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ABSTRACT
'Higher school mathematics' connotes typical upper secondary school and early college
mathematics. The mathematics at this level is characterised by moves to U) rigour in
justification, @ abstraction in content and @ fluency in symbolic manipulation.

This thesis investigates these three transitions - towards rigour, abstraction, and tluency-
using philosophical method: for each of the three transitions a proposition is presented and
arguments are given in favour of that proposition. These arguments employ concepts and
results from contemporary English language-medium philosophy and also rely crucially on
classroom issues or accounts of mathematical experience both to elucidate meaning and
for the domain of application. These three propositions, with their arguments, are the three
sub-theses at the centre of the thesis as a whole.

The first of these sub-theses U) argues that logical deduction, quasi-empiricism and
visualisation are mathematical warrants, while authoritatively based justification is
essentially non-mathematical. The second sub-thesis @ argues that the reality of
mathematical entities of the sort encountered in the higher school mathematics curriculum
is actual not metaphoric. The third sub-thesis @ claims that certain 'mathematical action'
can be construed as non-propositional mathematical knowledge. The application of these
general propositions to mathematics in education yields the following: 'coming to know
mathematics' involves: G) using mathematical warrants for justification and self-
conviction; @ ontological commitment to mathematical objects; and @ developing a
capability to execute some mathematical procedures automatically.
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Chapter I:Introduction

1. Chapter: Introduction

1.1 The starting point

My naive starting point was the question: What is it to know mathematics? This thesis

is a partial answer to this question which deliberately focuses on aspects of

epistemology and ontology rather than on social or linguistic concerns. The question

of the nature of mathematics is an ancient one, different interpretations and responses

to the question have been given over the ages. Each approach to the question is

inevitably coloured by the historical circumstances and personal interests of the

investigator. I shall argue for three related propositions each concerned with the nature

of mathematics and which are pertinent to learning mathematics. The approach is

philosophical, rather than empirical: I aim to give a general argument and show its

educational relevance, rather than analyse some data from an educational context and

then generalise.

1.2 Statement of the thesis

The three branches of the thesis are mathematical warrants, mathematical objects and

mathematical action. The decision to form my thesis from these came from my

analysis of mathematical practice: my own, my students' and published accounts. My

interest and expertise is in secondary school and early college mathematics, which I

refer to as 'higher school mathematics'.

I shall briefly state the thesis in two ways: Firstly, from an educationalist's perspective

and then, in more generality, as in philosophical discourse. Education, by definition

and purpose involves change, so, from this perspective, learning mathematics involves

changes which can be characterised as follows:

1. change in distinguishing mathematical warrants: mathematical propositions are

warranted in 'mathematical' ways

ii. change in identifying mathematical objects as existing: ontological commitment is

made to the content of mathematical propositions

7



Chapterl: Introduction

iii. change in executing mathematical processes - some are automatic: mathematical

activity becomes personal action-knowledge.

A different, more general, formulation of this three-branched thesis is based on the

epistemological and ontological assertions therein:

I. the nature of mathematical warrants is logico-deductive, quasi-empirical and. possibly

'visual', but not purely empirical or authoritative

II. the term 'mathematical object' is not purely metaphorical: philosophical realism

allows a sense in which mathematical objects exist

III.mathematical action. as in the activity of solving an equation, can be an aspect of

mathematical knowledge.

1.3 Brief rationale for thesis structure

The structure of the thesis as a whole is not quite standard, for it mixes the structure of a

typical mathematics education thesis with that of a philosophy one. After this brief

introduction, Chapter 2 sets out the methodology, the rationale of the method used to

develop the thesis, the substance of which is that mathematical practice and philosophical

reasoning should be the bases of the work. Hence my next chapter presents some

mathematical work at the higher school mathematics level. some examples of higher

school mathematics and an example of realising pedagogical content knowledge. From

reflections on these, the principal philosophical directions for investigation are taken.

Chapter 4 is, in effect, an introduction to the philosophical background and Chapters 5, 6

and 7 set out the background literature and the arguments for the propositions on

warrant, objects and actions as stated above. Chapter 8 summarises and concludes.

/..J Philosophy and experience as integral to investigating the basic question

As a mathematics teacher, I used to spend much time working school mathematics

problems both publicly. in class, and privately, for preparation. For many years I taught

the whole range of comprehensive school pupils including both low attainers and

exceptionally high attainers. Throughout this period I was kept occupied, in mind

8



Chapter 1:Introduction

and body, both with mathematics and the puzzle of how to help others to come to

know that which I knew. For every teacher, the job is essentially to assist in that

ephemeral transition between not-knowing and knowing. So when a student cries "I've

got it!" a philosophically inclined teacher might ask 'What is the nature of this

"getting" and this "it"?' The first of these is essentially an epistemological question; it

concerns coming to know ("getting"). The second is concerned with ontology; what is

"it" in higher school mathematics?

Although I am interested in the academic notions of ontology and epistemology, my

mathematics teacher persona constantly reminds me to seek an application of the more

abstruse aspects of this enquiry within the practice of teaching mathematics. The

desire to entwine theoretical and practical is particularly prevalent in feminist writings

that have an intellectual as well as experiential component. For example, from the

archeologist-historian Lucy Goodison (1990) we find a clear expression of the

intention to link these components:

"Readers may be disconcerted at the way the empirical and the esoteric rub

shoulders in these pages ....Detailed work does not need to be dry: knowledge can

be fed by experience, writing can spring from both thought and passion ... I hope

that I shall also be able to bridge the gap between insight and enquiry, between

head and heart, in the way I write [the book]." (p 4).

While Goodison focuses on the connection between her subject and her passion for

that subject, the writer and English professor, bell hooks, emphasises passion in and

for teaching:

"those of us who have been intimately engaged as students or teachers with

feminist thinking have always recognised the legitimacy of of a pedagogy that

dares to subvert the mindlbody split and allows us to be whole in the classroom,

and as a consequence wholehearted" (bell hooks, 1994, p 193)

Despite the difference in our subject matters, my aim, like Goodison' s and bell

hooks', is to bring intellectual enquiry as close as possible to the practice with which I

am involved. A purpose of undertaking this research is to strengthen my mathematics

teaching. As I have said above, the basic question arose from the practice of teaching

9



Chapter I :Introduction

mathematics, is concerned with the experience of doing mathematics and involves

reflection on the nature of mathematics and mathematical knowledge.

1.5 Dialogues

In order to orient the reader to the way philosophical ideas may arise within teaching

higher school mathematics, I offer the following - light hearted - dialogues involving

some puzzling ideas which practising teachers rarely have time to pursue:

Dramatis personae: The mathematics teachers: Miss (M), Sir (S)

All scenes take place in the staff room.

1.5. J On belief

Monday 10:48 a.m.

M. I've just started limits with my beginning calculus class, and, as per usual, they tell
me that lin 'never quite' gets to zero and 0.9 'never quite' gets to I, and so on.

S. Is that because they can't accept that an infinite process yields something nice and
familiar like a small finite number?

M. Perhaps. Maybe because we start off experimentally they can't get beyond this
'potentially physically possible phase'.

S. Do you get them to use a spreadsheet? They'd have to be pretty skeptical to
disbelieve lin does get to 0; you can get an awfully long way along the sequence
with them!

M. It depends on the computer room availability. They either use that or their
calculators to see what the sequence's nth term is for n as large as they want. I also
use that 'where will it all end?' page in one of the ATM's A level books I as a
starter for them exploring limits visually.

S. Is the response to the picture sequence the same as to the number sequence?

M. Pretty much. The stumbling point is that whatever they can draw is inevitably
unfinished. And as they say, rightly', it never could be finished, so they argue the
limit is theoretically unobtainable.

S. Most of those pictures in the ATM book you mentioned are representations of
geometric progressions. Would it help them to believing limits actually exist if they

I Association of Teachers of Mathematics (ATM), ( 1988, p84)
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Chapter 1:Introduction

used the formula for the limit of a GP, having worked out the common ratio and
the first term from the drawing?

M. I doubt it! The proof of the formula for the sum to infinity depends upon
(lim n ~ 00Xr") = 0, with z-cl , which is one of those things that they tell me
never quite gets there!

S. So they believe their senses! Is this incompatible with believing in the existence of
limits and other mathematical things that involve infinite processes? Or other
abstract mathematical notions?

M. Well it sounds daft to say 'don't believe what you see'. But at some point they
need to be able to drop the particulars of the starter situation that they've played
with empirically and go with the abstraction rather than the perceptible.

11 a.m., the bell goes.

1.5.2 On mathematical objects.

Tuesday, 3:40 p.m.

M. You look miles away! What about a game of squash? Don't know about you, but
I've had quite a day!

S. Sorry, I teach this access evening class Tuesdays. In fact, I was just thinking about
what one of the students said to me last session ....

M. I wouldn't have thought that class was a major mathematical challenge ... What
did he or she say?

S. She, Betty. She asked me what minus one really was. I didn't know what to say.
We'd just spent the entire hour and a half on negative numbers, I thought the
session had gone quite well, you know, they got on happily enough, asking a few
questions but cranking through the work sheet pretty smoothly. Then Betty says
'but what is minus one?' and I felt that she'd pulled the rug from under me.

M. I remember a similar experience from a few years ago when I taught Toby - do you
remember him? - he was always asking what is a function? What is a set? I was
never quite sure whether he was just trying to deflect from getting on with his
maths or whether he needed some sort of answer to those questions in order to
proceed. He was actually a very good mathematician, but he went off to do
philosophy at university.

S. I see what you mean, they are similar questions, although they come from students
with very different backgrounds and different expectations about the fruits of their
mathematical education. It's like they're asking 'well, okay, I can do this and that,
but what is the stuff I'm actually working with?'

M. That sort of comes back to what we were talking about yesterday, doesn't it?
mathematical stuff can't be touched and seen and heard and so on. Mathematical
things are abstract.

11



Chapter 1:Introduction

S. What does that mean: 'abstract'? I know we use the term often enough, but now
I'm worried that I don't know, in essence, what a mathematical object is.

M. I'd say that I know what some mathematical objects are, as particular items. but I'd
say to try to get a definition of 'mathematical object' in general is a pretty hopeless
quest. I mean, nobody knows what all mathematical objects are - how could anyone
point to something they had in common that defined them -

S. unless it was to say, they are what mathematicians use !-

M. which wouldn't be very helpful for answering questions like Betty's or Toby 's.

S. Coming back to that, have you any ideas about what I should say to Betty tonight?

M. Well, minus one is the inverse of plus one, additively of course: multiplicatively -

S. Oh come on, you're just starting to play with a mathematical definition that is
starting to sound even more obscure than the original.

M. But without really knowing that -I + I = 0, I don't see how she will be able to
understand -1. And you said that they could do the exercises you set.

S. So, are you saying that you can't know what a mathematical object is until you can
work with it. But surely you can't work with it until you know what it is? I think
I'm in a worse muddle than Betty.

M. Yeah, we could get so confused we'd not get anything done. Ha, PJ. is waving her
squash racquet at me ... - fine. P.}.! let's go now - have fun with Betty et al. this
evening, see you tomorrow.

1.5.3 On notation.

Wednesday 12:45 p.m.

M. These so-called helpful parents! I have been very careful with the notation I've
been using in my intermediate calculus class, you know, functional notation
whenever possible, acknowledging the alternative Leibnitz notation, but no Ox s
thank you! Now I've just been with Emma, who is in a dreadful muddle, because
her father has gone through derivatives with her with an abundance of ox sand ... is
there any lunch left?

S. At this hour! I'll get you a tea, if I can find a cup.

M. Thanks. I'm wondering if I'm being silly, fussing about the way of writing things, I
mean, they're only squiggles on a page, presumably, a derivative is a derivative, no
matter how you write the 'd'?

S. But isn't why we steer away from the fu notation is because that notation tempts us
Dv

into doing illegitimate things? The usual story that goes with it is that it starts off

cl"as a ratio of two perfectly decent numbers, then magically changes to a value, _"-.
clx
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at the instant that both of the numbers in the ratio hit zero- would it be obvious that
happens together?

M. Sounds like there are different mathematical objects around - the ratio and the
derived function ... how was your evening class?

S. We got rather side tracked ... whether god existed and could we ever know that.. I
was well out of my depth. Once they got started there was no stopping them. I was
a bit worried as the maths was not getting done. But as they were about to go Betty
said how much she'd enjoyed the session and could they take the work I'd planned
home. I was relieved! Coming back to the notation, and whether it matters, I'd say
that it does matter because different notation lets you do different things.

M. Yes, like those ax s just love to 'go to zero' don't they? I also find that notation

f . f lik dy .. . I ., likacts as a sort 0 Image or me, I e, dx IS not Just a squigg e, It s I e a name as

well as an instruction, it holds quite a lot of information.

S. Yes, I agree, it is as if these squiggles take on a life of their own: the symbol
becomes symbolic - did somebody say thar'?

M. Dunno, sounds a bit profound for you. But I find myself encouraging the students
to use x for real variables n for integers, as well as functional notation for
derivatives, and so on. Isn't it a bit like with young children? my daughter called
anything on four legs a 'cat' when she was tiny; she soon made distinctions
between pet animals for herself; some students need more help with picking up the
language than others.

S. I don't think mathematical notation is really the same as words in a language
because we can get unexpected results from fiddling about with these symbols in a
way that can't happen with words.

M. I sort of agree that formalism works, but there is some linguistic part of maths too
isn't there?

S. What, more than learning our meaning for 'volume', 'take away', and so on?

M. I think so, like when we see the squiggle : we can't help but have all sorts of

ideas that come into our minds.

S. Like it's 12:59 and I've got my intermediate calculus class first thing this afternoon!

1 p.m., the bell goes.

2 Mason, 1980, did!
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1.5.4 On proof

Thursday 8: 17 a.m.

S. I can't find that Cabri disk anywhere! Have you seen it?

M. I thought that the LT. manager had it, she was going to put Cabri on the network -

S. no can do, it'll cost more. Anyway, thanks, I'll pick it up from her office presently.

M. You could always phone her secretary on his mobile. So, what are you using Cabri
for?

S. I'm doing some Euclidean geometry with the class I teach intermediate calculus.
some of them will probably continue with maths beyond this institution, so it seems
appropriate to do some of this sort of geometry.

M. Helps them with the idea of proof doesn't it?

S. Well, I know what you mean, you can construct neat little proofs of various
geometric relationships. But I must say, I was quite surprised at their idea of what a
proof was: I gave them this homework the other week - 'show that the angle in a
semi-circle is a right angle' and I tried to encourage them to write up more than one
way of showing this, indicating which they thought was the most convincing and
why.

M. How did it go?

S. Well, I was a bit surprised. All of them who gave in more than one demonstration,
included a 'draw 'n measure' approach.

M. Doesn't that just relate to knowledge starting from experience? - though as we
were talking about before - its hard to see how to get beyond finite experience.

S. Yes, that's fair enough. But would you have expected them to say that the 'draw
'n measure' was the most convincing?

M. Not really. I'd have thought that they'd all be aware that no diagram can be totally
accurate.

S. Oh, they were quite aware of that, but it didn't stop the ones who did a 'draw 'n
measure' from thinking it was the most convincing. Anthea. of course, was rather
scathing of their measuring business. She'd given me a two line proof - correct,
needless to say - and said that she couldn't understand the point of doing more than
one 'demonstration'. I told her that Gauss liked to do several proofs of the same
thing; that kept her quiet. She'd got three more proofs by the end of the session,
although she said that they were all equivalent and Gauss wouldn't have thought of
them as different, just longer.

M. It sort of brings up what a proof isfor doesn't it?

S. What do you meant? A proof is to show something is true!

14
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M. But those students found that doing measurements on their drawings showed them
that 'an angle in a semi-circle is a right angle' was true, which you and I don't
consider a 'proof. What did they think of Anthea's proof?

S. Well, several of them had got essentially the same proof as hers - you know, by
constructing the two isosceles triangles out of the right angled one - but her
presentation was so short ... Dan said that it was only because he'd used the same
idea that he could follow.

M. Are mathematical proofs and being convinced that a mathematical proposition is
true different things?

S. Seems like we'll have to try to convince these students that mathematical proofs are
more convincing really than their measuring demonstrations.

M. That sounds a lot of a harder job than showing them how to do various sorts of
proof. Not sure whether 'teacher of meta-proof is in my job description! How's
Cabri going to help in that?

S. Hmm ... they might have a better idea what's true -

M. - but won't that demotivate them from doing proofs even more?

S. I think it helps to have a firm grip on what is there -

M. Like they'll be there now! It's nearly 8:30 already!

1.5.5 Wis en zeker'?

Friday 3:45 p.m.

M. Have you done the fundamental theorem of calculus yet with your intermediate
class?

S. Next week, I should think. I'm having a bit of a struggle with the 'you can't have
negative area' line. It seems such a silly thing to get caught up on, but some of
them are adamant that 'negative area doesn't exist', it's impossible, even if I
wanted, to just say 'shut up and swallow' .

M. Is an integral an area then?

S. Oh, don't you start! What do you think it is then, a cheese sandwich?

M. I mean, sure we can get answers to area problems by using integral calculus -

S. Ah, not all, some 2D sets don't have area!

3 From Freudenthal (1991) Wis en zeker, means 'sure and certain': "The Dutch term for mathematics
was virtually coined by Simon Stevin (1548-1620): Wiskunde, the science of what is certain. Wis en
zeker, sure and certain, is that which does not yield to any doubt; and kunde means knowledge, science,
theory." (p 1)
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M. That's sort of the problem, isn't it? Some 20 sets don't have area, and some
integrals are not obviously 'areas'. So what has 'area' got to do with integrating?
After all, 'area' is a physical thing.

S. I think we're back to where we were on Monday, it's the count-the-squares
approach to area that gets them started, like the perceptual beginning. Please don't
tell them that some sets don't have area! Anyway, I bet you can just turn to a
fancier sort of integration and you could talk about the area legitimately.

M. But if you got into these fancy integrations, Lebegue's or Borel's or whatever, is it
the count-the-squares approach that will start you off, like it is for the Riemann
integration that we teach?

S. Is that what it's called?

M. Think so. But these other integrations might give us a completely different set of
answers to so-called area problems from the usual method. So what would be
right?

S. Sounds a bit like the non-Euclidean geometry problem to me: our immediate space
seems to be Euclidean, but actually it's not. And people used to think the Euclidean
model was the only thing that was geometry, but actually it's not.

M. I think you've got two different 'actuallys' there, actually! What physical space is
... well, that's an empirical problem. But what geometrical axiom systems 'work',
as an abstract system, well, that's a pure mathematical problem, isn't it?

S. But loads of maths comes from problems that are from the 'real world'. Newton
developed the calculus for, what we would call, applied problems. It's only because
those problems were solved with the help of his methods that it occupies such a
vast amount of what beginning scientists and engineers are taught.

M. Maths works!

S. As long as you employ the right maths!

M. But the maths you don't apply can still be true, it's just not real.

S. I don't agree with saying that sort of maths is not real, it just might not have been
successfully applied yet, That's one of the things about maths isn't it: pure
mathematicians work away at an obscure theory and, then, some one uses it in an
applied setting, and it seems wonderful and amazing. Matrices, prime numbers,
fractals, and so on, have gone from pure to applied.

M. So is all mathematics potentially applied?

S. Sure, if scientists want to use a new form of counting, or whatever, what's to stop
them?

M. Nothing, if it works. But even if it doesn't work, as an application, it can still he
true mathematics.

S. So mathematics might rest on science, the people involved with science, to
develop, and so what part of it that develops depends, essentially, on those people's
interest-
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M. or funding potential, that's why so much mathematics has been developed for
military purposes-

S. yeah, so although science might inspire and use maths, it doesn't determine what
mathematics is true or false.

M. We're back to square one! Does this help with the negative area problem?

S. I think so. I'll try this tack with them: we start off on a new topic as scientists
employing maths we already know, like we were calculating the areas of trapezia,
then a new idea comes to mind which encapsulates the abstractions of the
investigation-

M. 'comes to mind'!! That is the biggest fudge I've ever heard!

S. What do you think, then?!

M. Oh, I agree with you! It just sounds like fudge that's all! Glad I'm a maths teacher
not a philosopher, that's all I can say!

1.5.6 On the role of these dialogues

These dialogues illustrate themes which are investigated within the main body of the

thesis. The dialogue format is intended to illustrate the way that philosophical issues

do impinge onto the practice of mathematics teaching. The themes of the dialogues,

belief, mathematical objects, notation, proof and wis en zeker, are not neatly assigned

to specific chapters for individual discussion, but permeate the formulation of the sub-

theses and inform the arguments therein.
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Chapter 2: Methodology

2.1 Introduction

'Methodology' means 'the study of method', so writing about methodology involves

writing about methods used for the investigation in question ('the investigation' being

the content of this thesis); it is 'meta-method'. One can 'write about method' from

several different perspectives (I am now writing about writing about method') Possible

perspectives, or meta-methods, include ethical, experiential and political. for example.

The point is, that the content of the thesis depends on the perspective from which the

author views the basic thesis question. The basic thesis question. here. is 'What is it to

come to know mathematics?' and one would not expect a unique answer to so broad a

question. This is why it is important to clarify the basic stance and explain what

investigatory methods seem appropriate for that stance.

The basic stance that I shall take is 'experiential'. My interpretation of the meaning of

having an experiential stance is part of the subject matter of this chapter I shall also

explain why I consider the most appropriate principal method of investigation - (given

this stance and my particular starting question) - to be that of British-American

philosophical analysis" together with liberal exemplification with experiential items.

Such a method could be termed 'analytic-experiential' The reasons for adopting such a

method, like developing the meaning of 'experiential stance', is also intended to unfold

throughout this chapter. 'Experience' seems to feature twice in this statement as meta-

.. This broad term connotes the English-language medium philosophers from Locke. Berkeley and
Hume through to their descendants in this century like Russell. Quine. Putnam and Dumrnett.
Arguably the category should acknowledge an Australasian contribution too. given the work of
Armstrong and colleagues. A thesis could be written on whether this tenn does determine a coherent
philosophical tradition. My purpose of using the term is to position my mode of enquiry away from that
of the linguistic continental philosophers like Lacan, Dcrrida and Foucault. Why" Consider this
analogy: Someone working hard to learn to play the piano cannot be expected to just pick up a violin
and produce music. I was taught where the keys were in British-American philosophy man) years ago.
So when I wanted to make a philosophical sound I went back to an instrument on which I could
produce some notes. I may appreciate
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method, or stance, and as the source of examples to clarify the terms of the more general

analysis. Is this legitimate? I believe so: experience is both a source and a check, but the

argument is to be more general and, therefore, potentially applicable beyond my personal

experience.

2.2 A student's progress?

Before the philosophical analysis can begin, using the stance I have declared, I must give

an account of the experiences which gave rise to the appropriation of philosophy-plus-

examples as a method.

2.2. I Initial experience of research

For two years, during the late eighties, I worked half time at Oxford University's

Department of Educational Studies, (OUDES), while continuing with my permanent

school teaching job at The Cherwell School. The first shoots of this thesis work can be

traced back to experiences at OUDES, though the roots go back to the interests in

mathematics and philosophy I had as a teenager.

At OUDES, I initially misconstrued the job of a 'mathematics educationalist' because I did

not realise that producing educational research was of utmost importance to being a

successful professional in this area. This was hardly surprising, for I had been employed

principally as a PGCE tutor who was in touch, by virtue of my other employment, with

mathematics teaching in comprehensive schools. Nevertheless, I eventually got wind of

the importance of research and publication and made a start on a small research project

while employed at OUDES.

To get started on research, I talked informally with members of the department' and

decided to follow my long term fascination with the philosophy of mathematics.

the endeavours of others playing other instruments, but I have to be mindful of practical constraints. in
trying to make a reasonable sound. and not try extend my skills too far.

5 Donald McIntyre was particularly generous with his time and constructive advice.
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Questions that had puzzled me as a teenager - like the universality and applicability of

mathematics - were still there to be investigated. It seemed that an educationalist's project

could be conceived by interweaving something to do with learning, or sociology of

schooling, or psychology, or curriculum design, etc. with the rather abstract philosophical

interests I already had. I was starting to be able to envisage an investigation concerning

some aspect of the nature of mathematics projected into the educational domain (to use a

mathematical metaphor).

Practical considerations were paramount: any project I undertook had to be manageable,

in terms of work load, and economical. Clearly, I should use resources my school could

offer, the most significant of which were the students. So, this was my experience of

starting on a research route:

1) declare an interest - mine was 'the nature of mathematics';

2) be opportunistic about resources - i.e. use what is available: my students;

3) ask a question related to the interest, an answer for which should yield from judicious

use of the available resources - my question was 'What were my students' views on

the nature of mathematics?';

4) report some of the findings - which I did in a professional (rather than academic)

publication (Rodd, 1993).

This is a route typical of practitioner researchers as reported by Fletcher (Fletcher, 1993)

and, indeed, echoes the advice given in Edwards and Talbot's first chapter (Edwards and

Talbot, 1994, pp 3 -16). While concepts within the question included philosophical

concepts, the content of the question was to do with peoples' attitudes. It was, broadly

speaking, a social scientific question which I had approached using rudimentary social

scientific methods; the tools used being questionnaire and interview.

20



Chapter 2: Methodology

2.2.2 The next stage

A few years later, I moved to a new job at St Martin's College in Lancaster. 1 no longer

had a supply of school students, but had adult students to work with (aged from 18 to

50+) on both mathematics and pre-service courses. 1 was, by now, registered as a

prospective PhD student. As it is reasonable to 'adopt, adapt and improve' previous

experience, I expected to work with my new students on their ideas about the nature of

mathematics and coming to know mathematics as the core of my PhD thesis project.

But this was not to be, for several reasons, which 1 shall shortly describe. And the

consequence was a fundamental change in method: from social science to philosophy.

The H.E students were not a similar resource to the school students with whom I had

worked previously. My explanation for this is as follows: 1 did not teach these students

over a long period but saw them for a term (or less) at a time, in order to teach a specific

module of their course. 1 did not know them as well as individuals as 1 had known my

school students. This resulted in my not feeling comfortable enough to organise them,

individually, as subjects for a further investigation of the type I had done at Cherwell.

What I did try was to ask the members of some of those classes which I taught

mathematics for written reflective comments, to see if some texture of their views of

mathematics could be discerned in this way. I found the results of this approach very

disappointing: the students were either glib or scathing and they did not see reflective,

post-session writing as a worthwhile activity. They responded fine as mathematics

students, but they did not seem to see the worth of pondering the nature of the subject that

they were preparing to teach.

Of course, 'I did it wrong'. This is not intended as a negative comment towards the

students or on my relation with them, but a statement of my appraisal of my skill as a

social scientist-cum-mathematics teacher. I believe, now, that it should have been

possible to get interesting, provocative responses from these otherwise quite adequate

students. But 1 have not invested the time in developing a social scientists' skills, so 1
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cannot knowledgeably say what a correct method would consist of; the belief remains an

untested conjecture. At that time, I did not have the where-with-all to seek to improve my

classroom-based research techniques: my experience included (what I now interpret as)

not perceiving a lack of skill in technique. The consequence of my at-that-time-

interpretation of my experience with these students, was that I did not expect to progress

in my research by attending to students said about the nature of mathematics. The

contents of this tortuous paragraph are intrinsic to my account of experience, because they

constitute methodological remarks, i.e. they are supposed to explain why I used certain

methods not others.

My next move was to look at what students did. Not in terms of gestures or other social

interaction (like Arcavi, 1994) but of what their written mathematics consisted. After all, I

had to mark their coursework and projects, I might as well consider these as data. I was

being 'opportunistic about resources', as before.

I presented part of this work at a seminar6 of mathematics educators. From this I learnt

something about the social dynamic of seminars: For example, the participants in this

seminar liked seeing students' work; they liked to talk about it and construe meanings

from it. A consequence of this interpretation of my experience was that questions which

involved explicit philosophical analysis were not, in that context, made apparent to me; I

am not saying that such questions were not raised.

At this seminar, I presented a construct which I termed 'mathematical moment'. A

'mathematical moment' was to indicate a point of transition for the learner from not-

knowing to knowing. This was supposed to be an analogy in developing mathematical

practice to a 'critical incident', as used in developing teaching practice (Lerman, 1994).

To illustrate this idea I presented data (a fragment of dialogue and written mathematical

workings) from a student, Gina, who had been working on the problem of proving that

opposite angles in a cyclic quadrilateral added to half a tum. What was I asserting about

6 The Open University Centre for Mathematics Education research student seminar. 4/2/95.
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mathematical knowledge here? I was making the bold claim that there had been a sort of

'change of state' for Gina before which she did not know the proposition, after which she

did. Dick Tabta, in his wisdom, suggested that I go back to Gina in a few weeks and talk

to her about her knowledge of this particular geometric proposition, which I did. In a

subsequent brief, informal chat" after class, Gina told me that she did not feel that she

'knew' the proposition - although she had 'responded correctly' when asked the fact of the

angle relationship. I asked her to prove the proposition and she got stuck. With a nudge

she wrote down a proof, but she still did not want to assert that she 'knew' the proposition!

This forced my awareness of the validity of such a construct as 'a mathematical moment

or transition'. Despite my school-teacher experience of talking with colleagues about

students' getting it' (or not!), as an aspect of an epistemological theory (i.e. a theory of

knowledge), I was not offering a theoretical justification. Furthermore - and here I return

to the notion of social science technique - I considered that, no sort of scrutiny of what my

students did, or rather seemed to do from observation of their actions and written work,

could justify it either. This feeling was analogous to my belief that it was not possible to

gain quality information from what students said.

2.2.3 A change of method after reflection on earlier work

In other words, I was faced with a dilemma - either develop technical social science

research technique or change method of enquiry - and, at that time, only horn of this

7 To my question "Can you say anything about the angles?" She replied instantly "Opposite angles add to
ISOdegrees". To my "How could you show that?" she paused, suggested constructing the quadrilateral's
diagonals [this was the construction that she'd started with those weeks ago]. She paused again and then
silently drew in 2 radii, 'angle at the centre is twice angle at circumference' diagram with q and 2q marked.
Pause again. She then mumbled something about isosceles triangles and joined the centre to the 'top' vertex.
She originally interpreted this new constructed radius as bisecting the angle q, but a prompt to reflect
dislodged that notion, and she labelled the base angles of the isosceles triangles x and y as shown in the
diagram. Another pause; "I think there is another triangle" When the final radius is drawn in (after fumbling
a bit with the labelling), she writes down exactly as she did six weeks previously: 2y+2b+2a+2x = 360.
Then, unlike before, she returned to her diagram to look, then back to her equation. Then, as before, without
obvious anticipation or foresight, she wrote "y+b+a+x= 180", and then said, while looking hard at the
paper "That's it, that's it". 1 then asked her if she felt she knew this now. She replied, without hesitation "No,
1don't feel 1 know it".
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dilemma which seemed possible for me to take was to change the method of enquiry.

The basic question remained, 'what is it to come to know mathematics?', but now I was

not going to investigate that question through my students attitudes to the nature of

mathematics, but to approach the question on a purely philosophical level. Why I thought

that philosophical technique would be possible for me where social science technique was

not, comes down, I conjecture, to my having studied philosophy as a minor subject as an

undergraduate. In retrospect, I think I was optimistic! Nevertheless, an important point

about research can be construed from these remarks: a teacher is a phenomenon of social

science, not a social scientist; a teacher may be interested in philosophical questions, but

that does not make her a philosopher. My experience with my H.E. students had

prompted a change of method. Any further investigation was going to be conceptual

rather than empirical.

My next task was to try to understand how educational research could also be

philosophical research.

2.3 Educational research and philosophy

Although I had interests in philosophy that I wanted to pursue, and some undergraduate

philosophy courses to my credit, my expertise and experience was in teaching school (and

some early H.E.) mathematics. Philosophy of mathematics is a two and a half thousand

year old field and, at the stage about which I have just been talking, I was aware only of

parts of Plato's work and some ideas from the British empiricists; I had an unanalysed

attraction to Kant's notion of the 'synthetic a priori' and an idea that the formalism,

constructed in the early twentieth century, had crumbled with Godel's theorem. These

rusty undergraduate ideas did not seem to help me with my investigation on 'what is it to

come to know mathematics'. Hence, I still felt that I was engaged in some sort of

educational research, albeit now with a philosophical method - whatever that might be in

practice.

There was a tension, at this stage, between the people-orientation which I thought was

intrinsic to an educational enquiry and the abstraction, or lack of person-orientation. I
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associated with philosophical enquiry. I sum up this tension in terms of the questions: Is

educational research necessarily social scientific? Does philosophical method have to

abstract away from experience? I do not think either of these questions needs to be

answered in the affirmative:

2.3. J On social science and educational research

In the introduction to his 1992 research guide, Hammersley states: "Educational research

is a very wide field, and one whose boundaries are not at all clear, it merges into other

areas of social and psychological research.", (Hammersley, 1992, p 4). In particular, I was

aware that there was work of a social scientific nature related to mathematics in

education: e.g. Bishop (1988) worked ethnographically as did Jaworski, (1994). By

contrast, Hart, (1981), worked with statistical analysis on large samples.

One of the key issues in social scientific research is that of the role of the

researcher/observer in the production of his/her thesis. For example, if a teacher asks her

pupil if he likes mathematics, how many different ways can we interpret his answer? He

might answer 'yes' because he does not want to feel awkward, or might answer 'no'

because he is within earshot of other pupils to whom he does not want to appear a 'swot'.

The approach advocated in Hammersley's guide is that "evidence used by researchers is

systematically recorded and open to public scrutiny. This evidence may come from many

different sources ... [including] written responses by subjects .., a researcher's detailed

notes, or even audio- or video-recordings." (ibid. p 30). In this way the source of an

interpretation may be available to others, and while no ultimate objectivity is claimed,

there is an honestly about how the social scientific theory was construed. In the scenario

above, a scrutineer might query the abruptness of the question asked or the situation in

which the child was expected to respond genuinely.

My work on student attitudes or responses to mathematics was essentially social scientific

in approach. They were preliminary studies which could have been developed, as I have

alluded, with further technique, to sit quite nicely in the sort of social science research

that includes education. Indeed, considerable work has already been done in the area of
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student and teacher attitudes. for example by Alba Thompson (Thompson, 1984) and

Rafaella Borasi (1992).

Returning to the first of the questions posed in the second paragraph of 2.3, educational

research has a social scientific branch. it does not follow that educational research is all

social science. Using Hammersley's conception. social science is characterised by the

methods used. as briefly discussed. It would. therefore seem possible to employ a

different method to address questions which. hitherto may have been approached in a

social scientific fashion. For example. the philosophy of mathematics is not only an

historical phenomenon but also a contemporary academic discipline. which includes

epistemology and ontology as well as formal logic. Could the methods used in

contemporary philosophy be used within my broadly educational investigation? I hope

that this thesis exemplifies that the answer to that question is 'yes'! But before I consider

what sort of methods might be appropriate. such that - apropos the second question posed

earlier - philosophical method does not have to abstract away from experience entirely. I

need to review different meanings of the word 'philosophy'.

2.3.2 Some meanings of 'philosophy'

In common parlance. the word 'philosophy' may be used synonymously with 'attitude' or

'view', for example. to the question "What's your philosophy of life?" one might reply

"Oh. live and let live". This attitudinal sense can be characterised by the following: the

teacher whose attitude/philosophy guides her to a practice of offering 'real life problems'

to her pupils might be attributed as holding a philosophy/attitude of mathematics that is

characterised by 'mathematics is a culturally specific problem-solving tool'. I want to

avoid this attitudinal sense of the word 'philosophy'. For it is perfectly logical to

hypothesise an individual teacher who works with 'real life problems' as a pedagogical

device and whose philosophy/attitude to mathematics is characterised by 'mathematics is

the one universal discipline where absolute truth is obtainable' - which is contrary to the

view espoused above. Whether there is a statistically significant correlation between a

particular viewpoint and particular teaching style mayor may not be the case - such

analysis is social scientific again and outside my defined domain of interest in this thesis.
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There is substantial literature on this attitudinal domain of enquiry (e.g., Jaworski, 1994)

which explore the notions of consequences of teachers' views of mathematics in their

classrooms.

A second, quite different use of the word 'philosophy' as it pertains to the philosophy of

mathematics, is to specify a choice of philosophy from the received categories of

logicism, formalism or intuitionism. A discussion of 'philosophy' in this sense requires

an understanding of these philosophical schools which were influential during the first

two-thirds of this century. My first study, as I have related, was to explore with which of

the philosophies of mathematics, logicism, formalism and intuitionism, students

identified the nature of mathematics. For that research I made up some statements which I

considered characteristic of each those standard philosophical positions respectively, then

I tested students' views against these, using questionnaire and semi-structured interviews.

(The detail of the method was given in Rodd 1994, while my overall interpretation is in

Rodd, 1993).

A third meaning of 'philosophy' connotes an epistemic view. An epistemic view is the

attitude a person has to how knowledge is obtained. Specifically, a belief about how

mathematical knowledge is obtained must, also, include some notion of what

mathematical knowledge consists. So an epistemic view of mathematics implicitly

includes an ontological view. For example, one of the results from my work with

Cherwell students was that, despite often having the same teacher, students held quite

different epistemic views. For example, Jeannie and Alex had been educated together

since the age of nine, but Jeannie seemed to conceptualise mathematics as formal,

absolutist discipline, outside science, and access to that knowledge was via an authority

(teacher). Whereas Alex's view could be interpreted as conceptualising mathematics as

essentially scientific and fallible. Alex considered access to that knowledge was via

experimentation. This means that such students believed that mathematics was a different

enterprise, both in its nature and as an activity. Ruthven and Coe's research into GCE A

level students' views on mathematics reported more detailed, but substantially similar,

conclusions to mine, (Ruthven and Coe 1994).
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A fourth use of the word 'philosophy' occurs in the phrase 'philosophical method'. I am

not asserting that we can divorce philosophical methods from philosophical problems.

Nevertheless, I think that it is worth trying to \~o\ate the features of the philosophical

method. In Glymour's (1992) philosophy textbook, he opens with:

"Philosophy is concerned with very general questions about the structure of the

world, with how we can best acquire knowledge of the world, and with how we

should act in the world." (Glyrnour, 1992, p 3)

These branches of enquiry are known, respectively, as metaphysics, epistemology and

ethics. The first two of these are relevant to my question about coming to know

mathematics. Glymour grasps the nettle of philosophical purpose by asking rhetorically:

"Isn't the question of the structure of the world about physics'! Aren't questions about how

we acquire knowledge and about our minds part of psychologv'!" (ibid. p 3). He then lists

questions that are "some how too fundamental [to be answered] by a planned program of

observations or experiments" (ibid. p 4).

So, for example, the notion of infinity cannot be experienced in a direct way, as

roundness and seventeen-ness arguably can. What then is the nature of such a

'mathematical object' (the scare quotes indicate that I am trying to avoid begging the

question!) and how is its nature known? These are concerns about ontology and

epistemology, which are not of the same type as those reported in my 1993 article. The

concerns in that article were to do with students' attitudes to mathematics learning and

their epistemic views, not with mathematics itself and routes to access mathematical

knowledge.

A final sense of the word 'philosophy' has a derogatory sense when used in phrases as

'She's just philosophising!'. The connotation is that the speaker is not grounded in

practical matters but giving forth on generalities that have no particular relevance. One of

the purposes of using experience as a check (2. /) is to avoid 'just philosophising'.
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2.3.3 From first exposure to current use of 'philosophy'

I shall trace, briefly, some stages in my understanding of the term 'philosophy'. I was first

introduced to the term 'philosophy' by my Latin teacher, when Iwas about 15. I cannot

remember the details of her explanation, but the sense of 'philosophy' Ireceived was that

philosophy was concerned with general and unbounded ideas like 'knowledge' and

'truth'. I got a similar sense from the recent novel/short course in Western philosophy,

'Sophie's World' when Sophie's 'teacher' writes "the only thing we require to be good

philosophers is a sense of wonder" (Gaarder, 1995, p14).

The domain of philosophical enquiry is immense and concerns itself with fundamental

issues of existence and knowledge of existence as well as, for example, issues concerning

ethics or the mind. The first book on philosophy I started to read was 'The Problems of

Philosophy' by one B. Russell, (Russell, 1912). I remember picking it up, by chance, in

the book shop next to the bus station on my way home from school. A Miss Barbara

Russell was my history teacher at the time and Ithought she might have written the slim

volume, but by the time I realised who the true author was Iwas pondering the nature of

the reality of objects such as tables and chairs. I came to philosophy from the

metaphysical direction, interested in questions of existence, and the subsequent

epistemological questions of our knowledge of that which exists. Curiously, this is still

the centre of my philosophical interest, and the sense which I shall use the term

'philosophy'. In this thesis Ifocus my attention to 'mathematical existence' and 'knowledge

of mathematics'; thus delineated we have the classical distinction of ontology and

epistemology: what there is and what is known.

Returning to the general theme of this section, (2.3), the key point is to justify my turning

to a philosophical method and to give a brief indication of this method's characteristics.

The reasons why I changed my approach were, of course, a function of the research

process and a result of the research itself.

The move towards the more philosophical enquiry can also be traced by noting the

changes in emphasis in research questions: My focus changed from 'What do my students
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consider mathematics to be?', to a question less dependent upon entering the minds of

others, like the question I have frequently quoted 'what is it to come to know

mathematics?'. With this firmer grasp of what 'philosophy' meant, I had the challenge of

marrying this method with an 'experiential' stance.

My approach to this methodological challenge was to incorporate practitioner research

with philosophical analysis. In order to explain how this unlikely amalgam could

constitute a research method in mathematics education, this next section attempts to

explain what I see as the important features of practitioner research and its relationship

with academic British-American philosophy.

2.4 Practitioner research and philosophy

My aim was to work with philosophical questions (in Glyrnour's sense) about

mathematics and existence-in-leaming, yet not become detached. This may seem

paradoxical. How can I combine nitty-gritty details with abstractions? My practice as a

mathematics teacher certainly involves immersion in mathematical and classroom detail.

On the other hand, philosophical questions probe fundamentals which empirical enquiry,

per se, will not satisfy. I want to link the content of philosophy and mathematics-in-

education in this thesis whilst retaining my 'experiential' stance.

2.4. / Practitioner research

Practitioner research constitutes a broad research methodology that encompasses many

methods and disciplines. It is a 'methodology' because it rationalises methods of enquiry.

The key to that rationalisation is the observation that a practitioner has insights into the

phenomena of interest by virtue of their being immersed in that work; e.g. they are part of

the phenomenon that is their classroom. That very immersion moulds the practitioner

psychologically, socially and culturally in quite unquantifiable ways. The recognition that

it would be impossible to distinguish all the variables that constitute 'this teacher' and

research his or her practice from the 'outside', leads to the distinctive practitioner

research methodology: The responsibility for making sense of and communicating
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practice is taken on by the practitioner who researches the phenomena of interest "from

the inside" (Mason, 1993, p l).

Although this sort of research may be introspective, oftentimes the research does involve

collection of data. For example, a teacher questioning the relative performance of girls

and boys might use some quantitative analysis on data from the whole school records or

slhe might interview a sample of children throughout the school. Either of these methods,

if executed to a standard acceptable to the teacher's peers, governing body or examiners,

are within the practitioner research umbrella, and either might effect changes in that

teacher's perception of related issues, for example her consciousness of class-

discrimination may have been (unexpectedly) raised. In their guide to practitioner

research, Edwards and Talbot state:

"Any piece of research carried out by a practitioner which has as its focus the

concerns of that practitioner's profession can be defined as practitioner research."

(Edwards and Talbot, 1994, P 52).

Furthermore, action research is a special case of practitioner research in which

practitioners "engage in researching, through structured self-reflection, aspects of their

own practice as they engage in that practice." (ibid. p 52). Action research, then,

according to Edwards and Talbot, is the sub-category of practitioner research in which

changes in practice are overtly sought. However, I would argue that any serious study of

one's work is likely to produce a heightened awareness about the issues involved, and so

will, despite what the original plan might have indicated, modify practice. So, no clear

distinction can be made between practitioner research in general and action research in

particular when consideration of the practitioner's awareness is taken into account. (See,

for example, Mason, 1993).

In order to participate in practitioner research a 'practice' is required; this practice

provides the experiential basis for the reflective analysis integral to the practitioner's

project. The kind of practices which Edwards and Talbot's work is intended to support

are principally those of educational, health and social service professionals. My practice
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as an educational professional was well established. In order to link philosophy and

mathematics teaching, from an experiential stance, my aim was to establish a 'practice' of

philosophy.

2.4.2 Philosophical research

What is 'philosophical research'? In a limited sense, like any other practice, philosophical

research is part of the job of a professional in that field. In a broad sense, it is the enquiry

of anyone seeking the answer to essence-questions, as Glymour described. So roughly,

there is a 'professional' dimension of 'philosophical research' which stretches from

'academic' to 'ordinary'. Another, transverse, space of 'philosophical research' is given

by the method by which answers to essence-questions are sought.

Philosophers, in the broad sense of the word, try to convince those interested in their

solutions to essence-questions through various means, for example: discussion with

questioning, story, example, threat, argument. Mystical insight, as well as logical

deduction from specified premises, can constitute a rationale for accepting a proposition

about the nature of things. The communication of this insight may well be through a story

or threat. An 'argument', in this wide sense of possible methods of conviction, is one

form of conviction-method among many. An argument is characterised by its

specification of assumptions, use of some standard rules of inference, and consequential

assertion of a 'proved' proposition. Mathematics and philosophy are both disciplines

which use such methods to convince. But the style of an 'argument' can take quite

different forms. Before delving into argument style, I want to suggest some dimensions of

philosophical method.

Academic philosophy's paradigm method is based on logic. on ancient forms of

deduction. Scientific enquiry likes to employ logical methods too because of the potential

transparency of logical forms of reasoning. Scientific enquiry involves empirical evidence

for the conclusions it purports, which involves specific observational data related to the

research question. Philosophical analysis has included, during this century. vast tracts of

symbolic logic, which did not involve itself with specific data and the comprehension of
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which was for the few. Russell and Whitehead's 'Principia' was one of these a-empirical,

formal works. Clearly, such work is on the 'academic' end of the philosophical research

dimension mentioned above, which I called 'professional'. It is also on an extreme of

another two discernible dimensions of philosophical research: 'experiential' and

'linguistic': experienced 'forms of life' are not involved and language has been boiled down

to its logical structure. To contrast with a Russell-Whitehead approach, many of the

easily-accessible novels of Iris Murdoch are philosophical in the academic-professional

sense, but they employ quite different methods of conviction. Her works are first stories.

In terms of the linguistic dimension of philosophical method. ideas about essence-

questions are communicated through narrative rather than through deductions, (although a

device she uses sometimes is to have a character present a logic-type argument). In terms

of the experiential dimension of philosophical method, Iris Murdoch uses characters to

give her reader insight to forms of life (like solipsist, sophist, empathist, spiritualist,

embodied by these characters), which is on an opposite extreme to the sense datum type

observation of a scientist.

The philosophical research which I have been trying to do here, in terms of these

dimensions, is 'academic' rather than 'ordinary'. This is because of the 'professional'

function this particular piece of work serves. But the positioning of this research on the

other dimensions is less clear cut. This is because the philosophical work is subject to my

mathematics teacher's practice, which includes working with people and working

mathematically. So I have to attend to 'forms of life', like those of different human cultures

as well as to scientific data, on the 'experiential' dimension. And I have to give discursive

windows on these forms of life, as well as make deductions with logical transparency on

the 'linguistic' dimension. This outlines the 'philosophical practice' which I have aimed to

pursue.

Inmore detail, the philosophical reasoning which I aim to employ has the character which

Moulton (1983) describes as enchelus. This is "a method of discussion frequently

identified with the Socratic method ... its success depends on convincing the other person,

not showing their views are wrong to others" (p 156). Moulton's development of enchelus
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is designed to counter the 'adversary paradigm' which. she observes. IS prevalent 10

academic 'philosophy reasoning'.

"Under the Adversary Paradigm, it is assumed that the only. or at any rate, the best ..

way of evaluating work in philosophy is to subject it to the strongest or most extreme

opposition. And it is assumed that the best way of presenting work in philosophy is

to address it to an imagined opponent and muster all the evidence one can to support

it. ... conditions of hostility are not likely to elicit the best reasoning. But when it

dominates the methodology and evaluation of philosophy. it restricts and

misrepresents what philosophic reasoning is." (p 153)

A particular consequence of enchelus argument is that artificial counterexamples are less

detrimental to the validity of the ideas than in the adversarial mode. The argument

respects logical form, but can move along the 'linguistic' dimension I have described to

give a narrative insight into the 'experiential' dimension. from a form of life to an
observation.

This expanation of philosophical practice is intended to specify the method of enquiry I

use in the following chapters. The questions I ask about mathematics and coming to have

knowledge of mathematics are fairly academic in the professional sense. For the most pan

they are traditional questions from the philosophy of mathematics. I hope to offer some

novel insight into these questions because of the experiential stance I take. Specifically.

because this work is practitioner research from a mathematics teacher. there are
mathematical and teaching discourses which I can use for the linguistic dimension of this

philosophy reasoning. The mathematical discourse includes some logical forms which are

shared with academic philosophical discourse: philosophical enquiry recognises

mathematics as a domain of interest. stimulating questions for research on its nature. In

terms of the experiential dimension. a mathematics teacher's practitioner research has

access to mathematical science as well as to students lives. Knowing (some) mathematics
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is part of my life, (as exemplified in chapter 3), as is being involved with my students

when they learn mathematics'.

2.4.3 Considerations about 'validity'

The meaning of 'validity' has different connotations whether a practitioner-researcher or

philosophical discourse is employed. In the former case, there are two discernible

branches of the research which are assessed for validity. These are how the data are

gathered, (which includes whether these are relevant data for the research question), and

the method of data analysis (Edwards and Talbot, op. cit., pp70-7); a questionnaire is not

valid if it is biased and, assuming a sound questionnaire, the analysis is not valid if, say,

statistical analysis contains gross calculation errors. In the latter case, 'validity' can also

be used in two ways. Firstly, the root concept of philosophical validity comes from

privileging certain forms of reasoning. A syllogism, in Barbara, for example, is a valid

irrespective of its components (Glymour, op. cit., pp49-52). The form is arbiter of the

validity. Secondly, clearly related to the first meaning, is a wider sense of validity at the

heart of philosophy reasoning. This asks of a philosopher's attempt to make a case for the

truth of a proposition: Does this form of words constitute a valid argument? In order to

be a convincing argument, the premises should be true as well as the deductions of a

correct from. In practice, this can be very difficult. Interesting issues often tum out to

involve many variables, or premises, and these premises are expressed in language which

is open to interpretation".

8 This work can be interpreted as phenomenological in the following way: "The sense of phenomenological
statements is very much like that of an explorer's statements, for the meaning of both is similarly twofold: in
so far as they claim to be descriptions of the 'land', they are at once epistemic (knowledge-claims
concerning the land itself) and communicative (that is, invitations and guides intended to enable others to
know what to look for)." (Zander, 1970, p 36) A thorough phenomenological interpretation requires a very
careful use of what phenomenology means. Zander's idea that "everything can be, in some respects, open to
phenomenological study" (ibid. p31) seemed too wide to be used as a method which would provide
validation.

9 In chapter 6, Benacerraf's syllogistic argument for the impossibility of mathematical objects is discussed.
It serves as a good example of a philosophical argument where the form is easily recognised as valid, but
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In this thesis, the validity does not rest on the practitioner researcher model. This IS

simply because the case I make for the propositions I want to assert is not based on a data-

gathering method. I make my case for the propositions by trying to unravel the meanings

and consequences of important terms; for this my practitioner experience is crucial and

use of examples integral. Furthermore, much of the thesis is concerned with applying

philosophical concepts and distinctions to matters in mathematics in education. The issue

of validity here becomes even less well-defined: whether I have used philosophical

concepts 'correctly' is one of interpretation. For example, is my use of, say, 'ontological

commitment' (developed in chapter 6) a 'valid' application of a philosophical concept in

an educational domain? In ordinary language, 'valid' means acceptable, often with the

sense of allowing permission. I have a valid UK passport, but not a valid visa for China.

So a qualificatory thesis is also valid, in an ordinary language sense, if it is acceptable and

serves as permission to proceed.

2.5 Summary

To summarise this methodological analysis: I started with an interest, arising from

mathematics teaching practice, which included some philosophical questions. In the early

stages of my research, philosophy had originally been a question of received 'positions',

like the mind-independence or otherwise of mathematics, and the investigation was

concerned with which of my students held which position. This was an investigation of a

social phenomenon, but it was not really what I wanted to work on. The concepts

fundamental to my interest were about ontology and epistemology and social science

methods were not suitable for investigating questions about these philosophical concepts.

This lead me to want to employ a philosophical method to research the questions I had

about coming to know what mathematical reasoning is, what mathematics is about and

what mathematical action could be. I noted that educational research does not have to be

where the validity of the argument rests on the interpretation. and subsequent assessment of the truth values
of the premises.
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strictly social scientific with respect to method, in particular, philosophical methods may

be used.

I then had to rationalise the potential conflict between using a philosophical method

(which generally should not depend on the particular experience of the individual writing)

and an education-inspired question (which is inevitably rooted in the experience of the

writer). I have tried to bridge this gap by using the notion of 'practitioner research' and

claiming practitioner status as philosopher and mathematician as well as mathematics

teacher. Philosophy reasoning can include, in its experiential range, narratives from life as

well as about observation, and in its linguistic scope, logic about action as well as logic

within mathematics. Moulton's interpretation of enchelus permits a non-adversarial,

philosophical argument which need not collapse if some nicety is constructed to counter a

part of the argument logically. This gives the possibility of relating mathematics to

learners' lives rather than abstract from the interesting teaching-maths-stuff so much that

all one is left with is a logical structure but no person-centred narrative. But it is still

philosophy for all that. This thesis is not just a story, its validity rests on argument.
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3. Chapter 3: Phenomena

3.1 Introduction

In the previous chapter, I explained why a question arising from interest in philosophical

questions about mathematics together with experience of teaching mathematics might be

tackled using a philosophical approach. Doing mathematics, as well as teaching

mathematics, is part of the practitioner's experience which underpins this research. Can

any of these essential experiences by captured in a report? The aim of this chapter is to

communicate the phenomena of the underlying practices by presenting some 'data'. These

data consist of a selection of writings on 'experience'. The experiences described therein

are relevant to my task of philosophically accounting for 'what it is to come to know'

higher school mathematics.

The main body of the chapter consists of three unequal parts: personal accounts of

mathematical experience in 3.2; reports of what my 'teacher's eye' sees as characteristic

of the essentially mathematical within the higher school mathematics curriculum in 3.3;

and a report of 'pedagogical content knowledge' in my practice as a mathematics teacher

in 3.4.

The data presented in these three sections are of different types and each of the sections

serves a slightly different function in my attempt to communicate the experiential

background which I am coming from:

3.2 is a 'data set' from mathematical experience. It consists of mathematical arguments.

together with reflections, reader-tasks and philosophical questions which were provoked

by the experience of doing the 'sums' and thinking about the process of thinking

mathematically. The purpose of presenting this data set is to help the reader tune into both

my experiential context of doing mathematics and my (philosophical) abstractions from

that context.
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3.3 is a 'data set' from higher school mathematical content. The contents of this data set

are four broad areas of the curriculum which I have described from a teacher's point of

view. I have chosen to try to capture the nature of this level of mathematics by example,

rather than giving a syllabus list, because I think it is a clearer way to gain an insight into

working with this level of mathematics. The purpose of presenting this data set is to help

the reader focus on the sort of mathematics I am analysing.

3.4 is a data set from teaching higher school mathematics. This data set consists in an

analysis of pedagogical content knowledge illustrated by a report of a particular teaching

episode. The purpose of presenting this is to mark the distinction between mathematical

content and interpretation of that content; what I want to consider is not the pedagogical

representation'", but the mathematics 'itself.

3.2 Mathematical experience: personal accounts

More explicitly, for each of the four episodes, (indexed by n), I present a short account of

the situation prompting mathematical experience, (3.2.n), as well as a brief observation of

some related philosophical issues. I then try to justify why the presented story constitutes

a datum (an account of mathematical experience), and (indeed) in doing so expand on the

datum itself. There are two aspects to this justification/expansion: the mathematical

evidence, (3.2.n.I) and the meta-mathematical reflection, (3.2.n.2). Part of the

understanding of this justification consists in engaging in a task, (3.2.n.3), usually with a

mathematical and a reflective component. Through the experience of working on this

exercise, I hope the reader will have gained an insight into the substance of my

discussion. In other words, I want to justify my jump from mathematics to meta-

mathematics by eliciting, for the reader, a similar experiential context as my own. Finally,

for each of these data, I sum up what I see to be the next stage of the philosophical work

l'This is Shulman's term, which he used in his widely cited 1987 paper in which the term 'pedagogical
content knowledge was coined. Fischbein, 1987, uses the term 'models' for pedagogical representations like
'debts' for modelling negative numbers.
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to be done, (3.2.11.-1).The notes in these sections are reflections from the time of writing

the mathematical experience account, 3.2.11.

3.2.1 Oil angle trisection

One maths lesson, when I was about twelve, had been on geometrical constructions with

ruler and compasses. We were told, as a fact, that, while you could use ruler and

compasses to bisect an angle, it was not possible to trisect an arbitrary angle. I remember

clearly, even now, how I went home that night and worked on trisecting various angles,

for surely what is true for halves should be true for thirds?" While I do not recall the

constructions I used, I do remember the dejection I felt - I was at this for hours, I'm

embarrassed to say! - because I could never get the measure of the three angle parts close

enough to feel sure that I had found a method for trisecting angles. It may have been that I

had found a procedure, which was obscured by my blunt pencil and imprecise

measurements. Was the inaccuracy the result of my wobbling the instruments or an

imperfect method? There was actually no way of knowing whether I had succeeded or

not. "This was mathematical experience in the sense that I knew that I had not been

convincing; I was aware that no empirical work itself could confirm that I had a method

which worked, yet some mathematical results can have physical instantiations.

