Peng (2006) presented a procedure to obtain ML estimates of the known

parameters in the GG frailty model. The form of the pdf used is similar to the one suggested

by Prentice (1974) and an approximate likelihood function is given.

Huang and Hwang (2006) claim that although the Prentice (1974) procedure is efficient,

it is still quite complicated. They propose a simpler method using the GG characterisation and

the moment estimation approach. They claim that their approach is efficient for small samples.
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Kokkinakis and Nandi (2007) propose the GG distribution as a model basis for a family

of flexible score functions for blind source separation, a promising application of Independent

Component Analysis (ICA). Instead of solving the score equations to obtain the ML estimates,

they maximise the likelihood using the Nelder-Mead method, a general-purpose optimisation

procedure.

Also recently, Cox et al. (2007) presented a taxonomy of the hazard functions of the GG

family. Using the Prentice (1974) parametrisation, they applied the proposed taxonomy to

study the survival after a diagnosis of clinical AIDS during different eras of HIV therapy. For

such computations, algorithms are now available in standard statistical packages such as R

(2009) (Development Core Team), Stata and SAS. The aim was to consider regression models

involving all three parameters and to compare them with all of the two-parameter subfamilies

of the GG distribution (i.e. Weibull, lognormal, and gamma distributions) as well as with the

semi-parametric proportional hazard models.

According to Gomes et al. (2008), estimation of the parameters of the GG is still an

open topic; thus they propose a new heuristic approach to parameter estimation of the GG

distribution using an iterative method. This routine was implemented in the SPLUS software.

Because of the difficulties in applying the moments and MLE methods, they propose a new

extension of these methods that uses goodness-of-fit tests to measure the degree of agreement

between the distribution of a data sample and the theoretical distribution. The whole novelty of

their procedure is based on the idea of transforming a gamma distribution to a GG distribution.

In their paper, Cooray and Ananda (2008) mention the following: "There is difficulty

in developing inference procedures with the GG distribution, especially the ML parameter

estimation in which the iteration method such as Newton-Raphson did not work." Alternatively,

they derive the two-parameter generalised half-normal distribution (GHN), a special case of the
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GG pdf form (2.7) (by taking k = 1/2 in the pdf Version 2 and setting 'TJ = 021//3 and p = /3/2)

that inherits some of its significant properties. They argue that the computational difficulties

faced with the GG do not affect this GHN distribution.

Song (2008) presents a fast and globally convergent algorithm for estimating the three-

parameter GG distribution. Previous approaches for estimation are mentioned and their disad-

vantages and difficulties are highlighted. In sharp contrast to the previous methods, his method

is constructed by raising the random variable to certain specially chosen powers and by express-

ing the shape parameters as a scale-free function of the shape parameter through appropriate

expectation and derivative operations so that the resulting sample scale independent shape es-

timation SISE equations are completely independent of the gamma and polygamma functions

which made computations easier according to the paper. We note that this paper does not use

ML for estimation. It uses rather what is interpreted as "adaptive fractional moment methods

or more generally as methods of nonlinear estimating equations".

A good reference for a summary of some of the previously mentioned approaches and some

more studies on the estimation of a GG is the book by Johnson et al. (1994). Also, for more

references and approaches involving the estimation of a GG model, we could mention Hager

et al. (1971), Ortega et al. (2003), and Ortega et al. (2009).

2.4 Maximum Likelihood Estimation for the Distribu-

tion of the Log of a GG Random Variable

All attempts mentioned in the literature review to estimate the GG distribution showed com-

putational difficulties and complications. Procedures based on MLE often assumed that the

shape parameter (or one of the parameters) is considered known. Other procedures such as the

method of moments have well-known disadvantages. With the rise of computers, recent investi-
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gat ions most commonly developed algorithms based on MLE procedures proposed by previous

researchers along with computational enhancements as well as applications and comparisons

with simpler models. In this section, we present our contribution to MLE of a GG distribution

overcoming the difficulties that came up in the literature. An iterative method for MLE of

its parameters following the Lawless (1980) approach is developed considering all parameters

unknown and none of them fixed. Sections 2.4 and 2.5 present a grander version of the work

done on the three-parameter GG in Noufaily and Jones (2010) which rehabilitates MLE for the

GG as being a perfectly reasonable and efficient approach.

2.4.1 Parameter Estimation Following Lawless (1980)

Having mentioned some of the basic properties of the GC distribution, and having presented

previous researchers' attempts at estimating its parameters, we present in this section the

approach we have followed for estimating the parameters of the GG distribution using pdf

Version 4. We extended the work done by Lawless (1980) to solve the score equations in a

simple and yet efficient way taking all parameters to be unknown and none of them fixed. For

that, we look at the ML parameter estimation problem approached through the distribution of

Yi = log T; parametrised as in Version 4

kk-1
f( ) - s:s. {"k - k w/v'k}y - oT(k) exp v xui e , yElR

where w = (y - J1-)/u. Note that -00 < J.t < 00 and a, k > O.

As in equation 2.20, the loglikelihood is

I ~ n { -log(a) + (k - D log(k)-logr(k) + JkY ~ I' - ~expC~) t,exp Cj,;)}.
(2.30)
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Let

1~. (Yi)Sj = - L- }Ii exp IT: ;
n i=1 V k17

j = 0,1,2.

Differentiating the loglikelihood with respect to u; 17 and k in turn yields the score equations

nVk { ( -j-t ) }o = -;;- exp 17Vk So - 1 , (2.31)

(2.32)

and

(2.33)

As in Lawless (1980), (2.31) yields

(2.34)

an expression for JL in terms of k and (T. Using this, we can reduce (2.32) to

(2.35)

Again following Lawless, we think of this as an equation in 17 (note that 80 and 81 also depend

on (7) for any k and solve it numerically. This is easy because we can show that R{ (T) is

monotone decreasing:

both terms inside the curly brackets are negative, the first one by the Cauchy Schwartz in-

equality. Also, limu--+oR(17) = Ymax - Y > 0 where Ymax is the maximum of Yi, i = 1, ... ,n,

and limu--+ooR(17) = -00. So there must be precisely one value of 17 > 0 (for any k) for which

R((T) = O. In fact, we can speed up our search a little by using the fact that this root will lie



CHAPTER 2. UNIVARIATE CC DISTRIBUTION 28

in a certain interval. This is because the interpretation of Sd So as a mean of Y values implies

that Sd So < Ymax and hence that if Uo is the root of R(u) = 0, then it satisfies

(2.36)

We now turn our attention to (2.33). Using (2.34) and (2.35) to remove the quantities

involving exp( -fJ,juVk), So and S1, we find that (2.33) reduces to

Y-Jl
T(k) == ~ + log(k) - 'f/;(k) = O.

a-Jk

How does this behave as a function of k for fixed Jl and u? For small k, 'f/;(k) '" -t which

goes to (minus) infinity faster than either of the other two terms and hence limk-+oT(k) = 00.

According to Abramowitz and Stegun (1965), for large k,

1
'f/;(k) '" log(k) - -

2k

and so limk-+ooT(k) = O. This limit is reached from either the positive or negative side,

depending on the sign of Y - Jl (since (Y -11)/uVk is the dominant term).

Now, we can apply Jensen's inequality to (2.34) [to the power l/(Vku), pretending that Y

is a random variable which selects one of Yd( Vku), ...,Yn/( Vku) with probability ~lto obtain

exp (Jicu) = So= average(exp(Y)) > exp(average(Y)) = exp (.;u)
or

Jl > Y. (2.37)

It follows that the limit is reached from the negative side.

So, it comes down to the behaviour of

L
TL(k) == log(k) - 'f/;(k) - Vk (2.38)
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where L = (/-l- Y)/u > 0 provided that /-l > Y or follows from (2.37). TL(k) proves to have a

single root ko in the interval (1/4L2, 1/L2) as we now explain.

According to Dang and Weerakkoda (2000), if ko is a solution to F(k) = log(k) - t/J(k) - 9 = 0,

where 9 > 0, then

1 1
2ko <9 <ko·

By applying this to TL(k) at k = ko, we obtain

1 L 1-<--<-.
2ko Vko ko

(2.39)

Finally, rearranging inequalities (2.39), we find that

1 1
4L2 < ko < L2· (2.40)

2.4.2 Iterative Algorithm

We have now proved that each of the equations (2.35) and (2.38) has a unique root, the latter

provided that L > O. We will solve (2.34), (2.35) and (2.38) simultaneously and iteratively to

obtain ML estimates, jJ" f1 and k, of u; o and k, respectively. Our suggested algorithm is the

following:

1. Set the iteration number i to 0 and obtain an initial guess for L = Lo > o.

2. Set i = i + 1.

3. For given Li-1, compute ki by solving Tdk) = 0 where Tdk) is given by (2.38) using

either the bisection method or the Newton Raphson algorithm (we have used the former).

4. Replace the obtained ki in So and SI and later in R(u) to compute (7i by solving (2.35)

using the bisection method or the Newton Raphson algorithm (we have used the latter).

5. Substitute ki and (7i into (2.34) to obtain the corresponding Iii.
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6. Use these estimates to obtain L; and to compute the value of the loglikclihood function.

7. Repeat steps 2,3,4, 5 and 6 until desired accuracy of the likelihood is achieved.

Note the position of step 5 to guarantee the positivity of L1•

When implementing the above algorithm in R, we added some computational devices to

avoid crashes caused by large parameter values. We now display some of the computational

tricks we have introduced to the aforementioned iterative algorithm to help R computationally

and to increase the probability of the algorithm's success significantly .

• For k > 171, R reports infinity as an answer for r(k), a fact that would cause our

algorithm to crash. To overcome this computational difficulty, we set up a condition

whenever k > 171. We used Stirling's formula to approximate the gamma function for

large k. In reference to Abramowitz and Stegun (1965), Stirling's formula states that r(k)

can be approximated by e-kkk-1/2y'2; plus an error term which we ignored. By replacing

this approximation for f(k) in the loglikelihood, we will have avoided encountering infinite

responses for large k values. As a result, the loglikelihood takes the form

{
I .r.-Y-/L k (-/L)~ (Yo)}n -log(a) + k - 210g(27r)+ v=::-;;exp aYk f=:. exp a..ik .

• Another common computational difficulty is faced when an exponential term is so large

that R reports infinity as an answer. We have encountered this problem while computing

the values of Si. For example, to avoid the "infinities" in R(a) , we suggest multiplying

the ratio SI/So by the term exp(-Ymax)/exp(-Ymax) where Ymax is the maximal Yi V

i = 1, ...n. As a result, the ratio SI/So takes the form

Y1 exp«Y1 - Ymax)/aYk) + Y2exp«Y2 - Ymax)/aYk) + + Ynexp«Yn - Ymax)/aYk)
exp«Y1 - Ymax)/aYk) + exp«Y2 - Ymax)/aYk) + + exp «Yn - Ymax)/aYk)
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where the terms inside the exponential are, now, either negative or zero, but never infinity.

Similarly, to compute jl using equation (2.34), we multiplied So by exp{-Ymax)/ exp( -Ymax)

and considered a logarithm on both sides of the equation; hence, avoiding infinities.

We note that our theoretical results above are very much still partial in the sense that they do

not guarantee convergence of our algorithm nor uniqueness of the ML estimates. These issues

will be explored numerically in Section 2.5 where simulation studies show that, computationally,

MLE of the three-parameter GG is generally straightforward.

2.4.3 Bounds on Maximum Likelihood Estimates

Let p, a and k denote ML estimates of u, U and k respectively. Then, the inequalities (2.36)

and (2.37) obtained in Subsection 2.4.1 for use at intermediate stages of the ML algorithm also

apply to the ML estimates themselves. We therefore have the reassurance that

(2.41)

From (2.40),

and from (2.36),

which combine to give

(2.42)
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2.5 Simulation Study Using the Iterative Algorithm in

Subsection 2.4.2

2.5.1 Validity of Iterative Algorithm and Comparison with BFGS

and NeIder-Mead

Based on the iterative algorithm proposed in Subsection 2.4.2, we developed a program in R

that computes the estimates of a three-parameter GG distribution. We present now a simulation

study where the aim is to show the validity and reliability of our suggested algorithm for MLE

of the three-parameter GG regarding its behavior for different initial values and relative to

other optimisation procedures. For this purpose, we compare it with other general-purpose

optimisation methods such as the NeIder-Mead method introduced by NeIder and Mead (1965)

and the Broyden-Flctcher-Goldfarb-Shanno method (BFGS) explained in Nocedal and Wright

(1999). This is done via simulations. The R function, optim, is a general-purpose optimiser

based on the Nelder Mead, quasi-Newton and conjugate-gradient algorithms. We used it to

maximise the likelihood of the GG distribution for the NeIder-Mead and the BFGS methods.

We simulated 100 data sets from a GG and ran our program, Nelder Mead (from optim),

and BFGS (from optim) for each. Then, we compared the results. A detailed explanation of

the comparison we have done is presented in the next paragraph.

To start with, we simulated a set of "real parameters" consisting of 100 triplets (k, a, and

J.L) from each of which we simulated a GG data set. We also simulated another set of "initial

parameters" consisting of 100 triplets (ko, ao, and flo.) Note that the sets "real parameters"

and "initial parameters" are available in Tables A.1 and A.2 respectively of the Appendix. For

every data set, we ran the three mentioned methods (our program, NeIder-Mead, and BFGS)

100 times each time using one of the triplets from the set of "initial parameters". Thus, we ran

every method 10000 times in total. k and a are positive and a logical range for their values
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would be around the interval (0,6); therefore, we used a G(O = 1, k = 2) to simulate k and

a for both sets of "real parameters" and "initial parameters". J-t can be negative, therefore, we

used a standard normal distribution to simulate its values for both sets of "real parameters"

and "initial parameters". Note that, for our program, ko is not needed if Lo > 0; if, by the

random mechanisms above, Lo < 0, we set ko = 1/ L~ and proceed from Step 4. This exercise

was repeated with the same set of real and initial parameters for n = 200 and n = 500.

We estimated the parameters for each of the hundred data sets using our program, BFGS

and Neldcr-Mead, For each, we specified two stopping criteria; the convergence criterion relative

tolerance (reltol) and the maximum number of iterations (maxit). What is meant by 'iteration'

in our program is the implementation of the algorithm for steps 1 (or 2) till 7, that lead to cal-

culating the resulting likelihood. The term 'iteration' in R generally refers to implementations

that lead to an evaluation of the likelihood. This definition also depends on the method used

for optimisation. The reltol is defined in R as being a set value for which the algorithm stops

if it is unable to increase the evaluated likelihood by a factor of reltolfjlikolihood] + reltol) at a

step. For our program, the algorithm stops if it is unable to increase the evaluated likelihood by

a factor of reltol at an iteration. For our program, we set reltol to be 10-8 and maxit to be 2000,

whereas for both BFGS and Nelder-Mead, we set reltol to be 10-16 and maxit to be 109• After

experimenting for a while, we decided that 2000 iterations are most of the time (excluding a few

cases) enough to make our program converge to the global maximum. Increasing the number

of iterations is very reasonable when dealing with one data set; however, it could mean taking

much more time when dealing with hundreds of trials as in our study. For our program only,

in addition to the stopping criteria mentioned above, we set two other stopping criteria for the

Newton-Raphson algorithm and the bisection method used to solve the likelihood equations.
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We allowed the root-finding methods to stop when they reached a relative accuracy of 10-4 and

to report an error when more than 1000 iterations were needed for convergence. We considered

a program to have failed to reach the global maximum of the likelihood if one of the following

occurred:

a) The program crashed and reported an error.

b) A "non-global maximum" is attained rather than the global one. In most cases, this only

means that the program has been stopped by reaching maxit or reltol when an increase

in the number of iterations allowed or a decrease in the value of reltol would solve the

problem (at a cost, of course, in time taken). In a few cases, the non-global maximum

appears to be a local maximum of the likelihood surface.

c) The rendered value (by R) of the ML is, essentially, equal to negative infinity (-Inf).

With regard to item (b), the global maximum is taken to be the maximal likelihood attained

for a data set over the 300 times its likelihood was maximised (by each of 3 methods from 100

sets of initial parameter values); the global maximum was said to be achieved in another run

if the ML value was within 0.01 of the overall maximum. Regarding item (c), which happens

very rarely, it is a result of the computed likelihood being very small (as close as zero) so that

the loglikelihood is negative infinity. It happens basically when the algorithm cannot handle

the maximisation properly and so results in unreasonable values.

In short, for each of the 100 generated data sets we ran the three methods 100 times,

each time using a triplet of the simulated "initial parameters" keeping record of the likelihood

and the estimated parameter values at every time. Tables 2.3 and A.3 present the results for

the n = 200 and n = 500 cases respectively. Each row represents information obtained after

running the three methods 100 times (300 in total) for a data set. "Likemax" is the value of the

maximal likelihood attained for a data set among the 300 times. k, fT, and p, are values of the
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parameter estimates leading to "Likemax". " Our Program", "BFGS", and "NM" represent the

number of times (out of 100) each of our program, BFGS, and NeIder-Mead respectively fails

to reach "Likemax" up to an error equal to 0.01. The values in Tables 2.3 and A.3 are rounded

to three decimal digits. We observe closeness between the real parameters and their estimates.

In very rare cases, as in GG56, we observe that k is highly over-estimated though the resulting

model is very similar to the real one since the GG is very similar for a range of large k values.

As for the behaviour of the algorithm for different initial parameters, Table 2.4 presents a

summary of the total number of failures of the programs together with a closeup on the number

of times each of the mentioned reasons contributes to the failures. Since algorithms generally

cope less well with larger data sets, it is gratifying to observe little difference in performance

between the two sample sizes. Overall, our program and the Nclder-Mead algorithm attain the

global maximum likelihood the highest proportion of times (98.7% and 98.9% when n = 200), a

little ahead of the BFGS algorithm (90.9% when n = 200). When n = 500, our program never

crashed nor went to negative infinity; Nelder-Mead displayed a different pattern of failures.

Local maxima of the likelihood, on the rare occasions they were observed, are both far from the

global maximum and have much smaller values of the likelihood. We suspect that the reasons

behind the occurrence of case (b) are either because a local maximum is attained or because

larger stopping criteria are needed to ensure that the programs have converged to the global

maximum. For example, increasing the value of maxit in our program (Le. maxit=5000) would

decrease slightly the total number of failures, but also unfortunately takes more time.

Based on the given results, we deduce that MLE of the three-parameter GG is manageable.

Running one of the algorithms several times for different initial values ensures that a reasonable

GG modeI is obtained. This fact will be explored more in further simulation studies where the

quality of estimation will be analysed for the GG conditional distribution as well.
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Table 2.3: Number of times each method fails to reach the maximallikclihood for n = 200.

Data Likemax jl 0- k Our Progam BFGS NM

GG1 -603.409 -0.339 4.658 2.781 1 32 2

GG2 -474.756 0.506 1.579 0.239 1 7 1

GG3 -477.518 2.195 2.202 0.871 1 12 1

GG4 -688.949 0.735 5.760 0.531 2 18 3

GG5 -358.865 0.569 1.167 0.688 1 8 1

GG6 -183.735 -0.279 0.570 2.652 1 0 1

GG7 -323.014 0.331 1.043 1.030 1 3 1

GG8 -481.662 -0.286 1.745 0.293 2 4 1

GG9 -402.972 -0.323 1.685 2.220 1 9 1

GG10 -362.185 0.808 1.438 5.806 1 12 1

GGll -447.563 0.193 2.180 4.207 1 13 1

GG12 -529.599 -1.484 3.322 5.861 1 15 1

GG13 -335.679 -0.607 1.147 1.323 2 4 1

GG14 -407.534 0.533 1.761 3.136 2 6 1

GG15 -427.762 -1.016 1.826 1.374 1 5 1

GG16 -470.745 0.091 2.293 1.550 2 11 1

GG17 -446.064 -0.361 1.824 0.729 1 1 1

GG18 -464.722 0.520 2.339 3.013 1 12 1

GG19 -496.295 0.046 2.284 0.635 1 8 1

GG20 -566.459 -2.445 2.237 0.174 3 0 3

GG21 -177.735 -0.083 0.565 4.059 2 6 1

GG22 -337.657 1.756 1.176 1.517 1 16 1

GG23 -366.301 0.741 1.356 1.507 1 4 1

GG24 -294.208 0.933 1.024 5.835 1 8 1

GG25 -608.285 0.076 4.741 2.491 1 28 2

GG26 -204.559 0.465 0.567 0.914 1 5 1
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Table 2.3 Continued

Data Likemax p, 0- k Our Progam BFGS NM

GG27 -603.346 0.501 4.442 1.523 2 28 2

GG28 -439.581 0.628 1.118 0.148 1 1 1

GG29 -556.788 -0.572 3.426 1.200 1 16 1

GG30 -415.145 -1.582 1.615 0.883 1 1 1

GG31 -308.643 -1.574 0.978 1.091 1 1 1

GG32 -403.932 -0.307 1.281 0.387 1 1 1

GG33 -296.926 -2.948 0.951 1.395 1 1 2

GG34 -648.889 1.313 5.134 0.819 2 8 2

GG35 -331.291 -1.198 1.226 4.895 2 5 1

GG36 -530.215 0.459 3.139 1.857 0 16 1

GG37 -493.105 -0.076 2.665 2.482 1 4 1

GG38 -525.317 0.249 2.978 1.391 2 17 1

GG39 -222.575 0.725 0.537 0.447 1 4 1

GG40 -474.738 0.544 2.494 4.058 1 14 1

GG41 -211.773 -1.434 0.490 0.388 1 0 0

GG42 -562.656 -0.518 3.862 3.851 2 21 1

GG43 -377.637 -0.057 1.500 2.586 0 10 1

GG44 -536.139 -0.738 3.175 1.526 1 13 1

GG45 -571.445 1.205 3.820 1.666 1 26 2

GG46 -365.512 -0.327 1.475 8.207 0 9 1

GG47 -267.595 0.207 0.810 1.235 3 1 1

GG48 -426.992 -0.591 1.592 0.592 1 3 1

GG49 -464.409 0.346 2.333 2.967 1 12 1

GG50 -419.638 -0.448 1.571 0.664 1 3 1

GG51 -119.814 -1.544 0.407 2.057 1 0 1

GG52 -456.288 0.833 2.289 4.848 1 20 1
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Table 2.3 Continued

Data Likemax P- o- k Our Progam BFGS NM

GG53 -444.963 0.886 2.127 3.238 1 17 1

GG54 -430.419 1.144 1.889 1.681 2 12 1

GG55 32.625 0.385 0.200 5.900 3 3 1

GG56 -486.705 1.204 2.736 20.949 3 23 1

GG57 -340.917 1.345 1.011 0.530 1 2 1

GG58 -509.434 0.310 2.658 1.055 2 14 1

GG59 -635.137 -1.700 4.896 0.935 3 14 1

GG60 -127.789 -0.842 0.405 1.308 .2 0 1

GG61 -278.946 0.407 0.934 3.807 2 3 1

GG62 -634.879 1.724 3.164 0.176 1 10 1

GG63 -642.303 -0.523 4.512 0.506 3 10 1

GG64 -490.342 -0.756 2.528 1.545 1 4 1

GG65 -503.059 -1.367 2.779 2.212 1 9 1

GG66 -332.103 -1.211 1.119 1.249 1 1 1

GG67 -632.941 -0.755 4.535 0.643 2 18 1

GG68 -447.170 0.201 2.061 1.747 1 13 1

GG69 -472.879 -0.504 2.244 1.168 1 5 1

GG70 -324.897 0.047 1.078 1.237 0 1 1

GG71 -551.800 -0.208 1.327 0.058 4 2 4

GG72 -442.804 1.803 2.092 2.903 1 18 1

GG73 -402.315 -0.788 1.721 3.345 1 4 1

GG74 -569.875 -0.267 3.830 1.870 1 20 1

GG75 -246.196 -0.771 0.818 13.048 3 1 1

GG76 -606.253 -1.852 4.215 0.903 3 4 1

GG77 -219.974 0.236 0.667 1.898 2 4 1

GG78 -509.954 -0.062 2.805 1.643 1 10 1
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Table 2.3 Continued

Data Likemax p, fJ k Our Progam BFGS NM

GG79 -367.747 0.084 1.450 3.442 2 10 1

GG80 -276.091 0.718 0.856 1.379 1 2 1

GG81 -316.033 -1.522 1.163 15.676 1 3 1

GG82 -579.212 -0.262 3.654 0.861 1 15 1

GG83 -414.687 1.316 1.810 2.698 2 13 1

GG84 -311.659 -0.093 1.106 4.312 1 5 1

GG85 -312.400 0.012 1.002 1.131 1 2 1

GG86 19.988 -0.826 0.192 1.228 2 1 0

GG87 -431.315 0.067 1.842 1.270 0 8 1

GG88 -427.902 0.837 1.890 1.948 1 14 1

GG89 -408.170 -1.757 1.738 2.380 1 3 1

GG90 -538.403 0.821 3.501 8.373 1 22 2

GG91 -344.514 -0.745 1.270 2.562 3 4 1

GG92 -354.591 1.989 1.280 1.517 1 14 1

GG93 -429.623 -0.731 1.983 3.738 1 10 1

GG94 -552.050 -1.356 3.562 2.317 1 11 1

GG95 -719.875 0.476 7.738 1.194 1 34 4

GG96 -640.854 1.901 5.054 0.954 1 29 3

GG97 -390.833 1.277 1.511 1.317 1 5 1

GG98 -113.550 -0.075 0.341 0.671 1 1 1

GG99 19.087 -1.218 0.164 0.489 1 1 0

GGI00 -345.398 0.069 1.008 0.476 0 4 1

SUM 135 915 116
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Table 2.4: Summary of results in Tables 2.3 and A.3.

Our Program BFGS Nelder-Mead

n= 200

Total number of failures 135 915 116

Total number of "non-global maxima" 134 827 23

Total number of reported errors 1 23 14

Total number of -Inf 0 65 79

n= 500

Total number of failures 129 799 127

Total number of "non-global maxima" 129 711 32

Total number of reported errors 0 24 21

Total number of -Inf 0 64 74

2.5.2 Efficiency of the Iterative Algorithm

In this further preliminary simulation study, we test the efficiency of the algorithm in Subsec-

tion 2.4.2 by comparing the estimated parameters from our program to the true ones from which

data sets are simulated. For the purpose of illustration, we simulate 10 data sets (each of size

n = 500) from a GC(() = 0.75, k, 13= 2) distribution while varying k for each data set. Equiv-

alently, we compute JL and a of the GG pdf Version 4 via the expressions J1, = log ()+ log k/ (3

and a = l/(13Vk). The values of the parameters from which the 10 data sets (GG1, ... ,GG10)

were simulated, rounded to three decimal digits, are displayed in Table 2.5. Table 2.6 reports

summary results of the computed estimates - of the 10 simulations in Table 2.5 - obtained

using our suggested R program. By fixing 0 and 13and varying k from reasonably small to high

values, we test whether the algorithm can account for different k values, knowing already that

the shape of the GG pdf Version 4 changes only slightly as k gets larger.
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The results are encouraging since they show reasonable closeness between the true values

of the parameters in Table 2.5 and their estimates in Table 2.6. Estimates of smaller k values

are quite accurate. Even when k is very large, we still manage to obtain a reasonable model.

We note that these are point estimates obtained from our algorithm while using a set of 10

initial parameters. Taking into consideration more simulations will give a better idea on how

good the estimates are.

Table 2.5: Parameter values for the 10 generalised gamma simulations.

Data k B {3 IJ a

GGI 0.05 0.75 2 -1.786 2.236

GG2 0.1 0.75 2 -1.439 1.581

GG3 0.5 0.75 2 -0.634 0.707

GG4 1 0.75 2 -0.288 0.500

GG5 1.5 0.75 2 -0.085 0.408

GG6 3 0.75 2 0.262 0.289

GG7 6 0.75 2 0.608 0.204

GG8 50 0.75 2 1.668 0.071

GG9 150 0.75 2 2.218 0.041

GGlO 250 0.75 2 2.473 0.032

To check how close the estimates are to the true values, we then consider 50 simulations (each

of size n = 500) from the particular GG(B = 0.75, k = 0.5, {3 = 2) - or equivalently from the

GG(IJ = -0.634, a = 0.707, k = 0.5) - we estimate the parameters for each data set using

our program (repeated with 10 initial parameters where the results of the one with highest

likelihood are displayed) and calculate the sample means of the estimates. Lastly, we obtain

confidence intervals for the true estimates using the usual asymptotic normality assumptions.

Table 2.7 presents a summary of the results. The values are rounded to three decimal digits.

Obviously, the true parameters lie within the 95% CIs. This shows that for reasonable

parameter values, the GG model is quite accurate. Increasing the sample size allows, of course,
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for more exactness of the estimates. Even for small samples, the algorithm still works reasonably

well. A clearer idea on the accuracy of the estimates will be explored in later simulation

studies. For example, in Section 5.1 we look at different case-scenarios of three-parameter GG

simulations and we analyse the difference between the true and estimated parameters while

taking 100 trials of initial parameters to obtain the estimates. Also, in Section 7.5 we look

again at the estimates while comparing those of a GG to the estimates of another alternative

distribution. Furthermore, in the next section, a study of the three-parameter GG asymptotics

allows us to analyse the asymptotic correlations between the parameters, a fact that usually

has a great effect on the quality of estimation.

Table 2.6: Parameter estimates of the 10 simulations in Table 2.5.
..... '8 -g .....Data k JL (j

GG1 0.056 0.607 1.928 -1.990 2.183

GG2 0.160 0.526 1.301 -2.053 1.924

GG3 0.437 0.809 2.228 -0.583 0.678

GG4 1.162 0.659 1.800 -0.333 0.515

GG5 1.476 0.757 1.983 -0.082 0.415

GG6 3.541 0.657 1.835 0.268 0.290

GG7 8.661 0.482 1.634 0.592 0.208

GG8 10.404 3.143 4.449 1.672 0.070

GG9 212.330 0.345 1.632 2.217 0.042

GG10 168.762 1.533 2.502 2.477 0.031

Table 2.7: Confidence Intervals for the parameters of the 50 simulations .
..... '8 -g ..... .....GG5 k JL a

True 0.5 0.75 2 -0.634 0.707

Mean 0.5 0.75 2.074 -0.634 0.7

StDev 0.111 0.087 0.316 0.064 0.039

95% Cl [0.469,0.530] [0.726,0.774] [1.986,2.161] [-0.651, -0.616] [0.689,0.710]
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2.6 Asymptotic Properties of the GG ML Parameter Es-

timates

Having shown the validity of our suggested algorithm for MLE of the three-parameter GG

using pdf Version 4, we now present some asymptotic results for the parameter estimates and

we deduce asymptotic correlations between p, q and k. We also explore the asymptotics of

the GG pdf Version 1. The correlation values between e, a and /J are compared later in

Subsection 7.4.2 to those of an alternative distribution to the GG. As will be explained in

Chapter 7, the alternative distribution, which has the same parameters as the GG, has a

special property that somehow specialises the roles of each of a and f3 to separate regions of

the positive real line. It is indeed important to see how (), a and f3 affect each distribution and

to check whether in the alternative distribution their estimates are less correlated.