3.2.1.1 Mathematical evidence for non-trisection

(a) The proof of the non-constructibility of the angle trisection is given in Herstein (1975.

pp 230-1). Herstein's proof depends on the concept of an irreducible degree three

polynomial over the rationals, together with the result that a length I is onJy constructible

if I lies in a finite extension of the rational field of degree a power of two. The result is a

nice application of the theory of abstract fields and their extensions.

II Wittgenstein recognises this 'sequential imperative' "You have this sentence 'I bisect this angle' and
you form a similar expression: 'trisecting'. And so you ask. what about the sentence .( tnsect this angle?'
You are lead on here by sentences." (Wittgensrein. 1976. pS8. italics in original)
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(b) Using Cabri-geometre (or other dynamic geometry package) it is easy to construct a

dynamic version of a school-girl 'trisection'. Being able to vary the angle-to-be trisected

shows, in a more convincing manner than a few drawings, how the approximate readings

are really approximate, rather than just the result of wobbly hands. With such a dynamic

construction available, the empirical evidence that this construction does not trisect is

very convincing. This is because the angles of the 'trisection' are, for general angles,

different by about 10%. Although Cabri is only accurate to the nearest degree, 3 or 4

degrees out indicates non-equality, not instrument wobble. Nevertheless, this is can only

be done for one failed trisection at a time! Because of the impossibility of testing all such

constructions, the result clearly depends on an abstract, all-encompassing, proof.

3.2.1.2 Meta-mathematical reflections

The question of whether any angle can be trisected or not is to do with whether or not an

action is impossible; not just impossible for me - like doing a triple back somersault - but

as impossible as, say, all triangles being isosceles is impossible. If one understands a

statement of impossibility, then it is irrational to experiment to over tum that result.

Understanding that it is impossible means no matter how good a method for

approximately trisecting you find, you know it will not be exact - even if you devised an

approximate method that always gave you to the nearest degree accurate answers, you

know that you have not done a trisection. As Wittgenstein remarked of this understanding

"[T[he importance of the proof that trisection is impossible is that it changes our ideas of

trisection." (1976, p88)

I like proofs of impossibility; they seem to me to be magic in a particular mathematical

way. It is paradigmatic 'brain defeats brawn'. As Kac and Ulman (1968) express it:

"The unique and peculiar character of mathematical reasoning is best exhibited in

proofs of impossibility. When it is asserted that doubling the cube (i.e. constructing

the cube root of 2 with a ruler and compasses) is impossible the statement does not

merely refer to a temporary limitation of human ability to perform this feat. It goes
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The mathematical existence alluded to in this example is the scope of universal

statements in mathematics. Just to understand these statements will have the effect of not

even trying to attempt certain actions.

Measurement can serve as a perceptual realisation of a new concept in teaching

mathematics - so we introduce decimal places, measures of angles, mechanical

relationships using, essentially, science (predictable aspects of the material world we

inhabit). The trick for the maths teacher is to get her pupils to use their perceptual

experience to establish a concept, mentally, that will not be overturned by subsequent

experiences. This sounds a little like how to establish an a priori concept 'synthetically' (in

Kant's sense).

The Pythagoreans despaired when the paradigm of the accurate answer being measurable

was broken (see, for example, Dunmore, 1992, p214-5). Teaching square roots today, I

have found that many pupils find the notion of the irrationality of root 2 difficult to deal

with; the never ending number is a big step to take in your notions of what it is that

numbers are. But, as Richard Brown (from SCAA 12) said at the BCME conference

(1995) "There comes a stage when' J2 = 1.414 ticked correct' is not appropriate." So the

question of what is measurable and in what way, is a mathematical question. This is

rather different from the observation that representation of measurement using

mathematical notation relies on mathematical structure (like the decimal system,

'arbitrary' but regular). But the answer to 'what is the measurement of ...?' itself, is not so

mathematical, it will never be exactly known via the measurement itself. Mathematical

precision is of a different type to scientific precision.

12 School Curriculum Assessment Authority
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The word 'algorithm' to me connotes a 'machine followable' sequence of instructions that

will inevitably arrive at the relevant answer. Algorithms form an important part of

mathematics which have, in some circumstances, made the study of mathematics seem

unimaginative and off-putting. As I see it, something of mathematics' objectivity is

realised in its algorithms, and while the routine following of algorithms can be come dull,

the in-corp-oration of those algorithms is part of mathematical knowing, (I develop these

ideas further in Chapter 7). Furthermore, the invention or discovery of algorithms can be

a most creative enterprise. That there are algorithms, which machines execute perfectly,

says something about mathematical existence. 1 could not find an algorithmic procedure

for trisecting the angle, but did 1 work mathematically? To some extent 1 did, for I knew

that whatever 1 did with my ruler and compasses, 1 could not be sure that 1 had found a

method!

3.2.1.3 Trisection: how close can you get?

Design a ruler and compasses way of nearly trisecting the angle and then working through

a proof to show mathematically why it doesn't work. A related pedagogical question is

whether such a proof might convince a pupil that this method does not work. can this be a

way of helping a pupil see that mathematics is beyond measurement? (Ideas about the

rationale for belief are developed in chapter 5).

3.2.1.4 For further philosophical investigation:

The following are notes in progress that I made after I wrote the account above:

o The role of perception and empirical work in mathematics: the experimental as

inspirer or irrelevance. How do particular perceptual experiences firstly help establish

meaning? and then become but exemplifications of that meaning? When do they

impede meaning?

o How are understanding and action linked?
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o That there are paradigmatic, or essence holding, examples and ideas in mathematics.

What characterises these special cases that seem to encapsulate a generality? How do

they exert this influence?

o Objectivity as realisable In algorithms but not in processes, like symbolising,

generalising, testing, etc.

o Whether 'a priori' is, in practice, an empty or useful concept.

As I have mentioned, I shall leave these unedited because some of the themes and

questions become important to the development of the thesis.

3.2.2 The group exists: understanding isomorphism.

The 'understanding' occurred in Hung-Hsi Wu's algebra course, (Math HI14A), at

Berkeley. We started group theory from scratch by looking at various sets which had a

group structure. In particular we looked at the multiplicative properties of the following

three groups: the set of non-singular 2 by 2 matrices with coefficients in Z2, the set of

isometries of an equilateral triangle and S3, the set of permutations on three elements.

The concept of group took life from this one example, from this point in time. Prior to

this lesson, I'd have said that a group was one of those sets of permutations,

transformations or whatever with some multiplication. I knew how to test for group

structure using the group axioms. Afterwards those very sets were but manifestations

(representations, appearances, forms) of the group that existed abstractly. I found it

exciting because it fulfilled the promise of, and was an explicit example of a member of,

the intangible mathematical realm that had tempted me to continue studying mathematics.

It was the explicit isomorphisms that gave me 'access' to the abstract group. Or, in more

enactivist terms, after Varela, Thompson and Rosch (1992), the isomorphisms were the

perturbations that provoked my further sense making. It doesn't matter in what school's
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language this point is phrased, because, the point I want to make is: since that time, for

me, abstract groups exist as mathematical objects. The abstract object, in this case the

group, exists independently of any particular manifestation or representation of its

structure. There is a sense of a 'Platonic object out there' and coming to know it, which

can occur quickly, as if in a moment, when one is prepared.

3.2.2.1 Mathematical evidence for abstract group existence

On the isomorphism class:

Following standard notation, (see, for example, Herstein, 1975, pp 75-77), elements of S3

can be written as (a, b, c), where the digits a, b, care 1,2,3 in any order. This set forms a

group of 6 elements and is noncommutative.

lsometries of an equilateral triangle, also have the closure, associativity, inverse and

identity properties required for group structure. Isometries can be specified by marking the

change in position of the vertices relative to a standard position. The example shown is the

reflection about the symmetry axis through vertex 1. Clearly, marking the vertices thus

reduces these geometric transformations to permutations, the example being (2,3) in

Herstein's notation. The structure of these two groups coincides, but they had seemed to

me very different at first.

3 2

How to see that the matrix set was also of this structure? First list its the elements and

observe the associativity and closure using the Z2 property I+1=0 (mod 2) and the non-

zero determinant requirement of non-singularity:
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identity matrix's function is clear. and hence inverses exist, but it is not as transparent that

the multiplication of this group is the 'same as' the others.

The following Cayley table represents the multiplication structure of these matrices:

I RI R2 Fa F" Fe
I I RI R, Fa r; F;.
RI RI R, I F;. Fa Fn
R, R, I RI r, Fe Fa

F" F F" F; I RI R,
"

F" F" F;.. F.. R, I RI
F; F;. F" s, RI R, I

Now, the notation has been carefully chosen to help elicit an identification between the

matrix set and the set of permutations, which has already been seen to be interpretable as

the set of equilateral triangle isometries. By identifying the reRection transformations,

given by the order two transpositions, as F" = (2,3),Fh = (1.3),( = (1.2) and the Rotation

transformations, given by the 3-cyc1es as RI = (2.3.l),R2 = (3,:U). the multiplicative

structure is obviously the same.

3.2.2.2 Meta-mathematical reflections

It is not often that one has the opportunity to pin-point a secure learning event. I think that

the episode related was one of those events. It is difficult enough to try to capture these

for one's self, and. of course even more uncheckable to attribute them to a student or

pupil. Indeed, with regard to spotting secure learning in others. what do we have to go

on? And how can this evidence be judged for its reliability? Every teacher does make

judgements. Most students do (at some time) further their understanding.

This episode prompts discussion of the notions of instrumental and relational

understanding, (Skernp. 1976). I would say that ( had had some instrumental
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understanding of a group prior to the lesson mentioned above. It would be tidy to say that

my latter state of mind could be characterised as 'relational understanding'. But I don't

think that this term properly captures the 'object like grasp' I recall obtaining. Indeed, at

that time I had no further 'relational' meanings for 'group' - I did not know about different

groups, or, for example uses of groups, as in physical theories, or about how group

structure related to those of rings and fields, or what happened to groups under

homomorphisms, or even that I was dealing with the non-abelian group of order 6.

Although I was pretty ignorant, I had been able to apprehend objective abstract structure -

in this case in the form of a mathematical object of the type named 'group', where groups

are codified in terms of their four defining properties.

What the episode also illustrates is the use of paradigm examples as a pedagogical device.

In this example of an isomorphism class, we find a structurally rich (the abstract group is

non-abelian, and the given forms of it 'look' different) particular situation in which

generality can be understood (as described, for example, in Mason et al., 1982).

In the section 3.2.2.1 I have deliberately used a notational form to try to bring the reader

closer to the sense of isomorphism that I experienced. So the geometric imagery of the

rotations and reflections is embedded in the Rand F notation for the matrices: does this

make the acceptance of the structural identity too automatic, too easy? Was it not the

sorting out of a notation that carried the promise of another interpretation the useful

activity in terms of seeing the isomorphism? Being given the explicit Cayley table is

probably not useful for someone learning about group structure, although the activity of

laying it out themselves would force that person to work with the group elements and

their multiplicative combinations, but perhaps (only) instrumentally.

What is it to see the same structure? Can it (just) be recognising the same notation? This

raises questions for me about formalism as well as notation. Are the marks on paper the

carriers of the 'truths'? or is notation a seductive screen on which is written a readable

message? One of the faces of mathematics is that the symbolic medium is more than a set

of inert logos (woolmarks, Nike's ticks and so on) but that "the symbol becomes

symbolic" (Mason, 1980).
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3.2.2.3 How to represent the structure so that the abstract form is recognisable?

Consider the group, (H, A), of order 8, where H = { ±I, ±i. ±j. ±k }with the 'Hamiltonian-

multiplication, A, that can be construed geometrically as the vector product multiplication

of the basis vectors, i, i. k, of real three dimensional space. RI. How do you come to

know that (H,A) is not (Z2 x Z2 X Z2' +) ? Which is a more obvious way of seeing the non-

isomorphism of these two groups: a geometric representation or the structurally ex.plicit

Cayley table?

3.2.2.4 For further philosophical investigation.

o A change in being of mental state, and how to recognise it in self and as a teacher.

o More dimensions of understanding, or coming-to-know. than in the ideas of

instrumental and relational understanding.

o The notion of the meaningfulness of the term 'mathematical object'.

o The role. recognition and pedagogical ex.ploitation of paradigm. or essence carrying.

examples.

o The power of formalism and the role of notation. The slipperiness and seductiveness

of notation.

3.2.3 That looks like an ellipse
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Part of the students' work for my (2 year) PGCE geometry class was to teach part of the

course. The week of 10/2/94, Brendan, Dan and Peter were introducing the LOCUS

package to the group. Dan presented the CIRCLE program from the pack and showed

how the program will plot the locus of the centre of a circle that passes through a fixed

point inside a given circle and that touches the given circle. Brendan, smiling, shaking his

head and looking towards me said: "The locus surely looks like an ellipse, but I can't see

why it is". The problem then became my problem, both as teacher and 'mathematician'.

The solution did not yield straight away, and I had to abandon a wrong track before I got

out a proof that I present as correct. What is 'behind' the image on the screen? From a-

mathematical perceptions, mathematical questions are stimulated! Does proof confer

truth? How else is conviction of a mathematical proposition secured? Does the text in

3.2.3.1 constitute a proof?

3.2.3.1 Mathematical evidence/or the locus being an ellipse

Referring to co-ordinate axes sketched in the diagram, let the centre of the fixed circle be

at the origin and of radius d. Without loss of generality, specify the fixed point, through

which all the circles pass, as C(c,O).

Now consider the cases of the largest and smallest circles: if the locus were an ellipse, the

length of the major axis would be d, the radius of the given circle.

c
By symmetry of the hypothesised ellipse, the centre of the ellipse is at x ="2. This is the

x co-ordinate of the minor axis.

c
Then, by specialising to a circle, (one of two), with centre at x ="2 we can find the length

of the semi-minor axis, h, by setting up the equation for that circle. The y co-ordinate of

the centre of that circle is h, and the radius-squared, by Pythagoras, is (~ J +h 2 • This

( )

2 2
. C 2 C 2

gives the equation of the circle shown as: x -"2 + (y - h) = 4" +h
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Now let x =0. Substituting in to the circle equation we get

( )

2 2
C 2 c0-"2 +(y-h) ="4 +h2 ,which yields y = 21zor y = 0. This means that this circle,

whose centre I'll call Q, passes through the centre of the fixed circle, O.

Let P be the point at which this circle touches the fixed circle.

Using this notation, OQ, QP and QC are all radii of this circle centre Q(cl2, h), and equal

d
to -.

2

d2 c2

This gives 1z2 =4-4' as (0,0) is on this circle centre Q.

Therefore, the equation of the ellipse with constraints: major axis = d and semi-minor

axis his:

50



Chapter 3: Phenomena

Using a 2 = b2 (1 - e2
) , and algebraic manipulation we get: e = ~

d

The foci are at F(ae,O) and F'(-ae, O)relative to co-ordinate axes coincident with the two

lines of reflection symmetry of the hypothesised ellipse, which are x = ~ and y = 0.

d c c
So, relative to these axes, we have: ae = "2 x d = '2' which is the fixed point through

which all the circles pass! And the other focus is (-2c ,0), in the ellipse's axes co-

ordinates or the origin (0,0) in the old, which I shall now return to using.

Now, to show that the locus of Q is an ellipse I shall use the 'focal length property'; an

equivalent definition of an ellipse.

Let the foci be at 0 and C, so it remains to show: OQ +OC = d.

Now, OQP is a straight line as the circles touch.

And OP = d , radius of the outer circle,

but OP = OQ +QP and QP = QC, radii of the centre Q circle,

hence OQ + QC =d , and the locus of Q is an ellipse.

3.2.3.2 Meta-mathematical Reflections

The power of these sorts of computer simulations is that they give us a perception of a

wide range of examples, where, otherwise, the very processes of drawing specific cases

would mean that the scrutinisable set of examples would be very small. Not only would

we have few examples to scrutinise, but the continuity between one and another would

not be as apparent as on a computer simulation. The abundance of empirical experience

prompts conjectures about the phenomenon observed after a shorter period of time than

one would expect of an empirical conjecture without this tool. There needs, then, to be
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less commitment by the individual to the problem before conjectures are asserted; this is

one of the reasons why such IT is useful in teaching - students' imaginations can be

captured more easily: the 'that' of the situation is more readily apparent. But, of course,

this 'easy access' can mislead, if the cues are not well understood. For example, zooming

in to xsin( IIx) at x = 0 for long enough can give a screen picture that appears to be locally

smooth. Also, this 'easy access' does not mean there is not other, perhaps hard,

mathematical work to be done, for which the students might not be so easily motivated.

In this case, I was not convinced that the locus was an ellipse from the screen alone -

could it be slightly egg-shaped, for example? Personally, I was motivated to find/make up

an explanation from which (a) I could be sure that it either was or was not an ellipse (b)

could convince my students. My intuition was not strong enough to publicly assert: 'that

is an ellipse' after seeing the screen images alone.

I know that I am more secure about whether a proposition is true if I have a symbolic

representation of the phenomenon in question that has yielded a result through quite

formal manipulations. Perhaps this explains why the screen images were not satisfying as

'answers'; as for Brendan, they functioned as a conjecture making stimulus for me. But

other students couldn't see what the fuss was about - the shape was evident to their eyes.

Now, we can all agree that our eyes deceive us often, and while those other students

could, for this reason, see the theoretical point of a proof (of the locus being an ellipse)

their cognitive frameworks were such that the practical question had been solved visually

and the rigours of a symbolic proof were the sort of tedious game that gives mathematics

a bad press. Or were their intuitions better than Brendan's or mine?

The shape of this proof merits some comment, for it is strongly influenced by the ellipse

hypothesis. It is rather backwards to assert 'well, if it were to be an ellipse, then it would

have such and such properties'. However, I think the proof works, because once I know

those two special points (0,0) and (c/2,0) I can 'attach a piece of string' to them and, in the

standard way, draw some ellipse. That this ellipse was the required locus depended on the

crucial condition of the original construction that the circles touched. Then the
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implication that OQP was a straight line, although it was only used at the penultimate

point, was enough to prove the theorem.

I found that the eccentricity of the hypothesised ellipse was cid. This fact was not

something I had an intuition about or was working towards showing, it fell from symbolic

manipulations. But this was a result, not just another piece of algebraic noise: there are

but two parameters in this situation, c and d with ccd and as an ellipse has eccentricity

c
<1, it was most satisfactory that e = d . I had no prior intuition of this result; it was

intuitively right when it appeared!

3.2.3.3 Algebra and geometry

There is quite a lot of algebraic symbolism to wade through in the proof given above.

Does this detract from 'seeing' the truth of the proposition in question? Is there a more

geometric proof?

3.2.3.4 For further philosophical investigation.

o Mediating technological tools as perception enhancers.

o What does confer the truth of a proposition? Intuition as tested by structural proof and

perceptual lived experience.

o The power of symbolic formalism to yield analytic truths.

3.2.4 The Golden Circle property

A part of the mathematics I enjoyed as a child was doing nice little Euclidean geometry

proofs: there was a visual and deductive aspect which I found satisfying. At university we

seemed to have out grown this type of geometry, and when I came to teach the subject in

English secondary schools, the only geometry that students 'needed' to know were certain

facts (like angle sum of triangle and angle in a semi-circle) but not their proofs, in the

sense I had learnt all those years previously. The following little problem was prompted
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by reading an article by Coxeter in the Mathematical Intelligencer (Coxeter, 1994) and is

illustrative of the deductive genre within 'higher school mathematics':

MP.

Given an equilateral triangle ABC inscribed in a circle. Let M and N be the mid points

of AB and AC respectively. Produce NM to meet the circle at P. Find the ratio NM to

The geometric configuration has properties which can be deduced independently of any

diagrammatic representation (static or dynamic) by using rules of inference.

Diagrammatic representation helps me to make sense of the problem and to have a 'useful

idea' that opens the path to the deductive proof. But what interaction is there between my

'playing' with the problem and the ossified answer?

3.2.4. J Mathematical evidence/or the 'golden circle property'

First, draw a diagram:

Produce NM to Q on the circle.

Now, .1ANQ is similar to .1PNB, because:

< QAB = < QPB (angles in the same segment QB)

< AQP = < ABP (angles in the same segment AP),

and the triangles' vertically opposite angles at N are equal.

As a consequence the ratio of sides have to be: ANIPN = AQIPB = NQINB.

Manipulation gives me AN.NB = QN.NP
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Now, let the side of the equilateral triangle be of length 2.

QN = 1 + X . This is because MN = 1, ABC is an equilateral triangle and M and N are

mid points.

Let NP = X. By symmetry MQ = X too.

Form an equation: 1.1=( 1+X).X

Solving the quadratic equation and taking the positive root, as we have a distance: X=

-1+./5
2 . A representation of the Golden Ratio.

3.2.4.2 Meta-mathematical reflections

The mathematical problem is presented as a closed question, the very formulation of

which suggests that there IS an invariant; there is a number that is THE answer. Hence, if

I manage to get an answer, that number will either be right or wrong. I set off on the task

acting as if there is something to find that is definite and predetermined. Whatever I shall

do will not change the number; I have no causal interaction with the result. It is safe from

my messing around whether I find it or not. It's a fact of the matter. (Sawyer, 1992)

How did I start on this problem? I used my diagram in an empirical way: I drew a large

version of an initial sketch, then I sat and wondered and wandered about the situation. If I

wanted to have estimated the required ratio, I could have done an accurate drawing or use

a mediating tool, like Cabri-Geometre (or similar). By doing some geometry experiments

I might even conjecture a result which, because of the answer's theoretical irrationality, I

could never actually measure exactly. I know that no representation is the configuration.

My result here is not what I can see or measure but only what I can deduce from that

which was given. After a false start, a pause, then a doodle leads me to symmetrise the

diagram. So NM is now produced to Q on the circle. Now I see two similar triangles! A

moment of insight, as I know that ratios come with this concept and a ratio is what is

required.
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The relation AN.NB = QN.NP is an expression of a theorem I should have recalled but

didn't - I went back to the more ingrained notion of similar triangles. Ingrained not only

because similarity is a concept used widely but also ingrained by visual sense.

The equation has another representation as the equality of the ratio of the sides in the two

similar rectangles, AN'QP and PNBQ:

----'N'

J------l B

X

There was something very confirming about the Golden ratio emerging as the answer.

Why did it seem so improbable that this could be wrong? For sure, even an estimate by

eye would indicate that it could be an approximate solution, but I had feeling of right-

trackness, certainty, even. There was an aesthetic component to this experience which

reinforced the existence of the answer which was held, structurally, in the quadratic

equation.

3.2.4.3 A task: why is it a 'Golden egg'?

The graphic designer, Robert Dixon, in his book 'Mathographics', (Dixon, 1987), relates

mathematics and aesthetics through elementary ruler and compasses constructions. One

such construction that he shows completed, but without explicit construction lines, he

calls 'The Golden Egg' (page 8) - there are several other egg constructions in the book. It
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would be interesting to observe whether, on working out how to construct the egg, you

have the sense of the familiar ratio being uncovered, or otherwise.

3.2.4.4 For further philosophical investigation

o That mathematical results, may be conjectured, but are not established by empiricism,

but by the paradigmatically mathematical method of proof which can both illuminate

(enhance intuition) and yield necessary consequences.

o We develop ideas, new 'perceptions'/understandings/connections about the same,

familiar thing.

o There are geometric facts of which we can have knowledge.

o Certainty in mathematics may be related to aesthetic as well as being a function of

understanding a proof.

3.3 Mathematical content: examples at the 'higher school level'

In this part of the chapter, I study four typical items of content in higher school

mathematics. These examples, each of which exemplifies an important part of the

curriculum, are intended to illustrate the sort of concepts students are intended to

understand, rather than point to exhaustive curricular categories. The areas of the

curriculum which I have chosen to illustrate are the following:

o axiomatisation: through the example of the game of sprouts

o modelling: through the example of modelling projectile motion

o infinite processes: through the example of finding limits to sequences

o symbolic manipulation: through the example of manipulating secondary variables

These aspects of the curriculum are crucial to the 'twelve to twenty' curriculum of higher

school mathematics.
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In the first part of this chapter the focus was on the experience of mathematical work. In

this part, the focus is on the substance of the mathematics which I teach. The final part

relates an example of pedagogical content knowledge as it is experienced. In the first part,

I presented calculations and reflections on those calculations from my own work, as that

was the 'nearest to experience' I could get. Now, I analyse this 'mathematical substance'

through activities which I have used as a teacher. Then I look at how this 'substance' can

be mediated in the practice of teaching.

3.3.1 Axiomatisation

Mathematics is contextualised within many games (see, for example, Beasley, 1989) and

the playing of games. One such simple one is 'Sprouts'. It is a well known game used in

British schools which I have used with pupils on several occasions. After outlining how

the game is played, I want to identify 'mathematical substance' players could potentially

encounter and use.

The game is for two players; the one who makes the last legitimate move is the winner.

The game takes place on a flat piece of paper: some nodes are drawn on the paper as

spots. A node is 'closed' (can no longer be used) when three paths go from or to it and

'open' (still in play) when there are less than three paths from or to it. To play, the players

take it in turn to join two 'open' nodes with a path and place another node on this path. No

path may cross another.

There are (at least) two types of mathematical entity within this context: topological and

axiomatical. Although the game can be played without naming them, the players are

nevertheless working with these following mathematical entities:

3.3.1.1 topological equivalence.

This has two positive instantiations in this game: (a) in drawing a new path, the player

uses the notion of 'the topological path between two nodes'; (b) in positioning of the new

node on the just-drawn path, the player uses the notion of 'a-metrical betweeness'.
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I note that this notion of topological equivalence (of paths and points on them) has a

readily available perceptual representation in drawings. So, there are empirical checks on

the legitimacy of moves. From the learner's point of view the concept of topological

equivalence is grounded empirically. From the theorist's point of view, a distinction needs

to be made between the empirical topological concept and the mathematical one (which

can be defined in terms of homotopy). From the educationalist's point of view it is

essential that a connection can be forged between them.

3.3.1.2 axiomatization: rule recognising andfollowing.

Other mathematical objects encountered in playing sprouts are (a) the very rules that

define the game; (b) the consequences of those rules.

Another way of saying (a) is that the game itself is a mathematical object. If this is

granted, then could any game be considered a mathematical object? Not quite. 'Game' has

social as well as mathematical meaning. Playing a game need not have tightly defined

rules the way Sprouts does. Just as there needs to be a theoretical connection between the

empirical notion of topological equivalence and the mathematical one, so there needs to

be a theoretical connection between the social experience of playing a game and the

notion of rule-boundness.

(b) includes two different aspects: the sequence of moves that will ensure a win; and the

reasons why that sequence of moves ensures a win. For example, in a game starting with

1 node, the second player always wins. 'Proof is by exhaustion! In a 2 node game, either

the second player wins at her second move or the first player wins at his third move,

depending on the play. Can either player force a win in a 2 node game? This is a question

that can be put into propositional form and have associated truth value.

From the Sprouts context, I have pointed out two types of mathematical object:

topological - 'equivalence' - and axiomatical - realised as 'rules-procedures-consequences'

in games. The former have, for the inexperienced student, a legitimacy in empirical

observation and the latter in social interaction.
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I want, now, to consider another example that, in some sense, is an 'object' at the end of a

chain of 'abstractions'.

3.3.2 Modelling

Like 'sprouts', mathematics is contextualised in projectile motion. In this case, the nature

of a projectile is not defined by arbitrary rules, but it is descriptive and predictive of our

physical environment. To understand basic projectiles requires physical as well as

symbolic understanding.

Projectiles are understood bodily before we study mathematics. To point this out to

students, I usually start doing projectiles by bringing in a ping pong ball projector (a. k. a.

gun) to the class (the members of which are typically 16 to 17 year olds or mature

students at that mathematical level). I then shoot ping pong balls at various people. If my

memory serves me correctly, no student has ever failed to catch one of these balls, when

one was projected towards them.

Because we 'know what happens' when a ball is thrown, it is relatively easy to motivate

the students to reflect on how precise their understanding really is, and what are their

underlying assumptions in modelling projectile motion. However, that does not imply any

theoretical knowledge of the mechanical situation: ask them to draw a diagram of the

situation, indicating the forces, and they frequently mark the net force on the ball in the

direction of motion. This sort of response is not unusual! It was the most frequent

response, 46%, given by Roper's sample (n = 123) of sixth form college students, (Roper

1985, pp 32-35), to whom a similar question was asked.

The mathematical content involved in analysing basic projectile motion boils down to

vectors and derivatives together with the algebraic skills required to actively symbolise

these entities. The physics content is Newton's Laws. What is involved in understanding
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projectiles is, initially, an understanding of the model, t.= - g} 13, where t. is the

acceleration vector, g, is a numerical value for acceleration due to gravity, and {i,J,k} is

the standard orthonormal basis for Euclidean 3 dimensional space".

A ball is projected. The angle at which it is projected can vary and influences the

projectile's range and the time the ball is in the air. This is bodily knowledge involved in

catching. Parameters must be incorporated into the model. How? The initial velocity is a

vector; vectors are intrinsic to the mathematics of the action that is a projectile. This

initial velocity, or speed-at-an-angle, changes; the rate of that change is constant: - iJ.
The mathematical deduction of the unchanging horizontal component seems paradoxical

until the mathematical concept of vector component and the mathematical concept of

vector acceleration are married. The embodied knowledge is 'what ever goes up has to

come down' is modelled, (at any rate, for ping pong bails), as t. = - g}; the notation is

conventional but the experience is real.

In the following example, on infinity, there is no similar physical experience to the

embodiment which underpins the abstractions of the projectile model. In what sense can

our finite existence 'experience' infinity?

3.3.3 Infinite processes, infinite objects

One way that infinity can be experienced is through the notion of process. Here the

indefinite repeatability is experienced as a potential; recursion is part of our lived

experience, even though we cannot perform a recursive procedure indefinitely.

Spreadsheets are a fairly recent technological tool which enable someone to see the fruits

13Sometimes air resistance is worth incorporating into the model, but for ping pong balls in the classroom,
empirical calculations indicate that good predictions as to, for example, the range of the projectile can be
made without taking air resistance into account.

I<tnuS notation is used to indicate the generality of the situation, rather than to suggest that this would be
students' first encounter with a symbolic representation of the model.
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of many stages of a recursive procedure easily. The cognitive development in

mathematical learning is to accept the notion of infinity as existing in and of itself.

One of the first objectifications of infinity that a student encounters is that of limit of a

sequence of real numbers. This mathematical concept of 'limit' is often a difficult one to

learn, as I shall exemplify further in 5. J. the difficulty arises partly because of the

associations English speakers have with the word 'limit' and partly because of the intrinsic

conceptual leap from the finite to the infinite. For example, we can describe an infinite

sequence of numbers, by a recursive process, which may, or may not, end up somewhere

finite: the sequence 1,1,2,3,5,8,13, ... clearly both goes on forever and (its terms) get

correspondingly bigger and bigger. The sequence Ill, 1/2, 2/3, 3/5, 5/8, ... must also go

on forever, but its terms are all less than 1. 'Does it actually get anywhere?'

There is an extensive literature on the process-object 'duality' in mathematical learning

(Tall, 1991, Sfard, 1991, 1994, for example). However, to understand the point of my

giving this example as typical of higher school mathematics, I would refer the reader to

the mathematical text like 'Infinite Processes' (Gardiner, 1991). In the introduction,

'What's wrong with calculus?', Gardiner exemplifies mathematically how perception and

physically experienced intuition can fail (he uses the classic problem of 'mis-behaving'

infinite series, also considered historically by Kitcher, 1984, Gray, 1992). A question

which this thesis will work towards answering is what is the nature, philosophically, of

the sort of mathematical object whose physical instantiation we cannot be sure of (such as

limits of infinite processes). This is the subject matter of chapter 6.

3.3.4 Symbolic manipulation

Symbolic manipulation becomes important at this stage of mathematical development. As

some of the mathematical data presented in 3.2 illustrates, there are occasions where

genuinely new insight can appear through 'mere manipulation' of symbols. As Pimm

remarks "Algebra is about form and transformation", (1995, p88). Pimm goes on to

distinguish the "alternative emphases", when working algebraically, of the "generative"

and "descriptive" aspects of the algebraic symbols (p 90). The generative aspect of
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working with the symbolism allows new information from mere manipulation. The

descriptive aspect is the referencing to a mathematical object by which the user can get a

reality check.

There are many examples of students' failure to connect meaning, manipulation and

object. One of the challenges of higher school mathematics is the incorporation of a

hierarchy of variables. The phenomenon of students' appreciation of different symbols in

algebra has been studied by Liz Bills (Bills, I997a, 1997b). Students may well be aware

of the generative and descriptive aspects of algebra, but this does not imply that they are

flexible enough to move efficiently between them. For example, Bills (1997b) reports on

the way particular symbols, m in co-ordinate geometry, for example, have their meaning

controlled by the role of that variable in ossified contexts: 'y = mx + c' in this case. This

limits the possibilities which students are able to initiate: "[the novice's] ability to

perform a task may depend crucially on its being expressed in terms of ... familiar

notation." (p 80).

Liddie's problems with integration, which involved two levels of variables, further

illustrate Bills's analysis and gives a specific example of a student not synthesising

meaning, manipulation and object:

Liddie, a student on a two year PGCE conversion course, was aiming to use the technique

of 'volume of revolution' to confirm the formula for the volume of a right circular cone of

h h ( )2
height h and radius r. She had written [1Cy2dx = [1C ~ x dx , where she had set up the

cone as the line y = !_x rotated about the x axis between 0 and h. However, although she
h

3

was happy with J x2 dx = x3 + c, she could not deal with the right hand integral above.

Even substituting specific numbers substituted for rand h did not automatically help her.

Her problem seemed to be that the expression combined brackets with fractions and

squaring.
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This exemplifies the way that mathematical entities are embedded hierarchically in a

3 h ( )2
problem (y = ~ x and' Jx2dx = x3 + c' in I7r : x dx). It also illustrates that solving

the problem requires symbolic manipulation in different ways.

3.4 Pedagogical mathematical knowledge exemplified and analysed

My aim in presenting this final 'data set' is to help distinguish knowing how to teach

elementary differential equations from knowledge of the content of differential equations.

As I have already, in 3.2, exemplified working with mathematical ideas quite liberally,

and, in 3.3, characterised key features of higher school mathematics content (3,3), I make

this distinction by pointing to a kind of knowledge which is specific to mathematics

teaching. I give an analysis of this mathematical 'pedagogical content knowledge' (PCK),

(in the sense of Shulman, 1987), illustrated by means of a teaching episode. This kind of

knowledge is central to teaching but not to mathematical practice.

The analysis, with the account of the teaching episode, was reported in an article on

teacher's mathematical PCK (Rodd, 1995). In the present context, what I want to

emphasise is the multifarious way mathematical knowledge is interpreted and represented

for teaching. Part of such interpretation is planned and part is serendipitous or

spontaneous.

3.4.1 Forward planning for differential equations

My first order planning for this lesson for 2 year PGCE students included the topic: an

introduction to first order differential equations, and choice of resources: (most

significantly) computer graph-plotters. This meant that the focus of the lesson was on first

order equations which had a representation using the computer software, OMNIGRAPH,

I had available. It also meant that I had to negotiate getting the computer room.

My second order planning started by deciding which specific differential equations the

students should solve to start with, given that they had OMNIGRAPH available as a tool.

The questions chosen for these students to work through were sequenced so that they each
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worked a different aspect of the mathematics that Iwanted them to think about. I asked

them to work in pairs so that opportunity for debate and discussion was easily available. I

wanted the students to be fluent with the notation both in 'instrumental' and 'relational'

terms (Skemp, 1976). To this end, I selected differential equations which Ihoped would

draw their attention to features of the software, the notation and the nature of the

solutions.

The third order detail consists in the specific questions. The first equation they were

asked to work on, dy= x; was a familiar relation, but the Leibniz notation had not been
dx

used much before. The software displayed a representation of this relation as 'compass

needles': short straight line segments of gradient :' positioned at enough (x, y) to give

an impression, on the screen, of a varying 'field'. This was new to most of the class. A

subsequent question was dy= y which was designed to draw their attention to non-
dx

polynomial solutions from notationally very simple differential equations. Another

question was dy= _ x, which was included in order to start developing the technique of
dx y

'separation of variables'. Then Iasked them to create and solve their own questions which

mayor may not be modelled on the various types mentioned above but would (probably)

be limited by the IT. that was being used.

From this description of my 'forward planning teaching decisions' I should like to make

some observations:

(i) I had to think about differential equations as a whole (as far as I could) as well as

the detail of solving them.

(ii) Iencouraged the students to 'explore' and discuss solving differential equations, but

I was reinforcing, particularly through the software, the received conventions and

correct solutions.
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(iii) I offered scope for them to be as imaginative as possible in their creation of their

own differential equations, but I expected them to work on solving these equations

analytically if possible, using standard techniques and known results.

Chapter 3: Phenomena

3.4.2 Responding in the moment to students' mathematical work in this lesson

As well as the forward planning, teachers respond to individual and group needs as they

spontaneously arise. For example:

I had quite dissimilar conversations with two different students about the same question:

Ahmad said that the 'compass needle' (on the OMNIGRAPH differential equations menu)

was "a bit of the curve" from which we talked about how 'flat' was 'locally flat' and started

working on local curvature. This level of sophistication was quite different from that of

my conversation with Martin, who was overwhelmed by all the 'little lines'. Martin and I

dy
-=X

looked again at the dx example represented on the screen and considered the question

dy
-=x

'what y = f(x) could satisfy dx ?' Whereupon he moved his finger on the screen in the

shape of a parabolic solution curve, hazarded "x2
" , checked by differentiating this guess

and subsequently adapted his solution to the correct one.

From this description of my 'response in a moment', I should like to make some

observations:

(i) For the first student, I drew on my understanding of linear approximation in general,

whereas with the second I homed in on explaining the software's representation of a

tangent and how, specifically, to get a solution.

(ii) I encouraged the students to 'explore' and discuss solving differential equations and

related concepts, but I was reinforcing, particularly through the software, the received

conventions and correct solutions.
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(iii) I offered scope for them to be as imaginative as possible in their questions and as

focused as they wished when seeking help, but I expected them to work towards a fluency

that included using standard techniques and known results.

In the observations for both the 'forward' and the 'momentary' teaching decisions I note

that in

(i) I viewed the mathematical topic on occasion 'holistically' and at other times

'atomistically' (focusing in on detail)

(ii) I worked on the students making meaning for themselves through 'negotiation' in

discussion and adapting their ideas when using the graph plotter and I checked that these

meanings were developing to the 'precise' received mathematical concept.

(iii) I gave scope for 'creative' individual expression - whether in imaginative associations

or in request for detail - but also wanted to facilitate 'mechanical' abilities (e.g. ability to

employ algorithms where appropriate).

This is a brief analysis of mathematics-PCK. It illustrates how that part of teaching

practice exemplified can be deconstructed into forms three kinds of knowledge. The

conceptualisation of these kinds of knowledge give an inkling of the complexity of PCK

and its relationship with mathematical knowledge and teaching practice.

This analysis is brief because (a) the question of the nature of pedagogical content

knowledge in higher school mathematics is a topic worthy of a thesis itself; (b) because it

is a digression from the central question of what it is to come to know mathematics. I

have included this account because it indicates how the experience of doing mathematics

(3.2) and the content of mathematics (3.3) can be brought together through employing

another kind of knowledge: PCK. Obviously, that is what teaching is supposed to do!

3.5 Summary

The principle purpose of this chapter is to provoke and describe mathematical experience,

then to prompt reflections on this experience which may stimulate philosophical
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considerations about mathematics. Experience of doing and reflecting on mathematics is

distinguished from awareness of the mathematical nature of the higher school

mathematics curriculum. And it is distinguished from knowledge and experience of

teaching mathematics. To what extent knowledge of teaching mathematics requires both

background mathematical experience, along the lines expressed in this chapter, together

with an awareness of the intrinsic mathematical content of the curriculum, is an

interesting question which I may pursue at a later date! In this research my focus is on the

philosophical issues arising from doing mathematics because they draw attention to the

epistemological issue of how students are to access this experience and the ontological

issue of what it is the students are working with when do enjoy mathematical experience.
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4. Chapter 4: Philosophical Preliminaries

4.1 Introduction

"There is no there, there" attributed to Gertrude Stein concerning Oakland, California.

The purpose of this chapter is to locate the philosophical tradition relied upon in the

subsequent three chapters. A 'philosophical tradition' is obviously multi-dimensional

and no incidental analysis, like this, could give an adequate characterisation. In

particular, it would take me far too far afield to attempt to do justice to an historical

analysis of this established practice. This chapter will just highlight two aspects: the

register and questions of interest. The register" is the language, with the technicalities

and nuances specific to this sort of philosophy, in which discussion takes place. But I

do not present a self-conscious analysis of philosophy-talk here. Rather, I aim to use a

philosophic register 'naturally' i.e. to communicate philosophical ideas. If the reader

can stomach this philosophical excursion, the following three chapters should be

straightforward reading!

The other dimension of the philosophical tradition described is the explicit content of

this chapter: a sample of the background philosophical issues and questions which

fuel philosophy of mathematics in the British-American analytic tradition. This

sample is no random collection, but consists of issues and questions which contribute

conceptually to the main thesis.

I~e technical linguistic term 'register' indicates that a word or phrase can have a different nuance in
different contexts: "Registers have to do with the social usage of particular words and expressions, ways
of talking but also ways of meaning" (Pimm, 1987, p 108), indeed, "certain phrases and even
characteristic modes of arguing that constitute a register" (ibid. p76).
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4.2 Statement of overall thesis

In chapter 1, I set the scene for this project as a whole. Then I explained why the

approach was to be philosophical in chapter 2. In chapter 3, the substance, or

phenomena of the ground-level, of the enquiry was exemplified. Also in chapter 3 the

passage from this ground-level of doing or teaching mathematics to the meta-level of

philosophical reflection on the basic phenomena was traced. Now this chapter

develops some philosophical preliminaries for the thesis proper, which is developed in

chapters 5 to 7.

The thesis which I want to explain and defend has three parts, or sub-theses. These

sub-theses are presented generally as I, Il and ill, and interpreted for mathematics in

education as i, ii and iii:

I. There are distinctive mathematical warrants

II. Realist mathematical ontology is both defensible and compatible with educational

interests

ill. Some mathematical knowledge is non-propositional action knowledge

These assertions, I, II and ill, are a foundation for the following propositions specific

to mathematics in education:

i. ways of reasoning at this mathematical level include deduction, quasi-empiricism

and visualisation, and that students need not only to learn these processes, but also

that these processes are the ones which serve to justify mathematical propositons

ii. ontological commitment to the content of higher school mathematics is integral to a

student's progress and a consequence of realism in mathematics

iii. learning mathematics involves developing a capability to execute some

mathematical procedures with 'automaticity'
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4.2.1 Some underlying issues

Fundamental concepts which are used within the argument for the thesis include truth,

existence and intention. These are vast conceptual domains. In practical terms, the

content discussed in this current chapter must be focused on these concepts'

application to the thesis in question.

The first thesis concerns warrants - claims for knowledge. When someone 'knows'

that p, where p is a proposition. then this implies the truth of p. This is why a

preliminary for a discussion of warrants is a discussion on the nature of truth. The role

of mathematical warrants in learning mathematics is the subject matter of chapter 5.

The second thesis is about what exists. So a preliminary for this is the theory of what

exists: ontology. Thus traditional ontological classifications are presented. A broad

explanation of the lack of suitability of conceptualist and nominalist schools is given;

realism, as applicable in mathematics education. is developed further in chapter 6.

The third thesis concerns knowledge-as-fluent-action. The difference between a

laborious application of a mathematical routine and an expert fluent one can be

characterised, in part, by the concept of intention. Intention is a concept from the

philosophy of mind used to discriminate between instinctive-like actions and

explicitly planned actions. The question of whether some mathematical action may be

claimed as knowledge is discussed in chapter 7.

4.3 Preliminaries for I

The first part of this thesis discusses mathematical warrants and makes a claim that for

mathematical knowledge particular forms of reasoning or justification are required. To

a professional mathematician or philosopher this is a commonplace. but to a novice.

typically a person in their early teens, the idea that different forms of reasoning are

associated with different disciplines is by no means obvious. In chapter 5, I present

ideas about what a justification consists of and why logical forms. and others, are of a

particularly reliable type. Warranted belief is integral to knowledge. And the meaning

of knowledge presupposes that what is known is true. So some discussion of truth is

preliminary to a theory of warrant for learning mathematics.
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At a first approximation, theories of truth can be classified as alethic or epistemic. The

former classification is sometimes called 'realist' (Alston, 1996); a proposition is true

in case it makes a statement about the way the world is. An epistemic theory of truth,

on the other hand, decrees a proposition to be true if there is a way of explaining how

this 'truth' can be known (ibid.). In the following sections these two conceptions of

truth are discussed further.

Chapter 4: Philosophical Preliminaries

4.3. J Theories of truth relevant to mathematics in education

For the research mathematician, there may well be strong motivational reasons to

adopt a realist conception of truth. For the aim in that enterprise is to find out whether

a proposition is true or false: 'does this solution converge?' 'does the solution

converge 'fast enough'?' Clearly, when one moves to mathematics in education there

are (at least) two interweaving discourses: that of mathematics and that of education

and how propositions are warranted in these two disciplines is different. This is

follows from the nature of the disciplines: one is an exact science one is a social

science. It is arguable that in mathematics there are propositions the truth of which is

not a matter influenced by humans, in education such is not possible. The aim here is

to discuss mathematical truth from a mathematics learner's perspective, in a way. This

means that, if a realist conception of truth for mathematics is used, this is essentially a

different concept (but not different meaning), from a conception of truth appropriate

to education'".

In education, epistemic issues, how things are known, cannot be avoided. 'Coming to

know' must involve beliefs, and whether certain doxastic attitudes are knowledge-

like. This means that epistemic concepts like warrant, evidence, reliable, rational, etc.

are important notions in this area of enquiry. Does this mean that a theory of truth

pertinent for the discussion of 'coming to know' must be epistemic? An epistemic

theory of truth is one for which truth is intimately entwined with how that truth is

assessed; the know ability - the route to truth - is a function of processes performed by

16 I think that this problem which arises by trying to marry different conceptions of truth can be avoided
by assuming conceptualism, (see 4.3.4). Perhaps a good reason for adopting conceptualism is to avoid
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epistemic subjects. Before answering this question, I want to discuss, briefly, the

relationship between 'epistemological' and 'psychological' in general and clarify the

distinction between the epistemic and psychological subject in particular.

As a note of caution, the term 'epistemic' has different connotations dependent on

whether it is used to denote a 'subject' or a theory of truth. An 'epistemic subject',

(characterised below), is a 'putative knower', whose way to knowledge can be

described in theoretical terms. An 'epistemic theory of truth' requires a mechanism for

a putative knower to ascertain the truth value of a given proposition.

4.3.1.1 Epistemic or psychological

The science of psychology - the systematic study of the human mind - is a fairly recent

science. There was not such a discipline in Ancient Greek times. Ancient Greek

thinkers studied epistemology - the theory of knowledge - but not the discourse that

tried to explain how knowledge develops, as cognitive psychology can offer today.

Discussions of the nature of knowledge are plentiful in the writings of Plato, Aristotle

et al. And so there was, in this tradition, a notion of the 'epistemic subject', (the slave

boy in The Meno, for example), which Grayling equates with "the putative knower"

(Grayling, 1996, p 40). The notion of the psychological subject - 'the putative

cognizer' - is much more recent. Indeed, when it comes to mathematics learners,

Fischbein (1990) argues that the psychology of mathematics education has only been

recognised within the last thirty years as a sub-discipline of psychology.

Whereas the Greeks assumed existence of a pre-experiential knowledge - e.g. Plato's

forms - the seventeenth and eighteenth century British empiricists, principally Locke,

Berkeley and Hume, based their epistemologies in subjects' experience. The British

empiricists' thinking tended to merge the notions, raised above, of the epistemic and

psychological subjects'". They did this by developing theoretical ideas about the mind

and the mechanisms by which knowledge might be attained. Hume's theory on these

this problem, but I think it is possible to give a coherent account while holding different conceptions of
truth.

17 There may be other schools of thought which also bring these concepts together. For example,
Appelbaum, (1996), suggests that Hume's theory of mind in some ways mirrors a Vedic theory, (pI3).
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matters is both detailed and curiously modem. Firstly, Hume prioritised experience,

and awareness of experience, in his enquiries; secondly he questioned the notion of a

knowable reality; thirdly he challenged the whole notion of scientific, 'natural',

necessity:

"the necessary connexion betwixt causes and effects is the foundation of our

inference from one to the other. The foundation of our inference is the transition

arising from accustom' d union. These are, therefore, the same" (Hume,

173911978, p 165).

Hume's scepticism about knowledge resulted from the strict logic of his conception:

ironically, in his aim to privilege experience of reality, his reason concluded that no

'direct representation of reality' could be known!

The meaning of the term 'epistemology' has a particular nuance in the field of

mathematics education which, I think, is subtly different from the meaning used by the

philosophers, (like those cited above), with whose writings I am trying to work. The

difference in 'philosopher-epistemology' and 'mathematics education-epistemology'

is on two levels, epistemological theory and ontological assumptions. Firstly, most

philosophical discussions on 'coming to know mathematics', (the epistemological

theory level), focus on rationales for how a stimulus can be warranted and therefore be

knowledge-like. This is exemplified in Plato, (e.g. the Meno), in Wittgenstein's

language based theories (see 7.2.5) and in Giaquinto's visualisation (see 5.4). In

mathematics education this level of discussion is usually scientific, with theories

being developed from experimental data, as any perusal of the proceedings of PME

will evidence. 'Epistemology' in this sense is a branch of psychology. Secondly, the

other, ontological, level is considered a separate (though related) issue by

philosophers, (see Grayling 1996), but part of the epistemological debate by

mathematics educationalists (see Vergnaud, 1990). By drawing the ontological and

epistemological issues closer together, I think that mathematical educationalists have

lost some of the subtleties to do with the nature of acquiring mathematical knowledge.

The distinction between ontological and epistemological issues may be able to be re-
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marked by assuming a realist ontology with an appropriate, but distinct,

psychologistic 18 epistemology.

So what is the difference between the epistemic subject and the psychological

subject?19 A given individual can be considered as an epistemic subject or a

psychological subject. At a basic level, knowledge, or information, about the

psychological subject is obtained through scientific investigation; it concerns

behaviours, attitudes and understandings. Epistemology addresses the issue of

'knowledgeableness' either of specific individuals, like students, or of an abstract

human subject, or indeed of 'communities'; these are epistemic subjects. Psychology

deals with (among other things) cognitive development through the functioning of an

individual's brain-body-social group, whereas epistemology deals with knowledge,

routes to knowledge and pre-knowledge mental (or, perhaps, bodily) states including

experience and reasoning.

4.3.2 Theories of truth

In natural science investigation, 'truth, the whole truth' is formally unobtainable:

scientific progress includes revision of previously accepted theories, no observation

can be recorded with complete faithful accuracy and not all information of the world

could be processed. So if science does not yield such truth, is 'truth' just a social

construction? Some authors do indeed assert this relativist position. Rorty (1980,

1990) and Bloor (1976) are examples from philosophical circles; Ernest (1991, 1997)

has explored a social constructivist metaphor in the mathematics education context.

However, for the thesis which I want to defend some sense of 'realist truth' is implicit.

I shall now present some conceptions of 'realist truth' together with some alternatives.

18 'Psychologistic' is the term Kitcher (1984) uses to connote a cognitive dimension to a theory of
knowledge.

19 This question was raised by a participant at my session at PME 1997.
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Referential realism

However, rejection of the possibility of finding and knowing one has found absolute truth in

science does not force one into a relativist position. Harre, (1986), develops a 'scientific

realist' theory which eschews relativism. In his theory, he rejects the 'bivalence' categories

of truth and falsity because of the practical impossibility of doing a total check. Instead,

Harre develops a theory of reference in which "reference is established by achieving a

physical tie between embodied scientist and the being" in question" (emphasis in original,

ibid. p68). Harre has explained that his motivation for taking a scientific realists' tack to

counter the logical positivist tendencies in the middle of the eentury (Harre, 1960) was that

he had been a practising scientist (an applied mathematician). Those theorists who took an

alternative, sociological, tack to counter the positivists, like the positivists themselves, did

not generally have a scientific practice as a touchstone for their theory. The experience of

the material practice of science helps in the conceptualisation of a scientific reality. And

while a purely social practice does not require material referents, a material practice (like

science) does. This ties in with my emphasis on mathematical experience being crucial for

being able to discuss the nature of mathematics in the developing practice of learners. The

'physicalist' realism, which I adopt as being able to support a suitable ontology for learning

mathematics, (see chapter 6), is 'indispensibly' tied to the material practices of sorting,

counting and predicting.

Harre's referential realism may be suitable to explain scientific knowledge, i.e., as an

epistemology for natural science, but does not the notion of 'truth' have a privileged role

in mathematics where we can say 'for sure' that a proposition is true or not? I think

that it does. And, indeed, from the 'evident truth' of elementary mathematical

propositions, the very meaning of 'true' may evolve for some English speakers. This is

because mathematics is both scientific and semantic: there are material and causal

touchstones in mathematics and there are logical forms. This idea IS very similar to

20 'being' in this quotation refers to a 'being' of one of three types: from common perception; potentially
observable given technical tools; beyond all human observational capacity, (see. Harre. 1986, p59).
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the one espoused by Zheng (1992, see 6.7). The relationship between the material and

the formal is more complicated than a 'weft and warp' image could connote, for, as I

shall argue in 5.4.3, some basic logical forms also have a material basis. Inasmuch as

mathematics is a science, the usual caveats apply with respect to truth claims.

Inasmuch as mathematics includes formal systems, the truth or falsity of a given

proposition is systemic. The problem comes when the 'truth' -concept of formal

systems is attributed to fallible scientific knowledge. The logicians in the first half of

the twentieth century showed that formal systems' interpretation was not a

straightforward 'intuitive' business.

4.3.2.2 Epistemic theories of trutb

Harre's conception of truth is epistemic. This is because he defines truth as 'moral':

we take something to be 'knowledge' (so true) if it is commended by those we trust.

Thus the mechanism for a truth claim is specified. To be able to act on such a

commendation, requires a common discourse as well as a common standard of sincere

reporting. Harre rejects naive ideas of truth and falsity in science, as an alethic theory

seems to require, for the straightforward reason that they are impractical. Instead he

advocates that "the qualification by name is a kind of 'epistemic equivalent' of

assessments of truth and falsity ... The moral status of persons determines the

epistemic status of their results" (op. cit. p85-6). Harre locates the psychological

development of knowledge within educational practices of the relevant community;

the epistemic result of a 'good education' is that the student will 'take-as-true'

teachings from those with good reputation. In this way Humean scepticism is avoided,

but at the loss of the possibility of the knowledge-making potential of individual

experience and the realist conception of truth.

Epistemic theories of truth are the contrary of the correspondence-type theories

sketched below. In an epistemic theory, whether a proposition is true is related to how

a 'truth' is known from the question of how truth is to be known (or at any rate

believed). 'Coherence' theories, in which "it is said that the mark of falsehood is

21 At a seminar at Linacre College. Oxford, 6/12/97.
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fa\\ure to cohere in the body of our beliefs" (Russell, 1912, p70), are generally

epistemic with regard to truth. There are two types of these theories: the early-century

version, where the 'body of beliefs' is construed as a giant system, underpinned by

logical relations, and the late-century version. In the latter the metaphor of corporeal

'body' has given way to that of ephemeral 'discourse', which is underpinned by, (and

dialectically underpins), meanings shared by discoursers. In either case, though

different, the road to truth lies within the 'body-system' or the 'discourse-meaning'.

Turning now to the 'body-system', one of the most pervasive notions concerning truth

and realism is that the truth value of statements can be determined by a

'correspondence' between meaning, of the statements, and relations between 'objects',

in 'objective reality':

4.3.2.3 Correspondence theory

Nearly all realist philosophers crave some sense of correspondence in their theorising!

Even the philosopher Michael Devitt, who argues that "realism does not strictly entail

any doctrine of truth at all", (Devitt, 1984, p35-40), goes on to describe how a version

of 'correspondence truth' could work, (pp96-9). In this section, I outline forms of

'correspondence theories' starting with a very formal definition and ending with the

'minimal realism' favoured by some contemporary philosophers.

To begin with, a description of this theory is given by the philosopher AR. White in

abstract terms as follows:

"By interpreting the correspondence between the statement that p and the fact

that p as a correspondence of what is said to what is a fact, that is, as a mere one-

to-one correlation between these items - without any hint that one resembles or

fits or is structured like the other - the Correspondence Theory remains faithful to

the basic and indisputable principle that p is true only if p." (White, 1970, p 108,

emphasis in original)

A formal description such as this avoids the nitty-gritty epistemological issues of

access to the very fact of the so-called correspondence, or even, that there is an issue

about how we 'come to know'. In the statement above 'p' can be any sort of statement
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- the examples White tends to give are historical 'facts' - this level of generality makes

it difficult to discern the nature of the correspondence, and does not 'sell' the theory at

all.

Russell (1912) advocates a correspondence theory of truth and does acknowledge the

problem in specifying the very correspondence on which the theory relies: "truth

consists in some sort of correspondence between belief and fact. It is, however, by no

means an easy matter to discover a form of correspondence to which there are no

irrefutable objections." (p 70). Russell then goes on to define this 'correspondence' in

terms of something he calls a 'complex unity' (p 74). However, this new construct

does not seem to have either further explanatory powers or describe a causal or logical

mechanism of correspondence.

Despite the inadequacies of these 'correspondence-notions', roughly speaking, the

correspondence theory of truth captures a common-sense idea that there is a direct

correspondence between propositions and facts about things. For, example: 'three

points determine a circle,22 is true only if three points do determine a circle. The

correspondence theory is, perhaps, a first approximation to a viable realist theory of

truth, but, as I have indicated, a central difficulty is how this so-called

'correspondence' is known. The theory is a sketch - 'we can talk about things' - but

does not bear up under close scrutiny of the detail of how information is tested for

veracity. As Wm. Alston says: "a robust correspondence theory must develop an

explicit account of propositions ... and facts so as to be in a position to spell out what

correspondence amounts to." (Alston 1996, p33). Alston rejects 'traditional'

correspondence theories of truth because of the strong requirements placed on the

mechanism of correspondence. Instead he develops a 'minimalist' account of truth

within his theory of alethic realism (ibid.), which does contain a weak notion of

correspondence.

22 Either allow the limit case, a line, when the points are co-linear; or require the three points to be non-
co-linear.
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4.3.2.4 Realist theories of truth

Correspondence theories of truth which make strong claims in terms of the connection

between fact and belief are difficult to justify. This is why contemporary philosophers

have moved away from such theories. Contemporary philosophers tend to favour

either coherence theories - in which 'truth' is a function of what is agreed - or weaker

realist theories.

One such 'weaker theory' is the 'disquotational theory of truth' which is closely related

to Alston's 'minimal realism'. This is also called a 'deflationary' theory of truth. This

theory of truth is designed to avoid objections to the 'traditional' correspondence

theories by 'deflating' the whole issue; it is a linguistic device which declares p true if

and only if the conjunction of all the underlying requirements for p are true. Maddy,

whose writings I discuss at some length, finds it acceptable for her purposes. She gives

two examples to illustrate the theory. let p be 'everything in the Judeo-Cnristian Bible' ,

then p is 'disquotationally' true if the conjunction of all the sentences in the Bible were

true. Her other example concerns the knowability of arithmetic propositions, and in

this case requires an infinite conjunction of underlying requirements. Maddy's point is

to show that a 'full blown correspondence theory' is not required for her realism,

(Maddy 1990, pp 17-19).

Davidson, in conversation with Papineau, (Davidson, 1997P), describes such a theory

of truth as 'thin', for it can only apply to one's own sentences and, importantly here,

does not apply to beliefs. Davidson goes on to say that "truth just is"! Truth is as basic

a concept as you can get and one which cannot be defined. Thus he seems to avoid the

pitfalls of either realist or coherentist camp. Davidson's position on truth is that it is a

"property of certain sentences attributed by an empirical strategy and interpretational

theory" (ibid.) which suggests that Davidson holds with some aspect of scientific

realism which is sensitive to linguistic constraints.

Alston takes pains to distinguish the property of truth from the concept of truth (e.g.,

p37, P 41) because it is the "ordinary concept" of truth with which he wants to work

which may have features we may not be able to find out about:
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"A property may have features ... that is not reflected in our concept that picks

out that property .... The essential nature of water is to be H20, although our

ordinary concept of water is in terms of its observable properties .... in the same

way the property of truth may have various features that are not reflected in our

concept of truth ... In particular, it may have the features embedded in the

correspondence theory, features on which the aspect embodied in our concept

supervenes." (p37/8)

Alston considers that his minimalist theory is quite close to 'deflationary' theory. In

deflationary theory, the "truth talk" that can accompany discussion of a proposition, is

be 'deflated' and the property of truth-attribution diffused by explaining the property

attribution in another way. This process is illustrated by Maddy's examples cited

above on the meaning of the disquotational truth of the Bible and of arithmetic

propositions.

4.3.3 Summary

This section (4.2) has been a contained exposition of the notion of truth. I have

presented truth as either epistemic or alethic23 and shown that the boundary between

these two categories is fuzzy. For example, Harre's epistemic conception is bound to

material scientific practice and Davidson's direct realism requires some shared

meanings for interpretation.

As another preliminary for the epistemological thesis, I, which is put forward in

chapter 5, some subtleties in English words with the root 'episteme' are discussed. In

particular, an 'epistemic subject' is a being who is potentially able to know something,

knowledge requires a theory of truth, but the epistemic subject's knowledge does not

have to be bound by an epistemic theory of truth".

23 Rorty (1990) anti-representationalism probably does not succumb to such a categorisation. Rorty's
view is hard to incorporate into a theory such as this in which I am trying to make distinctions between
notions of truth and existence, for he explicitly denies the anti-realist/realist distinction which I discuss.
Nevertheless, others (e.g. Putnam, 1990) attribute to him an anti-realist stance.

lA This point will be quite important in appreciating Goldman's cognitive epistemology which is
discussed in chapter 5.
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4.4 Preliminaries for II

The second part of this thesis discusses mathematical existence. In Il a claim is made

that mathematical entities do exist and that a tie to reality is through human beings'

particular physical make up within the physical world. To a professional

mathematician this may at first sight seem an abomination: mathematical entities are

not physical! And to a novice, it is hard to imagine 'things' which are not touched,

seen or otherwise sensed. In chapter 6, I present ideas about how mathematical

'abstractions' may indeed exist and that their existence presupposes a material reality

which is the universe of which we are a part.

As I have related, the works I draw on are primarily in the analytic tradition of English

speaking British, North American and Australian philosophers, which looks to Plato

and Aristotle as 'founding fathers'. Indeed, discussion of the nature of mathematics has

been going on since their era. Tiles (1996) distinguishes the basic positions of Plato

and Aristotle as 'realism' and 'conceptualism', respectively: Realists, after Plato, posit

the existence of mind-independent mathematical entities, whose existence is denied by

conceptualists. Conceptualists, after Aristotle, construe mathematics as a product of the

human mind's "innate relation-imposing capacities" (Tiles, op. cit. p332). There is also

the 'nominalist' position, which denies the existence of any abstract entities - only

space-time particulars exist. Nominalists employ mathematics as a formal structure but

deny its intrinsic meaning. These three categories of realism, conceptualism and

nominalism constitute the domain of discourse in analytical philosophy. (As I have

said, I avoid other domains like mysticism or hermeneutics.) They are described by

Quine:

realism, conceptualism and nominalism are "the three main medieval points of

view regarding universals ...[they] reappear in twentieth century surveys of the

philosophy of mathematics under the new names logicism, intuitionism, and,

formalism ... Realism ... is the doctrine that ... abstract entities have being

independently of the mind; conceptualism holds that there are universals but they

are mind-made, [and] nominalists, object to admitting abstract entities at all, even

in the restrained sense of mind-made entities." (Quine, 1953/64 p 192-3)
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Although this categorisation may give an idea of what mathematical ontologies are

possible it does not give an insight into what mathematics is. More specifically, the

grand labels 'realist', 'conceptualist' or 'nominalist' do not, on their own, help us

understand what a 'mathematical object looks like'. Nor do these categories shed light

on how mathematics may be 'grasped', 'made meaningful' or 'worked with',

respectively, which is the essence of the educational question. However, these

categories can serve as a conceptual framework for further discussion for the doctrines

of these schools have been, and continue to be, adapted throughout the ages.

Current thinking sees the boundaries of these categories, realism, conceptualism and

nominalism, as fuzzy and this generates philosophical questions and new philosophical

theories. For example, there is a current vigorous debate 'on the boundary' between the

realism of Maddy and the nominalism of Field (see Maddy 1989). Kitcher could be

interpreted as borderline constructivist, i.e. a conceptualist, given the above categories,

(see Kitcher 1984) as well as some sort of realist. And the arch-intuitionist (and so

conceptualist) Dummett accepts a large measure of logicism (see Dummett, 1992).

Dummett's logicism, however, is more 'nominalistic' than 'realistic'. The point is, the

medieval positions still serve as a foundation for debate about the nature of

mathematics and their meanings are still evolving under interpretation and the

arguments of contemporary philosophers. In mathematics educational literature,

however, the positions of nominalism and realism have been over-shadowed by the

popularity of versions of conceptualism (see Sierpinska and Lerman, 1996, for a

review).

As a 'philosophical preliminary', then, it is appropriate to outline the basic positions:

realism, conceptualism and nominalism.

4.4.1 Realism and anti-realism

To set the scene, the position which asserts the existence of mathematical objects is

contrasted with that which denies their existence: these positions can be described by

the mutually exclusive terms 'realism' and 'anti-realism'. 'Anti-realism' was coined by

Dummett, (e.g., 1992), and is similar to the term 'idealist' in philosophical usage.

'Realism' is also a technical philosophical term. Like any term that has a wide usage, it
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is associated with a rich set of meanings for which no definition could capture its range

of nuance. Connotations of the ordinary language notion of 'realistic' are to be

eschewed; philosophers, such as Dummett, are fervent anti-realists. It is not necessarily

un-realistic to be anti-realist! Young (1996), a "card-carrying anti-realist" does insist

that anti-realism leads to relativism "of some form". By this account, one can

realistically be an anti-realist, but not absolutely!
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Dummett makes the realist/anti-realist distinction in mathematics to be about sentences

and the possibility of ascertaining their truth values. This means both that the debate on

mathematical entities has been put into a linguistic realm: the world is 'a collection of

facts not things' and that the version of truth employed is epistemic. Indeed, the term

'verificationism' is used (ibid.) to describe Dummett's theory. In the following

quotation, Dummett pinpoints his distinction between realism ('the way things are')

and anti-realism ('the truth about our assertions'):

"It appear[s] to me evident ... that, interesting as the questions about the nature

of mathematical objects, and the ground of their existence, may be, the

significant difference lies between those who consider all mathematical

statements whose meaning is determinate to possess a definite truth value

independently of our capacity to discover it, and those who think that their truth

or falsity consists in our ability to recognise it." (1992, p 465)

In his valedictory lecture (1992), Dummett explains that his coining the term 'anti-

realist' was to aim to stimulate a research programme to investigate the structure of

realist vs. anti-realist theories and to investigate similarities and differences between

realist and anti-realist debates in different disciplines (p 463). For example,

behaviourism, instrumentalism and phenomenalism are anti-realist theories about the

mind, science and the physical world respectively. Dummett argues that none of these

defeat their realist counterpart. However, in the case of mathematics, his constructivist

anti-realism is a serious challenge to realism of both the pre-theoretic common-sense

kind as well as the philosophical theorists' conceptions. This is because, in his words:
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"Mathematics was the most propitious field for the development of an anti-realist

theory of meaning precisely because the gap between the subjective and the

objective is there at its narrowest" (p 471)

I interpret this as meaning that a rational person's individual (therefore 'subjective')

logic corresponds to formal (therefore 'objective') deduction. Hence Dummett is a

conceptualist, and any argument for realism against conceptualism must address his

semantic view.

4.4.1.1 Realism

There are many forms of realism, from Plato's to Putnam's (e.g. Putnam, 1990), but a

collective feature of realist theories of the world is that "existence is prior to theory"

(Harre, 1986, p5). In terms of contemporaries, Harre's 'modest realism' recognises that

securing a scientific belief is, in some sense, a social activity. Nevertheless, Harre

insists that "for there to be public reliability something must exist independently of

whomsoever first found it." (p12). Putnam's 'internal realism,25 eschews conceptual

relativism which he considers the standard anti-realist position". Popper (1972) was

also a realist. His metaphor of the 'mountain beneath the clouds' suggests a 'reality'

which 'we seek'.

In a nutshell: to assert 'realism' involves asserting the existence of an external world

and it is that external world which, in theory, is the ultimate arbiter of truth values.

Attraction to this philosophical realism can come from various sources. For example,

Maddy indicates two distinct reasons for developing a philosophically realist thesis of

the nature of mathematics: the first is because she accepts Quine's 'naturalised

epistemological position' which asserts that science may be considered 'our best

knowledge of the world', and so science is used as an epistemological foundation, (see

6.4.1.1 below); the second is that the phenomenon of mathematical practice includes

25 This position, briefly, denies the 'God's eye view' of nature: Putnam claims to be a 'small r' realist
(Putnam, 1990).

26 "Rorty's view is just solipsism with a 'we' instead of an I" (Putnam, 1990, pix)
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known. It is essentially the phenomenon of which Sfard speaks:
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"[The] 'natural' state [of a mathematician's mind is] the state of a Platonic belief

in the independent existence of mathematical objects, the nature and properties of

which are not a matter of human decision." (1994 p 51)

These two premises - that science is to be an epistemological foundation and that

mathematicians seem to work with mathematical entities - motivated this

contemporary philosopher to develop her theory of mathematical realism (ibid.). A

philosopher's job is to take the data that includes the reports of such mathematical

experience and to make a philosophical account. A job for a mathematics

educationalist is to scrutinise and interpret such a theory for its potential to give insight

for the learning of mathematics.

The initial conception of realism can be refined further. Shapiro (1993) distinguishes

between the question of mathematical existence and that of the properties of these

purported objects as they are asserted in sentences:

"realism in two senses[:] First, it is held that mathematical objects, sets, exist

independently of the mathematician. This may be called 'realism in ontology'.

Second, the assertions of set theory have objective truth values, independently of

the conventions, languages, and minds of the mathematicians; and the bulk of the

assertions of competent theorists are true. Call this 'realism in truth value'." (p 455)

In the academic tradition of philosophy of mathematics (to be described in more detail

below) there is a recent renaissance of realism in the form of 'physicalism' - that there

is a scientific germ to mathematics (e.g. Irvine 1990, Milne 1994). This view is, in

turn, in tension - but not in contradiction - with a Kuhnian conception of science as a

function of a community, as seems to be advocated by the 'naturalised epistemologists'

(of whom Quine is a founder member, see his 1969, pp 91 -113).

Details and criticisms of realist theories due to Maddy, (op. cit.), Kitcher (1984), and

more briefly Resnik, (1993), and Bigelow, (1988), are given in chapter 6 as part of

thesis II. In this preliminary chapter, a sense of anti-realism in the distinct forms of
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conceptualism and nominalism is given through brief expositions of the theories of

school-leading advocates of these respective positions. These outlines are of general

theories of the nature of mathematics and application to education is not systematically

attempted here. Specific problems inherent within conceptualism and nominalism

when these theories are applied to mathematics in education are discussed within

chapter 6.

4.4.1.2 Conceptualism: Dummett's semantic logicism

Conceptualism in mathematics is the view that mathematics is not in any sense part of

the world around us. Instead, mathematics informs our conceptualisation of that world.

This it does by being a descriptive and explanatory language. Indeed, Dummett's

approach is to tum the ontological debate from "the disputed class of objects" to the

"disputed class of statements" (Dummett, op. cit., p 465). In other words, he proceeds

on the basis that anti-realist ontology can be subsumed under anti-realist truth-theory.

This makes his theory essentially semantic and paradigmatically conceptualist, which

is why I focus on his ideas through which to present aspects of conceptualism.

4.4.1.2.1 Verification of linguistic items is through language

The case that Dummett makes for focusing on language is partly based on his claim for

what it is that can be tested:

"I recommended starting, not with the metaphysical status of the entities, but with

the account to be given of the meaning of the statements .... Since no means

offered itself for deciding which picture of reality was correct, the more fruitful

approach lay in determining which picture of meaning was, since in this case there

was a theory of meaning to be constructed and a linguistic practice against which

to test it." (p 465)

The formulation in these terms seems to me essentially dualist inasmuch as he seems

to set up untouchable metaphysical entities, (a reality behind the linguistic picture),

despite declaring that they are to be avoided. I do not think he can legitimately

subsume ontology to sentential truth-value by fiat. Furthermore Dummett claims that:
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"the significant difference lies between those who consider all mathematical

statements whose meaning is determinant to possess a definite truth-value

independently of our capacity to discover it, and those who think that their truth or

falsity consists in our ability to recognise it" (p 465)

In other words, looking to 'linguistic practice' as the ultimate judge (rather than as

Quine might advocate, 'science' ) is surely to pull a veil between the 'objects' of the

cognising subject and the 'objects' of the world of which that cognising being is a part?

If you believe that all that can be analysed is the froth of language, then the sea of

existence will be ever inaccessible.

4.4. J .2.2 Logic as paradigmatic reasoning

Dummett agrees with the 'logicist' thesis that mathematics consists "in the systematic

construction of complex deductive arguments" (p 432). This was the theory initiated by

Frege and developed by Russell and Whitehead and, as is well known, failed because

of the set theoretic paradoxes, (a set defined such that it both is and is not a member of

itself, for example). Dummett argues that these paradoxes are only devastating when

one insists on the existence of abstract objects and that Frege's insistence on doing this

was his down-fall. And although Russell and Whitehead "tried to construct foundations

for mathematics in accordance with the more natural conception of logic as

independent of the existence of any particular objects" (p 433) their approach required

assumptions, like the axiom of infinity, which "could not be rated as logical" (p 433).

Nevertheless, Dummett is attracted to develop a seman tical logicist thesis, which both

avoids Frege's referential problem of mathematical objects and Russell and

Whitehead's extra axioms, because of the way logicism captures (some of) the feel of

pure mathematical reasoning.

Dummett's attraction to the logicist thesis is, in particular, due to its explaining why

mathematics "involves no observation" (p 432); demands stringent standards of proof;

is so widely applicable and there is a sense of necessity about its results. If

mathematics is logic and logic is formalised legitimate reasoning, then proof standards,

applicability and feeling of necessity do follow from this conception. Dummett's

position is nicely summed up in the following quote:
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"The aim of representing a mathematical theory as a branch of logic is in tension

with recognising it as a theory concerning objects of any kind, as its normal

formulation presents it as being: for we ordinarily think of logic as comprising a

set of principles independent of what objects the universe may happen to contain."

(p 434)

The dualism is apparent here again: for how can we imagine principles of reason

outside the universe of which we (reasoning beings) are a physical part?

Dummett classifies abstract objects as contingent or pure. The former class depend on

concrete objects in the world, the latter do not depend for their existence on empirical

reality (p 437). For a contingent abstract object, he uses the example of the equator and

does not exemplify (in this essay) a pure abstract object, perhaps 'God' would serve as

an example, I am not sure. Anyway, Dummett then claims that "the significant

distinction is not between abstract objects and concrete objects, but between

mathematical objects and all others" (p 438) and this is because, he claims "the

existence of mathematical objects is assumed to be independent of what concrete

objects the world contains." (p 438). In other words, he aims to further narrow the "gap

between the subjective and objective" (as quoted above) in mathematics by decreeing

the content of mathematics linguistic. Mathematics is applicable because it is

semantically coded rationality, not because numbers, geometry, chance, etc. exist, in

some sense, in the physical world.

Dummett's view relies on the idea of (non-material) 'reasoning' existing without

requiring the existence of any 'reasoner'. This is not the same as the view that the

structure of forms of reasoning can be classified and, indeed posited, independently of

any particular reasoner or group of reasoners (which do not need to be human).

Dummett's claim seems to require the existence of disembodied reasoning - logic in the

ether - which he then positions within human language. This seems too good to be

true: this underlying ultimate reasoning - logic - is outside objects of the world but

inside the linguistic constructions of (some) objects of the world. Human language's

abstractions are contingent; the 'equator' is a good example, although relations between

them can be necessary consequences of their meaning, for example the 'equator is

circular' follows from its meaning. So the reasoning structure is of no different type. In
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other words, I do not think he has driven a wedge between "mathematical objects and

all others", precisely because of his reliance on language and the importance of

reasoning - and so logical form - in language.

4.4.1.2.3 Dummett's conceptualism: summary and contextualised for mathematics

learning

The two basic tenets of Dummett's which seem to underpin his conceptualist theory

are (a) that we test meanings, and so truth values, through language; and (b) that

mathematics is semantically coded rationality. In the spirit of this view, it would be

consistent for mathematics learning to be restricted to logic and semantic

formulations. Observations of scientific, 'real world', phenomena which present

patterns for abstraction, would not be a suitable for mathematics instruction. But, as is

well known, investigation of real world phenomena, either with 'manipulables', as

modelling or through creative art work, are particularly suitable methods for learning

mathematics (see below, 6.2.3.1).

4.4.1.3 Nominalism

Nominalism - the thesis that there are no abstract entities - is subject to many technical

difficulties in attempting to reconstruct the 'mathematics of science'. But, perhaps the

most obvious objection to nominalism, per se, is the charge of 'double-think': denying

what you use. Denying mathematics when philosophising is one thing, but denying

mathematics when involved in the process of scientific work is quite another. How can

you deny what you so rely on? This is the 'indispensability thesis' attributed to the work

of Quine and Putnam in the third quarter of this century, on which Maddy relies (see

6.4.1./). Field believes that he can answer this 'double-think' charge with his logical

reconstruction. I do not think one can answer the charge of 'double-think' if issues of

epistemology, not just ontology, are considered (see 6.2.1). I shall trace a very brief,

non-technical, outline of Field's carefully constructed theory, (Field, 1980).

4.4.1.3.1 Field's nominalism

Field's particular brand of nominalism is discussed because his case against the

existence of mathematical entities is quite persuasive; I am not persuaded because the
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concepts involved in mathematics are not epistemologically 'formal fictions', even if a

case for excising them ontologically can be made. (This is explained further in 6.2.1.)

Field's thesis is attractive because he grasps the nettle of mathematics' 'unreasonable

effectiveness' and works to explain mathematical effectiveness even while denying

mathematical existence! He is a scientific realist but not a mathematical one. Field's

theory was motivated in part by a desire to eliminate "certain sorts of 'arbitrariness' or

'conventional choice' from our ultimate formulation of [scientific] theories" (Field

1980 pix). To this end he developed his nominalist theory: "Nominalism is the

doctrine that there are no abstract entities" (op. cit. p 1). Field's approach to show that

mathematics, per se, does not exist is to show that the 'abstract entities' of mathematics

are just not needed in physical theory. He co-opts Berkeley's term "fictionalist", and

uses it to express his denial that the part of mathematics concerned with numbers, sets,

functions and other mathematical objects, is true.

As mentioned above, Field is a scientific realist. He just wants to show that

mathematics is not part of science. Truth values are applicable to propositions of

science but not to propositions of mathematics. He distinguishes himself from other

mathematics-denying positions like "doctrines which interpret mathematical statements

about linguistic entities or about mental constructions. [For] such nominalistic entities

do nothing toward illuminating the way which mathematics is applied to the physical

world", (op. cit. p 6).

Field claims that the evident utility of mathematical entities is not evidence for their

truth. It is possible to use mathematics as a convenient tool but, unlike the theoretical

entities in science, no new claims can be made about observables. The crux of his

argument for the denial of mathematical objects rests on the 'conservatism' of

mathematics - all conclusions arrived at using mathematical entities "are already

derivable in a more long-winded fashion from the premises, without recourse to the

mathematical entities" (op. cit. p 11).

The notion of 'conservatism' is a familiar term in philosophy of science (op. cit. pp 16 -

19). Loosely, it means that information is neither added nor extracted with the

incorporation of mathematical symbolism and processes, nor is any inconsistency

introduced. Newton's laws together with Calculus are just Newton's laws. Where
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Calculus, conceived nominalistically, should add nothing to the predicative import of

the laws, it would just make calculations more manageable. Indeed, Kitcher (1984, P

231) reports that Newton's work itself was much more concise with the calculus. Of

course this calculus was teeming with ontological assumptions, as well as

inconsistencies, of the sort of which Field would like to rid us! Field claims "good

mathematics is conservative" (op. cit. p 13): it is a logical system which, through

symbolic succinctness, curtails reasoning so that scientific results are more easily

obtainable.

4.4.1.3.2 Summary: Field's nominalism and crossing an epistemological 'gap'

One of the purposes of nominalism is to make ontological reductions: mathematical

entities can be dissolved away using the nominalist programme. Yet because it would

be impossible to reformulate all of science, there is always the possibility of a

psychological reliance on the yet-to-be-nominalised parts of science. The number of

entities to which one had ontological commitment may have reduced but there still

remains a notion that there are true statements about abstractions (numbers, metric

spaces, groups etc.). Field does not deny that some people have some mathematical

conceptions; his point is that these so-called mathematical conceptions are either

scientific or fictional notations. 'There is no mathematics in mathematics', as Gertrude

might have said to Alice. From this point of view it seems as though we still need to

learn mathematics 'as if it exists' and then later liberate ourselves from a formally

unnecessary ontology. This is not satisfactory because of the unnatural requirement

that we should deny what we understand and use.

4.5 Preliminaries/or III

The third part of this thesis consists in an argument for a proposition which states that

a certain kind of action constitutes an aspect of mathematical knowledge. This claim

is more tentative than those made in the first two parts. In the first two parts, the

concepts of mathematical warrants and mathematical objects are familiar ones in the

philosophy of mathematics, whatever position is taken on them, and their application

to mathematics in education is the novel aspect of the thesis. However, the proposition

that action can be knowledge is not part of the standard domain of discussion in
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philosophy of mathematics. The phenomenon of fluent mathematical reasoning is

recognised by many, but it is mostly discussed as a psychological phenomenon rather

than as a part of a theory about mathematical knowledge. In order to analyse this

phenomenon philosophically, the preliminary concept of intentionality, an important

idea in the philosophy of mind, is introduced below.

4.5.1 On Intentionality

" ... St. Peter could do what he intended not to, without changing his mind, and

yet do it intentionally." (Anscombe, 1957, p94)

Some time ago, a Y9 pupil of mine, Adam, produced the sum of squares formula for

his homework on a scrap of paper. There was no explanation or even evidence of

experimentation, just the formula. To my question 'why no reasoning?' he replied 'I

found it on the bus'. The ambiguity of his reply was amusing (at the time!) and I relate

the incident now because it draws attention to the potential intentional disposition

Adam had on his bus ride. Was he attracted by a fluttering scrap of paper - and then

acted with intentionality in retrieving it? Or was he intending to think up a formula

while the crowded bus careered round the Oxford streets, a physical situation in which

one would not contemplate writing?

For an individual to find a mathematical formula, which is new to him, requires

intention, a "mental act" involving a decision and an aim. In his introduction to the

philosophy of mind, McGinn (1982) conceptualises intention as one of the

antecedents to action, together with desire and belief: "The desire provides the point

of the action, the belief specifies the means of arriving at the point, and the intention

constitutes the resolve to do what is necessary to get to the point." (p94). A problem of

conceiving an intention as a mental act according to, Rorty, (1980), is that this notion

of 'mental act' is nothing more than a piece of technical philosophical jargon. He

makes his case by pointing out that both intentions and individualistic pain-like

phenomena must be lumped together under the 'mental' umbrella and, really, pains and

mental projections to potential action (intentions) have nothing in common. However,

in her seminal book on intention, Anscombe, (1957), explains why intention is

"something whose existence is purely in the sphere of the mind" (p9): it is, briefly,
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because intentions can be modified by the individual in a way that expressions of

intention, orders and predictions cannot.

The quote from Anscombe, given at the beginning of this section, indicates that there

are levels of intention in human actions: our plans merge with what is inevitable when

a 'path' is taken. This observation is pertinent for mathematical action. Almost any

example involving deductive reasoning would do, for example, referring to the

'Golden Circle' problem of chapter 3, my plan - intention - to find the required ratio

involved inevitable 'mathematical practical reasoning' with its formal deductive

consequences. Each step I made in the proof could have some 'intention' attributed to

it, yet, the intention 'to reason thus', i.e. use Euclidean geometry reasoning,

dominates. (c.f. Anscombe, op. cit. pp46-7) Clearly, mistakes of performance are

possible even when the judgment is sound: the intention to use Euclidean geometry

reasoning is not undermined by failing to execute this reasoning perfectly, (c. f. p57).

Anscombe was originally a classicist and her concept of 'practical reasoning',

important in understanding intention, comes from scholarly analyses of Aristotle. Her

view is "the notion of 'practical knowledge' can only be understood if we first

understand 'practical reasoning' or 'practical syllogism'... [which] was one of

Aristotle's best discoveries". This is a form of reasoning, not just to be applied to

ethical intentions and ensuing actions, as Anscombe remarks many commentators

have done, but also to be applied to quite physical concerns as taking nutrition, (pp57-

62). Aristotle often presents this reasoning in standard syllogistic form but rarely gives

a verbal conclusion to the practical syllogism: "The conclusion is an action whose

point is shewn by the premises, which are now, so to speak, on active service" (p60).

How this mixture of (a) syllogistic necessity due to form, which is itself part of

mathematics (b) intention in a 'practical' (i.e. here mathematical) problem and (c) the

'bodily movement' (paraphrasing Davidson) involved in this activity might or does

constitute mathematical knowledge is the topic of chapter 7. Furthermore, in that

chapter, I shall argue, taking a lead from O'Neill's analysis of Davidson, that

intentionality when doing mathematics varies from minimal 'resolve' to significant

focus and effort. Further preliminaries for ill are the contents of the theses expressed
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within chapters 5 and 6, as the notions of warrants and objects are, to a certain extent,

amalgamated in the notion of 'automaticity' which is the main topic in chapter 7.

4.5.2 Intention in education

A person's potential intentions are a function of both nature and nurture. These factors

will determine their scope for 'resolving' to act. So as teachers, we try to equip

students and pupils with possible intentions, which they can exploit given the

opportunity for action. This is particularly evident in areas of the curriculum like

'personal and social education', where preparation for safe sex or healthy eating can

be understood as increasing the students' possible intentions, the range of actions

possible for them. Teachers cannot, of course, guarantee the appropriate intention is

realised in the moment of action, (what were the bananas for?), but I would still say

that part of the purpose of education is to widen the range of intentions, to increase

students' possibilities for action. And this includes mathematical action. In chapter 7, I

argue for a flexibility of intentionality in mathematical action as intrinsic to

mathematical knowledge.

4.6 Summary

The 'philosophical preliminaries', which are the function of this chapter to provide,

are epistemological and ontological. To develop ideas about warrants and belief in

mathematics, for I, the idea of 'truth' is important. This is because the idea of

knowledge is generally underpinned by the concept of truth: 'I know that 97 is prime'

could only be a justified claim if it was true that 97 was prime. The nature of a warrant

for belief (or knowledge) is affected by the conception of truth that is adopted, which

is why a discussion of 'truth' is preliminary to one on 'warrant'. The other main

preliminary, for Il, is ontology: what are the possibilities for describing or delineating

what there is which makes up mathematics. Do the propositions of mathematics have

solely linguistic referents or are there extra-linguistic aspects of mathematics? Prime

numbers, for example, can be thought of as properties of arrays of objects which

cannot be placed in non-trivial rectangular form. Alternatively, the concept of a prime

numbers can be thought of as a linguistic item within a particular discourse. These

questions are from mainstream philosophy of mathematics. The idea of whether fluent
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action can be thought of reasonably as knowledge, relies upon the ideas of warrant and

mathematical object developed as well as the notion of intention.
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5. Chapter 5:Mathematical Warrants

''On arriving at (x + 1)2= x2 +2x + 1 a pupil said: 'Tbat's fantastic: to find
something that is true for all the numbers there are" (Sawyer, 1992)

5.1 Introduction

In this chapter, I pose the question 'When is a belief mathematical?'. I argue that

holding a belief about a mathematical proposition is not sufficient to claim that that

belief is a 'mathematical belief', for this belief may not be warranted mathematically.

This challenges the notion that knowledge is justified true belief: a student may be

able to assert justified true belief about a mathematical proposition but not 'have

(mathematical) knowledge'. In this chapter, the first part of the overall thesis is

developed:

Learning mathematics involves a change to warranting belief of mathematical

propositions by mathematical warrants. These include logico-deductive or quasi-

empirical frameworks, rather than empirical or authoritative ones.

This should not seem a radical statement. However, in the context of teaching and

learning, I show that there are theoretical issues about the desired type of warranting.

5.1.1 Justification is part of mathematics

Development of beliefs about mathematical propositions, and justification of those

beliefs, is at the heart of teaching and learning mathematics. The question of belief is

vital for teachers and students. When a student learns a new topic, she does not

swallow knowledge as a pill, but, often tentatively, assents to, then later perhaps

justifies, propositions about this new topic. Even at the weakest level, giving assent to

- 1
a proposition, e.g. ,~-; diverges' involves holding a belief. How you justify what you

assert or assent to is important in all learning, and in mathematics, justification is also

part of the substance of the discipline: a student's proof is both her argument and her

result.
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5.1.2 Outline of the chapter

Firstly, in 5.2, I look at differences between knowledge and belief and the crucial issue

of justification. Then I tum to the epistemological theory, in 5.3, in particular, Alvin

Goldman's work. I consider aspects of his theory of 'reliablism' and how it may relate

to developing mathematical knowledge. Paul Moser's analysis of 'meta-justifications'

is used to assay Goldman's contribution. Goldman's theory is used as he argues for a

close connection between epistemology and cognition. Moser's work delves into meta-

warrants; this is relevant because the epistemologically privileged status of. for

example, 'proof should be explained. This theme is taken up in the next section where

mathematical warrants are further characterised. Then I tum to mathematics

specifically and present a selection of notions of justification in mathematics, in 5.4.

This is followed by educational evidence, in 5.5, principally from Hanna, and Coe and

Ruthven, which deals with student belief causation, and justification. These writers

discuss the position of proof in school mathematics particularly. Data from my

students are used to illustrate the thesis. The final section, 5.6, relates the

philosophical and educational issues further.

5.1.3 Exemplification of thesis in educational contexts

The key point of this chapter is this: there are different rationales one might give for

asserting, or assenting to, a belief in a mathematical proposition. While there may be

several reasonable justifications for a given belief, there is a distinguished class of

'mathematical warrants'. Only when the beliefs justification is given via such a

warrant may the belief constitute mathematical knowledge. That is, when a student

acquires a new-for-him belief about a proposition of or part of mathematics, the

justification that he employs is as much mathematical knowledge as the belief itself.

For example, there is a well known algorithm for finding out whether a given multi-

digit number is divisible by three. There are various ways that an individual could

employ to justify her belief in the efficacy of the algorithm. Indeed, Y9 students

(Rodd,1997) could distinguish between their functional competence ('it works like

this:') and their theoretical rationale for why the algorithm works (an algebraic

explanation).
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On the other hand, a negative example was reported by Lee (1994). She found that the

same epistemic subjects assented to the mathematical proposition: "0.999 ... =1" after

attending a lecture that included this result, but when interviewed subsequently, while

recalling the authoritative answer, indicated their lack of conviction through such

phrases as

" 'it is infinitely close but not equal to', 'there was a page and a half of

arguments to show they were exactly equal, but still ..part of me said "no they're

not'" and '[yes]. .. but, I can't picture it'" (Lee 1994, p 131).

In this case her students were not able to justify the proposition in question using a

mathematical warrant. This reluctant type of assent to the existence of limits will be

familiar to any teacher of this topic, and points to the issue of justifications for belief.

The 'choice' of warrant for the belief that the epistemic subject employs, (implicitly or

explicitly), is part of their mathematical knowledge development.

5.2 Knowledge and belief

The 'person in the street' would probably say that the job of a mathematics teacher

was to teach knowledge of mathematics. Why, then, talk about 'beliefs' rather than the

real aim: knowledge? An answer to this rhetorical question can be given on two

levels: Firstly and simply, being able to distinguish in the classroom between a student

holding a 'belief and one having 'knowledge' is hardly within a teacher's ken.

Secondly, as Plato showed in the Theaetetus, a useful definition of 'knowledge' is

elusive. Knowledge is more than the sum of its constituents, and every component of

any putative definition itself requires definition:

Socrates And it is utterly silly, when we are looking for a definition of

knowledge, to say it is right opinion with knowledge, whether of difference or of

anything else whatsoever. So neither perception, Theaetetus, nor true opinion,

nor reason or explanation combined with true opinion could be knowledge.

(trans. Fowler, 1921, p255)

The last phrase of the quotation above can be paraphrased as: 'knowledge is justified

true belief', which, although it has some promise as a 'definition' of knowledge, under
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Nevertheless, this aphorism can serve as a good starting place for investigation, for it

draws attention to those essential concepts 'justification' and 'truth'. Not only is

justification prerequisite for any knowledge claim, but it is through justification that

tentative beliefs, like 'I think, the limit is zero' can be strengthened by reasoning, 'the

limit is zero, because 1', where J stands for some warrant. Knowledge, then, at least

requires beliefs that are justified. The kind and quality of those justifications

determine whether mathematical beliefs move towards mathematical knowledge.

Chapter 5: Mathematical warrants

closer inspection prompts us to ask questions like "what is 'justification'?" and "how

is 'truth' secured?" In this way, we can get caught, either in circular definings, ('truth

is that which is justified'), or in an infinite regression ('a justification is required for

the justification of.. .').

However, some philosophers want to distinguish strongly between knowledge and

belief. Santas (1995), for example, interprets Hume' s theory of knowledge as making

such a distinction: "knowledge, in the strict sense, is a term that for Hume is reserved

for those ideas that are demonstrated a priori ... [based] on the logical inseparability

of ideas" and Santas develops his theory that education is essentially about warranting

belief. I do not want to reserve the word 'knowledge' for a sanitised a priori knowing

only, for it seems that 'knowledge' is set up as unobtainable by the very definitional

constraints'". In other words, 1 do not want to follow Santas's interpretation that

"knowledge and belief are different animals" but place them both within the same

species.

In standard Western philosophy texts (e.g. Quine and Ullian, 1970) questions about

the nature of knowledge, are made more manageable by expressing what is potentially

knowable in a propositional form. Truth values can be associated to these

propositions. This is can be seen to be a technically useful device, as such knowledge

requires truth and the truth of propositions is simply given by the associated truth

value. (Of course, this truth value may be difficult to find out.) For the secondary

school mathematics teacher, much of the curriculum can be expressed in this
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propositional form: 'there is a limit to this sequence of numbers', 'the sum of the

angles of a planar triangle is half a turn', 'the 4th decimal place of 1t is 5', etc. The

issue of the distinction between propositional and non-propositional knowledge is

considered in chapter 7, but here the focus is on propositional knowledge.

5.2.1 What is a 'warrant'?

The word warrant has already been used in context, above, but requires further

elucidation. To do this I shall start with an educational context: Quite a common

complaint from students around the Y I0 (age 14 -15 years) stage is that they can

execute the formal motions of elementary symbolic algebra but it holds no meaning

for them. For example, consider this exercise:

17"" ........... _""""""'- S,..... "" """"""....-' "'""""~ 'Ii "" ........ ·1
.J4tu ,. 1IIIttu?

A colleague related an instance of a student who was able to do the algebra, i.e. she

was able to form n2 and (n-I )(n+ 1) = (n2 -1), respectively but claimed she 'did not

understand' and was not able to deduce that the numbers differed by 1. Indeed, this

sentiment echoes Shazdah, a YlO student, who said of solving elementary equations "I

know what to do but not what it means!". Going through the motions of a proof does

not guarantee the understanding of those 'motions' and how they connect premiss

with conclusion.

Further insight into the meaning of 'warrant', may be found in considering the

grammar of the term, i.e., how the word 'warrant' is used. A warrant for your arrest

necessitates your going to the police station! There is no argument at this stage, the

machinery of the warrant takes over. Another ordinary language usage can be found in

domestic appliances' 'warranties'. These guarantee the appliance's function, if your

washing machine is not functioning qua washing machine, it will be mended, and its

27 Kitcher (1984). whose work is discussed in chapter 6, argues for the impossibility of mathematical a
priori knowledge.
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"What is knowledge? More exactly, What is it that distinguishes knowledge

from mere true belief? What is this elusive quality or quantity enough of which,

together with truth and belief, is sufficient for knowledge? Call that quantity,

whatever it is 'warrant'." (1993, P v)
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existence and function merged once more. There is a suggestion of necessity in both

of these which I see as important in the meaning of 'warrant' .

The epistemologist Plantinga opens the second volume of his trilogy on warrant with:

Goldman, (1986, p2), also refers to "epistemic concepts such as 'knowledge',

'warrant', 'rationality'". Further on he groups 'justified', warranted' and 'rational'

together as evaluative terms, but, unlike Plantinga, does not go on to use 'warrant' as

a key term or to attempt a definition. Plantinga uses the term 'warrant' in delineating

the related concept of 'justification': "justification strictly so-called is no-where nearly

sufficient for warrant.28 I also argued ... that justification isn't necessary for warrant

either." (1993, P vii). Warrants, after all, according to Plantinga, are knowledge-

guaranteeing, and it may be possible to 'know' without being able to justify this

knowledge. Nevertheless, the focus here is on justifications for mathematical

propositions and mathematical warrants.

To an epistemologist who was not interested in focusing on mathematical or genetic

issues, mathematics might seem to provide a specific type of warrant in its logio-

deductive reasoning. To such an epistemologist, mathematical knowledge is an easy

case (perhaps the easy case!) of warranted knowledge. For example Goldman asserts

"a proof of a mathematical proposition is a necessary component of anyone's being

justified in believing it" (1986, P 269). I disagree that it is that simple! What the

connections are between justifications, beliefs, warrants and knowledge for the

specific domain of learning mathematics, is the subject matter of this chapter.

2M This is ex.emplified by Gettier style problems. which I relate to mathematics education in 5.3.2.
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5.3 Epistemological Theory

The way in which we take on beliefs varies. A proposition can start to be meaningful

because of a perception, advice from another, or a deduction, for example.

Mathematical propositions are no exception to this. What I want to assert is that,

however the initial belief about a mathematical proposition is acquired, a

mathematical warrant is required before the proposition can be claimed as

mathematical knowledge, even though such a belief may be claimed to be some other

sort of knowledge. For example, some elementary geometrical propositions are often

known empirically before they are known as deductions from axioms. So,

propositions of this sort may require a re-justification of the belief, which, in turn,

may involve contesting rationales for the belief. The difficulty, for the individual (or a

group), to relinquish one form of justification for another is surely considerable.

Without explicit advocacy of, or help in, making such a change in the way truths are

justified, only exceptional 'natural mathematicians' would make such a transition

from, in this example, perceptual geometry to deductive geometry. An implication for

teaching is that mathematical ideas or propositions introduced or acquired through

'non-mathematical' means, may have to be re-justified if they are to count as

mathematical knowledge. In practice, people resist their trusted means to

understanding being disturbed. This may help explain why learning and teaching

abstract mathematics is a difficult task.

There are two aspects of knowledge development which it is desirable to distinguish:

the initial belief where the proposition becomes imbued with meaning for the

individual and the - for want of a better term - 'mature' belief which can be justified

by the individual. To take the case of the division by three algorithm: a learner's initial

meaning may have been induced by his dividing several numbers by three, dividing

the sum of the digits of those numbers by three, and being asked to remark upon a

difference between numbers divisible by three and those not divisible by three. The

learner becomes acquainted with this 'trick which seems to work,29. A mathematical

29 For example, here is a fragment from an interview with one of my Y9 students, Katrin.
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justification of the algorithm requires analysis of the decimal system. In this example,

the 'distance' between the experimentation and the structural explanation is less than

that between empirical geometry and axiomatic geometry. This is because the subject

needs to be able to understand place value before dividing is possible for him. But,

once he is happy that, e.g., 87 is 8 x to + 7 =

8 x 9 + 8 x 1+ 7 = 8 x 9 + 8 + 7 = 8 x 9 + 15 = 8 x 3x 3+ 5 x 3, he has basically got the

general structural explanation. In elementary Euclidean geometry, there are deductive

proofs of 'perceptually self-evident' propositions like 'the base angles of an isosceles

triangle are equal', the formal proof''" of which is much further from understanding

what the proposition means than a perceptual appraisal of isosceles triangles.

The standard epistemological theories about how knowledge is acquired categorise

routes to knowledge as 'rationalist' or 'empiricist' (see Grayling, 1996, p 39). This

categorisation is exemplified by saying that mathematics and logic are paradigmatic

reason-based knowledge, acquired by the former route, and that natural science is

paradigmatic empirically-based knowledge, acquired by the latter. How useful are

such categorisations for mathematics teaching and learning? Clearly, when any sort of

cognitive development is to be considered, there not only cannot be a clean divide

between the route to knowledge characterised by 'reason' and that characterised by

'(sense)-experience'. This is why I have chosen to look at Goldman's work in

particular, where cognitive considerations feed epistemological analysis.

The analysis involved in these theories becomes very abstract. However, as I adopt

and adapt some of Goldman's and Moser's ideas, I shall try to apply the general

K: When you add the numbers up that they equal a number divisible by 3. I knew that before but I had
forgotten it!

M: That's OK, that's fine. What I want to work on now is 'why'. So, I mean do you have any ideas
why this should be?

K: No, not really.

30 If AB = AC in '&ABC, then .&ABC=.&ACB (s.a.s.) ::::)LABC=LACB
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theories to the specific issue of the move students of mathematics intend to, or

pupils" of mathematics are intended to, make towards mathematical justifications.

5.3.1 Goldman

Initial belief development and mature belief justification are highly relevant to

mathematics learning. These are notions dealt with in general in the first part of

Goldman's 1986 book. My self-imposed task is to ask (a) what do these general ideas

look like when applied to mathematics specifically? (b) does Goldman's general

theory help support my thesis on mathematics learning?

5.3.1.1 Reliability of belief causes and belief justifications: Goldman's theory

One of the central areas of epistemology is that of the justification, or otherwise, of

doxastic attitudes .. A 'doxastic attitude' - which comes from OO~Ctmeaning 'belief -

is a technical philosophical term that denotes a position on a 'credibility' dimension

that includes: being certain, thinking likely, suspending judgement, doubting, denying,

etc.

For propositional knowledge, such as in higher school mathematics, a doxastic

attitude generally precedes knowledge of the proposition. For example, the

proposition 'the number of permutations on n distinct letters is n!' needs firstly, to be

meaningful to the student in terms of vocabulary, notation and purpose, before the

student can reasonably be said to 'know' the proposition. I should make it clear,

perhaps, that I do consider propositions such as these knowable. My interest is not to

probe this assertion on 'knowability', but to get a handle on the transition from initial

meaning-making to knowledge. Philosophically, this transition may be considered as a

kind of 'episternic progression' .

This progression includes the stages of developing a doxastic attitude towards the

proposition, where the meaning of the terms develops. Then this develops into a

31 Although I am not quite consistent in use, I understand a distinction between 'student' and 'pupil'.
Students choose to study, their intention is to make progress in their chosen field; their initial
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positive belief in the proposition. And the aim is to form a justification for the belief

which, arguably, depending on the justification, constitutes the student's knowledge of

the proposition's truth.

The sort of justifications that allow this progression to knowledge is part of the subject

matter of Goldman's theory. His theory is of the 'psychologistic epistemological' type,

which means that contributions from empirical cognitive science are used to develop

non-empirical ideas about the theory of knowledge. For this reason, such a theory is of

potential interest to exploring the thesis that 'in learning mathematics students change

to 'mathematical' justifications'. It concerns an interplay between empirical cognition

and non-empirical epistemology. A key assertion of Goldman's theory is that for a

belief to count as knowledge it must have been caused by a "basic cognitive process"

(Goldman, op. cit. p 93) that is justified. And, in this theory, justification itself

involves the notion of reliablism, which, in tum, depends on a realist theory of truth

(p 17).

5.3.1.2 Initial beliefs have causes

Goldman talks about beliefs being caused by a reliable processes. While this seems

reasonable enough, there is clearly work to be done on capturing what 'reliable' might

include. He makes distinctions between 'generally' and 'counterfactually' reliable.

Not surprisingly: "To qualify as knowledge, a true belief must result from a generally

reliable process, not just one that is (counterfactually) reliable for the case in

question." (1986, p47). Stepping back, for a moment, Goldman does not explicitly

discuss progression on the credence axis, although he recognises that dimension (p14).

His emphasis is to characterise positive doxastic attitudes, i.e. beliefs rather than, say,

doubts. Goldman's ideas about 'reliablism' are an attempt to explain why a given

doxastic attitude is a belief rather than (say) a suspension of judgement. And,

crucially, what further is required for that doxastic position to be a knowledgeable

one.

relationship is with the subject of study. Pupils are initially in a relationship with a school or a particular
teacher; what they learn is a function of that relationship, which may well equip them for further study.
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In 5.5.2, I shall describe a typical doxastic situation before starting trigonometry. In

that scenario, it is clear that the children will have many cognitive beliefs before they

start their new topic, and so much of the teaching work could be concei ved to be

developing their justifications for their beliefs, i.e. working on getting them

knowledgeable.

5.3.1.3 Beliefs to knowledge: discrimination and reliability

InGoldman's 1976 paper it "says (roughly) that a true belief fails to be knowledge if

there are any relevant alternative situations in which the proposition p would be false,

but the process used would cause S to believe p anyway. If there are such relevant

alternatives, then the utilised process cannot discriminate the truth of p from them; so

S does not know." (italics in original, quoted from 1986, p46). This is because "[a]

sense of 'know' is ... to distinguish one thing from another .... The conjecture is that

the propositional sense of 'know' is related to this underlying meaning, in that

knowing that p involves discriminating the truth of p from relevant alternatives" (op.

cit. p47) What might such processes look like in mathematics education? The

difficulty is that, strictly, mathematical propositions are not contingent, so the sort of

counter examples Goldman fabricates (pp 45-6) are not really adaptable to

mathematics. Nevertheless, I think that there are situations where p is true, a subject S

believes that p, but S cannot discriminate between the truth of p and the falsity of an

alternative proposition q, which differs from p slightly. As a teacher, I use something

like this criterion for knowledge when, for example, I want to test understanding of

functions. I am aware that some students rely heavily, and sometimes uncritically, on

the images given by their graphic calculators, so I try to set a question32 which

requires this Goldman-type discrimination. Here is an example:

What is the difference, or relationship, between the graphs of these two functions:

<I> y = e-x and @ y = e-x (7 - X)2?

32 Dylan Wiliam has an discrimination example on similar lines.
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There are invariably students who say @ is a transformation of CD, for example a

stretch parallel to the y axis or some sort of translation, for the image they see on their

screen does not indicate the 'bump'. In this case, proposition p could be 'for some

domain, [a, b], there is a transformation which (nearly) maps @ on to CD'. A

corresponding alternative proposition, q, could be 'for all domains [a, b), there is a

transformation which (nearly) maps @ on to CD'.

Another question which requires this sort of discrimination is to ask students to

1 1
evaluate J -2 dx. In this case many hand-held calculators return an error message, but

_I x

the CAS DERIVE returns -2.

These questions can, of course, return a false positive! A student may be sufficiently

adept with the technology to make the requisite discrimination but still not have a

clue about functions outside what they can get to on the screen!

Goldman does not often consider mathematics specifically. One question he does pose

on mathematics is the following: "How should we handle true beliefs in necessities

[like mathematical propositions] that do not qualify as knowledge? My suspicion that

they are mostly cases in which the belief forming processes, or methods, are not

globally, or generally reliable" (op. cit. p 48). The issue of a 'true belief in a necessity

not counting as knowledge' is obviously central to my theme, here. However, the only

'unreliable process' he explicitly mentions is the rhetorically hopeless 'blind faith':

"Using blind faith to acquire algorithms is notoriously unreliable; an algorithm so

acquired cannot transmit knowledge, though the algorithm itself may be perfectly

reliable" (op. cit. p 52). He does not work on what are explicitly reliable processes for

any field of knowledge. As I have said before, reliable processes for one area of

human understanding are not always similarly reliable in their use for understanding

mathematics.

5.3.1.4 Beliefs to knowledge: justification

Turning now from Goldman's views on reliability to his ideas about justification: he

chooses to "approach justification in terms of a rule framework" (p 59) because each
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justification is not an isolated argument. The rule framework that he proposes IS

encapsulated in the following principle:

"S's believing p at t is justified if and only if

(a) S's believing pat t is permitted by a right system of justificational rules, and

(b) this permission is not undermined by S's cognitive state at t." (p 63)

Condition (b) is a disclaimer, but the defining condition (a) involves the loaded terms

'right' and 'justificatory' which themselves require justification!

In order to see how the application of this theory will go, let us consider two

mathematical propositions:

(i) The sum of two odd numbers is even.

(ii) The product of two odd numbers is odd

Justification rules that could 'permit' these include rules of infant 'naive set theory',

for example, rules for Matching and rules for making Unions. In this case, the subject

Simon, having represented a generic example of two odd numbers, matches pairs from

each and the odd ones out from both sets form a pair themselves. In the second case,

despite a superficial similarity, there is more mathematical complexity, as

multiplication is involved. Nevertheless, an analogous infant activity would be to set

out a grid of pebbles representing the multiplication, and then to remove pairs until

the odd one remains. At the mathematical level of active symbolism they are very

similar propositions with similar proofs relying on the symbolic conception of odd as

2N+land even as 2M:

(I) (2n+ 1) +(2m+ 1) = 2(n +m+ 1)

(IT) (2n + 1)(2m+ I) = 2(2nm + n +m) + I

This example points out that there are likely to be more than one "right system[s] of

justificational rules" even for elementary mathematical propositions. For, in thinking

about what theory is desirable for knowledge in general, the 'infant naive set theory
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So far, two 'right systems of J-rules' have been suggested that would justify the belief

of at least one of these two propositions: (1) 'infant naive set theory' based on

manipulation of material objects and (2) algebraic symbolic manipulation, as

exemplified by (I) and (II). Are they both legitimate belief justifiers, i.e. in Goldman's

terms are they 'right'? Goldman notes that both a criterion of rightness is required and

then a way of determining whether a particular system of justificational rules (J-rules)

satisfies the chosen criterion. So the question just posed has to be postponed until the

'rightness' criterion is established. At this juncture it is also worth posing the

falsifying position: what systems of J-rules that might be attempted to be used on

these propositions are not 'right'? Although bizarre J-rule systems can be concocted

(as "only on Tuesdays" (p 60», interesting cases are borderline: Specifically, how

does the system of J-rules characterised by 'observation' (rather than manipulation)

fare? In this case, the observation might be of a data base of pairs of odd numbers

together with their sums and products. In terms of Goldman's criterion of

justifiedness, given as follows:

Chapter 5: Mathematical warrants

activity' should have a place as "a right system of justificational rules" in a system

that acknowledges cognition.

"A J-rule system is right if and only if it permits certain (basic) psychological

processes, and the instantation of these processes would result in a truth ratio of

beliefs that meets some specified high threshold (greater than .50)" (p 106)

it seems that such an observation system should be acceptable. However, this poses

problems for mathematical justifications as the number of observations will

necessarily be finite, while the mathematical proposition ranges over an infinite set.

To be more blunt:

'* Can Goldman's theory exclude, at some level, empirical justifications such as

these from mathematical propositions?

Before this question can be answered, some other details in the theory require

presentation.
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Goldman argues that logic - paradigm of legitimate transition making - cannot itself

be all the J-rules, for the reason that a "valid inference pattern ... does not require the

cognizer to understand why the inference is valid or the connection between the

premises and conclusion." (p 84-5) Analogously, in the odd and even example, the

symbolic 'proof' requires digestion; gazing at it or writing out the symbols does not

make it 'true for you'. J-rules are to be thought of as cognitive processes - within the

domain of psychology rather than logic. "What makes for rightness is not just a matter

for logic; it is also a matter of psychology. After all, modus ponens is no more valid

than other valid argument forms. It is just psychologically simpler than others." (p 89).

This explicit demand for psychology within these J-rules is balanced with an equally

explicit demand for its absence in the 'rightness' criterion: The criterion of rightness

should only include non-epistemic terms (p 63). In other words, to avoid self-

referentiality, this crucial criterion of what are appropriate-ways-to-transform-belief-

to-knowledge (Le. J-rules) must not employ notions that it sets out to explain; it is free

from 'belief and 'knowledge'. In short, he proposes a non-epistemic criterion for a

'right' system of justifying, but the particular rules of which - i.e. the means by which

cognitive transitions are made - are psychological.

On this criterion of rightness, Goldman's position is one of "non-relativistic

pluralism" ( p 70) - there are more than one system of J-rules that can be considered

right. The 'rightness criteria' that he considers, but rejects, include 'logical', 'social',

'coherent', and 'evidential'. What he comes up with is that "a case can be made for

mixed conceptions of justifiedness" (p 73). In other words this non-epistemic aspect is

subject to a choice factor. This seems to push the problem to another level, for should

we not then require a 'right' way to decide which 'right justificatory rules' were to be

used to justify a belief?

However, Goldman's theory cannot distinguish 'mathematical' warrants from other

classes. Indeed, learning mathematics, as opposed, perhaps, to being a fully fledged

mathematician, certainly involves different systems of J-rules: object manipulation,

observation and symbol manipulation, as well as others, including social, justificatory

frameworks, all have their role in establishing beliefs about mathematical

propositions, as any teacher knows. It does not seem that Goldman's theory can make

the sort of distinction indicated by *. This is because, on this level, it is not clear how
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to decide which of the plurality of conceptions of justifiedness is applicable. What

Goldman does offer is a theory that distinguishes between epistemic status of the rules

we use and the rationale for using those rules. But in order to find a way to make

distinctions about the relative merit of certain J-rule systems as they pertain to

mathematics learning, I shall tum to Paul Moser, 5.3.3, whose 1993 book 'Philosophy

After Objectivity: making sense in perspective' includes further analysis of warrants.

In particular he investigates what warrants the warrants: he develops a theory of meta-

warrant.

Goldman makes theoretical distinctions within the notions of reliability and

justifiedness which have some applicability in explaining and supporting my thesis

here: there are initial doxastic attitudes which may have been caused by reliable

methods or otherwise; conceptualising justifications as being underpinned by criteria

of rightness, lends weight to the idea that learners of mathematics need to be

discriminating in their use of justifications. But, exactly how these 'reliable processes'

are recognised, exploited and communicated is not within his thesis; the specifics for

mathematics learning are to be located in the domain of mathematics education.

5.3.2 Gettier problems.

Related to the ideas of Goldman is the issue of 'Gettier-prob1ems', (Gettier, 1963), for

these concern the applicability of a justification. A Gettier-type problem is of the

following type: a true belief has a justifiable warrant, but the warrant is misapplied.

Examples of Gettier problems in the literature, for some reason, often involve

automobile ownership! For example: Fred believes that Jane has a Morris car. This

belief is true, Jane does have a Morris car. Fred's belief that Jane has a Morris is

justified by several sightings of Jane driving a certain Morris. However, that Morris

belongs to Jane's mother. So Fred's belief is true and justified, but the justification is

not justification for the actual original statement's truth: 'Jane has a Morris car'. The

point is that most people would be uncomfortable asserting that Fred had knowledge

of this item, even though he had justified true belief.