2.6.1 Asymptotics of the GG PDF Version 4

As is known, for large n (sample size), the GG ML parameter estimates satisfy the following:

k

where I = E( -Hessian) is the Fisher Information Matrix and

821 821 821
8j]! all-au all-ok

Hessian = lPI 821 821
a~u 7JUI auak

821 821 821
oll-ak &uak 8k'Z

Let

~. (Y.-J1)T; == LJ r:' exp' f'i: ;
;=1 v ka

j = 0, 1,2.
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Then, the second derivatives in the Hessian matrix are

82[

8J-L2
82[

=8J-L8O'
82[

8J-L8k
-

82[
=80'2

82[
=8O'8k

82[
=8k2

+

1
--To'0'2 '

../k {(_t:_ -1) To _ (_1 ) t; +n} jO'2../kO' ../ko'
2k
1
O'2{ ( Vko' + J.L) To - t; - n Vko' } j

:4 { (2/l'VkO' - JL2) To - (2VkO' - 2/t) t,- T2 + n (0'2 + 2v'kO' (Y - It)) } j

2k
1
O'3 { - (J.LVko' + J.L2) To + (Vko' + 2J.L) i: - T2 - nv'kO' (Y - J.L)} j

(k~O') {( -: - 4~O') To + (2~O' +~)t,- 4~O' T2}

{
1 1 , Y-JL}

n k + 2k2 - 'IjJ (k) - 4kYkO' .

We are interested in finding the Hessian matrix at the ML estimates. Therefore, we first

refer to the score equations (2.31) and (2.32) to find expressions for To and Tl respectively, as:

To =nj

Consequently, the second derivatives in the Hessian matrix at the ML estimates simplify to

82[

8J-L2
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Knowing that:

f(k) = 100 yk-Ie-Ydy;

f'(k) = 100 log(y)yk-Ie-Ydy;

f"(k) = 100 (logy)2yk-1e-Ydy;

f'(k + 1) = f(k) + kf'(k) = 100 log(y)yke-Ydy;

f"(k + 1) = 2f'(k) + kf"(k) = 100(log y)2yke-Ydy;

¢(k) r'(k)
= -_.r(k) ,

1/J'(k) = r"(k) -1/JCk)2
f(k) ,

and setting Wi = CYi - fJ)/ (J, we find the expectation of Y and T2 to be

and

where f"(k)jf(k) can be replaced by 1/J'Ck)+ 1/J(k)2.

Let

lICk) -

!2Ck) -

gl(k) -

g2(k) -

g3(k) -

../k {1/J(k) -logk +~};

_1_ {1/J(k) -logk +~}.2Vk . k '
fll(k)

k f(k) + 21/J(k)(1 - k log k) + log k (k log k - 2) + 1;

1 { fll(k) }2k kr(k) +2¢(k)(1-klogk)+logk(klogk-2)-1 ;

1 { fliCk) }4k2 k f(k) + 4k2¢'(k) + 21/J(k)(1- k log k) + logk(k log k - 2) - 4k - 3 .
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Given the above - and using that the score function has expectation zero - we deduce the

components of the matrix 1 to be

E(-~) n_.
0J-t2 2 'a

( 02l) nE - OJ-tOq 2f1(k);o

( 02l) nE - oJ-tok = -h(k);a

E(-~) n
= 291(k);Oq2 a

( 02[) nE - oaok = -92(k);a

( 02l) n93(k).E -ok2 =

Therefore, the matrix 1 and its determinant are asymptotically respectively

';2 :rf1(k) ~h(k)

1= n ';2f1(k) ';291(k) ~92(k)

~h(k) ~92(k) 93(k)

and

Hence, the asymptotic variance covariance matrix is

v = 1-1= (Vij) ; i = 1,2,3 and j = 1,2,3:

Vu det(J)a2n {91(k)93(k) - 92(k)2};
1

V12 = det(I)a2n {h(k)92(k) - f1(k)93(k)};
1

V13 - det(I)a3n {fl(k)92(k) - h(k)91(k)};

V22 - det(J)a2n {93(k) - h(k)2} ;
1

V23 - det(I)a3n {!I(k)h(k) - 92(k)};

V33 - det(J)a4n {91(k) - fl(k)2} .
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Let

1
p = 1j;(k) -logk + k;

r"(k)
q = k r(k) + 21j;(k){1- k log k} + logk{klogk - 2};

r = k21j;'(k) - k.

We can now express the asymptotic correlations between it, 0- and k as the following:

• The correlation between the parameters /-l and a is

C (~ ~) V12orr /-l,(j = ~ -
V VllV22 y'{gl(k)g3(k) - g2(k)2}{g3(k) - h(k)2}

{2p(I/2 - r)}
=

y'{qr + r -I}{(l/k)(q + 4r - 3) - p2}

• The correlation between the parameters /-l and k is

~ V13
Corr({L,k) = VVUv33 =VllV33 y'{gl(k)g3(k) - g2(k)2}{gl(k) - fl(k)2}

{-v'kp}
= y{qr + r - I}{q + 1- kp2}

• The correlation between the parameters k and a is

{fdk)h(k) - 92(kn
y'{g3(k) - h(k)2}{gl(k) - h(k)2}

{p2 _ (I/k)(q - In
y(l/k){(l/k)(q + 4r - 3) - p2}{q + 1- kp2}

It is obvious that the correlation matrix is independent of a, /-l and n (the sample size); it is

only dependent on k. Let us look at the values of the correlations between {L, 0-, and k as k

tends to infinity and as it tends to zero.
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• We will start with the case where k -+ O. For small k, 1jJ(k) rv -1/k and 1jJ'(k) rv l/k2;

therefore, p rv -loge k), q rv k log2k and r rv 1 - k leading to

1· C (A A) n log(k)(I- 2k) 1im orr u; (7 rv im = - ;
k-+O k-+O Ilog(k)lvk2 - 2k + 1+ (k - 1)/ log(k)2

• A A. log(k)
lim Corr(j.L,k) rv lim = -1;
k-+O k-+O Ilog(k)I VI - k - 1/ log(k)2

lim Corrtd, k) rv lim 1 = 1.
k-+O k-+O V1 - 4k

• Consider, now, the case where k -+ 00. For large k, 1jJ(k) rv log(k) - 1/2k - 1/12k2 and

1jJ'(k) rv l/k+l/2k2+1/6k3; therefore, p rv 1/2k-l/12k2, q rv 1-1/4k+l/12k2+1/144k3

and r rv 1/6k + 1/2 leading to

lim Corr(j.t,a)
k-+oo

lim Corr(j.t, k)
k-+oo

1. 1/2Jk(1/6k - 1)
rv Im----r.;:::::=;::==:=:==::==;=::~=;;====~:=;:=;=;::::;=i:=:==;:::=:==~;::::::=;;:;::

k-+oo V{5/24k + 5/288k3 + 1/864k4}{2 - 1/2k + 1/6k2}

1. -1/2Jk
f'V 1m --===

k-+oo V5/12k

= -JI
rv -0.7745967;

lim Corr(a, k) rv lim 1/2k
2

- 1/6k
3

k-+oo k-+oo V{1/6k3 + 1/6k4}{2 - 1/2k + 1/6k2}

1. 1/2k2
f'V Iffl --====--

k-+oo J173k3/2
- O.

It is not clear yet what sample size ensures that the asymptotics are reached. These

asymptotic results can be checked by a simulation study that provides insight about sample

dimension adequacy. Such a study is not given in this thesis, however our aim is to investigate it
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in future work. The previous results of the correlations are confirmed and illustrated in Tables

2.8, 2.9 and 2.10. The correlation values are rounded to three decimal digits. Notice that in all

three Tables 2.8, 2.9 and 2.10, as k increases, the correlations unsurprisingly decrease. In Table

2.8, a negative correlation exists between p, and ir, At k = 0.01, Corr(p" a) = -0.978 which

confirms the previous results that the correlation tends to minus one for very small k. Also,

for k = 1000, Corr(p" iT) = -0.028 showing that as k increases, Corr(p" iT) gets closer to zero.

Note that for k = 2, Corr(p" a) = -0.5 midway between 0 and 1. Table 2.9 shows that as k

increases from 0.01 to 1000, Corr(p" k) decreases (in absolute value) from -0.978 (very close to

-1) to -0.775 (approximately -J375). Table 2.10 shows that a and k are positively correlated

with the correlation decreasing from 0.987 to 0.027 as k goes from 0.01 to 1000. Also, for k = 2,

Corr(iT, k) = 0.476 which is about midway between 0 and 1. These results are also confirmed

in the above limits. Overall, we can say that the results are quite reasonable. The correlations

are small or moderate except when k is small.

Table 2.8: Correlation between p, and iT for eight k values.

k 0.01 0.1 1 2 5 9 100 1000

CorrUL, a) -0.978 -0.907 -0.616 -0.5 -0.357 -0.279 -0.089 -0.028

Table 2.9: Correlation between p, and k for eight k values.

k 0.01 0.1 1 2 5 9 100 1000

Corr(p" k) -0.978 -0.916 -0.785 -0.772 -0.77 -0.772 -0.774 -0.775

Table 2.10: Correlation between a and k for eight k values.

k 0.01 0.1 1 2 5 9 100 1000

Corr(a, k) 0.987 0.895 0.584 0.476 0.343 0.269 0.086 0.027
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2.6.2 Asymptotics of the GG PDF Version 1

The aim in this subsection is to study the asymptotics of the GG pdf Version 1 ML parameter

estimates. The purpose is to obtain asymptotic correlations between 0, & and /3. As already

mentioned, we would like to compare the correlations between B, & and /3 of the GG distribution

with those of its alternative distribution later. Let T1, ••• , Tn be n independent identically

distributed random variables from a GG distribution with pdf Version 1. The loglikelihood is

n 1 n

n log {J - na log ()- n logr(a / {J) + (a - 1) ~ log ti - ()f3 ~ tf.
i=l i=l

We find that the expressions of the score equations are

n { {J n (t.)f3}o = 7i -a + ;;~ ~ , (2.43)

(2.44)

and

(2.45)

The second derivatives in the Hessian matrix turn out to be

[PI -"- { - 11(13 +1) t (!!n .a()2 02 a n ()'
i=l

a21 n
- -_.

aoaa ()'
a21 ~{~~ (i)'log(j)+;~(;)laea{J -

a21
- ;2'I/J/(a/{J);oa2 =

a21
n{;'I/J/(a/{J)+ ]2tP(a/{J)};=oaa{J

a21 { 1 1 n ()" ()' 2 }
ti t; a, 2a

a{J2 - n -{J2 -;~ -0 log -0 - {J4'I/J(a/{J)- {J3tP(a/{J) .
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From the score equations (2.43) and (2.45) respectively, we obtain

t (~){J = n~
i=l {3

and

Therefore, at the ML estimates, the second derivatives in the Hessian simplify to

f)2[ n
f)()2 - - ()2 {a,8} ;

f)21 n
oeoa - -0;
f)21

oeo,8
f)21
f)a2
f)21

oaf),8
f)2[
f),82

-7j { -1- ; - ~1jJ(a/,8)};

- ;1jJI(a/,8);

- -n {- ;31jJI(a/ {3) - ;21jJ(a/,8)};

-n {;, +;; ~ (~rlog (i)' +;: V/(a/{3) +~~W(a/{3)}.

Given the above - and using that the score function has expectation zero - we deduce the

components of the matrix I to be

ne2a,8;
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Knowing the form of the Hessian matrix, similarly to the previous section, we then deduce the

components of the asymptotic covariance and correlation matrices. The correlations turn out to

be, unsurprisingly, independent of O. Tables 2.11, 2.12, 2.13, 2.14, 2.15 and 2.16 display values

of the correlations between 0, Ii and /3 for variable a: and (3. The values are rounded to three

decimal digits. We observe that 0 and Ii are negatively correlated as well as Ii and /3. On the

other hand, 0 and /3 are positively correlated. For fixed (3, as a: increases, Corr(O, Ii) increases

(in absolute value) giving the impression that it converges to zero for very small a: values and

rises up towards -1 at higher a: values. Now as we fix a: and we increase (3, Corr(O, Ii) decreases

(in absolute value) from values around -1 to values around zero. A similar pattern happens

for Corr(Ii,/3). As for Corr(O,/3), when we fix (3 and increase a: from 0.001 to 5, the correlation

increases to about 1 at 5. Finally, if we fix a and increase (3, Corr(O, /3) decreases from values

around 1 at 0.1. Overall, we can say that the correlations are reasonably small or moderate

for reasonable values of a and {3. Generally, the correlations are smaller for smaller a: values

and larger {3 values. In Subsection 7.4.2, we will see how these values compare with those of an

alternative distribution to the GG.

Table 2.11: Correlations between 0 and Ii for (3 = 2 and variable a.

a: 0.001 0.01 0.1 0.5 1 2 5

Corr(O, Ii) -0.033 -0.104 -0.332 -0.680 -0.817 -0.904 -0.961

Table 2.12: Correlations between 0 and Ii for a: = 3 and variable (3.

(3 0.1 1 2 5 10 100 1000

Corr(O, Ii) -0.996 -0.967 -0.935 -0.845 -0.720 -0.257 -0.080
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Table 2.13: Correlation between e and /3 for {3= 2 and variable a.

a 0.001 0.1 0.2 0.5 1 2 5

Corr(O, (3) 0.467 0.581 0.670 0.826 0.921 0.970 0.993

Table 2.14: Correlation between e and /3 for a = 3 and variable {3.

{3 0.1 1 5 10 102 103 104

Corr(O, (3) 1 0.995 0.938 0.855 0.539 0.474 0.466

Table 2.15: Correlation between a and /3 for {3= 2 and variable a.

a 0.01 0.1 0.5 1 3 5 10

Corr(a, (3) -0.088 -0.271 -0.547 -0.693 -0.877 -0.927 -0.964

Table 2.16: Correlation between a and /3 for a = 3 and variable {3.

{3 0.1 1 2 5 10 100 1000

Corr(a, (3) -0.994 -0.939 -0.877 -0.730 -0.586 -0.212 -0.068

This chapter presented an introduction to and a deep analysis of the three-parameter

GG distribution. Aiming to go beyond the limitations of the three-parameter model when a

covariate is present, we explore, in the next two chapters, a wider family of the GG which we

make available through using QR.



Chapter 3

Parametric Quantile Regression with

Generalised Gamma I

Most commonly, researchers try to explain regression data through one curve fitted to the whole

data set. However, not all data sets are the same everywhere and observations might behave

differently at different percentiles. From here comes the idea of QR aimed at modeling data at

every quantile.

QR has recently seen a great increase in practical applications especially in modeling life

time data where researchers need to find upper and lower limits (quantiles) within the data

beyond which data points are considered outliers (or uncommon). The main objective of this

study is using QR to obtain reference charts that researchers can refer to in positive-valued data

sets to make decisions. Reference charts are used especially in medicine and pharmacology to

help specialists decide whether patients lie within or outside the most common range or the

so-called "normal range".

We consider a promising parametric approach to QR using the GG distribution. We

extend the work done on the three-parameter GG to a wider model in the context of QR. This

involves estimating the four-, five- and six-parameter GG obtained by making the parameters

dependent on a univariate covariate. The quantiles, which are functions of the parameters, are

54
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hence functions of the covariate as well. In Section 3.1, a general overview on QR is presented.

Section 3.2 offers a literature review of QR. In this framework, the GG model is explored in

Section 3.3. Shapes of its quantiles are studied in different cases in Section 3.4.

3.1 Parametric Quantile Regression

As in Koenker (2005), for a real-valued random variable, Z, and for 0 < q < 1, the qth quantile

of Z is defined as

p-l(q) = inf{z : P(z) ~ q}, (3.1)

where P(z) is the (right continuous) distribution function of Z and the median, P-l(1/2), plays

the central role.

Given a random variable with pdf j, making one (or more) of the parameters dependent

on a random variable, say X, extends the model to QR. For example, if I-" is a location parameter

of the given density function and a is a scale parameter, the distribution function can be written

as

(
y - 1-") IjY (z - 1-")F -u- =;; -00 j -u- dz = q.

Using the definition in (3.1), the qth quantile of Y then satisfies

Rearranging this yields the equation

(3.2)

an expression of the quantile function Yq in terms of the location and scale parameters and the

location- and scale-free quantile function. Making one (or more) of the parameters dependent
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on X, e.g. J-t = a + bx, where a and b are appropriate constants, we obtain

a linear regression model. By letting J-t (or similarly a) be dependent on X, and introducing

the qth quantile, we obtain the idea of QR. For every quantile q, and for every set of points

(Xi, }i), i = 1, ... , n , we have y = a + bx + ap-l(q), the curve representing the qth quantile

when J-t is a linear function of X. Similarly, we can make any other parameter dependent on

X allowing more curvature in the quantile function. For a distribution with additional shape

parameters, it is possible to make the shape parameter dependent on X as well. This idea

will be elaborated and explained more in Section 3.3 while using the GG distribution. The

next section summarises the work done by previous researchers on QR. We highlight the main

contributions and we set the scene for Section 3.3 where we explain our approach to QR using

the GG particularly.

3.2 Quantile Regression Literature Review

Parametric quantile regression (PQR) is the grand title under which our study takes place. In

this section, we present a quick review of QR and some of the main work done in this area. We

start by reporting some of the theory done, then we move to the most recent computational

contributions involving software that can implement most of the theory. Finally, we list some

of the research done to plot quantiles for reference charts.

3.2.1 Review of the Theory

Sir Francis Galton (1875) introduced QR. His approach used simple statistical elements to

analyse data, such as sorting and ranking. It started with simple ideas such as placing objects

side by side, gathering their descriptive properties, and telling which one has the larger share
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of the quality involved. One of his first examples targeted analysing the height of individuals.

He lined up men in order of height and measured the middlemost one which is now known

as the median. Hence, this special case of QR is often referred to as "median regression".

After measuring the median, the quartiles were obtained and those measurements were used

to compare between populations. To obtain a continuous measure, objects were marshalled in

order of their magnitude along a level base at equal distances apart. A line was drawn freely

through the tops representing their magnitudes. The line, logically, rises up vertically at zero,

then becomes nearly horizontal over a long space in the middle and rises up at the other end

until there also it is vertical. Such a curve was called an ogive and it is what became later

known as the distribution quantile function.

In his measurements, Galton plotted a variable tq against its probability q Le. tq = Q(q),

which is the quantile function, whereas, as the years passed statisticians switched the axes

around and plotted q against tq Le. q = F(tq), which is the known distribution function. Hence,

if we denote by F the distribution function of a random variable T, the quantile function Q

satisfies

Q(q) = F-1(q) = tq.

More research was done later in Galton (1883) and Galton (1889). For example, in the latter,

Galton presented the median regression model for the diameters of sweet peas in successive

generations. His model for the conditional median was M(ylx) = 15.5+ (1/3)(x -15.5), where

the dependent variable y is an observation on the new generation, the covariate x on the parent

and 15.5 is the median of x. Through history, the topic gradually emerged as a unified statis-

tical methodology for estimating models of conditional quantile functions.
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Koenker (2005) is the most popular book on QR. This book offers a first comprehensive

treatment of the subject encompassing models that are linear and nonlinear, parametric and

nonparametric, illustrated with a variety of applications from economies, biology, ecology and

finance. The main idea in this book was then referred to by some researchers as being semi-

parametric in the sense that it is based on a linear regression model but without taking into

consideration any distributional assumptions.

Gilchrist (2000) is another book that offered a way to statistical modeling using the

quantile function in a parametric framework. If Qo(q) denoted the quantile function of the

basie form of a distribution, this book uses the fact that the general quantile function of a

distribution satisfies

Q(p) = M + SQo(q), (3.3)

where the median M is the location parameter and S is the scale parameter of the distribution.

In this scenario, M represents the deterministic part of the regression equation and SQo(q) the

stochastic one. The author claims that Galton was the first to present this form for the normal

distribution and that this representation of the quantile function, in its generalised form for

any distribution, was systematically first given by Parzen (1979). Equation (3.3) allows for

regression by introducing to the first term in the right hand side a covariate, say X, and

considering the second term to be similar to a random variate scaled error. Gilchrist (2000)

attributes to the error term (which is of course a quantile function here) discrete distributions

such as the binomial and geometric. Other distributions were also considered such as the

logistic, three-, four-, and five-parameter lambda, the extreme value, and the Burr family

of distributions. It is claimed that this approach hasn't been explored systematically in the

literature and that what has been referred to as PQR is assigning a distributional model to the

deterministic part of the regression equation only, rather than the stochastic one.
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These are the two most significant books that discussed QR, the former follows more or

less a nonparametric approach while the latter follows a parametric one. For a brief review of

the (chiefly nonparametric) QR technique and its applications, the paper by Yu et al. (2003)

is also a good reference. We now present a summary of the most significant research that led

to or emerged from the ideas in these books where the QR world was divided into two schools

of thought: parametric and nonparametric. In the parametric framework, distributional as-

sumptions are assigned to the model, whereas, in the nonparametric approach no distributional

assumptions are made and the model is based totally on the individual data points of the

sample. In both schools, regression is attained by making the model dependent on a covariate

either linearly or through a kernel function that allows more curvature in the fitted model. Both

Gilchrist (2000) and Koenker (2005) considered a linear dependence on a covariate X. Even-

tually, any study mentioned in the literature emerges either directly from or at least revolves

closely around one of four approaches: PQR based on a linear model, PQR based on a kernel

regression function, nonparametric QR based on a linear model and nonparametric QR based

on a kernel regression function.

Parzen (1979) describes his approach as being simultaneously parametric and nonpara-

metric by taking four stages for modeling. In the first stage, a parametric model is considered

assuming that Qo has a known distribution and correspondingly the parameters are estimated.

In the next stages, goodness-of-fit tests are done and robustness of the model is tested for

different distributions symmetric and nonsymmetric. If these tests fail, then a nonparametric

model is suggested by trying to find suitable estimates of Qo through the sample data. The

paper emphasises the last stage that considers a nonparametric model.

In fact, nonparametric quantile regression was widely explored. Koenker and Bassett

(1978) is one of the leading papers that considered this framework while taking into consid-
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eration a linear model. This paper along with other extensions constituted the basis of the

book by Koenker (2005). The Koenker and Bassett (1978) approach starts from the very ba-

sic regression equation Y = (3XT + c. The least squares method is the most popular way to

estimate (3 through solving the minimisation ~~l (Yi - (3xi)2. It turns out, of course, that

the mean is the solution and hence regression was referred to as "mean regression". Koenker

and Bassett (1978) introduce a natural generalisation to this linear model using the concept

of quantiles. The problem then became a more general one that involved solving for the qth

regression quantile, 0 < q < 1, in the minimisation

(3.4)

In fact, for a given density function f with distribution function F and using the basic minimi-

sat ion procedure of setting the derivative equal to zero, the solution to (3.4) turns out to be

unsurprisingly F-l(q), the quantile function defined in (3.1).

Other papers in the same framework are by Koenker and Bassett (1982), Bassett (1986),

Koenker and d'Orey (1993), Koenker and Machado (1999) who introduce a goodness-of-fit

process for QR, Bassett et al. (2002), and most recently the work by Portnoy (2003) where a

recursively reweighted estimator of the regression quantile process is developed. Kocherginsky

et al. (2005) develop a time-saving method to construct confidence intervals in QR and lastly

Neocleous and Portnoy (2008) present some theory behind the monotonicity of the increasing

quantiles.

As a matter of fact, most of the contributions in quantile regression are nonparametric.

In the previous paragraph, we mentioned a few nonparamctric contributions that used a linear

model. We move, now, to discussing a few papers that used kernel estimation instead. Yu and

Jones (1998) suggest two approaches for kernel weighted local linear fitting. One considers the

minimisation of (3.4) to obtain the quantiles, while the other inverts a local linear distribution
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function coming from the data. Both approaches were applied to skinfold triceps data sets

from three Gambian villages and double-smoothed quantiles were plotted. Again, Jones and

Yu (2007) improve on their earlier work by introducing a third approach which they claim to be

of better performance (and more straightforward) than the two earlier ones. Kernel estimation

was novel in both papers.

Following up on kernel estimation, we address this issue now from a parametric point of

view and we start with a leading paper by Cole and Green (1992) where the quantile regression

model is summarised by three curves representing the median, coefficient of variation and

skewness (also referred to as the Box-Cox power transformation) fitted as cubic splines using

penalised likelihood. This method was introduced originally by Cole (1988) and was termed

the "LMS" method. Other significant papers in this context are by Yu and Stander (2007) who

follow a Bayesian approach where the Laplace distribution plays a central role and Thompson

et al. (2010) where Bayesian inference is based on the posterior density of a spline with a

smoothing parameter. In a Bayesian framework, we also mention Yu and Moyeed (2001) and

the paper by Cai and Stander (2008) where the latter considers a Bayesian approach to quantile

self-exciting threshold autoregressive time series models. Is is also worth mentioning Sorfling

(2004) who studies multivariate descriptive measures such as the multivariate location, spread,

skewness and kurtosis.

Very few papers addressed the parametric framework where a linear model is taken. The

only recent contributions known to us are by Warren Gilchrist of which we mention the most

recent ones Gilchrist (1997) and Gilchrist (2008). In the former, the quantile function was given

for particular distributions such as the uniform, pareto, exponential, Wcibull and the logistic.

In addition to the location and scale parameters' effect on the distribution and its quantile as

shown in (3.3), a small discussion is given on how a shape parameter controlling skewness can
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be integrated in the model. Issues like estimation, hypothesis testing and goodness-of fit were

discussed very briefly. In the latter paper, the author brought up the fact that non parametric

QR "ignores the actual distribution of the "error" term". His aim was to show how both

the deterministic and stochastic elements of regression can be modeled and to highlight the

importance of modeling the variation in the data. A wider range of distributions is suggested

especially those involving skewness. The fact that QR can focus on the tails of a distribution is

discussed and further ideas for model fitting and diagnostics are given. The author emphasises

the fact that little theory is available in this context and mentions the following: "Clearly, a

well-fitting Normal-based model has many advantages in terms of properties. However, if there

is, say, a long-tailed model that is noticeably better, then one is going to be misled by the

application of Normal assumptions."

3.2.2 Computational Contributions

QR has a wide history and some of the related theory was explored in the literature. With the

rise of computational ability nowadays and the immense power of computers to run algorithms

via software such as R and SAS used for statistical computing, computational algorithms were

introduced to implement a big part of the theory. The best known procedure that provides

computational access to the QR theory is the QUANTREG procedure provided in SAS 9.1

and also in R. This package computes estimates and related quantities for QR by solving a

modification of the least squares criterion as explained in Koenker and Bassett (1978). It

is explained and described through its SAS and R manuals and through some publications

such as the report by Chen (2005). The R package rqmcmb2, by Maria Kocherginsky and

Xuming He, also computes QR-related statistics. It is used basically for Markov chain marginal

bootstrapping in QR. Among many other computational procedures, we mention lastly the R

package Imsqreg which implements the "LMS" method by Cole and Green.
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3.2.3 Recent Contributions to Reference Charts

The rise in computational ability and the availability of software for computing QR measures

made it possible and easier for researchers to consider applying QR to real data sets. In reality,

researchers are often asked to construct reference charts and limiting thresholds that specify

the common and uncommon range in data. This comes from the need in different fields such as

pharmacology, economy and health to have ranges within data that they can refer to in order

to tell in which percentile of the data individuals lie. The issue of plotting reference charts has

been addressed through history using different approaches some of which plot centiles using

linear or additive linear models while others, most recently, use QR.

We now mention some of the most significant researchers and papers that have modeled

reference charts. Wei et al. (2006) offer a comparison between the LMS method using the

penalised likelihood of Cole and Green (1992) and a nonparametric approach based on B-spline

expansions following Koenker and Bassett (1978). Quantile curves were plotted for "height-

vs-age-data" to detect thresholds of their growth. Similar results were obtained from both

approaches, the former reported as being more stable while the latter more flexible. Other

models were considered and the effect of more variables was studied as well. Some papers

considered using generalised additive models to relate variables with each other. For example

Cole et al. (2009) highlight the importance of age-related reference ranges to assess growth

in children. Data is obtained from four different countries: U.S.A. (NHANES III), Belgium,

England and Canada. The computational work was implemented using the package GAMLSS in

R. This package is discussed and explained in Stasinopoulos and Rigby (2007). Van Buuren

et al. (2009) construct regional centiles for "weight-vs-age-data" sets from different countries.

They use a generalised additive model for location, scale and shape parameters and suggest

either a Box-Cox t or a Box-Cox power exponential distribution. The package GAMLSS was also
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used for computational purposes. Heagerty and Pope (1999) propose a method for reference

charts where quantilcs are modeled as a smooth function of covariates in a nonparametric

framework. The reference chart is done for female infants under the age of three to study the

implication of weight for both height and age.

A report by Chen (2005) studied BMI charts of individuals from all ages. ENII is defined

as the ratio of weight to the square of the height (kgjm2). QR is proposed as an alternative to

other procedures such as fitting smoothing curves on sample quantiles of segmented age groups

and the LMS method. It is also claimed that as EMI across all age groups is skewed to the

right, normality assumptions fall down and preference is given to QR procedures such as the

Koenker and Bassett (1978) approach. The QUANTREG procedure in SAS is introduced and

the three different algorithms therein are applied in a QR context to compare BMI growth

charts of two data sets. A model involving six powers of age and the logarithm of BMI is fitted.

It is almost an impossible task to mention all the researchers that have addressed the topic

of QR. Through this literature review, we have tried to display the most significant contributions

hoping to form a clear picture in this regard and introducing the reader to the next sections

of the thesis, in particular to our contribution to PQR and further to applying it to the GG

distribution.

3.3 The GG Distribution in the Context of QR

The GG distribution encompasses both the gamma ({3 = 1) and Weibull ({3 = Cl) distributions

- and hence also the exponential distribution - as special cases and the lognormal and normal

distributions as limiting cases. Similar to other life distributions it can be used in modeling

regression data. Given an observed set of regression data (Xi, Yi), i = I, ... ,n, satisfying

Yi = g(Xi; P; fi)'
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where g(Xi; p, €i) is some function of Xi, p is a vector of parameters and €i is the error term,

the aim is to fit a GG distribution to the error while taking into account the quantile to be

modeled. Let TI, ...,Tn be a random sample taken from the GG distribution with pdf Version 2.