Analogously, within mathematical reasoning, there is ample opportunity for Gettier-

style attribution. For example, Andy believes that the limit of the sequence "l/n' is
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zero. This belief is true, the limit of 'lIn' is zero. This belief is justified, he thinks, by

'several sightings' of many terms of the sequence. The justification, like the

observations above, is not foolproof. Just as the empirical observation of seeing

someone drive around in a certain car does not imply ownership, so seeing a sequence

get closer and closer to zero does not mean that it does have a limit and that that limit

is zero.

So there are two sorts of issue concerned with beliefs and limits of sequences. Firstly,

the student's easily taken-on belief that the limit is the number that (approximately)

pops out after a large number of terms of the sequence have been calculated, but they

still do not believe that the limit actually exists; it is never reached. Secondly, the

Gettier type problem: the student might attribute knowledge to his belief that the limit

of 'lin' is zero, because of his warrant: 'I have worked it out to thousands of places

several times'. This is a case where we might be uncomfortable to attribute knowledge

to the student, as his reasonable warrant for empirical propositions is not the best one

with which to justify a mathematical proposition.

5.3.3 Moser's theory

To deal with the meta-epistemological issues of the adequacy of justificatory

standards, 1 shall refer, briefly, to Moser, 1993, (esp. pp 60 -105). He expands a thesis

that is neither 'god's-eye objectivist' nor relativist and 1 am interested in pursing

arguments that develop a middle way. He points out "Notions of justification ... admit

of evaluation, at least relative to ... certain conceptual purposes" (Moser, 1993, p 13);

the purpose in this case is deciding which set of (in Goldman's terms) J-rules are

justified for justifying mathematical propositions especially for those involved in

developing mathematical beliefs (either their own, as learners, or those of others, as

teachers).

I felt Moser's book to be technical to the point of obscurity. His key points seem to be

that neither realism nor idealism (for which I have used the term 'anti-realist' above)

can escape their own 'question-begging'. For example, to assert that "conceiving-

independent identities" exist because I can see them (pS) begs the question against

realists, (an analogous statement, like 'conceiving-independent entities do not exist
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because seeing, touching, etc. does not ensure their existence' begs the question

against anti-realists). His main thesis is to assert "agnosticism is our best option from

an evidential point of view" (p 6). If this was the only result in his book, reading it

would not be worth the struggle! For only the extraordinarily dogmatic would not

allow a tinge of agnosticism into their ontological world view! The problem which I

hoped that Moser's work would help to elucidate is expressed in the question 'how to

justify which justification justifies?'

Moser addresses this question of justificatory standards through the device of

'semantic foundationalism'. This should, he claims, avoid the naivete or circularity to

which, he explains (pp63-75), the question of standards can often reduce. A key

notion he introduces is that of 'operative constitutive standards'; i.e. that justificatory

standards are 'purpose-relative'. Let us consider the idea of 'purpose relative'

justification in the domain of mathematical propositions, in particular, consider the

odd and even scenario sketched in 5.5.1.3, does this analysis of Moser's privilege the

manipulation over the symbolism or vice versa? There are two levels here - I think

that these are what Moser calls 'episternic' and 'non-episternic'. The first is finding

out that an odd plus an odd is an even, the second is showing that an odd plus an odd

is an even. The first is non-epistemic, a conjecture from perception, the second is

epistemic, it involves a justiflcatiorr':'. Each has a fitness for purpose. Is there anything

from Moser's theory which will motivate a transition from the non-epistemic to the

epistemic? Not that I have yet been able to see.

Despite the promise which a theory of meta justification seemed to hold, I do not find

Moser's work sensitive to the developmental transitions which are so much part of

educational concerns. He does clarify some issues in epistemology (like the

"semantic ... explanatory [and] evaluative project[s)" (p 60-1». However, in terms of

the application which I am seeking - what justifies a re-justification? - the notion of

'purpose-relative' itself begs the question! For why should I prove what I already feel

33 Moser's use of 'epistemic' and 'non-epistemic' refer to whether or not knowledge is involved, with its
attendant requirements of truth and justification. This is different from the distinction I made in chapter
4, between 'episternic' and 'psychological', because ~he latter is a s.cient.ific, rather than philosophical,
term. Moser's 'non-epistemic' is related to the formation of a doxastic attitude.
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I know (e.g. two odd numbers added are even)? The answer that the proof is suitable

for mathematics has a strange 'should' tone to it (c.f. Moser and 'Jones' p 99). On the

other hand, if a symbolic, general, proof is the only way to know this as mathematics,

then we still have the epistemological gap between science (properties of objects of

our perception) and mathematics (properties of generalities or relations).

So this foray into abstract epistemological analysis does not really clarify the notion of

mathematical warrant. Nor has it explained, in a non-self-referential way, what

characterises truly mathematical warrants for knowledge, rather than justifications for

mathematical propositions. It has helped to clarify distinctions between knowledge (by

virtue of a warrant) and various forms of belief.

There are alternative tacks I could have taken: for example, I have not reported on,

described or analysed a priori approaches to mathematical knowledge. This is because

of my interest in how mathematical knowledge develops. As Kitcher (1984) remarks

about a priori 'privilege'

"Frequently an apsychologistic epistemology is developed by attributing to some

propositions a special status ..[which] have the property of counting automatically

as items of knowledge if [the subject believes them]. Once apsychologistic

epistemology has granted to some axioms of mathematics this pri vileged

epistemic role, the question of how we know these axioms disappears and one

who raises that question can be accused of dabbling in those psychological

mysteries from which twentieth century epistemology has liberated itself. " (p

14).

And, of course, like Kitcher, I do not want liberation from thinking about the

psychological mysteries! What I shall tum to now is the particulars of mathematical

warrants, applicable for novices, rather than follow Kitcher's more general treatment,

in trying to present the case for distinctive mathematical warrants and their necessity

in the acquisition of mathematical knowledge.
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5.4 What are mathematical warrants?

To say that mathematical knowledge requires mathematical warrants is clearly circular

unless some other way to distinguish mathematical warrants can be given. A

substantial answer to the question of the nature of a mathematical warrant requires

replies from various perspectives: For example, study of mathematical foundations

could give insight into the nature of mathematical deduction, study of the sociology of

mathematicians could suggest why certain people's arguments were respected over

others' and study of mathematical history might show how standards of proof have

changed over time. A full response to this question is, therefore, beyond the scope of

this present work. What I shall do is restrict myself to the educational context of

higher school mathematics and present some ways of justifying belief in mathematical

propositions which I shall argue can be knowledge conferring mathematical warrants

(for an appropriate epistemic subject).

Proof is the paradigm mathematical justification 'as we all know', but in what sense

proof warrants is less clear. This is the subject matter of 5.4.2. Other examples of

justification that I claim may be a mathematical warrant are quasi-empiricism

(Lakatos) and visualisation (Giaquinto). Furthermore, the relationship of warrant to

action could be said to be a 'procedural' mathematical warrant is discussed in chapter

7, but I shall make reference to it in this chapter on occasion. I also observe that

justifications that are sometimes used in the classroom, like empirically testing cases

or accepting an authority are not mathematical warrants, although they may serve

sometimes as pedagogical devices to help the pupil develop some initial belief.

The pedagogical point is that non-mathematical warranting of a belief in an ostensibly

mathematical proposition does not result in a student's having mathematical

knowledge; the warrant must be mathematical in the case of a knowledge claim. Yes,

this does mean that for knowledge claims we must be able to override our initial, say

perceptual, warrants for a belief by a mathematical one, which is why I now discuss

what a mathematical warrant might be. This shows why it is useful to distinguish

between the psychological and the philosophical. For, once I have a belief in stable

memory, it does not make sense to re-cause that belief, but it can make sense to re-

justify or warrant it.
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An example of warrant and non-warrant

To put some flesh on the bones of these abstractions, I shall exemplify a situation of a non-

warranting justification and a corresponding mathematical warrant.

There are several ways of thinking about this" number pattern:

1.3.6. 10.IS....

There are different names associated with some of these different ways of thinking. For

example, triangular numbers, sum of the first n integers, an arithmetic progression, steps

numbers, a quadratic formula. There are also many ways of justifying belief in various

propositions to do with this sequence. As I related that Moser suggests, there is a sense

that warrants are relative to the proposition concerned. And it is for such a reason that

student progress to the use of mathematical warrants may be psychologically difficult, as

the student may be familiar with the mathematical object (1,3,6,10, ... ), have justified belief

about propositions concerning it, but not see why s/he has to believe another proposition

about the sequence in a different manner. I have seen this problem in practice in the

classroom in the following case: a student has a concrete or diagramatic representation of

the sequence, slhe observes that the next term in the number sequence is obtained by

adding on one more than was added on before. This generalisation is surely justified

procedurally by the action of adding on one. If the student needs to know whether 153 or

15,083,778 are in the sequence, my claim is that the procedural-justification is no warrant.

Even if the membership, or otherwise, of 153 could be checked procedurally, the

likelihood of error in the 15 million-plus case would militate against this procedure

being a warrant for the belief in the proposition '15,083,778 is in the sequence'. (The

question of running a program to check this with a minimum of error requires an

epistemic relationship with the aid being used, which is a digression here.) In the case of

checking whether a given number, T, is in the sequence, one could set up the equation

340f course there are an infinite number of sequences that start thus
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n
-(n+ 1) = T
2

and solve the quadratic. Clearly, this requires knowledge of the formula for the sum of

the first n integers as well as a functional competence with solving quadratics.

What is a mathematical warrant for the belief that the sum of the first n integers is half

the product of n with n+1?

I was a sixth-former (16 or 17 years old) the first time I 'proved' I.::I k = ; (n + 1). It

was a proof-by-induction, easily executed, poorly understood. The purpose of being

asked to do the proof was not to do with belief in the proposition but with practice in

executing the process. So in this case, a proof was not a warrant for belief in the

proposition, even though, such a proof could be correctly considered a mathematical

warrant in general. To answer the question 'Why is the formula for the nth term thus?'

a warrant must include the generality of the result with an epistemic connection to the

result. The following 'informal' proof is more likely to establish this connection: a

visual image of two copies of the steps representation of this number sequence of

indeterminate sizes are 'jig-sawed' together to make a rectangle of width n and height

n+ I. Hence the formula for one of these blocks of steps must be half the area of the

rectangle, i.e. half of the product of n with n+ I. Giaquinto (1989. 1992) argues that

such 'visualisation' can be epistemic in the sense that it is knowledge producing (see

section 5.4.5 below).

Here are three candidates (there are doubtless more) for a method to show that the

sum of the first n integers is half the product of n with n+1: (a) counting-on procedure;

(b) induction-proof; and (c) visualisation. Which, if any. is knowledge producing? To

recap my observations: (a) the count-on does not illuminate the structure - it will not

produce knowledge although it may strengthen the subject's belief; (b) the induction is

so smooth the content of the proposition may slip away - it depends on the subject,.
whether this will justify as well as warrant; Cc)the visualisation is particular, structure

illuminating - but whether this image can be reinterpreted in terms of the numbers

from whence it came should be a test of whether it constitutes a warrant; perhaps it

will just be a static image.
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Warrant may be seen as a successful justification. Justifications are, of course,

commonly conceived as proofs. Clarifying the relationship of warrant to proof in

mathematics education is part of this thesis. However, there is a substantial body of

literature on proof and mathematics education and it is not my concern either to

review this literature or to add to it, although I do use the work of some authors in this

chapter. While I shall not explicitly review the mathematics education literature on

proof, it would be as well to mark its domain: Since ancient times proof has, of

course, been part of mathematics, but the discipline of mathematics education is a

more recent phenomenon. Within this discipline, discussions of proof have often been

related to the cognitive aspects in learners' proofs and the affective issues of proof in

the curriculum.

A fairly early mathematics education study was that of Bell (1976). This reported on a

survey of students ideas about proof. Bell also conceptualised: justification (that),

illumination (why) and systematisation (how) aspects of proof. While I would expect

Bell to concur with my point about the 'Teflon' nature of proof structures like that of

induction', (part of) his thesis rests with this notion that it is not proof which secures

knowledge. This is in distinction to mine, for I want to assert that mathematical

warrants ('proof, whatever that means, being paradigmatic) are the only way to have

strictly mathematical knowledge. A particular consequence for a teacher, is not to

pretend that students' mathematical conviction can be achieved by employing his or

her charisma.

As I write, there has been a resurgence of interest in mathematical proof at school

level, at least in Britain. Recent editions of the professional magazines have given

over entire editions to this issue (Mathematics in Schools, June 1996 no. 155,

Mathematics Teaching Nov. 1994, Vol. 23 no.5). This follows an edition of

Educational Studies in Mathematics focused on 'Aspects of Proof' in 1993, (Vol. 24,

no. 4). A brief explanation of this current flurry is that the 1960s' overly formal

curriculum (see 5.4.2), at least in North America and Britain, was rejected. And proof,

construed as formal proof, was also excised from the school mathematics curriculum.

There is now a lot of activity to try to reclaim the baby (proof) so hastily thrown out

with the bath water of formalism! This quest is not confined to practising teachers (the

target audience for the professional magazines) but extends to mathematics education
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researchers. The last ICME conference produced a hefty document, with many
international contributions, on the topic of mathematical proof in infant to

undergraduate curriculums (de Villiers, ed., 1996). Many of the contributions in this

collection were reports of actual student behaviour or attitudes to mathematical proof.

My thesis here should contribute to the understanding of why it is that proof is so

important in mathematics learning: it is because without mathematical warrants, the

students' knowledge of facts about mathematics and procedures with mathematical

concepts does not amount to mathematical knowledge.

5.4. J. J A task with which to explore warrants:

Take a mathematical proposition you know to be true. Find three or more

justifications of this proposition (analogous to the sum of the first n integers case).

Which of your justifications warrants?

5.4.2 Hanna

Gila Hanna's work, over many years, has dealt with the notion of proof in

mathematics education. She has criticised excessive formal proving in mathematics in

education as well as advocating that students learn about mathematical proof. I shall

use work of hers from the extremes of this period to investigate the relationship

between proof and warrant in mathematics education. In particular, I use Hanna's

1983 argument against formal proofs and her 1995 argument for proofs of various

kinds, to support my thesis that, for mathematical knowledge, belief is not necessarily

warranted by a 'rigorous' proof, but, (as expected!), a less restrictive notion of proof is

a fundamental mathematical warrant.

5.4.2. J Rigorous proof, per se, is no warrant.

When Goldman asserts that "a proof of a mathematical proposition is a necessary

component of anyone's being justified in believing it" (Goldman, 1986, p 269), as

quoted above, what does he mean by 'proof? If Goldman means a formal proof, then

Hanna's thesis will refute his assertion. For Hanna claims that mathematical meaning _

which is necessary for any doxastic attitude - does not arise from a formal proof per

se. Hanna argues that rigorous, or formal, proof, (where the axiom system is specified
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and the steps of the proof are explicit, (Hanna, 1983, p 3» is far from what

mathematicians use in their practice to justify a belief in mathematical propositions ",

Hanna distinguishes between formal, or rigorous, proofs and informal ones (ibid. p

67). She defines informal proofs as the complement of rigorous proofs in the class of

proofs and exemplifies the sort of explicit proof that students of 'new math' in 1960's

North American high schools would have been expected to learn (e.g. p 22). And so,

if, on the other hand, Goldman intends 'proof to mean an informal proof, then the

onus is on him to explain this notion.

For a belief to be warranted, (as I have said before), there must be an epistemic

connection between that warrant and the epistemic subject. This is an obvious

observation: babies don't know theorems! The difficulty arises in asssessing whether

the proof-warrant is part of a subject's epistemic tool-kit; in other words: when could a

given proof be the warrant for a belief (for a particular person). In section 5.5.2 (in this

chapter), the practicalities of this problem are discussed with reference to some 16-18

year old students 'proofs'. At this juncture the issue is treated more theoretically.

Hanna (1983) gives an historical overview, as well as detail from individual

mathematicans, to show, not only that there is no absolute standard of proof, but also,

"a mathematician is still much more interested in the message embodied in the proof

than its formal codification and syntax" (Hanna, op. cit., p 72). Proofs, even of the

purportedly formal variety, are culturally relative and not (necessarily) meaning-

making. The mathematician, Bill Thurston, (Thurston 1994) concurs with Hanna's

thesis that it is rarely a proof per se that convinces, for new results, it is the

"community standard of proof' that is paramount.

The relationship between mathematics-in-education and mathematics-in-mathematical

research is a theme that runs through Hanna's writing. The notion of proof, which is

the formal evidence of a researched mathematical result, must have its seed in the

school curriculum. The attempt to place the theoretical (and not, in practice achieved)

3' If mathematicians needed proof before justified belief, how could they motivate themselves to work
for many years on developing a proof? Andrew Wiles reported (BBC Horizon,1995) that he worked
alone for seven years on Fermat's last theorem.
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standards of rigor of researchers onto school children led to an unpalatable formal

curriculum, as her 1983 study shows.

5.4.3 Simple logical inference as a basic mathematical warrant

Now I want to be explicit about a mathematical warrant; it is all very well noting how

or that justifications fail to warrant but it is important to specify what does warrant!

What does warrant is 'perspicuous logical deduction'. in particular modus ponens,

The argument that I shall put forward for this could be interpreted as asserting a form

of logicism. Be that as it may36, I hope to show that this sort of logicism has an

experiential foundation.

If school mathematics and research mathematics are, as I shall assume, in some sense

root-to-branch connected, epistemic connections could be given by this thesis overall:

connections are warrants, objects and actions. In this discussion of warrant, I make a

case for the place of elementary logic, particularly modus ponens reasoning (p ~ q

and p then q) to be the seed that connects pre-formal with formal reasoning. Only by

establishing a connection between these two, can we make sense of the psychological

progression of the individual to the point where proof does become a warrant. I do

want to make a case for elementary argument to be a warrant.

This claim does not negate Thurston's (ibid.) reports of his own experience and

Hanna's (1983) reports of others, that, at the research level, ideas and community

support are at least as important as formal proofs for belief formation. An empirical

hypothesis is that these mathematicians, who rely on informal communication of ideas

and community support, will all have modus ponens reasoning available as a warrant

for belief.

Rudimentary logic seems to be an innate human capacity related to that of language,

and it is this capacity - together with other illusive factors like language and

imagination - that support the warrant of proof of this paradigm type. Contemporary

36 Shapiro, 1992, discussing 'Proof and Knowledge in mathematics' opens with "Logicism, as every
body knows, is half right"
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mathematical research allows, for example. the technically unsurveyable computer

assisted proof of the four-color theorem to count as a proof. But. at the initial stage of

learning about mathematics and proof. Wang's aphorism that a proof "should be

perspicuous. surveyable. or capable of being taken in" (Wang 1962/86 p 135) is a

pragmatic requirement. At the level of learning. Wang's perspicuous requirement is

essential. As a student develops, parts of proofs and other results are remembered. a

shared set of meanings and notations are employed with other mathematicians, and the

results from mathematicians with good reputations are considered favourably

(Thurston. ibid .• Hanna, 1983. p 70).

Modus ponens is the medieval logicians' name for the ancients' formulation of a

basic law of syllogistic reasoning. (Glymour, 1992. p 56). It is a formulation of the

"container metaphor" (Johnson, 1987, p 23). Johnson uses the term 'metaphor' itself

in a metaphorical sense to indicate that language. thought and action are connected in

understanding. Modus ponens is an instantiation of the 'container' metaphor because

we (sentient beings of human type) understand through our bodily relation to the

experienced world that. for example. if the room is in the house and I am in the room

then I am in the house. It is for this reason that elementary logic is both a lived

experience and a reasoning tool. Of course. it is the authoritative teacher who names it

'logic' and offers symbolic referents. but the child herself needs no name to

experience the 'containment'.

I shall now tum to P6lya's discussion of an elementary proof to illustrate

(a) how modus ponens reasoning is a basic proof-warrant of a potentially formalisable

type;

(b) that proof warrants of this type, despite their bodily genesis. still require teaching

Consider the proposition that the angle sum of a plane triangle is half a turn. P61ya

(1945/90 p 216-7) indicates a proof of the proposition by drawing a diagram of a

triangle ABC. constructing a line parallel to the base BC through the vertex A and

concluding the result by implicit reference to the alternate angle property of parallel

lines. The implicit detail of the argument relies on these modus ponens inferences: (i)

if alternate angles are equal, (p ~q), and each base angle of the triangle is alternate
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with an angle at the vertex (p) then these angle are equal (q); (ii) if angles along a line

add to half a tum, (p ~q), and these angles are along a line, through A, (p) then these

angles add to half a tum (q).

P61ya goes on to say:

"If a student has gone through his mathematics classes without having really

understood a few proofs like the foregoing one, he is entitled to address a

scorching reproach to his school and to his teachers .... If the student failed to get

acquainted with this or that geometric fact, he did not miss so much; he may have

little use for such facts in later life. But if he failed to get acquainted with

geometric proofs, he missed the best and simplest examples of true evidence and

he missed the best opportunity to acquire the idea of strict reasoning. Without this

idea, he lacks a true standard with which to compare alleged evidence of all sorts

aimed at him in modem life." (P6Iya, 1945/90 p217)

P61ya is saying that it is through examples of thinking like this, that our rudimentary

modus ponens capacity is set to work on mathematics. Mathematics is an
accommodating domain for this sort of reasoning in a way that domains where the

container metaphor is not as consistently applicable are not. For example, art

appreciation or emotional counselling do not lend themselves in the same clear cut

way to this 'if-thenism'. Elementary axiomatic Euclidean geometry is a particularly

useful sub-domain as it is possible to have quite short, easily surveyable, proofs that

have a persuasive perceptual prop in terms of our (local) Euclidean experience of

space and its representation as the proofs diagram. An implication from the quotation

from P61ya is that Euclidean geometry was never on the curriculum for students to

know about geometric facts themselves, but for students to know about logical

reasoning, which, given plausible axioms, can prove the existence of geometric facts.

Hanna's 1983 thesis is directed at refuting the assertions that rigorous proof is part of

the (day to day) practice of mathematicians and that there is a common standard of

what constitutes a proof. If her thesis is accepted, the consequence that high school

students (assuming they should emulate mathematicians), should have this 'rigorous

proof' as part of their education, is also refuted. Hanna does not investigate, here,
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what positive meaning-making, activities related to 'proof are, nor the educational

consequences of removing 'proof from the high school curriculum. In her 1995 article,

after the removal of proof from the North American, as well as the British school

curricula during the interim period, Hanna turns to what proof can offer mathematics

students. In this context she widens the notion of proof to include informal -as well as

formal - proofs. She notes that proof needs teaching; it is not just the naive logic from

'containment' (in Johnson's sense). And that methods of teaching formal proof will

often include informal proof processes:

"In exploring new ways to teach proof, [experimental] studies have shown the

value of such approaches as debating, restructuring, and pre-formal presentation,

all of which posit a crucial role for the teacher in helping students to identify the

structure of a proof, to present arguments, and to distinguish between correct and

incorrect arguments" (1995, p 44)

I have no argument with this outline, but I do want to modify her following assertion

which is that the point of a classroom proof is principally to explain:

"While in mathematical practice the main function of proof is justification and

verification, its main function in mathematics education is surely that of

explanation.

To say that a proof should be explanatory is not to say that it cannot take different

forms. It might be a calculation, a visual demonstration, a guided discussion

observing proper rules of argumentation, a pre-formal proof, an informal proof, or

even a proof that conforms to strict norms of rigour." (1995, P 47)

The case that I have been making here is that a purpose of 'formal-type' proof in the

classroom is that this is a reliable way of coming to conclusions. Not just to explain

why but also to explain what explanation is, as P6lya said. While modus ponens is at

the root of our mathematical explanations it is also a structure within our bodily
•

experience. This is why this sort of elementary logic is both 'concrete' and formal.

And permits a transition from the pre-formal to the formal.
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To sum up this section: Formal proofs do not of themselves constitute a warrant for belief

in mathematical propositions. However, formal proofs are a theoretical standard of the

mathematical community. Some formal proofs (at least in a weak sense of 'formal') are

perspicuous. The modus ponens argument form is a structure that covers many of these.

Modus ponens is an embodied feature of life experience. This means the essential structure

of that experience is there for a teacher to employ on mathematical objects, thus

establishing a mathematical argument for a novice. This is an explanation for how formal-

type proof can begin to become a warrant for belief

5.4. -I Quasi-empiricism

Another possible warrant for mathematical belief is that of quasi-empiricism applied to

mathematical processes and concepts. Although apparently originally coined by Russell37,

quasi-empiricism was championed by Lakatos (1976, 1978) in his extension of Popper's

'Conjectures and Refutations' work to mathematics. Lakatos's motivation in developing

his theory of the 'logic of mathematical discovery' was to direct discussion in the

philosophy of mathematics from formalists' foundationalism to the issue of how

(epistemologically, rather than linguistically or socially) there becomes new mathematical

knowledge. As he says in the beginning of 'Proofs and Refutations'

"the purpose of these essays is to approach some problems of the methodology of

mathematics. I use the word 'methodology' in a sense akin to Polya's and 8emay's

'heuristic' and Popper's 'logic of discovery' ...The recent expropriation of the term

'methodology of mathematics' to serve as a synonym for 'metamathematics' has

undoubtedly a formalist touch. It indicates that in formalist philosophy of

mathematics there is no proper place for methodology qua logic of discovery."

His desire to break new ground in the discussion of the nature of mathematical knowledge

between the 'super tight' formalists and the unproductive (in terms of specifying what

knowledge might be) skeptics is indicated in his subsequent remarks:

37See Corfield 1997 footnote 33.
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"Now this bleak alternative between the rationalism of a machine and the

irrationalism of blind guessing does not hold for live mathematics: an

investigation of informal mathematics will yield a rich situational" logic for

working mathematicians ...which cannot be recognised, still less simulated , by

the formalist philosophy .." (Lakatos, 1976, pp3-4).

There are several 'buzz words' in mathematics education like 'fallible', 'conjecture'

and 'quasi-empiricism', which, while not originally Lakatos's, were given publicity

and credibility by his treatment. 'Fallible' (originally from C. S. Pierce, quoted in

Putnam, 1990, p7) refers to the nature of mathematics; 'conjecture' (borrowed from

Popper's usage) connotes potential falliblism within premises of mathematical

arguments; 'quasi-empiricism' suggests the means by which knowledge develops uses

empirical, sensory, experience and also employs deductive inferences within this

knowledge generation.

Lakatos's exposition in 'Proofs and Refutations' was a 'rational reconstruction'.

Despite the 'classroom' scenario, the aim was to describe, by developing an example,

the underlying structure of mathematical knowledge increase: these reasoning

processes produce knowledge in this way. Thus mathematical 'knowledge' is subject

to a certain contingency as a result of this method.

Can the theory that Lakatos developed to explain the growth of mathematical

knowledge in research-mathematics also be used to justify learners' new-for-them

mathematical knowledge? In other words:

1.Can learners warrant their mathematical beliefs 'quasi -ernpiricall y'?

If this is possible then from a teacher's point of view it is important to ask:

2. How do learners of mathematics take on quasi-empiricism as part of their

'epistemic tool-kit'?

...
After analysing some of Lakatos's claims, I shall return to these questions in 5.4.4.5.
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5. -1.-1.1 What is quasi-empiricism?

Lakatos was a philosopher of mathematics interested in the practice and detail of

mathematical progress. He wanted to introduce the essential informal element of

mathematics as it is practiced into a philosophical (a meta-level) explanation of how

mathematical knowledge progresses. He had the overarching desire to present an

alternative to 'formalism':" yet retain mathematics' deductive character. The product of

this ambition is quasi-empiricism:

"Classical epistemology has for two thousand years modelled its ideal of a theory,

whether scientific or mathematical, on its conception of Euclidean geometry. The

ideal system is a deductive system with an indubitable truth-injection at the top (a

finite conjunction of axioms ) - so that truth, flowing down from the top through

the safe truth-preserving channels of valid inferences, inundates the whole system.

It was a major shock for over-optimistic rationalism that science - in spite of

immense efforts - could not be organised in such Euclidean theories. Scientific

theories turned out to be organised in deductive systems where the crucial truth

value injection was at the bottom - at a special set of theorems. But truth does not

flow upwards. The important logical flow in such quasi-empirical theories is not

the transmission of truth but rather the retransmission of falsity - from special

theorems at the bottom ('basic statements') up towards the set of axioms."

(Lakatos, 1978, p28, italics in original)

This excerpt explains the structure of quasi-empirical reasoning. It IS a kind

of deductive inference where, for example, modus tollens,

( p => q and -,q then -,p), rather than modus ponens, is the logical lever and is

described as 'bottom up' reasoning. Lakatos exemplifies this kind of reasoning

throughout 'Proofs and Refutations' (Lakatos, 1976) where he illustrates how both

..
38 Lakatos's notion of formalism is older and more metaphorical than Hilbert's Formalism, (see
Larvor, 1995, p 88).

128



Chapter 5: Mathematical warrants

global and local counter examples (-.qs) can refute a given hypothesis (i.e., imply a

-.p).

While Lakatos' own writings publicised and argued for this radical 'bottom up'

structure of the development of mathematical knowledge, he did recognise the

Euclidean vein in mathematical practice. This 'top down' reasoning is essentially

conservative ("puritanical, anti speculative" 1978, p 29) and so is not the source of

anything new, but it has its place:

"We saw that mathematical proofs are essentially of three different types: pre-

formal; formal; post-formal. Roughly the first and third prove something about

that sometimes clear and empirical, sometimes vague and 'quasi-empirical'

stuff, which is the real though rather evasive subject of mathematics. This sort of

proof is always liable to some uncertainty on account of hitherto unthought-of

possibilities. The second sort of mathematical proof is absolutely reliable; it is a

pity that it is not quite certain - although it is approximately certain - what it is

reliable about." (1978, p 69)

So Lakatos accepted that mathematical reasoning had a deduction from premisses

component, but he relegated it to uninspiring consequentialism and denied that it had

a creative role in the development of that which was new39• Speculation and

subsequent criticism provides potentially new knowledge. The reasoning that can

'refute' is, nevertheless, still Aristotelian in its traditional logic. What is more Lakatos

makes great pains to distinguish the character of mathematics from that of science:

"a theory which is quasi-empirical in my sense may be either empirical or non-

empirical in the usual sense: it is empirical only if its basic theorems are spatio-

temporally singular basic statements [of science]." (1978, p29, italics in original)

Quasi-empiricism is not induction. Mathematical theorems do not arise from

generalisations of observations per se. Nevertheless, observations from mathematical

39 this conclusion is disputed by Corfield, 1997, who claims, on the contrary, that "the appropriate use
of rigorous definition has not acted as a hobble on the creativity of mathematicians, but rather an
invaluable tool in the forging of new mathematical theories and extension of old ones" p 100
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'play' can stimulate the sort of conjecture that may become new knowledge. In terms

of Lakatos's theory, does quasi-empirical reasoning constitute a mathematical

warrant? Logically, because the reasoning is deductive, the answer cannot be but

affirmative. But this reduction to logic is to miss the substance of what Lakatos's

theory has to offer; the point is that it is the "basic theorems" that, in Lakatos's

metaphor, "inject truth" and that they do this essentially by a refutation.

5.4.4.2 Is mathematics quasi-empirical?

In order to apply Lakatos's theory to learning mathematics, some adaptations need to

be made: Lakatos was concerned with theories of mathematics, with the large scale

vision adopted by the foundationalists (who failed to justify mathematics in the

generality they aimed for). Whether holist or serialist is learning style, novices in

mathematics proceed in their knowledge acquisition in relatively small steps. Does (or

can) quasi-empiricism warrant their progression?

Perhaps the first point to consider is still at the philosophical, rather than educational

level, for do we not have to be convinced first that mathematics is indeed quasi-

empirical? Zheng (1990) argues that mathematics is not, in Lakatos's sense, quasi-

empirical for the two reasons (i) that there is not the claimed dichotomy between

'Euclidean' and quasi-empirical systems: they are both deductive (as indeed Lakatos

said); (ii) informal theories (or the results of informal theories) are to be the potential

'heuristic falsifiers' for the formal mathematics, (as Lakatos explains in his 1978

collection, p 36), but "the truth value of statements cannot be injected into the formal

theory directly from the corresponding informal theory" (Zheng, p390).

Zheng is putting forward the idea that once a formal theory has been established it is

impenetrable. Lakatos tries to counter this criticism in advance by offering a

hypothetical example where an informal theorem falsifies a formal one, (1978, P 37).

Because the human-powered proof contradicts the result from the formal theory, the

sense is that the formal theory hypothesised is not actually about 'arithmetic'. Hence

the formal theory is falsified as applying to this domain. Clearly, there are delicate

semantic issues here: when is a formal theory 'arithmetic'? Nevertheless, a point to

note is that the domain of Lakatos's discourse is on a very high powered mathematical
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level. It is crucial to Lakatos's argument that Zheng's criticism does not hold, for it is

this informal 'injection' of truth-value from informal theories to refute formal ones

that makes mathematics meaningful and deductive.

Whether Zheng's criticism can be made to hold or not depends on the definition of

'formal system'. I do not believe that Lakatos required every 'formal theory' to be in

set theoretic form, but, at least such a theory would be axiomatized. Euclidean and

non-Euclidean geometries should, therefore be candidates for such a formal system. I

want to use geometry to present an example that refutes Zheng's denial of

mathematics being quasi-empirical with mathematics of the level of higher school

mathematics.

To set up this example, let us consider again the proposition discussed by P6lya: The

angle sum of a triangle is half a tum. In section 3.2 the reason for considering this

proposition was so that the student might learn, by exemplification, what a basic

deductive proof in mathematics is like. Here, I want to exemplify a 'falsifier'. There is

such a rich history to the development of geometry that I shall not even start to give it

a 'rational reconstruction' historically, (see Gray, 1987), but to attempt, very briefly, a

'rational reconstruction' cognitively:

An heuristic falsifier to the proposition is that a triangle made on the surface of the

globe (vertices at Bandung (B), Libreville (L) and the North pole (N), say), has angle

sum of about H of a tum. An initial classroom experience for the student is to measure

the angles formed by such a triangle on a physical globe. The perception of a triangle

with three right angles sets up a cognitive conflict. The standard response, from my

teaching experience, is for the students to deny that BLN (with BL, LN and BN drawn

on the globe's surface!) is a triangle. However, when they fail to answer questions

like: 'what is it then?, and 'how big does a triangle have to be so that it is not a

triangle any more?', they (usually) accept the terminology and are in a position to try

to explain the result. By explaining the result in terms of the curvature of the sides of

the triangle, the students have falsified the original proposition, 'The angle sum of a

triangle is half a tum', but have located the 'guilty-lemma': there was an assumption

that the triangle was planar (or more strictly that it was a Euclidean triangle).
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This example indicates how mathematics, even at the higher school mathematics level

-rather than the research mathematician's level - can be quasi-empirical. As Gray's

(ibid.) exposition illustrates, counter-examples to existing theory, like this one, in

accordance with Lakatos's theory, prompted new research directions in mathematics.

5.4.4.3 'Naive abstraction ism ' and quasi-empiricism

Is quasi-empiricism 'naive abstractionism'? The term 'naive abstractionism' is taken

from Gray (1992, and see chapter 6) who uses it to describe the "ontological modes"

of mathematicians at the turn of the nineteenth century:

"We must first establish what the prevailing ontological modes were at the start

of the century. The most usual was what may be termed 'naive abstractionism':

the idea that mathematics deals with idealisations of familiar objects." (Gray.

1992, p 228)

This is essentially what Zheng offers as a reconciliation in order to retain the label

'quasi-empirical' for, at least, some aspects of mathematics: "what 'quasi-empirical'

means here is the indirect relationship between theories and empirical activities rather

than the ways of transmission of truth value"(Zheng, op. cit. p391).

My reading of Lakatos is that he has taken pains not go down the 'naive abstractionist'

route. However, it may be the case that 'quasi-empiricism' - so tightly defined by

Lakatos - has acquired, in language use, a different connotation which is, essentially,

Gray's 'naive abstraction'. Now, Gray argues that 19th century mathematicians had to

undergo a 'revolution' in their thinking and abandon the naive abstraction that had

hitherto stood them in good stead. Results like that of infinite series of continuous

functions not converging to a continuous function, were outside the empirical

interpretation that Zheng suggests gives justification (in his interpretation of quasi-

empiricism). These results required a formalization both to make sense of and to

justify. Modern mathematics, then, has required an understanding of 'formality' (used

loosely), to make meaning - this is the essence of Corfield's 1997 paper.

One of the difficulties here is in the use of the word 'formal'. On one hand, Lakatos

uses the term loosely and disparagingly. On the other hand, Lakatos demands that a
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formal theory should be thoroughly set theoretic. His example, cited above from his

1978 collection, page 37, is likely to be 'formal' in the loose sense, although - for his

argument - it must be 'informal' to be able to falsify the 'computer-generated' style of

formal proof. I believe that Lakatos is open to the criticism that he has allowed a

continuum of 'formality'. The cumulation is the never-to-be-achieved full formal

proof, but where is the cut off point that distinguishes informal from formal?

The practical answer to this question is that it depends on the situation. If quasi-

empiricism, in Lakatos's sense, can be a warrant for mathematical belief, then the

level of formalization against which (relatively) informal theories can be tested has to

be brought down to a more elementary level. As the non-Euclidean geometry example

illustrated, the curved-sided triangle falsifies the initial proposition, and stimulates

better precision in formalizing/axiomatizing the planar geometry from which the

proposition is deducible.

5.4.4.4 Quasi-empiricism as dialectical

Larvor's 1995 thesis explores the dialectical dimension of Lakatos's work in depth: he

quotes Lakatos as having the ambition to "become the founder of a 'dialectical'

philosophy of mathematics" (Lakatos archives, folder 12.1, quoted in Larvor 1995, p

2). Larvor makes a convincing case that the theory of dialectics - rather than 'mere'

fallibilism - is central to Lakatos's understanding of the nature of mathematical

progress'". Through the dialectical structure, formal structures are both further shaped

by criticism and the 'off-cuts' from shaping provide stimulus for new questions and

directions.

Classroom mathematics can also be 'dialectical'. The key requirement is that "a

'proof or falsified conjecture can show where to go next" (Larvor, p 92). This

dialectically based theory - that in mathematical work, there is an "intrinsic unity

between the logic of discovery ands the logic of justification" (Lakatos, 1976, p37) -

underpinned the 'investigations' curriculum in British schools in the 1980' s. In

40 the editors of 'Proofs and Refutations' suggest (Lakatos 1976, pI46, footnote 2*) that this "Heglian
background grew weaker as his work progressed."
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practice, ordinary children did not behave like Lakatos's 'pupils' and the freedom to

'investigate' did not, generally, stimulate a generation of children to discover

mathematics through their own research. Dialectics, can still be a basis for devising a

mathematics curriculum, but, nowadays, there is no longer the expectation that

ordinary pupils will spontaneously engage in mathematical research 'at their level'.

The teacher can introduce a dialectical progression through the classroom materials

she offers, but, of course, this does not imply that any given pupil will mirror this

progression in his thinking.

Lakatos's 'Proofs and refutations' classroom dialogue is hypothetical. It is designed to

illustrate the dialectical theory he was propounding by exemplifying, for example,

uses of counter example to refute or hone mathematical propositions. Larvor notes

that we can read 'Proofs and refutations' on three levels:

t. The level of classroom interaction. The 'pupils' conduct their own research. This

allows the reader to follow the logic of a mathematical investigation;

2. The level of a seminar in P6lya-style heuristics. Within the 'pupils" dialogue,

specific advances are made through heuristical reasoning (analogy, specialization) and

so these forms of reasoning are communicated in situ.;

3. The level of a philosophical investigation. What is the nature of a sound proof?

How are conjectures improved? The need to answer these questions comes from

actually doing mathematics. (see Larvor, op. cit. p 86)

The process of criticising the 'pupils" proof of the Euler formula at various stages

does give insight into the nature of what it is to mathematically convince. This idea of

'conviction' is intimately connected with warrant. It is to the warrants of learners of

mathematics that I now turn.

5.4.4.5 Quasi-empiricism and the classroom

Can quasi-empiricism be a mathematical warrant for actual students? In 5.4.4.2. I gave

an example. at the higher school mathematics level. that was intended to show that

mathematics could be quasi-empirical. Now. to return to the questions posed at the

beginning of 5.4.4:
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1. Can learners warrant their mathematical beliefs 'quasi-empirically'?

If this is possible then from a teacher's point of view it is important to ask:

2. How do learners of mathematics take on quasi-empiricism as part of their

'epistemic tool-kit'?

I shall take the second question first. The basic logical structure of quasi-empiricism is

that of modus tollens. And the most basic instantiation of modus tollens is a counter-

example to a conjecture: Let p be the conjecture and q a deductive consequence; if -,q

is discovered, then, by modus tollens, -,po

To grasp the logic of quasi-empiricism, a pupil has to be really convinced that one

counter-example can ruin a whole theory! 'Ruining' a theory that has been obtained

by the pupil has greater psychological effect than refuting some theory into which

little psychological investment has been placed. Many mathematical problems English

and Welsh children do for the Mal requirement of their National Curriculum include

devising a formula for a number pattern they have been unearthing from a geometric

or numeric context. The following problem, when interpreted by a pupil as an

exploratory task, may help them appreciate the finality of a counterexample.

7.4"'" '"*""". ~ it. uU,."."Je, _ uU 41. '1, ""'" ~ 4 ~ ~7 &~:

,.. de ~ '"*""" 3: 3><3+3+41=53. 4 ~I

A pupil with a facility in algebra would not need to explicitly test various numbers to

deny the question. But for those without this skill, repeated application of this

procedure, may have conjectured that it does return a prime. In such a case, observing

that 41x43 is the result of applying the procedure to 41, should effectively squash this

hypothesis. But more than that, it should help to reinforce that one counterexample

can 'ruin a whole theory'.

To tum to the first of the questions posed: Can learners warrant their mathematical

beliefs 'quasi-empirically'?
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Once the structural reasoning of modus tollens is in place, this logic can be used to

test procedures as well as - in the case of counter-examples - propositions. Let us

consider the following activity I have used in several classrooms both Y8 or Y9 and

YI2:

For the younger students, the purpose of setting this exercise might be to practice

decimal place-value; to introduce them to features of a calculator, for example, its

'power button' or its graphing facility; to experience the process of 'trial and

improvement'. For the older students the activity is an introduction to logarithms.

The younger students will not be equipped with a mathematical warrant for their

belief in the their numerical result (that, in the first case x :::::6.6439, in the second x ==

4.55556). Their result is but an empirical one that relies heavily on the functioning of

their calculator. Their work might result in a 'primitive conjecture', but they need to

ask themselves 'How do we know we have the solution?' and 'Why is it that

number?'; there are no reasons behind the answer other than 'I checked it and it was

close'. With the theory of functional inverses in general and the relation between

logarithms and exponentials in particular, the Y 12 student is able to solve the first of

these equations directly (with tables or a calculator). Whatever the precision of the

2
result required, it will just depend on the calculation .The theory of logarithms

log., 2

serves as the 'formal theory' that has been 'axiomatized' after the initial empirical

'play' in Y8 or Y9. Now the student tries to apply this formal theory to the next

question: XX = IO{){). The result of 'proceeding as before' is to find that x 10gIOx = 3,

but x cannot be extracted from this equation so easily. This 'refutation' of the 'taking

logs' procedure, both confirms the 'formal theory' and starts to delineate the

boundaries of that theory's applicability, ('these are the sort of equations this

procedure works for'). I suggest that this is an example of Lakatosian quasi-

empiricism at the higher school mathematics level. In this way, a student's belief in

2
--- being the solution to the first question is warranted by the combination of the
10gIO2

formal theory of logarithms together with a notion of where this is not applicable.
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I conclude that Lakatos's theory of quasi-empiricism can constitute a mathematical

warrant for those learning mathematics.

5.4.5 Can visualisation be a mathematical warrant?

This section draws on the work of Giaquinto (1989, 1992) who argues that

visualisation can be construed as epistemic: it can be knowledge producing. His

meaning of 'visualisation' means more than sight-perception, it also connotes this

warrant for certain mathematical beliefs. Giaquinto argues for 'visualization' being a

source of mathematical discovery. An implication of accepting his proposal is that

'visualizing' can be a mathematical warrant. Giaquinto emphasises that visualizing

and proving are distinct. It is because of this difference, that I want to explore the

claim that visualizing can constitute a mathematical warrant, itself and not just as a

psychological motivator for mathematicians.

5.4.5.1 What is Giaquinto's visualizing?

Giaquinto develops both his description of visualizing and his argument for

visualizing by considering a simple geometric configuration and asking a question

about a property. The configuration in question may be constructed as follows:

construct a square and the midpoints of its sides. Join the midpoints to form another

'middle' square. The property is that there are now two squares, one bigger than the

other. The question he asks is 'How much bigger is the original square to the middle

square?'

Giaquinto's emphasis in this paper is 'How can the answer 'twice' be justified in an

"epistemically acceptable way"?' His answer constitutes his claim "that visualizing can

be a means of discovering a geometrical truth" (p 384). In other words, his

'visualizing' can constitute a warrant for mathematical belief. Giaquinto makes his

case with reference to the example. Specifically, he claims that the belief is justified

through visualization if the following hold:

"(a) one feels that a future counterexample is not even an epistemic possibility;

(b) the putative evidence of sense experience is meagre at best;
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(c) one believes that the putative evidence is of a kind which could not warrant [such

a] belief "(p 388) ...

"(d) the phenomenology of looking and noticing is absent;

(e) one has a feeling of certainty in [the proposition] which is not undermined by

recognising the fallibility of inner observation" (p 391 )

This is what Giaquinto-visualizing is. Whether or not it is 'visualization' In the

ordinary language sense is not important.

What is important is whether there is, in Tahta's terms a "geometric imperative"

(1989) that can be used to "discover a truth by coming to believe it in an epistemically

acceptable way" (Giaquinto, p382). In Tahta's article, the notion of 'geometric

imperative could be summed up by his phrase: "One cannot not do geometry" (Tahta,

op. cit. p 27). If Tahta's term is used in a sense considerably narrower than in his 1989

article, then I think that what Giaquinto is trying to get to is a conceptualization of a

'geometric imperative' which is a-linguistic. Tahta's article gives many examples of a-

linguistic geometric experience; it does not concern itself with the epistemic issues

which are the focus here. A rephrasing of Giaquinto's enterprise, then, is 'assessing the

epistemic acceptability of the geometric imperative'. A feature that Giaquinto points to

is the intentionality of visualizing which is not present in seeing and which

'internalises' the geometric imperative.

The visual aspect of mathematics is most important and has received attention from

mathematicians, as well as educationalists (like Tahta, among many) and

philosophers. A mathematician that has written reflectively on this visual aspect is

Philip J. Davis (Davis, 1993). Davis uses the term 'visual theorem' to connote a wide

range of mathematical propositions which can be believed visually. His emphasis is

more on the mathematical proposition than the process of visualization; he does not

investigate the nature of visualization, but finds examples of mathematical

propositions the truth-value of which can be (presumably, in his experience)

apprehended through (what he considers) visualization. His point is that some

geometric truths are (naturally, in the sense of instinctively) comprehended visually.
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He asks provocatively: "do you think that vision can be totally algorithimized, co-

opted by [symbolic] mathematics?"

Davis offers several examples of 'visual theorems', one of which is the following:

In a circle C of radius 1, draw a smaller circle Cl contained in C. Draw a circle

C2 located in C and not overlapping Cl. Draw C3 in C overlapping neither Cl

nor Cj.

Can you keep drawing circles 'forever'?

For Davis, it "should be visually obvious that the infinite series L rn2 is convergent"

(where rn is the radius of circle Cn). He then says that it is "by no means obvious" that

the series L rn also converges, but encourages the reader to "determine the answer

and a way of looking at things so that it becomes obvious". In other words, use

'visualization as a means to discover a geometric truth'."

5.4.5.2 Anecdotal evidence of some of these requirements

Wanting to have a sense of a fresh view on the familiar configuration of Giaquinto's

geometric example, I decided to get my young son's response. Because I wanted to

communicate with him, I used a cut out square with the middle square marked; he

could not have processed a verbal description. I also realised that the language of

proportion, "How much bigger?", was inappropriate, so I asked him which was bigger

'all the outside triangles together or the square in the middle, or are they the same?'.

His direct response was 'the square's bigger'. I then asked him to fold each of the

triangles over their line (that was an edge of the middle square). He tried to get his

fold along the line, but not being very dextrous did not manage a very neat job.

Nevertheless, he then looked up and said 'they're the same'.

41 I 'see' L rn represented by a spiral - which could be topologically dense in C - from the centre of C

never quite getting to the boundary. So the length of this line is potentially infinite.
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What is the relationship between this young child's physical manipulation, and the

mental-manipulation that Giaquinto calls visualizing? Clearly, they are not the same.

The mental case includes calling up the possibilities-for-action in a way that the actual

manipulation of material cannot. It is difficult to assess whether the child did

recognise that it did not matter that the folding over was not exact, or whether he

could not distinguish between exact or non exact folding (i.e., between approximate

and precise equality). It is the case that he interpreted his action in such a way as to

transform his hypothesis, (a la Popperian falsification, perhaps).

My other child was also subjected to 'the example' (this time, in Giaquinto's language).

She is a competent YIO person, but did not get the answer straight away. She needed

to draw a diagram. On drawing her diagram, she saw (visualized) the middle square as

the 'square on the hypotenuse' of a corner triangle. By specialising the length of the

original square to 10 units, the area of the middle square was calculated using

Pythagoras's theorem as 50 sq. units, clearly half of the original square. As soon as she

had done this she said 'what a prat I've been!' and indicated her belief in the certainty

of the proposition by, what was essentially, the Giaquinto visualization.

The responses of both these novices can help understand the meaning of some of the

requirements for visualization given above in 5.4.5.1. In particular, the meaning of (d),

which initially can seem paradoxical, is explained: The younger child physically

manipulated paper to stimulate this visualization, the elder one drew a diagram, but in

both cases there was a catastrophic 'falling into place' of the spatial concepts and their

consequences. It is also interesting to note that for the older child, the initial

visualization (seeing with intention) was the Pythagorean icon. This is a legitimate

visualization from the diagram, but it was not until she knew the answer, that the big

square was twice the middle square, did she re-vizualise the situation. The

clarification of intention resulted in the more direct visualization.

5.4.5.3 Visualization includes mental-manipulation

The process of Giaquinto-visualizing is not just (mentally) seeing, but, crucially,

mentally manipulating. Giaquinto certainly emphasises manipulation, but seems to

conflate seeing and doing in the 'visualization' package. The example he focuses on
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does not seem to require a sighted epistemic subject, a square can be felt and so can

the folds and their (near) meeting. Action in our imagination on 'ideal objects'

'abstracted' from actual sensory experience is what he seems to be describing.

However, I think he would eschew this description because the 'scare quoted' terms

are contentious.

Giaquinto tries to get round this problem of incorporating action, by introducing a

'concept group of transformations'; the transformations idealise actions, like folding,

and are inextricably linked with the concept itself (squares and diagonals, for

example). He justifies incorporating these ideas into his argument by giving them the

status of data - they come from "empirical research in mathematics education" (p

395). However, what he uses as evidence, is not so much empirical as itself

theoretical: a network of constructs is developed to help those interested in learning

mathematics conceptualise the visualizing process. My point is that Vinner and

Hershkowitz have come up with ideas which may shed light on the same data, or

phenomena, but their theory does not properly confirm the philosophical theory.

Nevertheless, the data on which they both rest, can refute either. As an aside, it is

curious that Giaquinto conceptualises the 'folding' as a rotation, (this is clearly

incorrect - visualise a non-isosceles triangle!). Why should reflections not also be in

the 'concept group'? I think that the introduction of such constructs, which rely on a

mathematical-metaphorical element, (like 'group') deflects from the issue of

explaining the basic phenomenon of 'visualization as a means of geometrical

discovery' .

5.4.5.4 Visualizing and time

One of the features that Giaquinto stresses for visualizing is its immediacy, (p 394). Is

this tautological or consequential? Neither! My view is that to associate any

temporality with visualization is incorrect. I believe that this view can be justified by

reference to right and left brain functions. Just because, in the case of his example, he

immediately visualizes the folding comer triangles covering the middle square

exactly, it does not mean that a geometric imperative is instantaneous. Time is

actually irrelevant in visualization; for together with logic and language, time is a left

brain concept. Any attempt to visualize and be aware of time will, in practice, resort to
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a linguistic mode of thinking. Betty Edwards book 'Drawing on the Right Side of the

Brain' (Edwards, 1979) sets up experiences for understanding that statement which do

not really have a verbal explanation. In other words, visualizing is a-temporal rather

than imrnediate.Y

I want to consider an example that (i) indicates the possible a-temporality of

visualizing, and that (ii) convinces in the case of a geometric proposition. The

example is a play on the one offered by Giaquinto:

"How much bigger" is the area of a regular pentagram than the area of its central

pentagon? Twice as big? Less than twice as big? More than twice as big?

In this case, to divert a digression into trigonometry, a choice of possibilities is

offered. The result was not immediate to me (as Giaquinto's example was, which is

why I needed some input from novices in that case), but, by using 'the same' folding-

visualization the result becomes certain43. Using Giaquinto's criteria for visualisation,

the question of the comparison of the size of the whole pentagram with its central

pentagon, is answered as follows:

Compare these isosceles triangles on a common base: one triangle is one of the five

pentagram's star-petals and the other triangle is a fifth of the central pentagon (this

triangle's vertex is the centre of the figure), respectively. When a pair of these

triangles is folded along their common base

(a) it is impossible to imagine them as other than unequal - so a counterexample is not

possible;

(b) it does not matter how dreadful a diagram I draw or how rough a model I make,

the triangle from the pointed part of the pentagram is longer and therefore (because of

42 While a critic would claim that I am doing the very thing that I admonished Giaquinto for doing, viz.
relying on other theories, I would like to counter that I am using other data. In particular, I use personal
data obtained from working at the exercises in Edwards's book.

43 Some teachers would call this a 'geometric proof and Lakatos would have classed it as an 'informal
proof.
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their common base) larger than the triangle from the central pentagon part - so sense

experience does not augment the evidence;

(c) no measurement would be able to influence this comparison - so sense-experience

sort of evidence would not make any difference to the knowledge-status of the

proposition;

(d) the action of folding or visualizing folding is all that is needed to know they are

unequal. No further scrutiny is required. - So no further visual inspection will yield

more relevant information;

(e) the certainty I feel is to do with the necessary unequalness of the triangles - so this

is not undermined by my recognition that my inner observations are fallible.

I understood and contemplated the pentagram question well before I experienced the

visualization and yet, to satisfy (i), once the visualization was made, the truth of the

proposition was not a worry. How are visualizations 'thrust upon' one? Certainly, I

needed to have the concept of this geometric shape familiar, including the crucial

property that the angle at the vertex of the point's triangle was less sharp than,

(actually half of), the corresponding angle of the other triangle, before this geometric

fact could be visualized.

5.4.5.5 'Inner experiments' are not visualizations

The distinction between 'inner experiments' and visualisations is a difficult one to

make. I think it is right to try to make it for the following reasons (i) the 'eureka!'

quality of a correct visualization is a psychological phenomenon (see Hadamard

(1945) - not that all 'eurekas' are visual) and, as Giaquinto remarks, this phenomenon

should be incorporated into an account of mathematical discovery (ii) visualization

allows an ability to idealise, that the meaning of 'experiment' does not normally entail.

The problem that I have is that inner experimenting frequently precedes the

illumination of visualization, (sometimes by years - as I have said, time is an

irrelevance once the problem is part of one's subconscious). Indeed it is difficult to

anticipate how visualizing can take place without some sort of inner experiment - for

surely intentionality implies an element of enquiry which is, essentially, experimental?
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Experimental results can be in error, and Giaquinto does not claim either that

visualizing is exempt. He classifies four types of visualizing error (p 398-9):

1. failure to visualize what one intends to visualize

2. acquiring a false belief about what has been visualized

3. believing a general truth from an insufficiently general visualization

4. "vagueness and inconstancy of the images" (p 399)

Of these, 4 is a disclaimer and not developed; (I am not convinced that it is distinct

from 1). The description of errors 1 - 3 sheds further light on what it is that

visualization should be, or rather, indicates what a slippery concept it is.

I do not believe that there is a robust distinction between inner experiment and

visualization. Experiments incorporate the feature of scrutiny and subsequent noticing

of something; visualizations are intention-directed geometric presentations. For this

reason I tentatively accept them as knowledge - not 'just' belief - producing.

5.4.6 A visualisation (for the experience and the post-experience reflection)

As a post-script to the discussion on whether visualisation can warrant I offer this

visualisation. The task is (a) to try to visualise the situation presented below in words;

then (b) to assay whether the visualisation has potential for producing knowledge.

DESGARGUE'S THEOREM: Take three distinct circles. For each of the three

pairs of circles draw the pairs of common tangents; let q, r, and s be the points

where the respective pairs of tangents meet. Then, q, r, and s are co-linear.

Visualisation'": Take three (generally unequal) spheres, Q, R, and S, and place them

on a plane. Take another plane and rest it on 'top' of the three spheres. This plane

(miraculously) cuts through the other plane; it cuts through in a straight line. The

sphere R touches each plane once in r, and rh, say, and the lines r.s, and rbSbmeet at q

44 This was told to me by a Cherwell School student, David Norland.
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(and correspondingly for Q and S). The points q, T, and's are collinear because they all lie

on the line of intersection of the planes.

Although this visualisation seems three dimensional and the original problem was two

dimensional, just project the three dimensional version into the bottom plane. For generic

points of projection the two dimensional result holds.

5.5 Belief and its genesis in learning mathematics

Belief precedes knowledge. And a belief requires a warrant to be classed as knowledge.

This is the epistemological conceptualisation that I have been developing in this chapter's

previous sections. I have, in particular, been arguing that, for mathematical knowledge,

~ustified true belief' in a mathematical proposition is not enough. For the belief in a

mathematical proposition to be considered as mathematical knowledge that belief must be

justified by a mathematical warrant. While there is an obvious circularity about explaining

'mathematical warrant' in terms of mathematical practice, the plain state of affairs is that

we are trapped within our own discourse. There is no truly 'meta-warrant' (the

foundationalists' failure to 'globally' formalise is testimony to that). I have presented

various means of justifying which may serve as mathematical warrants - basic logic, quasi-

empiricism and visualisation - and assessed them in this regard. The distinction between

the notion of a 'cause of a belief and that of a 'justification for a belief has also been

noted. In line with Goldman's ideas about the intimacy of cognition and epistemology,

these notions are not neatly separable. As a trivial example, I might justify a beliefby some

reference to an authority whence the belief originally came. Nevertheless, I'd say that

belief causes are principally cognitive (within the domain of psychology) and belief

Justifications are principally conceptual (within the domain of philosophy).

5.5.1 Towards analysing student belief

I now want to tum to classroom specifics. According to the conceptualisation of

mathematical belief and knowledge which I have been developing, mathematics teaching

includes educating students
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(a) to recognise a mathematical justification - for which they need to be introduced to

specifically mathematical warrants

(b) to be aware of how (i.e., by which warrant) their belief in a given proposition (or

in the efficacy of a given procedure) is growing

If these two requirements were realised, a student should be able to move relatively

easily from his/her initial warrant in a belief, to a mathematical warrant. I have

observed, over many years work with students of all ages, that their connection with

their mathematical beliefs is often subject to the 'mother duck' syndrome: the first

'sighting' of some sort of justification is the one that remains with them.

5.5.2 Some types of student belief

Beginning a new topic in mathematics involves forming new beliefs. Progress towards

knowledge is made when those beliefs are justified. They become knowledge when

those beliefs are warranted. To flesh out the meaning of this statement, I want to

consider the topic of trigonometry - which is new for secondary school pupils - and

suggest some specific beliefs learning this topic involves. The typical leamer, in this

situation is between the ages of 12 and 14 years (in the UK anyway). These children

will already have beliefs formed about triangles and angles and other concepts that are

involved in trigonometry. I shall not attempt to delve further back in their cognitive

history, but to start, as a teacher has to, by making some initial assumptions about

'what they should know'.

A list of beliefs that are pertinent to early trigonometry is given below. (No claim is

being made for this list's uniqueness or completion). All the statements of belief

concern right angled triangles:

I-the side opposite the right angle is called the hypotenuse

2 - the hypotenuse is the longest side,.

3 - if you mark one of the smaller angles, call it a, then a is formed by the hypotenuse

and another edge of the triangle
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4 - this other edge is called the adjacent side to a

5 - the side of the triangle that does not help form a is 'opposite' this angle

6 - if the angles of the triangle are fixed, then the ratios of pairs of sides of the triangle

.are the same no matter what the size of the triangle

7 - these ratios have special names, for example, 'tan a' is the name for

'opposite/adjacent'

8 - sin a and cos a are always less than 1 (0 <a < a quarter tum)

9 - if a and the hypotenuse are given as actual numbers, you can work out (inter alia)

the opposite side's length using the formula: opposite = hypotenuse x sin a

10- tan Cl = sin wcos a

A classification of these propositions can be made according to how each proposition

might be justified by a pupil:

(a) information (1,4,5,7): the belief could come from an authority, in which case the

justification is authoritative;

(b) conseguence (2,3,6,8,10): the belief could come from a deduction, in which case

the justification is logical;

(c) perceived (2,6,8): the belief could come from sense-data, in which case the

justification is empirical

(d) operational (3,9): the belief could be related to action, in which case the

justification is procedural.

Clearly, for some students, 2, 6 and 8 can be 'consequential', I have placed them in

the 'perceptual' category too as this could be the belief forming mechanism.

This classification draws attention to different sorts of justification and requires

consideration of which of these constitute mathematical warrants. In 5.4.4.2, I

discussed the mathematical character of deduction. I shall develop the notion of
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procedural warrants further in Chapter 7, but this 'operational' category could be akin

to Vergnaud' s 'theorerne-en-acte' (Vergnaud, 1981) or a sort of procedural warrant

the like of which I discuss in the later chapter. By marking these categories explicitly,

the limited function of empirical and authoritative justification is apparent.

Nevertheless, the way a given proposition is justified by a given student is, of course,

personal. In the example above, a student may justify 2 by noting that the hypotenuse

is opposite the largest angle, a deductive consequence, or by measuring many

hypotenuses and observing the data (easily done with Cabri or similar dynamic

geometry package), an empirical consequence.

Proposition 6 in the list can be used to emphasise the distinction between the cause of

the belief and the justification of the belief. The initial belief may have been

stimulated by an empirical investigation given several similar right triangles (as the

activity in the text book SMP t 1-16, Y2 P 22). The 'justification' of the belief does not

have to be given by a corresponding perceptual-empirical reason - 'I measured them

and this is what I got' - but could be justified, for example, 'procedurally' by

subsequent enlargements or deductively, by recourse to similarity.

5.5.2.1 Belief development

Mathematics has both 'process' and 'content' components. The relationship between

these aspects of mathematics has been the focus of several people's research in recent

years. Sfard (1991), for example, considers these components 'dual' and uses

"different sides of the same coin" to indicate their mutual dependence. These ideas are

developed in Sfard's subsequent work, e.g., with Linchevski (Sfard and Linchevski,

t 994). In another school of mathematics educational thought, Tall and colleagues

have used the all encompassing term 'procept' to denote this 'duality': "a procept [is] a

process which is symbolised by the same name as the product" (Tall, 1991, p 254). In

terms of tracing the development of belief, the point is that a conceptual justification

at one level can serve as a cognitive cause of belief at another.

To exemplify this, consider the mathematical proposition "117, expressed as a

decimal, repeats." Suppose that Brian believes this proposition because his calculator
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displays I 0.142857142 I in response to the key sequence [2J0 I enter I; the
cause of the belief is his trust in the functioning of the machine (an authoritative

warrant) together with what he reads on its display (a perceptual-empirical warrant).

0.14285714
If Brian were able to do the division 7)1.00000000, and recognise that the sequence

of remainders from the divisions repeated, and would repeat indefinitely because of

the very process of executing the division, then I would say that this would be a

justification of the belief (using a procedural warrant) - and a mathematical one at

that! Indeed, once such a mathematical warrant has been used as justification, this

enactive competency makes it hard to appreciate the tentative nature of the previously

used belief warrants. Furthermore, to elucidate my point above, the explicit division

justification feeds (cognitive) causes for beliefs at the level of 'if I work out lIn as a

decimal by dividing I can only get up to n-l remainders before it starts repeating' etc.

So the belief formation process is entwined with the process of justifying beliefs, and

hence the justificatory warrants",

5.5.3 Data from students' work: some student justifications of the angle in a semi-

circle property

As a basic aim of a mathematics teacher is to help her students gain mathematical

knowledge, and if it is accepted that at least part of mathematical knowledge consists

of mathematically warranted true belief of mathematical propositions, then it behoves

a mathematics teacher to seek to detect the use of such warrants. In the following

discussion, in which I analyse students' work, I recognise that all I am able to do is

interpret the data rather than offer an argument for a proposition. My interpretation of

45 This is Lewy's point he makes in Wittgenstein's lecture: "Suppose we take:

1:7=0.142857142 ...

have I shown that these [emphasised] figures must come here when I've done the division simply? Or
have Ishown that they must come there only when I've proved the recurrence?

'" Lewy: By dividing, you've shown that those figures must come there." (Wittgenstein, 1976, pI20-1)
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the data suggests that there are robust differences between students' epistemic

functioning characterised by whether or not they employ mathematical warrants in

their public reasoning.

A class of first year prospective primary school mathematics specialists was given the

following question as part of their first assignment during their first half term at HE

college:

This question was designed to elicit their distinguishing between a mathematical fact

and a mathematical argument. The photocopied work of two out of the 36 students is

in Appendix 9.1; these two were chosen to exhibit representative responses from the

class. I want to discuss the answers given to part (i) and (ii) by students Emma and

Joanne, because their solutions indicate different ideas about what constitutes a

mathematical explanation. (To what extent their 'public' presentation of proof reflects

their 'internal' epistemic connection to the proposition they were asserting, can, of

course, only be surmised.) The reason why a three part question was set, was to give a

multi-faced opportunity for the students to establish their belief of the proposition. In

other words, opportunity for different justifications were encouraged, including, at this

stage, empirical ones. I was quite receptive to a demonstration of the angle in a semi-

circle property being suitable, as a response to 'devising an explanation'; some of the

students did give dynamic visual representations of the property.

On Joanne's answers

Joanne makes no use of any property of a circle; in other words she communicates no

sense of the 'formal structure' that the concept of 'circle' entails. A circle is something

she can see, and she is aware (p J 1) of practical limitations on empirical readings: she

observes that no drawing will be fully accurate and that she has rounded off a

measurement to 1 decimal place. However, she leans on the authoritative acceptance
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of the 'fact' of the proposition rather than persevere with a true empirical approach -

for she does not find the average of her results, but rounds them down to what the

answer 'should' be. On page 13, she symbolises the procedure of her calculations, i.e.

she attempts to set up a generalised use of the scalar product, but without use of

properties, no result yields. The 'alternative proof, on page J4, is essentially the same

as the vector proof - both essentially boil down to the cosine rule, with cos (quarter

tum) = 0, but J does not seem to see this sameness.

This work of Joanne's suggests that she has some inkling of a procedural warrant (how

to calculate a scalar product and that zero scalar product implies a right angle as

desired) but otherwise the justifications suggested are empirical and authoritative - not

mathematical warrants.

On Emma's answers

Emma works with symbols, rather than measurements; she recognises the requirement

of generality as 'working with any ..' (evidence on all three E sheets). But, as her first

attempt indicates, she was not in control of the procedure at this level of symbolic

representation: she drew a diagram of what looks to represent a general case then

proceeded with the calculations for a very special case; she, initially, perceived the

generality as being carried by the variable r. However, Emma redeems herself when

on page E2 she attempts a symbolic application of the scalar product which

incorporates use of Pythagoras's theorem. While her proof is not in standard notation,

it is decipherable and sound. For the part (ii) she has produced a proof of Euclidean

structure.

This work of Emma's suggests that, as well as a notion of procedural warrant, she has

a sense of deduction and falsification - mathematical warrants.

Epistemic connections - warrants - are not empirical notions: whether a student has a

belief justified by a mathematical warrant is not testable per se. For example, Emma's

proof on page E3 is acceptable - but it does not imply her epistemic functioning.

Warrants are theoretical notions, these examples are presented to indicate what

behaviours might be consonant with their use.

151



Chapter 5: Mathematical warrants

5.5.4 Belief and proof" Coe and Ruthven's study on students' proof practices

Some recent classroom research by Coe and Ruthven (1994) has also investigated

students' justifications of their mathematical results. These students, like those Ihave

just referred to in 5.5.3, were also studying mathematics at the 'higher school' level.

The study distinguishes students' conceptions of proof, i.e. in what does a proof

consist, with their ideas about the function of proof and of how mathematical insight

is achieved. The evidence offered in their article suggests that the students did not

have 'proof' as an abstract concept, although they did say that 'proof' was the means

by which certainty of mathematical propositions was ensured.

Coe and Ruthven's results can be interpreted in the light of the theory of mathematical

warrants for learners that Ihave been developing: the students may have accepted on

authority that proof was the way to be certain about a mathematical result, but few of

them used deductive-type proofs within their work. They asserted that proof was

warrant, but their beliefs were not thus warranted. The strategies with which they used

to present their cases for the mathematical results they had obtained in their

investigations "were primarily and predominantly empirical, with a very low

incidence of what could be described as deductive." (p 52). The exceptional student in

the study did exhibit behaviour that indicates that proof functioned for him as a

warrant for belief: "For Rod, however, it is the proof by induction which he has

produced that takes him from being 'not that certain' ... to being '100% sure' after the

proof' (p51).

Habits of perception and bodily action are crucial to our daily functioning. When we

move from an everyday activity to working on an abstract mathematical one, the

modes of reasoning are different and the warrants are distinctive. But how obvious is

this to a competent, but not exceptional, student? Not very, as the two sets of

examples reported above suggest. The current National Curriculum in England and

Wales emphasises 'social mathematics'. That is to say, it is a curriculum that is

weighted towards statistics and applications of measurement and reinforces a

seamlessness between 'the real world' and mathematics. There are advantages to this

approach, to be sure; the purpose of mathematics should be clearer for those studying

it, and that motivating factor is helpful.
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An implication from Coe and Ruthven's work is that any expectation that children

would, in the post-Cockcroft era, spontaneously understand the nature and technique

of mathematical proof, is refuted. The students had more idea of what the nature of

proof was said to be, than propensity to employ proof techniques. This is not very

surprising if they have not been taught proof techniques; proofs are difficult! That is

why, as stated above in 5.4.4.2, short, visually supported proofs of Euclidean

geometry have been considered a suitable introduction to this form of reasoning. It is

worth noting that the exceptional student had taught himself 'proof by induction'.

Those with, in Kutretskii's phrase 'a mathematical cast of mind' may spontaneously

develop the awareness that necessity is not a function of an inductive process, but the

appropriately competent 'higher school mathematics' student is likely to need explicit

teaching in proof techniques. A caveat is, as the thesis presented in this chapter

implies, that having a deductive warrant is more than the ability to regurgitate a proof.

The curriculum designer's challenge, then, is to provide a means of educating students

in the distinctiveness of mathematical reasoning without making the enterprise of

learning it alienating.

5.6 Conclusion

Formation of doxastic attitudes is the first stage in human knowing about

mathematical propositions. The justification of some of these doxastic attitudes

defines these attitudes as a person's beliefs. From there, if these beliefs are warranted,

they may count as knowledge. In this chapter, I have concentrated, not on the truth or

falsity of the proposition that is being investigated, (as we have to do if knowledge

claims are being made), but on the various ways beliefs are justified and which of

these are warranted.

What warrants are used in mathematics teaching and learning? A classification of

justifications which come from a set of beliefs that are typical for beginning school

trigonometry were sorted into 'authoritative', 'logical', 'perceptual', and 'procedural'.

There is no claim to be exhaustive, and I have already indicated that different warrants

might be employed by different people to believe the same proposition. Although

'authoritative' is but one of the forms of justification, and an inevitable one if school
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students are to be inducted into a 'community of practice', (in the sense of Lave and

Wenger, 1991), I suspect that many kinds of mathematical beliefs held by students are

actually only justifiable via this warrant. There is a negative connotation to the word

'only' in the previous sentence because, I assert, that, despite the importance in belief

formation, an 'authoritative' justification is not a mathematical warrant. Here is a

paradox then: we can't do without a 'community of practice' to support mathematical

learning, but the warrants for belief in the mathematical propositions held by that

community cannot just be the 'authority' of the community itself; to be mathematical

belief, the justification must come from other warrants. In mathematics learning,

progress is made when students to shift from using authoritative or perceptual-

empirical justifications to using logical or procedural ones. To follow on with the idea

of tracking warrants for beliefs: we can envisage the situation where the teacher,

having taught the students, might attribute her student's warrant for belief as, say,

deductive, yet the student's warrant is authoritative. When it comes to practice,

epistemic modality - what is believed, known, or taken to be true - in mathematics

learning is significant.

Unless awareness of type of warrant is brought to the fore, students' beliefs about

mathematical propositions are likely to remain at the level of 'Do I assent to this or

not?', rather than, 'If I am to assent to this proposition, what is its warrant?' So for the

student the question to be asked is: what is the sort of justification that has helped, or

might help, me believe this proposition, and is this the same sort of justification which

will enable me to know the proposition's truth value? For the teacher, the analogous

question is, through what justification am I expecting the students to take on this

belief, and is this the same form of justification through which I hope that they will

warrant it? As I have said, a change in the method of justifying belief in mathematical

propositions is both essential to the student's formation of mathematical knowledge

and difficult to achieve.
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6. Chapter 6:Mathematical Objects

The real problem that confronts mathematics teaching is not that of rigour, but the
problem of the developmentof 'meaning', of the 'existence' of mathematical objects. (Rene
Thom,I973)

Content is the key. There seems a need now to return to the mathematical objects we are
studying (Richard Noss, 1995)

6.1 Introduction

This chapter is concerned with the 'stuff of mathematics: numbers, geometric properties,

ratios, theorems etc.; these are - in some sense - 'mathematical objects'. In the previous

chapter, on mathematical beliefs, their genesis and growth, I argued that mathematical

knowledge required a 'mathematical warrant', the nature of which was discussed. Here, I

shall argue that mathematical knowledge requires an ontological commitment to

mathematical objects. This argument, then, firstly requires a discussion of mathematical

objects, (including in what sense this term has a referent), from which the question of

why 'knowledge' requires ontological commitment is developed.

In this chapter, I argue for - in the technical sense as discussed in chapter 4, - realism in

the philosophy of mathematics. This is part II of the overall thesis. This is to develop a

referent for 'mathematical objects', 'commitment' to the existence of which is part of

learning mathematics. While this advocacy of realism may be inspired by mathematical

experience, the motivation to develop an understanding of what this philosophical

mathematical realism means and implies is generated from my interest in finding out how

these ideas apply in education. My argument does not deny the importance of agreement

(within a 'community of practice', say), nor the power of notations, but demonstrates a

realist vein in mathematics. I want to claim that mathematical objects are not 'just'

notations - as in the nominalist position - or that mathematical objects are not 'just'

socially agreed conventions - as in the conceptualist position. And furthermore, that this

hybrid position - with a realist core - is educationally apt.
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Realism's standard ontological position is that there exist (at least some) mathematical

objects. This statement is vigorously disputed by Kitcher who presents a realist theory

based on idealised actions rather than objects (see 6.6). For educational considerations,

epistemological consequences of this ontological position are obviously important. This

is where the notion of 'ontological commitment' comes in.

Let me recap on what I am trying to show: from a teacher's point of view, the students or

pupils (in H.E. or school, respectively) need to 'grasp' 'objects of mathematics' to be able

to progress in the subject. For example, we do not expect great success of students who

try to solve a differential equation without the notion of rate, or try to work out

percentages without the notion of a hundred. However, the scare quoted terms entail,

respectively, epistemological and ontological assumptions, which are entwined. The

assumptions or ideas underpinning the phrase 'grasping objects' could be realist or anti-

realist. I argue that a realist position is philosophically defensible, compatible with

mathematical practice and educationally efficacious.

6. J. J Outline of the chapter

I try to make a case for philosophical realism in higher school mathematics as follows:

(a) some other philosophical positions are criticised briefly

(b) promising realist theories of mathematics are presented and critiqued and an

educational version presented

(c) the notion of 'ontological commitment' is discussed generally and with reference to

mathematics students

Explicitly, the thesis is developed as follows: Firstly, in 6.2, referring to the philosophical

schools described in Chapter 4, I make a case for rejecting nominalist and conceptualist

ontological positions, (that mathematical entities do not exist, that mathematical entities

are linguistic (in a broad sense), respectively). By elimination this would seem to leave a

realist position. Then, in 6.3, further weight is given to the realist conception in terms of
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evidence from practitioners and a defusing of some of the folk-interpretation of

platonism.

I then tum to different contemporary realist theories of mathematics. Maddy's forthright

realist theory is presented and critiqued (6.4). then Resnik's and Bigelow's views are

presented more briefly in 6.5. In 6.6, I review Kitcher's position which challenges the

notion of mathematical object from a realist perspective with historical sensibilitites. I

follow this with some more historians' interpretations of abstractions in mathematics.

From an amalgam of these, I put forward an 'educational realist's' view in 6.8. I claim

that this realist conception can support a non-metaphorical notion of 'ontological

commitment', which is the notion that I am claiming is integral to learning mathematics.

In order to make this claim, 'ontological commitment' has to be explained. This I do in

6.9, with reference to British-American philosophical tradition and to classroom

experience. I then summarise my claim that a realist and abstract sense of mathematical

objects can be defended.

6.2 Towards an argument/or realism in discussing mathematics learning

Here I suggest some inadequacies with some theories competing with realism. If these

criticisms are accepted, then in a simplistic sense, this leaves realism by default (except

that another, further, category could then be conceptualised!) Criticism of anti-realist

positions are presented in order to prompt consideration of the desirability of the realist

alternative rather than to prove it.

6.2.1 Rejection of nominalism

The nominalist thesis was not designed with genetic epistemology in mind, i.e., problems

about coming-to-know did not stimulate this philosophy of mathematics which claimed

that, ontologically, mathematics was redundant. If, as nominalists claim, mathematics is

but 'useful fiction' for describing science, then what other way would there to be to learn

about this system of language and derivations if not through science? That is,
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mathematics, learnt authentically, from a nominalist stance, is learnt as a set of notations

for science.

So what are some consequences of really taking mathematics as 'just notations' used in

science? The nominalist assumption is that there is nothing but the physical

phenomenon": The following example from Newtonian mechanics is intended to

illustrate the problem of taking the 'formal fiction' line. I think that it reads quite

strangely, but I believe that this is because I genuinely find nominalism hard to

conceptualise as a philosophy of mathematics which includes epistemology as well as

(lack of!) metaphysics.

A stone is dropped from a known height. What mathematics can be learnt from the

physics of the situation, given a Newtonian framework?

The point of posing this question is to investigate problems of epistemological access

when mechanics is ontologically prior to mathematics, i.e., when a nominalist position is

taken.

I shall consider nominalism from two perspectives: scientific priority and formal priority

and illustrate why neither perspective is likely to be a suitable one for learning

mathematics.

6.2. J. J Mathematical generalities; scientific particularities

The stone falls. Newton's theory tells us that the stone 'accelerates'; is this not a

mathematical concept? Not quite: a 'mathematics' student in the nominalist school would

be able to make and record measurements, from which she could be reasonably expected

to learn about acceleration. But acceleration is a particular instance of a more general

concept of rate of rate of change. How does a student in the nominalist school grasp this

generality, which is typical of mathematics? She cannot do it in a 'nominalist' fashion,

46But the notion of 'regularity of nature' depends on structure: mathematical notions are already implicit.
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because, by definition, only particulars can be apprehended. Nevertheless, the generality

of the second derivative does not exist outside of its presentations in science (which is a

consequence of the scientific nominalist position). This is paradoxical and, so,

unsatisfactory .

6.2.1.2 Just notations: 'black boxes' and meaning

The discussion above took nominalism as a system accepting scientific ontological

priority. While this is very much Hartry Field's approach, often nominalism is construed

as formalism", where a 'meaningless', but logically precise, system of deduction is

imported to science. In this conception, the time, say, the stone takes to fall from rest is

proportional to the square root of the height from which it was dropped. The formula is a

'black box', it has no meaning in and of itself.

From a classroom point of view, this 'black box' approach is both recognisable and

undesirable. It is recognisable because, despite intentions to the contrary, students do

(sometimes) 'just' plug in data to their 'black box' of a formula to yield a numerically

acceptable answer; they do answer instrumentally rather than relationally (Skemp, 1976).

It is undesirable because manipulation of a formal 'fiction' is an anathema to the aim of

the students 'grasping' the notion for themselves, for it to be meaningful for them.

So desirable relational understanding is essentially anti-nominalist. That is, relational

understanding involves apprehension of structures - such as 'proportional to the square

root' - which are not fictional. Such structures are examples of 'mathematical objects'.

6.2.2 Rejection of conceptualism

The idea that mathematics can aid our conceptualisation of the world is indisputable. But

the conceptualist thesis goes further: it states that there is no essential mathematics;

47 Hilbert, doyen of formalism. did not work mathematically this way. According to Courant (1980).
Hilbert's own epistemological access to mathematical ideas was through cases study analysis and intuition!
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mathematics is Gust) part of our conceptualisation of the world. Indeed, mathematics is a

profound, detailed, symbolic language; truths of mathematics are a function of the rules

and constituents of that language, verified by the community of users". Knowledge of

these truths requires, therefore, prior initiation into the community of users. The particular

conceptualist thesis due to Dummett, was discussed in chapter 4. In this section, I develop

a more specific argument against conceptualism in mathematics education, through

analysing a recent paper by the social constructivist mathematics educator Paul Ernest

(Ernest, 1997). Social constructivism is a sub-branch of conceptualism in Quine's (1953)

and Tiles's (1996), sense which I have adopted'". Before turning to Ernest's paper, I make

two general criticisms of social constructivism.

Firstly, mathematical knowledge can exist outside the mathematical community although,

clearly, communication of mathematical ideas is helped by a common notation and

recognition of rules of inference. For example, Ramanujan's notebooks are fiercely

difficult to penetrate (e.g., Berndt, 1994), but those able to get to Ramanujan's results,

even though he was outside their community, have, nevertheless, found propositions

which were true. The existence of this man and his results can be construed as evidence of

mathematical knowledge existing outside of the mathematical community. It can be

denied as being such evidence if (a) Ramanujan's results 'were not knowledge' or 'were

not true' until Hardy checked them (b) Ramanujan was, despite isolation and idiosyncratic

education, a member of the mathematical community. I do not accept these objections. An

alethic conception of truth does not require a truth be known. The notion of a community

does not include all those, hitherto unknown to the community, who may yet do

something the community values, for this logically includes everybody! Hence, the

48 The idea that 'knowledge exists only on the social plane' has been attributed to Vygotskii (Lerman,
1994b), but I interpret what small proportion of Vygotskii's writing I have read as making the weaker
statement to the effect that there is such a thing as social knowledge. And I agree with this, (Van der Veer
and Valsiner, 1994, p353).

49 Kitcher does not have quite the same sense of conceptualist. His vital cleavage is between a priori and a
posteriori, rather than between realism and anti-realism.
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possibility exists for knowledge to exist prior to being shared. This is my first objection to

conceptualism (in the form of social constructivism).

My second objection comes from the conflation of concepts this perspective seems to

involve: in particular, the theory conflates epistemology and metaphysics due to defining

away the existence of abstract objects, (although the terms may remain as linguistic

items'"), The paradox that we (cognising beings) can know about abstractions is resolved,

but only at the expense of doing away with one of the concepts involved (abstractions)!

Conceptualism is a possible approach, to be sure, but one which is not mathematics-

practice centred, Le. it does not seem to help in answering the question which is

concerned with learners' 'what is it to know specific items of mathematics, like 'infinity'

or 'axiom' or other specific abstractions?'. While conceptualists are able to construe

'knowing mathematics' as part of a social discourse, the crux of the individual learning

specific mathematics is avoided.

I now tum to a more detailed analysis of a conceptualist notion of mathematical objects:

6.2.2.1 Outline of Ernest's conception of 'mathematical objects'

Paul Ernest's recent paper on mathematical objects sets out to explain in what sense the

"objects of mathematics" exist, what they are like "and indeed their objectivity itself'

(Ernest, 1997, p l) from a social constructivist perspective. There is no argument for

taking this perspective, for Ernest's position in this regard is explained more fully in his

1991 book".

:50 Dorfler (1996) goes a step further - he assumes that "mathematical objects can't be granted an ontological
existence and reality" and then claims that any metaphorical talk about mathematical objects leads to a sort
of "psychological Platonism", which is, from his view, a priori unacceptable.

'lIn this 1991 book, Ernest's adopts a social constructivist view of mathematics because, roughly, that
philosophy of mathematics is anti-'absolutist', descriptive (rather than prescriptive), accounts for fallibility
and mathematicians' practice. (Ernest, 1991, ppI8-26)

161



Chapter 6: Mathematical objects

In this 1997 article, Ernest gives arguments for his explanation of the nature of

mathematical objects as "among the social constructs of mathematical discourse" (p l), In

particular, he claims that the idea that there is something real "behind the signifiers is the

result of the reification which is part of mathematical culture" (p7). This idea can be

interpreted on two levels:

a) "the objects of mathematics ... are cultural constructions", (p7), can mean that tt,

probability and polyhedra, and so on, are object-like, in the sense that they are

considered by the culture to be 'enduring and objective'; this is the social statement.

b) "the objects of mathematics ... are cultural constructions" can also mean that tt,

probability and polyhedra, etc. are 'enduring and objective' to members of the culture;

this is the individual's statement.

I want to try to clarify his two-stage aspect of the cultural dimension through an analogy:

say British culture considers some defined group of people52, X, worthy of compassion;

this is the social statement, but no individual attribution of compassion can be made.

Irrespective of culture, an individual may have a feeling of compassion towards members

of X. As should be apparent, I believe compassion can exist independently of whether it

is nurtured by a culture. And those raised in a community in which compassion is

considered a virtue, may yet not experience the feeling. So analogously, the 'enduring and

objective' nature of mathematical objects need not be felt my all members of the

community and may yet be felt by someone outside.

The method, by which Ernest tries to show that a social constructivist account can explain

mathematical knowledge, is semiotic analysis, inspired by Rotman (1988), (p 1). Ernest

clarifies some technical semiotic terms - signifier/ed; signifier token/type - then

investigates the relationship between the signifier, (symbol or notation), as well as the

signified, (mathematical object). He asks about the connections between signifier and

52Set X could be AIDS suffers, ex-servicemen, people with Down's syndrome, etc.
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signified. Specifically, he challenges that no guarantee of identity can be given to the

signified - this is the main point he wishes to argue.

Ernest's argument proceeds, firstly, by using Popper's 'World 3' (of objective abstract

knowledge) to explain a feasible connection between mathematical object and its

symbolic referent via the 'objective knowledge' in received mathematical texts. He then

aligns World 3' with a 'transcendental Platonism' (using Irvine's 1990 term, see below,

6.4.1.4), which is contrary to the social constructivist hypothesis.

The second phase of the argument is to explain the relationship between mathematical

objects and texts. For if 'World 3' itself is not acceptable, there is a lot of seemly

'objective knowledge' lodged in texts. So, in what sense do the content of mathematical

texts have 'object status'? Ernest quotes the continental philosophers who advocate that

there many interpretations of texts, "texts do not have unique signifieds" (p6). This

potential indeterminacy is corrected by Ernest's Wittgenstinean solution of a "holist

conception of meaning" (p6): the participants in the language game create the meaning of

the textual item. This meaning is not unique, but mediated by contextual use and

normative discourse. This comes to Ernest's main conclusion: "the ontology of

mathematics is given by the discursive realm of mathematics" (p7).

6.2.2.2 An argument against this conception of mathematical objects

My first objection to this thoroughly thought-through view of mathematical objects is,

despite all the scholarly detail, that the proposition that is either trivially true or not

proven.

Under what circumstance is this proposition 'trivially' true? Recall, that from the social

constructivist perspective "objectivity itself will be understood to be social" (Ernest,

1991, p42). That is, 'objectivity' is defined in such a way that social knowledge 'must be

true'. Then if mathematical discourse is an aspect of socially received knowledge, its

'ontology', i.e. its objects, may have 'objective' properties. So the proposition is trivially

true because Ernest accounts for the 'objectivity' of mathematics by construing the
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discourse of mathematics, part of the agreed knowledge of the community of

mathematicians which includes the 'true by social fiat'.

Under what circumstances is the proposition "the ontology of mathematics is given by the

discursive realm of mathematics" not proven? To try to show this, recall the more

standard English meaning of the word 'objective', (for to assume Ernest's definition

reduces the proposition to the trivial case discussed above): "Belonging not to the

consciousness or the perceiving or thinking subject but to what is presented to this,

external to the mind, real", (Concise Oxford Dictionary). Now, I claim that there are two

notions of 'discovery', for which we have evidence, which are themselves evidence that

there is more to mathematical ontology than discourse.

The first is the notion of 'unwelcome discovery': 18th century algebra techniques, when

applied to infinite series, gave false answers, or paradoxes. The mathematicians of the

day, Cauchy et al. were disturbed by "unreliable tools" (Kitcher, 1984, p 249).

The second is the notion of discovery of a new particular: to show this I quote W. W.

Sawyer in his reply to Ernest and others (Sawyer, 1992). Sawyer explains that he has a

conjecture about the eigenvalues of a certain integral equation. He says:

"But I am sure that the guess is concerned with something of an objective nature. It

may be true or it may be false. Whichever it is, once the problem has been formulated

with this degree of precision, the matter is out of our hands. There is nothing anyone

can do to alter the answer." (p46)

Ernest has not convinced me that the 'objectivity' of unwelcome discovery or of 'new

particulars', of which Sawyer writes, are integral to the 'discursive realm' of mathematics.

While I do think the substance of what Ernest is saying does not convince me, there is

much in the spirit of what he is trying to get to which is vital and relevant to thinking

about 'how to come to know' mathematics. For example, in the 1997 paper, he does try to

unpick the detail of the nature of the entities of mathematics with respect to the media

('texts') through which they are communicated. By using semiotic theory, Ernest develops
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an account of the relationship between notations and their referents. Signifiers are to be

taken as identical when there are "permitted transformations" (pS). But, true to form,

these transformations which convert one signifier into an equivalent one are deemed to be

part of the language game or 'form of mathematical life'.

6.2.3 Towards realism: summary

From the three basic ontological positions, nominalism, conceptualism and realism, I reject

nominalism and conceptualism. The problem with nominalism is that it is impossible to

learn mathematics, all we can get to are formal structures and conventional notations.

Teaching experience and cognitive psychology explain the paucity of that approach. The

problem with conceptualism is that it fails to link to the material world of physical

experience, save by linguistic conventionalism which has no necessary force. In particular,

a strict interpretation of a 'social constructivist' perspective a la Ernest, is either trivial

(what a 'community' claims to know is knowledge because knowledge is determined by

the 'community') or false (mathematics can theoretically be discovered by those outside a

'community'). This rejection of formal ontologies does not mean that I do not recognise

nominalistic or conceptual aspects inherent in the enterprise of learning and teaching

mathematics. Perhaps it is because so much in current British school education is formal

and conventional that I feel motivated to try to develop a position which expresses 'what

mathematics really is' outside of marks on paper or social discourses.

6.3 From Plato's beginnings ...

PIato invented a wonderful image: the world of Forms. It has been such a powerful

metaphor that it is still in Western culture after more than two thousand years! In terms of

the discussion here, what is the seed that Plato's dialogues contributed to contemporary

ideas about mathematics and education? I claim that, at least, Plato offered the idea that

mathematics is stable, that mathematical truths are not a function of time or place or

person. From this we .get the idea of mathematical truth as independent of given minds -

mathematical propositions are true by virtue of what is, albeit in the world of Forms,

the epistemological accessibility to which requires argument. This conception of..
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mathematics is fertile ground for the notion of an 'objective' mathematical entity. While

post-Kuhnian historians of mathematics have good arguments to challenge this view

(Gillies, 1992, Grabiner, 1986), at a naive level, ideas like 'the Circle Form' can make

sense as a way of understanding circles conceptually. Even if this naive sense were

granted, as it is well known, where Plato's ontology becomes unacceptable is in its link

with his epistemology: Plato's theory is that we 'recollect' knowledge from a previous life

(e.g. Meno, trans. Guthrie, 1956, pp 138-9). Although this solves the inacessibility

problem, it is untenable given today's cognitive science, where causes for cognition are

sought in our current life-time!

6.3.1 On accounts of mathematicians' practice

'Platonism', roughly, the idea that (some of) the content of mathematics as permanent and

objective, is still alive in mathematicians as well as philosophers. In a popular book, the

mathematician Roger Penrose, without obvious irony, claims:

"One's mind makes contact with Plato's world whenever it contemplates a

mathematical truth, perceiving it by the exercise of mathematical reasoning or

insight." (1989, P 205).

Another mathematician, makes a similar claim more defensively:

"I must warn you that, as with many mathematicians, I am at heart a Platonist. I don't

know whether we invent or discover mathematics, but I do believe that, at least once

a mathematical object has been invented/discovered, it is independent of us: it is

objective." (Gold, 1994, p 21)

And from Davis and Hersh there is the humorous adage, well known in mathematics

education circles, that:

"the typical working mathematician is a Platonist on weekdays and a formalist on

Sundays" (1981, p 321)
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Not all mathematicians need have platonistic tendencies. Poincare, as quoted by

Hadamard (1945) was an idealist. But it seems to be a psychological attribute of practice

that, at least at the moment of mathematical work, the mathematical content has a referent

as real as love or death or a handful of radishes. The philosopher's job is to make sense of

such data.

6.3.2 Is platonism the same as realism?

Certainly these terms are very close in meaning and they are used synonymously by some

(for example, Davis and Hersh, 1981). But there are some distinctions. Inmy reading, it is

possible to be a platonist and an idealist - an exemplar of this position is that of Berkeley.

The position of Field, or other similar nominalists, is that they are realists, with respect to

science, but deny mathematical entities at all. Hence they cannot be platonists. But this

argument is open to the criticism that they are not mathematical realists at all. Be that as it

may, my point here is draw attention to some subtleties in these terms.

To show that platonism does not imply realism: Idealism is a term, older than Dummett's

'anti-realism', that connotes the position complementary to realism. Berkeley was an

idealist in the sense that he did not attribute existence, per se, to objects of experience ".

He was also an empiricist because he took sense-data as the primary cause of knowledge.

But these data were not caused by the objects in themselves but by the mind of God ..

Berkeley was a platonist for he would have asserted that mathematical entities do exist

independently of human thought.

6.3.3 Platonism and realism: summary

The key thing about realism in mathematics is that there are mathematical propositions,

the truth-value of which are not determined by human consensus, (even though, trivially,

53 Although Kant considers Berkeley an idealist - and argues against his position - (trans. Kemp-Smith p
244), Dummett suggests that Berkeley was a "sophisticated realist" (Dummett 1992 p 464). Dummett takes
this view, I suggest, because Berkeley's notion of truth was not semantic.
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human agreement about such a truth value is a function of a consensus). Platonism, by

contrast, does not have such a tidy definition. For some writers it is a term connoting the

advocacy of Plato's Forms - either disparagingly like Davis and Hersh or acceptingly like

Penrose - for others it is a convenient label to indicate objective existence in mathematics.

And it is this perspective which contemporary philosophical writers tend to employ. For

example, adapted from Irvine's list of attributes of platonism, Irvine, 1990, p xix,

discussed further in 6.4.1.4., we have the stipulation that mathematical entities are not

space-time particulars, yet we can refer to them and have knowledge of them, and the

statements of mathematics possess truth-values independent of human thought.

In the following sections, 6.4 - 6.6, I present some contemporary realist theories from the

philosophy of mathematics, which will be interpreted with respect to their efficacy in an

interpretation for mathematics in education. The theories are of two main types

distinguished by whether their primary focus is ontology or epistemology. As a

representative of the 'ontological' theories, I focus on that of Maddy (principally from her

1990 book), and briefly mention Resnik's and Bigelow's positions. As a representative

of, 'epistemological' theories I focus on Kitcher's (from his 1984 book). In either case,

ontology requires explanation of how we know and epistemology requires explanation of

what we know. In terms of application to education, Maddy's ontological precision is nice

but difficult to interpret for learners, whereas in Kitcher's wide ranging evolutionary

realism it is difficult to specify what students learn experientially, despite the reality he

attributes to mathematics.

6.4 Maddy's theory

Mathematics is part of the physical world - parts of it are perceptible! This is Maddy's

claim which she has been developing since the early 1980's. It is a view distinct from,

though not incompatible with, the notion that mathematics is part of a social world.

Maddy calls her distinctive philosophy of mathematics 'set theoretic realism'. In a nut-

shell, the theory is based on the claim that sets can be perceived. The purpose of this is to

allow the modem foundation of mathematics - set theory - to be realised perceptually.

This gives a perceptual core to these mathematical foundations and hence the crucial
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scientific link she wants for her explanation of mathematics which entwines science with

mathematical practice.

Maddy's theory links mathematicians' practice with the physical perceptible world. Links

between these two domains are, of course, of interest in mathematics education.

6.4.1 Background to Maddy's realism

The influences shaping Maddy's developing theory are briefly described in the next four

sections.

6.4.1.1 "Quine/I'utnamism"

Quine's influence on Maddy comes chiefly through his theories of naturalised

epistemology. This is the idea, briefly, that we cannot stand outside our theories of the

world:

"The old epistemology aspired to contain, in a sense, natural science; it would

construct it from sense data. Epistemology, in its new setting, conversely, is

contained in natural science as a chapter of psychology .... There is reciprocal

containment..: epistemology in natural science and natural science in epistemology"

(Quine, 1969 p 83)

Maddy reports that Quine rejects the double standard of considering mathematical entities

as purely linguistic, but physical entities as real, and that this is compatible with Putnam's

view that we could not have contemporary physics even formulated without mathematics.

Thus these philosophers endorse an 'indispensability thesis': mathematics is

indispensable for science (e.g. Maddy 1989, pp 1132-1133). In other words "successful

applications justify, in a general way, the practice of mathematics" (Maddy 1990, p 34).

So, if it is granted that advanced scientific theories have an integral mathematical

component, (quantum mechanics is a standard example), then if the science holds, the

mathematics is also confirmed. "Quine/Putnamism" is the term Maddy coins for their

judicious amalgam of 'common-sense' and 'scientific' realism: what common-sensically
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exists are those medium-sized objects of our perceptual experience and "the considered

judgement of science is the best justification we can have." (1990, P 13). This is, thus, a

'two-tier' theory without a particularly mathematical component: the lower tier is

common-sense realism the higher tier is scientific realism in the form of current science.

6.4.1.2 Godel's platonism

Godel also advocated a two-tier philosophy of mathematics which was similar to Quine-

Putnam's on the higher level. Unlike Quine and Putnam, Godel's 'lower tier' was tied to

mathematics. This lower tier consisted of intuitions of mathematical truths. These

necessary truths were perceived by a faculty analogous to that of sense perception in

science. As Maddy puts it: "the simpler concepts and axioms are justified intrinsically by

their intuitiveness; more theoretical hypotheses are justified extrinsically, by their

consequences. This second tier leads to departures from traditional Platonism similar to

Quine/Putnam's. Extrinsically justified hypotheses are not certain, and, given that Godel

allows for justification by fruitfulness in physics as well as mathematics, they are not a

priori either." (1990, p33)

Godel was significant to Maddy (Maddy 1990b, p 266). For after all, she wanted to

explain the ontology involved in mathematical practice and here was a mathematician,

with impeccable credentials, who advocated a form of realism. Godel's philosophy

contained the "flabby" (p 35) notion of intuition at its lower tier but concurred with

QuinelPutnamism at the higher tier. How can Godel's theory be made philosophically

rigorous? Maddy's 'set theoretic realism' is an attempt to keep the spirit of Godel's

philosophy within a stricter analytic philosophic framework. She aims to replace the

lower tier (of either theory) by set theory perceived. In this way she should satisfy both

Godel and Quine/Putnam: the lower tier is both mathematics and it is science.

6.4.1.3 Realism and epistemology: the problem of access and the Benacerraf syllogism

Without begging the question about the existence or otherwise of mathematical objects.

there is a well received sense in which mathematics is supposed to be about abstractions.
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Roughly, it means that what one works with in mathematics are not space-time particulars,

for example, the motion of a ball through the air may be modelled by a parabola (given

requisite parameters). The particular motion of the ball is indeed a space-time particular,

but the structure of the model is a mathematical abstraction. The members of the class of

such abstractions are 'mathematical objects'.

The classic question, going back to Plato, is 'how do we get to know about these

abstractions if they are not part of our experienced world?' For although the path of the

ball is part of the physical world, the parabola-as-model is not. As I have said, Plato's

answer was that we recollect them from a prior existence. Anyway, theories of knowledge

evolve in time and in the 1970' s a theory known as the causal theory of knowledge (see

Benacerraf, 1973) was in vogue with analytic philosophers, the school of whom nurtured

Maddy. This theory asserts that

(i) there must be a causal connection between that which makes a belief true and

the epistemic subject holding the belief

Now, think back to these 'mathematical objects'. They are abstract. This means that

(ii) they are causally inert,

they do not change, like the energy of a moving particle on interaction, nor do they

stimulate the senses as my cup of coffee does. Benacerraf (op. cit.) noticed that (i) and (ii)

implied that there is no possible knowledge of mathematical objects! Although Maddy

observes, in her 1984 paper, that the causal theory of knowledge has been refined to a

'reliabilist' theory, this 'Benecarrafian syllogism' captures quite nicely the traditional and

pervasive problem of gaining access to the subject matter of 'ideal' subject matter typical

of mathematics.

6.4.1.4 Physicalistic platonism

In 1990, a collection of articles, 'Physicalism in Mathematics', edited by A. D. Irvine,

was published as a result of the Physicalism in mathematics: Recent work in the
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philosophy a/mathematics conference, held at the University of Toronto. Maddy's article

in this collection is entitled 'Physicalistic Platonism' (Maddy, I990b ). This title is a

provocative oxymoron which indicates her determination to work with truly mathematical

entities within science! Maddy chooses to develop her theory under the 'platonistic' label

even though her theory does not concur with all of the features of platonism listed by

Irvine in his introduction to the collection (Irvine, 1990, p xix). In particular, Maddy

rejects no. (ii) on Irvine's list of points characterising platonism: "[mathematical] entities

are non-physical, existing outside space and time" . She rejects this notion of an inert

abstract entity (Maddy, 1990, p 21) because of the 'accessibility' issue discussed above.

In Irvine's terms, Maddy's theory appears to be that of an "immanent mathematical

realjist]" (Irvine op. cit. p xx) for she is a realist who wishes to construe mathematical

entities naturalistically (i.e., as part of the world). Irvine categorises Maddy's position as

'physicalistic', but not that of a 'transcendent' (i.e., platonic) realist. In contrast to some

versions of platonism, Maddy demands neither the necessity nor a priori status usually

associated with the platonistic label. In short, Maddy develops a theory that sees

mathematics as objective and fallible, involving 'entities' which are not outside our

experienced world (as Plato's original Forms were and Irvine's condition (ii) retains).

Nevertheless, Maddy's motivation to find a physical germ to mathematics certainly

locates her in the 'physicalist' camp. Physicalism is described by the nominalist

philosopher of mathematics Field as:

"the doctrine that chemical facts, biological facts, psychological facts, are all

explicable (in principle) in terms of physical facts. The doctrine of physicalism

functions as a high-level empirical hypothesis, a hypothesis that no small number

of experiments can force us to give up. It functions, in other words, in much the

same way as the doctrine of mechanism (that all facts are explicable in terms of

mechanical facts) once functioned ... Mechanism has been empirically refuted; its

heir is physicalism." (Field, 1972, quoted by Maddy 1990b).

This idea is essentially that of the 'ontological unity' of Steven Rose, (Rose 1997).

Whether 'physicalistic platonism' does make conceptual sense or not, this much is clear,
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Maddy is advocating 'real' mathematics in the real world. I shall now tum to some of the

basic detail of the theory:

6.4.2 Back to realism a la Maddy: Set theoretic realism

Maddy's aim is to find mathematical entities that are directly perceived and that are

foundational with respect to mathematics. This will enable her to replace the 'intuition' of

Godel's platonistic theory with a theory that is both philosophically respectable (it does

not rely on 'intuition') and mathematically respectable (its foundations are themselves

mathematical). Her candidates for such entities are sets, objects of set theory. If she can

show that some sets are directly perceived, then she can link these objects of basic

perception with the sophisticated and abstract mathematical notions that constitute higher

mathematics. It is a clever move: set theory underpins modem mathematics. Functions,

for example, are defined set theoretically, this implies that, say spaces of functions - an

abstraction from function - also have a set theoretic description. This is already well

established mathematics.

The claim is that we can perceive (at least some) mathematical objects qua mathematical

entities and not essentially the abstraction of a scientific (say, physical) notion. For

example, a pile of stones is a physical object, on a human scale - rather than on a

chemical or geological scale - and the pile can be considered independent of specific

cultures, where it might be a sculpture or cairn. Maddy can perceive it as a set which,

being a set, therefore has a number property. So, it would seem that this set theoretic and

perceptual foundation could satisfy the claim that there can be non-metaphorical

mathematical objects and they can be known in an analogous way to some physical

objects.

6.4.2.1 How to perceive a set

If perception of a set is a physical phenomenon, it should have a physical explanation.

Maddy relies on the neurophysiological theory of Hebb (1949) to justify her claim that

"we can and we do perceive sets, and that our ability to do so develops in much the same
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way as our ability to see physical objects." (Maddy 1990, p 58). Hebb's particular theory

is not itself of importance here. What is important for the validity of Maddy's theory. from

her naturalised epistemological framework, is that there does exist (or, even, could exist)

a scientific explanation for how a set might become an object of perception.

We learn to perceive sets by repeated exposure to them. Eventually, when opening an egg

box, we perceive the set of three chicks, or whatever, without a count process. The set

with number property three is perceived directly; it does not matter what the presentation

of the set of three objects is, we can 'see past' the particular trio to the generality - the

'three-ness' - of the triple.

Maddy wants to assert the perceptibility of something mathematical so that the status of

the truth value of mathematical propositions is shot through with the surety of physical

objects. This will allow a replacement of Godel' s 'lower tier' of intuition with a

scientifically based explanation of how these mathematical objects are linked to a

physical world.

There are, clearly, all sorts of objections this theory must face. Before bombarding it with

these. I want to draw out some points that make it attractive:

I -it has been designed to be foundational in a physical and mathematical sense: to this

end, it is simple, imaginative and bold

2 - unless you decree that nothing mathematical can be perceived, it is difficult. given the

concept of set, to outright deny the claim that a set has been perceived thus

3 - it provides a theory of transition, from the physical, experienced world to a

mathematical world underpinned by set theory

It is this last point. 3, that is particularly interesting to me. This is because I see making

the transition from, loosely. engaging in physical activity to understanding abstract

mathematics as a central one in learning mathematics. A theory, such as Maddy's. allows,

in Rose' terms. ontological unity while making this epistemological transition.
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6.4.2.2 Some objections to set theoretic realism

6.4.2.2.1 Sets and classes and numbers

To have confidence in this theory, the central issue of set perceptibility must be

scrutinised. The challenge that I shall discuss is whether it is a mathematical set that is

perceived.

Maddy relies on our naive perception of 'medium-sized' objects. This granted, she notes,

as Prege did, that there is no unique number associated with 'that apple on the desk', so

we do not perceive numbers directly. After all, that apple consists of many molecules,

(which we cannot directly perceive), and it also has several pips, many colours on its skin

and one stalk (which some can perceive). Therefore, material objects are not directly

instantiations of numbers. Rather, these material objects of our perception can be

perceived in terms of sets and those sets have number properties.

That sets have number properties is clear; what is not so clear is that mathematical sets

themselves are perceptible. The word 'set' is in common parlance as well as being a

mathematical term. I am not convinced that Maddy does not conflate these two. For

example, she explores set-perceptibility through an example of Steve perceiving a set of

eggs (whether there are enough for a recipe). Surely this is an ordinary language use of

'set'? How can Steve decide whether he has perceived the mathematical object? I suggest

that Maddy has switched language games from that of the kitchen to that of the theorist

and back again - not that the boundary between the domain of these two discourses is

anything but fuzzy. This objection can be defeated if Maddy can convince the objector

that the mathematical notion of set is not as she puts it, "... a linguistic achievement" (p

64).

In favour of an a-linguistic notion of set, recent work on babies (Wynn, 1992) suggests

that they can distinguish between sets of small numbers of identical dots. This lends

weight to Maddy's assertion that the primitive perceptual understanding related to number

is pre-linguistic. But it still does not imply that it is a set that has been perceived.
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Milne, in his 1994 review of four different physicalist theses in the philosophy of

mathematics, denies the possibility of naive perception of sets. He claims "Thinking in

terms of sets is something we learn ... the mathematical notion of a set [is] a concept that

will not arise pre-linguistically" (p310). The reason comes down to the distinction

between sets and classes. Milne does allow Maddy's notion of set perceptibility, although

without much enthusiasm: "We see the members of sets (sometimes). We may even see

sets, for, as I have said, there seems to be no knockdown argument in favour of their

being abstract [and so not perceptible]." (p 311) But his more serious objection is his

argument that it is not a mathematical set that has been perceived but a classification by

properties:

"In Maddy's usage sets are determined extensionally by their members: this is the

mathematical notion of collection. Classes, on the other hand, are determined

intensionally by properties: this is the logical notion of a collection" (p310)

From a very young age we classify things by their type; this, Milne claims, is the pre-

linguistic concept, not seeing the set-hood of collections. To exemplify: a child looks in a

field in which there are three ponies and many sheep. That child might classify the two

kinds of animal from the perception of sheep-type and pony-type. In Milne's terms these

are, for the child, collections, not mathematical sets, even though that child may later

learn about sets and perceive set-hood given a similar visual stimulus.

Maddy would argue that, for many subjects, the set with number property three is

perceived on looking at those ponies. It is an "impure set", (Maddy, op. cit, p156), but a

set nonetheless. As for the sheep, they are too numerous to have an at-a-glance number

property, but if they form a set, there is an associated number property. But this implies

that we can perceive sets without perceiving their number properties. This veils numbers

from direct perception again; properties of these sets can only be inferred. This objection

does not worry Maddy, she is only aiming for some perceptibility at the lowest tier. If this

is granted, then the mathematical machinery of set theory guarantees the security of other

number properties.
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On another, related, tack, we can ask 'How many sets are perceived when I look at a lone

apple on my desk?' This question raises the concern, which I shall only mention, that

there is an abundance of these potentially perceptible sets. Maddy acknowledges

Chihara's charge that the set theoretic realist perceives not only the apple on the desk, but

the set consisting of the apple, and the set consisting of the set of the apple, ad infinitum,

(Maddy, 1990 pI50-2). Her response is to offer these options: either 'one can't perceive

the difference between a singleton and its unit set' or 'deny there is any difference

between a set and its singleton' (ibid. p 152). My response to Chihara's objection is that

this 'abundance' is a positive advantage to set theoretic realism! For it permits the infinity

of mathematical objects from the finitude of physical ones.

Can the question of whether sets are perceptible be an empirical question? I think not. I

am quite persuaded that infants and animals may be able to make number distinctions

without language, but I cannot infer from that-as-a-fact that it is a set which they perceive.

Nor can I infer that it is not a set. There are Hebb-type neurological connections in the

brain for all sorts of things that we recognise, mathematical or otherwise. This comes

down to the nub of realism: are notions like sets 'just' linguistic or are they part of the

intrinsic structure of the discreteness humans and other animals can perceive in the

world? Maddy's theory develops from the latter; Dummett's from the former.

6.4.2.2.2 Triangles, transformations and other mathematical objects

Different branches of mathematics have their own character. By this I mean there are

types of question, ways of thinking and modes of justifying that are different across the

sub-disciplines of mathematics. This is a feature of mathematical practice. In particular,

set theory has its own character which is different from that, say, of analysis. Although set

theory under-pins analysis, the set theoretic definition of 'function', for example in

Halmos (1960, P 30), gives little clue to its nature. The way function theorists think about

functions is, in practice, different from the way graph theorists do. Maddy acknowledges

this notion of mathematical character:
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"Even though the objects of, say algebra are ultimately sets, set theory does not call

attention to their algebraic properties, nor are its methods suitable for approaching

algebraic concerns." (ibid. pS)

but, thereafter, does not attend to these aspects of mathematical practice that involve

different ways (set theoretic, algebraic etc.) of mathematical knowing. Maddy would not

consider this divergence of conceptualisation a problem, because, as it is mathematics,

each socio-semantic conception (of function) can be traced, in theory, back to a set

theoretic definition. This common-core gains its reality from the perception of elementary

'impure sets' and the efficacy of mathematical practice in scientific achievement. I would

accept this, but Maddy does claim to "develop and defend" (1990, p3) a type of

mathematical realism that concurs with the naive philosophical sense that working

mathematicians are supposed to hold, and I do not think her theory does do this because

of this notion of mathematical character that she recognises but does not develop.

6.4.2.2.3 Questions about 'converging ontologies'.

Maddy, nevertheless, continues to consider mathematical - e.g., geometrical - objects

simultaneously as set theoretic constructions and as meaningful entities within a

geometric context. But is not a triangle's reality not just a function of its set theoretic

description, but of its perceptual impact and functional role? Indeed, it is difficult to be

sure what she would consider to be a satisfactory set theoretic description of a triangle

and how this lengthy precise description would then relate to triangles as used by

mathematicians (including learners of mathematics). Maddy's response to the request to

give a set theoretic account of a triangle is likely to be: it can be done in theory'". So yet

again the practitioner's experiential understanding would be superseded by a non-

practitioner's theory.

54 But recall the effort Russell and Whitehead required to establish I + I = 2,!
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The ontological relationship between sets and mathematical entities is only developed in

the case of numbers. Clearly, exemplification of Maddy's theory within every part of

mathematics would not be manageable. Nevertheless, the mathematical fields of, for

example, geometry, probability and algebra employ notions that have 'entity' status; for

example, knowledge of 'random numbers' involves a conceptual base that goes beyond

that of any set theoretic definition'f.

I believe that Maddy would argue that the crucial issue is truth values of mathematical

propositions. And these propositions can be reduced - albeit laboriously - to their set

theoretic equivalencies. Even if this is acceptable, the more crucial point, for the validity

of her account, is to say whether, why and how the geometrical object 'triangle' is the set

theoretic object 'triangle' for the purposes of mathematical practice. Maddy does answer

the 'whether' and 'why': 'yes it is the same because set theory is a foundation for

mathematics' is not only her response but also her rationale. The question of 'how' these

ontologies converge is not solved.

Maddy's theory gives a flavour of a contemporary realist philosophy of mathematics. In

particular, it is a physicalist theory; one that starts from the assumption that mathematics

is integral to the physical world, of which human culture forms but a tiny part. In the next

section I shall give a brief flavour of two other realist philosophers of mathematics who

assert some variation on the platonist theme.

6.5 Other realist philosophers

There are several contemporary philosophers of mathematics who consider themselves

broadly realist, rather than conceptualist or nominalist. These include Steiner (1975),

Shapiro, (e.g. 1993), Azzouni (1994) as well as Resnik and Bigelow discussed briefly

below.