The cumulative distribution functions of Ti, i = 1, ... ,n, and of Yi = log I], parametrised as in

(2.19), are respectively

F(t) = r(t/IJ)13(k)
r(k)

(3.5)

and

rkexp (~) (k)
F(y) = r(k) (3.6)

both taking the form of a regularised gamma function which is defined in equation (2.1). Let

r(k, q) be the location- and scale-free qth quantile of a gamma distribution with shape parameter

k. From (3.5) and, we deduce respectively that

r(k, q) = (t/B)f3

and

(
y -11)r(k,q)=kexp uYk .

Consequently, the qth quantile functions (in terms of 11, o and k) of T and Yare respectively

(3.7)

and

It (r(k, q»)Yq = 11+UY le log -k- . (3.8)
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In the expressions of the quantile curves (3.7) and (4.14), as explained in Section 3.1, making

one of the parameters dependent on a covariate, e.g. X, allows tq, and Yq in turn, to be

conditional on X = x, extending the model to quantile regression where tq (and Yq) is the

dependent variable and X the independent variable.

In this thesis, we consider three cases of the conditional GG distribution:

1. The four-parameter GG, where we set JL to be a linear function of a covariate X through

JL = a + bX (a, b E JR), and (J' and k positive constants.

2. The five-parameter GG, where we make JL and (J' dependent on a covariate X through

JL = a + bX and (J' = exp(c + dX) (a, b, c, a e R), and k a positive constant.

3. The six-parameter GG, where all three parameters JL, (J' and k are dependent on a covariate

X through JL = a + bX, (J' = exp(c + dX) and k = exp(J + gX) (a, b, c, d, I, 9 ER).

The aim from this study is to find the best GG model fit to every quantile of given regression

data. Is it the three-, four-, five- or six-parameter GG? For that, we explain in Section 4.3 how

we conduct LRTs to check whether a full model (six-parameter model) is required to explain

the data or whether a smaller one is enough. In the next section, the shapes of the quantiles

for the GG models given in items (1), (2) and (3) are studied.

3.4 Shapes of the Quantile Curves for the Suggested

Four-, Five- and Six-Parameter GG

Let X be a positive random variable and T a GG-distributed random variable conditional on

the covariate X through the parameters. The shapes of the quantile curves in the three different

parameter case-scenarios are explored in what follows.



CHAPTER 3. PQR WITH GC I 67

1. The four-parameter GG quantile curve is given by

(
r(k,Q))aVk

tq = exp(a + b.T) -k- , .7: > 0,

where a, b E 1Rand a, k > O. Table 3.1 presents the possible shapes that tq can take.

For the purpose of illustration, we consider a particular case of the four-parameter con-

ditional GG with k = 4, a = 1.25, and we make J-l conditional on random variable X

via the equation J-l = -1 - 2X where X "-' U(O,I). We compute the corresponding 0,

a and (3 from which we generate a data set Ts, i = 1, ... ,500, conditional on the random

variables Xi, i = 1, ... , 500. The simulated regression data (Xi, Ti), i = 1, ... ,500, and the

corresponding quantile curves tq for Q = {0.1, 0.25, 0.5, 0.75, 0.9} are shown in Figure 3.1.

As b = -2 < 0, we observe that the quantiles are decreasing.

Table 3.1: Shapes of the four-parameter GG quantile curves.

cases modes shape

b » 0 monotone increasing exponential increase from ea(r/k)a-lk to +00 (at 00)

b < 0 monotone decreasing exponential decrease from ea (r / k )a-lk to 0 (at 00)

~~---------------------.
o
N

"!

~~.~:.:;::....:.,:<:..'. ..
. :::·0:".:- :.: ...~ ... : .. :~~

oo

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.1: 10%,25%,50%,75% & 90% quantile curves of a GG(J-l = -1-2X, a = 1.25, k = 4).
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2. The five-parameter GG quantile curve is given by

(
(k )) Vkexp(c+dx)

tq=exp(a+bx) r ~q , z > 0,

where a, b, c, d E 1Rand k > o.

Let M = (r(k,q)/k)eCVk and Xm = (I/d)log(-b/(dlogM)) when the definition makes

sense. Note that M > 0,

{)log t
ox q = b + d log M exp(dx)

and

{)2log t
ox2 q = d2log M exp(dx).

Therefore, the shape of tq depends on whether band d are positive or negative and whether

M is greater or less than one. Table 3.2 presents the possible shapes that tq can take.

Table 3.2: Shapes of the five-parameter GG quantile curves.

cases modes shape

b > 0; d > 0; M > 1 monotone increasing exponential increase from M ea to +00
b > 0; d < OJM < 1 monotone increasing exponential increase from M ea to +00
b < 0; d < OJM > 1 monotone decreasing exponential decrease from M ea to 0

b < 0; d > 0; M < 1 monotone decreasing exponential decrease from M ea to 0

b > OJd < OJM > 1 unimodal with minimum at Xm concave up starting from M ea to +00
b < 0; d < 0; M < 1 unimodal with maximum at Xm concave down starting from M ea to 0

b > 0; d > 0; M < 1 unimodal with maximum at Xm concave down starting from M ea to 0

b < 0; d > OJM > 1 unimodal with minimum at Xm concave up starting from M ea to +00

For example, setting k = 0.75 we make (1 and Jl. conditional on a random variable

X '" U(O,I) via the equations 11,= 1 - O.IX and a = exp( -1.5 - 2X). We simulate
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a data set of size 500 conditional on random variables Xi, i = 1, ... , 500. The simu-

lated regression data (Xi, Ii), i = 1, ... ,500, and the corresponding quantile curves tq

for q = {O.I, 0.25, 0.5, 0.75, 0.9}, are shown in Figure 3.2. In this case, b = -0.1 < 0

and d = -2 < o. Of course, M > 1 when r(k, q) > k and analogously M < 1 when

r(k, q) < k. Looking at Figure 3.2, for q = {0.75, 0.9}, M > 1, therefore the quantiles are

monotone decreasing. For q = {O.I, 0.25, 0.5}, M < 1, hence the quantiles are unimodal

with maximum calculated at Xm = {1.203, 0.907, 0.33I} rounded to three decimal digits.

Note that Xm = 1.203 is not shown in Figure 3.2 as the graph is restricted to region where

x E [0,1].

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.2: 10%,25%,50%, 75% and 90% quantile curves of a GG(J-L = I-O.IX, (J" = exp( -1.5-

2X), k = 0.75).

3. The six-parameter GG quantile curve is given by

(ru, g, q)) exp(c+dx+~(J+9x))

tq = exp(a + bx) ef+9x ' X> 0,

where a, b, c, d, I, 9 E JR.

The form of the six-parameter GG quantile curve is much more complicated than the

four- and five-parameter cases since, here, r(k, q) is dependent on k and therefore on X.
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A proper summary table is not straightforward. However, it was noticed that bimodal

quantiles can exist in this case. We demonstrate this fact by a particular example where

all three parameters are dependent on random variable X rv U(O, I) via the equations

J.L = 5 + 3X, a = exp(0.5 - 2X) and k = exp(9 - 15X). A simulated data set of

size 500 conditional on Xi, i = 1, ..., 500, with the corresponding quantile curves tq for

q = {O.I, 0.25, 0.5, 0.75, 0.9}, are shown in Figure 3.3.

:5
:il

0

~
0
0
0
M ..
0

..
~

:5~

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.3: 10%, 25%, 50%, 75% and 90% quantile curves of a GG(J.L = 5+ 3X, a = exp(0.5 -

2X), k = exp(9 - 15X)).

We have, now, formed an idea of the GG quantile shapes in the three-, four-, five- and

six-parameters cases. The three-parameter quantiles are horizontal and parallel to each other.

The four-parameter quantiles are exponentially monotone increasing or decreasing. In the

five-parameter case, they exhibit either monotone exponential shapes or a unimodal structure.

Finally, the six-parameter case shows all different monotone exponential, unimodal and bimodal

shapes. It is important to note that, perhaps surprisingly, despite the very simple linear and

loglinear forms used for the dependence on x, the resulting quantiles can exhibit a very wide

range of very useful shapes.



Chapter 4

Parametric Quantile Regression with

Generalised Gamma II - Estimation

Following up on Chapter 3 where we set the scene for the PQR approach that we use to study

our suggested four-, five- and six-parameter GG models (introduced respectively in items 1, 2

and 3 of Section 3.3), we move now to estimating these models. In this chapter, we complete

the picture for MLE of the GG by estimating the conditional distribution when the number of

parameters p = 4,5,6. We also demonstrate various steps of the modeling package introduced

in Chapter 1 such as performing LRTs for model selection, finding the confidence bands around

the estimated quantiles and introducing our goodness-of-fit test.

MLE of the four-parameter GG conditional distribution is performed in Section 4.1 and

an iterative algorithm is developed. The five- and six-parameter GG cases are also discussed. In

Section 4.2, a simulation study validates the proposed iterative algorithm. Both MLE and the

simulation study were also discussed in Noufaily and Jones (2010). In Section 4.3, we explain

how LRTs can be conducted to test whether a full-parameter (six-parameter GG) model is

required or a smaller one is enough. Section 4.4 displays the asymptotics for the four-, five-

and six-parameter GG. These are used in Section 4.5 to obtain expressions for CIs around the

estimated quantiles. Finally, a goodness-of-fit test is suggested in Section 4.6.

71
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4.1 MLE for the Conditional GG Distribution

4.1.1 MLE for the Four-Parameter Distribution of the Log of a GG

Random Variable

In this subsection, we revisit the work of Subsection 2.4.1 for the simple linear regression case

in which the data are (Xi,7i), i = 1, ... ,n, Yi = logT] and the X's are a univariate covariate.

We thus model J..L not as a constant but in terms of the covariate and two parameters to be

estimated, through J..L = a+bX. Note that both a, b E IR. On the original scale, this means that

the scale parameter e is modeled as a loglinear function of the covariate.

We find it convenient to reparametrise from a and b to a' = a/a, b'= b]«, Also, write

S - 1~ yiX' (Yi b').. l _it - - L..J i i exp IT - IT Xi , ), - 0, 1,2.
n i=l avk vk

Given the new parametrisation, the loglikelihood is

n{-IOg(a)+(k-~)log(k) - logr(k)+Yk(~-a'-b'X) (4.1)

~exp (-a') texp (~- .!!__Xi)}. (4.2)
n Yk i=l aYk Yk

Differentiating w.r.t a', b', a and k in turn yields the score equations:

o = n Yk { exp ( ~) Sao - I} ;

o = nVk { exp ( ~) Sal - X } ;

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

As in Lawless (1980), (4.3) yields

exp(a') =S:, (4.8)



CHAPTER 4. PQR WITH CC II - ESTIMATION 73

an expression for a' in terms of b', CT and k.

Rearranging (4.4) yields

- (al

)BR(b') == X exp Jk - SOl = o. (4.9)

We think of (4.9) as an equation in b' for any a', k and CT and solve it numerically. This is easy

because we can show that BR is monotone increasing in b':

Also, limb'_-co BR(b') = -00 except for the case where Xi < 0'7 i = 1, ... ,n, then limb'-+-coBR(b') =

X exp (~) (negative horizontal asymptote). Similarly, limb/_coBR(b') = 00 except for the case

where Xi> 0 '7 i = 1, ... ,n, then limb'_coBR(b') = X exp (~) (positive horizontal asymptote).

Hence, there must be precisely one value of b' (for any a', k and CT) for which BR(b') = O.

Using (4.8), we can reduce (4.9) to

BR(b') = SOl -X =0
Soo

(4.10)

an equation in b' for any k and CT. We already showed that there exists precisely one value of

b' for which BR(b') = o. Therefore, we solve BR(b') = 0 numerically to find the root b' for any

k and CT.

Using (4.8), we can reduce (4.5) to

Sw - CTRR(CT) == - - y - - = 0
Soo Jk (4.11)

Again following Lawless (1980), we think of RR(CT) as an equation in CT for any k and b' and solve

it numerically. The same argument that applied to (2.35) shows that there must be precisely

one value of CT> 0 (for any band k) for which RR(CT) = O.

Using (4.8), (4.10) and (4.11) to remove the quantities involving exp (-al/(CTJk)), Soo, SOl

and Sw, we find that (4.6) reduces to

TR(k) = (V/CT) ~' + b'X) + log(k) -1f;(k) = o.
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Finally, the analogue of (2.38) is

(4.12)

a function of k for any LR where

, ,- y
LR = a +bX --. a

Again, Jensen's inequality can be used to show that LR > 0 provided a', b' and a satisfy (4.8),

and hence (2.38) also has a single root in k in those circumstances.

4.1.2 Iterative Algorithm and MLE for the Five- and Six- Parameter

Cases

We have now proved that each of the equations (4.8), (4.11), (4.10) and (4.12) has one root

iL, iJ, band k respectively. We will solve them simultaneously and iteratively to obtain the

ML estimates of the four-parameter GG. Work is done twice, each time using one of either the

Newton Raphson algorithm or the bisection method to solve for b. Our algorithm for estimating

the four-parameter GG becomes:

1. Set the iteration number ito 0 and obtain an initial guess for LR = LR,o > 0 and b' = b~.

2. Set i = i + 1.

3. For given LR,i-l, compute ki by solving (4.4) using either the bisection method or the

Newton Raphson algorithm (we have used the former).

4. Replace the obtained ki in RR(a) to compute Ui by solving (4.3) using the bisection

method or the Newton Raphson algorithm (we have used the latter).

5. Replace the obtained ki and Ui in BR(b') to compute iii by solving (4.2) using the bisection

method or the Newton Raphson algorithm (we used the former after experiments with

the latter led to too many program failures).
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6. Substitute ki' Ui and iii into (4.1) to obtain the corresponding (ti.

7. Use these estimates to obtain LR,i and to compute the value of the loglikelihood function.

8. Repeat steps (2), (3), (4), (5), (6) and (7) until desired accuracy of the likelihood is

achieved.

This iterative algorithm is tested via simulations in Section 4.2. It is shown that, computation-

ally, MLE of the GG distribution is perfectly reasonable for p-parametric distributions where p

is small to moderate (p =4, 5 or 6). Our simulation study also shows that the general-purpose

optimisation procedures, Nelder Mead and BFGS, are competitive with our algorithm and be-

have even slightly better in some cases. We will use the general-purpose NeIder Mead (which

proved to be generally the best) optimisation algorithm to maximise the five- and six- param-

eter versions of the likelihood in (4.1) and hence to estimate the parameters. To demonstrate

the accuracy of the GG in this respect, a grand simulation study that includes estimation of

all three-, four-, five- and six-parameter GG distributions will be given in Section 5.3.

4.2 Simulation Study Using the Iterative Algorithm in

Subsection 4.1.2

4.2.1 Efficiency of Iterative Algorithm and Comparison with Other

Optimisation Procedures

The aim in this section is to show how reliable our suggested algorithm (in its 2 versions as ex-

plained in Subsection 4.1.2) is for MLE of the four-parameter GG regarding its well-behaviour

for different initial values and relative to other general-purpose optimisation procedures. For

this purpose, we compare it with other optimisation methods such as the Nelder-Mead, BFGS
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and another method introduced by Prentice (1974). This is done via simulations. We repeated

the experiment of Subsection 2.5.1 with the addition of the extra parameter b being generated,

like a, from the standard normal distribution. Note that, in this case, the "real parameters"

and "initial parameters" are given in Tables A.4 and A.5 of the Appendix. For the regres-

sion situation, we also tested an R implementation of the Prentice (1974) approach to MLE

provided in the VGAM package of T.W. Yee. However, we were unable to make this program

work anything like as well as any of the others and so we have removed it once more from

our comparisons. Tables 4.1 and A.6 present summaries of the results for the n = 200 and

n = 500 cases respectively. "a", "b", "a" and "k" are values of the parameter estimates (of a, b,

o and k respectively) leading to "Likemax". "Progbis", "Prognr" "BFGS", and "NM" represent

the number of times (out of 100) each of our program's bisection version, our program's New-

ton Raphson version, BFGS, and Nelder-Mead respectively fails to reach "Likmax" up to an

error equal to 0.01. Similarly to the three-parameter case, the estimated parameters still give

reasonable results. We also observe that our program, in the bisection method version, and the

Nelder-Mead procedure report the least number offailures.

As before, Table 4.2 reports a summary of the total number of failures of each method

for the n = 200 and n = 500 cases. The values in Tables 4.1, A.6 and 4.2 are rounded to

three decimal digits. Compared with Table 2.4, each method, unsurprisingly, has an increased

number of reported errors, but the situation is still very good. For example, when n = 200, our

program still has a 96.8% success rate, Nelder-Mead a 97.8% success rate, and BFGS an 89.7%

success rate. It should be admitted that it was the less successful version of our program that

uses the Newton-Raphson algorithm at Step 5 of the iterative algorithm in Subsection 4.1.2

that was matched with the other programs for speed in the regression case, the purely bisection

version reported on in Tables 4.1 and A.6 typically taking several times longer.
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Table 4.1: Number of times each method fails to reach the maximal likelihood in the four-

parameter case for n = 200.

Data Likcmax EL b fJ k Progbis Prognr BFGS NM

GGQ1 -442.906 -0.695 1.563 2.013 1.706 1 6 15 1

GGQ2 -184.868 1.076 -1.713 0.544 1.425 1 13 3 1

GGQ3 -367.967 0.178 0.557 1.435 2.754 0 2 14 1

GGQ4 -331.580 0.200 0.551 1.251 11.358 0 4 13 1

GGQ5 -577.164 -0.839 -3.383 4.225 6.428 2 5 21 3

GGQ6 -373.025 1.972 0.099 1.474 2.857 1 13 20 1

GGQ7 -392.633 -0.720 0.973 1.171 0.343 0 12 3 0

GGQ8 -398.024 0.194 1.122 1.652 2.377 0 2 8 1

GGQ9 -664.888 -1.573 -0.362 5.484 0.755 7 23 15 3

GGQ10 -255.322 1.296 -0.297 0.544 0.263 0 5 4 1

GGQ11 -424.828 0.643 -1.541 1.906 2.734 0 2 14 1

GGQ12 -426.109 -0.918 0.785 1.929 3.039 2 13 10 1

GGQ13 -323.809 -0.249 -1.961 1.001 0.774 1 25 2 0

GGQ14 -406.563 1.181 -0.235 1.515 0.777 0 0 8 1

GGQ15 -404.495 -0.969 0.105 1.443 0.635 1 3 2 0

GGQ16 -539.365 0.463 1.515 3.529 9.818 0 3 29 3

GGQ17 -614.401 0.364 -0.312 5.050 4.950 1 6 22 3

GGQ18 -563.332 -0.449 0.068 3.698 1.820 1 10 11 2

GGQ19 -154.092 -2.016 1.005 0.467 1.421 0 14 0 0

GGQ20 -587.273 -0.914 -0.390 4.133 1.656 3 14 12 2

GGQ21 -596.564 -0.736 0.678 4.605 4.524 0 3 25 3

GGQ22 -424.361 -0.379 1.913 1.250 0.253 0 5 3 1

GGQ23 -268.639 -1.763 0.971 0.823 1.364 0 16 2 0

GGQ24 -11.923 0.930 1.550 0.244 3.310 6 33 8 1
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Table 4.1 Continued

Data Likemax a Progbis Prognr BFGS NM

GGQ25

GGQ26

GGQ27

GGQ28

GGQ29

GGQ30

GGQ31

GGQ32

GGQ33

GGQ34

GGQ35

GGQ36

GGQ37

GGQ38

GGQ39

GGQ40

GGQ41

GGQ42

GGQ43

GGQ44

GGQ45

GGQ46

GGQ47

GGQ48

GGQ49

GGQ50

-412.259 -1.062 0.999 1.566 0.799

-164.104 0.049 -0.846 0.507 2.020

-420.395 -0.055 1.790 1.952 11.788

-410.758 -0.458 1.163 1.394 0.471

-207.683 0.822 0.866 0.557 0.748

-335.375 -0.008 0.863 1.162 1.508

-571.334 0.524 -0.988 3.178 0.516

-346.282 0.182 -0.591 1.169 1.013

-118.025 1.125 0.044 0.411 2.759

-493.246 -0.089 -0.013 2.355 0.813

-238.472 -1.442 0.445 0.784 10.322

-413.775 -0.857 1.874 1.589 0.831

33.285 2.759 0.437 0.183 1.406

-514.620 -0.989 0.038 2.150 0.340

-101.314 0.578 1.103 0.399 23.888

-124.867 1.078 -0.725 0.375 0.833

-492.900 0.385 0.235 2.447 1.056

-353.617 -0.852 0.249 1.238 1.179

-596.422 0.740 -1.061 4.167 1.179

-453.328 0.224 2.324 2.064 1.309

-607.338 -0.745 1.007 3.858 0.548

-321.427 0.520 0.799 1.205 94.460

-247.047 1.658 -0.554 0.672 0.712

-277.319 1.174 0.920 0.715 0.470

-153.138 0.690 0.282 0.483 2.204

-502.474 1.656 1.198 1.974 0.313
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Table 4.1 Continued

Data Likemax a Progbis Prognr BFGS NM

GGQ51

GGQ52

GGQ53

GGQ54

GGQ55

GGQ56

GGQ57

GGQ58

GGQ59

GGQ60

GGQ61

GGQ62

GGQ63

GGQ64

GGQ65

GGQ66

GGQ67

GGQ68

GGQ69

GGQ70

GGQ71

GGQ72

GGQ73

GGQ74

GGQ75

GGQ76

-254.243 -0.079 -0.011 0.783 1.692

-142.850 -1.869 1.666 0.459 2.241

-225.844 0.457 -0.513 0.680 1.689

-383.357 -1.688 -1.045 1.619 10.492

-459.992 0.412 0.432 1.742 0.429

-468.659 0.619 -0.159 2.453 6.186

-285.011 0.366 0.660 0.961 3.573

-402.213 -0.393 -0.116 1.510 0.866

-470.161 1.394 -0.659 2.331 1.918

-531.635 1.120 -0.651 3.340 4.985

-265.784 -0.503 -0.657 0.877 4.033

-369.778 -0.865 -2.013 1.514 11.011

-408.642 1.070 0.341 1.724 2.066

-215.231 -0.488 -0.402 0.676 3.348

-502.374 -1.469 -0.330 2.750 2.022

-460.777 0.903 -0.796 1.664 0.356

-401.359 -1.134 1.672 1.746 5.481

-485.569 1.317 0.448 2.480 1.622

-395.804 0.264 -0.150 1.410 0.703

-287.722 -0.256 0.087 1.000 8.511

-169.578 0.197 0.947 0.496 1.232

-329.366 0.701 -0.204 1.185 2.852

-648.818 -2.102 0.832 4.930 0.657

-316.697 -0.353 0.565 1.121 3.315

-519.385 -0.682 1.684 3.175 7.354

-553.142 0.312 0.548 3.682 3.836

2

o
o
2

1

o
1

o
1

o
1

1

o
o
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o
1

o
1

o
o
o
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4
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2
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o
2
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6
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8

3

2

5

7
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o
o
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4

o
7

3

1

2
3

7
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9

4

13
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3
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11
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12

22
2

7

o
6

5

5
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o
o
o
o
1

2

1

1

2

3

o
1

1

o
1

1

1

2

1

1

o
1

1

o
3

3
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Table 4.1 Continued

Data Likemax a b 0- k Progbis Prognr BFGS NM

GGQ77 105.427 -0.880 -1.502 0.111 0.596 55 99 1 2

GGQ78 -374.305 -0.327 1.236 1.408 1.465 0 6 10 1

GGQ79 -505.434 0.494 1.690 2.963 7.550 1 3 19 3

GGQ80 -489.499 -0.775 0.563 2.246 0.694 2 13 7 1

GGQ81 -254.088 -0.767 2.125 0.803 2.319 0 2 5 1

GGQ82 -500.152 -0.575 -0.819 2.708 1.916 2 10 10 1

GGQ83 -392.419 0.176 -1.224 1.531 1.380 1 16 1 1

GGQ84 -523.335 0.729 -0.574 2.550 0.563 3 7 5 1

GGQ85 -563.943 0.413 0.775 3.782 2.333 0 1 17 3

GGQ86 -646.923 0.984 -0.487 5.739 2.414 0 6 21 5

GGQ87 -378.393 -0.448 -1.883 1.573 8.211 0 7 6 1

GGQ88 -655.215 0.341 -1.495 5.525 1.077 3 19 17 3

GGQ89 227.843 1.675 0.719 0.072 2.310 69 99 15 2

GGQ90 -452.535 -1.217 -1.600 2.019 1.132 2 16 1 0

GGQ91 -560.585 1.658 0.803 3.671 1.967 0 2 22 3

GGQ92 -527.449 -1.738 -0.342 2.743 0.732 3 38 0 1

GGQ93 -517.305 1.715 -1.005 2.848 1.334 0 0 15 2

GGQ94 -524.773 -1.284 -2.068 3.191 3.714 2 16 9 1

GGQ95 -641.756 0.897 -0.657 5.582 2.344 0 5 26 4

GGQ96 -378.337 -0.190 0.488 1.491 2.239 0 4 11 1

GGQ97 -357.932 2.117 0.130 1.388 3.887 1 5 25 1

GGQ98 -324.076 -0.583 -0.503 0.966 0.637 0 9 2 0

GGQ99 -309.508 0.153 1.475 1.096 4.522 0 5 14 1

GGQ100 -512.432 -0.120 -0.797 2.641 0.912 2 13 5 1

SUM 320 1107 1035 220
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Table 4.2: Summary of the results in Tables 4.1 and A.6.

Progbis Prognr BFGS NeIder-Mead

n= 200

Total number of failures 320 1107 1035 220

Total number of "non-global maxima" 290 210 1035 179

Total number of reported errors 30 897 0 0

Total number of -Inf 0 0 0 41

n = 500

Total number of failures 168 949 766 136

Total number of "non-global maxima" 140 115 766 86

Total number of reported errors 28 834 0 0

Total number of -Inf 0 0 0 50

4.2.2 Interpretation of the Results

Our underlying thesis is that, computationally, MLE for p-parameter parametric distributions,

where p is small to moderate, say p = 3,4,5,6, is generally straightforward. Since Nelder-Mead

performance was the best among the optimisation algorithms for estimating the three- and four-

parameter cases, we will use it to estimate the five- and six-parameter cases as well, later on in

the thesis. One should take care that one is working with a sensible parameterisation in which

the parameters are clearly identifiable (which often corresponds to being clearly interpretable).

And yes, away from the very special cases of exponential families and simple location-scale

models, likelihoods are not concave and may have local maxima. The existence of more than

one substantial local maximum and/or of local maxima close to the global maximum can cause

problems. But, in our substantial simulation experience, the GG distribution is one for which
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neither of these circumstances arises - GG likelihoods appear to have a clear global maximum

with any local maxima being much smaller and distant. Reasonable maximisation algorithms

therefore find the global maximum 90% of the time or more, typically, and much more of the

time in some cases. This leads to the simple strategy of running, say, our program or the BFGS

method (or even a mix of the two) from a small number, m, of randomly chosen sets of starting

values resulting in almost guaranteed location of the global ML estimate. You can think of

running the algorithms as independent Bernoulli trials with the probability of success p = 0.9.

For example, m = 5 independent Bernoulli trials with p = 0.9 give p(O) = 0.00001, m = 10

such give p(O) = 0.0000000001, where p(O) is the probability that the ML value obtained in the

runs corresponding to the 'trials' is not the global maximum. Alternatively, instead of fixing

m, the number of intial values to a small number, such as 4 or 5, one could simply run the

algorithm from different initial points until one gets i. say 3, equal values of the maximised

likelihood. Hence our claim that, despite other assertions in the literature to the contrary, the

GG distribution is actually one for which ML estimation is - in a computational sense - quite

straightforward and reliable.

The previous concluding results, concerning the reliability of MLE of the GG distribution,

allow us to move further in our study into model selection where the best GG model is chosen.

After identifying a convenient distribution for given data, a crucial task is then to find the best

subset of the model that fits the data. The LRT, which we will use to compare the likelihoods of

the different GG models, is appropriate in this case. A detailed demonstration of the procedure

we follow for model selection is given in the next section.
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4.3 Likelihood Ratio Test for Choosing the Best Subset

of the GG Family

Knowing that MLE of the three-, four-, five- and six-parameter GG is manageable and quite

straightforward, we wish to choose the appropriate subset of the GG family that best fits

given data. Obviously, a more accurate fit is obtained as the number of parameters increases.

What remains to check is whether a model with more parameters is significantly more accurate.

Otherwise, it is better to retreat to a simpler one with fewer parameters.

To test for this significance, we propose the well-known LRT which, using the usual asymptotic

normality assumptions, compares the p-parametric GG models (where p ;::: 3). For given

data, we denote the loglikelihoods of the three-, four-, five- and six-parameter GG by L3, L4,

L5 and L6 respectively. We start by computing the test statistic Dl = 2(L6 - L5). The

probability distribution of this test statistic can be approximated by a chi-square distribution

with (df! - df2) degrees of freedom, where df! and df2 are the degrees of freedom of the

six-parameter and five-parameter models respectively. In this case, this will be the X~ whose

95% quantile is approximately 3.84. Therefore, with a 5% level of significance, if Dl > 3.84

we conclude that a six-parameter model is required, otherwise, we compute D2 = 2(L5 - L4).

Similarly to what we did before, if D2 > 3.84, we conclude that a five-parameter model is

required, otherwise, we compute D3 = 2(L4 - L3). If D3 > 3.84, a four-parameter model is

suggested, otherwise, a three-parameter one is considered enough.

Knowing the appropriate subset of the GG family for given data, we can then move to

plotting the corresponding estimated quantiles and later on the confidence bands around them

as will be shown in Section 4.5.
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4.4 Asymptotics of the Four-, Five- and Six-Parameter

GG ML Estimates

In the four-parameter GG, as explained in item 1 of Section 3.4, the parameters to be estimated

are a, b, a and k. The model is dependent on a covariate X through J.L = a + bX. Referring

to the four-parameter GG loglikelihood equation (4.1) and the corresponding score equations

(4.8), (4.10), (4.11) and (4.12) and similarly to the three-parameter case, we find that the

components of the Fisher information matrix at the ML estimates are

E(_8
2l) n

= _.
8a2 u2 '

( 8
2l) nX

E - 8a8b - _.u2 '

( 8
2l) n

E --- - 2/l(k);8a8u a

( 8
2l) n

E - 8a8k - - 12(k);a

( 8
2l) nX2

E -8b2 - -_.
u2 '

( 821) nX
E - 8b8u - -2/l(k);a

( 821) nX h(k);E - 8b8k - o

E (_ 821) n
- 2g1(k);8u2 a

( 821) n
E - 8u8k - -g2(k);

a

( 821) ng3(k).E -8k2 -

Being the inverse of the information matrix, it turns out that the covariance matrix is indepen-

dent of a and b.