~~Milne (op. cit.) discusses further the particular problems inherent in set theoretic realism as it pertains to
probability theory.
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6.5. J Resnik

Another realist conception of mathematics is given by Resnik, (e.g., Resnik 1993). His

view, like Maddy's relies on a 'naturalised epistemology'. He considers "mathematical

objects [as] positions in patterns, and mathematical knowledge is knowledge about

patterns." (op. cit. p 51). Unlike Maddy, Resnik "[does not] think that [any] mathematical

knowledge is acquired by something akin to perceiving mathematical objects." (op. cit., p

50). Resnik wants to be able to make epistemological sense out of the ancient notion of

Platonist ontology. He does this by giving a "postulational account of mathematical

knowledge" (ibid. p 40). His postulational account rests on the way mathematics is used

and relied upon in natural science. From the point of view of 'epistemology naturalised',

the reality of physical objects is allowed as that is the best theory we have of how the

world works. Modern physics, in particular quantum mechanics, relies on sophisticated

mathematics and Resnik challenges the assumption that there is "a clear and sharp,

causally or spatio-temporally grounded, ontic division ... between mathematical and

physical objects" (ibid. p 43). He illustrates this with reference to quantum mechanical

particles which, having no definite spatio-temporal location, "seem more like

mathematical objects than like everyday, common sense bodies" (ibid. p 46); if we allow

the reality of physics, then we must allow the reality of mathematics.

Mathematics is, nevertheless, distinct from natural science. In Resnik's theory,

mathematical objects are not subject to change in the same way as physical objects are,

although he grants that this could be problematic as a distinguishing feature (ibid. p 45).

By defining: "mathematical objects [to be] positions in patterns, and mathematical

knowledge is knowledge about patterns." (ibid. p 51), Resnik asserts their abstract

unchangingness.

Briefly, I want to discuss some particular points about Resnik's theory:

(I) The concept of pre-mathematical knowledge

(2) The notion of paradigm physical objects
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(3) The truth of propositions involving postulated entities

(1) Resnik asserts that, because of their "gigantic collection of techniques" (ibid. pSI) the

research mathematician learns about patterns in a fashion distinct from a learner or a

human from the distant past. I am not sure that this is true and he offers no evidence from

psychology or cognitive science to support his claim. He rejects attempting to explain the

genesis of mathematical knowledge in children as they "have help from those already in

the know" (ibid. p 51), although it is not clear what theory of teaching he is assuming

here.

Resnik's explanation of the genesis of mathematical knowledge is a story designed to

substantiate his conception of mathematical objects as 'positions in patterns'. Using his

theoretical notion of a 'template', Resnik claims that, without yet arriving at abstract

objects, ancient peoples could/would/might have "a representational system for designing

and thence to playful and creative attempts to explore possibilities" (ibid. p 53). This

leads to abstractions 'in the limit' for "we will be forced to posit entities, such as points

and lines and circles as existing in their own right" (ibid. P 55) For example, the abstract

notion of a point appears as the limit of the possibility of cutting a line smaJler and

smaller and smaller and ... Resnik fudges the result of a theoretically indefinite sequence

of actions with that of an object that only exists in the limit and so rests the burden of the

existence of the point, say, with this extensive sequence of operations that results in the

point. Pre-mathematical knowledge, then, is knowledge without the crucial notion of

infinity. Knowledge of infinity is first understood as the possibility of indefinitely

executing some operation on a template.

(2) Resnik's idea that electrons are 'paradigm physical objects' is quite different from

Maddy, for whom they are the medium sized physical objects of our perceptual capacity.

In either case, because both Maddy and Resnik work within the 'naturalised

epistemology' framework, they both require a fundamental physical object. 'Naturalised

epistemology' declares that science is to be considered basic, but does not decree what in

science is basic. I suggest that what each of Maddy and Resnik pose as fundamental leads

each to beg their own question, i.e. to presume their own conclusion. For Maddy's theory
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rests on our perceptual ability, particularly that of sight, and these 'medium sized objects',

are objects, that is they exist, if and only if we can perceive them (through sight

principally). Analogously, Resnik's claim that no line can be drawn between physical and

mathematical entities is bound to be true if what he considers paradigmatically physical is

an entity that requires mathematical nous to comprehend it.

Is every ontological search circular? In the paragraph above, I indicate that Maddy and

Resnik seem to be circular as they rely on what they are in fact trying to show is

fundamental. Kuhn (1962) defines 'paradigms' as achievements that satisfy the two

conditions of (i) "attract[ing) an enduring group of adherents away from competing

modes of scientific activity [and] (ii) being sufficiently open ended to leave all sorts of

problems for the redefined group of practitioners to resolve" (page 10). In this sense, both

Maddy's and Resnik's paradigmatic physical objects are part of different notions of the

physical world and can be construed as fundamental to those conceptions. Kitcher, too,

can be seen as circular as his reliance on 'warrant' is both crucial and unanalysed:

warrants are what the community passes on and are warranted because they are what the

community passes on (perhaps this is better construed as regressive; still it is

unsatisfactory ).

(3) In a rather disappointing concluding section to his 1993 essay, Resnik attempts to

delineate the difference between different 'positings': "People have posited ghosts, the

Ether and phlogiston with as much ease as they have posited numbers. How can positing

lead to knowledge in one case and not in the others? What distinguishes between them?

Primarily. truth and existence." (op. cit. p 57). His entire theory rests on his own story

about our ancestors' construal of the outcome of the limit of possibly indefinitely repeated

actions (cutting a line to get an extensionless point). A serious justification of the truth of

propositions involving positings will have to go back to the processes from which

positings emerge as abstract objects. In some sense these processes are what minds can do

to patterns (rather than what patterns can do to minds: as Resnik intimates patterns can

impose themselves, on pigeons). Resnik asserts that the human mind's creative capacity
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allows playful and imaginative manipulation of patterns from which the real, abstract,

existent mathematical objects emerge.

6.5.1.1 Pedagogical implications

A pedagogical application of Resnik's theoretical perspective on the existence of

mathematical objects is the celebration of the 'playful and imaginative'. For it is through

the imaginative capacity enjoyed by so many human thinkers that the positings, intrinsic

to Resnik's theory, are realised. The other important issue for teaching mathematics that

is implicit is the central notion of a limit. I want to now look at these two aspects of the

theory with regard to teaching negative numbers.

(a) "Minus numbers go backwards" confidently asserted an eight year old, never having

been taught about these 'objects'. Here is an example of an imaginative extension of the

forward progression of the counting numbers. The mental play relies upon images of

something like the number line and of an enactive, (Davis 1995), counting-on by

travelling forward along this 'line'. The context of the child's utterance has been lost, but

his idea can be used as a basis of a pedagogical representation of the initial idea of

directed numbers. The pattern aspect, that Resnik draws attention to, is evident here:

symmetry between the negative and positive numbers helps establish the existence of the

former.

(b) Resnik's theory seems to say that we only get genuine mathematical objects when

some infinite process has taken place. In which case, the young child who imagined

backwards-going numbers (corresponding to the familiar forward-going ones) is only

deemed to be talking about a mathematical object in the case that he considered a position

on the number line as the result of a limit process. From this point of view, most of what

we teach in school is 'pre-mathematics' in Resnik's sense.

6.5.2 Bigelow

John Bigelow is an Australian philosopher of mathematics who has developed a view of

mathematics, based on "David Armstrong's a posteriori realism" (Bigelow, 1988 p l ),
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which he claims is both platonist and physicalist. Mathematics is platonist, he claims,

because it concerns Forms; it is physicalist because those Forms are instantiated by

physical objects, their properties and relations between their properties, (Bigelow 1990, p

29). The notion of 'Form' that Bigelow works with is 'universal' and these universals are

physical! Hence these universals' existence can be discovered using a scientific method:

"mathematical properties and relations are really there in the world, if only we can

manipulate things in such a way as to make them emerge", (I988, p2). To illustrate this

claim, Bigelow gives the example of the Pythagorean discovery of mathematical

proportions which underlie musical harmonies and their "discovery that natural numbers

are not the measure of all things", (1988 pS).

Bigelow's 1988 book tries to avoid epistemological issues. He "address[es] the question

of what numbers are, and not how we know about them" (p 4). If I want to apply some of

Bigelow's ideas to education, the question of how it is possible to know these number-

things is also important. Bigelow acknowledges sympathy with Maddy's and Resnik's

approaches to mathematical ontology and to Kitcher's epistemology, to which I now tum,

but has a different theory to put forward about the physical nature of mathematical

entities.

6.6 Kitcher

Kitcher's work in the philosophy of mathematics is better known to mathematics

education than Maddy's (for example, Kitcher is quoted in Ernest 1991). In his 1984 book

'The Nature of mathematics', from which my discussion is (and all page references are)

taken, Kitcher puts forward a philosophy of mathematics which uses 'psychologistic'

epistemology to develop a theory which he intends to be both Kantian-constructivist and

empirical-realist. He also presents detailed work on some history of mathematics which

he uses to illustrate the actual development of mathematical knowledge within the

academic mathematical community.

Kitcher's aim in this book is to challenge the idea of mathematical knowledge being a

priori and to present his alternative 'evolutionary' theory (p92). Kitcher takes it as read
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that the standard way of looking at mathematical knowledge is through apriorism. A

priori knowledge, by definition going back to Kant, is knowledge independent of

experience. And Kitcher rejects the idea that mathematical knowledge is a priori. To do

this Kitcher looks at his categories of 'Platonic', 'constructivist' and 'conceptualist'

routes to knowledge, divides each into the a priori and a posteriori and argues, in each of

these categories, against mathematical knowledge being that category's sort of a priori

knowledge. By rejecting every hue of a priori knowledge as pertaining to mathematical

knowledge, Kitcher logically concludes mathematical knowledge is a posteriori and

proceeds to develop a 'defensible empirical' theory of mathematical knowledge.

Kitcher is concerned with "What mathematics is about? [and] How does mathematical

knowledge grow?" (p6). This is different from Maddy's aim, for whom justifying the

ontological foundation for mathematical objects was central to her project, despite the

fact that that included an epistemological analysis. Of course, mathematical propositions,

the knowability of which are Kitcher's major interests, involve mathematical concepts.

Kitcher's thesis is that these concepts evolved from a perceptual base through 'rational

transitions' in 'mathematical practice'. His notion of mathematical practice is carefully

defined; it consists of five components: "a language, a set of accepted statements, a set of

accepted reasonings, a set of questions selected as important and a set of mathematical

views" (p 163). Types of rational transition are also suggested, corresponding to each of

these components (pp 170 - 192). Kitcher relies on a community that passes on and

develops mathematical knowledge. "I shall suppose that the knowledge of an individual

is grounded in the knowledge of community authorities." (p 5) The realist core of this

'evolutionary theory' is that the "origins of mathematical knowledge ...[are] warranted by

sense perception" (p 96). So, the primitive matching of, say, three people with three

bowls lead. over time and through teaching, to abstract notions of cardinality.

From an 'experiential stance', such as 1 take, it would seem that Kitcher's arguments

against mathematics being independent of experience would be helpful. Overall, 1think

they are, even though he labours his rejection of the a priori. However, there are several

aspects of Kitcher's theory of mathematical knowledge with which I disagree or find
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unhelpful within my task of conceptualising mathematics-in-education knowledge. For

example, while I agree with the importance of the role of teachers in the process of

acquiring beliefs about mathematics, the transmission model of teaching Kitcher seems to

assume, (e.g. pl19), is too crude, in my opinion, to explain an individual (or group)

coming to know mathematics. Kircher's discussions on warrants is worked in

considerable linguistic abstraction and does not make the distinctions, which I think are

crucial, between, for example, the parroting of a proof and an individual (or group) being

convinced by a certain form of reasoning based on logic and structure. (The importance of

this distinction was part of the content of chapter 5.) Thus it is not clear how the

'epistemological significance' of communities of practice is realised in a novice's

knowledge formation. Obviously this is important for application to education, and as it

stands his thesis is wanting. A further objection to Kitcher's theory, which I discuss

below, is his explicit and thoroughly argued eschewal of the notion of mathematical

object. Kitcher construes mathematical objects as part of Platonistic apriorism. It is the

notion of a priori knowledge which he is most determined to defeat and if mathematical

objects are only meaningful within a framework in which a priori knowledge is

countenanced then 'mathematical objects' must go. As mathematical practice involves

working with what seem to be mathematical objects (Kitcher acknowledges this) then his

theory must (and does) offer a replacement. As I shall explain, I am not convinced that his

theory of mathematical operations is ontologically different from a physicalistic theory of

mathematical objects.

Kitcher tries to explain the relation between the perceptual and the mathematical at an

ontological level, so his theory may be able to help explain the transition between pre-

abstract manipulations and perceptions of 'infant mathematics' and the transitional

abstractions of higher school mathematics. In other words, while the purpose of his thesis

was to explain historical transition, an application in education may also be forthcoming.

Indeed, a whole thesis could be written on how Kitcher's theory of 'rational transition' can

or cannot be applied to people learning mathematics.
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To understand Kitcher's conception of mathematics, I think it is helpful to locate his work

culturally and historically. His book was published first in the USA in 1983 and, as

Kitcher acknowledges, it developed over some time, (1984, pvii). Kitcher was a graduate

student in the history and philosophy of science at Princeton in the early 70s. So he was

likely to be schooled in the formalisms developed in the first part of the century and still

popular in the 60s, and it is also likely that he was part of the movement which critiqued

these rigid conceptions of knowledge in the following decade. His 'Nature of

Mathematical Knowledge' draws on the work he did in the 70s and I locate the work as a

decade-long thought out reaction to the formalism of 60s mathematics. I would place Gila

Hanna's 1983 (see 5.4.2) and John O'Neill's 1984 (see 7.2) theses in this same category.

So, cultural forces acting on English language-medium philosophers included training in

formalism and learning about its formal demise. This subsequently lead to a questioning

of less precise forms of knowledge which were nevertheless constrained structurally, such

as a priori knowledge. Kitcher's work is another attempt to crack the structure of a wider

conception of knowledge which, like formalism, was seen to be rigid and failed to capture

the nature of the knowledge as people experienced it.

6.6.1 A priority and experience

This critical analysis of formal, or abstract parts of knowledge may explain why the first

part of Kitcher's 1984 book is taken up by refuting a priorism. If 'a priori' knowledge is

independent of experience, then, Kitcher argues, it is explained in terms of a-

psychologistic epistemology. But the growth of knowledge is a function of the living

beings who discover or create this knowledge. Therefore epistemology - the theory of

knowledge - to be properly explanatory, must be psychologistic. This is the sort of stance

which Alvin Goldman was developing throughout the 70s and which cumulated in his

1986 book, which I discussed in chapter 5 and which Kitcher refers to as "the best

available account of warrants" (p 18). Kitcher associates a priorism with a-psycho logistic

epistemology in a strong sense: if any mathematical knowledge can be shown to be

'independent of experience' then, potentially, mathematical knowledge could be

explained a-psychologistically. This refutation of mathematical a priorism forces an
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investigation into the nature of mathematical knowledge into accepting psychologistic

epistemology. This means, crucially, human agency is entwined with mathematical

knowledge.

We are able to imagine things that don't actually exist: unicorns and the Ether, for

example. Yet there are domains in which these terms make sense and so are meaningful.

As mythological creatures, unicorns are meaningful. The Ether is not meaningful as a

contemporary scientific concept, but is meaningful as a concept in the history of science.

In what sense is 'a priori' meaningful? Kitcher works very hard to convince his reader

that mathematics is not a priori at all; he really wants to include the human, cognitive

aspect as essential to his theory of mathematical knowledge and he feels compelled to rid

the entire mathematical enterprise of the notion that there might be 'knowledge

independent of all experience'. Kitcher does seem to set up a priori knowledge to be a

metaphoric ideal rather than anything that actual humans can aspire to: "Rational

uncertainty does not preclude knowledge, but it does rule out a priori knowledge." (ibid. p

43). In other words he refines the concept of a priori until it is like a winged horse -

aesthetically beautiful and imaginable, but not obtainable.

This sort of interpretation of a priori knowledge makes it impossible to realise. The

notion of 'knowledge independent of all experience' is interpreted to mean that there is

no developmental, cognitive aspect to this knowledge type. For example, the idea that

slave boys can have a priori knowledge of square roots and iterations without having had

any experience of squares and their areas or of approximations; that all the knowledge is,

chrysalis like, just waiting for the right conditions to hatch, is not compatible with

scientific theories of cognition. This shows that the notion of a priori knowledge can be

made unachievable by making the 'independent of experience' demands so strong.

Indeed, Kitcher also concedes that "[e]xperience may be needed to acquire some

concepts" (ibid. p 21). This observation surely assumes a that there is a cognitive pulse to

the a priori which is consonant with the original conception of a priori. Kant describes

how someone who could predict the consequences of undermining the foundations of his
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house a priori, "had first to learn through experience that bodies are heavy, and therefore

fall when their supports are withdrawn." (Kant, 1781, trans. Kemp-Smith, 1970).

In short, I understand why Kitcher is so keen to reject the a priori and I broadly accept his

arguments against the a priori. Yet I feel that he restricts the concept of the a priori so

much it becomes unrealisable and so loses the meaning of the term which Kant

communicated.

Kitcher is driven to argue against a priori mathematical knowledge because of its a-

cognitive feel. While I accept Kitcher's rejection of the a priori knowledge in the forms

he has presented it, I submit that there is something about the concept of a priority which

does reflect a 'mathematical feel'. Almost any basic mathematical fact would illustrate

this point, with which I am sure Kitcher would concur. For example, the concept of circle

that I have is 'locus of points in a plane equidistant from a given point,56. Given this

conception of circles, I claim that my knowledge of elementary geometric facts like the

properties of the angle in a semi-circle or the properties of tangents to the circle, are a

priori. They are a priori in the sense that no experience I could have would change the

propositions I assert as true while I held that a circle was a 'locus of points in a plane

equidistant from a given point'. This was of course recognised by Kant. He saw that

'semi-circle and point-on-circumference' do not analytically (by virtue of meaning) yield

'right angle'. He tried to give voice to this recognition by coining the term synthetic-a

priori for such propositions. I anticipate that Kitcher would counter that I am pointing to

theoretical (ibid., p 55), rather than a priori, but I want to point out the phenomenological

roots of the term a priori.

I have already used the term 'a posteriori' to denote the contrary to 'a priori'. A very

closely related, if not synonymous term is 'empirical'. This standard philosophical term,

which Kitcher uses freely, connotes knowledge based on perceptual experience. But the

!16 This has developed a long way from the circle concept I had as an infant, so experience has been required
to develop the concept.
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word 'experience' itself includes more than sense perception; experience of health,

emotion and language, at least, also figure in our general experience of the world. If

empirical knowledge is based on sense experience, is the larger class of knowledge based

on general experience the referent for 'a posteriori'? I am not sure. As far as I can

discern, the word 'experience' may be used by some writers to stand for perceptual

experience - i.e. 'empirical' - or may stand for the wider conception'", one cannot expect

precise specification all the time. Indeed it can be argued that there is no distinction, that

the empirical floods all our experience. In Donald Davidson's often quoted words "all we

ever do is move our bodies" Ce.g., Davidson, 1997H); our sensory and kinaesthetic

experience is all we have.

Mathematics is traditionally seen to be the least empirical of all bodies of knowledge

which abound in human societies. So, if Kitcher's thesis can be interpreted as constituting

a case that even this body of knowledge to be empirical, then, in some sense all human

knowledge is empirical. I think this reductionism to the empirical, given the two provisos

that (a) mathematics is the 'least empirical' form of knowledge; and Cb)Kitcher's thesis

that mathematics is empirical, misses interesting questions about the nature of knowledge,

even though I concur with the sentiment expressed by Davidson's aphorism. In

57 For example, Kitcher seems to widen the notion of 'experience': "The appeal to linguistic understanding
is not an a priori warrant, but, in the context of an experience which supports the propriety of the linguistic
practice, it does provide knowledge." (pp94-5). Kircher's careful specification that the linguistic
understanding does provide knowledge within an appropriate context, shows that he is widening the notion
of experience beyond the sensory (for a context which supports a linguistic practice must surely be at least
partially social). But exactly to what is not clear. I am not sure how Kitcher thinks the knowledge claim is
justified, so I shall exemplify his assertion, and leave the interpretation suggested by the example open for
discussion. Consider rational and irrational numbers: To say I have a 'linguistic understanding' of these
categories of numbers would usually mean that I can distinguish, define, operate with and represent these
sorts of numbers. I do not think that I should be expected to prove any proposition which was presented to
me. Nor does it mean that any statement I make about them - 'there are more irrational numbers than
rational ones' say - is known a priori because I can appeal to my fluent linguistic capabilities. So I agree that
appeal to linguistic understanding does not generally warrant belief. But, as this example illustrates,
linguistic understanding per se is not enough for knowledge of rational and irrational numbers: in
mathematics it is not sufficient to talk about concepts, action is needed too. But Kitcher says that in a
suitable 'context of experience' my proposition 'there are more irrational numbers than rational ones' is
knowledge because of the way that context supports the language. Grasping at straws, I can only suggest
that such a context is something like a maths exam! And in this context a proof is the appropriate
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mathematics, the question of 'abstraction' still persists even if all knowledge is decreed

empirical; are abstractions linguistic concepts? functions of interaction between nature and

thinker? or things-in-themselves? To say that language is 'just' neuronal firing and

vibration. or that I exist within a material world, or that there are patterns in nature, is not

very helpful in explaining the detail of mathematical knowledge.

6.6.2 Mathematical objects

While a question to debate is whether Kitcher's mathematical ontology is realist or not,

Kitcher himself refuses to join either side: "The slogan that arithmetic is true in virtue of

human operations should not be treated as an account to rival the thesis that arithmetic is

true in virtue of the structural features of reality" (p 109). Indeed, he describes his

position as "a peculiar form of constructivism" (in a Kantian sense) as well as having a

"realist character" (p 108); it may "be viewed as a type of realism" (pS8). Nevertheless, the

question of the ontological status of the stuff of mathematics remains. Kitcher manoeuvres

between a Kuhnian interpretation of truth of mathematical statements varying with

transitions in mathematical communities and a detailed analysis of the correctness, or

otherwise, of parts of mathematics itself

His theory develops the notion of mathematical ("idealised") action to replace those

unobtainable 'mathematical objects'. We are to "switch from thinking of mathematics as

descriptive of a realm of abstract objects to construing it as an idealised science of

operations ... [in particular] collecting and ordering" (ibid. p 138). But is this a mere

semantical switch? I shall try to make the case that Kitcher does essentially assume the

notion of mathematical object, particularly when discussing mathematics, even if he

defines it away when presenting a philosophical theory. If this case can be made, then. I

believe it follows that for any species of realist - and Kitcher is as 'social-constructivist"

contextua1ised linguistic response which 'does provide knowledge'. But this is just the glib received
version of mathematical knowledge and adds nothing new.

51Kitchel" s book was first published in 1983, some years before the term 'social-constructivist' had been
coined. Indeed, in the recent (1995) 'Handbook of Epistemology', this term is absent.

...
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as a realist can get - commitment to mathematical objects is unavoidable when immersed

in mathematics discussion. I submit that it is this commitment to mathematical objects

per se that is integral to learning mathematics, which I develop in 6.9. This is not required

for an anti-realist: Dummett would take a semantic view of reference: language itself is

the arbiter of truth.

I think that Kitcher is, despite his protests to the contrary, committed to mathematical

objects for three reasons:

a) Kitcher's ontology of operations is isomorphic to a theory of mathematical objects.

b) The ideal agent construct is as abstract as any a priori knowledge.

c) His detailed historical account of mathematical concepts - like 'limit' - which are

intrinsic to the differential calculus, is an analysis of mathematical objects".

On a) Kitcher is trying to explain away the phenomenon of abstract entity - like many

concepts in mathematics - by ontologising action. In mathematics, objects and actions are

not ontologically distinct - 'the derivative of a function' involves calculation, for

example. So, I think Kitcher still has mathematical objects, with a priori 'character' in his

ontology, despite his claims to the contrary! Chapter 7 develops these ideas further.

On b) Platonism is problematic because, in that theory, mathematics requires ideal

objects. Kitcherism seems analogously problematic because, in his theory, mathematics

requires an ideal agent. Kitcher seems to want to endow mathematics with a 'larger than

life' existence, despite his stated anti-a priori, or even anti-Platonic, stance. He tells us

that it is because of our natural constraints "arithmetic owes its truth not to the actual

operations of actual human beings but to the ideal operations performed by ideal agents:"

(ibid. p 109). What metaphysical streamlining is gained by denying 'mathematical objects'

59 Of course it is always possible to deny the 'objecthood' of what one is discussing in language. The issue
is of reference. When the idea of discovery or adaptation is incorporated, as in Kitcher's theory, it is not
consistent to insist that mathematical objects are merely discourse-dependent entities.
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is lost by introducing ideal agents. Can his overall thesis of a "defensible empiricism" can

be maintained without this key 'idealising' notion? My sense is that the notion of 'ideal' is

not so very different from that of 'abstract' for his theory to stand distinct from a priori sm.

Chihara has made a lengthy critique of Kitcher's theory (Chihara, 1990, pp 216 - 250). He

makes the observation that accepting that school children know some mathematics does

not imply that they have any conception of an ideal agent. Chihara claims that

"According to Kitcher's analysis" the child who works out 12 times 7 by adding 70 to 14

"knows some very complex fact about the operations performed by some ideal agent"

(Chihara, 1990, p 236). In Kitcher's defence, I would argue that Chihara is confusing

domains of meaningfulness. It does not follow that young children who are at home with

'small' integer calculations should be able to give a philosophical account of those

operations' validity. Nevertheless I concur with Chihara that the 'ideal agent' concept is

really not comprehensible, for SlHe must perform "all possible collectings of the

members of [an] uncountable totality" (Chihara, p243) in "a medium analogous to time

but far richer than time" (Kitcher, p 146). I do not think that Kitcher has managed to

avoid the epistemological difficulties inherent in the notion of a priori by the 'ideal agent'

construct.

On c) I shall now tum to a specific mathematical example and indicate how Kitcher's

discussion indicates an ontological commitment to this 'mathematical object' qua object.

Despite his rejection of the concept of 'mathematical object', detailed analysis of an

aspect of mathematical practice in Chapter 10, gives some insights into two specific

mathematical concepts that could potentially be considered 'mathematical objects' - that

of limit and real number. This last chapter of the 1984 book is concerned with an

historical development of analysis from about 1650 to the end of the 19th century.

Kitcher presents a 'rational reconstruction' of the development of the concept of limit

which Ireview in order to assess the ontology his assessment implies.
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6.6.2.1 KUcher on Newton and Leibniz's 'perceptual beginnings'

Newton's concepts of fluxions and fluents formalised kinematic experience'". Rates of

change of motion can be perceived. Newton's insight was to distinguish rate of change

from motion itself and to devise a method of working with these concepts that yielded

perceptibly consistent results. My reading of Kitcher is that he would accrue 'reality' to

these basic concepts of Newton. Mathematics has developed from this stage by

(rationally) working on questions like: "Why are we entitled to make the assumption that

the fluxions remain constant through small intervals of time? Why are we allowed to

neglect some terms?" (p 233). For example, a perplexing property concerning the second

question, is as follows: when a fluxion is multiplied by another variable, t, that is

supposed to be "infinitely little" (after Newton, Kitcher p 233), the combined quantity xt ,

vanishes! (For more details of Newton's method, see Fauvel and Gray, 1987, pp385-6.)

The 'objects' fluxion and fluent are real, but their properties were not automatically

understood.

Leibniz's approach was based on the concept of difference, rather than kinematics and

originated, according to Fauvel and Gray (1987, p424) on his interest in logic and

language. Specifically, it was Leibniz's notation that was his contribution as it "captur[ed]

an underlying unity [and] made his discoveries easy to use" (ibid.). Perceptual reality was

'further away' from Leibniz's mathematical theory than from Newton's. My reading of

Kitcher's presentation is that he construes Leibniz's calculus as algebraic, based on

relationships, rather than perceptual-geometric, "[Leibniz] seems to shun the idea of

endorsing an interpretation of [his calculus]" (Kitcher, op. cit., p 235). And he quotes

Leibniz's adaptation of Berkeley's notion that the infinitessimals are 'useful fictions'

(ibid., p237). The acceptance of Leibniz's method was in its generality: using his

techniques a wide range of problems could be tackled. This is Kitcher's argument for the

rationality of the acceptance of his method.

60 Baron and Bos (1979) interpret Newton's fluxion and fluent concepts as scientific motion-concepts,
following Galileo, TorriceIli and Barrow.
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Both semantic and perceptually based theories have to deal with the central concept of

derivative, which can be referred to by other names and represented by several notations.

The method of computing the derivative - for Leibniz and Newton did make the same

calculation (using Kitcher's presentation) - involves some process notationally similar to

dividing by zero. Dividing by zero provides no real numeric answer; it is a false method.

While a false premiss implies any conclusion, surely the wealth of scientifically validated

consequences is not all suspect? What is it that makes the initially dodgy-looking

procedure valid?

The realist answer is that there was something, yet to be discovered, about the procedure.

In this case it was the concepts of slope and of limit (a la Cauchy). The formal validation

of the mathematical concept of limit had to be invented, to be sure. However, it

formalises the troublesome 'littleness', essential in working mathematically with the

problems of Newton-Leibniz calculus. The concept of limit provides ways to establish

links between the empirical, (like tangents and ratios of differences approaching a fixed

number), and more rigorous mathematical argument.

Clearly the community of those interested in the concept have to be convinced that it is a

validating one, Kitcher's thesis is to identify rational ways that a community might make

the transition to the acceptance of a new concept. Scientific efficacy is one such rational

transition. In such a way, Kitcher's realism is akin to a dialectic of 'naturalised

epistemology' .

6.6.2.2 Kitcher's implicit mathematical objects

Kitcher's use of 'geometrical' is interesting. The way he uses the term suggests a realism

about the particular geometric entity under consideration; thus a realism about (some)

mathematical objects. For example, he says of Newton that he uses a "geometrical

conception of the limit" (p 237) which "is close to ... the modern definition of a limit" (p

238). Indeed, an anti-realist may use the terminology of mathematics as a coherent set of

metaphors which might also include the 'meta-metaphor' 'mathematical object'. Talk

about an object does not imply its existence. Kitcher's epistemology accepts a common-
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sense realism about objects of perception, and asserts that mathematical notions have

their genesis in operations on these. My suggestion is that limit, (as Newton reportedly

construed), is a common-sense geometric object. It is in operations with this in the guise

of "infinitely small parts of time" that Newton comes to his "ultimate ratio" (p 238). The

geometric (in Kitcher's sense) limit exists in the perceptible world and is the object that

imbues the symbolic mathematical notion with 'reality' (in a realist sense). To give

another example: Kitcher observes that Cauchy's intuitive sense of continuity was not the

same as the sense of his analytic definition of continuity. For the definition allowed

Brownian motion type functions, continuous, but nowhere differentiable. Continuity, then

exists 'in reality' and is connected to the idealised, mathematical notion.

The 'objecthood' of some mathematical entities Kitcher discusses clearly involves

actions, as the two examples above illustrate. Actions mediate between perceptual,

material objects and abstract mathematical ones. The actions, or operations, imbue the

reality and the abstraction. As Kitcher says of his conception: "my picture of

mathematical reality [is] constituted by the operations of an ideal subject" (p 177). The

view I shaH elaborate further in chapter 7 is that, in some sense, some of these 'actions'

can be identified with mathematical objects. In short, Kitcher's realism about objects and

his action-theory which connects these experienced objects with mathematics, implies a

realism about (some) mathematical objects (possibly construed as actions).

6.6.3 Platonist and non-platonist mathematical realism

The characters of the philosophies described by Maddy and Kitcher could fairly be

captured as 'platonistic' and 'non-platonistic' realism respectively. This characterisation

just gives a sketch because the term 'platonistic' is not really well defined and both

Maddy and Kitcher rely on a Quinean 'naturalised epistemology' which privileges

perceptual experience over conceptual coherence or mental intuition. Why I suggest that

Maddy is a 'platonistic realist' is that she gives a unambiguous description of the nature

of objects of mathematics. These ideal entities of her theory have something of the

crystalline feel of Plato's Forms because of their set theoretic essence. On the other hand,

the structure of Kitcher's idealised operations is less fundamental and so seems to be less
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rigid, less 'Form-like', for he bases his ontology on the epistemologically accessible

manipulations and perceptions of ordinary objects.

6.7 An historical perspective on mathematical ontology

While Kitcher, a philosopher with interests in the history of mathematics and science,

uses historical evidence to support his philosophical theory, Jeremy Gray, an historian of

mathematics with philosophical interests, relies on the philosophical concept of

mathematical ontology to express his thesis concerning the historical evolution of

mathematical objects (Gray, 1992). Specifically, Gray's historical analysis can be

interpreted as giving weight to the reality of mathematical entities. As I have discussed

above, I think that Kitcher's historical analysis of mathematics cannot be distinguished

from one which works within a frame which allows mathematical objects, despite his

prior theorising against them. The vexed question of 'grasping an abstraction', which is

part of the growth of mathematical knowledge, is dealt with in a different way by Gray in

his essay "The nineteenth century revolution in mathematical ontology'f" (ibid.). The key

point of Gray's essay is that the objects of mathematics, hitherto taken to be either

intuitively known, or idealisations of physical phenomena, were fundamentally re-

conceptualised as set theoretic or axiom-consequential entities. This constitutes an

historical argument for the existence of (abstract) 'mathematical objects'.

"the new philosophy that underpinned these transformations [in ontology during the

19th century] ..was naive set theory. It drove out naive abstractionism and traditional

Kantianism, and paved the way for its successors, the Formalist positions based on

either logic or abstract axiomatics .... The new ontology brought with it a new

epistemology. The introduction of rigour in analysis is well known; I have attempted

to show that the appropriateness of a proof received much more attention. This

aesthetic awareness made sense at a time when the very objects of mathematics were

themselves becoming more abstract." (ibid. p245).
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Thus the reconceptualisation of mathematical entities produced an even stronger sense of

mathematical object within mathematical practice. Again, the scientific efficacy of these

notions supports their scientific reality against just being formal nominalistic or coherent

linguistic iterns'".

6.7.1 'Intuitionism' and 'naive abstraction ism '

Gray argues that up to the 19th century, the reputed routes to mathematical knowledge

were either Kantian-constructivist or 'nafve-abstractionist' and, so the entities of

mathematics were constructions (also known as 'intuitions') or "idealisations of familiar

objects" (p228).

Gray reminds his reader that 'intuition' has "several meanings": the Kantian conception of

'direct acquaintance', the result of familiarisation of the naive abstractionist and the

personal, psychological sense of "hunch" (p239). So, respectively, an intuition about; say,

geodesics, could be (a) a direct acquaintance with energy minimising paths; (b) an

abstraction from the perception of shortest distance (including shortest distances on

curved surfaces like hills); or (c) the action-knowledge that to keep to a geodesic keep to

the path whose curvature is the same as the surface you are on. The term 'naive

abstraction' is Gray's term to describe pre-twentieth century idealisations: "experience

presents many objects that are nearly circular, and from them one abstracts the

mathematical concept of a circle" (p228).

6.7.1.1 Gray's ontological distinction

I shall try to explain this through the geometrical episodes related by Gray, as geometry

incorporates features of mathematics and mathematical thinking which are central to

61 I would like to thank June Barrow-Green for bringing this paper to my attention.

62 This is Azzouni's point about the importance of the efficacy of practice again (Azzouni, 1994 p 138).
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making a link between perceived regularities in the objects of our experience and those

abstract objects of modern mathematical practice.

Gray argues that there was a profound re-conceptualisation of the contents of geometry in

the nineteenth century, for example, what straight line referred to, changed. Naively it

was the shortest path between two points in space. After the 'revolution', straight line

meant geodesic (locus of points determined by specific differential equations) in the

special space of constant zero curvature known, henceforth, as Euclidean space. The latter

was axiomatically consequential rather than intuited or abstracted. This distinction serves

as a good basis for understanding the notion of an abstract mathematical object for, with

this understanding, the hitherto primitive term 'line' could not be simply abstracted from

ordinary sense experience. Gray also quotes Nagel's (1939) analysis of projective

geometry that iJIustrates an ontological distinction between naive abstractions and

axiomatical entities through the concept of projective duality. This duality, a consequence

of the axiomatic system, shows that the projective geometrical terms 'line' and 'point'

can be swapped (in tandem with 'concurrent' and 'colinear'). But the naively abstracted

terms 'line' and 'point' are fixed in physical reality!

Gray explains the two senses of the colJapse of the Euclidean conception of space. The

first, due to Beltrami, showed that physical space could be described in a non-Euclidean

way: "there is no unique mathematical abstraction" (p 234) of our familiar spatial objects.

It no longer made sense to say 'line' was a primitive term (unless, like Hilbert, you

realised you could just as well have called it 'chair'). There was no spatially given,

axiomatic primitive, 'line'. Suppose the entire human population died out, bar Amanda

and Evan. These two went forth and multiplied in the otherwise empty but stilJ gridded

city of New York, USA. Then it would be quite likely (?!) that their descendants would

have a 'taxi-cab' geometry as their first systemisation of space. The second colJapse of the

Euclidean conception of space, due to Riemann, was the liberating of geometry from

physical space. This prompted an awareness that a 'reasonable way to understand the

geometric nature of physical space was to empirically investigate which Riemannian

manifold would be the most appropriate mathematical model. For domestic carpentry,
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Euclid still serves well and is theoretically predicted to do so. In relativity studies, metrics

for the models of four dimensional space are constructed on the basis of astronomical

data. In either case, "no longer could it be argued that the term 'line' in geometry was a

mere abstraction from a physical object" (p 235) or known intuitively. "There is no

unique mathematical abstraction of familiar spatial objects available to our intuition" (p

234)

6.7.1.2 Abstract objects and 'levels' in mathematical ontology

The historical distinction argued for as an historical thesis by Gray is mirrored by the two-

tiered ontology Maddy discusses. "Naive abstraction" corresponds to the lower tier in

Quine/Putnamism and 'intuition' corresponds to the lower tier in Godel's scheme.

Maddy's theoretical link between these two levels is the set theory of modem

mathematics. Her argument is that some objects of set theory are within the

physicalistically experienced world.

While Maddy's theory provides an ontology, it fails to provide a comprehensive

epistemological explanation. Perhaps Maddy can convince her reader that numbers are

properties of perceptible sets, thus offering a theory about how these entities are known.

However, the objects of geometry, like geodesics, are different in kind: the concept of

geodesic is not equivalent to its set theoretic equivalent; theorems about them do not

usually involve set theoretic proofs. The increasing requirement for conceptual proofs,

Gray argues, is one of the consequences of ontological discontinuity. In other words, in

mathematical practice it became more important to have a knowledge of these abstract

objects which was not 'just' through set theory. The set theoretic connection may

guarantee the reality of their ontology, but another explanation is required for the

guarantee that these abstract geometrical objects are knowable (in the sense of what

constitutes a proof about them).
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6.7.2 Gray on mathematicians' epistemological evolution

Gray suggests that there was a change in epistemology, consonant with the 'revolution' in

ontology: "the new conceptual and aesthetic criteria have often achieved paramount

position at the level of explanation overthrowing mere calculation as the best criteria for

truth." (p 239) Perhaps this sort of warrant based on the properties of abstract entities was

only employed by a few, the great, mathematicians of the time of the 'revolution'. In the

twentieth-century, much of mathematics requires this concept-object type of reasoning.

(An exception, perhaps, is mathematics for computing in which algorithms are the

ontological and epistemological foundation). And without an ontological commitment to

these object, the notion of a conceptual proof justifying a property seems inconsistent.

The great mathematicians of the nineteenth century changed their ontological foundation

from 'idealisations' to 'abstractions' and this change was epitomised in their work. In terms

of epistemology, let me suggest the following, which may have some educational

analogy: their orientation to proofs based on the conceptual, set theoretic and axiomatical

mathematics (rather than computation or manipulation) of their 'revolutionary' ontology

was not achieved in a discrete a way as the notion of ontological discontinuity suggests.

Rather their epistemological change evolved and continued to retain warrants of all types

- this is Zheng's recognition that there is realistic as well as formal mathematical truth

(see 6.7.4 below). These are difficult to prise apart when involved in the practice of

mathematics.

Mathematics in the twentieth-century is not often just concerned with idealisations

(perfect circles and so on) of easily perceptible material objects. Pure mathematics and

applied mathematics alike deal with 'abstract' concepts which have been termed

'mathematical objects'. In mathematics in education, idealisations of easily perceptible

objects is an important concern. For, like Kant's man who could predict the consequences

of undermining the foundations of his house a priori, children develop a significant part

of their knowledge, even of 'a priori-feeling' mathematics, from their perceptual

experience. This 'naive abstractionism' is alive and well in most school classrooms. Do

students of mathematics have to go through a process analogous to the historical
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development before they are conceptualising 'abstract' objects? My belief is that being

clearer about ontological distinctions and the epistemological changes that they require,

should put us teachers in a better position to help students make a more effective

transition.

6.7.3 Other historians' of mathematics dichotomies

Caroline Dunmore's thesis (Dunmore, 1992) is that the objects of mathematics continue

in time but there exist meta-level revolutions in mathematics. This is another two-tiered

theory: the base-level are the objects of mathematics and the meta-level is the

conceptions about the nature of these objects. Dunmore's analysis lends weight to the

idea that there can be historical continuity construed between the objects of perception

which have been 'naively abstracted', and the objects of current mathematics. This allows

a transition from a physical conception of putative mathematical objects to a conception

of mathematical objects which - in Plato's translator's words - are not to be 'confined to

visible or tangible objects/". The limits, lines and series which were 'naively abstracted'

mathematical objects, remain as mathematical objects after the 'revolution'. But they

have changed their character. They have now been reconceptualised through various

mathematical strategies. For example, axiomatisation changes the nature of the term

'line' and set-theoretic underpinning of number theory changes the character of what

numbers are. Incorporating Dunmore's ideas with Gray's allows a continuity of meaning

of some linguistic labels, like 'line' and 'circle', for example, but a shift in their reference

and in the warranting of their properties (as described in chapter 5).

Zheng Yuxin's (1992) distinction between types of mathematical truth may also be

helpful. He calls them "realistic truth [which] means conformity or agreement with reality

[and] formal truth ... [in which] mathematical statements are truth about the

corresponding structure" (Zheng, op. cit. p 179). Neither conception of truth is to
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dominate, but rather "a synthetic view should be adopted" (p 180). The idea that these

types of mathematical truth are 'fractally intertwined' suggests that, given the distinction

Zheng offers, when discussing the truth value of some mathematical proposition there

will be formal and realistic notions of truth within any constituent part of the proposition

(proportions would vary given the propositions, of course). I think that this is likely even

for propositions in elementary mathematics, e.g. the angle in a semi-circle is a quarter

tum: this truth has both realistic and formal components. Within Zheng's conception of

realistic and formal truth, the proportion of 'realistic truth' decreases as mathematical

propositions become more abstract. While this seems reasonable enough, Zheng does not

offer a way of apportioning measures of truth-type to any given proposition.

As the shift towards Zheng's formal truth increases with the more abstractly formulation

of mathematical entities, in the limit, it could be argued, there is not a trace of the realistic

remaining. This stage is for Kitcheresque 'ideal agents' only! Even highly mathematical

human subjects retain realistic links, perhaps as psychological, rather than

epistemological sense: their concept image has a perceptual dimension but they are still

able to present to themselves and their wider community a proof which does not depend

on the perceptual. These ideas of Zheng's on truth in mathematics reinforce some of the

ideas I expressed in chapter 4.

6.7.4 Historical evidence for mathematical objects

Gray's thesis, together with those of Dunmore and Zheng, lends more weight to realism in

mathematics: because their historical analyses of the revolution in mathematical ontology

give credence to the idea that there are mathematical objects which are both applicable in

the physical world yet are not constrained by it. Their abstract features are not like that of

approximation (as being close to a circle) but due to properties of relations. These

properties can sometimes be detected in the physical world and they can also be

63 [The study of arithmetic] "draws the mind upwards and forces it to argue about pure numbers, and will
not be put off by attempts to confine the argument to collections of visible or tangible objects" (Plato, 'The
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formalised. Consequences of these formalizations constitute the results of modem pure

mathematics and consequences of investigations of the properties constitute the results of

modern applied mathematics.

Mathematical ontology's fundamental change required increasing rigour in justifying

theorems, but this did not break with prior conceptions of mathematical objects?'.

However, this tendency to rigour was not as discrete as the ontological changes. In other

words, epistemologically there is a continuous thread. This continuity enables the

possibility for teaching and learning modem abstract concepts starting from a physical,

experiential base rather than a purely linguistic, social one.

6.8 Mathematical realism in the classroom?

In sections 6.4 to 6.6 I have presented conceptions of mathematics which the authors

consider, in some sense, realist. The acid test for the realism, or anti-realism, of a theory

of the nature of mathematics is the conception of truth it entails, (see chapter 4). On one

side is the anti-realist conception of truth: propositions are true by convention or because

of linguistic coherence. Verification is a question of fit, of meanings corresponding to the

agreed group perceptions This is an epistemic conception of truth. On the other side,

realist conceptions of truth grandly claim 'a proposition is true because of the way the

world is' independent of anyone's knowledge of that truth. These are nonepistemic

conceptions of truth.

The difficulty with the anti-realist conception is ontology and the difficulty with the

realist conception is epistemology. This is a vast simplification, but what I want to

indicate is the resistance of anti-realists to assert the existence of anything outside their

group (the 'objectivity is social' view) and the problem realists have to answer when

Republic' trans. Lee, 1955, page 293).

64 A way which may be successful in forcing students to break with their naive abstractionist views of
number, line etc. is with an increased emphasis on axiomatics. Balacheff in France and Marriotti et al. in
Italy have recently said that they are working on pedagogical representations of these ideas (Geometry
working group discussion PME 1997).
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confronted with the difficulty of accessing - i.e. having reliable knowledge of - the world,

the state of which determines the truth value of a given proposition.

Mathematics education is naturally more concerned with epistemology - the nature of

knowledge and how knowledge develops - than ontology - the nature of what it is

students are to learn about. This is because of the dominant classroom-based practical

side of the discipline. It is not surprising then that, as the emphasis on knowledge

development is prioritised, much contemporary theory is based on an anti-realist notion of

truth. Indeed, the ostensibly ontological question 'the students are to learn what

knowledge?' can be answered by 'knowledge of what we (in the students' community)

think fit to teach them'. Curriculum designers, benign or otherwise, decide what students

are supposed to know, and if the students do not give 'recognised' responses, their work is

wanting65• I do not find this satisfactory as a theoretical justification of entitlement to

knowledge, although pragmatically it is likely to happen. This is one reason why I have

put the case that attention should be paid to ontology, as well as to epistemology.

The other part of my argument that education should be concerned with ontology as well

as epistemology comes from thinking about mathematics specifically. Just as education

must be concerned with epistemology, mathematics must be concerned with ontology. As

I have just related, this has been argued by Gray (1992, and also 1997) who examines the

importance of mathematical ontology to mathematicians at different historical times,

(6.7). People struggling to make sense of a-sensory mathematics have work to do to find

what is real and what is a chimera. Learners, like fully fledged mathematicians, need to

know what is and what is not in mathematics, which infinite series are functions and

which do not converge, for example. But unlike the mathematicians who 'put these

concepts on the mathematical map', students can adopt conventions and routines without

the ontic struggle the initiating mathematicians historically experienced. This

65 A non mathematical example of this occurred in 1980 when a group of feminist Oxford undergraduates
answered questions on their English finals using feminist analysis. Their essays, considered otherwise first
class, were all awarded seconds as they had used the 'wrong theory'; the dons' 'regime of truth' did not
extend to gender oppression.
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phenomenon, of taking a concept on trust, working 'as-if it existed or made sense, is

probably an inextricable part of regular school, or other, learning. But this acceptance of

an authority's decree about 'what is', or what to do with 'what is', is conceptually

different from a personal ontological commitment. In learning about negative numbers,

for example, a pupil might accept that 'a minus multiplied by a minus is a plus' for

'reasons we need not discuss'. For knowledge of negative numbers, she requires a sense

of the reality of these numbers and a rationale for their properties based on 'what they

are'. This is not easy to achieve, as may be judged by examining the pupils' work

discussed further in the next section, 6.9.

I hope to have explained, here, why a philosophy of mathematics suitable for learning

mathematics is worth predicating on realism in mathematics. Before dealing explicitly

with ontological commitment, I need to clarify mathematical ontology for mathematics

learners, based on the realist theories I have presented. After that, with a theory of 'what

is' in higher school mathematics, I shall explain the notion of 'ontological commitment'

and discuss its importance in learning mathematics.

6.8. J Mathematical ontology for higher school mathematics

What ontology, what theory of what exists, can I now specify for higher school

mathematics? I cannot specify what does exist - that is the mathematical enterprise - an

ontology is a theory, or a way of conceptualising, what does exist. At the school level, a

theory of what exists in mathematics must, pragmatically, be interwoven with a theory of

what can be known, otherwise the educational thread is missing. So, from my

'experiential stance', I want to base the higher school mathematics ontology on

'experience'. But 'experience' per se is far too wide a concept. It can mean experience of

anything from mystical insight to that of information from the senses. This is why I have

looked to a philosophical tradition which delineates a notion of experience which is

fruitful and specific: that of contemporary realists like Maddy, Kitcher, Resnik and

Bigelow. These philosophers all subject their ontologies to broadly the same 'naturalistic'

epistemology - what we know is within science and in science the 'buck stops' with sense
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perceptions. This Quinean view IS in the tradition which started with the British

empiricists in the 17th and 18th century.

The challenge for a philosopher of mathematics is to explain 'mathematical abstraction'

from this epistemological constraint. For higher school mathematics, a theory of what

exists mathematically, must have this sort of experiential dimension within its

epistemological counterpart. The amalgam realist theory which I suggest starts with a

non-metaphorical sense of 'mathematical objects'. That is, the theory of 'what exists'

states that there are some mathematical things. These things are categorised as 'objects'

because they share with material objects the feature that they are 'objective' in the

ordinary language sense of the word. These mathematical entities are a function of the

interaction of cognizing beings, which perceive in specific ways, and the physical

environment. Uniqueness is not claimed but objectivity is. The type of perceptions the

cognizing beings have will limit the patterns perceived from the environment. For

example, human beings can perceive discreteness and continuousness and distinguish

these. Thus, from this attribute the mathematics of number and measure can evolve.

Clearly, any such 'evolution' must be supported in language and culture for its survival.

The next question is what is the nature of the abstractions which are the mathematical

objects human beings can know about? Kitcher's 'operations' and Maddy's 'set-theoretic

perceptions' are examples of such. In each case they are epistemologically transparent

mathematical objects'", What then do I claim exists in (higher school) mathematics,

which is consonant with my practice as a teacher and a 'this-level' mathematician?

Because I want as much choice and potential as possible in working with students, I want

to take the union of the classes of abstractions described by the professional philosophers

as the contents of the ontology. By basing an ontology on prior theories with well

established naturalistic epistemology. I should ensure that the entities thus specified are

knowable. in the sense discussed in chapter 5. There are two main objections to this

66 Even though Kitcher does not like the term 'mathematical object' I have argued that his physically based
realism does not actually avoid his mathematical entities 'object-ness' - i.e. 'objectivity'.
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approach: (i) ontological redundancy; (ii) potential ontological incompatibility. For (i), I

am not worried by an over abundant ontology, even though 'ontological economy' is

considered a virtue by philosophers (see, Alston, 1958/64). As a teacher I like the idea of

plenty of starting points! But are they, (ii), compatible? Yes, because they all have to have

a human-perceptible environmental basis. There is more to discuss here, but the detail of

this claimed compatibility would take me beyond the scope of this work.

So, more specifically, what can be made of the philosophers' theories with respect to

school mathematics?

I) Firstly, that mathematics is neither 'pi in the sky', nor mere 'formal fictions', nor just

a 'cultural artefact'. The physicalist premiss is that there are patterns inherent in the

physical world. And this sense of realism allows some ability to act on, or otherwise

perceive, these patterns, properties of these patterns, or relationships between these

patterns. Mathematical knowledge results (or can result) from these actions and

perceptions.

2) Secondly, some people notice these patterns, encode them linguistically and

symbolically, and some also point them out to others. For example, consider this

activity for infants: they play with three teddies, each of whom has a hat, a chair and

other possessions. Whatever the infants might make of it, this activity is a pedagogical

representation, (a 'pointing out') of the physical pattern called 'three'. At the higher

school level, the pattern of (countable) infinity is often problematic, for, unlike triples,

these infinities are not directly perceptible. However, a recurring action is perceptible.

For example, I cut a square cake into two rectangular halves, I cut one of these halves

into two quarter-sized squares, I cut one of these squares into eighth-sized rectangles,

and so on. To be sure, the idea of cutting forever could seem ridiculous to some: 'I'd

die before I'd finish!', 'The cake would all be crummy', 'wouldn't you get down to an

atom eventually?' Mathematics is an imaginative and playful venture (e.g. 6.5.1.1) as

well as a practical one.
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3) Thirdly, teachers can only 'point out', not force another's imagination. So there are no

guarantees that a student's cognitive awareness of the fact that

..!.+..!.+.!.+ ... +_I_+ ...= I will have been raised by the activity of contemplating the
2 4 8 2n

pattern of the action of repeated halving. The point is that 'halving repeatedly' is a

physical pattern.

Kitcher and Resnik both recognise the significance of action in developing mathematical

knowledge. Ishall take this idea further in Chapter 7. where Iwant to investigate the idea

that certain actions are, themselves, mathematical knowledge; Ishall put the case that not

only does 'action enable', but also 'action is'.

In order to talk about mathematics properly. some specification of how abstraction is

achieved is due. Most of such a discussion would fall into the psychological domain,

which is outside my brief here. However, as Iam trying to work within a naturalistic, and

hence psychologistic, epistemology, it is appropriate to point to some psychological

theory to illustrate that the transitions to abstraction are possible. Again this task could be

.researched in depth, but here I do little more than quote two theoretical psychological

approaches. The first is from Zoltan Dienes ( 1970) who presents an outline for

constructing teaching plans in terms of stages. These stages are designed to promote

abstracting in the pupils who experience this teaching. The stages are:

FIRST STAGE - free play within the environment; SECOND STAGE - realisation of

constraints in the situation; THIRD STAGE - recognition of structure; FOURTH

STAGE - representation of structure; FIFTH STAGE - linguistic encoding of the

representation of structure; SIXTH STAGE - axiomatization, rule specifying and

deduction. (Adapted from ibid. pp6-9 and pp53-4).
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The other is due to P. van Hiele and D. van Hiele-Geldof (1958), which is well known for

the stages of geometric abstraction'". This theoretical psychological developmental picture

was originally conceived in five-stages which are:

FIRST LEVEL - recognition or visualisation of physical attributes perceived from the

whole; SECOND LEVEL - analysis of properties of these 'wholes'; THIRD LEVEL

- ordering, systematization of those properties; FOURTH LEVEL - receptivity to

deduction given 'properties'; FIFTH LEVEL: production of rigorous deduction.

(adapted from Hershkowitz, 1990, pp72-3).

Both of these stage models, conceived for different purposes, are scientific theories which

contribute to the naturalised epistemologists' project of understanding what knowledge is

through science. They are also similar in their accounts of how abstraction is achieved. As

scientific theories, they are subject to empirical tests and criticisms. For example.

Hershkowitz reports that the van Hiele levels "fit the described hierarchy, with a few

exceptions" (p73). My purpose in quoting them is to mark that the philosophical

framework which I have been developing does have a counterpart in scientific theory on

which this philosophy theoretically relies.

6.9 Ontological commitment and learning mathematics.

In this section I shall discuss the notion of ontological commitment and whether, or to

what extent, learning mathematics involves ontological commitment to mathematical

objects.

This section, which is the main justification for this sub-thesis part (ii): 'individuals

require ontological commitment to some mathematical objects for mathematical

knowledge'. It is in three main parts: in 6.9.1, I present some philosophers conceptions of

the notion of ontological commitment; then, in 6.9.2, I investigate the relationship

,.
67 Mason (1996) offers an interpretation of the 'van Hiele' levels which generalise their use from their
original geometric context.
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between ontology and ontological commitment; in 6.9.3 I return to some specific cases of

realism and pedagogy which are intended to illustrate some of the more theoretical ideas

discussed in 6.8.1 and 6.8.2.

6.9.1 What is 'ontological commitment'?

The term 'ontological commitment' is used in philosophical discourse to connote reliance

on 'what there is'. Because there are different possible consistent and coherent answers to

the question 'What is there?', alternate ontologies are conceivable. And 'ontological

commitment' seems to assume an ontology. But in the process of learning (in particular,

mathematics), this apparent tautology - that ontological commitment presupposes

'ontological items' - is not quite as straightforward as it seems. Before taking this point

further, I want to recap on the ontologies of the three main philosophies of mathematics,

realism, nominalism and conceptualism.

In the case of mathematical realists, locating their ontology is fairly straightforward. The

ontology consists in objects of mathematics. These are the entities of the discourse of

mathematics as it is practised. For physicalist mathematical realists, these entities have

some kind of perceptual link68 to the objects of either common-sense realism or basic

science.

In the case of nominalists (like Field), their ontology consists in space-time particulars.

Strictly mathematical entities do not exist, they are 'formal fictions'.

Turning now to conceptualists, the situation is more complicated. This is because the

phrase 'ontological commitment' can be interpreted semantically or existentially

(generally) and these two interpretations are close in a conceptualists' scheme. As well as

that, there are different levels of interpretation in each case. Consider, firstly, an

61 As described above, Maddy's link is through the perception of sets, Kitcher's link is through the
manipulation of objects. etc.
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existential interpretation of 'ontological commitment', there are two levels of

interpretation:

0, 'mathematical objects exist independent of discourse'.

I, 'mathematical objects exist within discourse'

The first statement, indexed 0, is a realist's assertion'", rejected by conceptualists. But,

clearly, it would not be inconsistent for a conceptualist to claim ontological commitment

to a metaphoric construct in the language game in which he wished to participate, i.e. to

accept statement 1. Now, consider a semantic interpretation of 'ontological commitment'.

In this interpretation we still have 1, 'mathematical objects exist within discourse'. The

other level of interpretation is

2, 'the meaning of 'ontological commitment' (in mathematics) is that mathematical

objects exist within discourse' .

Now 2 is applicable to realist as well as conceptualist discourse. This just says that

realists cannot sensibly develop knowledge without a discourse, as if that was news! I

think it is possible to put a wedge between realist and conceptualist by inserting the

qualifier only:

2*, 'the meaning of 'ontological commitment' (in mathematics) is that mathematical

objects only exist within discourse' .

If 1 and 2* are taken to characterise conceptualists' notion of ontological commitment,

then such commitment can only be relative. In particular, the ontology of common-sense

experience - Maddy's 'medium sized objects' - are not foundational to the concepts of the
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discourse, except as relative items themselves. So, in terms of philosophical (not

psychological!) analysis, a teacher cannot communicate object hood about, say, triangular

numbers, by getting the pupil to manipulate or perceive medium sized objects, instead she

establishes linguistic conformity about triangular numbers on the basis of a 'taken-as-

shared' discourse about counters, numerals or whatever.

What do philosophers have to say about ontological commitment? I briefly present some

ideas from the literature:

6.9.1.1 Alston

Wm. Alston's 1958 essay, (Alston 1964), develops the idea that ontological commitment

is 'beneath' language. Alston shows this by arguing that the translation of ordinary

language statements, which naively suggest ontological commitment, into a philosophic

register does not refute ontological commitment.

"in any ordinary sense of the terms, whether a man admits (asserts) the existence of

possibilities depends on what statement he makes, not on what sentence he uses to

make that statement."

"This means that assertion of existence, commitment to existence, etc., does not

consist in the inflexible preference for one verbal formulation over any other." (ibid.

p254)

The tone of his paper is that ontological commitment is to be avoided because of the

difficult questions 'abstract' entities raise (ibid. p 256). The central thesis of the paper is

that philosophers' attempts to 'translate', i.e. paraphrase, sentences of the form 'There are

Ps' to sentences of some other form, does not, as was desired, help avoid ontological

commitments. These philosophers have conflated terminological problem with the

existential problem.

69 Strictly 'the truth of mathematical propositions exists independent of discourse'
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However, Alston concurs with the essence of Quine's definition of 'ontological

commitment' (p 253), which in an ontological commitment rests ultimately on common-

sense and science (see 6.6.1.1), to which I now tum:

6.9.1.2 Quine

Quine's well known essay, 'On what there is', (Quine 1953), puts forward two relevant

important points: Firstly, that a word can have meaning without its referent existing

(paraphrased from ibid. p189); secondly, that "Our acceptance of an ontology is, I think,

similar in principle to our acceptance of a scientific theory ... we adopt ... the simplest

conceptual scheme into which the disordered fragments of raw experience can be fitted

and arranged," (ibid. p 194).

Quine argues the first point using Russell's theory of 'singular types'. This theory

explains the mechanism whereby names can be replaced by descriptions. This enables

meaningful use of names without presuming commitment to the existence of that which

was named. In this way I might be able to name some negative numbers and give some

description of them without ontological commitment. Indeed, minimising ontological

commitment seemed an important aim for these mid-century philosophers. However, I

shall claim that some form of ontological commitment is intrinsic to the practice of

mathematics in 6.9.2. To help justify this claim, I present samples of some students'

work, in 6.9.3.2, which can be construed as illustrating 'naming and describing' without

ontological commitment.

As I discussed in the section describing Maddy's set theoretic realism, Quine is a

'naturalised epistemologist' who regards science as 'real' but mathematics as purely

semantic. He holds with a common-sense and scientific ontology (or ontologies?!), but

does not (by 1969) include mathematics within these. Now in this 1953 paper he says:

"One's ontology is basic to the conceptual scheme by which he interprets all

experiences, even the most commonplace ones. Judged within some conceptual
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scheme - and how else is judgement possible? - an ontological statement goes

without saying, standing in need of no separate justification at all." (ibid. p 189)

My assertion is that a mathematical ontology is intrinsic to the way I interpret experience.

Discreteness, continuity, chance, etc. are part of my 'conceptual scheme'. However, I

expect that Quine would counter that I was 'merely' familiar with mathematics-as-

language. Ironically, Quine uses a mathematical example to illustrate how he sees the

possibility of ontological commitment: "the only way we can involve ourselves in

ontological commitments [is] by our use of bound variables" e.g. "there is something

which is a prime number larger than a million", (his italics p191). Despite the

mathematical content, I am with Alston in not being convinced that the form of words (or

symbols) is the arbiter of ontological commitment.

6.9.1.3 Devitt

Michael Devitt IS a contemporary realist philosopher whose sense of ontological

commitment is different from Quine's and Alston's. To begin with, Devitt distinguishes

ontological commitment from language facility, but notes that discussion about these

positions is inevitably semantic:

"Merely stating, for example, 'Common-sense entities exist' does not ontologically

commit you to those entities. Commitment depends on the truth conditions of the

statements we accept; we are committed only to the entities which must exist for our

statements to be true. The ontological question becomes clear only when we move

into the metalanguage and consider this semantic question. The disagreement

between the realist and anti-realist is not over statements like the one above but over

how such statements should be understood. So the disagreement is a semantic one."

(Devitt, 1984, p40)

This passage shows how Devitt's realist stance becomes entwined in his concept of

ontological commitment. What we assert is true, not what we can speak about, is the

essence of our sense of what there is. For "it is a truism that a theory must be presented to
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us in language ... But this ... supplies no reason for supposing that we must move to a

semantic theory to determine the ontological commitment of our object theory." (ibid.

p42).

6.9.1.4 Harre

Devitt's conception of ontological commitment is explicitly a realist one which relies on

his correspondence-like theory of truth. A theory, which claims to be realist but avoids

truth issues is given by Harre (1986, p74). In this conception ontological commitment to

common-sense objects, (those in 'Realm 1'), is assumed and imaginative possibilities

about these objects is also countenanced. The problem here is the shift between the

common-sense realism of Realm I and the imaginative projections (into Realms 2 and 3)

from the common-sense realm. The types of ontological commitment seem different

according to the realm: roughly speaking, in Realm 1 ontological commitment is 'beneath

language', in Alston's sense, but in Realms 2 and 3, ontological commitment is semantic.

The realist perspective is, as far as I can currently tell, served best by a conception of

ontological commitment along the lines of Devitt's.

6.9.2 Ontology and ontological commitment

To begin with, consider the question: 'Does doing mathematics require ontological

commitment to mathematical entities of the mathematical activity?' This statement could

be read as tautological, but suppose it does have content. There are several ways in which

it could be answered in the negative:

o at the moment of discovery there is no prior ontological commitment (although,

doubtless, plenty of psychological commitment)

o doing mathematics does include formal manipulation (although fluency with the

symbols is required)
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o learning mathematics involves doing mathematics and so ontological commitment is

not a discrete occurrence (despite the psychological feeling of 'got-it-ness' that can

occur at discrete times) but a dialectical process developing over many years.

It is possible to work on some mathematical activity or investigation without ontological

commitment to all the entities involved. Some such entities may be in the process of

being grasped and some may be used instrumentally. In this sense, developing ontological

commitments can take a long time. Do the contents of these commitments just 'feel' as

though they are real? This comes down to asking whether mathematical ontology is a

question for psychology. I think that this is an interesting, but different, question from the

one on which I am working. Infants learn about physical objects, and their properties,

such as permanence in general and the unyieldability of the kitchen table in particular.

How they do this is a psychological question. Mathematics students learn about

mathematical objects, and their properties such as abstractness in general and the

necessary right angled-ness of the angle in a semi-circle in particular. Again, how this is

achieved is a psychological question. In both cases, there are philosophical questions

about the existence and nature of these 'objects' and practical questions about how to help

someone to understand their properties.

Having tried to distinguish between the psychological and the philosophical, I now return

to the conceptual issues of

o the nature of ontological commitment, assuming a realist ontology, 6.9.2.1.

o the nature of a suitable ontology for mathematics learning, given the desirability of

ontological commitment, 6.9.2.2.

6.9.2.1 Consequences of adopting a realist ontology

Ifwe assume realism - of a physicalist variety, at any rate - then it follows that there is a

(non-metaphorical) sense of existent object. For some of these objects, an individual can

have an interaction with them independently of a discourse. A given individual will surely

require a supportive community to confirm and publicly label these objects, but the
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assumption is that these objects have independent existence, although discussion about

them clearly cannot. The root of individuals' ontological commitment to mathematical

objects is the perceptions, operations and predictions they can achieve with these existent

objects. At first these objects are likely to be 'medium sized objects'. Subsequently, the

'objects' are the relations and patterns which the individual can perceive, operate on or

predict something about from these primary givens, and so on. This conception is

consonant with Hacking's, reported by Harre, who is also "in substantial agreement":

"Like [Robert] Boyle, Hacking thinks in terms of projects which involve doing

something with clusters of entities, the effect of which is to 'interfere in other more

hypothetical parts of nature' (Hacking, 1983, chapter 16). A hypothetical entity

becomes real to us when we use it to investigate something else" (Harre, 1986, pSI).

The individual's commitment to an ontology which includes 'hypothetical entities' is a

function of actions and operations on ontologically prior 'clusters of entities'.

6.9.2.2 Experiential learning of mathematics and ontology

As I discussed in section 6.9. J, the notion of ontological commitment, in and of itself,

does not imply a realist ontology. What I want to make a case for now is that, given

certain further assumptions about the nature of learning, a realist ontology is an

appropriate one for learning higher school mathematics. It is not possible to prove this

assertion logically, all I can do is advocate it.

The premiss that I want to take is the empirical, psychological result that learning is a

function of an individual, supported by a shared language and culture, not a function of

knowledge being 'transmitted'. I do not think that this is a contentious assumption, but I

note that it is psychological, not philosophical". We learn by experience. Teachers

facilitate learning effectively by working with students' prior ontological commitments.

70 The related philosophical issues include queries a la Hume about the 'external world' and in what sense
socialJy constructed knowledge is 'objective'.

218



Chapter 6: Mathematical objects

This is a quite general statement and applies to discourse centred conceptualists as well as

independently-existing-entity centred realists. The example of 'volume' can illustrate

ontological requirements in either ontology: IT 'volume' is to do with hearing something, it

is not also related to lxwxb; the discourses are different. In the other case, suppose a

student has not conceptualised the concept of 'amount of space' as different in 2 and 3

dimensions Then the specific 3 dimensional concept, with the associated formula for

boxes, lxwxb, is likely to be misunderstood.

Now experiential learning does include actual, physical interaction with material things in

and of the world. Action can happen without language. And, from Alston's paper,

ontological commitment is 'beneath language'. Because of this seemingly simple

observation, I advocate physicalist realism as an appropriate ontology for learners of

mathematics.

6.9.3 Back to pedagogy: negative numbers

This section links some of the theory with practical issues. Firstly, I look at one of the

philosophical theories Ihave discussed and describe possible ways that this theory could

underpin pedagogical approaches. Ihave chosen to use Maddy's theory for this exercise

because of its more precise ontology. Secondly, I present and interpret some students'

work with regard to the notion of ontological commitment.

6.9.3.1 Negative numbers and set-theoretic realism

Maddy's epistemological access to mathematics is based on direct perception and

scientific experiment. How might her 'set theoretic realism' transfer to the mathematics

classroom? There have been curriculum projects which could be interpreted as trying to

do this. As Idescribe below, the School Mathematics Project did try to base a curriculum

on set theory. Hanna's critique of the 'new math reforms' of the 1960's was discussed in

5.5.3. Hanna's major point is that formalist precision tends to mitigate against fluent

understanding.
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Can set theoretic realism answer students' questions like "What is 'minus one'?"? It can

at a philosophical - or, more precisely, ontological/metaphysical - level. 'Minus one' is

the additive inverse of the generator of the ring of integers. The generator is 1 is

perceptible as the number property of the singleton set; the rest of the explanation rests on

set theoretic construction of the ring of integers. Such an explanation might satisfy Maddy

but is unlikely to be sufficiently related to the properties and function of -1 to satisfy

students.

Of course, there is no necessary connection between a pedagogical representation of a

mathematical concept and its strict set theoretic definition. A teacher who wants to

explain the nature of mathematics in physicalist terms, might choose to explain the

connection between mathematical abstraction with scientific reality based on set theoretic

realism, but whatever their ontological position, their pedagogical representations are

bound to include linguistic or contextual detail. Nevertheless, I want to consider two well

known pedagogical representations of 'minus one' and discuss whether they are

compatible with a set theoretic realist's position.

To start to teach the concept of negative numbers, we can ask questions like (a): 'how can

'negative one' be perceived?'; or (b): 'of what set is -1, the number property?'

On (a) To perceive -1, or as here -2, is to be able to (non-metaphorically) perceive a lack.

In the film 'Stand and Deliver', (Warner Brothers, 1988), the teacher introduces the

notion of negative numbers through the concept-image of a hole: you dig 2 feet down,

you fill 2 feet back up until you get to zero, the base level. This can serve as a perception

of negative two. The 2 feet down-ness can be felt and seen; the lack is perceived as a lack.

It is a lack to the extent of the gain that is the adjacent pile of earth 2 feet up (or '2 one

foot-blocks', to forestall the objection that measuring, i.e. real - numbers, were being

considered instead of integers). While it could be argued that all the teacher is doing is

'delivering' an image, I would counter that he is calling up an experience he is relying on

the students to have had or to be able to imagine because of their memories of bodily

actions. To be aware that we can never be certain what others are construing is one thing,
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to deny that when the student steps into the hole slbe will fall is nonsensical; gravitational

pull is part of reality.

Would Maddy accept this as 'negative two perceived'? Certainly she would accept that

the two-foot cubes removed from the hole were perceptible, the student could perceive an

"impure set" (p156) with number property two. The question is how to interpret the hole!

Is the hole just a two-foot negation or is it 'where those two removed blocks go'? In the

latter case, a notion of operation has been introduced (as it was indeed in 'Stand and

Deliver', the teacher demands "Fill that hole, go on fill that hole: negative two, plus two

is ... " and a formerly unmotivated student becomes engaged and answers "zero"). Even in

the former case, the idea of 'level' is necessary and Maddy does not claim to perceive the

null set! So I do not think that it is possible to perceive negative two without employing

an inverse operation. For this reason, Kitcher's philosophy of mathematics (Kitcher 1984)

may be more suitable to support this pedagogical representation, for he bases

mathematical knowledge on primitive operations on material objects.

On (b) The 'modem mathematics' movement of the 1960s was a systematic and sincere

attempt to answer question (b). The objective of the School Mathematics Project (SMP),

founded in 1961, was "to devise radically new mathematics courses ... which would

reflect ... the up-to-date nature and uses of mathematics" (SMP 1971, P i). The SMP

designed their materials so that "in comparison with traditional texts, these texts pay more

attention to an understanding of fundamental concepts" (ibid. p v). In particular, the

notion of a set is seen as fundamental: "Chapter 2 introduces the basic idea of a set" (ibid.

p vi). In the specific case of teaching negative numbers, the SMP chooses to separate the

concepts of the mathematical object '-1' and the mathematical operation '-1' and

distinguish between these notationally by the positioning of the negative sign. Their

approach in Chapter 12 (ibid. pp 192 -208) starts in the same way as the 'Stand and

Deliver' teacher: imagine a movement that does and undoes (in a linear manner), which is

just the set theoretic concept of additive inverse "presented for instruction" (Shulman,

1987). I would expect Maddy to concur that this approach is more consonant with her

theory than (a).
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The problem of Maddy's set theoretic approach vis a vis learning is that it is rather

formal, but the advantage is that there is a perceptual 'way in' to the formality.

Comparatively, Resnik's ontology, (6.5.1), is perhaps more suited to a pattern-spotting

approach, (like SMP 1985, P 57 - 62) and an anti-realist semanticist, such as Dummett,

might emphasise the consistency of the meaning of statements involving directed

numbers. Whether an experiential base for learning negative numbers is appropriate at all

is disputed by both Fischbein and Freudenthal:

"the chapter of negative numbers has to be treated formally from the beginning. In

[Freudenthal's] his view this is the first opportunity offered to a pupil to consider

mathematical concepts from a formal deductive point of view." (Fischbein, 1987,

pI02).

The reason that Fischbein gives for this proposal is that:

"the concept of a negative number contradicted the concept of number itself as it had

originally been developed in the history of mathematical reasoning. A negative

number is a counter-intuitive concept because it apparently contradicts the notion of

existence itself - if existence is concerned with practical meaning." (ibid. p97)

"the problem of (- a) x (- b) is much harder, ... because even very fine mathematical

minds could not, for a very long time, completely rid themselves of the impact of

implicit intuitive models ... [like] practical manipulations of concrete magnitudes"

(ibid. p99)

While an educational theorist may advocate beginning negative numbers as an

opportunity for introducing deductive reasoning, a practical problem for your average

British secondary school teacher is that, given current curricula, nearly all pupils are to be

taught about negative numbers, or rather, some models of negative numbers. It would be a

hard task to teach the vast majority of 12-14 year olds formal mathematical deductive

reasoning through the topic of negative numbers. Perhaps it is a worthy aim. A theory like
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Maddy's might serve as a bridge from the perceptual directly to the formal without the

need for taking temperatures or repaying loans.

6.9.3.2 Some pupils work with negative numbers

"a person may not be ontologically committed ... to what he appears to be committed to."

(Devitt, 1984, p43)

I chose this little quote to start this section on teaching negative numbers because it

highlights a teacher dilemma: part of the teaching process is assessment and if

mathematical knowledge is, in part, to be ontological commitment to, say, negative

numbers, how can we assess this sort of knowledge? But, as I explained in chapter 2, I do

not believe that I can project 'she has had a mathematical moment', 'he has ontological

commitment', etc. onto people with whom I am acquainted because of something I have

noticed about their behaviour. This is one of the reasons for my moving away from a

psychologically inclined investigation. In particular, 'ontological commitment' is not an

empirical concept. I cannot even theoretically devise an ontological commitment meter!

So it does not make sense to search for evidence for this conceptual idea. But we say

'she's got it now', 'he's grasped it', 'the penny's dropped'. Attributions are made in

practice. So with these caveats, I want to turn to school teaching experience and look at

some work from an all-ability Y9 class which I taught for the Autumn term, 1996.

Provided in Appendix 9.271, for a sample of pupils in the class, there are two items per

pupil of work on negative numbers. The first is an A4 poster explaining something about

negative numbers. To set this up, some discussion time was given in class, then the poster

was completed at home. The second is the pupil's 'directed numbers mini assessment'.

This was given, in class, as a silent individual task, a week or so later after the poster

homework.

71 This work was not set for the purpose of presenting it to an academic audience, so teacher's comments
and students' further corrections or attempts are all there. The 'better' posters ended up at an ATM
conference!
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What is my purpose in presenting some of the student's work? Because their own

explanations and responses give those of us who are already 'committed' to negative

numbers the opportunity to see what 'ontological commitment' might amount to or

consist in. The examples from teaching experience help bridge the gap between the

practical activity of teaching and the theoretical ideas under discussion. As a teacher I ask

'have you got it?', as a theorist I ask 'what does 'getting it' mean?' My answer to the

latter question is that 'getting it' can be understood as 'ontological commitment'. And the

discussion in the rest of this section indicates that this is not, itself, a straightforward,

uncontested concept.

So a task for the reader is now to examine some pupils' work - with the notion of

'ontological commitment' in mind. For, although we cannot attribute ontological

commitment, we can, and do, seek it! I have only made brief comments on their work, for

I do not want to pre-empt the readers personal interpretation.

Both Lizzy and Anna work well with symbols, but collapse either addition or

multiplication into the verbal 'and' making their 'explanation' invalid. Lizzy adds a moral

tone: "2 rongs = 1 right"!

Bryony's advice on her poster is a sequence of images, including her own original item:

the product of two negative numbers 'can't get any lower, so it must be back to positive'.

Her assessment looks compatible with her advice.

Queenie has reproduced some of the class discussion on fell walking by Coniston and

made her own North-South analogy. For Queenie, as Lizzy, 'negative' is 'wrong'! Her

assessment shows that she does not feel free in using negative numbers themselves. She

can subtract but avoids the use of negative number either as symbol, in the assessment, or

as concept, on the poster.

Colin has an eclectic selection of tips on his poster. His assessment, (originally part C was

incomplete), suggested a similar 'not put together'ness about his idea of negative

numbers despite some symbolic competence.
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Siobohan used an idea from class discussion for her poster, and her assessment is also

'safe' .

From the theoretical point of view taken in this thesis, these data are presented to sharpen

the concept of 'ontological commitment' - or lack of it! - not to claim that it is a construct

capable of empirical verification.

6.10 Summary remarks

The aim of this chapter was to explain and justify the second part of the overall thesis on

mathematical warrants, objects and actions. The main part of the chapter was concerned

with analysing the concept of mathematical objects - the stuff maths is about. From an

analytic philosopher's point of view, mathematical ontology has three principal, distinct

channels: nominalistic, conceptualist and realist. These three aspects of theorising about

what exists in mathematics are concepts in philosophical discourse which are still being

discussed and the fuzzy boundaries between them redrawn. I think that the realist

conception of mathematical existence the best out of the three, particularly if the issue of

'coming to know' is important, as in education. So in this chapter, I have said why I do

not think so much of the nominalistic and conceptualist theories of mathematical

existence, and then I presented some theories of mathematical existence for self-

confessed contemporary realist philosophers of mathematics. The rationale for accepting

the realist theory was strengthened by the historical analysis of 'ontological revolution' in

mathematics. Given this case for realism in mathematics, I then sought to apply it in

education. I did this by interpreting the philosophical term 'ontological commitment' in

the context of learners and mathematical entities. The overall proposition is that there are

objective mathematical entities, commitment to which is part of coming to know

mathematics.

An irony of contemporary mathematics education is that the move away from formalism

has lead to an embracing of the other anti-realist conception of mathematics,

conceptualism. I hope to have shown here that a realist conception of mathematical

objects is quite consistent with pragmatic teaching as well as academic analysis.
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7. Chapter 7: Mathematical Action

All doing is knowing and all knowing is doing. (Maturana and Varela, 1992)

It is our embodied understanding that manifests our realist commitments. (Mark Johnson,
1987)

7.1 Introduction

C I I 57,000x900
a cu ate: =

380,000

Assuming you responded to this stimulus, could you describe what you did? How would

you characterise your action?

What I did was to firstly, 'knock the zeros off. Secondly, I saw other factors and cancelled

them. Finally, I tidied up so the answer was in whole number-fraction form. I would

characterise my action as an automatic response. I am able to justify this action

mathematically but, in practice, I just get on with it without any reflective thought; the

notational form holds the mathematical structure. For me, doing this calculation exhibited

'automaticity'; whether and to what extent such action constitutes mathematical

knowledge is the subject matter of this chapter.

The facility illustrated is not the same as a rote or, in Skemp's (1976) sense, a purely

instrumental response. While non-reflectivity is a characteristic of this facility in action,

i.e., as it is experienced, the facility holds, 'relational potential', (adapting Skemp's term

which is contrary to 'instrumental'). The way I want to delve into the nature of this

phenomenon of automatic mathematical action is to try to present a case for such action

to be knowledge. Even if this claim might not be successful, the process of analysing this

facility conceptually (epistemologically rather than psychologically), should provide a

clearer guide to its nature. Some of the current debates on the British educational scene,

in my opinion, are trying to address, what I have called 'automaticities', (for example,

LMS, 1995, SCAA, 1997).
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7.1.1 Examples of automaticity

Algebraic symbolic manipulation is an important part of higher school mathematics.

Algebraic automaticity includes ability to solve simple equations as well as manipulation

with more abstract mathematical objects. As an example of the latter, consider the process

of expanding, or factoring, a finite binomial expression. More specifically, for those with

fluent algebraic manipulation, 27x3+27x2+9x+ 1 can automatically (and without

awareness, necessarily), be factored as (3X+ 1)3, and (3X+ 1)3 can automatically be

expanded to 27x3+27x2+9X+1. The 'relational potential' of this facility may be expressed,

for example, in terms of 'seeing' the coefficient of the r as 33, but the coefficient of the x2
as 3x32. I do not want to demand a person has the potential to give a formal explanation

of their manipulative facility in order to be attributed with this sort of mathematical

knowledge. If I did demand this, there would be no point in trying to argue for

automaticity as knowledge, for such reasoning would be already subsumed under standard

mathematical knowledge claims. Another potential capacity for someone with 'binomial

automaticity', would be the capability to regard 8y3+8y2+4y+ 1 as not a representation of

the cube of (2y+ I), as a 'pattern spotter' might conjecture. The reasons given could be

very scant: 'there are no 3s', say. The point is that the binomial theorem has a 'shape' or

'rhythm' and that knowledge of that theorem includes the mathematical actions of

expansion and factoring and a 'smell' for that which is wrong as well as correct.

One of the points about automaticity I want to communicate is its natural, almost

instinctive, feel. Here is an example: recently 'old money' carne up in a family

conversation. Our new money, new technology child wondered how we calculated with

those awkward units. For example:
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£ s d
8 13 1 I
X 7.
60 17 5

4 6

The currency has been decimalised for 27 years and I have not been doing these sort of

calculations during this period! Yet I did not (just) know how to do this calculation with

my head - for I am able to reason out how to work in a given number base - but I knew it

'in the body'. Anyone with a knowledge of different base arithmetic could perform this

task, given the base-information, but I doubt if they would have £.s.d. automaticity.

Without some automaticities a student's progress can be restricted or made laborious. An

example of this was reported to me by a university mathematics lecturer, (Bill Cox,

personal comm.). Of his first year mathematics undergraduate students, a substantial

proportion did not answer f 2 dx . 1 by 'seeing' the denominator as 1. Instead they
cos x+sm- x

x
used standard substitution techniques, like letting t = tan"2 ' which eventually yielded the

correct answer but with excessive effort.

How can automaticities be recognised? Clearly not by observation of behaviour alone; a

very fluent operator may just stare into space doing algebraic manipulations in her head!

A first step is to catch the process in oneself. It is difficult to do this because the attempt

to observe ruins the automatic, instinct-like, character". Nevertheless, some

automaticities may be self-observed if one carries out the following little task:

~
(i) Let y = x2 - 13x + 42, what are the roots of y = O?

..

ri If I become aware of uttering something fluently in a foreign language, this very awareness usually trips
up my fluency and my next utterence is laboured.
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(ii) Let y = X2 -14x +42, what are the roots of y = O.

(iii) Make up a quadratic with two positive roots, subject to the condition that the vertex

of its graph is at x = 6.

(iv) Can you make one that crosses the y-axis at (0,42)?

Part of this task will be discussed in 7.3.3.

As a grammatical aside, 'automaticity' is used both in adverbial phrases and as a noun.

When 1say 'I did the calculation with automaticity', 1mean that 1did the calculation in a

fluent, non-rote, curtailed manner. The phrase has the same structure as 'she danced with

spirit' (i.e. 'spiritedly'). This is to be distinguished from 'I did the calculation

automatically', Le. by rote. 1 have also used the term 'automaticity' in phrases like

'executing an automaticity'. In this phrase, the referent of the noun 'automaticity' is an

action. For example, the action of solving an equation in a fluent, non-rote, curtailed way

is an 'automaticity'.

7.1.2 Piaget's legacy

The idea that action is intrinsic to knowledge is a central theme of Piaget's work. Piaget's

influence on the field of education has been, and continues to be enormous: he wrote over

forty books spanning more than four decades on biology, psychology, knowledge,

intelligence, and how these are integrated and structured as a child develops and matures.

Piaget called himself a 'genetic epistemologist': one who studies how knowledge grows.

Child development includes knowledge development and "the goal of genetic

epistemology is to link the validity of the knowledge to the model of its construction"

(Vuyk, 1981 p26). So Piaget's project has a philosophical dimension. His biologist's

roots fixed him to the physical foundation of humans' sensory mechanisms. Suppose

these mechanisms were fundamentally different then, Piaget asserts: "our fundamental

concepts would be turned upside down, not just because of the way things appeared to us,

but because of our means of action" (Piaget, 1971a, p 271). Piaget invented some quasi-

mathematical structures to describe stages of knowledge development: mathematics was
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used as a scientific model. My aim, here, is to make a different link between mathematics

and action: I argue that some actions are intinsic to mathematical objects: ontological

commitment to the mathematical entity is a consequence of mathematical activity with it,

as the binomial example above illustrates.

A thesis could be written on Piaget' s relationship between empiricism and rationalism (but

not this one!): Boden (1979) paraphrases Piaget as saying "Empiricism describes the

growth of knowledge in terms of genesis without structure, whereas rationalism offers us

structuralism without genesis" (p 88), but Piaget's later study of dialectics' attempted to

interweave the two (Vuyk op. cit. p17). This dialectical approach is compatible with

Piaget's attraction to the Kantian notion of' synthetic-a priori', (Boden, op. cit. p91) and it

is related to the vexed question of how (a) we know necessities and (b) how necessities

are related to the contingent world. I address these issues by focusing on a small part of

mathematical knowledge. I am not following Piaget's work, yet recognise the foundation

his theories provide in linking action to knowledge.

7.1.3 This chapter's proposition

The gist of this chapter is that automatically executed actions with mathematical entities

can constitute knowledge by virtue of their (warranting) form. This is due to mathematical

objects and mathematical forms (like some algorithms) being inextricably linked. This is

part III of the overall thesis. Furthermore, as educational corollary, (iii), individuals

require some procedure-embodiment for mathematical knowledge, i.e. learning

mathematics involves developing a capability to execute some mathematical procedures

automatically.

I want to make a case for this 'automaticity' to count as mathematical knowledge, and

hence for teaching mathematics to include facilitating students' automaticities as a

general aim. As Tall and Thomas remark: "one of the best indications of understanding

1 "Piaget's meaning of the concept differs from Hegel's thesis-antithesis-synthesis" (Vuyk, 1981, pIS).
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the ability to sense that something is true in an immediate manner, without recourse to a

formal proof." (1991, p49). These 'automaticites' are a form of non-propositional

knowledge. The relationship between this type of knowledge and propositional

knowledge (which I have focused on in previous chapters) is based on the notion of

'intention' and the potential variability of intention with respect to a given mathematical

action.

7.1.4 Outline of the chapter

The phenomenon of automaticity has been recognised by authors from various different

traditions. In the following section, 7.2, representatives from this extensive literature are

presented. In 7.3 the thesis is elaborated, an argument presented and some objections met.

Finally, 7.4 rounds off by examining implications for mathematics in education, in

particular I point out some implications regarding the use of computer algebra systems

(CAS) in teaching.

7.2 Automaticity from different perspectives

I have used the term 'automaticity'I", but there are other terms which seem to capture the

same phenomenon: For example, the terms that teachers might use to express a student's

capacity for fluent calculation or interpretation include phrases like: 'get it off pat', 'it

needs it be hard-wired'. This reflects the idea that the concept of cosine, say, is 'part of

the brain' and, given a right angle triangle calculation, the correct ratio is selected without

undo reflection.

Another term, offered in the specific context of mathematics education by Krutetskii, is

that of 'curtailment'. The ability to curtail mathematical reasoning is one of Krutetskii's

74 The term 'automaticity' was suggested to me by Eric Love.
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characterisations of the 'capable' pupil in rnatbematics", (Krutetskii, 1976, p264, p350),

which he describes in the following terms:

"curtailed conclusions also occupy a definite place in problem solving, when the

pupil is not aware of the rule or the general proposition by which he is actually

operating. As a result, in solving a problem he does not perform the whole chain of

reasons and deductions that form the complete, detailed structure of the solution."

(ibid. P 264)

The term 'compression', used by Thurston (1995) and then by Barnard (1996), also refers

to the same phenomenon as that of curtailment used by Krutetskii. Barnard draws

attention to the efficiency of what he calls 'compressed entities' in manipulation, but

considers them possible to unpack "whenever needed". Dubinsky's notion of

'encapsulation' is also similar (Dubinsky, 1991).

The metaphor of 'fluent', favourite of linguists, has often been adapted to describe a

student's mathematical performance, as David Pimm discusses (Pimm 1995, particularly

pp 170 - 183). This notion of 'fluent' is close in meaning to 'automaticity' - fluency

requires some automation: "Currently, when working on algebraic forms, I am

encouraged to suppress 'meaning' in order to automate and become an efficient symbol

manipulator" (Pimm, op. cit. p 108). This idea that procedural efficiency requires a 'just

do it' attitude to routine mathematical calculations, which can be explained if required,

underlies the proposition which I am asserting:

'automatically executed actions with mathematical entities constitute knowledge, per

se, by virtue of their (warranting) form, and that learning mathematics involves

developing a capability to execute some mathematical procedures automatically'.

75 Other features of his characterisation of the capable include being able to generalise, having flexible
mental processes, being able to reverse reasoning and being able to hypothesise.
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Another word which suggests a connection between action and thought is 'embodiment'.

The way in which I shall use the term follows Mark Johnson. In the preface to his 1987

book he says (of the book) "The Body in the Mind is thus an exploration into some of the

more important embodied imaginative structures of human understanding that make up

our network of meanings and give rise to patterns of inference and reflection at all levels

of abstraction." (p xvi). This idea, that abstraction starts with bodily action, is part of the

thesis here.

In a similar vein, John O'Neill's discussion of 'Cognition and Action' constitutes a

philosophical argument for the bodily basis of meaning, (O'Neill, 1984, pp35-50). The

key point of this argument is to privilege action over perception, which is relevant to the

present topic of automaticity. His term 'basic action', following Davidson, is

characterised as being an action, (possibly incorporating an object), which is executed

with minimum of intentionality and, though not specifically mathematical, has a sense

akin to 'automaticity'. I shall discuss this further below in 7.2.3. O'Neill argues that the

behaviourist and representationalist views 76 of mind fail to account for the variability of

intentionality which mental states can have. He then sketches an 'actionist' theory of

mind wherein:

"our ability to make representations, to use one object to refer to another, is founded

on our direct access to objects in the external world given by action on them. The

content of our representations is founded on our non-representational knowledge of

the success or failure of the actions they guide." (O'Neill, op. cit., p309)

The point is that in order to make representations - sounds, diagrams, symbols, for

example - some other, hence non-representational, facility is employed: a 'basic action'.

The distinction between 'basic' and 'non-basic' actions is crucial in O'Neill's argument

that actions can be non-representational. Basic actions are those which "one can do

without doing anything else ... Non-basic actions cannot be known directly" (p 317-8).

76 Both of which he claims are 'formalist' accounts and his thesis is entitled 'Against Formalism' .

233



Chapter 7: Mathematical Action

'Automaticity', as I have been trying to characterise it, is not the same as Vergnaud's

'theoreme en acte' (1981) because, for Vergnaud, reflection is not available:

"Le concept de 'theorerne en acte' designe les proprietes des relations saisies et

utilisees par le subject en situation de solution de probleme, etant entendu que cela ne

signifie pas qu'il est pour autant capable de les expliciter ou de les justifler.?" (plO-

11)

The subject exhibiting automaticity, unlike Vergnaud's subject, would be 'capable of

explaining or justifying' the connections which he has 'grasped and used'.

To recap: the term I have chosen to use to express a 'hard wired' mathematical capacity is

automaticity. It is suitable because it describes action that can be executed without

necessary reflection, and has the connotation that an embodied relational understanding,

('relational' implies that the subject has some capacity to unpick that understanding), is

part of the individual's mathematical practice. Whether, or in what sense, 'automaticity'

counts as mathematical knowledge is going to be a more difficult case to make and is the

focus of section 7.3. In the following subsections, I aim to put flesh on the meaning of

'automaticity' by illustrating that the phenomenon - albeit named differently - has been

recognised from psychological, linguistic, mathematical and philosophical perspectives.

7.2. J Krutetskii

Of a 'capable pupil': "he proved the remaining algebraic theorems freely, without

reflection" (p246)

Krutetskii's seminal work on mathematical abilities in schoolchildren gives many specific

examples of pupils' facility of automaticity, (particularly within his Chapter 13

'Characteristics of Information Processing' pp 237-294). This facility is referred to by

77The idea of the 'enacted theorem' points out the properties of the connections grasped and used by the
suhject while trying to solve a problem, being granted that it does not mean that he is, for all that, capable of
explaining or justifying these connections.
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Krutetskii as the ability to 'curtail', as quoted above. Krutetskii's psychological study was

seeking to characterise mathematical ability and proceeded to seek attributes of 'capable'

pupils which were not present in those whom he termed 'average' and 'incapable'. One

such attribute was this capability to work as Krutetskii's student O. V. did when asked "to

solve: (C+D+E)(E+C+D)" (p241), not having worked 'trinomials' before. This 'capable

pupil' first 'sees' the given product as a square, then represents it as a binomial, with

which slbe is familiar. The pupil expresses this action as: "(C+[D+E])2 ... [for] as soon as

I combined D and E into one term, I got a binomial. ... A 'term' can be any expression".

Krutetskii sums up this achievement as: "the pupil has composed an algorithm for solving

all problems of this type" (p 241). The pupil's action (bracketing, use of binomial) is a

form, or algorithm; this connection between behaviour (the action) and logic (the

algorithm) is, Iclaim, an aspect of mathematical knowledge.

Krutetskii's report on his psychological project is a mine of information and detailed

examples, such as the one given above. Krutetskii's report supplies empirical evidence of

the capability of automaticity by presenting it in specific cases. He also gives non-

examples, (e.g., p242, p244, p246) which helps further clarify the capability. These non-

examples, show how, without this capability, a pupil's flow stops, how structures and

generalities are not perceived and how notation is interpreted without sensitivity to its

symbolic function. Krutetskii makes it clear that the 'curtailment' he exemplifies from his

data is not the same as ''unreasoned and unmotivated" omissions, (as apparent in some

'incapable students' reasoning) (p267). For he reports that at the researchers' request the

'capable' pupils "expanded curtailed structures to their full structure" (p270). The ability

. to operate without reflection, yet be able to fill in the gaps and give the rationale for

certain moves on request, distinguishes 'automaticity' or 'curtailment' from a 'theorerne

en acte', in Vergnaud's sense. Ido not want to suggest that, for example, a correct but, to

the pupil, ungeneralised and, as yet, ungeneralisable, use of the distributive law

constitutes knowledge of these multiplicative structures. More specifically, though Jimmy

can tell you what 7x13 is by working out 7xlO+7x3, it la theoreme en acte, this does not
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mean that he can describe this process abstractly" nor use the distributive law's structure

to support calculations at the limit of his mental range, as 23x47 might be. What I am

trying to draw attention to is that the pre-verbal theoreme en acte, is different from a-

verbal proficient action, which could well have been given the same name: 'enacted

theorem'. Binns and Mason help clarify this distinction:

"Students may behave as though they know these laws [conservation of equality

and distribution] but may in fact be quite unaware they are employing any general

principle" (Binns (now Bills) and Mason 1993, p 3)

This phenomenon of being unaware of employing (what is in fact) a general principle is

different from employing, without awareness, a general principle, the generality of which

is understood. Krutetskii claims that in the case of 'capable' pupils they do grasp the

generality, albeit in a non-explicit, curtailed manner, but the 'average' or 'incapable'

pupils require "preliminary, gradual generalization on the basis of practice" (Krutetskii,

op. cit. p 246). This practice gives the opportunity for a stimulus-response capacity to be

establ ished of the theorerne en acte type.

Krutetskii's work was on high attaining pupils, but this investigation is into the nature of

higher school mathematical knowledge generally. Nevertheless Krutetskii's observations

are relevant. Firstly, they provide evidence for the distinction between curtailment and

theoreme en action. Secondly, they point to the a-verbal aspect of these algebraic facilities

- because they are so spontaneous - which is invariably lost when a pupil has to have been

didactically instructed into the same algebraic actions. These capable pupils seem to have

been born with some hardwired mathematical capacities - i.e. with 'automaticities'. The

question I want to address is: in what sense does this capability constitute knowledge?

78 Any sort of abstract generalisation could be acceptable, not just 'a(b+c )=ab+ac'.
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7.2.2 Mark Johnson

Evidence of 'automaticity' from Mark Johnson's book 'The Body in the Mind' is quite

different from that evidenced by Krutetskii's work. Johnson is not concerned specifically

with mathematics, although he does consider logic. His aim is to give an account of

meaning that incorporates action-cognition. His account of logical, deductive knowing

through bodily experience is particularly relevant to a discussion of the knowledge status

of mathematical automaticities.

Johnson's work, inspired by Kant, locates imagination as the prime mover in developing

human understanding. Image schemata'" which are by nature abstract, are the foundations

for metaphorical imaginative leaps of meaning-grasp and meaning-creation. These image

schemata are structures that have a basis in physical experience. Johnson exemplifies this

with image schemata like verticality (p xiv), containment (p 21, p39) and force (p 42).

Ups and downs, ins and outs, and pushes and pulls, are bodily experiences; they are

"embodied" (p xx). Johnson's key point is that our understanding of, say, the complex

concept of measure in applications like "prices keep going up" (pxv), relies on the

verticality scbema'",

Because my particular interest is in mathematical reasoning, which includes logical

inference, I quote, at length, Johnson's explanation of how knowledge of some simple

logic is achieved:

"it follows from the nature of the container schema (which marks off a bounded

mental space) that something is either in or out of the container in typical cases.

And if we understand categories metaphorically as containers ... then we have the

claim that everything is either P (in the category-container) or not-P (outside the

79 "Image schemata are abstract patterns in our experience and understanding that are not propositional in
any of the standard senses of the term. and yet they are central to meaning and the inferences we make" (p2)

80 lohnson cites this as an example of 'quantity' .
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container). In logic this is known as the 'law of the excluded middle' ... the principle

'Either P or not-P' has an intuitive basis in our daily experience with containment.

A second logical relation that is experientially motivated by containment is

transitivity ... if a set A is a member of (is contained by) set B and set B IS a

member of (is contained by) set C, then A is a member of set e.81 •••

This basic logic of containment also motivates the equivalence for double

negation, - -P=P ....

such inferential patterns arise from our bodily experience of containment" (p 39-40)

The reader may recall that, in 5.4.3, I suggested that modus ponens reasoning, 'P=>Q & P

then Q', was also attributable to bodily experience of containment. For, by containment, if

P is 'inside' Q Ut la image of a Venn diagram), then whenever P occurs, Q inevitably

occurs too.

The power of Johnson's work has been recognised in the mathematics education field.

Presmeg (1992b) uses the linguistic aspects of Johnson's theory to explain how

metaphoric and metonymic associations are, psychologically, both essential for the

learning of new mathematics. They depend on the subject's imaginative facility. But it is

Johnson's explanation of the intrinsic importance of bodily experience in developing

meaning which is relevant to my claim of that mathematical action can be knowledge.

This aspect of Johnson's work is also noted by Presmeg in her review of his book

(1992a): "an important part of Johnson's book ... is reflected in its title .. internalisation of

bodily action is a central aspect in the Piagetian formulation as in Johnson's", but is not

central to her use of his work.

81 This does not seem correct. set theoretically: for. if Ae B and Be C it does not follow that Ae C. For
example, if A={a} and B={ (a},b}={A. b). then Ae B ,and if CejB, cl. then BeC. but A~C.

But if AcB and BcC then AcC. This containment is illustrated by A={a} and B={a, b). so AcB • and if
C= {a, b, c}, then BcC and Ace.

238



Chapter 7: Mathematical Action

7.2.3 John 0 'Neill

Davidson's notion of 'basic action' has been used by John O'Neill in his action-based

theory of meaning (O'Neill op. cit.). O'Neill declares that mental states are "intrinsically

intentional" (p311), but this does not imply that attention is paid to this intrinsic

intentionality at the moment of activity. This is a familiar situation in mathematical

activity; I just calculate. In the words of the poet Basho "how unaware, how useful".

O'Neill argues82 that "'moving my body in just the way required to tie my shoe laces' is

not a re-description of 'tying my shoe laces'" (p 321). The distinction is made by

associating the former with the novice and the latter with the expert. The novice attends

to hislher fingers; the expert performs shoe lace tying as a basic action: "in tying one's

shoe laces the fingers move, just as in raising one's arm the muscles flex." (p 322) The

complexity of such basic actions can increase: O'Neill exemplifies this through spade-

action and blind-stick-action. These actions become basic when the intentionality in

executing them has died away. Thus the blind man's stick is an extension of his body, "if

the ground falls away sharply, [he] knows this directly" (p 323) rather than "infers" or

"represents" that state of affairs. Negligible intentionality in use of his stick does not

imply that the blind person does not know that he is holding it. O'Neill's analysis does

not go into the educationally relevant epistemological problem of how an action becomes

'basic' .

Within mathematics education, Dave Hewitt has devised some practical teaching

strategies which aim to minimise intentionality with respect to a mathematical process by

diverting attention, (reported in Pimm, 1995, pp95-6) The aim being to encourage the

development of students' algebraic or arithmetic automaticities.

82 against Davidson, (O'Neill, op. cit. p321)
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7.2.4 Wang Hao

Wang is a philosopher and a mathematical logician whose aim, (in particular in his 1974

collection from which reference is taken), is to investigate "the relations between logic

and knowledge" (p20). Wang draws himself away from the highly abstract world of

formal mathematical logic to investigate how logic can help understand human

knowledge generally. Because he does not want his study to become detached, as often

logical treatises are, Wang "look[s] at mathematics in terms of the practice and the

activity from several angles" (p21), i.e., Wang shows his interest in epistemological detail

by his use of specific examples (drawn from mathematics, as that is his expertise). For

example, in the following quote, Wang unpicks mathematical activity associated with a

particular well known problem:

"The mind participates actively in seeing, e.g., an array of numbersr' as paired off

suitably to create a new uniformity. This 'seeing as' enables us to take in at a glance

the 5000 pairs of numbers which all have the same sum, 10 001. In this respect, the

dots are not 'mere abbreviation' either, because they, or something else like them,

are indispensable for grasping the array of numbers at one go; they embody the

formal fact that we see the 5000 pairs as a whole string with a definite beginning, a

definite end, and a definite way of continuation. In doing this calculation, one is

likely to make (mental) experiments such as trying to look for suggestions from

summing a small number of integers. But calculation is not itself an experiment,

since once the path is found, certainty intervenes." (ibid. p 131)

83 Wang is referring to the problem of finding the sum of the first 10,000 integers by Gauss' method

2 5000

500110,000 9,999
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This passage illustrates Wang's notion of 'mathematical perception' as "the mind

participating actively in seeing" which is done automatically, "at a glance". This is a good

way of expressing the notion of automaticity that is central to this chapter. In talking

about the role of the tabulation and the dots, Wang observes that cognizing beings like me

need a supportive notation to symbolise the mathematical relations. What is more, Wang

goes on to tie in the notion of "certainty" with "the path of the calculation" which, in

other words, is the mathematical warrant or form.

7.2.5 Wittgenstein

Wittgenstein does not present an action-based theory, as Mark Johnson's, nor a

mathematically orientated one like Krutetskii' s or Wang's. As is well known,

Wittgenstein's later work centres around language and meaning, though he draws on

ordinary experience of basic mathematics and daily life to provoke and to test his

conjectures about meaning. The question of logical inference, "the hardness of the logical

must" (Kenny, 1994, p233), clearly interests him; discussions on the sense of logical

compulsion are to be found in (at least) Kenny, 1994, 'The Blue and Brown Books',

(Wittgenstein, 1972) and his 1939 lectures on mathematics, (Wittgenstein, 1976). In these

works Wittgenstein writes on necessity and logic and how these notions relate to both

mathematics and general experience.

This passage illustrates Wittgenstein's concern with mathematical meaning, necessity and

experience:

"the point is that the proposition '25x25=625' may be true in two senses. If I

calculate a weight with it, I can use it in two different ways. First, when used as a

prediction of what something will weigh - in this case it may be true or false, and

is an experimental proposition. I will call it wrong if the object in question is not

found to weigh 625 when put in the balance. In another sense, the proposition is

correct if calculation shows this - if it can be proved- if multiplication of 25 by 25

gives 625 according to certain rules. It may be correct in one way and incorrect in

the other, and vice versa. It is of course in the second way that we ordinarily use
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statement that 25x25=625. We make its correctness independent of experience. In

one sense it is independent of experience, in one sense not. Independent of

experience because nothing which happens will ever make us caIl it false or give it

up. Dependent on experience because you wouldn't use this calculation if things

were different. The proof of it is only called a proof because it gives results which

are useful in experience" (Wittgenstein, 1976, p41-2)

This passage exemplifies Wittgenstein's recognition of the physical reality of elementary

arithmetical propositions, as well as their formal truth. But he keeps these two notions

apart. I want to make a case for connecting these notions via an action, or bodily, based

theory of meaning.

While Wittgenstein never concedes reference outside of a language game, he does

examine the curious force of logical necessity (which appears to refer to a non-linguistic

reality): "..that 'what seems to be a logical compulsion is in reality only a psychological

one' - only here the question arose: am I acquainted with both kinds of compulsion

then?!" (Kenny, op. cit., p 231). His problem is to account for where this sense of

necessity comes from: "how do we become convinced of a logical law? We might say:

It is some primitive kind of experience which corroborates logical laws [but] the laws

of logic are not corroborated or invalidated by experience." (Wittgenstein, 1976, P 199-

200). Although I agree with this statement, its very assertion illustrates my divergence

from Wittgenstein's point of view, which is that certain kinds of experience are

instantiations of logical laws.

One of the metaphors Wittgenstein explores when discussing logical necessity is

'mechanical'. And this concept relates to 'automaticity'. I shall argue for a sense of

'mechanical' in fluent mathematical reasoning which is more physical than

Wittgenstein's metaphorical associations. In his 1939 lectures, Wittgenstein discusses..
'logical machinery' (ppl96-200) and shies away from its real existence (pI9S); it remains

a metaphor for him - the examples he musters are but empirical and contingent or social-

linguistic and not of 'logical type' at all. In another work, (Kenny, op. cit.) the notion of

'machine as symbol' gives a slightly different conception: "the movement of the machine-
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as-symbol is predetermined in a different sense from that in which the movement of any

given machine is predetermined" (p234). At first sight, a link seems to be made here

between the material and the linguistic. But the 'machine-as-symbol' is also a mere model

without a material reality, albeit that we only understand its meaning because of our

experience with pulleys and gears and so forth. 'Automaticity' has a sense of an actualised

'machine-as-symbol', even though this is not within Wittgenstein's conception.

Part of the point of reading Wittgenstein is the philosophical work one has to do to make

an interpretation of his aphorisms and paradoxes; he is a task based writer. When

Wittgenstein says: "...1 am to act and not consider." (Kenny, p242), he echoes evidence

already discussed in this chapter, another example of which is the Krutetskii pupil, who

"To the experimenter's question 'How did you solve it?' replied: 'Here there is nothing to

think about - just look at the example and write'." (Krutetskii, op. cit. p266).

This brief collection of examples from Wittgenstein's writings show that he was concerned

about the problems of coming to grasp ideas of logic and mathematics. He also recognised

phenomena which included actual calculating and deducing as indicating these problems.

However, his linguistic analysis did not allow an experiential answer as he always divided

the language game from the experience.

7.3 A case jor automaticity as know/edge

In this section I shall try to make a case for 'automaticity as knowledge' and answer some

objections to this assertion.

The examples, tasks and perspectives illustrated in the previous section should give

credence to the existence of the phenomenon of automaticity. The question which I tum to

now is whether, and in what circumstances, automaticity may count as knowledge. There

are crucial and subtle distinctions, as I indicated in 7.2, between habitual, routine and

algorithmic actions with mathematical entities and 'automaticities' which are candidates

for knowledge. For example, the routinised action of the pupil who obediently

divides fractions by 'turning the second one up side down then multiplying them' is the
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very anathema to the mathematical knowledge which 'automaticity' connotes. Yet the

observed behaviour of the pupil 'going through the motions' of, say, dividing one fraction

by another, and the one whose behaviour was automatic, curtailed or compressed, may

well appear very similar. This is one of the reasons why observation, per se, has its

limitations when trying to analyse this phenomenon. For knowledge is not to be inferred

by such or such a behaviour. An argument for automaticity as knowledge cannot come

from analysis of behaviour, the use of examples of behaviour are given to help the reader

tune into the meaning of the term.

Unlike Giaquinto's visualisation (see 5.4.5), automaticity - mathematical knowledge in

action - may often be a more gradual process than the 'ah-ha! 'seeing" of a geometric truth.

But, as Krutetskii's pupils' curtailed reasoning exemplifies, those with a 'mathematical

cast of mind' are able, sometimes, to curtail their reasoning in quite novel situations.

Automaticity, nevertheless, seems more applicable to algebraic, arithmetic or logical

reasoning, than geometric, problem solving or modelling mathematical activity, and I

shall focus my discussion on the former.

A feature of automaticity is that new (for the individual) propositional knowledge may

arise from such an automatic mathematical action which I am claiming is a sort of non-

propositional knowledge. Each 'move' in the symbolic deduction is executed without

specific awareness or reflection, but the result is novel. For example, in 3.2.3.1 on the

ellipse-like locus, the eccentricity of the ellipse was a novel result, to me, as a

consequence of the preceding algebraic manipulations.

With automaticity, unlike visualisation, it is the process itself which is the knowledge,

(even though something else new _!l1ightbe 'seen' as a result of this process). This is

because, as I shall elaborate on below, the process is a mathematical form (structure or

argument) which is itself a mathematical warrant.

So a working definition of an 'automaticity' may be taken as: 'an execution of an

algorithm or logical deduction together with a potential rationale for that algorithm or

deduction'. This should give a flavour for the sort of action/process/grasp I am trying to
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capture. However, this particular attempt to characterise 'automaticity' leaves as

problematic the 'potential rationale'. I relate this to the philosophical notion of 'intention'

in section 7.3.2.

7.3. J Automaticity: an example

As the examples above illustrate, the 'potential rationale' may not be the driving force for

the calculation or algebraic reasoning in question, but subliminal. In order to make the

claim that 'automaticity' is mathematical action-knowledge, a specific mathematical

process is examined. By analysing the connection between the action required for the

calculation, i.e the form of the process, and the warrant for the truth of the resulting

proposition, I want to show that these can be structurally the same, thus showing how

action can be interpreted as mathematical knowledge.

The process I have chosen to analyse is two digit by two digit Vedic multiplication". This

is used because (i) Vedic multiplication is traditionally taught as a process based on the

Sanskrit aphorism 'crossways and vertical'. This aphorism captures the dynamic physical

representation of the mathematical process involved in multiplying; (ii) the process has a

culturally independent, structural, 'British-schoolgirl' explanation and this explanation

serves as mathematical warrant.

The Vedic method for multiplying pairs of two digit numbers is illustrated by an example:

87 multiplied by 96:

873
964

8 3 5 2

...

841 learnt this method of multiplying at HIMED. February. 1997.
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And the answer to the multiplication is 8.35285.

In Vedic multiplication, unlike the British standard 'long multiplication', blind adherence to

the algorithmic instructions given will not always produce the desired correct answer.

At this juncture, the reader may like to construct an example that follows the Vedic

algorithm, described in the footnote, yet does not get the correct answer (without

making further adjustments).

Using this Vedic method for calculating involves understanding the form, i.e. the

structures involved, as well as the 'moves', what to do. Without the understanding of the

form, (part of which is the base 10 representation of whole numbers), mistakes are more

likely, for reasons the reader may have found in constructing a non-successful

manipulation. And it is this deeper sense of form that is required for this automatic use of

such an algorithm. The form of the calculation is the processes's validity and it is the

mathematical warrant for the calculation.

What is the 'form' of Vedic multiplication? Why is this form a mathematical warrant?

Before drawing attention to 'Vedic form' and making a case for it to be a warrant, I want

to clarify what knowledge claims are being made. There are two obvious contenders: (a) I

know 87x96 = 8352; and (b) I know that calculating 87x96 using the Vedic method will
yield an arithmetic truth. The claim I want to make is (b). For fallible human calculation.

as in (a), can always be in error in particular cases, but with general logic-based methods

there is a possibility of (local) completeness and consistency, i.e., knowledge.

Vedic multiplication form:

85 This is achieved as follows: 87 and 94 are each subtracted from 100 and the product of these
'discrepancies' is written as the right side of the answer (52, in this case). Next, subtract the discrepancy
of either one of the original numbers from the other (resulting in 83 in this case), this number is written as
the left hand side of the answer. Setting the working out as indicated above ensures that the answer, in
standard notation, of eight thousand three hundred and fifty two is correct.
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The numbers are base 10, i.e. Th H T U Write the two numbers in base 10.

numbers

2 The multiplication 87x96 means 'how 8 7
Setout 9 6

many is 87 lots of 96? (or vice versa)'

3 Define 'discrepancy' - den) - as the Find the two discrepancies, place

difference between the order of 8 7 3
them thus:9 6 4

magnitude of n; and n, (relative to base

10, here). For example, d(87)=100-

87=13, as 100 is the order of magnitude

of87.

4 The answer to the multiplication is given Write these two numbers adjacent:

by l00-d(87)-d(96) in the H place and 83 52 to get the answer

d(87)xd(96) in the U place.

5 This both means and is because:*

(100-d(87)-d(96»xl00+d(87)x(96) = The answer is 83 hundreds and 52

(lOO-d(87»x(lOO-d(96» = 87x96. units or

8 thousand 3 hundred 5 tens and 2

units.
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This sequence 1 - 5 both justifies the Vedic multiplication algorithrn'" and explicitly

specifies the actions involved in using it to do multiplications. It also explains why 64x97

is not 61108; understanding of place value, not just the algorithm is needed to justify why

6208, not 61108, is 64x97.