We now move to the five-parameter case where a is also dependent on X through a =

exp(c + dX). The parameters are now a, b, c, d and k, leading to a (5 x 5) information matrix

whose components at the ML estimates turn out to be
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E (_ (Pi)
Ba2

( B2i)E --BaBe

E (-Bab
2

a
ie) = /t(k) ~ Xi .f::. exp( e+ dXi) ,

Finally, in the six-parameter GG, in additional to the other parameters, the shape parameter

k is dependent on X through k = exp(f +gX). By transitivity, r(k, q) is also dependent on X.

The six parameters to be estimated are a, b, e, d, f and 9 and the components of the Fisher

information matrix at the ML estimates are



CHAPTER 4. PQR WITH CC II - ESTIMATION 86

E (_ (21) n ( 1 )2= ~ exp(e + dXi) ;aa2

( (
21) n ( 1 ) 2E -aaab = ~ Xi exp(e + dXi) ;

( (
21) t,{exp(c ~ dXi)!I(ex

p(f + 9Xi))};E -- =aa8c
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2
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( a
2
[) 1 n { 1 }
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( 8
2l) n

E - 8d8g L {xl exp(f + gXi)g2(exp(f + gXi))} ;

i=l

E(-~) n

= L {exp(2/ + 2gXi)g3(exp(J + gXi))} ;
812 i=l

( 8
2
[)

n

E - B/Bg = L {Xiexp(2/ + 2gXi)g3(exp(f + gXi))} ;

i=l

E (_ 8
2l) n

= L {xi exp(2/ + 2gXi)g3(exp(J + gXi))} ;8g2
i=l

Given the form of the information matrix in all of the four-, five- and six-parameter cases we

deduce the asymptotic covariance and correlation matrices. We use the covariance matrix to

compute confidence bands around the quantiles, numerically.

4.5 Confidence Intervals for the Quantile Curves

Knowing the expressions of the quantile functions tq (and Yq) in the three-, four-, five- and six-

parameter case-scenarios, we aim to fit confidence bands for them around the estimated quantile

functions. This is done using the asymptotic results of the GG ML parameter estimates (from

Sections 2.6 and 4.4). We note that these are pointwise confidence bands calculated at every

Xi, i = 1, ...,n.

Recall that

tq ~ cxp(/l) (r(~q)rv'k (4.13)

and

r: (r(k, q))Yq = jl + cry IC log k ' (4.14)

where jl, a and k are the location, scale and shape parameters respectively that will be linked

to the covariate.

Let A be the vector of first derivatives of tq with respect to the GG parameters. Denote by

A and t; the estimates of A and tq respectively, obtained when replacing the GG parameters
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by their ML estimates. It is known, using the delta method (explained in Davison (2003)),

that the asymptotic expectation and variance of t~ are respectively tp and ATI-1 A, where I

is the Fisher information matrix. The variance is usually estimated by ATI-1A. Denote the

variance of tq by ~ and its estimate by E. Then, using the Central Limit Theorem and the

asymptotic normality assumptions, expressions for the 95% and 99% confidence intervals for

tq are respectively [fq - 1.96h, t~+ 1.96v'E] and [t~ - 2.575h, t~+ 2.575v'E]. A similar

argument holds for the confidence intervals of Yq. 1-1 can be found by inverting the Fisher

information matrix whose expressions for the three-, four-, five- and six-parameter CC are

given in Sections 2.6 and 4.4. It remains to find A, the vector of derivatives.

As stated in Section 3.3, the qth quantile of the gamma distribution, r(k, q), is the inverse

of the distribution function at q which turns out to be the inverse of the regularised gamma

function satisfying

rr(k,q)(k)
r(k) = q.

Notation:

• P(k r(k q)) _ rr(k,q)(k), , - f(k) •

~• rk = 8k .

• PlO(k r(k q)) = 8P(k,r(k,q)) and POl(k r(k q)) _ 8P(k,r(k,q))" 8k ' , - 8r(k,q) .

• r, = 8r(tl'q) and rg = 8r(h~g,q) (in the six-parameter case when k = exp(J + gX)).

We know that for known k, P(k, r(k, q)) = q. Differentiating this equation with respect to k

on both sides, we obtain

plO(k, r(k, q)) + rkp01(k, r(k, q)) = 0,
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where

lO( ( )) _ J;(k,q) log(t)tk-1e-tdt - 't/J(k)rr(k,q)(k)
P k.r k,q - r(k)

and

(k )k-l -r(k q)
P01(k (k )) = T ,q e '

,T ,q r(k).

It therefore turns out that

PlO(k, T(k, q))
P01(k, T(k, q))

1/J(k)rr(k,q)(k) - J;(k,q) log(t)tk-1e-tdt
= rtk; q)k-le-r(k,q)

In the six-parameter case when k = exp(f + gx),

1/J(exp(f + gx))rr(f )(exp (f + gx)) - rr(f,g,q) log(t)texp(f+gx)-le-tdt
T = exp (f + gx) ,g,q Jof T(f, g, q)exp(f+gx)-le-r(f,g,q) .

and

"o = XTf.

We deduce that expressions for A, the vector of first derivatives of tq, for the three-, four-,

five- and six-parameter GG are

• The three-parameter case:

exp(JL) (r(:,q») uv'k

A = v'k exp(JL) (r(~q) rv'k log (r(~q»)

U exp(u) (r(~q») uVk {~log (r(~q») + k;(k~;)~) }
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• The four-parameter case:

A=

( )
CTv'k

exp( a + bx) r(~q)

( )
CTv'k

x exp(a + bx) r(~q)

v'k exp( a + bx) (r(~q)) uv'k log ( r{~,q) )

uexp(a+bx) (~)CTv'k{ 1 log (~) + krk-r~)}
k M k r(k,q) k

• The five-parameter case:

(
~) v'k exp(c+dx)

exp(a + bx) k

(
~) v'kexp(c+dx)

xexp(a + bx) r k

A = v'k exp( a + bx) (r(~,q») v'kexp(c+dx) log (r(~q») exp (c+ dx)

xv'k exp(a + bx) (r(~q») v'kexp(c+dx) log (r(~q») exp (c + dx)

exp (a + bx + c + dx) (~) v'kexp(c+dx) { 1 log (~) + krk-r(Jt)}
k M k r(k,q) k

• The six-parameter case:

A=

exp(a + bx) ( r(f,g,q) ) E
exp(f+gx)

x exp(a + bx) ( r{[,g,q) ) E
exp(f+gx)

E exp(a + bx) ( r(f,g,q) ) E log ( r(J,9,q) )
exp(f+gx) exp(f+gx)

xE exp(a + bx) ( r(J,g,q) ) E log ( r(J,g,q) )
exp(f+gx) exp(f+gx)

E exp(a + bx) ( r(f,g,q) ) E {!(log(r(f 9 q)) - f _ gx) + rrr(f,g,q)}
exp(f+gx) 2 ' , r(f,g,q)

xEexp(a+bx) ( r(f,g,q) )E{!(log(r(f 9 q)) -f-gx)+ ry-r(f,g,q)}
exp(f+gx) 2 ' , r(f,g,q)

where E = exp (c+ dx + 1/2{/ + gx)).

We now have all the components for plotting the confidence bands for the quantilcs of a three-,

four-, five- and six-parameter GG.
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4.6 Goodness-of-Fit Test for the GG Model

Following model identification, parameter estimation and model selection, the final stage in our

overall package is to test the goodness of the fitted model. In this case, the main question is:

How good a fit is our GG model?

To answer this question, we will benefit from the fact that QR allows for the fitting of

quantiles at every percentile covering the whole range of the data. These curves represent,

ideally, the best fit at every percentile. Ideally, lODj% of the data should lie between the

qth and (q + j)th quantile. For our goodness-of-fit test, we consider five main quantiles: q =

{D.l, 0.25, D.5, D.75, D.9}. These quantiles divide the data into six regions. Denote by rn, and

m" l = 1, ... ,6, the observed and expected number of data points in each of the six regions. If

n is the sample size, obviously ml = D.ln, m2 = O.15n, m3 = O.25n, m4 = 0.25n, ms = 0.15n

and m6 = O.ln.

Based on the X2 goodness-of-fit test, we propose the following test statistic

6 (A )2T=L m,-m,
1=1 m, (4.l5)

In a simulation study we present later in Section 5.2, we show that, approximately,

3
T = :te, where e f'V X~ or T f'V G(fJ = 1.5, k = 2).

Note that we were not able to prove this result theoretically. It is based merely on computational

evidence obtained from the simulations. We use this result to test the goodness-of-fit of the GG

model. The 95% quantile of a G(fJ = 1.5, k = 2} is approximately 7.12. Therefore, at a O.05levcl

of significance, if T > 7.12, we reject the fact that the GG is a good fit, otherwise, we conclude

that the GG is a good model. Similarly, at a O.Ollevel of significance the rejection criterion is

T > 9.96. A possible improvement to the test, that we may explore in the future (but haven't

done in this thesis), may be achieved by splitting up the region considered by the covariate as
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well as the quantilcs. Dividing the abscissa axis into regions and computing residuals might

allow a more accurate test and a better scope for modifying the null hypothesis.



Chapter 5

Simulation Study

In this chapter, we validate, via simulations, some of the theoretical and methodological work

proposed throughout the thesis. Two simulation studies are presented and summary results

are given. In the first study we apply the different steps of the modeling package suggested

in Chapter 1 to an overall collection of 1600 data sets simulated from the three-, four-, five-

and six-parameter GG (400 from each). For each data set, LRTs are conducted to choose the

best GG model from within the family. On that basis, quantile curves and confidence bands

are plotted. It is shown that the quantile curves lie within their CIs most of the time and that

the relative biases and squared errors of the estimated parameters and quantiles are reasonably

small. In the second study, using the same three-, four-, five- and six-parameter data sets of

the first study, we validate via simulations the goodness-of-fit test suggested in Section 4.6.

5.1 LRTs, Quantiles, Confidence Bands, Biases and Mean

Squared Errors for GG Simulations

In this simulation study, for each of the three-, four-, five- and six-parameter GC distributions,

we addressed four different situations (coming from four different sets of parameters) by gen-

erating 100 data sets from each and analysing the results in the context of QR. In total we

explored 16 case-scenarios using 1600 data sets. The parameters of the models estimated from

93
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the data sets were estimated using four different sets of initial parameters each including ten

groups of parameters used as initial values. Among the ten repetitions, we consider the highest

likelihood attained as being the ML and we find the corresponding estimates.

On the one hand, pretending that we don't know the actual number of parameters from

which each data set was simulated, we conduct LRTs to test for the number of parameters and

we find the proportion of times the obtained results match with the reality. Based on the results

from the LRTs concerning the number of parameters to be used, we estimate the corresponding

GG parameters using MLE. Then, accordingly, we compute the estimated quantile curves. We

call this the "LRT Version". For each estimated quantile curve corresponding to each ofthe 100

data sets coming from one of the case-scenarios, we plot CIs and find what proportion of the

true quantile lies within the CIs, then we average over the hundred data sets. Ideally, for 95%

CIs, we should obviously expect the true quantiles to lie within the CIs 95% of the time.

On the other hand, we repeat the same mechanism while using, this time, the actual

(true) number of parameters from which each data set was simulated originally, rather than

the one obtained from the LRT. We refer to this as the "Known p Version".

Finally, we compare between both approaches the proportion of time the true quantiles

lie within the CIs. We would like the results obtained from the former to be as close as possible

to the latter. We divide this study into four subsections. In the first one, we present the 16

case-scenarios of parameters used to simulate the data sets. Secondly, we display and discuss

the LRT results. Thirdly, we analyse the closeness of the estimated values of the parameters to

the known ones. Lastly, we study how the estimates affect the shapes of the quantiles, reporting

the percentage of times these quantilcs lie within their CIs. Table 5.1 displays all the notations

used in the tables of this section along with their explanation.
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Table 5.1: Explanation of the notations in the tables of Section 5.3.

Notation Explanation

D5l, D52, D53, D54

Data sets of the four case-scenarios from the

three-parameter GG. Each one comprises

100 simulated data sets.

Data sets of the four case-scenarios from the

four-parameter GG. Each one comprises

100 simulated data sets.

Data sets of the four case-scenarios from the

five-parameter CG. Each one comprises

100 simulated data sets.

Data sets of the four case-scenarios from the

six-parameter GC. Each one comprises

100 simulated data sets.

N3, N4, N5, N6 Number of times the LRT predicts

D3l, D32, D33, D34

D4l, D42, D43, D44

D6l, D62, D63, D64

a three-, four-, five- or six-parameter CC respectively

Known p Version Reported results taking into consideration the real

number of parameter from which data was simulated.

LRT Version Reported results taking into consideration

the number of parameter predicted by the LRT.

qO.l, qO.25, qO.5, qO.75, qO.9 10%, 25%, 50%, 75% and 90% quantiles respectively

biasa, biasb, biasc, biasd, biasf, Mean relative bias of a, b, c, d, I, g,

biasg, biasmu, biassigma, biask IL, (7, and k respectively

msea, mseb, msec, msed, msef, Square root of the mean relative squared error of

mseg, msemu, msesigma, msek a, b, c, d, I, g, IL, (7, and k respectively

mrbias , mrse Pointwise mean relative bias and root mean relative

squared error of the quantiles, respectively

CI95prop, CI99prop Proportion of times the estimated quantiles lie

within their 95% and 99% CIs respectively



CHAPTER 5. SIMULATION STUDY 96

5.1.1 Data Sets

The 16 cases of parameters were chosen in a way to cover most scenarios a GG can portray.

Tables 5.2, 5.3, 5.4 and 5.5 present respectively the four scenarios of parameters from which each

of the three-, four-, five- and six-parameter GG data sets were generated. Note that 100 data

sets were simulated from each of the 16 parameter cases. The four-, five- and six-parameter

cases depend on a covariate, say X, which we make uniformly distributed over the interval

(0,1). A different covariate was simulated for each data set of the four-, five- and six-parameter

case-scenarios. For each of those case-scenarios, we make accordingly (one or more of) the

parameters dependent on the corresponding covariate and we calculate the corresponding (), et

and {3. Using those, we then simulate the data sets as explained in Section 2.2 by considering

the 1/ {3th power of a gamma distribution. In the three-parameter case, we tackle situations

where a < 1 (D32) as well as a > 1 (D31, D33 and D34) which reflect respectively one- and

two-tailed GG pdfs. The parameters are also chosen in a way so as to deal with data sets that

have fairly large values (D32) as well as ones that take only smaller values (D31, D33 and D34).

In this context, we deal with highly-dispersed and non-highly-dispersed data as well. In the

four-parameter case scenarios, data is dependent on a covariate. We deal with various cases such

as when the quantiles are increasing (b > 0 in D42 and D43) or decreasing (b < 0 in D42 and

D44). We also make sure that the parameters cover a large range of values from relatively small

(e.g. b = -0.1 in D42) to relatively large (e.g. k = 5 in D43). Similarly, in the five-parameter

case-scenarios, we cover a reasonably wide range of values for each parameter making sure at

the same time that most different quantile shapes are covered. We take different combinations

of positive and negative parameters band d which result in monotone and unimodal quantiles.

Likewise, in the six-parameter case, we make sure that the four case-scenarios address situations

with monotone, unimodal and bimodal quantiles.
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Table 5.2: Parameters used to generate the four case-scenarios of the three-parameter GG.

IL a k () et j3

D31 -1.6 0.50 0.5 0.258 1.414 2.828

D32 4.5 2.80 2.0 5.785 0.505 0.253

D33 -1.0 0.35 5.0 0.104 6.389 1.278

D34 0.5 1.00 3.0 0.246 1.732 0.577

Table 5.3: Parameters used to generate the four case-scenarios of the four-parameter GG.

a b a k

D41 1.5 0.5 0.75 0.2

D42 5.0 -0.1 1.00 1.5

D43 0.2 7.0 1.50 5.0

D44 -1.0 -2.0 2.00 4.0

Table 5.4: Parameters used to generate the four case-scenarios of the five-parameter GG.

a b c d k

D5l 6.0 -0.4 -2.5 0.8 1.50

D52 3.0 0.5 -0.1 -0.5 3.00

D53 1.0 -0.1 -1.5 -2.0 0.75

D54 -1.5 -6.0 0.5 1.5 4.00

Table 5.5: Parameters used to generate the four case-scenarios of the six-parameter GG.

a b c d f 9

D61 0.5 5.00 1.00 -0.75 4.0 1.5

D62 -2.0 -0.75 -0.50 -4.00 -0.2 -1.0

D63 2.0 -1.50 0.25 0.10 -3.0 5.0

D64 3.0 0.10 -5.00 1.50 2.0 -4.0
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5.1.2 Performance of the Likelihood Ratio Tests

As already mentioned, LRTs are applied to each of the 1600 data sets. Table 5.6 displays the

number of parameters reported by the LRTs for each of the 16 case-scenarios. Each of the

16 columns presents the proportion of times each of the hundred data sets (coming from one

of the 16 case scenarios) are reported to come from a three-, four-, five- or six-parameter GG

by the LRT. All four case-scenarios of the three-parameter GG were reported as having three

parameters at an average of 86% of the time for n = 200 and 84.5% for n = 500. The reason for

that is D32 where the true number of parameters is reported more times in the n = 200 than

in the n = 500. We suspect that this is due to the randomness of the simulation process. The

four-parameter GG case-scenarios were reported as having four parameters most of the time in

D41, D43 and D44. The only exception is D42 which is reported as being a three-parameter GG

88% of the time for n = 200 and 81% of the time for n = 500. Looking back at the parameters

used to generate D42, we find that b = -0.1 which is relatively close to zero. This difference

from zero could not be picked up in LRT terms, hence the result. This suggests that the three-

and four-parameter GG are very similar in this case and should give very similar results, so

the LRT performance provides us with no practical problem. The LRT reports five parameters

most of the time for the five-parameter GG (89.5% on average for n = 200 and 95.24% on

average for n = 500). Very rarely were three or four parameters reported. Finally, in the

six-parameter GG case-scenarios, D63 and D64 were reported as having six parameters most

of the time, whereas D61 and D62 were reported as having five parameters mostly. Looking at

the quantile shapes in the latter two cases, we don't observe any bimodalities in (0,1). They

can be obtained using a five-parameter GG which made the LRT predict this model. Choosing

a reasonable five-parameter model by the LRT when, in reality a six-parameter model is the

true one, is shown later to have not affected the quality of estimation.
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In all, we did not find any noticeable differences between the n = 200 and n = 500 cases.

However, from this analysis, questions especially concerning the situations where the LRT did

not report the expected number of parameters should be addressed: How does that affect the

estimated quantiles which is reflected in the first place by the estimated parameters? Generally,

in both the "Known p Version" and the "LRT Version", how good are the results?

5.1.3 Analysis of the "LRT Version" and the "Known p Version"

In this analysis, we compare the estimated parameters to the true ones (from which data was

simulated) for each of the "LRT Version" and the "Known p Version". For each data set of the

16 case-scenarios, we compute two statistics: the component of the relative bias given by

(Estimated Parameter - Real Parameter)
Real Parameter

and the component of the relative squared error

(
Estimated Parameter - Real parameter)2

Real Parameter

and we average over the 100 data sets from every case-scenario. We then take the square root

of the mean relative squared error. This is straightforward in the "Known p Version" because

the number of estimated parameters is the same as the true number of parameters. A few

alterations are done in the "LRT Version" when the predicted number of estimated parameters

differs from the true one. If the number of predicted parameters is greater than the true one, the

actual bias and the squared error of the extra estimated parameter are given by the averages of

(Estimated Parameter) and (Estimated Parometer'[", the latter square-rooted, respectively.

If the true number of parameters is greater than the predicted one, the relative bias and the

relative squared error for the extra real parameter are given by the averages of the relative

quantities where 0 is entered in the place of the (Estimated Parameter). It remains to say
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that, always, the estimated parameters arc compared to the real ones, the latter ones taken as

reference, hence the order of parameters in the "LRT Version" of the tables of results.

For n = 200, Tables 5.7, 5.8, 5.9 and 5.10 report the mean relative biases and the square

root of the mean relative squared errors of the parameters for each of the three-, four-, five-

and six-parameter CC simulations respectively. This is given for both the "LRT Version" and

the "Known p Version". The analogues of those table for the n = 500 case are given in Tables

A.7, A.8, A.9 and A.lO of the Appendix.

Analysing those results, we realise that generally the mean relative biases and the root

mean relative squared errors are quite small. For most of the cases, the "Known p Version" is

slightly better than the "LRT Version", though the difference is very small. Also, there is very

little difference between the n = 200 and n = 500 cases. Although the n = 500 case has slightly

smaller biases and errors, our method still performs well in the n = 200 case inferring that the

approach still works reasonably well for smaller-size data sets. Of particular interest is that

D42, D6l and D62 behave fairly well. Even though the LRT failed to predict the right number

of parameters for those data sets, it still managed to predict a reasonable model. In rare cases,

we notice large values in the tables. For example, "msek" and "biask" are quite large sometimes

in Table 5.7 for D33 and D34. This reflects the fairly rare failure of the GG to accurately

estimate k when k is relatively large, as the shape of the distribution only slightly changes

when k approaches infinity. We do not observe a noticeable greater/less number of positive or

negative biases in general which means that there is no systematic over/under-estimation.

Having compared the estimated and true parameters for both versions, we move now to

find out, most importantly, the effect of those results on the quantile shapes and hence on the

overall model. This was done for all data sets of the four case-scenarios of which we display the

results of D32, D42, D54 and D62 in the next section.
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Table 5.7: Mean relative bias (biasmu, biassigma, biask, biasb, biasd, biasg) and root mean

relative squared error (msemu, msesigma, msek, mseb, msed, mseg) of the estimated parameters

of the three-parameter GG data sets for n = 200. In the case of b, d and 9 in the "LRT Version"

'relative' is replaced by 'actual'.

Known p Version

D31 D32 D33 D34

biasmu -0.008 0.000 -0.003 -0.004

msemu 0.039 0.070 0.037 0.212

biassigma -0.024 -0.012 -0.005 -0.003

msesigma 0.087 0.069 0.055 0.061

biask 0.036 0.209 1.251 0.844

msek 0.340 0.915 4.812 2.358

LRT Version

biasmu -0.009 -0.008 -0.010 -0.020

msemu 0.068 0.088 0.063 0.290

biassigma -0.029 -0.013 -0.010 0.005

msesigma 0.125 0.076 0.093 0.096

biask 0.058 1.301 1.882 1.790

msek 0.532 8.434 6.407 7.171

biasb -0.003 0.068 -0.014 0.015

mseb 0.176 0.493 0.100 0.194

biasd 0.009 -0.001 0.006 -0.020

msed 0.210 0.082 0.135 0.143

biasg 0.093 -0.065 0.118 -0.040

mseg 0.847 0.932 1.622 1.129
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Table 5.8: Mean relative bias (biasa, biasb, biassigma, biask, biasd, biasg) and root mean

relative squared error (msea, mseb, msesigma, msek, msed, mseg) of the estimated parameters

of the four-parameter GG data sets for n = 200. In the case of d and 9 in the "LRT Version"

'relative' is replaced by 'actual'.

Known p Version

D41 D42 D43 D44

biasa 0.010 0.000 0.034 -0.002

msea 0.104 0.036 1.178 0.271

biasb 0.070 0.085 0.005 0.007

mseb 0.381 2.664 0.049 0.227

biassigma -0.058 -0.009 -0.022 -0.013

msesigma 0.136 0.049 0.058 0.060

biask -0.070 0.161 1.505 1.000

msck 0.314 0.607 5.554 4.004

LRT Version

biasa 0.022 -0.006 0.071 0.009

msca 0.125 0.029 1.184 0.294

biasb -0.024 -0.548 0.003 -0.006

mseb 0.618 1.837 0.051 0.276

biassigma -0.043 0.001 -0.027 -0.016

mscsigma 0.179 0.068 0.080 0.080

biask -0.023 0.162 1.503 1.223

msek 0.455 0.591 5.567 4.250

biasd -0.012 -0.013 0.009 0.004

msed 0.246 0.101 0.113 0.113

biasg 0.012 0.000 0.108 -0.087

mseg 0.573 0.000 0.765 0.908
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Table 5.9: Mean relative bias (biasa, biasb, biasc, biasd, biask, biasg) and root mean relative

squared error (msea, mseb, msec, msed, msek, mseg) of the estimated parameters of the five-

parameter GG data sets for n = 200. In the case of 9 in the "LRT Version" 'relative' is replaced

by 'actual'.

Known p Version

D51 D52 D53 D54

biasa 0.000 0.002 0.001 -0.012

msea 0.003 0.049 0.021 0.256

biasb 0.004 -0.028 -0.003 0.029

mseb 0.078 0.387 0.225 0.182

biasc 0.000 0.206 0.017 -0.079

msec 0.048 1.126 0.084 0.232

biasd 0.002 0.001 0.003 0.025

msed 0.250 0.382 0.091 0.127

biask 0.346 1.022 0.036 1.117

msek 1.210 5.170 0.353 3.915

LRT Version

biasa -0.001 0.006 0.000 -0.004

msea 0.003 0.055 0.023 0.264

biasb -0.008 -0.076 -0.020 0.024

mseb 0.097 0.473 0.263 0.187

biasc -0.002 0.451 0.013 -0.079

msec 0.053 1.514 0.085 0.234

biasd -0.019 -0.094 0.015 0.023

msed 0.286 0.532 0.106 0.129

biask 2.541 1.450 0.180 1.917

msek 12.239 6.653 1.030 6.368

biasg -0.255 -0.032 -0.114 -0.114

mseg 1.274 0.883 0.702 0.918
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Table 5.10: Mean relative bias (biasa, biasb, biasc, biasd, biasf, biasg) and root mean relative

squared error (msea, mseb, mscc, msed, msef, mseg) of the six-parameter GG data sets for

n = 200.

Known p Version

D61 D62 D63 D64

biasa 0.293 -0.003 0.040 0.000

msea 0.833 0.014 0.237 0.001

biasb -0.002 0.009 0.069 0.000

mseb 0.109 0.039 0.455 0.061

biasc -0.036 0.027 -0.438 0.004

mscc 0.108 0.265 1.256 0.026

biasd -0.023 0.013 0.901 -0.027

msed 0.244 0.074 4.201 0.187

biasf -0.179 0.296 0.082 0.046

msef 0.450 2.799 0.263 0.570

biasg -0.764 0.025 0.093 0.052

mscg 1.846 1.003 0.315 0.355

LRT Version

biasa 0.175 -0.002 0.040 0.000

msca 0.711 0.014 0.237 0.001

biasb 0.009 0.008 0.069 -0.004

mseb 0.090 0.038 0.455 0.063

biasc -0.033 0.057 -0.438 0.006

mscc 0.106 0.260 1.256 0.026

biasd -0.024 -0.006 0.901 -0.010

msed 0.248 0.071 4.201 0.181

biasf -0.047 1.153 0.082 0.001

msef 0.314 2.831 0.263 0.608

biasg -1.000 -0.448 0.093 0.009

mseg 1.000 1.111 0.315 0.403
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5.1.4 Analysis of D32, D42, D54 and D62

In this subsection, we select four of the 16 simulated case-scenarios to discuss more closely.

These are D32, D42, D54 and D62 for which we display respectively in Figures 5.1,5.2,5.3 and

5.4 a plot of the true underlying 10%, 25%, 50%, 75%, and 90% quantile curves. To each one

of these figures (which in fact represents a set of quantiles that fit corresponding data) we use

the predicted results of the LRT to estimate the parameters of every simulation.

The LRT results and the estimated parameters were discussed in the previous two sub-

sections. It remains to see how these affect the estimated quantiles. For that, we calculate

the mean relative biases and the square root of the mean relative squared errors between the

estimated and the real quantiles as follows.

Consider first a certain data set from one of the case-scenarios, say the first data set from

D31. Also, consider a certain quantile of the data set, say the 10% quantile, and a sequence

of points ni = ni-l + 0.001, i = 1, ... , 1000 where no = O. For each point of abscissa ni,

i = 1, ... , 1000, we calculate the corresponding true and estimated quantiles for each of the

"LRT Version" and the "Known p Version", then we deduce the component of the relative bias

given by

(Estimated Quantile - Real Quantile)
Real Quantile

and the component of the relative squared error

(
Estimated Quantile - Real Quantile)2

Real Quantile

and we average over the 1000 points. We repeat the same procedure for the 100 data sets of

D3l and we average again the obtained 100 mean relative biases and mean relative squared

errors over the 100 data sets to get respectively "mrbias" and "mrse", the latter square rooted.
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We then obtain the confidence bands around the estimated quantiles and check what

proportion of the true quantiles lies within the corresponding CIs. As the CIs are pointwise,

we consider the sequence of points ni, i = 1, ... , 1000, on the true quantilcs and find out what

proportion of those 1000 points are within the points (of same abscissa) on the confidence

bands. This is also done for each of the 100 data sets of the given case-scenario. An average

of the 100 proportions is then obtained. This procedure is then repeated for all case-scenarios

D31, D32, ... , D64. The results for each of D32, D42, D54 and D62 when n = 500 are displayed

in Tables 5.11, 5.12, 5.13 and 5.14 respectively.

Figure 5.1 of D32 shows highly dispersed quantiles. In its corresponding Table 5.11 of

results, "mrbias" and "mrse" are quite small. Also, about 95% of the time the real quantiles

lie within their 95% confidence bands on average and similarly for the 99% confidence bands.

This pattern almost repeats itself in the other tables. In Table 5.12 which corresponds to

the decreasing quantiles of D42, the "Known p Version" slightly over-estimates "CI95prop" and

"CI99prop" compared with the "LRT Version" which shows slight under-estimation. In Table

5.13, "mrbias" and "mrse" are slightly higher than in other tables. This is due to the quantile

shapes where the 90% quantile has a strong minimum while the 10%, 25%, 50% and 75%

quantiles are monotone decreasing. "CI95prop" and "CI99prop" are slightly (though reasonably)

under-estimated. Table 5.14 corresponds to the monotone and unimodal quantilcs of D62.

Similarly to D42, the 'Known p Version" slightly over-estimates "CI95prop" and "CI99prop",

whereas in the "LRT Version" we observe a slight under-estimation. Noticeably, "mrbias" and

"mrse" are generally very small. Also, any biases or large variances in parameter estimation

seem not to have a great effect on the quality of quantile estimation. Particularly, large relative

mean squared errors of k don't seem to have a noticeable negative influence on the results since

this corresponds to distributions, and hence quantiles, that are similar over a broad range of k.



CHAPTER 5. SIMULATION STUDY 108

Figure 5.1: 10%, 25%, 50%, 75%, and 90% quantile curves underlying D32.

Table 5.11: Mean relative bias (mrbias) and root mean relative squared error (mrse) of quantiles

and proportions of the real quantiles inside the confidence bands for D32 when n = 500.

Data32

mrbias mrse CI95prop CI99prop

Known p Version

qO.1 0.065 0.079 0.95 0.99

qO.25 0.030 0.034 0.96 1.00

qO.5 0.013 0.021 0.94 1.00

qO.75 0.005 0.018 0.94 0.98

qO.9 0.004 0.022 0.92 0.99

LRT version

qO.1 0.078 0.337 0.958 0.979

qO.25 0.039 0.224 0.946 0.990

qO.5 0.018 0.183 0.932 0.990

qO.75 0.007 0.165 0.926 0.980

qO.9 0.006 0.177 0.897 0.976
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Figure 5.2: 10%, 25%, 50%, 75%, and 90% quantile curves underlying D42.

Table 5.12: Mean relative bias (mrbias) and root mean relative squared error (mrse) of quantiles

and proportions of the real quantiles inside the confidence bands for D42 when n = 500.

Data42

mrbias mrse CI95prop CI99prop

Known p Version

qO.1 0.018 0.011 0.973 0.999

qO.25 0.011 0.006 0.969 0.992

qO.5 0.004 0.004 0.965 0.991

qO.75 -0.001 0.004 0.964 0.988

qO.9 -0.004 0.004 0.928 0.984

LRT version

qO.l 0.019 0.116 0.950 0.997

qO.25 0.010 0.080 0.934 0.985

qO.5 0.004 0.066 0.924 0.980

qO.75 -0.001 0.059 0.921 0.975

qO.9 -0.004 0.063 0.886 0.963
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Figure 5.3: 10%, 25%, 50%, 75%, and 90% quantile curves underlying D54.

Table 5.13: Mean relative bias (mrbias) and root mean relative squared error (mrse) of quantiles

and proportions of the real quantiles inside the confidence bands for D54 when n = 500.

Data54

mrbias mrse CI95prop CI99prop

Known p Version

qO.l 0.198 0.784 0.911 0.967

qO.25 0.100 0.457 0.932 0.975

qO.5 0.046 0.311 0.928 0.967

qO.75 0.013 0.264 0.925 0.964

qO.9 0.001 0.299 0.903 0.956

LRT version

qO.1 0.199 0.784 0.911 0.967

qO.25 0.100 0.457 0.938 0.975

qO.5 0.046 0.311 0.932 0.967

qO.75 0.014 0.265 0.925 0.964

qO.9 0.002 0.304 0.910 0.957
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Figure 5.4: 10%, 25%, 50%, 75%, and 90% quantile curves underlying D62.

Table 5.14: Mean relative bias (mrbias) and root mean relative squared error (mrse) of quantiles

and proportions of the real quantiles inside the confidence bands D62 when n = 500.

Data62

mrbias mrse CI95prop CI99prop

Known p Version

qO.1 0.010 0.003 0.977 0.991

qO.25 0.005 0.001 0.983 0.992

qO.5 0.002 0.000 0.987 0.993

qO.75 0.000 0.000 0.989 0.999

qO.9 0.000 0.000 0.992 1.000

LRT version

qO.1 0.005 0.057 0.919 0.969

qO.25 0.002 0.031 0.958 0.987

qO.5 0.000 0.016 0.930 0.982

qO.75 -0.001 0.013 0.905 0.954

qO.9 -0.002 0.017 0.927 0.972
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Overall, we deduce that the difference between the estimated and true GG models (which

is reflected through the difference between the estimated and true quantile curves) is quite

small. This is observed from the relatively small "mrbias" and "mrse" of Tables 5.11, 5.12,

5.13 and 5.14 in both the "Known p Version" and "LRT Version". We also note the possibility

that any positive and negative biases in some parameter estimates (mentioned in the previous

subsection) might cancel when combined in formulae to make quantiles. This might have been a

factor that allowed the relative biases and squared errors of the quantiles to be relatively small.

Also, we observe that the true quantiles lie within the CIs around the estimated quantiles most

of the time with about the right percentage. The (practical) "LRT Version" has performance

almost and very acceptably as good as the (practically unavailable) "Known p Version". These

are very encouraging results for the practical application of the methodology.

5.2 Computational Evidence Via Simulations of the Sug-

gested Goodness-of-Fit Test for the GG Model

In this study, the aim is to show, via simulations, that the test statistic (and its approximate

distribution) we suggested for our goodness-of-fit test in Section 4.6 is a suitable one. Knowing

that the 10%, 25%, 50%, 75%, and 90% quantile curves divide data into six regions, we recall

that this test statistic is

6 (__ )2T=L m,-m, ,
1=1 m,

where ffii and m" I = 1, ... ,6, are respectively the observed and expected number of data points

in each of the six regions.

For each of the 100 data sets in each of D3l, D32, D33, ... , D64, we compute T resulting

in S3l, S32, S33, ..., S64 respectively (each of size 100 consisting of 100 summations, of course).

To validate our claim in Section 4.6 that T tv G(8 = 1.5, k = 2), we fit by ML a gamma G(8, k)
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distribution to each of 831, 832, 833, ... , 864. We plot a default R histogram for each one

of those and using the bins from the histograms, we also perform a X2 goodness-of-fit test to

compare them with a G(O = 1.5, k = 2) and we obtain the corresponding p-values which we

denote by"Gamp-values". The ML estimates {)and k for 0 and k respectively, for each of 831,

832, 833, ... , 864, along with the "Gamp-values" are given in Table 5.15.

It is very obvious that the {)and k values are respectively approximately 1.5 and 2 for

each of 831, 832, 833, ... , 864. These results are remarkably consistent throughout the table.

This was the initial fact that lead us to think that the G(O = 1.5, k = 2) distribution is a good

approximation to the sampling distribution for T.

To support this fact and to get a better idea of how well the G(O = 1.5, k = 2) fits, we also

plot the histograms of 832, 842, 854 and 862 along with the G(O = 1.5, k = 2) pdfs in Figures

5.5, 5.6, 5.7 and 5.8 respectively. We observe that although the size of each of 831, 832,833, ... ,

864 is not very large (n = 100), the G(O = 1.5, k = 2) pdfs still fit the histograms reasonably

well. Looking back at the "Gamp-values" of 831,832, 833, ... , 864 in Table 5.15, we notice that

for a 0.05 level of significance, 10 out of 16 (62.5%) are well-estimated by a G((} = 1.5, k = 2).

For a 0.01 level of significance 81.25% are well-estimated. We failed to make the test work for

862 as the number of bins (in the corresponding histogram) was very small. The probabilities

are good enough to support our initial guess that the G(O = 1.5, k = 2) is a good fit.

For 831, 832, 833, ... , 864, the consistency of the values of the ML estimates (approxi-

mately 1.5 for {)and 2 for k), the relatively high "Gamp-values" and the observable fact that

G(O = 1.5, k = 2) fits well the histograms are three factors that lead us to conclude that

G((}= 1.5, k = 2) is a good approximation to the sampling distribution for T. Note also that

the approximate sampling distribution is independent of p.
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Table 5.15: ML estimates of the summations along with the goodness-of-fit test p-values.

0 k Camp-values

831 1.439 ...2.006 0.631

832 1.404 2.049 0.077

833 1.579 2.165 0.033

834 1.728 1.722 0.004

841 1.609 1.772 0.292

842 1.534 2.004 0.689

843 1.419 1.900 0.253

844 1.374 2.287 0.578

851 1.837 1.694 0.003

852 1.579 1.935 0.447

853 1.825 1.866 0.014

854 1.516 1.940 0.156

861 1.468 2.093 0.644

862 2.218 1.551

863 1.710 1.868 0.028

864 1.867 1.500 0.108



CHAPTER 5. SIMULATION STUDY 115

'" '"N N
,; ,;

0 0
N N
,; ,;

~
~ co ~

,; ,;
"0
C~
E ~~ ~
~ ,; ,;

'i:

:g :g
,; e

8 8
,; "

10 0 10 12 14

X X

Figure 5.5: Histogram of 832 & G(6l= 1.5, k = Figure 5.6: Histogram of 842 & G(6l= 1.5, k =

2) pdf. 2) pdf.

"'N,;
~
,;

0
N

0
,;

N

~ ,; ~
1! ~ "'~ ~ ,;~ "0

-g ,; ~..
E E ~~ e
f ~ f ,;

,;
::t: ::t:

:g :g
,; ,;

8 ~,; 0

10 10 15 20 25 30

X X

Figure 5.7: Histogram of 854 & G(6l= 1.5, k = Figure 5.8: Histogram of 862 & G(6l= 1.5, k =

2)pdf. 2)pdf.



Chapter 6

Application to Real Data

In this chapter, we apply the theoretical work underlying this thesis, that was validated via

simulations, to real-life data. We apply all five stages of the modeling package we introduced

in Chapter 1 to two data sets:

1. Water Table Depth vs Flux

2. Weight vs Height

The first data set was provided to us by Dr. Yoseph Araya from the Department of Life

Science at the Open University (United Kingdom) who made these measurements in Capetown,

South Africa. Being a geographical area that has one of the most diverse plant populations

in the world with an appropriate climate for rainfall study, South Africa is a great target for

considering water table measurements and research. Modeling water table is an important issue

knowing that water measurements reflect the world's climate change. Plotting reference charts

for such data allows scientists to class geographical areas as having water-rich soil, dry soil,

floods etc., which has a direct effect on the plant population.

The second data set was obtained from The National Health and Nutrition Examination

Survey (NHANES) in 2007-2008 which is a program of studies designed to assess the health

and nutritional status of adults and children in the United States. For more information about

116
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NHANES and how to obtain the data, refer to NHANES (2007). The survey is unique in that it

combines interviews and physical examinations. From this survey, we model the weight vs the

height of males. The issue of individuals' fitness is of great interest to society nowadays, where

there is a great need to set limiting thresholds that specify when individuals are considered as

lying in the "common range" or not. The percentiles of weight for specified height is of particular

interest in public health where upper percentiles are referenced for overweight or obesity and

the lower percentiles for underweight.

The two mentioned data sets, the former being environment-related and the latter health-

related, are studied in the light of QR in Sections 6.1 and 6.2 respectively.

6.1 Water Table Depth vs Flux

Flux is the measure of rainfall that goes into the ground. Knowing that some of this wa-

ter evaporates as it touches the ground, flux can take negative values. As water infiltrates

through pore spaces in the soil, it first passes through a zone where the soil is unsaturated.

At increasing depths water fills in more spaces, until the zone of saturation is reached. The

relatively horizontal plane atop this zone constitutes the water table. Water regimes dictate

different vegetation types. The Cape Floristic Region (Capetown, South Africa) has about

9000 plant species most of which are unique to this area. According to the changing climate

scenarios, the annual rainfall in the Cape is likely to decrease. A better understanding of the

water distribution will enhance the way this biodiversity spot is managed. Researchers from the

Open University, working in collaboration with a South African team and other environmental

institutions, established around ten sites in the Cape to monitor the hydrology of the area.

For our QR study, we obtain one of the "water table depth (WTD) vs flux" data sets

collected at 307 different times by Open University researchers in the Cape and study it by
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plotting its reference charts. A scatter plot of the data set is given in Figure 6.1. Note that

negative values of flux arise when the ground is dried by the sun's action. The data points

are quite condensed near zero, therefore we aim to take the logarithm of the Flux. To avoid

taking the log of negative numbers and zero, we shift the flux to the positive real line. As

the minimum value for flux is -6.8 in this case, we consider log(flux + 6.9). We then rescale

the resulting values to the interval (0,1) and we fit a GG distribution to the obtained data. A

scatter plot of the "rescaled version" is given in Figure 6.2. It appears that WTD decreases as

Flux increases.

LRTs show that L6 = -228.7693 and L5 = -240.717, hence Dl = 23.894. The significant

difference between L6 and L5 means that a six-parameter GG (as given in item 3 of Section 3.3)

is required. The values of the estimated parameters are a = 5.278, b = -4.013, C= -2.424,

d = 3.106, j = -3.886 and g = 11.159. We recall that the expression of the quantile function

corresponding to this model, given in item 3 of Section 3.4 is

(
r(f, g, q))eXP(c+dx+!(J+OX))

tq = exp(a + bx) 1+ 'e ox x> 0,

which is estimated by

(
r( -3.886,11.159, q)) exp(-2.424+3.106x+!(-3.886+l1.159x))

tq = exp(5.278 - 4.013.1:) e-3.886+l1.159x ' x » O.

Figure 6.3 presents a plot of the 10%, 25%, 50%, 75% and 90% estimated quantiles. In the

interval (0,1), the quantiles show interesting shapes. The 90% quantile is obviously unimodal

with minimum in (0.6,1). It increases towards 1 to account for the data points that have higher

values although the degree of upturn might be being unduly influenced by a single point. The

other quantiles are monotone decreasing. Also, interestingly, the 10% quantile decreases very

slowly (almost horizontally) between 0 and 0.1 in contrast with the other quantiles which

display a sharp decrease in this region. This might also be due to the influence of a single

point, in this region, on the 10% quantile. The confidence bands around the 10%, 25%, 50%,
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75% and 90% estimated quantiles are shown in Figure 6.4, which seems to be a bit obscured

by overplotting. For more clarity, we plot separately the confidence bands around the 10%,

50% and 90% estimated quantiles in Figure 6.5 and the confidence bands around the 25%

and 75% estimated quantiles in Figure 6.6. We observe that ncar the center (where data is

condensed), the confidence bands are quite narrow around the quantiles showing more certainty

in the results. They are wide at the edges where there are very few data points allowing more

variation and less certainty in the model. Finally, taking into consideration the 10% and 90%

quantiles, a reference chart is given in Figure 6.7. A corresponding reference chart using the

original covariate scale is given in Figure 6.8. A closer view of the latter figure is given in Figure

6.9. Data within the 10% and 90% quantiles are considered as lying in the common range. Data

below the 10% quantile indicate over-saturation of water in the soil or equivalently excessive

rainfall. Above the 90% quantile are data points taken at times where the WTD is quite low.
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Figure 6.1: WTD vs Flux data of size 307 at various times in Capetown.
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Figure 6.9: Reference chart of WTD vs Flux data in Figure 6.1 using the 10% and 90% quantiles.
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We now move to the last step of our modeling procedure where we check the goodness-

of-fit of our estimated model. As explained in Sections 4.6 and 5.2, we compute ITii and ml,

1= 1, ...,6, the observed and expected number of data points in each of the six regions formed

by the 10%, 25%, 50%, 75%, and 90% estimated quantiles and we deduce the test statistic T.

It turns out that {ITii} = {21, 54, 75, 102,26, 29}, {mil = {30.7, 46.05,76.75,76.75,46.05, 30.7}

and T = 21.60803 > 9.96. Based on those results, we reject the fact the the GG model is a

good fit in this case at 0.01 level of significance, although our observation of the data and its

estimated quantiles shows that the latter fit quite well and take the general shape of the data.

This reasoning leads us to think that the high value of T is caused by the influence on the

quantiles of single data points that are outliers. Therefore, we study the same problem again

while removing this time the influence of some data points. We first remove the influence of

the point of coordinates (0.96,69.8), with abscissa rounded to the nearest hundredth, which we

suspect causes the upturn of the 90% quantile towards 1. In another attempt, we remove the

influence of the point of coordinates (0.01,31.3), with abscissa rounded to the nearest hundredth,

which we think might be the reason behind the slow decrease of the 10% quantile towards o.
When we remove the point (0.96,69.8), the results become {ITii} = {21, 54, 75, 102,26, 28},

{mil = {30.6, 45.9, 76.5, 76.5, 45.9, 30.6} and T = 21.81917 > 9.96. We also realise that the

parameter estimates and hence the shapes of the quantiles barely change. We deduce that the

point (0.96,69.8) does not create our suspected influence. In fact, removing this point caused

the region above the 90% quantile to have one less point and hence worse results.

The next step was to remove the point (0.01,31.3). The results in this case turned out to be

{ITii} = {22, 51, 75, 103, 27, 28}, {ml} = {30.6, 45.9,76.5,76.5,45.9, 30.6} and T = 20.19608 >

9.96. Plots of the data, the estimated quantiles, the confidence bands around them and the

reference charts are given respectively in Figures 6.10, 6.11, 6.12 and 6.13. A close view of the
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corresponding reference chart using the original covariate scale is given in Figure 6.14. Removing

point (0.01,31.3) causes the shape of the 10% quantile to become similar (about parallel) to

the other ones and to lose the horizontal behavior near zero. Looking at the confidence bands,

we notice that they are still narrow in the center. Around the edges, they become far narrower

especially around zero where we don't observe any more the wide deviation away from the

quantiles. In fact, they take a very similar shape to that of the quantiles. This fact supports

our initial guess that the general shape of the data is decreasing from relatively high values

(around 130) at 0 to smaller ones (around 20) near 1. Our goodness-of-fit test still rejects the

fact that the GG model is a good fit where the resulting value of T is only slightly better.

Finally, removing both points yields very similar results to the previous case. We conclude

that the general decrease of WTD with the increase in Flux is well-reflected by the decreasing

quantiles, a fact that becomes clearer when the influence of point (0.01,31.3) is removed. Despite

that, the goodness-of-fit test still rejects the GG model as a good fit. Looking closely at the

values of m, and ml in each of the mentioned scenarios, we realise that the biggest difference

between the observed and expected results happens between the fourth and fifth regions (I = 4

and I = 5 respectively). When (0.01,31.3) is removed, ffi4 = 103 which is considerably bigger

than m4 = 76.5. Also, ffi5 = 27 which is quite smaller than m5 = 45.9. Removing this point

changed the behaviour of the quantiles around zero and shifted downwards the 75% quantile

only very slightly, though not to the extent that allowed the observed and estimated count of

points in this area to match more. We observe many points in the upper part of the fourth

region very close to the 75% quantile. Although our goodness-of-fit test rejects the GG model

as a good fit, it shows through the count of data points in each region that the observed and

expected counts match quite well most of the time except around the fourth and fifth regions

where shifting downwards the 75% quantile only slightly will enable far much better results.
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Figure 6.13: Reference chart of WTD vs rescaled logarithm of Flux data in Figure 6.10 using

the 10% and 90% quantiles.
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removed from the original data set) using the 10% and 90% quantiles.
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6.2 Weight vs Height

Weight problems are becoming more and more common so that some of the world's leaders

are considering this issue a threat to societies and are therefore seeking solutions. Since 1999,

the National Center for Health Statistics in the United States has conducted the NIIANES

survey annually. The latest survey released is the NHANES 2007-2008. Each release includes

"demographic", "examination" and "laboratory" measurements. From the "examination" data

file we considered two variables BMXWT and BMXIIT reflecting respectively weights (in kg)

and heights (in cm) of individuals across all age ranges. After filtering out the individuals

that have missing gender, weight and height as well as all the females, we ended-up with a

total of 4448 males with known weight and height. A scatter plot of the data set is given in

Figure 6.15. As expected, generally, weight is increasing with height. For smaller heights, data

is quite narrow and it widens as height increases. This is because shorter individuals have less

weight variability. After rescaling the height to the interval (0,1) we present another scatter

plot of the new "rescaled version" in Figure 6.16.

As we fitted a GG distribution to the data, results showed that the estimated k is taking

very high values, a fact that lead us to consider the lognormal distribution as an alternative fit

to the GG. As the lognormal is the special case of the GG for k -+ 00, we concluded that it is

a convenient model and that the three-parameter GG distribution is not required in this case.

A simpler version, the two-parameter lognormal, is enough. When the parameters depend on

the covariates in the usual way, this leads to a four-parameter model with density

1 (log t-a-bx)l

/(t) = ...j'j;ffe 2exP{2(c+dx)}; t > o.
t exp(c + dx) 27r

The LRT showed that L4 = 870.757 and L3 = 703.184, hence Dl = 335.146. This significant

difference means that a four-parameter lognormal is required. The values of the estimated

parameters are Ii = 2.378, b = 2.685, C = -2.325, and d = 1.101. The lognormal quantile
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function is given by the exponential of the quantile function of a normal distribution

tq = exp{2.378 + 2.685x + e-2.325+1.101x<I>-1(q)}

where <I>-l(q) is the quantile function of the standard normal distribution. Figure 6.17 presents

a plot of the 10%, 25%, 50%, 75% and 90% estimated quantiles.

As expected, the quantiles are increasing with the increase in height (and weight). Also,

they spread out from each other as height increases reflecting the change in the data quite well.

The confidence bands around the estimated quantiles, shown in Figure 6.18, are very narrow.

This is because the data set is quite large and covering all height ranges. The large number

of data points allows more certainty in the model (i.e. less variation) and hence narrower

CIs. Taking into consideration the 10% and 90% quantiles, an example of how a reference chart

might appear is given in Figure 6.19. To obtain thresholds for "normal", "obese" or "underweight"

individuals, it is sometimes advised to use the 5% and 95% quantiles as reference. A reference

chart with the 5% and 95% quantiles is given in Figure 6.20. Note that no further complicated

calculations are needed to obtain Figure 6.20. It is a simple matter of replacing q by the new

values 5% and 95%. A corresponding reference chart using the original covariate scale is given

in Figure 6.21.

Finally, we check the goodness-of-fit of the CC model. The observed and expected counts

are {m,} = {427,763,1086,1118,606,448} and {ml} = {444.8,667.2, 1112, 1112,667.2,444.8}

respectively, while T = 20.74475 > 9.96. Based on the results, we reject the fact that the CC

model is a good fit to our data, though, if we look at m, and ml, we find that they follow a

similar pattern. Also, the general shape of the quantiles reflect the exponential increase in the

data and they widen as the normalised height increases towards one, as the data widens.
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200



CHAPTER 6. APPLICATION TO REAL DATA 133

0
0
N

,, •
0

~
Cl
Co
:E
Cl

0'iii
!!: ~

0
It)

0.0 0.2 0.6 1.00.4 0.8

Rescaled Height

Figure 6.16: NHANES 2007-2008 weight vs rescaled height data of 4448 males.

0
0
N

0

Cl
~

Co
:E
Cl
'iii 0!!: 0~

0
It)

0.0 0.4 0.6 1.00.80.2

Rescaled Height

Figure 6.17: 10%,25%,50%,75%, and 90% of weight vs rescaled height data in Figure 6.16.



CHAPTER 6. APPLICATION TO REAL DATA 134

0
L{)-.. ..-

0>.::s:..........-.c
0>
'03

0$ 0..-

oo
N

o
L{)

0.0 0.2 0.4 0.6 0.8 1.0

Rescaled Height

Figure 6.18: Confidence bands around the quantiles in Figure 6.17.



CHAPTER 6. APPLICATION TO REAL DATA 135

0
0
N

0

0;
~

6
:E
Cl
'(jj

0~ ~

0
III

0.0 0.2 0.4 0.6 0.8 1.0

Rescaled Height

Figure 6.19: Reference chart of NHANES 2007-2008 weight vs rescaled height males' data in

Figure 6.16 using the 10% and 90% quantiles.
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Chapter 7

The Alternative Generalised Gamma

Distribution

7.1 Introducing the Alternative Generalised Gamma Dis-

tribution

Inspired by the GG and the need to model skewness, we propose an alternative unimodal

univariate three-parameter continuous life distribution. While behaviour near zero of the GG

pdf Version 1 depends only on a, the tail depends on both shape parameters a and /3:

(
t )Q-lE~IJf(t) '" (j

and

(
t)Q-l t {3

lim f(t) '" - e-(J) -+ 0,t-+CXl ()

where genorically i-v' means that if limHa f(t) '" g(t), then limt-+af(t)/g(t) = K, 0 < K < 00.

Analogously, the basic density function of the alternative generalised gamma (AGG) dis-

tribution consists of two shape parameters; one controls the part next to zero and the other

controls the tail. Apart from the normalising constant, the product (t/O)Q-l exp{ -(t/O)f3} is

the main expression affecting the shape of the GG pdf Version 1. To construct the AGG dis-

tribution, and building upon the GG, we multiply this expression by the factor 1/(1 + t/O)Q-l.

137
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This ensures that behavior near zero of the AGG pdf depends only on a while the tail depends

only on (3. Let

(
t )a-1

f(t) = Ka,{3"8 e-(!)i3, t > 0
() (1+~t1

be the basic form of the AGG pdf, where

K _ 1
a,{3 - roo t" 1 -t{j dt .

Jo (Ht)" i e

Obviously,

and

lim f(t) '" e-(t)i3 -+ O.
t-+oo

The behavior of the AGG distribution is the same as that of the GG (and hence gamma

and Weibull) distribution as t -+ O. However, as t -+ 00, the dependence on a that afflicts the

GG distribution is removed, allowing the upper tail dependence of the AGG distribution to be

controlled by (3 only.

To draw a little more comparison between the GG and the AGG densities, we look at the

difference between t and t / (1+ t). Of course, t / (1+ t) < t for all t > 0 and they both converge

to zero at zero. However, at 00, t converges to 00 while t/(1 + t) converges to 1. We notice

an interesting case when we plot the functions Cl(t) = t/2 and C2(t) = t/(1 + t) in Figure 7.1.

Noticeably, C1(t) and C2(t) behave similarly for t < 1.



CHAPTER 1. THE ALTERNATIVE GG DISTRIBUTION 139

0
N

"l

8
"0 0

"~
or

<t)

.,;

0
.,;

Figure 7.1: Plots of Cl and C2.

7.2 Some Basic Properties of the AGG Distribution

Set

In contrast with the CC, the different pdf versions of the AGC turn out to be

• Version 1, AGG((), 0, (3):

_ {3 (_t r _(~)/3
f(t) - ()a((o, 0, (3) 1+ ie, t > 0,

where f) is a scale parameter and 0 and {3 are shape parameters each of which we take to

be positive and

((o,o,{3)

Setting 0 = k{3, we get:
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• Version 2, AGG(B, k, {J):

{J (t )kf3-1 fJ

f(t) = Okf3((k{J,k{J,{J) 1+ ~ e-(t) , i > 0,

where 0 is a scale parameter and k and {J shape parameters all being positive and

((k{J, k{J, {J) = 100( ) kf3-1
{J Z -z{3d-- e Z

o 1+ Z

100 k-l

o (1+ ;1/f3)kf3-1 e-Zdz.

• Version 3, AGG(I', (T, q) for q i- 0 only:

f(y) = Iql exp {Wlq-2 - eW1}(1 + qeUW1)1-;;1q
(T( ( ;q' U1q,; )

where WI = (y -I')(T-lq + p*, Y = logt E :!R, p* = 'IjJ(q-2), 1/J being the first derivative of

the logarithm of the gamma function and q = k-t (c being some positive constant). I'is

a location parameter related to the parameters in Version 2 by l' = log 0 + p*/ {J, (T is a

scale parameter (T = q//3, and q is a shape parameter. Wl and v E IR. (T, q> 0 and

( (_!_, _!_, 2.) =
uq uq (T

• Version 4, AGG(p, a, k):

f(y) ~ u (';'~ ,) cxp { v'kw - ke* }( 1+ k·v'ke~ t->;i ,
( u'u';J'k

where W = (y - Jt) / a and y = log t E R p is a location parameter related to the

(7.1)

parameters in Version 2 by p = log 0 + log k/ (3,o is a scale parameter (T = 1/((3Vk)and

k is a shape parameter. wand p E IRwhile a and k are positive and

c (Vk, Vk, _1_) = _1_100 (_z_) :4--1 e-zl/"~ dz
(T (T uVk uVk 0 1+ z

100 Zk-l Zd
= :.Cl e: z,

o ( 1+ zuv'k) " -1

(7.2)

(7.3)
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It is now time to illustrate how the GG pdf versions actually look and how they behave

for different values of the parameters by presenting some pdf plots. Figures 7.2 and 7.3 present

plots of the AGG pdf Version 1. Similarly to the GG plots in Section 2.1, the former figure

plots the pdfs for fixed values of Band /3 and variable 0: where the particular case of an

AGG(O = 2,0:, /3 = 1.5) for 0: E {0.1, 0.25, 0.5, 1,2,5, 25} is taken. In the latter figure, we

fix Band 0: and we vary /3, this time considering the particular AGG(B = 2,0: = 3, /3) for

/3 E {0.75,0.9, 1, 1.5,2,3,4}. We observe that, generally, the AGG(B = 2,0:,/3 = 1.5) pdf

shapes of Figure 7.2 (but not the scales) are very similar to the GG(B = 2,0:, /3 = 1.5) ones

of Figure 2.1. One noticeable difference is that the AGG(B = 2,0:, /3 = 1.5) pdfs are more

shifted to the left hand side of the positive real line and this is more obvious when 0: is larger.

In Figure 7.3, we observe that the AGG(B = 2,0: = 3, /3) pdfs are closer to zero than the

GG(B = 2,0: = 3, /3) ones in Figure 2.2. While the pdf of AGG(B = 2,0: = 3, /3 = 0.75) at

x = 2 is approximately 0.131, the GG(B = 2,0: = 3, /3 = 0.75) pdf at x = 2 is approximately

0.023. We note that, similarly to the GG, the AGG densities are, mathematically, decreasing

or unimodal. However, we are not able to provide an explicit form of the mode here.

Referring to the AGG pdf Version 2, the rth moments and the cumulative distribution

function of the AGG distribution are respectively

and

et (_z )kfJ-l -zf3dJo 1+z e z
F(t) = ((k/3, k/3, /3) . (7.4)
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Figure 7.2: AGG pdf Version 1 plotted at seven a values for fixed e and {3.
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Figure 7.3: AGG pdf Version 1 plotted at seven {3 values for fixed () and a.
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7.3 Generating Random Variables from the Alternative

Generalised Gamma Distribution

There are many known ways to generate random variables from known density functions. In our

attempt to generate data from the AGG distribution, we visit two of the most known procedures:

the inversion and the rejection methods. In the inversion method, the main idea involves finding

the inverse of the distribution function, whereas in the rejection method the main challenge lies

in finding an appropriate known distribution that the AGG can use as reference for comparison

to accept or reject random variables. Using these two methods, we present two attempts at

generating AGG random variables along with the drawbacks and advantages of each.

7.3.1 AGG Data Generation Using the Inversion Method

In the inversion method, by inverting the distribution function of uniformly distributed random

variables in the interval (0,1), we generate I-distributed random variables. Refer to Devroyc

(1986) for details. Let T '" AGG(O, a, f3), F(t) its distribution function and U '" U(O,l).

Then, F-l(U) is AGG((), a, f3) distributed. It remains to obtain F-l(U) for the AGG((), a, f3)

distribution.

Being a distribution function, F(t) = p where 0 < p < 1 and consequently, its inverse

satisfies F-l(p) = t. Rearranging the first equation, we obtain

F(t) - p = 0

which we solve for t to obtain the inverse of the AGG distribution function at 0 < p < 1. This

is done numerically using the bisection method.