7.3.1. J Vedic form as mathematical warrant

To show that this 'crossways and vertical' method, can be a mathematical warrant, it is

enough to refer back to the structure *. However, the crucial step in mathematical

knowledge development is the 'internalising' of this method as warrant. One way to

understand what this might mean is to envisage two users of the method one of whom can

demonstrate a structural analysis of the method and the other who operates

instrumentally. (These approaches mirror the regular and italic text above). The idea is

that warrant must contain a potential for increasing detail or explanation of the form, yet

in executing the process given by that form the action may be highly curtailed.

To recap: in this sense of automaticity, 1 can make a knowledge claim: 'I know that

calculating 87x96 using the Vedic method will yield an arithmetic truth', when (i) I can

execute a calculation of that type without substantial reflection; and (ii) 1 am able to

justify my moves with the symbols 1use via a mathematical warrant; and (iii) the form, or

structure, of the moves is the warrant used to make the justification (iii). There are several

objections to this sense of automaticity being knowledge some of which shall be

answered below in 7.3.4.

7.3.2 Automaticity as non-propositional knowledge

The claim here is that 'automaticity' is non-propositional knowledge. That is, it is

knowledge of the tying shoe-laces type but with mathematical objects as 'laces and bow'

and mathematical warrants as 'expert motion of fingers'. The idea that an action can be

86 So d( I05)=-5 and the Vedic algorithm, with adjustments, still works: 105x87=9200-65=9135
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knowledge, is different from the situation discussed earlier, particularly in chapters 5 and

6, where knowledge of mathematical propositions, and the referents of those propositions,

were the main issues.

At this juncture it may be helpful to compare propositional and non-propositional

knowledge about the same item of higher school mathematics. A student may be expected

to 'know' the following proposition: 'x E R,n E Z,J(X) = x" => r(X) = nxn-I '. Of

course, this proposition may be expressed in a more discursive form or with different

notations. The corresponding non-propositional action-knowledge could be described as

'knowing how to get the derived function of a monomial' together with a potential to

warrant. Potential justifications could be: a formal derivation of the derivative using

limits, or a quasi-empirical estimate of the smoothing function of differentiation,

(visualisable for small n>O), together with a falsification of the 'take the exponent and

subtract l' rote procedure in the case of other classes of functions like g(x) = e" . (The

strength of the person's action-knowledge is, perhaps, related to the warrants available for

justification and the flexibility with which these are employed.)

The argument for automaticity being knowledge rests on the following:

1. There is an analogy between automatic actions with physical objects and automatic

actions with mathematical objects. This was shown in 7.2.

2. These automatic actions with mathematical objects (the ones which I want to claim

have this knowledge status) have a structure which can be associated with a

mathematical justification. This was explained through analysis of the Vedic

multiplication example.

3. It is possible to distinguish theoretically between rote-action and knowledge-in-action.

I now tum to 3. of this list and make the distinction between knowledge-action -

'automaticity' - and habitual or rote-action, by going back to some of the 'task' suggested
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at the end of section 7.1.2. Part (i) of the task was: Let y = X2 - l3x + 42, what are the

roots of y = O? Below, I compare two approaches:

Automaticity Rote habituation

Solution of quadratic: max two roots. Solution of quadratic: there is a forrnula'"

which gives the solutions.
Factorise, if possible.

As 6x7=42; 6+7= 13, y = (x - 6)(x - 7)
In this case a= 1;b= -13; c=42

y=O ~ 0 = (x - 6)(x - 7)
-(-13)±~(-13)2 -4x Ix42

x = ----~-------
2xl

So, x=6 or x=7 Gives, x=6 or x=7

Not all those solving the problem instrumentally ('rote habituation') need to resort to the

formula, guessing the numbers which fit the brackets can also be a rote and not

knowledge-like action. I gave the example of the formula use because it is the response I

have seen from non-capable students with calculators available to work the arithmetic; it

is a reliable method which can be executed without grasp of the entities it involves. "It

always works" has been the rationale given by some of these students. The warrantability

depends on the form, which in some cases, particularly in the level of mathematics with

which I am dealing, can be specified objectively. This is due to the 'local formalism'

obtainable in higher school mathematics: i.e., there are parts of mathematics for which

consistent formal systems have been developed'".

87 I use the notations given in the following representation: x = - b ±.J bl - 4ac
2a

88 For example, the propositional calculus and limited parts of elementary algebra and geometry (Wilder,
op. cit. p 275. Tarski.1948). The success of local formal systems is manifest in the technological
achievements of the late twentieth century. despite the failure of formal systems to underpin mathematics
globally. However. "[there are] parts of mathematics which have been systematically and completely
developed" (Wang. 1986. p 325).
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7.3.3 Objections

The claim that automaticity - an action - can be a sort of mathematical knowledge is

surely contentious. Some objections to, or queries about, this claim are answered now.

A. In what sense does the claim 'automaticity as knowledge' depend on a notion of a

mathematical form being 'internalised' by a cognising subject?

Reply An explicit analysis of a mathematical form was given in the case of the Vedic

multiplication algorithm. When the sequence of actions of the algorithm is 'basic', in

Davidson's and O'Neill's sense, then I want to say that this form has been 'internalised'.

To explain this 'internalisation' further, recall that for such a basic action, intentionality

in executing an automaticity is minimal, yet variation of intentionality related to the

mental act is possible. 'Internalisation' is another way of referring to 'basic action' and

basic action is related to intentionality.

One of the distinctions between a rote mathematical action and an automaticity is in the

characterisation of the corresponding intentionality. Before I explain this, recall that in the

case of tying shoe laces, intentionality 'dies away' as expertise increases. In mathematical

expertise, the corresponding intentionality is more complicated than such a monotonic

decrease. A typical mathematical action - like solving equations - is at first laborious, then

it becomes rote, then an automaticity'". In terms of the intentionality: at first, the form is

not internalised and the student's intention to, say, solve the equation has to be high:

'what do I do next? Oh yes, put the xs on one side and the number on the other'. Then,

these algebraic routines can be performed as rote action. (As Shazdah said: I can do it but

I don't know what it means). At this stage intentionality generally decreases and some

behaviourist-type stimulus response has been internalised. When the student solves

equations with automaticity there is low intentionality unless something interrupts the

flow of the action. (This could be an error or a request for an explanation, for example).
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With such an interruption, some justification of the action is required. To do this a mental

act, i.e. intention, is required to produce the justification. So the student has to be able to

vary from the low intention of routinised action to the high intentionality of justification

at the automaticity stage. It is as if, at this stage, there is a flexibility associated with the

student's intention which is also internalised.

B. Intentionality seems to be intrinsic to knowledge but lack-of-intentionality to

'automaticity'. How then can it be justifiably claimed that automaticity is (a form of)

knowledge?

Reply On the question of intentionality as intrinsic to knowledge, this begs the question

about the possibility of the non-propositional knowledge (for which O'Neill argued,

7.2.3). The point is, both from O'Neill's perspective and my own, that we want a form of

knowledge to be characterised by minimal intentional action. The point about

automaticities is that while the process is invariably carried out with minimum of

intention, there is a flexibility in the intentionality for deeper warranting capacity as

explained in A..

C. An automaticity seems to be non-propositional knowledge in execution but

propositional in justification. How is it possible both to make a distinction and to

declare an intimacy between non-propositional and propositional knowledge?

Reply The objection may be answered by bringing in the concept of the potential

variability of intention again. The expert Vedic multiplier, say, is able to act instinctively,

non-propositionally, on receiving a pair of suitable numbers. But the form itself can also

be spelt out in such a way that each step can be couched as a propositional assertion, as

was done in 7.3.1.

89 Not all students go through each of these stages; some of Krutetskii's capable pupils went straight to
automaticity.
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D. Supposing it was granted that automaticities can count as knowledge. At what sort of

prompt does this 'internalised logical form' manifest itself as observable behaviour

(like writing down a sequence of symbolic manipulations as a calculation)?

Reply Firstly, to reiterate: 'automaticity-as-knowledge' is not an observable, as 1

exemplified with the dividing fraction scenario. It is a mental state, using 'mental' in the

sense of Johnson's 'body-in-the-mind': potential actions are part of this state. So,

secondly, the lack of precise behavioural criteria which may indicate occurrences of

automaticity is not appropriate, even though automaticity is realised in action which may

have an observable component.

E. We all make errors sometimes. How can this be if the automaticity - with which a

calculation was done - is knowledge?

Reply We all make errors in some individual calculations. This can happen in cases in

which we claim to know the procedure involved (my cheque book is full of subtraction

errors I). 'Automaticity' signifies a formality in the knowledge - because of the warranting

capacity - in which the general structure is more significant than the particular

calculation. As Wittgenstein has said about an arithmetic 'mistake': "I must have

miscalculated" indicating that the form is more vital than the individual answer. In some

sense it is only when we have knowledge of this procedural-form type that we can even

recognise errors in execution of such a procedure.

F. The argument that automaticity is knowledge seems to presume the following: if the

person acting with automaticity were to be challenged on any aspect of their routinised

calculation or process, they should be able to mathematically warrant their action. Is

this possible?

Reply Not in practice! The practical impossibility of ever going the whole way to the set

theoretic foundation of, say, an arithmetic process does not imply that a warrant was not

given. Mathematical forms are apparent at various stages of analysis, (as the Vedic

example was intended to illustrate). The question of the appropriate level of formal
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scrutiny, in practice, is a question of negotiation for the person with the automaticity and

the challenger (who claims the former is acting instrumentally).

7.4 CAS, calculus and automaticity

Keeping your eye clearly on the mathematics requires an extremely fluent use of the

technological device (observed of Douglas Butler'"), An extremely fluent use of the

technological device does not imply that you have your eye clearly on the

mathematics (observed of some PGCE students").

As an application of these ideas on automaticity, I shall discuss two propositions relevant

to higher school mathematics:

a) On mathematical performance and perception of structure: A student of calculus, if

s/he has a CAS available, does not need to know the structural properties of a one

variable differential operator, like the 'product rule', to be able to solve several classes

problems. This may effect the range of problems capable of being solved.

b) On CAS and 'capability': For not-capable92 students, the use of a personal technology

CAS may militates against their achieving automaticity of 'symbolic manipulation'

(typical in mathematics A level). For capable students, a personal CAS could well

enhance the possibility of their achieving this automaticity.

90 Douglas Butler, a teacher at Oundle School, gave an impressive demonstration of mathematics teaching
with IT at The Mathematical Association conference, University of Strathclyde, 1997.

91 In particular the non-mathematics graduates on the 2-year mathematics secondary paCE to whom I
taught calculus.

92 I do not wish to stereotype students' ability, (in the sense of Ruthven 1987), but use Krutetskii's term to
denote practising teachers' recognition of differences in capability.
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Before discussing these propositions. some brief notes on CAS are in order. Firstly, like

electronic calculators, they are not primarily pedagogic devices'". Developed for

commercial or academic interests. (Oldknow and Flower, 1996, pp 52-4), the

manufacturers clearly had. and continue to have. economic interests in widening their

market into the educational domain. The glossy advertisements in our professional

magazines are there first and foremost to increase the profits of these transnational

companies. Although the initial motivation for developing CAS was not pedagogic, it did

not take long before the enterprising manufacturers caught on to the huge educational

market. so adaptations took place and substantial investment has now taken place to

ensure that machines are developed specifically for students (in school, F.E. and RE.).

The TI 92 is a particular case of a relatively inexpensive machine which can perform a

range of different software packages relevant for an advanced mathematics student.

The extent to which mathematics teachers and educationalists were born to accept these

technological innovations, sought these helpful devices. or had these commercial

intrusions thrust upon them, is a socio-political story outside the scope of this thesis. My

point here is only that there is no a priori reason for such. economics driven, technology

to benefit mathematics learning. And this is not suggest that I am trying to imply that their

use need be harmful in mathematics learning either!

The second preliminary point. is that it is relatively difficult to become adept at using

these advanced calculators and CAS packages. Oldknow and Flower point out "Most

CAS work in rather idiosyncratic ways, which can appear confusing. particularly for

students with weak algebraic skills" (op. cit. p 3). The time investment required to get to

the position where this technology can be used productively can be considerable. This has

been recognised in some recent course materials, for example, the recent Nuffield

Advanced Mathematics took up about half of its Book 1 on specific teaching on how to

93See Pimm, 1995, pp 76 -87. Pimm points out that these technological calculating devices do not have the
'transparency' of mechanical calculating devices like the soroban, (p 80).
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use an advanced (many function and graphic) calculator. In classroom, much

troubleshooting is often required to help students enter and read expressions in Derive.

Some students are intrigued by their calculator and explore its functions as an interest.

Most students merely contend that facility with their calculator is essential for good exam

performance. The calculator is another thing to learn about in maths lessons and it can

help get the answer to some calculations easily. Is the push for technological proficiency

in the same direction as the push for mathematical knowledge? A priori there seems no

reason to suppose that an increase in CAS or calculator technological proficiency

increases mathematical knowledge". That is not the same as pretending that the

unbounded data obtainable from the calculator or CAS does not offer the learner a wealth

of experience, just by virtue of being information. This 'rich environment' may be fertile

for Iearning'". But 'proficiency' does not imply that the putative learner, in ecological

realist terms, "perceives affordances" (Kitcher, 1984, p 12) in the CAS or calculator's

output. There are still two conceptually distinct, yet intersecting domains, IT and

mathematics. It does not follow that learning IT with or through mathematical

applications is mathematics learning. My point here is that IT learning involves

investment. IT can provide splendid images, information and experiences from which

students may find it easier to generalise - to act mathematically - but, there again, the

student may not 'see through the screen' (Mason, 1993b), and, like any other aid, the

student is locked in the particularity of the device.

7.4. I 'The product rule ': performance, and perception of structure

The 'product rule' of differential calculus is a standard topic in higher school

mathematics. In section 7.4.1.1 I consider the role of this rule in 'problem solving' and in

lJ4 It has been argued, (Laborde 1993, p40) that computer systems can change the mathematical objects
under study. Laborde's examples came from cabri-geometre, but there may be analogies for the algebraic
objects which are CASs' focus.

95 Ruthven (1990) reports on the use of graphic calculators having a significant positive effect on students'
capacity to associate an appropriate algebraic form with a given graph of a function.
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further learning when a CAS is available. In 7.4.1.2 the role of CAS in learning about this

rule is discussed.

7.4.1.1 Problem solving and perception of structure.

While "not all mathematics is problem solving" (Wang, op. cit. p227) appreciation, routine

execution etc. count as well as application, much of the vaunted purpose of learning

mathematics is to be able to use mathematical techniques in solving problems. As

Wittgenstein said, "the use of these symbols is a criterion of their meaning" (1976, op. cit.,

pSI). This purpose-focus has always been recognised, but had particular expression in the

early 1980s through publications like the Cockcroft Report and curriculum development

materials like those from the Spade Group, for example. If problem solving is the prime

purpose of mathematical activity, of what relevance is a student's knowledge of the

product rule if her CAS can return an answer to any differentiation involved in her model

of a problem? To discuss the desirability of the student being familiar with the product

rule, I look at detail in solving a particular problem. This is a closed problem, a typical A

level example, (from SMP 16-19). It has a definite answer but does have different possible

approaches to finding that answer:

Letting r be the radius of the given sphere, a reasonable move is to set the radius of the

cone as x. This gives the 'model' for the volume of the cone as
2

V(x) = ~ (r + ~(r2 - X2)). If you know that turning points can be found by setting the

derivative to zero, then, if you are familiar with a CAS (like Derive), the value of the

required radius can be found without any further mental calculation. You do not need to

be aware even that differentiating products needs a little care.
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Alternatively, the volume expression does not have to be set up quite like that. By using a

different variable, y, the distance of the centre of the circle to the centre of the cone's

base, the volume function becomes V(y) = ; {r2 - y2 )(r + y). This is easier to

differentiate. And this can be seen directly by one with suitable algebraic automaticites:

possibilities in setting up the model were related to easier or more difficult actions in

calculation 96.

That is, understanding is not only 'understanding for or within application' but also

understanding of structure. Understanding of structure, such as that of the one variable

differential operator on a product, includes the perception and action properties of

automaticity. Without these capabilities, as is generally recognised in the psychology of

mathematics education, the student cannot develop to the next stage of abstraction. As

another example, consider the following: if, = cos (i + sin rj is a unit vector in polar co-

ordinates with e a function of time, then its length (and length-squared) is 1. This can be

expressed as: ,., = 1, which can then be differentiated: (')'.; +' .(')'= O. To be able to

'see' the expression P -P = 1 as a product with formally implicit differential(,),.,+'.(,),= 0, is to have an automaticity with regard to the operator's structure. To

be able to 'read' the result as implying that the original unit vector (position) is orthogonal

to its derivative (velocity) requires a similar facility with the scalar product.

Another result obtained with these notations, together with the product rule, is the

expressions for the radial and transverse components of acceleration. A way of getting

these formulas is to differentiate twice (with respect to time) the expression for a general

position vector in polar co-ordinates: r. = ri, where r and e are both dependent on the

same parameter t. In my teaching experience, I have found that the differential

calculations for these components of acceleration are practically meaningless to students

who have not 'internalised the rhythm of the product rule'. The product rule is being

~he text book suggests a trigonometric variable as well, so that the student can compare methods.
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used here structurally and to understand the calculation (let alone produce them) the

student requires more than recognising a potential application of the product rule to

!:.= ri . In other words, automaticity involves structural understanding as well as

computational competency. Without such automaticity the possibility of creative

applications is limited. At a different level, the question of how arithmetic functioning is

intrinsic to mathematical progress is also a matter for current debate, (see SCAA 1997).

7.4.1.2 Learning about structure with CAS.

There are many ways whereby a 'rich environment' can be designed by the teacher, using

CAS, to facilitate the students' generalising and finding a new mathematical concept or

property. Examples can be found within the "activities for the classroom" in Oldknow and

Flower (op. cit. pp 13- 43) or in the articles in MicroMath (Autumn 1993 pp 17 - 42).

For example, an outline of a typical CAS lesson on 'differentiating products' is to be

found in Oldknow and Flower (op. cit. pp 28 - 29). The exercise that is given is to be able

to spot the occurrences of the derivatives f, g' and of the original functions, f, g, of the

product fg, an example of which is x3sinx, in the CAS returned derived function ifg)'.

What the CAS does is to generate data for the student and, like the 'think of a function'

game used throughout the school years, the student is to conjecture the rule that is the

source of the generated data. The CAS will be able to give impartial and non-judgmental

feed back on the quality of the students' conjectures, which many students find helpful

because it is non-threatening. The resulting target knowledge is, at least, recognition of

the formula: ifg), = fg+fg'. The investigation employs the receptive skills of recognising

patterns of notations, but does not require any productive generation of derivatives.

In their commentary on their product rule CAS activity, Oldknow and Flower note:

97 This 'process-object' duality has been the topic of a substantial body of research in mathematics
education. Principal contributors include Tall (1991) and Sfard (1991. 1994). for example.
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"It is frequently argued that computer algebra systems make redundant the mastery

of many of the algorithms in calculus (e.g. product rule, quotient rule, integration by

parts). Therefore, it may seem an anomaly to use CAS to discover a rule which it is

no longer essential to know if you have access to CAS." (ibid. P 29).

I suggest that these rules provide a structural understanding of the basic differential

operator that is needed - as an object (see chapter 6) and an automaticity- as a foundation

for more advanced mathematics. In the case in question, the structure of the product's

derived function is (jg)'= fg+fg' and the process involves 'seeing' the derived function of

a product in this form - and being able to 'do it'!

Ihave reservations about Oldknow and Flower's assertion that:

"the consequence of the availability of automated symbol manipulation will be a

shift away from manipulative facility and towards the ability to construct and

interpret symbolic expressions." (ibid. p 47).

I do not agree that 'the ability to construct and interpret symbolic expressions' can be

developed without 'manipulative facility'. I'm sure that they would argue that the phrase 'a

shift away from manipulative facility' does not imply 'no manipulative facility' !

Nevertheless, my point is that without some manipulative facility, the structure has little

chance of becoming embodied as an automaticity, which as I argued in 7.4.1.1, is central

to structural understanding.

7.4.2 CAS and capability

To make a case for proposition (b), Ifirst want to recall Krutetskii's distinction between

the capable and the not-capable in this regard:

"Able pupils are distinguished by a rather pronounced tendency for the rapid and

radical curtailment of reasoning and of the corresponding system of mathematical

operations .... it even begins to appear in the first problem of a new type to them."

(Krutetskii, 1976, p265).
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The example of the binomial, given above, (27x3+27x2+9x+l is seen as (3x+l)3 whereas

8y3+8y2 +4y+ 1 is seen as not having a representation as the cube of (2y+ I), is a good one

to have in mind here. It is this immediate - and not necessarily aware - grasp of the

structure that is a key point of my argument. A student who instinctively works

structurally (which is part of Krutetskii's characterisation of 'capable') will already have

the germ of the embodiment of, say, binomial expansions. If such a student has a personal

CAS, the data that s/he will be able to receive from the CAS can build on this embodied

germ itself. The personal aspect of the technology facilitates easy checking and exploring

of related expansions.

On the other hand, a student who has no basic structural understanding and has a persona)

CAS will receive the data from the machine as particulars. Although s/he may well

construe a pattern in these data, that pattern will become linked with his/her use of the

machine as data generator. So what becomes embodied is the facility with the machine

and what is not called to account is the structural understanding of the essence that the

capable student got free at the outset. Because "in the usual method of generalising, the

average pupil perceives the generality of features by contrast, the [capable] pupil infers

the features' generality from their essentiality" (ibid. p 259), so the capable pupil will be

able to use the CAS data to build detail on essential structure - hence developing this

automaticity- , the less capable student will be able to generate aspects of the perceived

contrast through use of the machine - hence developing their machine use automaticity.

Krutetskii's research was done in the 1950s and 60s, well before the development of

readily available calculators, let alone CAS. He quotes other researchers on the issue of

curtailment of reasoning; they assert that it comes about only by practice of exercises.

(ibid. pp 264-5) Krutetskii concurs with their view when referring to the non-capable

student, although he disagrees when it come to the capable ones.

The issue raised by this is the distinction between practice and data in algebraic

manipulations given the availability of hand held CAS. I suggest that an experimental,

data based, CAS approach to teaching average students algebra could well reinforce the
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view that Krutetskii found with non-capable students that "many were convinced for a

long time that algebra was an operation with letters, which can be added, multiplied, or

raised to a power using definite rules" (ibid. p 254). This is because, as quoted above, the

average student does not perceive essentiality but is able to distinguish features. The use

of a personal CAS will only reinforce the feature spotting rather than the structure.

Furthermore if the sort of exercise is advocated where students explore data - say derived

functions - as discussed above, they will get limited opportunity to do the workings

themselves as a mental (rather than perceptual) process. The consequence of this is that

'basic actions' become operations on the machine, rather than mathematical

automaticities.

7.5 Summary: only in mathematics

Fluent mathematical activity is a phenomenon familiar to mathematical practitioners -

because they experience it - and to mathematics teachers - because they are involved with

developing this facility in others. But how is the capability to calculate or to do algebra

etc., related to mathematical knowledge? In this chapter I have tried to give an account of

'automaticity' and claim it is a form of mathematical knowledge. At first sight, to execute

an automaticity, appears to be to exhibit a non-propositional basic action. Such need not

be knowledge. People can be trained to instrumental mathematical activity, to execute

'rules without reason', and this does not satisfy the warranting criterion required if a

knowledge claim is to be made. So the concept of 'automaticity' must have a warranting

dimension if any knowledge claim can be made. This can be done without introducing a

new item of knowledge, because, in the unique knowledge domain which is mathematics,

the warrant is both the structure of the action and the justification.
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8. Chapter 8: Conclusion

The untamedness of numbers is in their order, resolving upwards into a speculated beauty.
Too close and language fails. (Jeanette Winterson, 1997)

8.1 Overview

Every discipline has its particular ways of reasoning, objects of study and instinctive-like

routines. Within these pages has been an investigation into the nature of mathematical

warrants, objects and 'automaticities' as they pertain to higher school mathematics. This

investigation has entwined a philosophical analysis of mathematical warrants, objects and

actions with an application of these concepts with regard to learners of the subject. On the

general level I have made a case for:

I. the distinctiveness of mathematical warrants

II. the existence of mathematical objects

III.the knowledge-status of mathematical action

Applying these ideas to mathematics in education I argued that:

i. ways of reasoning at this mathematical level include deduction, quasi-empiricism and

visualisation, and that students need not only to learn these processes, but also that

these processes are the ones which serve to justify mathematical propositions

ii. ontological commitment to the content of higher school mathematics is integral to a

student's progress and a consequence of realism in mathematics

iii.learning mathematics involves developing a capability to execute some mathematical

procedures with 'automaticity'

While the discipline under scrutiny in this thesis was that of higher school mathematics,

the method of scrutiny was through application of philosophical reasoning. This is an

unusual approach in mathematics education. The only other writer of whom I am aware
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who explicitly uses philosophy reasoning applied to mathematics education is Paul Ernest

(e.g. 1991, 1997). Ernest is well known as a champion of a 'social constructivist'

philosophy of mathematics; that 'objectivity is social' is fundamental to his theory.

Except for a brief rebuttal in chapter 6, I have not constructed this thesis as an argument

against Ernest's position but tried to develop an alternative 'objectivity is Gaia98, theory.

There are two main reasons for this. Firstly, head on, 'adversary' battles, as I reported

from Moulton's work in chapter 2, are unlikely to produce fresh thinking or to convince

anyone in the heart. The best adversarial reasoning can do is to 'score points'. Secondly, it

was important to communicate the work of realist philosophers who, barring Kitcher and

Lakatos, Ernest had not mentioned in his 1991 book. The application of the work of

philosophers such as Goldmanf', Maddy, Resnik, Zheng and Giaquinto and others to

issues of mathematics in education is intended to be part of the contribution of this thesis.

The main body of this chapter begins, in 8.2, with a review of the comments made after

doing the mathematics presented in chapter 3. Then I revisit the themes from the

'teachers dialogues' of the introduction, in 8.3. In 804 the theoretical ideas of the thesis

are applied to some A level mathematics questions. Section 8.5 is a final summary.

8.2 On the comments arising from doing mathematics

In sections 3.2.nA in chapter 3, I listed some seventeen comments in all which were 'for

further philosophical investigation'. Many of the ideas in these comments were used in

expressing the three-part thesis which was expounded and defended in chapters 5, 6 and

7. The most important themes from those comments were on:

o the way by which mathematics may be known. (From 3.2.1.4: the role of perception,

paradigm examples; from 3.2.3.4: role of technological enhancers, what determines

98 Gaia is the Greek goddess of the earth. The 'Gaia hypothesis' • (termed thus by Lovelock and Margulis).
is the idea that the whole (physical) world is interrelated. from rocks to biological organisms (including
human beings). (Kapra, 1982. p 307)

99 Dylan Wiliam has used ideas from Goldman (1976) in Wiliam 1994.
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truth of a mathematical proposition; from 3.2.4.4: new ways of grasping the same

phenomenon can occur.)

o the relationship between what is experienced within the world - particularly the

material world - and mathematical knowledge. (From 3.2.2.4: the notion of a

mathematical object; from 3.2.3.4: the relationship between lived experience and

mathematical experience; from 3.2.3.4: the tension between rationalism and

empiricism. )

o how action, in doing mathematics, is linked to mathematical knowledge. (From

3.2.1.4: the relation between action and understanding, and between algorithms and

processes; from 3.2.2.4: the power of notation.)

There are inevitably some loose ends from those comments, for example the function of

aesthetics, the notion of a change of mental state and a thorough investigation of the role

of notation. However, those comments contributed to provoking the theses on the

distinctiveness of mathematical warrants, on realism in mathematics, and mathematical

fluency as a form of knowledge, respectively.

8.3 Back to the themes of the 'teachers' dialogues'

One of the purposes of a philosophical piece of work is to try to unravel puzzles arising

from experience. In the first chapter, the teacher-dialogues illustrated various puzzles

arising from higher school mathematics under the themes of belief, mathematical objects,

notation, proof and wis en zeker. As I said in the introduction, these themes are woven

through the work as a whole. Nevertheless, the themes of belief and proof are

predominant in chapter 5 and chapter 6 is specifically on 'mathematical objects' which

includes the wis en zeker theme. The theme of the role of notation, together with belief,

proof and the objects of mathematics is to be found in chapter 7.

Looking back to the themes more specifically: From chapter 5, we find that to get to

know any propositional mathematics a belief about such a proposition must be formed.

Generally, warrants justify the truth of propositions of the sort abounding in higher school
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mathematics. For a student to have a warranted belief in a mathematical proposition,

specifically mathematical warrants are required. These include proofs but, any teacher

knows that proofs do not (often!) have the power to convince. A classroom challenge is to

get the learner both to be convinced by a mathematical proof and to grasp that producing

mathematical proofs is paradigmatic mathematical argument.

From chapter 6, we find that human perception and physical activity form the foundation

from which relations, patterns and abstractions - which are raw mathematics - are then

classified and codified. With this foundation, mathematics need not be conceptualised as

completely divorced from the physical world. A physicalist-realist mathematical ontology

resolves the paradox of 'real abstractions': properties and relations - which yield

mathematical objects - are, initially, properties of and relations between physical entities.

Relations between the relations provide more possibilities for mathematical abstractions.

These relations can include the relationship of negation thus permitting possible worlds

which are independent of physical instantiation. Consequences of the possible worlds are

bound by mathematical reasoning rather than by perceptually based experience.

From chapter 7, we find that mathematical knowledge is not just of propositional form:

the notations and symbols of mathematics can serve as a 'blind-man's stick' within fluent

mathematical activity, (typically algebraic manipulation and calculation).

The response here to the themes of the introduction is brief because detail of the

explanations is in the body of the thesis as a whole.

8.4 A sample of higher school mathematics analysed in terms of warrants, objects and

actions

Those studying higher school mathematics within school or college are usually assessed

on their competence with the content. Indeed for many students the purpose of studying

the subject is to obtain some kind of certification which allows them to progress towards

a personal or career goal. The evidence for whether Joe knows this mathematics he has

been studying is assessed by his teachers, possibly his own sense of whether he has
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understood, but these are both influenced and overshadowed by the public exams which

certify his knowledge. Public exams have been subject to change in recent years 1. The

rhetoric that the aim is understanding, rather than 'just' doing, has crept into the system.

The typical student, Joe, will probably consider that he has understood the mathematics of

his course when he can do problems of the type on which he will be tested.

The relationship between assessment and knowledge is immensely complicated. A

thorough analysis would have to delve into psychology, sociology, politics as well as the

history of education. Clearly, this task is outside the present work. But a limited analysis

of what the knowledge is which is intended to be assessed can be done using the

philosophical ideas of warrants, mathematical objects and automaticities. This may be

achieved by taking assessment items, at the mathematical level in question, and specifically

locating objects and warrants intrinsic to this assessment. Two A level questions and a

pedagogical discussion starting point are analysed in this way. The A level questions are

typical ones from algebra and calculus, single and further maths respectively. The problem

situation is one which often provoke students to question their 'common sense'

understanding.

8.4.1 A level algebra question

A level question 1, taken from AEB November 1989, Common Mathematics Paper I:

1 The idea oftcstigg 'understanding' is an acknowledged aim both in the course-work assessments of, for
example, GCSE and some GCE A level exams, and also in some of the English and Welsh National
Curriculum SAT tests.
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* r3 - 2r + I = 0

A geometric series has first term 4 and common ratio r, where 0 < r < 1. Given that the

first, second and fourth terms of this geometric series form three successive terms of an

arithmetic series, show that

Find the value of r.

What mathematical objects are dealt with here? What are suitable warrants? Where might

automaticities 'click in'?

Objects. Within any given mathematical 'situation', as the example just given, there can

be construed a myriad of constituent concepts which, in terms of the discussion of chapter

6, could consistently be classified as 'mathematical objects'. In the particular 'situation'

reproduced, I suggest that part of the examiners' intention is to assess students on the two

types of regular progression called (here) 'geometric series' (GP) and 'arithmetic series'

(AP). As mathematical entities, these progressions have property-defining structure: a

sequence of numbers of either of these types can be specified by just two real numbers

and an operation. (These parameters are the first term'?', the factor of 'increase' and the

operation of 'increase")

An ontological commitment to GPs and APs is not necessary to do this question _

formulae for the sum and general tenn of these two sorts of sequences are in A level

formula books. A student may well be able to act as follows: write down the expressions

for the second terms by plugging in '2' for n in the given formulas and equate them, then,

write down and equate the third term of the AP with the fourth term of the GP. That a

student may be able to achieve satisfaction on the assessment item without a grasp of the

,.

101 Any term may be used to specify the sequence, but then an extra natural number parameter, n, is needed
to say which term this is.
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entities involved says more about the assessment item's design than the intention in

setting it or the mathematical objects it involves.

Warrants. This problem involves two basic propositions: (i) that r satisfies the given

bi (ii) h - 1+..[5 Wh hernati I &cu IC; 11 t at r = at are mat ematica warrants lor belief in these
2

propositions?

For (i), a standard warranting of the proposition, requires that an unknown - the 'common

difference' of the AP - is eliminated from the two simultaneous equations. Typically, this

is done by the equating of the second terms and equating of the fourth and third terms of

the GP and AP respectively. Deductive reasoning is used to give an expression for r from

the two given equations in two unknowns. Despite this formal mathematical warranting,

an authoritative warrant for belief is employed when the student, having carried out the

deduction, checks back in the question and finds to his relief his answer is confirmed.

For (ii), the problem solver requires some notion of root including the possibilities for

how many roots a cubic can have. The root required in this case is a real number which,

when it is cubed, is equal to two times itself minus one. A student can get thus far without

a method for finding a value for r. But if he finds an r (which satisfies this relation) his

method of finding is bound in with the warrant by which it is believed that the particular r

found is indeed a root. Mathematical knowledge - in this case knowing the proposition

(ii) is true - is subject to mathematical warranting.

Here are some warrants which a student might use to show the truth of (ii): (a) he may

guess; (b) experiment graphically; (c) use the formula for solving cubics of x3 = px+q

type; or (d) extract one root and solve the remaining quadratic, Each of these methods has

its own warranting power: For (a), a guess is only as good as the check; for (b), a

graphical experiment is akin to a perceptual warrant; for (c), a mechanical substitution

into a received formula is only as convincing for the student as his ontological

commitment to the formula; for (d), extracting the whole number root and then
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factorising the remaining quadratic is a three stage method: the whole number root is

located, the linear factor is extracted, then the remaining quadratic is solved.

Automaticity. Algebraic manipulation, whether as an automaticity or as a laboured

reflective process is required to prove the relation satisfied by r , *, and that this equation

is satisfied by the specific value r. There is no guarantee, nor requirement, that

mathematical action-knowledge of the automaticity-type needs to be used in solving this

problem. However, if every manipulation or deduction were executed without

automaticity, it is likely that the student would not finish the exam102
. In other words, the

time constraints of the assessment would be the only lever to indicate that some

automaticities were part of the students mathematical knowledge even though it would not

be apparent which ones.

8.4.2 A level calculus question

A level question 2, taken from NEAB 1998 Specimen Questions, Paper 6.

A curve in the x-y plane is such that for x > 0 the tangent at every point (x , y) on it

intersects the y-axis at (0, x). Show that

xdy =y-x.
dx

Hence find the equation of the curve which possess this property and which passes

through the point (1, -2).

What mathematical objects are involved in this problem? What are suitable warrants for

belief in the propositions which are required to be proved? Where might automaticities

contribute to knowledgeably solving the problem?

102 In the discussion paper, (SCAA.1997), time constraints are suggested as a means by which effective
mental strategies - potentially automaticities - are encouraged (PIS)
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Objects. A particular curve in the x-y plane need not be conceptualised as a mathematical

object for it has, potentially, a perceptual existence and so can be construed as merely a

perceptual item. However, a curve defined by properties owes its existence to

relationships between those properties. A student aiming to solve this problem will find it

difficult without an ontological commitment to property-defined geometric objects. In

this question the property-defined geometric objects are the curve and the tangents to the

curve. The curve only exists because of a property of its tangent. And the tangent only

exists if the curve does! In this case, the properties of the curve are (a) a particular

relationship between of the rate of change of the y value with respect to the x value with

those x and y values; (b) a particular point it passes through.

Warrants. Like the question above, the student is asked here to prove two propositions:

(i) that x: = y - x; and (ii) that y = -x(Jn x + 2), given (1, -2) lies on the curve. The

first proposition is no more than an unravelling of the meaning of the question and

expressing it in a particular notation. The warrant for belief is basically authoritative -

given a grasp of tangent to a curve - 'have I got the correct symbols?' The second

proposition is the main content of this question. In a similar fashion to the first question,

the method used to find the equation of the curve is bound in with the warrant by which it

is believed that the particular y = y(x) found - (this curve does happen to be a graph of a

function) - is indeed the correct one.

Consider analogous methods to the ones hypothesised in the other question: (a) guess-

check; (b) graphical experiment; (c) formal use of integrating factor; (d) experimenting

with symbolic forms to get an exact ODE, then integrating both sides of the equation with

respect to x.

For (a), while a guess (or approximate guess) of the function seems unlikely, the great

thing with differential equations like this is that if the solution fits then the problem is

solved; the explicit check is crucial to this warrant, without a demonstration that the

properties are satisfied there is no reason to believe an hypothesised function has the

properties required. It is a similar situation when a graphing experiment or numerical
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methods are used in method (b): the relational properties need to be confirmed no matter

what tools are used to help the student to come up with an hypothesised solution. In the

case (c), of the formal symbolic method, this could be performed by a suitable CAS, but

the student will probably still have to recognise the form the CAS can accept the

differential equation and organise the input accordingly. Nevertheless, the warrant would

be a perceptual matching of notational form together with the authoritative warrant due

to the machine's capabilities. The formal symbolic method can be employed 'by hand' of

course, in such a case the warrant for belief in the solution's veracity is comparable to the

warrant in the case (d) where an integrating factor is found though some experimentation

with the symbolism. However, the crucial conceptual move here for the student is to

recognise the importance and procedural function of manipulating the equation into an

exact form from which a symbolic integration can be worked; deductions of this type

(integrating to get a solution) require premises (the given differential equations), and the

structure of the given equations legitimates the very deduction of the solution function.

Automaticities. Again, there is no point of the exercise which requires an explicit

automaticity, yet without some such fluent functioning it is difficult to imagine that the

task could be completed. (In the case that a CAS does the difficult bits, the point is that

the machine operates automatically - what else can a machine do!) The translation of the

problem into a symbolic form, to get proposition (i), is perhaps one part of the process of

solving the problem where it is difficult to be reflective about every aspect of the

reformulation and still finish in a finite time. It would not be unreasonable to expect a

student tackling this question to know automatically, 'in his body', that an equation of a

straight line has form y = mx + c. Furthermore, for a given point, (xo, yo), the question-

information says that c = Xo , so a procedural automaticity may be realised in making the

substitution y = mox + xo' where me is the gradient function evaluated at the arbitrary

given point.
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8.4.3 Problem situation from Mechanics

A super ball bounces to half the height from which it drops.

We cannot see microscopic bounces - how do we know if the ball ever stops bouncing?

This problem does not consist in a request to prove specified propositions in the way the

two A level questions did; it can be used pedagogically to start a discussion from which

such a proposition may be conjectured. A discussion may include choosing the

mechanical model, specifying the initial conditions and agreeing an appropriate symbolic

representation. The outcomes of an investigation are less definite than of a closed

question, but the question of what the objects, warrants and automaticites might be can

still be posed.

Objects. The ball is not a mathematical object but, in some sense, the basic kinematics

equations for constant acceleration are! (An assumption has been made that the choice of

the model is ;:= - gJ). The kinematics equations are objectified in the sense that the

relations between a constant rate of rate of change, the dependent and independent

variables and the rate of change, are deducible from the notion of rate of change. The

other significant mathematical entity to contend with in this situation is countable infinity

and its application in an infinite series.

Warrants. A proposition which may be conjectured from this starting point is (i)

I;=I tj < 00, where tj is the time taken for the j'h bounce, i.e. the ball stops bouncing

within a finite time. The mathematical statement, (i), is that an infinite number of

nominally physical items (times, tj,) may be combined to make a finite one. A warrant,

again, is essentially the method used to show that (i). The proposition may have been

conjectured because of the perception that the ball does physically seem to stop bouncing.

In terms of the vocabulary used in the A level examples, this method of getting the result

'it stops bouncing' was by using a perception warrant.
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~- (f-Fso)( 1+.J2 )The more specific proposition, (ii), is £..J -I t J = - r: , where So is the
J- X - 1+..;2

initial height. The infinite sum is the sum of a GP, the terms of which are obtained from

the equations of motions of the basic mathematical model employed. Algebraic reasoning

and manipulation is required at this stage. The discussion reverts to that of the first A

level question.

Automaticities. There are two distinct aspects of problem solving of this type: setting up

the model and working through the calculations consequential to that model. Possibilities

for automaticity in the calculations part of the problem solving have been already

discussed. The aspect of applying a model is really a scientific enterprise rather than a

mathematical one.

8.4.4 Summary

This analysis of some higher school mathematics problems illustrates how a philosophical

theory can be used in a practical context. The philosophy reasoning which I have used and

the subsequent theoretical ideas I have presented, may not be everyone's cup of tea. but

the process of thinking through and expressing these ideas has clarified, for me, the nature

and (mathematical) purpose of higher school mathematics teaching.

8.5 Directions for further work

The results of the research presented within this thesis are predominantly conceptual ideas

about the nature of mathematical knowledge at a beginning level of abstraction. The

research base was literature from English language-medium philosophers (although some

translated sources were referred to). As the project was, in part, to apply philosophy to

mathematics in education, there are bound to be many more avenues to take than I have

been able to do justice to within this particular thesis. The following three suggestions are

intended to give a taste of possible future philosophical research in mathematics

education compatible with the themes within this work:
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Linguistic realism as a philosophy of mathematics applied to 'coming to know' in

mathematics. Azzouni's (1994) novel perspective on the nature of mathematical

knowledge merits application in education. He argues that mathematics is neither realist

in the 'physicalist' sense nor is it 'anti-realist' in the conceptualist sense; mathematics is

ontologically unique. Azzouni's commitment to offering an ontology compatible with

mathematical practice bodes well for his theory's being applicable to mathematics in

education.

The North American pragmatic tradition and the influence of nature on cultural

abstractions. The 'pragmatic' philosophical tradition is associated with American writers

from Dewey to Putnam; at its heart is the question 'how do we function?'. Different

mathematical functionings develop from the same physical world but from peoples with

different social concerns. The Navajo conception of space, (e.g., Ascher, 1991), has a

quite different formal expression from the dominant quasi-Euclidean conception. Such

geometric 'different expressions of reality' merit explanation in terms of peoples'

pragmatic interaction with the 'world'; what does 'objective' mean, what would be

'objective mathematics'?

Realism and anti-repesentationalism, is this possible? Donald Davidson's fundamental

question to himself is 'how does thought begin?' (Davidson, 1997S). His work cuts across

linguistic analysis, epistemology and ontology, and is labelled 'realist' by some (e.g.

Dummett, 1992) and the contrary by others (e.g. Evnine, 1991). Rorty (1990) classifies

Davidson as 'anti-representationalist' because Davidson eschews the notion of epistemic

intermediary, like perception, being a cause of knowledge. Because the central question I

worked with was, paraphrased, 'how does mathematical thought begin?', a more thorough

application of Davidson's theories, than those touched upon in chapter 7, could be fruitful.

Specifically, Davidson's conception of the essential triangulation required for knowledge -

putative knower, another putative knower, world - seems appropriate to try to apply to

issues specifically concerned with mathematics in education.

The overriding theme in these projects is the focus on the fuzzy and fiercely complicated

boundary between the given 'external world' and human artefactual knowledge -
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specifically the abstract discipline of mathematics - which I consider fascinating and

problematic. The conceptualist answer diffuses questions about this boundary by asserting

that 'there is no 'given' external world; the world is what 'we' make of it', i.e., there is no

such boundary to try to understand. How 'we' do 'make knowledge' is the basic

conceptualist epistemological problem, but they have solved the ontological question by

fiat.

Another possible set of future research projects could be developed from deepening tracks

already pursued within the thesis. I shall briefly give two examples to help bring these

sorts of projects into focus:

Mathematical practice: how can Kircher's conception be used within pedagogy?

Kitcher's five-component conception of 'mathematical practice', together with the

'rational transitions' integral to the practice, may be able to be applied to mathematics in

education. Two ways which this potential application might be investigated: firstly, the

question of the compatibility of his 'rational transitions' with 'cognitive development'

needs to be addressed; secondly, curricula expectations in student progression (what

mathematics proceeds from what in the syllabuses) may be assessed against the 'rational

transitions' of Kitcher's theory.

Automaticities: mind or machine? Educational issues currently make news in Britain. Of

the most newsworthy of educational issues is the state of British children's mathematics.

The question of what children can 'really do' is paramount. What an individual child can

really do must surely be a function of that child's individual brain? Hence the up-surge in

interest in mental arithmetic: Suzie's mental calculation is truly hers because 'it

happened' in her brain. But what does 'happen'? A rote response or fluent action? When

does executing a particular mental process constitute knowing? And when does

subordinating calculation to a mechanical device suggest facility rather than lack of

facility? Such questions can be addressed using both philosophy reasoning generally and

the theoretical ideas of chapter 7. When to use machines to enhance or replace student

automaticity may, using such analysis, have a more rational response than presently heard

in the so-called debate betwixt the 'technological enthusiasts' and the 'traditionalists'.
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Chapter 8: Conclusion

8.6 "Image and reality: the oldest distinction of all. ,,103

Some years ago a student of mine, Jennifer Wilson, did a GCSE project on permutations

and combinations in bell ringing. Jennifer was always keener on music than mathematics

and the hope behind her pursuing such a project was that her interest in bell ringing would

give her insight into elementary group theory. Some years later a question was raised in

mathematics education circles, (by Dick Tahta, I believe), which asked whether there

could have been mathematical bell ringers before permutation theory was developed.

Could Jennifer have been mathematically au fait with permutations instinctively because

of her bell ringing interests? -well that was my hope as her teacher! And this is a practical

example of a teacher's application of the philosophical mathematical realism for which I

have been arguing. This is because, when it comes to bell ringing, there may well have

been 'mathematical' bell ringers pulling harmoniously with 'non-mathematical' bell

ringers'?'. This proposition, of course, cannot be checked. But I do not want to deny the

possibility of pre-cultural spontaneous 'mathematical' activity. (However, one cannot

expect to find evidence of such activity because the communication channels are not

there, for the pre-cultural hypothesis implies that there would be no extant evidence of

permutation theory). However, those bell ringers may have had thought patterns which, if

they could have been communicated, would be recognisable as 'mathematical'. And these

'thought patterns' came about because of their mental and physical interaction with a

specific environment. The musical image veils a mathematical reality.

There needs, finally, to be some comment on the relationship of academic writing, such

as this, and the wider sphere of moral values, for these inevitably colour the intention of

the writing. What I have presented here is an account of the nature of mathematics

103 Pat Kane (1998). Kane was writing about media image and political manipulation. He concluded his
article by saying: "But the world was never as simple as image versus reality." His sentiment of reality
being desirable but illusive, merged with language, culture and human relationships has an analogy to my
story about mathematics.

104 The question of whether. or to what extent. bell ringing and. say. basket weaving. can be 'mathematical'
is one studied by some mathematical ethnographers like Ascher (1991).
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relevant for those involved in higher school mathematics. Within this account I have

argued for the objectivity of some mathematical results as a function of realist ontology.

What underlies the desire to put forward this view is the following moral principle:

~ there should (morally) be the possibility for anyone to engage with mathematical ideas

In other words, the research which ensued from my interpretation of this principle was to

develop theoretical ideas about the nature of mathematics which did not demand

absolutely that mathematical knowledge was only a cultural artefact. Given the principle

stated, I was motivated to make a case for why mathematics is not just a function of the

practitioners. I hold the view that even though the majority-ethnicity male middle-class

bastions of mathematical community privilege are extremely hard to penetrate for

someone from outside, this does not imply that those within that community created

mathematical knowledge in the sense that they can decree what is to be true. While it is

true that they have invented notations, encouraged particular questions - ballistics has been

a favourite over the centuries - and chosen new members of their elite group, they did not

create the possibility of perceiving discrete entities, from which basic counting starts prior

even to language development, nor did they form the human powers used to develop these

initial ideas mathematically.

I have argued for the non-relativism of mathematical truths at the higher school

mathematics level. This was motivated by the ethical principle discussed. But, even if I may

have persuaded the reader that there is something objective about the nature of

mathematics, a story about the nature of mathematics is less objective; it is inevitably

shaped by the narrator. Truth of some mathematical propositions may be as true as

completely as the meaning of 'true' can be taken, but the truth of the proposition 'some

mathematical propositions are completely true' is not as firm. I have wanted to express and

argue the thesis that there was some aspect of mathematics which was intrinsic to the

physicality of human functioning. As another of my former students, Toby Martin, said of

mathematics "it seems that maths springs from the world we find ourselves in. Perhaps the

way we think is tutored by the world we're in, so the maths we think is obviously going to

fit in."..
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A contribution made by this thesis is to show the relevance of schools of thought, other

than conceptualism, to mathematics in education. I have started from 'mathematical

experience', or as Maddy calls it "the phenomenon of practice" (Maddy, 1990, p3), and

tried to explain what it is to 'come to experience that practice' (i.e., 'come to know

mathematics') through a person-centred philosophical realism. The connection with the

practice of teaching mathematics is also important in locating the purpose of this work.

And the root purpose of teaching is one which transcends discipline boundaries. I end with

the expression of such purpose given by the teacher and writer bell hooks (1994, p207):

"The classroom, with all its limitations, remains a location of possibility. In that field of

possibility we have the opportunity to labor for freedom, to demand of ourselves and our

comrades, an openness of mind and heart that allows us to face reality even as we

collectively imagine ways to move beyond boundaries, to transgress. This is education as

the practice of freedom."
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Appendices

9. Appendices

9.1 Forchapter5

Attached: student work photocopies of their 'angle in semi-circle' assignment

9.2 For chapter 6

Attached: student work photocopies of their negative numbers -'how I remember'

poster and their directed numbers mini-assessment.
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HOW I REMEMBER
DIRECTED NUMBERS!

This is a poster all about how I remember
directed number sums.

Here is one way.lmagine there is a mountain
like this w If you measure the top
height and the water level you can work out
whats in between.

Another way to find something out for the
multiplication sum is if you get a sum like--2,c3 with
2 minuses I always think it can not go any lower so it
therfore must go higher-2)(g =6

One more way to work out a directed sum is by
drawing a number line, like the one helow, It really
helps to find the number in the gap.

A Number Ljne.
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Directed Numbers Mini Assessment

A) Make up four questions (and put the answer!) that show how well
you can add and subtract directed numbers.

1) ~
i -.- ..;,. - = -, Oop5

2) , /
:::. - V-

3) , .:- x -._.. = ~ ...,_.
4) - I - -1 \/': .__,

\ --....f"- -;;:..- - _

-_
8) Make up four questions (and put the answer I) that show how well

you can multiply directed numbers.

1) .- . -. V -... - '-

2) - ::... -/ -
- (..-: -,- ...,

3) - V -~ - - " - "' -~ - ...

4) .- -, - -... // C1~d !
'I
I ~ -

C) Now, have a go at these division questions:

Remember to use multiplication to check back.
Example 24 -+8 = ?

24 ~ = 3 because 3X8 = 24.

/ -~ 1) 8 +-2 =? - .-' -: --- - - --- -- -

/2) -12 +-4 =? -/ - .- - - -~ -
/3) -15 +3=?

.- /~ - '._ .

.,
4) -30 +(-2 X -6) =? 0:-..- .: " ,

D) What do you understand best about directed numbers?

E) On what aspect of directed numbers do you feel you need more
lessons? - ,":-., "
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Directed Numbers Mini Assessment

Make up four questions (and put the answer!) that show how well
you can add and subtract directed numbers.

v/

A)

1) - r1/O

, - -,..,.::_c - ""-'-6 . 0' ,A.,

2)-:") -\..., --7 ....... __ 1" ~.- _..,

3)-~,:;--56:0

4) ;::..+ - ;z., ::"1--

/
V

x: =--,.

8) Make up four questions (and put the answer !) that show how well
you can multiply directed numbers,

1) 20 .:< eO;;" .: -c
2) .:?; x - 5 .: I 5

3) . :;..-5 ~::. ,~ - ~ 0

4)- \".. ....-~ - J,;.".:,~\0 '"\ _, ... , ...

:( ;: -4-0
,/v

'/
/

v'

C) Now, have a go at these division questions:

Remember to use multiplication to check back,
Example 24 -+8 = ?

24 -+8 = 3 because 3X8 = 24,

1) 8 +-2 =? - v" -?t- v

2) -12 +-4 =? ... ../;:; \

3) -15 +3=? .3 ....- - -4- x:
_l._, _.,r

.../

4) -30 +(-2X-6)=? -2' 5

E) On what aspect of directed numbers do you feel you need more
lessons ? -r(~e :0),,' ~- ..\ --::\, r ..,",l, j'!-,-I ("\,..1 ry'b<o" t':; \5 ~,._.; t{-:-· j.... 0- j' ~

I.. . -' ._ - •
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Directed Numbers Mini Assessment

A) Make up four questions (and put the answer!) that show how well
you can add and subtract directed numbers.

-- '__ '"

..' l
) r,

.... --- __.J

('

"_'_

B) Make up four questions (and put the answer !) that show how well
you can multiply directed numbers.

-'- -/ ..' -... -'. .---- -- ~ _,/ -;::: ,..:..- - '...._--,

C) Now, have a go at these division questions:

Remember to use multiplication to check back,
Example 24 ~ = ?

24 -+8 = 3 because 3X8 = 24.
s. " -- -

8 +-2 = ? --/_;. ~-./ --1)

2) -12 +-4 = ?3 .>
3) -15 +3 =?-S ./
4) -30 +(-2 X -6) =? ~ - ) ") / ,/....... ,-

D) What do you understand best about directed numbers? :.,u\.c0J-:Lcu"vd ·:;€Jt
,.

,-: I ~ "1 ~, _'" I-"-c~\_ 4. ~ ......l.tvC;:_ ,'~\..,,<> -:- ;_,-,:) -=- IP'-J- L: II J f
l' ''_;l-'~ ,~( )'-LU:L:::~.f·

~ ~~:j'J'..,_ cl1) ~
On what aspect of directed numbers do you feel you need more ~ ,/
lessons? / ~~ ~O-..t::'..cr~ ; 2_.'~C~ c--,
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Directed Numbers Mini Assessment

A) Make up four questions (and put the answer!) that show how well
you can add and subtract directed numbers.

8) Make up four questions (and put the answer !) that show how well
you can multiply directed numbers.

1) - '. J - - .-- I ,(~-1 - - -'v

2) jn IY\(\/'\.J
3) -.- - x ._

4)
.< -

C) Now, have a go at these division questions:

Remember to use multiplication to check back.
Example 24 -+8 = ?

24 -+8 = 3 because 3X8 = 24.

1) 8 +-2 =?:... ,

,.,./2) -12 +-4 = ? .~ ../

3) -15 +3 = ?_:::

4) -30 +(-2 X -6) = ?:;., _

0) What do you understand best about directed numbers?

.r:«:

E)
""-1\ c o M..~O"", ~e.e !""-j \

On what aspect of directed numbers do you feel you need more
lessons?

.,.r
r- " ( >", :... .: (' •



Directed Numbers Mini Assessment

A) Make up four questions (and put the answer!) that show how we"
you can add and subtract directed numbers.

1) ( 4 - -~) - 4 ::.2 /
/

2) (-6+lt) +4- - -2 =-lr- vi'
3) r 5 -2 } - 3 -Lt - ·3 -:..1i-4 t/~

4) ( 1-5 ) ...3 - -1 =- ~~ I
~ (:'OJ.(

B) Make up four questions (and put the answer !) that show how we"
you can multiply directed numbers.

1)
,

2 X -5 .: -)0 /
2) -6X-2=12 /
3) 7X - 2a z: -1Lro

~

4)-7X 2 =-14, V/ [1'C V c{

J

C) Now, have a go at these division questions:

Remember to use multiplication to check back.
Example 24 -f8 = ?

24 -f8 = 3 because 3X8 = 24.

1) 8 + -2 = ? , -4

2) -12 +-4 =? '3

3) -15+3=? ...~

4) -30 +(-2X-6)=? -2.tS.

D) What do you understand best about directed numbers?

E) On what aspect of directed numbers do you feel you need more
lessons? for I=~ L,~ 6 - -2 =- Q):c.

~ -
1 J
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Make up four questions (and put the answer !) that show how well
you can multiply directed numbers.

_. x: - -G /1) -,:_' "' _/ -

~

•

8)
,A

2) - L-.

4)_:;-

Directed Numbers Mini Assessment

A)
~

Make up four questions (and put the answer!) that show how well
you can add and subtract directed numbers .

-

-,

--
x-;".:: 10 . ,

-... ~ ........ ' I - I
, _.

_. ~ i

- IS
,/

V - ..;

, .

~ Now, have a go at these division questions:

Remember to use multiplication to check back.
Example 24 +8 = ?

24 -:8 = 3 because 3X8 = 24.

D)~.

E)
...,

I

I
:....

1) 8 +-2 =? - {-to Vl
- ...:.... IL

2) -12 ~-4 =? '<' v/ -'~'". .

3) -15
..'..... /~3=? - _). .

I -- I

4) -30 +(-2 X -6) =? i.nc; - ~- b v

What do you understand best about directed numbers?
I) . 1_· -F"u. C(\:: rl.(,0'-;/(h:J:: vJrI.Z,/ tt.'('~~' ....) L-:o \~,~",) ('~Ylb<-.:i \.fJCrl

,I' (Of ... }' ) .J' ('..L,,~,~.L.<c:__, 'Y I ,

On what aspect of directed numbers do you feel you need more
lessons?

o «:
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