The aim now is to calculate F(t) which is the ratio of two integrals as explained in

equation 7.4. This process is not easy as we did not manage to calculate the integrals explicitly.
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Let us look closely at the integral J; L~zt-1 e=" dz for both finite and infinite t > 0

and, in particular, at the integrand. Let

( )

0-1

TJ(Z)= 1~Z «=",

then limz-+ooTJ(z)= 0 (converges very slowly if (3 < 1). The limit at zero depends on the value

of a such as

lim TJ(z) = 00 if a < 1z-+o

1 if a = 1.

o if a > 1

Numerical computation of P(t) is not always accurate especially when a < 1 since TJ(z) goes

to 00 at zero in this case. To overcome this problem, we consider the transformation v = log z.

This transformation extends the integral of the function TJ to the negative real line avoiding any

"infinity" at zero. The integral then takes the form

t>O

and the limit of the function inside the integral, at ±oo, is zero. We now have a bell-

shaped function that is easier to integrate. This was done numerically using either the trapc-

zoidal rule or the int function of the rmutil package in R, which can be downloaded from

http://www. commanster. eu/rcode. html.

The main advantage of using the inversion method for AGG(O, a, (3) data generation is

that it is not restrictive. It works for all 0, a and {3. Its disadvantage is that the bisection

method is not very quick and requires the specification of upper and lower limits. Also, it

requires calculating ((a, a, (3) which is not always straightforward as already explained.
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7.3.2 AGG Data Generation Using the Rejection Method

According to Devroye (1986), to generate n data points from a pdf f using the rejection method,

start by finding an appropriate known density 9 and let h = f j g. Find the value tm that

maximises h(t). The iterative procedure for generating the random variables is then as follows

1. Set the iteration number i to O.

2. Set i = i+ 1.

3. Simulate a random variable T; rv g.

4. Simulate another random variable U, rv U(O, 1).

5. If

(7.5)

then ~ is AGG distributed, otherwise ~ is rejected.

6. Repeat steps (3), (4) and (5) until we obtain a ~ that satisfies (7.5).

7. Repeat steps (2), (3), (4), (5) and (6) until we obtain n AGG distributed random variables.

By comparing the AGG distribution to the Weibull distribution, we used the rejection

method to develop an algorithm for random number generation from the AGG with pdf Ver-

sion 1. Let f rv AGG(O,a,{3) and 9 rv Weibull(O,{3) (the Weibull distribution with scale

parameter 0 and shape parameter (3) with well-known pdf

where the scale parameter 0 and the shape parameter (3 are both positive. Let

f(t) OfJ-a f~-{3
h(t) = g(t) = «(a, a, (3) (1+ tjO)a-l .
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We would like to maximise h(t) over t > O. This is done by solving h'(t) = (a - ,8)t-1(1 +

tie) - (a -1)/e = 0 for t. The solution to this equation turns out to be t-« = (,8 - a)e/(1-,8)

leading to four cases:

1. (a - (3) > 0 and (1-,8) < 0 ~ tm > 0 is maximum.

2. (a -,8) < 0 and (1-,8) > 0 ~ t-; > 0 is minimum.

3. (a -,B) > 0 and (1-,B) > 0 ~ tm < O.

4. (a -,B) < 0 and (1-,B) < 0 ~ t-, < O.

The first case is the only acceptable one; all the rest are rejected since our aim is to find a

maximum for a positive t. Therefore, using this procedure, we can generate random variables

from the AGG distribution only when a > ,8 > 1. Conditional on the previous inequality, we

can then proceed with generating random variables from the AGG where it turns out that

tm = (,8 - a)e/(1 - (3) > 0

and the acceptance criterion for simulated ti f'V Weibull(B,,8) when u, f'V U(O, 1) is that

The main advantage for AGG data generation using the rejection method is that the

rejection criterion is independent of «(a, a, ,8), a fact that makes computation more accurate

and far easier and quicker. The main drawback is that it is restrictive to the case a > {3> 1.

7.4 Asymptotics for the Maximum Likelihood Estimates

of the Alternative Generalised Gamma

Similarly to the GG distribution, the aim in this section is to find the asymptotics of the ML

parameter estimates of an AGG distribution. Let us consider first the following notations:
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Notations:

I" ( d) 2 roo 1 zn-l -zPd
• ..1 n, ,p = P Jo ogZ(l+z)d re z

I" ( d) 3 rOO(l )2 zn-l -zPd... 2 n, ,p = p JO ogz (l+z)d-le Z

7.4.1 Asymptotics of the AGG PDF Version 4

We approach the problem through the distribution of Yi = log T; parametrised as in (7.1). The

loglikelihood is

n {-logO" + ( 1) (.Jkvlk 1) r,Y-J-tk-- log(k)-log( -,-,- +vk--
2 0" a u.Jk o

~ exp (~) t exp (~) + (1 - vIk) t log (1+ kUv'keY;-Ii)} .n u.Jk i=l u.Jk a i=l

Let

_ 1t (kUv'k exp (Yi - J-t) )i
Mj = ;; i=l 1 + kUv'k exp (Yi - /L) ;

1 n

N == ;; ~ log ( 1 + kUv'k exp (Yi - J-t) )
,=1

j = 1,2,

Note that 0 < M, < 1 and N > 0 and recall that

1~. (Y.)Si = - L- Y/ exp . ~ ;
n i=l o v k

j = 0,1,2.
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Notations:

• r _ r (~~ 1)."-.,, u'u';Jk

• r _ ~ __ lr lr (~ 1 ~ 1) _:lir (~:Ii 1)
"'17- 817 - 17'"+ 17.,,1 17 + uJ'k' 17 ' ;Jk 172.,,3 17' 17 ' uJk

• r _ ~ _ .:l..,r _..!..r (:Ii 1:1i 1)"'u,u - 8172 - U2'" 172.,,1 17 + uJk, 17 ' ;Jk

1 {r (:Ii 1:1i 1) r (:Ii 2:1i I)}- 172 .,,2 a +;Jk, a ' uJk -.,,2 17 + uJk' 17 ';Jk

Mr (:Ii:li 1) .JLr (:Ii:li 1) _ Mr (:Ii 1:1i 1)+ u3.,,3 17' a ' uJk + 174.,,4 u' 17 ';Jk 173 ,>5 17 +;Jk, a ' uJk

r _ ~ __ .l.r .l.r (:Ii 1:1i 1) 1 r (:Ii:li 1)
• '>k - 8k - 2k'" + 2k.,,1 17 + uJk' 17 ';Jk + 2uJk.,,3 17' 17 ';Jk

r _ ~ -...Lr __Q_j (:Ii l:1i 1)
• '>k,k - 8k2 - 4k2'> - 4k2 '>1 a + uJk' a ' uJk

1 {r (:Ii 1:1i 1) r (:LE 2:LE I)}- 4k2 .,,2 a + uJk' 17 ';y;"k - '>2 a +;;Jk' a ';Jk

• r _ ~ __ 1 r __ 3 r (:Ii + 1 :LE 1)
,>u,k - 8u8k - 2uk'" 2uk.,,1 17 ;Jk' 17 ';Jk

1 {r (:Ii 1:LE 1) r (:Ii 2:1i I)}- 2uk '>2 17 + uJk' u ' uJk -.,,2 a + uJk' o ';Jk

I r (:Ii:li 1) I r (:Ii:li I)
- 2u2Jk,>3 17' 17 ' uJk - 2U!'>4 u' u ' uJk

Differentiating the loglikelihood with respect to 11, (j and k in turn yields the score equations

nYk { ( -It) (j ( Yk) }o = -- exp -- So - 1 - - 1 - - lv/l ,
(j (jVk Vk (j

(7.6)

(7.7)

and

(7.8)



CHAPTER 7. THE ALTERNATIVE CC DISTRIBUTION 149

Equation (7.6) yields

(7.9)

and

(k Y - J-L 1 U ((1
ATL(k)= log(k) - - + -- - -N + -- = 0c uVk uVk 2k c (7.10)

Recall that

~. (Yo - J-L)Tj == L....J r:Jexp , I'- ;
i=l Y ka

j = 0, 1,2;

Using these expressions, we find the components of the Hessian matrix at the ML estimates.

Similarly to the GG, we find that E(T1), E(T2)' E(Ml)' E(M2) and E(Y) of the AGG are
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Given the above - and using that the score function has expectation zero - we deduce the

components of the matrix I to be

E(-~)ou2

Inverting the information matrix, we deduce the asymptotic covariance and correlation matrices.
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7.4.2 Asymptotics of the AGG PDF Version 1

The loglikelihood of the AGG pdf Version 1 is

1= n {log,8 - a log 0 - log (( a, a, ,B) + (a - 1)t log t;
n i=1

- (
0
: 1)~ log(1+~) - ~~ (~ )l

Differentiating the loglikelihood with respect to 0, a and ,8, we find the score equations to be

On { a-I ~ tif f) ,8 ~ (ti) /3}=- -a+--~ +-~ -f) n. 1+ u] f) n. f) ,
1=1 ,=1

{
Ill ~ 1~ ( ti) (3(a,a,,8)}o = n -log!7 + - ~ log ti - - ~ log 1 + - - ~-~

n i=1 n i=1 0 (( a, a,,8)

and

0= {_.!.~(ti)/31 (~) .!.(1(a+f3,a,,B)}n n ~ 0 og 0 + a r( f3) .i=1 fJ .. a,a,

Therefore, at the ML estimates, the second derivatives in the Hessian simplify to

(Pl .~+-(0 -1) e·i: t;/9 -.!. i:( t;/9 )') _11(11+1)t:C;n·=o» f)2 n i=1 1 + tifO n i=1 1 + tiff) n i=1 0 '
{)2l n { 1t 1;/9 }= 7f -1+; i=11+ti/e ;{)e{)a

{)2l ~{~t(~rlOgm +~~(i)l={)e{),8

{)2l n { (3(0, a, II»), _ (,(0, a, /I) } .={)a2 ((a,a,,B) ((a,a,,8)'
{)2l ~{(3(a, a, ,8)(1(a +,8, a, f3) (5(a + ,8,a, f3)}

= ((a,a,,8)2 + ((a,a,,B) ;Da{),8
{)2l .:'_{ _II't C;r (10 (!!))'+ (1(a+ II,a,II»),(),82 = ,82 n i=1 f) g f3 ((a,a,,8)

+
(2(a +,8, a,,8) _ (2(a + 2,8,a,,8)} .

((a,a,,8) ((a,a,f3)
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Given the above - and using that the score function has expectation zero - we deduce the

components of the matrix I to be

( 8
2l) 2:{-a+(a-l) (2«(a+l,a+l,,8) _ «(a+2,a+2,,8))

E - 802 - 02 ((a,a,,8) «(a,a,,8)

+ ,8(,8+ 1)«(a +,8, a,,8)} j
((a,a,,8)

( a2l) ~ {I _ «(a + 1, a + 1,,8)} .
E - oOoa - o «(a, a, ,8) ,

( a2l) ~{_(l(a+,8,a,,8) _ «(a+,8,a,,B)}.
E - 808,8 - o «(a,a,,8) ((a,a,,8)'

E(-~) - n { (,(a,a, Ii) _ ((,(a, a, Ii))1
8a2 «(a,a,,8) ((a,a,,8) ,

( a2l) ~ {(3(a, a, ,8)(l(a +,8, a, (J) _ (5(a +,8, a,,8)} .
E - 8a8,8 - ,8 «(a,a,,8)2 ((a,a,,8)'

( 8
2l) ~ { _ ((l(a + s,a, Ii))'+ (,(a + 21i, a, Ii) }

E - 8,82 - ,82 «(a,a,,8) ((a,a,,8)'

Finally, we invert the information matrix to obtain the asymptotic covariance and corre-

lation matrices. The correlations turn out to be, unsurprisingly, independent of O. Tables 7.1,

7.2, 7.3, 7.4, 7.5 and 7.6 display values of the correlations between e, a and /3. The values are

rounded to three decimal digits. As these computations required the numerical calculation of

some complicated integrals, we have used the software MAPLE for this purpose. In principal,

MAPLE provides a good accuracy when computing such numerical integrals, though it takes

time to do that. As previously mentioned, the main aim of this analysis is to compare the

AGG correlations to the GG ones hoping that the former ones are smaller. The reason some

correlation values were given for the GG distribution case but not for the AGG, is that for

certain values of the parameters, say for ,8 < 1 and for ,8 very large, we weren't able to obtain

reasonable AGG correlations, therefore we skipped those results and we did not include them.

Despite that, we could still observe the general pattern of the AGG correlations. We notice

that the results are very similar to the GG ones given in Tables 2.11 to 2.16. The same pattern
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occurs with generally (most of the time) slightly smaller correlations for the AGG distribution.

When the values of the AGG correlations are less than the GG ones, the differences are small

reaching to a maximum of around 0.07. In a very few cases, the values of the GG correlations

are smaller than the AGG ones. The noticeable ones are the correlations between e and ~.

When a is small, the correlation difference gets to around 0.3. Overall, the AGG correlations

are disappointingly only slightly better given that the primary motivation underlying the AGG

distribution was to separate the tail influences of a and {3 with the hope that they could be

estimated 'more separately' and hence better in practice. To explore the usefulness of the AGG

distribution more, we look at its performance with MLE using simulations in the next section.

Table 7.1: Correlations between e and a for (3 = 2 and variable a.

0.001 0.01 0.1 0.5 1 2 5

Corr(O, a) -0.035 -0.109 -0.320 -0.607 -0.752 -0.866 -0.948

Table 7.2: Correlations between e and a for a = 3 and variable {3.

(3 1 2 5 10 100

Corree, a) -0.940 -0.911 -0.797 -0.648 -.216

Table 7.3: Correlation between ° and ~ for (3 = 2 and variable a.

0.001 0.1 0.2 0.5 1 2 5

Corr(e,~) 0.730 0.772 0.803 0.862 0.912 0.952 0.981

Table 7.4: Corrclation between e and ~ for a = 3 and variable {3.

{3 1 5 10 100

CorreO,m 0.982 0.899 0.792 0.516
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Table 7.5: Correlation between &-and /3 for {3= 2 and variable et'.

a 0.01 0.1 0.5 1 3 5 10

Corr(&-,/3) -0.097 -0.277 -0.506 -0.637 -0.829 -0.890 -0.943

Table 7.6: Correlation between &-and /3 for a = 3 and variable {3.

{3 1 2 5 10 100

Corr(&-,/3) -0.881 -0.829 -0.669 -0.518 -0.176

7.5 Simulation Study Comparing AGG with GG when

a>{3>l

In this section, we perform a simulation study that compares the AGG distribution to the GG

distribution in terms of MLE. As generating AGG random variables, for any e, a and {3, is

quite complicated (as explained in Section 7.3), we will restrict this study to data sets that

satisfy a > {3 > 1 only since in this case generating data proved to be quite straightforward

using the rejection method. We note that the case a > 1 defines bell-shaped GG and AGG

density functions which are of more interest to us because they are very common and we would

like to see how each of a and {3 affect both tails. When {3 < 1 the AGG pdf converges very

slowly to zero at infinity and estimating it has many complications. For these reason, in this

simulation study, we will only address the cases where a > {3 > 1.

To compare both distributions, we simulate a set of "real parameters" that consists of

100 triplets et', e and {3 (all satisfying et' > {3 > 1). e is simulated from a G(2, 1) distribution.

We take {3 IV G(2, I) and et' IV G(2.5,1.5) while filtering out all cases that don't satisfy the

inequality. This ensures that et' and {3 take a reasonably wide range of values in the domain.
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In a similar way, we simulate 100 triplets of "initial parameters" that will be used as initial

values for our MLE. The set of "real parameters" is given in Table A.11 of the Appendix. From

each of the 100 triplets of "real parameters", we simulate 100 AGG and GG data sets of size

n = 500. To simulate the AGG data sets, we use the rejection method, of course. Using MLE

via the Nelder-Mead procedure, we estimate each of the 100 AGG and GG data sets using the

correct form of model each time, that is, the AGG model fit to AGG data sets, the GG model

to GG data sets. For each data, we repeat estimation 100 times, each time using a triplet of

the "initial parameters" and we choose the maximal likelihood attained. Corresponding to this

maximal likelihood, we compute the estimates 0, a and fj (of 0, a and f3 respectively) for each

of AGG and GG. The maximal likelihoods of the data sets and their corresponding estimates

for both the AGG and GG models are given in Table A.12 of the Appendix.

To check how well each distribution estimates reality and to compare between both of

them, we compute the relative bias and the squared error for the parameter estimates of both

distribution. The mean relative biases and the root mean relative squared errors for each of the

AGG and GG estimates (of the 100 data sets) are given in Table 7.7. The values are rounded

to three decimal digits.

The square root of the mean relative squared error of the AGG 0 estimate (which is 0.216)

is smaller than the GG one (which is 0.381). The square root of the mean relative squared error

of the f3 estimate is also smaller in the AGG case (0.162 for the AGG vs 0.184 for the GG). As

for the a case, the GG performs better. The reason for that is the 30th of the 100 data sets where

the AGG highly over-estimates a. If we exclude this data set, the GG still performs better,

but this time the AGG mean squared error becomes 0.263 instead of 1.690. In general, the

difference between the performance of the two distributions is very small. Among the hundred

data sets the AGG relative squared error for 0 is less than the GG one 62% of the time. For et
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and /3 it is respectively 48% and 48% of the time less.

The results do not support the hypothesis that the AGG distribution will perform much

better because each of a and /3 influence separately the respective regions close to zero and

close to infinity. This is disappointing. Any practical benefits that might be forthcoming by

using the AGG distribution in place of the GG distribution are minuscule; moreover, the AGG

distribution adds a little complication relative to the GG distribution in some respects. For

these reasons, it seems inappropriate to pursue the AGG distribution further.

Table 7.7: Mean relative bias and root mean relative squared error of the estimated parameters

of the AGG and GG data sets.

Distribution AGG

Parameter e a /3

mean relative bias -0.02 0.222 0.002

root mean relative squared error 0.216 1.690 0.162

GG

() /3

0.013 0.041 -0.005

0.381 0.222 0.184



Chapter 8

Conclusion

In this dissertation, we presented a thorough methodological statistical study on QR using the

GG distribution. The theory was complemented by supporting computational implementations

in the statistical software R. This is an original unique study that targeted PQR by making

the parameters of the GG distribution dependent on a univariate covariate. The study followed

a logical chronology that combined researching QR simultaneously with the GG distribution.

We presented a detailed literature review that explained and clarified all the previous histor-

ical arguments in each of these areas and set the scene for our further research. Once the

basic definitions and history were given, we presented our contributions to these fields through

a rounded study that included all stages of statistical modeling. We validated our work via

simulations. We applied our modeling package to two real-life examples and plotted the cor-

responding reference charts. Finally, we proposed an alternative distribution to the GG and

explored its properties and usefulness.

8.1 Summary and Main Contributions

Following the study we described in the chapters of this thesis, we present a list of the main

contributions offered:

• We promoted the GG distribution as a suitable distribution for regression analysis, a field

157
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that has been dominated by normality assumptions. In the cases where the unexplained

variation in the dependent variable is not symmetric, we proposed the GG distribution

whose shape parameters control skewness, applicable to response data that take positive

values only.

• We helped rehabilitate MLE of the GG while improving on earlier work by being the

first to formulate the iterative approach to the solution of the likelihood score equations

in such a way that the individual equations involved are uniquely solvable and far from

being problematic as a number of authors have suggested. All attempts mentioned in

the literature review to estimate the GG distribution showed computational difficulties

and complications. Procedures based on MLE often assumed that the shape parameter

(or one of the parameters) is considered known. We extended the work done by Lawless

(1980) to solve the score equations in a simple and yet efficient way taking all parameters

to be unknown and none of them fixed.

• We provided bounds on the values of the ML estimates. Those bounds can be used to

obtain initial values for MLE.

• We explored the GG distribution in a QR framework, a study that no researcher known

to us has addressed before. As explained in the literature review, very little work was

done on PQR let alone using the GG distribution for that. The aim was to go beyond

the limitations of regression, which models the mean only, into modeling every quantile

of the data using QR.

• We integrated the idea of QR by making the GG parameters dependent on a univariate

covariate. The main idea lies in studying how the covariate influences the location, scale

and shape of the entire distribution. The closest research to us that addressed PQR is
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by Warren Gilchrist, yet he never used the idea of a covariate in the same way. In a

QR framework, we extended the work done on the three-parameter GG to a wider model

that involved the four-, five- and six-parameter GG obtained by making the parameters

dependent on the covariate. The quantiles, which are functions of the parameters, hence

became functions of the covariate as well. We considered three cases of the conditional

GG distribution: the four-parameter GG, where we set J-L to be a linear function of a

covariate, the five-parameter GG, where we made J-L and (J' dependent respectively linearly

and loglinearly on a covariate and the six-parameter GG, where all three parameters u,

(J' and k are dependent on a covariate, Il linearly, and (J' and k loglinearly.

• We offered an overall statistical study that started with model identification and ended

with suggesting a goodness-of-fit test. Along the way, we passed by MLE of the threo-,

four-, five- and six-parameter GG and model selection using LRTs. We gave expressions

for the quantiles and confidence bands and presented some plots. This overall model-

ing package is unique in the sense that it was done particularly for the GG in a PQR

framework, an area that hasn't been explored in a similar way before.

• We presented the asymptotics of the three-, four-, five- and six-parameter GG ML pa-

rameter estimates. We deduced the covariance and correlation matrices and analysed the

correlations between the different parameter estimates.

• We proposed a goodness-of-fit test statistic for the GG distribution based on the X2

goodness-of-fit test.

• We validated the theoretical work computationally via simulations. The simulation study

in Section 2.5 validated our iterative algorithm for MLE of the three-parameter GG distri-

bution. Similarly, the simulation study in Section 4.2 validated our iterative algorithm for



CHAPTER 8. CONCLUSION 160

MLE of the four-parameter GG distribution. Section 5.1 offered a simulation study that

applied all the different steps of our suggested modeling package to three-, four-, five- and

six-parameter GG simulations. Section 5.2 validated our proposed goodness-of-fit test.

• We applied our modeling package to two real-life examples: one studied an environmental

issue that analysed the effect of flux on water table depth and the other a health issue

that studied the effect of height on weights of individuals. We plotted reference charts

for both data.

• We introduced the AGG distribution. This alternative distribution specialises the effect

of each of the parameters a and (3 respectively to the region near zero of the real line and

the region near infinity. We proposed two approaches for random variate generation from

the AGG. We compared it to the GG by analysing the correlations between its parameters

and by studying its performance for MLE.

8.2 Main Results Obtained

To each of the above contributions, we display the main results obtained from the computations

we made and the simulation studies we implemented. We summarise them as follows:

• The simulation study in Subsection 2.5.1 showed that, computationally, MLE of the three-

parameter GG is generally straightforward. Overall, our program and the Nelder-Mead

algorithm attained the global maximum likelihood the highest proportion of times. Local

maxima of the likelihood, on the rare occasions they were observed, are both far from

the global maximum and have much smaller values of the likelihood. We note that our

theoretical results are very much still partial in the sense that they do not guarantee

convergence of our algorithm nor uniqueness of the ML estimates. The simulation study

in Subsection 2.5.2 checks how close the estimates are from the true values. Obviously,
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the true parameters lie in 95% CIs of their estimates' averages. Increasing the sample

size allows, of course, for more exactness of the estimates.

• We found the asymptotic correlations between the GG parameters jL, ff and k as k tends

to zero to be Corr(jL,ff) = -1, Corr(jL,k) = -1, Corr(ff,k) = 1 and as k tends to infinity

Corr(jL, ff) = 0, Corr(jL,k) = -.J375 and Corr( ff, k) = o. We noticed that in all cases,

as k increases, the correlations decrease. There is a negative correlation between jL and ff

and jL and k, whereas ff and k are positively correlated.

• We will now analyse the correlation results between the GG parameters 0, a and /3. While

o and a are negatively correlated as well as a and /3,0 and (J are positively correlated. For

fixed /3, it appears that as Corr(O,a) increases (in absolute value) from zero to -1 as 0:

increases. For fixed 0:, Corr(O, a) decreases (in absolute value) from -1 to values around

zero as /3 increases. A similar pattern happens for Corr(a, /3). As for Corr(O, /3), for fixed

(3 the correlation increases to about 1 while as we fix 0:, Corr(O, /3) decreases from values

around 1 as {3 increases. Overall, we can say that the correlations are reasonably small

or moderate for reasonable values of 0: and {3.

• In the simulation study of Subsection 4.2.1 we showed that, computationally, MLE of

the four-parameter GG is generally straightforward. We compared it with the three-

parameter GG case. Each method, unsurprisingly, has an increased number of reported

errors, but the situation is still very good. When n = 200, our program still has a 96.8%

success rate, Nelder-Mead a 97.8% success rate, and BFGS an 89.7% success rate.

• In the simulation study of Subsection 5.1, we addressed four different situations (coming

from four different sets of parameters) of each of the four-, five- and six-parameter GG. In

total we explored 16case-scenarios using 1600data sets. As already mentioned, LRTs are
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applied to each of the 1600 data sets. Our LRT approach predicted the right number of

parameters most of the time. Generally, when the LRT did not pick up the true number

of parameters, one of the parameters was very small so that it wouldn't affect the model

much: this case happened when data could be modeled by a distribution with fewer

parameters. In all, we did not find any noticeable differences between the n = 200 and

n = 500 cases. They both behave reasonably well.

• In the simulation study of Subsection 5.1, generally the mean relative biases and the root

mean relative squared errors are quite small. For most of the cases, the "Known p Version"

is slightly better than the "LRT Version", though the difference is very small. Also, we

observe that the true quantilcs lie within the CIs around the estimated quantilcs most of

the time with about the right percentage.

• From the simulation study in Section 5.2, it appears to us that the 0 and k (ML estimates

of () and k respectively) values are respectively approximately 1.5 and 2 for each of 831,

832, 833, ..., 864. These results were remarkably consistent, a fact that lead us to think

that the G(() = 1.5, k = 2) distribution is a good approximation to our test statistic T.

We also observe that although the size of each of 831, 832, 833, ... , 864 is not very large

(n = 100), the G(() = 1.5, k = 2) pdf still fits the histograms reasonably well. From the

ML estimates for each of 831, 832, 833, ... , 864, along with the p-valucs of the X2 test,

we notice that for a 0.05 level of significance, 10 out of 16 (62.5%) are well-estimated by

a G(() = 1.5, k = 2). For a O.Ollevel of significance 81.25% are well-estimated.

• In the "WTD vs Flux" data, the LRT predicts a six-parameter GG. The values of the

estimated parameters are a = 5.278, b = -4.013, C= -2.424, J= 3.106, j = -3.886 and

9 = 11.159. The quantiles have monotone and unimodal shapes. The confidence bands

around the center are quite narrow. They are wide at the edges where there are very
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few data points allowing more variation and less certainty in the model. Applying our

suggested goodness-of-fit test, it turns out that {ffiI} = {21, 54, 75, 102, 26, 29}, {ml} =

{30.7, 46.05, 76.75, 76.75, 46.05, 30.7} and r = 21.60803 > 9.96. Based on those results,

we reject the fact the the GG model is a good fit in this case at 0.011evel of significance,

although our observation of the data and its estimated quantiles shows that the latter fit

quite well and take the general shape of the data.

When we remove the point of coordinates (0.96,69.8), which we suspect is an outlier,

the results barely change, whereas when the point of coordinates (0.01,31.3) is removed,

the 10% quantile loses its horizontal behaviour near zero and maintains a monotone

exponentially decreasing pattern in this region. Still, in this case, r = 21.81917 > 9.96.

The results are only slightly better. Removing this point changed the behaviour of the

quantiles around zero and managed to shift downwards the 75% quantile (which we think

is causing the high value of r) only very slightly, though not to t.he extent that allowed

the observed and estimated count of points in this area to match more. We observe many

points in the upper part of the fourth region very close to the 75% quantile. Although

the goodness-of-fit test rejects the GG model as a good fit, the counts of observed and

expected data points in each region match quite well except around the fourth and fifth

regions where shifting downwards the 75% quantile only slightly would enable much better

results.

• In the "Weight vs Height" data, the estimated k was taking very high values. As the

lognormal is the special case of the GG for k --+ 00, we concluded that it is a convenient

model and that the three-parameter GG distribution is not required in this casco The

LRT predicts a four-parameter lognormal. The values of the estimated parameters are

a = 2.377747, b = -2.325, C= 2.685, and J= 1.101. The quantiles are increasing with
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the increase in height (and weight). They spread out from each other as height increases

reflecting the change in the data quite well. The confidence bands are very narrow around

the estimated quantiles. The large number of data points allows more certainty in the

model (Le. less variation) and hence narrower CIs. The goodness-of-fit test shows that

{m!} = {427, 763,1086,1118,606, 448}, {ml} = {444.8667.2, 1112, 1112,667.2, 444.8} and

T = 20.74475 > 9.96. Based on the results, we reject the fact that the GG model is a

good fit to our data, though, if we look at ffil and mil we find that they follow a similar

pattern. Also, the general shape of the quantiles reflect the exponential increase in the

data and they widen as normalised height goes to one, as the data widens.

• The AGG distribution is a useful distribution that we have attempted to explore because

it separates the tail influences of a and {3 where a influences separately the region close

to zero while {3 influences the region close to infinity. We haven't managed to develop an

iterative algorithm for its MLE. Yet, using the general-purpose optimisation procedures

to estimate its parameters proved to be successful. The distribution has great similarities

with the GG. We notice that the distributions are similar close to zero. Pdf plots show that

they have similar density functions, the AGG being more shifted to the left than the GG.

Random variate generation from the AGG was not fully successful. The inversion method

is not very quick and requires calculating ((0, a, f3) which is not always straightforward.

The rejection method is more accurate and far easier and quicker. Its drawback is that it

is restrictive to the case a > f3 > 1.

• We now briefly analyse the correlation results between the AGG parameters 8, a and /3

and compare them with the GG ones. A similar pattern to that of the GG occurs with

generally (most of the time) slightly smaller correlations for the AGG distribution. In a

very few cases, the values of the GG correlations are smaller than the AGG ones.
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• From the simulation study in Section 7.5 performed to evaluate the AGG distribution

in terms of MLE, we find that the square root of the mean relative squared errors of

the AGG e and {3 estimates are smaller than the GG ones. As for the Cl case, the GG

performs better. The reason for that is the 30tt• of the 100 data sets where the AGG

highly over-estimates Cl. Generally, the difference between the performance of the two

distributions is very small.

8.3 Overall Thesis

The GG is a multi-task distribution that can model small and large data. It can easily and

accurately model skewness in data. It encompasses a variety of known and useful special cases.

When a special case is enough to model given data, our modeling package was able to detect

that and a special case was used instead. The correlations between its parameter estimates

in the different versions were quite reasonable. This fact was reflected through its accuracy

in MLE of its parameters. More importantly, we put an end to all previous arguments that

mentioned the complications of the implementation of the GG MLE. We can confidently say

the GG distribution is one where MLE is perfectly manageable.

Using the GG distribution for PQR proved to be of great usefulness due to the various

shapes the quantiles offered. Linear, monotone, unimodal and bimodal quantile shapes were

observed targeting different skewness aspects in data sets. This was done by studying the

three-, four-, five- and six-parameter GG obtained by making the parameters dependent on

a covariate. This problem was approached in an original way that only very few researchers

have considered before, yet with little similarity and far less detailness. The overall modeling

package linked the different parts of the thesis together, making it more coherent. This made

modeling data sets using the GG very approachable with a clear starting point and a concluding
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evaluation of the goodness-of-fit of the model.

Our suggested alternative distribution to the GG, that was analysed computationally and

compared with the GG, showed interesting results. The results did not perfectly support the

hypothesis that the AGG distribution will perform better because each of et and {3 influence

separately the respective regions close to zero and close to infinity. Any practical benefits that

might be forthcoming by using the AGG distribution in place of the GG distribution are minor.

This issue stressed the fact that the GG is a leader distribution in this respect. The AGG was

the simplest three-parameter distribution we could think of that had very similar properties

to the GG, yet associated separate tasks to its parameters. Even this well-developed least

complicated version did not manage to overcome the advantages of using the GG distribution.

8.4 Further Work

A doctoral thesis is a study that never really ends. In fact, research generally is a continuous

process where one idea brings forth another. Hence, every conclusion is the beginning of another

new research. Our study is, therefore, an inspirational work to further ideas of which we mention

• Applying our methodology to more data sets for further evaluation of our procedure.

• Conducting a simulation study that provides insight about sample dimension adequacy

for the asymptotics to be reached.

• Attempting improvements on our suggested GG goodness-of-fit test by splitting up the

region considered by the covariate as well as the quantiles.

• Considering nonparametric approaches to QR using the GG distribution, such as the

methods available in the QUANTREG R package and comparing with our approach.

• Exploring more distributions that can model skewness.



CHAPTER 8. CONCLUSION 167

• Using QR to the benefit of other fields such as modeling outbreaks of diseases and devel-

oping risk thresholds for finance and banking .

• Analysing QR problems when more than one covariate is involved.

The mentioned points are a few of many further directions to our study. We look back at the

first question in the introduction of the thesis in Chapter 1: What best shape or model can be

attributed to the data?

We may confidently say that our study proved the GG distribution in a QR context to

be an efficient and flexible model that offers a variety of nice shapes which address different

aspects of data, especially skewness. It is a powerful combination of simpler life distributions

with an additional property that allows it to model both distributional tails more accurately.

Knowing that there is no perfect model, we aspire for more research on further models in the

future.
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More Tables

A.I Tables of Simulation Study in Section 2.5

Table A.1: Table of "real parameters" from Section 2.5.

Data /-L (J' k e f3

GG1 -0.170 4.869 1.787 0.019 0.275 0.154

GG2 0.237 1.920 0.379 3.990 0.321 0.847

GG3 1.966 2.091 1.243 4.304 0.533 0.429

GG4 0.384 6.046 0.705 8.641 0.139 0.197

GG5 0.598 1.077 0.557 2.911 0.693 1.244

GG6 -0.286 0.604 2.560 0.303 2.648 1.034

GG7 0.500 0.924 0.808 1.967 0.973 1.204

GG8 -0.413 1.814 0.371 1.979 0.336 0.905

GG9 -0.235 1.749 2.610 0.053 0.924 0.354

GG10 0.911 1.466 5.329 0.009 1.574 0.295

GG11 0.333 2.281 3.239 0.011 0.789 0.244

GG12 -1.089 3.188 3.374 0.000 0.576 0.171

GG13 -0.731 1.146 1.781 0.199 1.165 0.654

GG14 0.627 1.680 1.774 0.519 0.793 0.447

GG15 -1.159 1.802 1.623 0.103 0.707 0.435

168
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Table A.1 Continued

Data J.L a k e a {3

GG16 -0.234 2.415 1.902 0.093 0.571 0.300

GG17 -0.410 1.718 0.743 1.030 0.502 0.675

GG18 0.822 2.290 2.249 0.141 0.655 0.291

GG19 0.260 2.284 0.617 3.087 0.344 0.558

GG20 -2.617 2.217 0.169 0.369 0.185 1.097

GG21 -0.093 0.610 2.356 0.408 2.516 1.068

GG22 1.656 1.195 1.699 2.296 1.091 0.642

GG23 0.536 1.373 3.741 0.051 1.409 0.377

GG24 0.959 1.021 3.166 0.321 1.742 0.550

GG25 -0.083 4.340 2.575 0.001 0.370 0.144

GG26 0.355 0.614 1.356 1.148 1.895 1.398

GG27 0.145 4.967 1.519 0.090 0.248 0.163

GG28 -0.077 1.755 0.487 2.234 0.398 0.817

GG29 -1.505 3.498 2.685 0.001 0.468 0.174

GG30 -1.804 1.757 2.062 0.027 0.817 0.396

GG31 -1.455 0.955 0.886 0.260 0.986 1.113

GG32 -0.280 1.293 0.355 1.678 0.461 1.297

GG33 -2.776 0.863 1.030 0.061 1.176 1.142

GG34 0.747 6.230 1.662 0.036 0.207 0.125

GG35 -1.118 1.307 3.112 0.024 1.350 0.434

GG36 0.365 3.094 2.702 0.009 0.531 0.197

GG37 -0.556 2.646 4.860 0.000 0.833 0.171

GG38 0.399 2.770 1.649 0.252 0.464 0.281

GG39 0.660 0.646 0.875 2.097 1.447 1.654

GG40 1.042 2.239 1.729 0.566 0.587 0.340

GG41 -1.316 0.400 0.217 0.357 1.166 5.360
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Table A.l Continued

Data IL a k e a f3

GG42 -0.534 3.646 3.046 0.000 0.479 0.157

GG43 0.180 1.541 1.852 0.329 0.883 0.477

GG44 -0.550 3.128 1.023 0.538 0.323 0.316

GG45 1.112 3.516 1.611 0.362 0.361 0.224

GG46 -0.402 1.589 3.633 0.013 1.199 0.330

GG47 0.201 0.811 1.753 0.669 1.632 0.931

GG48 -0.817 1.705 0.733 0.696 0.502 0.685

GG49 0.592 2.544 4.685 0.000 0.851 0.182

GG50 -0.533 1.677 0.819 0.795 0.540 0.659

GG5l -1.534 0.427 1.875 0.149 3.209 1.711

GG52 0.777 2.306 3.542 0.009 0.816 0.230

GG53 0.686 2.310 2.179 0.139 0.639 0.293

GG54 1.255 2.028 1.197 2.355 0.540 0.451

GG55 0.405 0.191 5.178 0.734 11.912 2.301

GG56 1.385 2.544 5.593 0.000 0.930 0.166

GG57 1.356 0.981 0.622 5.600 0.804 1.292

GG58 0.537 2.598 1.116 1.265 0.407 0.364

GG59 -1.126 4.790 0.878 0.581 0.196 0.223

GG60 -0.804 0.448 1.376 0.378 2.615 1.901

GG61 0.521 0.872 2.792 0.377 1.916 0.686

GG62 1.188 3.292 0.202 34.950 0.137 0.675

GG63 -1.456 5.582 0.769 0.842 0.157 0.204

GG64 -0.573 2.486 1.381 0.220 0.473 0.342

GG65 -1.248 3.174 4.791 0.000 0.690 0.144

GG66 -1.219 1.209 1.363 0.191 0.965 0.708

GG67 -0.436 4.688 0.543 5.325 0.157 0.289
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Table A.1 Continued

Data J.t o k () a f3

GG68 -0.098 2.238 2.337 0.050 0.683 0.292

GG69 -0.471 2.281 1.302 0.314 0.500 0.384

GG70 0.028 1.193 1.507 0.564 1.029 0.683

GG71 -0.585 1.730 0.130 1.989 0.208 1.604

GG72 1.622 2.342 1.836 0.735 0.579 0.315

GG73 -0.720 1.692 2.864 0.024 1.000 0.349

GG74 -0.808 4.285 3.583 0.000 0.442 0.123

GG75 -0.705 0.812 4.405 0.039 2.585 0.587

GG76 -2.077 3.993 0.872 0.209 0.234 0.268

GG77 0.264 0.645 1.229 1.124 1.720 1.399

GG78 -0.636 3.057 3.119 0.001 0.578 0.185

GG79 -0.072 1.500 3.294 0.036 1.210 0.367

GG80 0.638 0.930 1.839 0.878 1.459 0.793

GG81 -1.073 1.169 1.641 0.163 1.096 0.668

GG82 -0.024 3.607 0.526 5.242 0.201 0.382

GG83 1.376 1.830 3.114 0.101 0.964 0.310

GG84 -0.105 1.137 2.750 0.134 1.459 0.530

GG85 -0.035 1.020 1.204 0.784 1.076 0.893

GG86 -0.807 0.193 0.980 0.448 5.139 5.246

GG87 -0.397 1.952 2.852 0.021 0.865 0.303

GG88 0.474 1.801 1.910 0.321 0.768 0.402

GG89 -1.942 1.913 2.400 0.011 0.810 0.337

GG90 1.085 3.398 4.958 0.000 0.655 0.132

GG91 -0.891 1.339 7.197 0.000 2.004 0.278

GG92 2.091 1.281 0.925 8.904 0.751 0.812

GG93 -0.730 1.966 2.513 0.027 0.806 0.321
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Table A.1 Continued

Data JL a k 0 a (3

GG94 -0.746 3.413 1.090 0.349 0.306 0.281

GG95 0.641 8.109 1.692 0.007 0.160 0.095

GG96 1.662 4.863 0.865 10.137 0.191 0.221

GG97 1.464 1.648 1.247 2.881 0.677 0.543

GG98 -0.041 0.326 0.527 1.117 2.225 4.225

GG99 -1.231 0.173 0.512 0.317 4.125 8.058

GG100 0.186 0.888 0.337 2.109 0.654 1.939
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Table A.2: Table of "initial parameters" from Section 2.5.

Initial value /10 (]o ko Bo ao (30

1 -2.400 2.408 0.929 0.108 0.400 0.431

2 1.158 0.509 1.729 2.206 2.581 1.493

3 -0.923 1.268 1.615 0.183 1.003 0.621

4 0.869 3.298 0.767 5.125 0.266 0.346

5 -1.244 2.811 0.864 0.422 0.331 0.383

6 -0.898 2.409 1.347 0.177 0.482 0.358

7 -0.876 1.633 1.308 0.252 0.700 0.535

8 1.630 4.524 1.299 1.324 0.252 0.194

9 1.258 1.212 4.351 0.085 1.721 0.396

10 -1.193 6.121 0.604 3.343 0.127 0.210

11 -0.805 1.157 0.337 0.929 0.502 1.489

12 -0.608 1.177 2.613 0.088 1.374 0.526

13 -1.549 1.341 2.198 0.044 1.105 0.503

14 0.958 5.356 1.246 0.699 0.208 0.167

15 -0.074 2.510 4.465 0.000 0.842 0.189

16 -0.663 0.014 0.490 0.519 49.110 100.140

17 -0.030 1.143 1.501 0.550 1.072 0.714

18 -0.238 3.953 2.937 0.001 0.433 0.148

19 -0.532 3.314 2.998 0.001 0.522 0.174

20 -0.303 1.033 1.084 0.678 1.008 0.930

21 1.671 0.340 0.259 6.720 1.498 5.772

22 0.216 1.558 2.797 0.085 1.073 0.384

23 -1.043 1.275 1.428 0.205 0.938 0.657

24 1.248 5.694 1.977 0.015 0.247 0.125

25 -0.511 1.948 1.725 0.149 0.674 0.391

26 1.653 1.036 4.682 0.164 2.088 0.446
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Table A.2 Continued

Initial value /-to 0'0 ko 00 ao f30

27 -0.385 1.762 1.021 0.656 0.573 0.562

28 -0.863 0.846 0.236 0.764 0.574 2.433

29 2.481 2.698 1.533 2.866 0.459 0.299

30 0.762 0.997 0.433 3.710 0.660 1.524

31 -0.521 2.100 5.218 0.000 1.088 0.208

32 -0.242 1.351 0.861 0.946 0.687 0.7983

33 -1.001 0.753 1.642 0.228 1.702 1.0379

34 -1.341 2.153 3.437 0.002 0.861 0.2500

35 -0.848 2.566 1.449 0.136 0.469 0.3248

36 1.450 0.470 0.703 4.895 1.785 2.5381

37 0.832 1.885 3.610 0.023 1.008 0.2796

38 1.290 1.132 0.628 5.512 0.700 1.1156

39 0.328 2.325 0.300 6.427 0.236 0.7851

40 0.056 1.130 10.231 0.000 2.830 0.2776

41 -0.243 1.202 4.654 0.015 1.795 0.3865

42 0.277 0.976 1.037 1.272 1.043 1.0064

43 -0.320 1.982 3.059 0.015 0.882 0.2889

44 1.264 3.561 3.916 0.000 0.556 0.1426

45 -0.207 1.111 6.798 0.003 2.346 0.3457

46 -1.250 2.354 1.345 0.128 0.493 0.3665

47 -1.604 0.471 2.114 0.120 3.089 1.4617

48 1.523 4.830 5.311 0.000 0.477 0.0909

49 0.436 2.096 5.360 0.000 1.105 0.2064

50 0.731 2.889 2.497 0.032 0.547 0.2191

51 -1.074 7.303 2.135 0.000 0.200 0.0944

52 -1.136 1.718 2.516 0.026 0.923 0.3673
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Table A.2 Continued

Initial value /-la (To ko eo 0:0 Po

53 -1.496 0.831 1.792 0.117 1.612 0.8991

54 -0.041 1.855 1.153 0.723 0.579 0.5029

55 0.153 0.843 2.941 0.245 2.035 0.6920

56 1.092 1.865 3.451 0.041 0.996 0.2898

57 0.368 0.651 0.549 1.930 1.138 2.0732

58 0.603 3.898 1.289 0.593 0.291 0.2267

59 -2.047 3.270 5.066 0.000 0.688 0.1362

60 0.010 0.620 1.555 0.718 2.011 1.2937

61 -1.496 2.696 1.386 0.079 0.437 0.3159

62 -0.623 2.709 1.495 0.142 0.451 0.3021

63 -0.461 4.592 2.268 0.002 0.328 0.1457

64 -0.209 4.289 0.583 4.747 0.178 0.3059

65 1.585 1.377 0.907 5.546 0.691 0.7629

66 0.993 0.479 2.018 1.674 2.966 1.4705

67 -0.706 0.542 2.311 0.247 2.803 1.213

68 -1.573 1.973 0.289 0.774 0.272 0.943

69 -1.167 2.681 0.671 0.748 0.305 0.456

70 -0.506 1.172 4.541 0.014 1.819 0.400

71 -0.632 1.292 1.586 0.251 0.975 0.614

72 -1.061 3.103 0.836 0.575 0.295 0.352

73 -0.073 0.494 5.837 0.113 4.894 0.838

74 -0.150 1.387 4.465 0.011 1.523 0.341

75 -0.632 0.375 1.756 0.401 3.531 2.010

76 1.983 2.311 3.861 0.016 0.850 0.220

77 -0.118 2.110 6.308 0.000 1.191 0.189

78 1.337 0.649 1.704 2.426 2.013 1.181
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Table A.2 Continued

Initial value /10 0'0 ko 00 00 f30

79 1.926 0.636 2.470 2.779 2.471 1.000

80 -0.005 3.364 3.449 0.000 0.552 0.160

81 -0.635 . 1.789 0.299 1.728 0.306 1.023

82 -1.905 2.484 3.203 0.001 0.720 0.225

83 -0.832 2.957 1.665 0.062 0.436 0.262

84 -0.118 1.658 5.414 0.001 1.403 0.259

85 -0.543 2.438 3.035 0.005 0.715 0.235

86 -0.277 3.532 2.253 0.010 0.425 0.189

87 -1.328 1.106 3.203 0.026 1.618 0.505

88 -0.297 1.053 1.785 0.329 1.269 0.711

89 -1.528 0.453 1.334 0.187 2.551 1.913

90 -0.656 1.705 1.008 0.512 0.589 0.584

91 -1.351 0.419 1.257 0.233 2.674 2.127

92 -0.674 3.373 2.759 0.002 0.493 0.179

93 0.490 0.471 3.962 0.448 4.222 1.066

94 0.845 1.116 0.983 2.370 0.889 0.904

95 -0.940 0.460 0.609 0.467 1.696 2.784

96 -1.952 0.804 1.071 0.134 1.288 1.202

97 0.643 0.642 0.787 2.180 1.381 1.754

98 0.347 3.732 6.222 0.000 0.668 0.107

99 -0.163 0.243 2.154 0.646 6.048 2.808

100 -0.251 1.916 3.041 0.019 0.910 0.299
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Table A.3: Number of times each method fails to reach the maximallikclihood for n = 500.

Data Likemax {L 0- k Our Progam BFGS NM

GGI -1536.441 -0.397 4.906 2.603 1 15 2

GG2 -1181.214 0.118 1.904 0.478 1 1 1

GG3 -1121.897 2.240 1.888 0.820 1 5 1

GG4 -1737.515 -0.439 6.323 0.722 3 24 3

GG5 -880.550 0.614 1.104 0.615 1 2 1

GG6 -480.523 -0.293 0.601 3.223 1 2 1

GG7 -760.787 0.585 0.902 0.746 2 7 1

GG8 -1157.147 -0.154 1.645 0.330 1 1 1

GG9 -996.975 0.009 1.571 1.305 0 3 1

GG10 -902.135 0.927 1.403 3.546 1 12 1

GG11 -1142.043 0.204 2.316 6.579 3 18 1

GG12 -1274.876 -1.001 2.908 2.612 1 8 1

GG13 -811.702 -0.657 1.088 1.342 2 2 1

GG14 -1000.820 0.528 1.667 2.289 2 4 1

GG15 -1036.757 -1.200 1.782 2.135 1 3 1

GG16 -1156.168 -0.050 2.211 1.630 2 12 1

GG17 -1070.604 -0.125 1.543 0.501 1 2 1

GG18 -1164.577 0.973 2.292 2.035 1 21 1

GG19 -1236.591 -0.162 2.483 1.102 1 4 1

GG20 -1436.673 -3.071 2.518 0.216 3 1 3

GG21 -504.875 -0.078 0.593 1.429 1 0 1

GG22 -822.199 1.604 1.150 1.916 1 7 1

GG23 -889.256 0.514 1.400 7.104 1 9 1

GG24 -746.157 0.933 1.040 4.889 1 5 1

GG25 -1450.189 0.102 3.984 1.645 2 11 1

GG26 -551.443 0.330 0.642 1.263 1 2 1
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Table A.3 Continued

Data Likemax [L 0- k Our Progam DFGS NM

GG27 -1546.648 0.060 5.014 2.660 2 20 2

GG28 -1133.804 -0.330 1.811 0.582 1 7 1

GG29 -1335.270 -1.121 3.282 2.614 1 17 1

GG30 -1058.496 -1.751 1.821 1.657 1 4 1

GG31 -775.005 -1.476 0.961 0.919 1 0 1

GG32 -1023.554 -0.279 1.303 0.372 1 3 1

GG33 -712.502 -2.830 0.850 0.932 1 1 1

GG34 -1669.130 -0.009 6.416 2.733 1 34 8

GG35 -863.488 -1.238 1.310 4.371 2 5 1

GG36 -1302.941 0.156 3.121 3.402 0 9 1

GG37 -1194.321 -0.229 2.489 2.854 1 8 1

GG38 -1282.329 0.211 2.859 1.718 1 12 1

GG39 -580.381 0.640 0.660 1.004 1 3 1

GG40 -1169.161 0.866 2.345 2.463 1 18 1

GG41 -494.301 -1.254 0.349 0.167 1 0 0

GG42 -1371.153 -0.733 3.580 3.454 1 19 1

GG43 -973.959 0.342 1.461 1.062 0 3 1

GG44 -1322.295 -0.510 3.027 1.370 2 4 1

GG45 -1382.708 0.753 3.581 2.321 2 17 1

GG46 -975.819 -0.463 1.629 3.696 1 3 1

GG47 -650.099 0.200 0.806 1.675 1 4 1

GG48 -1062.999 -0.751 1.589 0.612 1 4 1

GG49 -1176.741 0.556 2.467 5.248 2 18 2

GG50 -1035.735 -0.701 1.628 0.953 1 8 1

GG51 -332.759 -1.528 0.436 2.171 1 0 0

GG52 -1131.288 0.782 2.242 4.572 1 18 1
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Table A.3 Continued

Data Likemax p. f1 k Our Progam BFGS NM

GG53 -1167.494 0.660 2.283 1.807 2 13 1

GG54 -1123.347 1.499 1.981 1.109 1 8 1

GG55 109.096 0.386 0.187 4.492 3 6 1

GG56 -1185.208 1.345 6.243 2.521 2 23 2

GG57 -828.955 1.310 1.015 0.678 1 1 1

GG58 -1256.115 0.591 2.578 1.089 0 6 1

GG59 -1544.157 -1.309 4.494 0.945 1 4 1

GG60 -363.085 -0.770 0.432 1.093 1 0 1

GG61 -664.774 0.451 0.888 5.646 1 5 1

GG62 -1582.361 1.556 3.004 0.157 1 3 1

GG63 -1646.145 -1.242 5.197 0.672 3 20 2

GG64 -1208.395 -0.482 2.375 1.209 1 2 1

GG65 -1294.619 -1.244 3.100 4.275 2 14 1

GG66 -866.334 -1.201 1.196 1.192 1 1 1

GG67 -1615.649 -0.205 4.415 0.427 2 16 1

GG68 -1154.335 0.055 2.184 1.498 1 8 1

GG69 -1174.977 -0.502 2.264 1.421 1 4 1

GG70 -863.170 -0.018 1.195 1.247 1 1 1

GG71 -1342.239 -0.193 1.368 0.074 4 2 3

GG72 -1188.295 1.727 2.344 1.536 1 5 1

GG73 -1008.780 -0.701 1.701 2.456 1 3 1

GG74 -1454.763 -1.009 4.246 3.717 1 15 2

GG75 -619.711 -0.718 0.807 4.700 0 2 1

GG76 -1493.220 -2.386 4.137 1.080 3 7 1

GG77 -571.003 0.220 0.678 1.455 1 2 1

GG78 -1272.677 -0.739 2.939 3.424 2 9 1
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Table A.3 Continued

Data Likemax p. fJ k Our Progam BFGS NM

GG79 -967.506 -0.222 1.560 2.315 0 3 1

GG80 -723.384 0.607 0.934 1.708 2 5 1

GG81 -830.841 -1.114 1.211 3.205 1 5 1

GG82 -1476.033 0.144 3.513 0.526 1 7 1

GG83 -1031.432 1.191 1.866 8.202 2 12 1

GG84 -800.151 0.009 1.078 1.525 0 3 1

GG85 -801.581 -0.023 1.077 1.478 2 4 1

GG86 31.591 -0.806 0.192 0.941 1 0 0

GG87 -1080.230 -0.531 1.988 3.043 2 10 1

GG88 -1053.781 0.672 1.792 1.543 1 5 1

GG89 -1069.627 -2.005 1.910 2.244 1 5 1

GG90 -1322.735 1.061 3.291 4.700 2 27 2

GG91 -863.172 -0.899 1.336 9.281 2 7 1

GG92 -921.673 2.099 1.293 0.940 1 7 1

GG93 -1100.892 -0.679 2.033 2.250 1 9 1

GG94 -1402.308 -0.594 3.406 0.988 1 10 1

GG95 -1811.848 1.427 8.143 1.510 1 46 9

GG96 -1616.439 1.588 5.195 0.947 1 26 4

GG97 -996.703 1.327 1.605 1.609 1 7 1

GG98 -290.158 -0.036 0.332 0.560 1 0 1

GG99 7.368 -1.254 0.187 0.618 1 0 0

GGI00 -843.262 0.344 0.804 0.248 1 1 1

SUM 129 799 127
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A.2 Tables of Simulation Study in Section 4.2

Table A.4: Table of "real parameters" from Section 4.2.

Data a b a k

GGQ1 -0.671 1.195 2.133 2.453

GGQ2 1.128 -1.716 0.532 1.036

GGQ3 0.063 0.758 1.507 2.572

GGQ4 0.223 0.747 1.318 6.317

GGQ5 -1.680 -0.047 4.036 5.666

GGQ6 1.519 0.639 1.621 2.850

GGQ7 -0.797 0.800 1.357 0.465

GGQ8 0.268 0.957 1.699 2.842

GGQ9 -2.073 -0.129 6.439 0.933

GGQlO 1.294 -0.358 0.549 0.275

GGQ11 0.980 -1.852 1.834 1.203

GGQ12 -0.417 -0.237 2.068 2.236

GGQ13 -0.165 -1.859 0.860 0.711

GGQ14 1.127 -0.120 1.504 1.124

GGQ15 -1.347 0.235 1.525 1.453

GGQ16 0.605 1.913 3.302 4.096

GGQ17 0.703 -0.306 4.979 5.363

GGQ18 -0.776 0.338 3.914 2.097

GGQ19 -2.047 0.950 0.474 2.630

GGQ20 -0.880 -0.954 4.026 1.879

GGQ21 -0.356 0.897 4.268 4.656

GGQ22 -1.016 2.418 1.662 0.521

GGQ23 -1.784 0.918 0.880 1.536

GGQ24 0.949 1.505 0.262 3.794
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Table A.4 Continued

Data a b a k

GGQ25 -0.534 -0.032 1.614 0.904

GGQ26 -0.013 -0.680 0.539 2.302

GGQ27 0.571 1.763 1.710 1.805

GGQ28 -0.613 0.876 1.369 1.093

GGQ29 0.837 0.685 0.634 1.074

GGQ30 -0.107 0.489 1.202 2.392

GGQ31 0.169 -1.430 3.278 0.729

GGQ32 0.113 -0.897 1.395 1.736

GGQ33 1.066 0.166 0.473 3.211

GGQ34 -0.738 0.482 2.503 0.974

GGQ35 -1.314 0.390 0.864 3.202

GGQ36 -0.566 1.130 1.673 1.096

GGQ37 2.794 0.412 0.184 0.787

GGQ38 -0.814 -0.343 2.132 0.378

GGQ39 0.592 1.166 0.410 2.876

GGQ40 1.137 -0.929 0.383 0.823

GGQ41 0.271 0.196 2.578 1.739

GGQ42 -0.711 0.236 1.167 0.905

GGQ43 0.325 -0.546 3.816 1.248

GGQ44 0.445 1.314 2.161 2.561

GGQ45 -0.878 1.762 4.104 0.490

GGQ46 0.671 0.830 1.173 4.093

GGQ47 1.366 -0.276 0.756 1.530

GGQ48 0.982 0.839 0.790 0.687

GGQ49 0.651 0.249 0.459 3.394

GGQ50 1.767 0.832 2.104 0.444
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Table A.4 Continued

Data a b a k

GGQ51 -0.095 0.139 0.803 2.448

GGQ52 -1.859 1.716 0.437 1.372

GGQ53 0.238 -0.370 0.757 2.269

GGQ54 -1.555 -0.990 1.543 5.086

GGQ55 -0.199 0.717 2.056 0.799

GGQ56 0.781 -1.438 2.666 5.002

GGQ57 0.466 0.756 0.912 2.491

GGQ58 -0.434 -0.807 1.677 1.422

GGQ59 1.097 -0.025 2.668 2.113

GGQ60 0.699 0.233 3.365 4.446

GGQ61 -0.596 -0.465 0.953 4.488

GGQ62 -0.758 -1.840 1.491 5.788

GGQ63 1.219 -0.271 1.719 2.471

GGQ64 -0.488 -0.528 0.756 3.914

GGQ65 -1.733 0.359 2.762 2.134

GGQ66 1.035 -0.746 1.559 0.352

GGQ67 -1.217 1.683 1.739 3.436

GGQ68 1.530 -0.416 2.490 1.485

GGQ69 0.559 -0.103 1.279 0.519

GGQ70 -0.139 -0.253 0.986 5.160

GGQ71 0.044 1.111 0.525 1.914

GGQ72 0.735 -0.548 1.228 2.965

GGQ73 -1.565 -1.223 5.415 0.799

GGQ74 -0.150 0.344 1.097 2.469

GGQ75 0.043 0.460 3.268 3.717

GGQ76 0.341 0.377 3.813 3.185
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Table A.4 Continued

Data a b 0- k

GGQ77 -0.889 -1.536 0.129 1.002

GGQ78 0.051 0.266 1.601 2.478

GGQ79 1.075 1.545 2.839 2.886

GGQ80 -0.584 -0.002 2.452 1.020

GGQ81 -0.826 2.011 0.854 1.974

GGQ82 -0.447 -1.037 2.571 2.530

GGQ83 -0.023 -1.398 1.572 2.559

GGQ84 0.073 -0.118 2.885 0.967

GGQ85 1.057 -0.905 4.085 2.666

GGQ86 0.917 1.249 5.563 2.416

GGQ87 -0.403 -1.447 1.637 3.180

GGQ88 -0.183 -1.392 6.037 1.286

GGQ89 1.666 0.713 0.072 2.070

GGQ90 -1.541 -1.280 2.076 1.372

GGQ91 1.635 0.160 3.785 3.057

GGQ92 -1.499 -1.084 2.634 0.601

GGQ93 1.797 -1.228 3.095 1.613

GGQ94 -1.179 -1.149 3.123 2.101

GGQ95 1.009 0.313 5.900 2.806

GGQ96 -0.322 0.439 1.628 2.631

GGQ97 2.231 0.036 1.362 2.374

GGQ98 -0.878 -0.075 0.993 1.026

GGQ99 0.352 1.116 1.096 5.293

GGQ100 0.207 -0.772 2.723 0.984
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Table A.5: Table of "initial parameters" from Section 4.2.

Initial value ao bo 0"0 ko

1 0.213 -0.076 0.176 0.985

2 -1.093 0.293 0.849 1.777

3 0.190 -0.062 3.179 0.817

4 0.751 1.820 2.222 0.950

5 1.801 0.320 4.820 3.213

6 -0.483 -0.356 0.743 0.520

7 -1.030 1.040 0.407 4.977

8 -0.477 -0.142 1.773 6.200

9 0.387 0.491 0.413 1.584

10 0.449 -0.502 2.965 3.861

11 0.998 0.482 4.041 2.383

12 -0.009 -1.547 2.606 0.652

13 0.452 1.001 3.364 2.250

14 0.644 0.930 1.875 1.985

15 0.663 -2.854 1.626 0.854

16 -0.074 0.327 3.925 2.444

17 -1.675 1.827 4.009 4.555

18 -1.914 -0.180 1.428 0.745

19 0.089 -0.721 0.883 2.437

20 1.055 -0.707 2.284 3.510

21 0.004 0.734 2.669 2.970

22 -0.500 0.485 0.558 2.387

23 -1.042 -1.514 2.167 0.959

24 -0.660 0.511 1.330 1.737

25 0.581 -0.363 1.948 2.028

26 2.307 -0.920 9.884 0.981
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Table A.5 Continued

Initial value ao bo 0'0 ko

27 0.581 -0.148 2.302 3.408

28 0.404 0.843 3.520 1.437

29 0.273 2.197 2.342 3.331

30 0.071 1.255 1.037 1.131

31 -1.013 -1.003 0.850 7.203

32 -0.351 -0.137 1.570 1.218

33 2.202 1.922 2.674 3.040

34 0.603 -2.119 2.403 1.663

35 -0.699 0.334 1.205 1.846

36 -0.365 -0.848 0.692 1.716

37 0.662 0.793 4.423 2.378

38 -0.122 -0.483 0.802 0.276

39 -2.199 -0.945 3.902 3.763

40 0.093 -0.145 0.552 4.222

41 -0.638 -0.636 2.546 2.105

42 1.153 -2.038 0.416 2.079

43 1.203 -1.484 0.890 2.118

44 -1.049 -0.001 2.982 2.536

45 -0.776 2.052 2.611 4.354

46 1.695 0.572 1.665 0.385

47 -0.455 0.622 0.117 0.329

48 0.495 1.293 1.939 2.167

49 2.182 0.387 1.668 3.078

50 0.695 0.238 1.575 1.126

51 0.237 -2.103 2.957 1.615

52 -0.055 0.103 4.193 2.234
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Table A.5 Continued

Initial value ao bo 0'0 ko

53 0.482 0.291 1.275 1.678

54 -0.605 0.410 1.803 0.909

55 -0.200 0.012 0.510 1.414

56 -1.044 -0.382 1.146 1.784

57 1.734 -1.011 2.967 1.731

58 -2.140 0.572 6.465 3.318

59 0.464 1.671 2.791 1.873

60 0.273 0.568 1.938 0.464

61 0.648 0.334 3.910 1.373

62 -1.884 0.506 0.650 1.541

63 -1.501 -0.491 2.539 1.507

64 -1.767 0.236 0.789 1.467

65 -1.194 0.129 7.150 4.792

66 -0.406 0.619 0.863 2.281

67 -1.637 0.844 1.641 6.222

68 -0.080 -0.525 1.216 0.319

69 -0.050 -0.307 3.653 2.639

70 1.661 -1.007 2.211 1.141

71 -2.144 -0.116 1.592 3.595

72 0.916 -0.245 0.587 0.579

73 2.548 1.116 3.364 1.656

74 -1.903 0.062 2.524 4.459

75 0.087 -0.269 0.259 2.458

76 0.631 -0.553 1.299 5.144

77 -1.455 0.383 0.889 1.130

78 -0.712 0.780 2.369 0.798
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Table A.5 Continued

Initial value ao bo 0'0 ko

79 -1.781 -1.075 0.552 3.110

80 -0.619 -1.004 2.125 2.855

81 1.497 1.409 2.319 0.799

82 2.035 -1.167 1.110 1.323

83 0.015 -0.939 1.420 1.663

84 1.857 1.322 1.338 2.706

85 -0.062 1.048 3.108 3.292

86 -1.458 0.653 0.305 0.761

87 -0.159 -0.020 4.690 1.427

88 1.708 0.255 2.657 3.229

89 -0.287 -0.328 1.982 2.546

90 -0.493 -0.221 1.683 1.950

91 1.031 1.316 1.909 1.017

92 -1.227 1.350 1.868 2.026

93 2.061 -0.665 0.499 6.703

94 0.872 1.115 3.671 2.910

95 -0.731 0.006 2.137 0.270

96 0.651 -0.955 4.023 2.635

97 -0.399 -1.594 2.415 0.895

98 1.122 -0.700 0.848 1.524

99 0.655 0.415 0.486 3.753

100 1.134 1.966 2.164 0.767
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Table A.6: Number of times each method fails to reach the maximal likelihood in the four-

parameter case for n = 500.

Data Likemax a b 0- k Progbis Prognr BFGS NM

GGQl -1136.811 -0.527 0.773 2.226 3.040 0 3 11 1

GGQ2 -453.047 1.169 -1.787 0.518 1.097 0 11 2 1

GGQ3 -956.597 -0.063 0.802 1.575 4.151 0 2 16 1

GGQ4 -859.130 0.039 1.127 1.335 15.713 1 4 16 1

GGQ5 -1402.789 -2.122 0.249 3.913 7.471 1 22 21 3

GGQ6 -958.702 1.393 0.785 1.551 2.786 1 7 18 1

GGQ7 -1035.826 -0.638 0.657 1.309 0.347 0 11 2 0

GGQ8 -1010.320 0.791 0.869 1.536 0.908 0 0 8 1

GGQ9 -1692.466 -3.180 0.706 6.168 1.086 3 40 12 3

GGQ10 -656.312 1.533 -0.480 0.471 0.157 0 2 1 1

GGQ11 -1094.673 0.454 -1.653 2.011 2.291 1 8 9 1

GGQ12 -1106.762 -0.521 -0.460 2.080 2.665 0 4 9 1

GGQ13 -734.360 -0.132 -1.955 0.860 0.769 1 29 0 0

GGQ14 -984.957 1.241 -0.330 1.531 1.288 0 0 6 1

GGQ15 -960.734 -1.294 0.128 1.462 1.317 0 6 2 0

GGQ16 -1341.533 0.404 1.834 3.464 7.708 0 3 30 3

GGQ17 -1502.134 0.790 -0.662 4.790 8.847 2 6 27 5

GGQ18 -1433.885 -1.091 1.086 3.948 2.178 0 13 11 3

GGQ19 -349.802 -1.949 0.830 0.449 1.996 1 22 1 0

GGQ20 -1457.474 -1.310 0.236 4.006 1.502 1 16 9 3

GGQ21 -1463.523 0.277 -0.037 4.268 2.898 0 5 9 3

GGQ22 -1090.882 -0.895 1.980 1.679 0.611 1 4 2 1

GGQ23 -677.044 -1.828 1.031 0.852 1.706 0 12 1 0

GGQ24 -78.992 0.927 1.511 0.268 3.005 2 29 10 1
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Table A.6 Continued

Data Likemax Progbis Prognr BFGS NM

GGQ25

GGQ26

-1053.134 -0.543 0.032 1.715 1.074

-438.993 0.099 -0.817 0.510 1.208

GGQ27 -1043.584 0.583 1.854 1.772 1.697

GGQ28

GGQ29

GGQ30

GGQ31

GGQ32

GGQ33

GGQ34

GGQ35

GGQ36

GGQ37

GGQ38

GGQ39

GGQ40

GGQ41

GGQ42

GGQ43

GGQ44

GGQ45

GGQ46

GGQ47

GGQ48

GGQ49

GGQ50

-939.365 -0.651 1.098 1.356 1.021

-551.041 0.909 0.593 0.614 0.915

-852.947 -0.298 0.864 1.236 2.192

-1398.997 0.037 -0.773 3.258 0.780

-917.035 -0.076 -0.613 1.353 1.435

-331.188 1.047 0.183 0.450 3.963

-1229.262 -0.856 0.487 2.415 1.002

-667.047 -1.172 0.275 0.836 1.728

-1026.644 -0.823 1.570 1.677 1.377

36.372 2.781 0.423 0.190 0.920

-1264.442 -0.750 -0.411 2.243 0.472

-300.523 0.584 1.182 0.410 2.250

-334.930 1.105 -0.948 0.403 0.986

-1232.126 0.135 0.666 2.530 1.383

-896.902 -0.596 -0.035 1.242 1.002

-1468.081 0.085 -0.604 4.011 1.254

-1117.375 0.368 0.923 2.167 3.910

-1554.908 -0.052 1.682 3.796 0.381

-808.004 0.605 0.951 1.141 2.533

-633.382 1.402 -0.307 0.740 1.067

-705.661 0.941 0.948 0.755 0.533

-349.877 0.624 0.317 0.469 4.320

-1257.028 1.829 0.748 2.192 0.457
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Table A.6 Continued

Data Likemax Progbis Prognr DFGS NM

GGQ51

GGQ52

GGQ53

GGQ54

GGQ55

GGQ56

GGQ57

GGQ58

GGQ59

GGQ60

GGQ61

GGQ62

GGQ63

GGQ64

GGQ65

GGQ66

GGQ67

GGQ68

GGQ69

GGQ70

GGQ71

GGQ72

GGQ73

GGQ74

GGQ75

GGQ76

-633.252 -0.085 0.062 0.802 2.428

-328.067 -1.849 1.755 0.400 1.041

-610.761 0.111 -0.144 0.782 3.446

-953.648 -1.618 -1.028 1.580 5.411

-1178.795 0.376 0.293 1.977 0.575

-1226.492 0.854 -1.549 2.740 6.369

-709.575 0.418 0.699 0.940 2.644

-1028.758 -0.530 -0.993 1.735 1.874

-1214.612 1.130 -0.184 2.548 2.192

-1345.589 0.689 0.133 3.419 3.856

-708.992 -0.460 -0.465 0.914 1.830

-929.627 -0.772 -1.878 1.502 4.943

-990.903 1.127 -0.103 1.628 2.177

-595.306 -0.499 -0.505 0.775 6.298

-1244.420 -1.566 -0.033 2.694 2.080

-1114.379 1.185 -1.042 1.505 0.326

-1015.339 -1.454 2.094 1.761 3.621

-1242.674 1.387 -0.358 2.694 2.183

-949.376 0.617 -0.262 1.252 0.581

-725.138 -0.052 -0.333 0.991 4.084

-427.401 0.073 1.095 0.515 1.623

-828.805 0.687 -0.452 1.214 3.688

-1647.717 -1.997 -0.908 5.590 1.019

-781.319 -0.173 0.305 1.109 4.134

-1307.765 0.195 0.271 3.168 3.814

-1410.755 0.416 -0.284 3.872 3.397
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Table A.6 Continued

Data Likcmax a b 0- k Progbis Prognr BFGS NM

GGQ77 228.422 -0.900 -1.528 0.134 1.165 50 97 0 0

GGQ78 -970.028 -0.013 0.384 1.556 2.083 4 6 10 1

GGQ79 -1254.524 0.894 1.619 2.885 5.423 1 2 24 3

GGQ80 -1250.759 -0.973 0.128 2.577 1.180 0 5 5 1

GGQ81 -638.188 -0.943 2.175 0.822 3.079 1 5 3 1

GGQ82 -1180.910 -0.366 -1.591 2.456 3.748 0 7 9 1

GGQ83 -971.894 0.106 -1.567 1.569 2.220 0 10 7 1

GGQ84 -1348.306 -0.274 0.834 2.896 0.713 0 3 9 1

GGQ85 -1421.700 0.665 -0.926 3.995 4.214 1 4 22 3

GGQ86 -1641.202 1.626 0.392 5.861 1.716 0 2 15 4

GGQ87 -983.079 -0.481 -1.682 1.675 5.341 0 7 6 1

GGQ88 -1640.000 0.097 -2.112 5.829 1.659 2 8 13 5

GGQ89 599.510 1.671 0.709 0.067 1.869 60 97 9 1

GGQ90 -1116.125 -1.878 -0.805 2.084 2.079 1 24 1 1

GGQ91 -1383.553 2.134 -0.239 3.578 2.245 0 3 20 3

GGQ92 -1344.011 -1.346 -0.903 2.656 0.492 2 13 1 1

GGQ93 -1332.145 1.985 -1.864 3.103 1.436 0 5 11 3

GGQ94 -1320.367 -1.016 -1.576 3.171 2.439 1 24 9 2

GGQ95 -1618.645 1.432 0.242 5.617 1.767 0 0 11 4

GGQ96 -978.636 -0.174 0.505 1.553 1.666 0 4 9 1

GGQ97 -860.130 2.248 0.149 1.248 2.064 1 10 16 1

GGQ98 -785.183 -0.791 -0.172 0.998 1.037 0 6 3 0

GGQ99 -787.309 0.390 1.030 1.131 5.089 2 9 7 1

GGQ100 -1302.519 0.014 -1.029 2.947 1.546 0 4 8 1

SUM 168 949 766 136
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A.3 Tables of Simulation Study in Section 5.1

Table A.7: Mean relative bias (biasmu, biassigma, biask, biasb, biasd, biasg) and root mean

relative squared error (msemu, msesigma, msek, mseb, msed, mseg) of the estimated parameters

of the three-parameter GG data sets for n = 500. In the case of b, d and 9 in the "LRT Version"

'relative' is replaced by 'actual'.

Known p Version

031 D32 033 034

biasmu -0.002 -0.002 0.001 -0.004

msemu 0.026 0.042 0.022 0.146

biassigma -0.008 -0.004 -0.006 -0.001

msesigma 0.047 0.039 0.038 0.036

biask 0.004 0.097 0.250 0.147

msek 0.197 0.355 0.712 0.533

LRT Version

biasmu -0.003 0.000 0.001 -0.011

msemu 0.032 0.070 0.032 0.185

biassigma -0.011 -0.009 -0.008 -0.004

msesigma 0.062 0.053 0.052 0.053

biask 0.025 0.156 0.878 0.288

msek 0.232 0.718 4.262 1.805

biasb -0.002 -0.018 0.002 0.007

mseb 0.067 0.501 0.049 0.108

biasd 0.004 0.007 0.003 0.005

msed 0.104 0.079 0.074 0.071

biasg -0.034 0.048 -0.027 0.021

mseg 0.304 0.726 1.026 0.614
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Table A.8: Mean relative bias (biasa, biasb, biassigma, biask, biasd, biasg) and root mean

relative squared error (msea, mscb, msesigma, msek, msed, mseg) of the estimated parameters

of the four-parameter CC data sets for n = 500. In the case of d and 9 in the "LRT Version"

'relative' is replaced by 'actual'.

Known p Version

D41 D42 D43 D44

biasa 0.012 -0.001 -0.092 -0.022

msea 0.062 0.022 0.770 0.204

biasb -0.020 -0.054 0.002 0.015

mseb 0.242 1.442 0.032 0.153

biassigma -0.020 -0.009 -0.005 -0.003

msesigma 0.073 0.044 0.039 0.037

biask -0.038 0.060 0.328 0.247

msek 0.191 0.321 1.016 0.952

LRT Version

biasa 0.005 -0.006 -0.112 -0.016

msea 0.085 0.026 0.792 0.231

biasb 0.021 -0.620 0.004 0.012

mseb 0.442 1.821 0.037 0.180

biassigma -0.005 -0.009 -0.001 -0.003

msesigma 0.115 0.064 0.053 0.056

biask 0.013 0.180 0.600 0.816

msek 0.366 0.949 3.030 4.010

biasd -0.029 0.002 -0.008 0.001

msed 0.189 0.094 0.069 0.077

biasg -0.056 0.015 -0.012 -0.066

mseg 0.469 0.653 0.895 0.844
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Table A.9: Mean relative bias (biasa, biasb, biasc, biasd, biask, biasg) and root mean relative

squared error (msea, msob, msec, msed, msek, mscg) of the estimated parameters of the five-

parameter GG data sets for n = 500. In the case of 9 in the "LRT Version" 'relative' is replaced

by 'actual'.

Known p Version

D51 D52 D53 D54

biasa 0.000 -0.004 0.002 0.003

msea 0.002 0.027 0.015 0.141

biasb -O.OlD 0.046 0.020 -0.003

mseb 0.048 0.220 0.171 0.104

biasc -0.001 0.013 0.007 -0.021

mscc 0.031 0.693 0.049 0.126

biasd -0.022 0.010 -0.001 -0.003

msed 0.166 0.235 0.065 0.071

biask 0.057 0.122 0.016 0.169

msek 0.360 0.560 0.224 0.652

LRT Version

biasa 0.000 -0.004 0.002 0.002

msea 0.002 0.031 0.015 0.142

biasb -0.008 0.042 0.017 -0.002

mseb 0.050 0.270 0.178 0.lD4

biasc 0.000 0.036 0.006 -0.021

msec 0.030 0.741 0.051 0.127

biasd -0.019 0.004 0.000 -0.003

msed 0.165 0.249 0.069 0.071

biask 0.042 0.282 0.034 0.172

msek 0.367 1.471 0.292 0.687

biasg 0.042 0.024 -0.011 0.013

mseg 0.297 0.804 0.362 0.248
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Table A.10: Mean relative bias (biasa, biasb, biase, biasd, biasf, biasg) and root mean relative

squared error (msea, mseb, msee, msed, msef, mseg) of the estimated parameters of the six-

parameter GG data sets for n = 500.

Known p Version

D61 D62 D63 D64

biasa 0.186 0.000 0.008 0.000

msea 0.512 0.008 0.141 0.000

biasb -0.009 0.000 -0.004 0.002

mseb 0.066 0.023 0.256 0.038

biase -0.006 0.034 -0.210 -0.001

msee 0.068 0.154 0.712 0.015

biasd -0.003 0.001 0.583 -0.011

msed 0.169 0.040 2.402 0.114

biasf -0.066 -0.420 0.024 0.083

msef 0.333 1.543 0.140 0.334

biasg -0.869 0.181 0.023 0.054

mseg 1.653 0.606 0.159 0.215

LRT Version

biasa 0.078 0.000 0.008 0.000

msea 0.465 0.008 0.141 0.000

biasb 0.000 0.000 -0.004 0.002

mseb 0.061 0.023 0.256 0.038

biasc -0.004 0.054 -0.210 -0.001

msec 0.065 0.164 0.712 0.015

biasd -0.001 -0.008 0.583 -0.011

msed 0.163 0.045 2.402 0.114

biasf 0.043 0.062 0.024 0.083

msef 0.218 1.811 0.140 0.334

biasg -0.998 -0.081 0.023 0.054

mseg 1.082 0.833 0.159 0.215
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A.4 Tables of Simulation Study in Section 7.5

Table A.11: Table of "real parameters" for Section 7.5.

Data e j3

1 0.289 4.832 2.801

2 2.330 4.406 2.067

3 1.740 2.116 1.254

4 1.403 8.135 3.121

5 5.174 6.551 2.444

6 0.136 7.697 1.291

7 6.836 4.557 3.614

8 4.681 1.826 1.153

9 0.739 4.469 1.744

10 1.284 5.025 2.414

11 4.449 9.592 5.284

12 8.425 2.577 2.348

13 6.087 5.018 3.270

14 0.496 3.055 1.450

15 10.050 3.317 1.401

16 1.047 9.358 1.650

17 4.452 8.475 5.735

18 1.158 4.674 2.010

19 1.358 5.332 2.075

20 2.239 5.390 4.934

21 0.916 3.980 1.452

22 0.861 4.024 1.058

23 0.804 2.034 1.120

24 1.864 4.417 1.367
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Table A.11 Continued

Data () a {J

25 0.971 3.785 2.612

26 2.707 1.768 1.545

27 3.482 7.291 4.509

28 3.470 2.138 1.514

29 2.521 4.537 2.333

30 5.229 2.460 1.057

31 6.872 2.606 2.338

32 0.611 16.626 2.248

33 1.469 2.436 1.233

34 4.560 2.915 2.435

35 4.675 5.137 3.427

36 1.064 2.877 2.671

37 1.351 3.857 1.258

38 1.710 5.077 3.220

39 1.032 5.474 2.494

40 0.520 11.378 1.095

41 1.204 1.552 1.386

42 0.209 7.755 1.381

43 2.098 4.624 1.365

44 0.711 2.539 1.025

45 0.461 3.301 2.280

46 0.047 2.187 1.037

47 0.803 3.119 1.874

48 1.361 7.864 1.573

49 2.567 3.898 1.479

50 6.181 1.990 1.504
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Table A.11 Continued

Data (J a {3

51 4.254 7.977 1.450

52 3.531 7.281 6.064

53 0.331 1.992 1.126

54 1.779 1.829 1.200

55 0.699 9.394 1.774

56 2.651 4.218 2.635

57 0.895 3.367 2.416

58 1.465 2.166 1.792

59 1.000 4.025 2.689

60 1.224 3.044 1.325

61 2.203 1.579 1.276

62 1.980 1.608 1.576

63 2.307 2.539 1.025

64 0.010 6.376 3.247

65 0.639 9.178 1.739

66 0.742 2.720 1.435

67 12.490 6.076 3.374

68 0.798 2.281 1.490

69 1.168 10.224 2.251

70 0.467 1.503 1.123

71 1.834 11.183 1.859

72 0.566 1.664 1.038

73 0.507 2.443 1.257

74 0.585 8.107 1.158

75 0.614 3.651 1.121

76 6.827 10.440 2.888
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Table A.11 Continued

Data 0 et (3

77 0.613 5.640 3.047

78 1.027 8.346 2.623

79 0.486 4.449 1.165

80 1.268 4.223 2.614

81 10.394 1.902 1.860

82 5.364 5.689 1.423

83 0.153 4.630 2.909

84 5.324 6.894 4.993

85 1.897 6.216 2.072

86 0.878 7.382 2.160

87 0.020 5.438 1.590

88 0.003 5.463 2.302

89 0.917 3.121 1.393

90 0.899 2.944 2.438

91 1.337 2.622 2.084

92 2.532 3.274 1.050

93 4.859 3.874 1.823

94 6.519 3.299 2.031

95 0.793 6.883 1.479

96 1.250 2.930 2.505

97 0.224 6.664 1.101

98 0.919 5.817 2.799

99 3.080 4.359 1.984

100 1.158 3.571 1.944
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Table A.12: Table of AGG and GG parameter estimates.

AGG GG

Data Lik () Cl( {3 Lik () Cl( {3

1 482.054 0.280 4.814 2.664 468.470 0.282 4.955 2.694

2 -681.388 2.462 4.182 2.225 -741.842 3.022 3.571 2.630

3 -777.882 1.680 2.104 1.210 -849.819 2.006 2.011 1.393

4 -216.693 1.287 9.359 2.873 -228.795 1.414 8.173 3.105

5 -1020.756 4.112 7.796 1.907 -1059.850 5.663 5.808 2.525

6 396.457 0.218 5.660 1.733 166.666 0.256 5.619 1.627

7 -1027.212 7.184 4.219 3.876 -975.949 6.190 5.477 3.279

8 -1322.916 5.436 1.730 1.238 -1407.788 5.371 1.611 1.179

9 -190.741 0.717 4.756 1.742 -314.757 0.238 5.833 1.058

10 -304.403 1.101 6.057 2.104 -336.946 1.008 5.930 2.036

11 -634.429 4.495 8.960 5.137 -557.845 4.625 8.881 5.636

12 -1261.754 7.902 2.736 2.229 -1309.709 8.507 2.572 2.358

13 -971.722 6.075 4.926 3.370 -966.244 6.135 5.144 3.365

14 -70.559 0.631 2.759 1.873 -166.609 0.504 3.332 1.539

15 -1630.807 12.210 2.980 1.609 -1727.129 11.695 3.142 1.547

16 -444.419 1.031 9.163 1.616 -565.467 1.123 9.097 1.696

17 -602.898 4.132 9.613 4.803 -557.107 4.055 8.958 4.683

18 -395.599 1.418 3.460 2.280 -401.255 1.007 5.180 1.858

19 -415.543 1.163 6.255 1.815 -471.669 1.199 5.584 1.906

20 -365.135 2.188 5.661 4.520 -323.189 2.040 5.936 4.090

21 -433.405 1.059 3.402 1.561 -551.053 0.937 3.809 1.440

22 -609.191 1.086 3.484 1.225 -875.830 1.160 3.561 1.150

23 -453.038 0.867 2.116 1.201 -570.972 1.079 1.880 1.306

24 -818.409 2.243 4.072 1.563 -927.782 0.576 6.784 0.976

25 -145.761 0.977 3.675 2.697 -200.380 1.082 3.329 2.825



APPENDIX 202

Table A.12 Continued

AGG GG

Data Lik () a f3 Lik () a f3

26 -856.593 2.838 1.574 1.578 -906.166 2.749 1.643 1.535

27 -577.938 3.821 6.024 5.796 -494.527 3.078 9.193 3.884

28 -969.181 2.607 2.714 1.321 -1054.541 2.620 2.563 1.351

29 -649.968 2.770 4.435 2.777 -726.698 2.750 3.938 2.448

30 -1422.743 0.167 43.518 0.452 -1646.035 4.335 2.525 0.964

31 -1155.521 7.067 2.622 2.586 -1228.272 7.720 2.318 2.554

32 36.916 0.577 17.863 2.138 -17.807 0.218 23.744 1.453

33 -687.264 1.668 2.238 1.407 -844.966 1.029 2.578 1.039

34 -958.448 4.652 2.694 2.487 -976.576 4.943 2.797 2.749

35 -835.875 4.816 4.826 3.613 -818.579 4.285 5.691 3.071

36 -172.758 0.999 3.176 2.600 -224.578 0.942 3.244 2.296

37 -704.081 1.454 3.938 1.335 -886.937 1.018 4.179 1.114

38 -318.967 1.530 6.138 2.923 -348.035 1.404 6.032 2.581

39 -177.542 1.095 5.137 2.796 -222.809 1.071 5.077 2.567

40 -463.337 0.274 19.128 0.866 -796.705 1.480 8.467 1.547

41 -474.889 1.128 1.723 1.375 -534.263 1.170 1.457 1.328

42 232.016 0.230 7.113 1.442 76.925 0.121 9.289 1.172

43 -902.535 2.875 3.578 1.654 -1031.438 2.339 4.503 1.439

44 -507.552 0.903 2.122 1.144 -652.472 0.222 3.550 0.766

45 149.491 0.441 3.216 2.071 122.356 0.531 2.992 2.628

46 862.011 0.042 2.330 0.955 734.244 0.084 1.748 1.330

47 -156.957 0.580 4.257 1.533 -248.458 0.829 2.945 1.935

48 -588.561 1.189 8.898 1.466 -738.977 1.255 7.851 1.503

49 -931.425 1.980 4.514 1.230 -1048.014 3.453 3.214 1.707

50 -1270.494 8.111 1.648 2.148 -1344.523 7.624 1.898 1.847

51 -1215.507 4.846 7.522 1.605 -1390.235 5.593 7.238 1.635
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Table A.12 Continued

AGG GG

Data Lik () Cl' {J Lik () Cl' {J

52 -508.249 3.328 8.080 4.948 -436.615 3.567 7.186 6.222

53 49.497 0.220 2.460 0.975 -126.148 0.364 1.932 1.164

54 -777.444 1.683 1.943 1.193 -882.954 2.618 1.639 1.530

55 -200.843 0.534 11.535 1.467 -287.748 0.539 10.189 1.574

56 -635.201 2.760 4.111 2.909 -660.437 2.241 4.902 2.281

57 -138.753 0.910 3.400 2.498 -171.294 0.911 3.351 2.475

58 -491.236 1.733 2.093 2.274 -545.429 1.600 2.031 1.951

59 -163.081 0.905 4.163 2.319 -179.216 0.973 4.042 2.587

60 -596.835 1.489 2.639 1.534 -716.794 1.184 2.905 1.298

61 -829.442 2.293 1.604 1.350 -898.591 2.893 1.507 1.580

62 -677.298 1.886 1.603 1.502 -718.939 2.019 1.600 1.618

63 -1103.327 2.700 2.289 1.089 -1280.024 2.050 2.528 0.958

64 2211.414 0.011 6.113 3.305 2247.201 0.009 7.528 2.811

65 -168.619 0.880 6.294 2.204 -237.857 0.576 10.187 1.696

66 -282.344 0.617 3.366 1.296 -384.427 0.452 3.137 1.139

67 -1340.606 14.621 4.509 4.491 -1315.905 13.676 5.508 3.755

68 -302.627 0.588 2.667 1.177 -378.854 1.001 2.047 1.708

69 -284.914 0.703 16.009 1.593 -348.162 0.937 10.897 1.944

70 -151.175 0.364 1.686 0.960 -180.468 0.376 1.672 1.059

71 -643.904 1.938 10.408 1.917 -725.697 2.552 9.531 2.247

72 -313.856 0.751 1.634 1.260 -396.433 0.325 1.868 0.845

73 -159.325 0.574 2.251 1.395 -278.872 0.556 2.367 1.326

74 -455.165 0.152 23.478 0.716 -703.771 0.083 11.930 0.761

75 -388.875 0.592 3.966 1.122 -592.568 1.237 2.862 1.545

76 -1029.579 7.736 8.937 3.533 -1058.728 7.931 8.681 3.267

77 154.101 0.528 7.043 2.517 130.655 0.427 6.782 2.149
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Table A.12 Continued

AGG GG

Data Lik () et' f3 Lik () et' f3
78 -160.540 0.925 9.195 2.318 -153.739 0.709 10.685 2.065

79 -257.457 0.287 6.713 0.938 -489.961 0.724 3.780 1.338

80 -298.264 1.260 4.130 2.499 -293.294 1.398 3.999 3.007

81 -1469.243 10.602 1.632 1.778 -1486.411 10.145 1.986 1.871

82 -1361.572 5.674 4.891 1.411 -1450.403 9.613 4.815 2.069

83 832.002 0.164 4.269 3.455 808.797 0.090 6.337 1.888

84 -754.107 5.782 6.311 6.525 -699.523 4.817 8.184 4.201

85 -590.789 1.680 7.004 1.848 -616.127 1.668 7.166 1.973

86 -145.603 0.702 10.270 1.889 -248.473 1.186 5.984 2.654

87 1549.743 0.017 6.423 1.465 1441.585 0.001 12.277 0.686

88 2626.101 0.004 5.120 2.487 2571.583 0.003 5.424 2.243

89 -431.351 0.898 3.283 1.367 -539.535 1.065 3.001 1.515

90 -142.556 0.872 3.099 2.337 -157.297 0.860 3.149 2.400

91 -409.741 1.610 2.234 2.644 -451.584 1.374 2.669 2.104

92 -1165.868 1.858 3.822 0.895 -1352.101 3.521 3.037 1.194

93 -1117.898 4.726 4.025 1.773 -1188.987 5.225 3.724 1.913

94 -1217.553 5.726 3.717 1.752 -1240.240 5.448 3.668 1.825

95 -327.088 0.489 10.921 1.206 -502.865 0.039 13.533 0.729

96 -275.495 1.100 3.624 2.240 -309.181 1.344 2.806 2.872

97 47.883 0.199 7.713 1.076 -248.515 0.273 6.266 1.175

98 -99.867 0.809 6.661 2.319 -111.384 0.815 6.213 2.430

99 -844.063 3.333 3.731 2.168 -887.240 3.637 4.076 2.351

100 -353.023 1.174 3.792 2.024 -425.099 1.554 2.938 2.562
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